WorldWideScience

Sample records for experimental higher dimensional

  1. Higher dimensional loop quantum cosmology

    International Nuclear Information System (INIS)

    Zhang, Xiangdong

    2016-01-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)

  2. Instabilities of higher dimensional compactifications

    International Nuclear Information System (INIS)

    Accetta, F.S.

    1987-02-01

    Various schemes for cosmological compactification of higher dimensional theories are considered. Possible instabilities which drive the ground state with static internal space to de Sitter-like expansion of all dimensions are discussed. These instabilities are due to semiclassical barrier penetration and classical thermal fluctuations. For the case of the ten dimensional Chapline-Manton action, it is possible to avoid such difficulties by balancing one-loop Casimir corrections against monopole contributions from the field strength H/sub MNP/ and fermionic condensates. 10 refs

  3. Higher dimensional discrete Cheeger inequalities

    Directory of Open Access Journals (Sweden)

    Anna Gundert

    2015-01-01

    Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.

  4. Gravastars with higher dimensional spacetimes

    Science.gov (United States)

    Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2018-07-01

    We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.

  5. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  6. Experimental investigation of 4-dimensional superspace crystals

    International Nuclear Information System (INIS)

    Rasing, T.; Janner, A.

    1983-09-01

    The symmetry of incommensurate crystals can be described by higher dimensional space groups in the so called superspace approach. The basic ideas are explained and used for showing that superspace groups provide an adequate frame for analyzing experimental results on incommensurate crystals

  7. Higher dimensional homogeneous cosmology in Lyra geometry

    Indian Academy of Sciences (India)

    1Department of Mathematics, Jadavpur University, Kolkata 700 032, India. 2Khodar ... 1. Introduction. The idea of higher dimensional theory was originated in super string and super gravity .... Equation (7) can easily be integrated to obtain.

  8. Execution spaces for simple higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    2012-01-01

    Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions of allowa......Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions...

  9. Higher-dimensional relativistic-fluid spheres

    International Nuclear Information System (INIS)

    Patel, L. K.; Ahmedabad, Gujarat Univ.

    1997-01-01

    They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given

  10. Execution spaces for simple higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    Higher Dimensional Automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek [26]. For a topologist, they are attractive since they can be modeled as cubical complexes - with an inbuilt restriction for directions´of allowable (d-)paths. In Raussen [25], we...

  11. Higher dimensional time-energy entanglement

    International Nuclear Information System (INIS)

    Richart, Daniel Lampert

    2014-01-01

    freedom improves its applicability to long distance quantum communication schemes. By doing that, the intrinsic limitations of other schemes based on the encoding into the momentum and polarization degree of freedom are overcome. This work presents results on a scalable experimental implementation of time-energy encoded higher dimensional states, demonstrating the feasibility of the scheme. Further tools are defined and used to characterize the properties of the prepared quantum states, such as their entanglement, their dimension and their preparation fidelity. Finally, the method of quantum state tomography is used to fully determine the underlying quantum states at the cost of an increased measurement effort and thus operation time. It is at this point that results obtained from the research field of compressed sensing help to decrease the necessary number of measurements. This scheme is compared with an adaptive tomography scheme designed to offer an additional reconstruction speedup. These results display the scalability of the scheme to bipartite dimensions higher than 2 x 8, equivalent to the encoding of quantum information into more than 6 qubits.

  12. Higher dimensional time-energy entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Richart, Daniel Lampert

    2014-07-08

    freedom improves its applicability to long distance quantum communication schemes. By doing that, the intrinsic limitations of other schemes based on the encoding into the momentum and polarization degree of freedom are overcome. This work presents results on a scalable experimental implementation of time-energy encoded higher dimensional states, demonstrating the feasibility of the scheme. Further tools are defined and used to characterize the properties of the prepared quantum states, such as their entanglement, their dimension and their preparation fidelity. Finally, the method of quantum state tomography is used to fully determine the underlying quantum states at the cost of an increased measurement effort and thus operation time. It is at this point that results obtained from the research field of compressed sensing help to decrease the necessary number of measurements. This scheme is compared with an adaptive tomography scheme designed to offer an additional reconstruction speedup. These results display the scalability of the scheme to bipartite dimensions higher than 2 x 8, equivalent to the encoding of quantum information into more than 6 qubits.

  13. Thermodynamics of higher dimensional black holes

    International Nuclear Information System (INIS)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs

  14. Thermodynamics of higher dimensional black holes

    Energy Technology Data Exchange (ETDEWEB)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs.

  15. Perturbations of higher-dimensional spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Mark; Reall, Harvey S, E-mail: M.N.Durkee@damtp.cam.ac.uk, E-mail: H.S.Reall@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-02-07

    We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.

  16. Extended inflation from higher dimensional theories

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Yun.

    1990-04-01

    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation

  17. Extended inflation from higher-dimensional theories

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.

    1991-01-01

    We consider the possibility that higher-dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. We analyze two separate models. One is a very simple toy model consisting of higher-dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of nontrivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a nontrivial potential for the radius of the internal space. We find that extended inflation does not occur in these models. We also find that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation

  18. Spatial infinity in higher dimensional spacetimes

    International Nuclear Information System (INIS)

    Shiromizu, Tetsuya; Tomizawa, Shinya

    2004-01-01

    Motivated by recent studies on the uniqueness or nonuniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes (n≥4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the nontrivial Weyl tensor (n-1) C abcd in general. We also address static spacetime and its multipole moments P a 1 a 2 ···a s . Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed multipole moments in static vacuum spacetimes. For example, we consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of the static vacuum solution we need some additional information, at least the Weyl tensor (n-2) C abcd at spatial infinity

  19. Multifractal and higher-dimensional zeta functions

    International Nuclear Information System (INIS)

    Véhel, Jacques Lévy; Mendivil, Franklin

    2011-01-01

    In this paper, we generalize the zeta function for a fractal string (as in Lapidus and Frankenhuijsen 2006 Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (New York: Springer)) in several directions. We first modify the zeta function to be associated with a sequence of covers instead of the usual definition involving gap lengths. This modified zeta function allows us to define both a multifractal zeta function and a zeta function for higher-dimensional fractal sets. In the multifractal case, the critical exponents of the zeta function ζ(q, s) yield the usual multifractal spectrum of the measure. The presence of complex poles for ζ(q, s) indicates oscillations in the continuous partition function of the measure, and thus gives more refined information about the multifractal spectrum of a measure. In the case of a self-similar set in R n , the modified zeta function yields asymptotic information about both the 'box' counting function of the set and the n-dimensional volume of the ε-dilation of the set

  20. Moduli stabilization in higher dimensional brane models

    International Nuclear Information System (INIS)

    Flachi, Antonino; Pujolas, Oriol; Garriga, Jaume; Tanaka, Takahiro

    2003-01-01

    We consider a class of warped higher dimensional brane models with topology M x Σ x S 1 /Z 2 , where Σ is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space Σ line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of Σ at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space Σ is flat. (author)

  1. Moduli stabilization in higher dimensional brane models

    Energy Technology Data Exchange (ETDEWEB)

    Flachi, Antonino; Pujolas, Oriol [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain)]. E-mail: pujolas@ifae.es; Garriga, Jaume [IFAE, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Departament de Fisica Fonamental and C.E.R. en Astrofisica, Fisica de Particules i Cosmologia Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Tanaka, Takahiro [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford MA 02155 (United States); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2003-08-01

    We consider a class of warped higher dimensional brane models with topology M x {sigma} x S{sup 1}/Z{sub 2}, where {sigma} is a D2 dimensional manifold. Two branes of co-dimension one are embedded in such a bulk space-time and sit at the orbifold fixed points. We concentrate on the case where an exponential warp factor (depending on the distance along the orbifold) accompanies the Minkowski M and the internal space {sigma} line elements. We evaluate the moduli effective potential induced by bulk scalar fields in these models, and we show that generically this can stabilize the size of the extra dimensions. As an application, we consider a scenario where supersymmetry is broken not far below the cutoff scale, and the hierarchy between the electroweak and the effective Planck scales is generated by a combination of redshift and large volume effects. The latter is efficient due to the shrinking of {sigma} at the negative tension brane, where matter is placed. In this case, we find that the effective potential can stabilize the size of the extra dimensions (and the hierarchy) without fine tuning, provided that the internal space {sigma} is flat. (author)

  2. Higher dimensional supersymmetric quantum mechanics and Dirac ...

    Indian Academy of Sciences (India)

    We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with specific examples. We also discuss the `physical' significance of the supersymmetric states in this formalism.

  3. Higher-dimensional puncture initial data

    International Nuclear Information System (INIS)

    Zilhao, Miguel; Ansorg, Marcus; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich; Witek, Helvi

    2011-01-01

    We calculate puncture initial data, corresponding to single and binary black holes with linear momenta, which solve the constraint equations of D-dimensional vacuum gravity. The data are generated by a modification of the pseudospectral code presented in [M. Ansorg, B. Bruegmann, and W. Tichy, Phys. Rev. D 70, 064011 (2004).] and made available as the TwoPunctures thorn inside the Cactus computational toolkit. As examples, we exhibit convergence plots, the violation of the Hamiltonian constraint as well as the initial data for D=4,5,6,7. These initial data are the starting point to perform high-energy collisions of black holes in D dimensions.

  4. Higher-dimensional Bianchi type-VIh cosmologies

    Science.gov (United States)

    Lorenz-Petzold, D.

    1985-09-01

    The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.

  5. Higher dimensional generalizations of the SYK model

    Energy Technology Data Exchange (ETDEWEB)

    Berkooz, Micha [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Narayan, Prithvi [International Centre for Theoretical Sciences, Hesaraghatta,Bengaluru North, 560 089 (India); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Simón, Joan [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom)

    2017-01-31

    We discuss a 1+1 dimensional generalization of the Sachdev-Ye-Kitaev model. The model contains N Majorana fermions at each lattice site with a nearest-neighbour hopping term. The SYK random interaction is restricted to low momentum fermions of definite chirality within each lattice site. This gives rise to an ordinary 1+1 field theory above some energy scale and a low energy SYK-like behavior. We exhibit a class of low-pass filters which give rise to a rich variety of hyperscaling behaviour in the IR. We also discuss another set of generalizations which describes probing an SYK system with an external fermion, together with the new scaling behavior they exhibit in the IR.

  6. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases

    CSIR Research Space (South Africa)

    Mafu, M

    2013-09-01

    Full Text Available We present an experimental study of higher-dimensional quantum key distribution protocols based on mutually unbiased bases, implemented by means of photons carrying orbital angular momentum. We perform (d + 1) mutually unbiased measurements in a...

  7. Fermion tunneling from higher-dimensional black holes

    International Nuclear Information System (INIS)

    Lin Kai; Yang Shuzheng

    2009-01-01

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  8. Higher dimensional uniformisation and W-geometry

    International Nuclear Information System (INIS)

    Govindarajan, S.

    1995-01-01

    We formulate the uniformisation problem underlying the geometry of W n -gravity using the differential equation approach to W-algebras. We construct W n -space (analogous to superspace in supersymmetry) as an (n-1)-dimensional complex manifold using isomonodromic deformations of linear differential equations. The W n -manifold is obtained by the quotient of a Fuchsian subgroup of PSL(n,R) which acts properly discontinuously on a simply connected domain in bfCP n-1 . The requirement that a deformation be isomonodromic furnishes relations which enable one to convert non-linear W-diffeomorphisms to (linear) diffeomorphisms on the W n -manifold. We discuss how the Teichmueller spaces introduced by Hitchin can then be interpreted as the space of complex structures or the space of projective structures with real holonomy on the W n -manifold. The projective structures are characterised by Halphen invariants which are appropriate generalisations of the Schwarzian. This construction will work for all ''generic'' W-algebras. (orig.)

  9. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)

    2017-03-15

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)

  10. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  11. Higher dimensional global monopole in Brans–Dicke theory

    Indian Academy of Sciences (India)

    Keywords. Global monopole; Brans–Dicke theory; higher dimension. PACS Nos 04.20.Jb; 98.80.Bp; 04.50.+h. 1. Introduction. The idea of higher dimensional theory was originated in super string and super gravity the- ories to unify gravity with other fundamental forces in nature. Solutions of Einstein field equations in higher ...

  12. On conformal Paneitz curvature equations in higher dimensional spheres

    International Nuclear Information System (INIS)

    El Mehdi, Khalil

    2004-11-01

    We study the problem of prescribing the Paneitz curvature on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results. (author)

  13. Electromagnetic field in higher-dimensional black-hole spacetimes

    International Nuclear Information System (INIS)

    Krtous, Pavel

    2007-01-01

    A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved

  14. A Lie based 4-dimensional higher Chern-Simons theory

    Science.gov (United States)

    Zucchini, Roberto

    2016-05-01

    We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.

  15. Higher-Dimensional Solitons Stabilized by Opposite Charge

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper it is shown how higher-dimensional solitons can be stabilized by a topological phase gradient, a field-induced shift in effective dimensionality. As a prototype, two instable 2-dimensional radial symmetric Sine-Gordon extensions (pulsons) are coupled by a sink/source term such, that one becomes a stable 1d and the other a 3d wave equation. The corresponding physical process is identified as a polarization that fits perfectly to preliminary considerations regarding the nature of electric charge and background of 1/137. The coupling is iterative with convergence limit and bifurcation at high charge. It is driven by the topological phase gradient or non-local Gauge potential that can be mapped to a local oscillator potential under PSL(2,R).

  16. Diffusion in higher dimensional SYK model with complex fermions

    Science.gov (United States)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  17. Higher-dimensional analogues of Donaldson-Witten theory

    International Nuclear Information System (INIS)

    Acharya, B.S.; Spence, B.

    1997-01-01

    We present a Donaldson-Witten-type field theory in eight dimensions on manifolds with Spin(7) holonomy. We prove that the stress tensor is BRST exact for metric variations preserving the holonomy and we give the invariants for this class of variations. In six and seven dimensions we propose similar theories on Calabi-Yau threefolds and manifolds of G 2 holonomy, respectively. We point out that these theories arise by considering supersymmetric Yang-Mills theory defined on such manifolds. The theories are invariant under metric variations preserving the holonomy structure without the need for twisting. This statement is a higher-dimensional analogue of the fact that Donaldson-Witten field theory on hyper-Kaehler 4-manifolds is topological without twisting. Higher-dimensional analogues of Floer cohomology are briefly outlined. All of these theories arise naturally within the context of string theory. (orig.)

  18. The Peierls argument for higher dimensional Ising models

    International Nuclear Information System (INIS)

    Bonati, Claudio

    2014-01-01

    The Peierls argument is a mathematically rigorous and intuitive method to show the presence of a non-vanishing spontaneous magnetization in some lattice models. This argument is typically explained for the D = 2 Ising model in a way which cannot be easily generalized to higher dimensions. The aim of this paper is to present an elementary discussion of the Peierls argument for the general D-dimensional Ising model. (paper)

  19. Higher dimensional strange quark matter solutions in self creation cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Şen, R., E-mail: ramazansen-1991@hotmail.com [Institute for Natural and Applied Sciences, Çanakkale Onsekiz Mart University, 17020, Çanakkale (Turkey); Aygün, S., E-mail: saygun@comu.edu.tr [Department of Physics, Art and Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey)

    2016-03-25

    In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.

  20. Torsion and curvature in higher dimensional supergravity theories

    International Nuclear Information System (INIS)

    Smith, A.W.; Pontificia Univ. Catolica do Rio de Janeiro

    1983-01-01

    This work is an extension of Dragon's theorems to higher dimensional space-time. It is shown that the first set of Bianchi identities allow us to express the curvature components in terms of torsion components and its covariant derivatives. It is also shown that the second set of Bianchi identities does not give any new information which is not already contained in the first one. (Author) [pt

  1. Bisimulation for Higher-Dimensional Automata. A Geometric Interpretation

    DEFF Research Database (Denmark)

    Fahrenberg, Ulrich

    We show how parallel compostition of higher-dimensional automata (HDA) can be expressed categorically in the spirit of Winskel & Nielsen. Employing the notion of computation path introduced by van Glabbeek, we define a new notion of bisimulation of HDA using open maps. We derive a connection...... between computation paths and carrier sequences of dipaths and show that bisimilarity of HDA can be decided by the use of geometric techniques....

  2. Naked singularities in higher dimensional Vaidya space-times

    International Nuclear Information System (INIS)

    Ghosh, S. G.; Dadhich, Naresh

    2001-01-01

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension

  3. Accretion onto a charged higher-dimensional black hole

    International Nuclear Information System (INIS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  4. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  5. Bianchi's Bäcklund transformation for higher dimensional quadrics

    Science.gov (United States)

    Dincă, Ion I.

    2016-12-01

    We provide a generalization of Bianchi's Bäcklund transformation from 2-dimensional quadrics to higher dimensional quadrics (which is also a generalization of Tenenblat-Terng's Bäcklund transformation of isometric deformations of Hn(R) in R 2 n - 1 to general quadrics). Our investigation is the higher dimensional version of Bianchi's main three theorems on the theory of isometric deformations of quadrics and Bianchi's treatment of the Bäcklund transformation for diagonal paraboloids via conjugate systems. It became the driving force which led to the flourishing of the classical differential geometry in the second half of the XIX th century and its profound study by illustrious geometers led to interesting results. Today it is still an open problem in its full generality, but basic familiar results like the Gauß-Bonnet fundamental theorem of surfaces and the Codazzi-Mainardi equations (independently discovered also by Peterson) were first communicated to the French Academy of Sciences. A list (most likely incomplete) of the winners of the prize includes Bianchi, Bonnet, Guichard, Weingarten.Up to 1899 isometric deformations of the (pseudo-)sphere and isotropic quadrics without center (from a metric point of view they can be considered as metrically degenerate quadrics without center) together with their Bäcklund transformation and the complementary transformation of isometric deformations of surfaces of revolution were investigated by geometers such as Bäcklund, Bianchi, Bonnet, Darboux, Goursat, Hazzidakis, Lie, Weingarten, etc.In 1899 Guichard discovered that when quadrics with(out) center and of revolution around the focal axis roll on their isometric deformations their foci describe constant mean curvature (minimal) surfaces (and Bianchi proved the converse: all constant mean curvature (minimal) surfaces can be realized in this way).With Guichard's result the race to find the isometric deformations of general quadrics was on; it ended with Bianchi

  6. Possibility of higher-dimensional anisotropic compact star

    International Nuclear Information System (INIS)

    Bhar, Piyali; Rahaman, Farook; Ray, Saibal; Chatterjee, Vikram

    2015-01-01

    We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M s un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)

  7. Possibility of higher-dimensional anisotropic compact star

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chatterjee, Vikram [Central Footwear Training Centre, Department of Physics, Parganas, West Bengal (India)

    2015-05-15

    We provide a new class of interior solutions for anisotropic stars admitting conformal motion in higher-dimensional noncommutative spacetime. The Einstein field equations are solved by choosing a particular density distribution function of Lorentzian type as provided by Nazari and Mehdipour [1, 2] under a noncommutative geometry. Several cases with 4 and higher dimensions, e.g. 5, 6, and 11 dimensions, are discussed separately. An overall observation is that the model parameters, such as density, radial pressure, transverse pressure, and anisotropy, all are well behaved and represent a compact star with mass 2.27 M{sub s}un and radius 4.17 km. However, emphasis is put on the acceptability of the model from a physical point of view. As a consequence it is observed that higher dimensions, i.e. beyond 4D spacetime, exhibit several interesting yet bizarre features, which are not at all untenable for a compact stellar model of strange quark type; thus this dictates the possibility of its extra-dimensional existence. (orig.)

  8. Higher dimensional curved domain walls on Kähler surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Radjabaycolle, Flinn C. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Departement of Physics, Faculty of Mathematics and Natural Sciences, Cendrawasih University, Jl. Kampwolker Kampus Uncen Baru Waena-Jayapura 99351 (Indonesia); Wijaya, Rio N. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia)

    2017-03-15

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  9. Ultraviolet divergences in higher dimensional supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Howe, P.S.; Stelle, K.S.

    1984-01-01

    We determine the loop orders for the onset of allowed ultra-violet divergences in higher dimensional supersymmetric Yang-Mills theories. Cancellations are controlled by the non-renormalization theorems for the linearly realizable supersymmetries and by the requirement that counterterms display the full non-linear supersymmetries when the classical equations of motion are imposed. The first allowed divergences in the maximal super Yang-Mills theories occur at four loops in five dimensions, three loops in six dimensions and two loops in seven dimensions. (orig.)

  10. Higher dimensional curved domain walls on Kähler surfaces

    International Nuclear Information System (INIS)

    Akbar, Fiki T.; Gunara, Bobby E.; Radjabaycolle, Flinn C.; Wijaya, Rio N.

    2017-01-01

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  11. Exact coefficients for higher dimensional operators with sixteen supersymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ming [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, Congkao [INFN Sezione di Roma “Tor Vergata' ,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-09-15

    We consider constraints on higher-dimensional operators for supersymmetric effective field theories. In four dimensions with maximal supersymmetry and SU(4) R-symmetry, we demonstrate that the coefficients of abelian operators F{sup n} with MHV helicity configurations must satisfy a recursion relation, and are completely determined by that of F{sup 4}. As the F{sup 4} coefficient is known to be one-loop exact, this allows us to derive exact coefficients for all such operators. We also argue that the results are consistent with the SL(2,Z) duality symmetry. Breaking SU(4) to Sp(4), in anticipation for the Coulomb branch effective action, we again find an infinite class of operators whose coefficients are determined exactly. We also consider three-dimensional N=8 as well as six-dimensional N=(2,0),(1,0) and (1,1) theories. In all cases, we demonstrate that the coefficient of dimension-six operator must be proportional to the square of that of dimension-four.

  12. Orthogonality measurements for multidimensional chromatography in three and higher dimensional separations.

    Science.gov (United States)

    Schure, Mark R; Davis, Joe M

    2017-11-10

    Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions

  13. Stationary strings near a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Stevens, Kory A.

    2004-01-01

    We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string

  14. Geometry of higher-dimensional black hole thermodynamics

    International Nuclear Information System (INIS)

    Aaman, Jan E.; Pidokrajt, Narit

    2006-01-01

    We investigate thermodynamic curvatures of the Kerr and Reissner-Nordstroem (RN) black holes in spacetime dimensions higher than four. These black holes possess thermodynamic geometries similar to those in four-dimensional spacetime. The thermodynamic geometries are the Ruppeiner geometry and the conformally related Weinhold geometry. The Ruppeiner geometry for a d=5 Kerr black hole is curved and divergent in the extremal limit. For a d≥6 Kerr black hole there is no extremality but the Ruppeiner curvature diverges where one suspects that the black hole becomes unstable. The Weinhold geometry of the Kerr black hole in arbitrary dimension is a flat geometry. For the RN black hole the Ruppeiner geometry is flat in all spacetime dimensions, whereas its Weinhold geometry is curved. In d≥5 the Kerr black hole can possess more than one angular momentum. Finally we discuss the Ruppeiner geometry for the Kerr black hole in d=5 with double angular momenta

  15. The Phase Transition of Higher Dimensional Charged Black Holes

    International Nuclear Information System (INIS)

    Li, Huaifan; Zhao, Ren; Zhang, Lichun; Guo, Xiongying

    2016-01-01

    We have studied phase transitions of higher dimensional charge black hole with spherical symmetry. We calculated the local energy and local temperature and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters (Q,Φ) of black hole thermodynamic system, in accordance with considering the state parameters (P,V) of van der Waals system, respectively. We obtain the critical point of black hole thermodynamic system and find that the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime and is intrinsic property of black hole thermodynamic system.

  16. Graviton emission from a higher-dimensional black hole

    International Nuclear Information System (INIS)

    Cornell, Alan S.; Naylor, Wade; Sasaki, Misao

    2006-01-01

    We discuss the graviton absorption probability (greybody factor) and the cross-section of a higher-dimensional Schwarzschild black hole (BH). We are motivated by the suggestion that a great many BHs may be produced at the LHC and bearing this fact in mind, for simplicity, we shall investigate the intermediate energy regime for a static Schwarzschild BH. That is, for (2M) 1/(n-1) ω ∼ 1, where M is the mass of the black hole and ω is the energy of the emitted gravitons in (2+n)-dimensions. To find easily tractable solutions we work in the limit l >> 1, where l is the angular momentum quantum number of the graviton

  17. The dynamical structure of higher dimensional Chern-Simons theory

    International Nuclear Information System (INIS)

    Banados, M.; Garay, L.J.; Henneaux, M.

    1996-01-01

    Higher dimensional Chern-Simons theories, even though constructed along the same topological pattern as in 2+1 dimensions, have been shown recently to have generically a non-vanishing number of degrees of freedom. In this paper, we carry out the complete Dirac Hamiltonian analysis (separation of first and second class constraints and calculation of the Dirac bracket) for a group G x U(1). We also study the algebra of surface charges that arise in the presence of boundaries and show that it is isomorphic to the WZW 4 discussed in the literature. Some applications are then considered. It is shown, in particular, that Chern-Simons gravity in dimensions greater than or equal to five has a propagating torsion. (orig.)

  18. Experimental investigation of quantum communication protocols in higher dimensions

    International Nuclear Information System (INIS)

    Groeblacher, S.; Stuetz, M.; Vaziri, A.; Jennewein, T.; Zeilinger, A.

    2005-01-01

    Full text: Higher dimensional quantum systems, such as qutrits, offer unique possibilities for quantum communication. In particular, quantum key distribution may be realized with a higher security margin than with qubit systems. We plan to demonstrate quantum cryptography with entangled photonic qutrits based on orbital angular momentum (OAM). Therefore we test various methods of manipulating and transforming OAM states of photons, which is required for the implementation of quantum communication protocols. (author)

  19. The Higgs particle and higher-dimensional theories

    International Nuclear Information System (INIS)

    Lim, C. S.

    2014-01-01

    In spite of the great success of LHC experiments, we do not know whether the discovered “standard model-like” Higgs particle is really what the standard model predicts, or a particle that some new physics has in its low-energy effective theory. Also, the long-standing problems concerning the property of the Higgs and its interactions are still there, and we still do not have any conclusive argument on the origin of the Higgs itself. In this article we focus on higher-dimensional theories as new physics. First we give a brief review of their representative scenarios and closely related 4D scenarios. Among them, we mainly discuss two interesting possibilities of the origin of the Higgs: the Higgs as a gauge boson and the Higgs as a (pseudo) Nambu–Goldstone boson. Next, we argue that theories of new physics are divided into two categories, i.e., theories with normal Higgs interactions and those with anomalous Higgs interactions. Interestingly, both the candidates for the origin of the Higgs mentioned above predict characteristic “anomalous” Higgs interactions, such as the deviation of the Yukawa couplings from the standard model predictions. Such deviations can hopefully be investigated by precision tests of Higgs interactions at the planned ILC experiment. Also discussed is the main decay mode of the Higgs, H→γγ. Again, theories belonging to different categories are known to predict remarkably different new physics contributions to this important process

  20. Massive Higher Dimensional Gauge Fields as Messengers of Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Chacko, Z.; Luty, Markus A.; Ponton, Eduardo

    2000-01-01

    We consider theories with one or more compact dimensions with size r > 1/M, where M is the fundamental Planck scale, with the visible and hidden sectors localized on spatially separated 3 -branes''. We show that a bulk U(1) gauge field spontaneously broken on the hidden-sector 3-brane is an attractive candidate for the messenger of supersymmetry breaking. In this scenario scalar mass-squared terms are proportional to U(1) charges, and therefore naturally conserve flavor. Arbitrary flavor violation at the Planck scale gives rise to exponentially suppressed flavor violation at low energies. Gaugino masses can be generated if the standard gauge fields propagate in the bulk; μ and Bμ terms can be generated by the Giudice-Masiero or by the VEV of a singlet in the visible sector. The latter case naturally solves the SUSY CP problem. Realistic phenomenology can be obtained either if all microscopic parameters are order one in units of M, or if the theory is strongly coupled at the scale M. (For the latter case, we estimate parameters by extending n aive dimensional analysis'' to higher-dimension theories with branes.) In either case, the only unexplained hierarchy is the l arge'' size of the extra dimensions in fundamental units, which need only be an order of magnitude. All soft masses are naturally within an order of magnitude of m 3/2 , and trilinear scalar couplings are negligible. Squark and slepton masses can naturally unify even in the absence of grand unification. (author)

  1. Spinning higher dimensional Einstein-Yang-Mills black holes

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Papnoi, Uma

    2014-01-01

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  2. Spinning higher dimensional Einstein-Yang-Mills black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Papnoi, Uma [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India)

    2014-08-15

    We construct a Kerr-Newman-like spacetime starting from higher dimensional (HD) Einstein-Yang-Mills black holes via complex transformations suggested by Newman-Janis. The new metrics are a HD generalization of Kerr-Newman spacetimes which has a geometry that is precisely that of Kerr-Newman in 4D corresponding to a Yang-Mills (YM) gauge charge, but the sign of the charge term gets flipped in the HD spacetimes. It is interesting to note that the gravitational contribution of the YM gauge charge, in HD, is indeed opposite (attractive rather than repulsive) to that of the Maxwell charge. The effect of the YM gauge charge on the structure and location of static limit surface and apparent horizon is discussed. We find that static limit surfaces become less prolate with increase in dimensions and are also sensitive to the YM gauge charge, thereby affecting the shape of the ergosphere. We also analyze some thermodynamical properties of these BHs. (orig.)

  3. An approach to higher dimensional theories based on lattice gauge theory

    International Nuclear Information System (INIS)

    Murata, M.; So, H.

    2004-01-01

    A higher dimensional lattice space can be decomposed into a number of four-dimensional lattices called as layers. The higher dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. We propose the new possibility to realize the continuum limit of a five-dimensional theory based on the property of the phase diagram

  4. Euclidean D-branes and higher-dimensional gauge theory

    International Nuclear Information System (INIS)

    Acharya, B.S.; Figueroa-O'Farrill, J.M.; Spence, B.; O'Loughlin, M.

    1997-07-01

    We consider euclidean D-branes wrapping around manifolds of exceptional holonomy in dimensions seven and eight. The resulting theory on the D-brane-that is, the dimensional reduction of 10-dimensional supersymmetric Yang-Mills theory-is a cohomological field theory which describes the topology of the moduli space of instantons. The 7-dimensional theory is an N T =2 (or balanced) cohomological theory given by an action potential of Chern-Simons type. As a by-product of this method, we construct a related cohomological field theory which describes the monopole moduli space on a 7-manifold of G 2 holonomy. (author). 22 refs, 3 tabs

  5. Higher-dimensional cosmological model with variable gravitational ...

    Indian Academy of Sciences (India)

    We have studied five-dimensional homogeneous cosmological models with variable and bulk viscosity in Lyra geometry. Exact solutions for the field equations have been obtained and physical properties of the models are discussed. It has been observed that the results of new models are well within the observational ...

  6. Application of Quantum Process Calculus to Higher Dimensional Quantum Protocols

    Directory of Open Access Journals (Sweden)

    Simon J. Gay

    2014-07-01

    Full Text Available We describe the use of quantum process calculus to describe and analyze quantum communication protocols, following the successful field of formal methods from classical computer science. We have extended the quantum process calculus to describe d-dimensional quantum systems, which has not been done before. We summarise the necessary theory in the generalisation of quantum gates and Bell states and use the theory to apply the quantum process calculus CQP to quantum protocols, namely qudit teleportation and superdense coding.

  7. Instability of higher dimensional Yang-Mills systems

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1983-01-01

    We investigate the stability of Poincare xO(3) invariant solutions for a pure semi-simple Yang-Mills, as well as Yang-Mills coupled to gravity in 6-dimensional space-time compactified over M 4 xS 2 . In contrast to the Maxwell U(1) theory (IC-82/208) in six dimensions coupled with gravity and investigated previously, the present theory exhibits tachyonic excitations and is unstable. (author)

  8. Unitarity in three-dimensional flat space higher spin theories

    International Nuclear Information System (INIS)

    Grumiller, D.; Riegler, M.; Rosseel, J.

    2014-01-01

    We investigate generic flat-space higher spin theories in three dimensions and find a no-go result, given certain assumptions that we spell out. Namely, it is only possible to have at most two out of the following three properties: unitarity, flat space, non-trivial higher spin states. Interestingly, unitarity provides an (algebra-dependent) upper bound on the central charge, like c=42 for the Galilean W_4"("2"−"1"−"1") algebra. We extend this no-go result to rule out unitary “multi-graviton” theories in flat space. We also provide an example circumventing the no-go result: Vasiliev-type flat space higher spin theory based on hs(1) can be unitary and simultaneously allow for non-trivial higher-spin states in the dual field theory.

  9. Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes

    OpenAIRE

    Schlue, Volker

    2012-01-01

    I study linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes. In the first part of this thesis two decay results are proven for general finite energy solutions to the linear wave equation on higher dimensional Schwarzschild black holes. I establish uniform energy decay and improved interior first order energy decay in all dimensions with rates in accordance with the 3 + 1-dimensional case. The method of proof departs from earlier work on th...

  10. Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics

    Science.gov (United States)

    Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin

    2018-06-01

    We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.

  11. Gravitational collapse in higher-dimensional charged-Vaidya space ...

    Indian Academy of Sciences (India)

    time. We show that singularities arising in a charged null fluid in higher dimension are always naked violating ... of matter is one of the most active field of research in the contemporary general relativity. ... The main open issue ..... [3] A Papapetrou, in A random walk in relativity and cosmology edited by N Dadhich, J K Rao,.

  12. Casimir energy and the possibility of higher dimensional manipulation

    OpenAIRE

    Obousy, R. K.; Saharian, A. A.

    2009-01-01

    It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next ge...

  13. Exploring Higher Dimensional Black Holes at the Large Hadron Collider

    CERN Document Server

    Harris, C M; Parker, M A; Richardson, P; Sabetfakhri, A; Webber, Bryan R

    2005-01-01

    In some extra dimension theories with a TeV fundamental Planck scale, black holes could be produced in future collider experiments. Although cross sections can be large, measuring the model parameters is difficult due to the many theoretical uncertainties. Here we discuss those uncertainties and then we study the experimental characteristics of black hole production and decay at a typical detector using the ATLAS detector as a guide. We present a new technique for measuring the temperature of black holes that applies to many models. We apply this technique to a test case with four extra dimensions and, using an estimate of the parton-level production cross section error of 20\\%, determine the Planck mass to 15\\% and the number of extra dimensions to $\\pm$0.75.

  14. Exploring higher dimensional black holes at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Harris, Christopher M.; Palmer, Matthew J.; Parker, Michael A.; Richardson, Peter; Sabetfakhri, Ali; Webber, Bryan R.

    2005-01-01

    In some extra dimension theories with a TeV fundamental Planck scale, black holes could be produced in future collider experiments. Although cross sections can be large, measuring the model parameters is difficult due to the many theoretical uncertainties. Here we discuss those uncertainties and then we study the experimental characteristics of black hole production and decay at a typical detector using the ATLAS detector as a guide. We present a new technique for measuring the temperature of black holes that applies to many models. We apply this technique to a test case with four extra dimensions and, using an estimate of the parton-level production cross section error of 20%, determine the Planck mass to 15% and the number of extra dimensions to ±0.75

  15. Higher-dimensional bosonization and its application to Fermi liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Hendrik

    2012-06-28

    The bosonization scheme presented in this thesis allows to map models of interacting fermions onto equivalent models describing collective bosonic excitations. For simple systems that do not require plenty computational power and optimized algorithms, the positivity of the weight function in the bosonic frame has been confirmed - in particular also for those configurations in which the fermionic representation shows the minus-sign problem. The numerical tests are absolutely elementary and based on the simplest possible regularization scheme. The second part of this thesis presented an analytical study about the non-analytic corrections to thermodynamic quantities in a two-dimensional Fermi liquid. The perturbation theory developed for the exact formulation is by no means more convenient than the well-established fermionic diagram technique. The effective low-energy theory for studying the anomalous contributions to the Fermi liquid was derived focussing on the relevant soft modes of the interaction only. The final effective model took the form of a field theory for a bosonic superfield Ψ interacting in quadratic, cubic, and quartic terms in the action. This field theory turned out nontrivial and was shown to lead to logarithmic divergencies in both spin and charge channels. By means of a combined scheme of ladder diagram summations and renormalization group equations, the logarithmic terms were summed up in the first-loop order, thus yielding the renormalized effective coupling constants of the theory at low temperatures. The fully renormalized action then allowed to conveniently compute the low-temperature limit behavior of the non-analytic corrections to the Fermi-liquid thermodynamic response functions such as the low temperature non-analytic correction δc to the specific heat. The explicit formula for δc is the sum of two contributions - one due to the spin singlet and one due to the spin triplet superconducting excitations. Depending on the values of the

  16. Static wormhole solution for higher-dimensional gravity in vacuum

    International Nuclear Information System (INIS)

    Dotti, Gustavo; Oliva, Julio; Troncoso, Ricardo

    2007-01-01

    A static wormhole solution for gravity in vacuum is found for odd dimensions greater than four. In five dimensions the gravitational theory considered is described by the Einstein-Gauss-Bonnet action where the coupling of the quadratic term is fixed in terms of the cosmological constant. In higher dimensions d=2n+1, the theory corresponds to a particular case of the Lovelock action containing higher powers of the curvature, so that in general, it can be written as a Chern-Simons form for the AdS group. The wormhole connects two asymptotically locally AdS spacetimes each with a geometry at the boundary locally given by RxS 1 xH d-3 . Gravity pulls towards a fixed hypersurface located at some arbitrary proper distance parallel to the neck. The causal structure shows that both asymptotic regions are connected by light signals in a finite time. The Euclidean continuation of the wormhole is smooth independently of the Euclidean time period, and it can be seen as instanton with vanishing Euclidean action. The mass can also be obtained from a surface integral and it is shown to vanish

  17. Magnetized black holes and black rings in the higher dimensional dilaton gravity

    International Nuclear Information System (INIS)

    Yazadjiev, Stoytcho S.

    2006-01-01

    In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes, and five-dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the D-dimensional magnetized Schwarzschild-Tangherlini black holes

  18. On the dimensional reduction of a gravitational theory containing higher-derivative terms

    International Nuclear Information System (INIS)

    Pollock, M.D.

    1990-02-01

    From the higher-dimensional gravitational theory L-circumflex=R-circumflex-2Λ-circumflex-α-circumflex 1 R-circumflex 2 =α-circumflex 2 R-circumflex AB R-circumflex AB -α-circumflex 3 R-circumflex ABCD R-circumflex ABCD , we derive the effective four-dimensional Lagrangian L. (author). 12 refs

  19. A higher dimensional explanation of the excess of Higgs-like events at CERN LEP

    CERN Document Server

    Van der Bij, J J

    2006-01-01

    Searches for the SM Higgs boson by the four LEP experiments have found a 2.3 sigma excess at 98 GeV and a smaller 1.7 sigma at around 115 GeV. We interpret these excesses as evidence for a Higgs boson coupled to a higher dimensional singlet scalar. The fit implies a relatively low dimensional mixing scale mu_{lhd} 100 GeV. The data show a slight preference for a five-dimensional over a six-dimensional field. This Higgs boson cannot be seen at the LHC, but can be studied at the ILC.

  20. Unlabored system motion by specially conditioned electromagnetic fields in higher dimensional realms

    Science.gov (United States)

    David Froning, H.; Meholic, Gregory V.

    2010-01-01

    This third of three papers explores the possibility of swift, stress-less system transitions between slower-than-light and faster-than-light speeds with negligible net expenditure of system energetics. The previous papers derived a realm of higher dimensionality than 4-D spacetime that enabled such unlabored motion; and showed that fields that could propel and guide systems on unlabored paths in the higher dimensional realm must be fields that have been conditioned to SU(2) (or higher) Lie group symmetry. This paper shows that the system's surrounding vacuum dielectric ɛμ, within the higher dimensional realm's is a vector (not scalar) quantity with fixed magnitude ɛ0μ0 and changing direction within the realm with changing system speed. Thus, ɛμ generated by the system's EM field must remain tuned to vacuum ɛ0μ0 in both magnitude and direction during swift, unlabored system transitions between slower and faster than light speeds. As a result, the system's changing path and speed is such that the magnitude of the higher dimensional realm's ɛ0μ0 is not disturbed. And it is shown that a system's flight trajectories associated with its swift, unlabored transitions between zero and infinite speed can be represented by curved paths traced-out within the higher dimensional realm.

  1. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092

  2. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    International Nuclear Information System (INIS)

    Yu Zhang; Zhang Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings

  3. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  4. Three-dimensional inviscid analysis of radial turbine flow and a limited comparison with experimental data

    Science.gov (United States)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  5. Pair creation of higher dimensional black holes on a de Sitter background

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2004-01-01

    We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime

  6. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  7. On super-exponential inflation in a higher-dimensional theory of gravity with higher-derivative terms

    International Nuclear Information System (INIS)

    Pollock, M.D.

    1988-01-01

    We consider super-exponential inflation in the early universe, for which H 2 /H = q >> 1, with particular reference to the higher-dimensional theory of Shafi and Wetterich, which is discussed in further detail. The Hubble parameter H is given by H 2 ≅ (8π/3m P 2 )V(Φ), where the ''inflation'' field Φ is related to the radius of the internal space, and obeys the equation of motion 3HΦ ≅ -dW/dΦ. The spectrum of density perturbations is given by δρ/ρ = (M/M 0 ) -s , where s -1 ≅ 3(q + 1); and X = (-dV/dΦ)/(dW/dΦ). The parameters q and X are both positive constants, hence the need for two distinct potentials, which can be met in a higher-dimensional theory with higher-derivative terms R 2 = α 1 R 2 + α 2 R AB R AB + α 3 R ABCD R ABCD . Some fine-tuning of the parameters α i and/or of the cosmological constant Λ is always necessary in order to have super-exponential inflation. It is possible to obtain a spectrum of density perturbations with s > or approx. 1/20, which helps to give agreement with observations of the cosmic microwave background radiation at very large scales ∝ 1000 Mpc. When R 2 is proportional to the Euler number density, making the four-dimensional theory free of ghosts, then super-exponential inflation is impossible, but a phase of inflation with H < 0 can still occur. (orig.)

  8. World-volume effective theory for higher-dimensional black holes.

    Science.gov (United States)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A

    2009-05-15

    We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes.

  9. Three-dimensional freak waves and higher-order wave-wave resonances

    Science.gov (United States)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover

  10. Reflectance distribution in optimal transmittance cavities: The remains of a higher dimensional space

    International Nuclear Information System (INIS)

    Naumis, Gerardo G.; Bazan, A.; Torres, M.; Aragon, J.L.; Quintero-Torres, R.

    2008-01-01

    One of the few examples in which the physical properties of an incommensurable system reflect an underlying higher dimensionality is presented. Specifically, we show that the reflectivity distribution of an incommensurable one-dimensional cavity is given by the density of states of a tight-binding Hamiltonian in a two-dimensional triangular lattice. Such effect is due to an independent phase decoupling of the scattered waves, produced by the incommensurable nature of the system, which mimics a random noise generator. This principle can be applied to design a cavity that avoids resonant reflections for almost any incident wave. An optical analogy, by using three mirrors with incommensurable distances between them, is also presented. Such array produces a countable infinite fractal set of reflections, a phenomena which is opposite to the effect of optical invisibility

  11. The universe as a topological defect in a higher-dimensional Einstein-Yang-Mills theory

    International Nuclear Information System (INIS)

    Nakamura, A.; Shiraishi, K.

    1989-04-01

    An interpretation is suggested that a spontaneous compactification of space-time can be regarded as a topological defect in a higher-dimensional Einstein-Yang-Mills (EYM) theory. We start with D-dimensional EYM theory in our present analysis. A compactification leads to a D-2 dimensional effective action of Abelian gauge-Higgs theory. We find a 'vortex' solution in the effective theory. Our universe appears to be confined in a center of a 'vortex', which has D-4 large dimensions. In this paper we show an example with SU (2) symmetry in the original EYM theory, and the resulting solution is found to be equivalent to the 'instanton-induced compactification'. The cosmological implication is also mentioned. (author)

  12. Implications of a decay law for the cosmological constant in higher dimensional cosmology and cosmological wormholes

    International Nuclear Information System (INIS)

    Rami, El-Nabulsi Ahmad

    2009-01-01

    Higher dimensional cosmological implications of a decay law for the cosmological constant term are analyzed. Three independent cosmological models are explored mainly: 1) In the first model, the effective cosmological constant was chosen to decay with times like Δ effective = Ca -2 + D(b/a I ) 2 where a I is an arbitrary scale factor characterizing the isotropic epoch which proceeds the graceful exit period. Further, the extra-dimensional scale factor decays classically like b(t) approx. a x (t), x is a real negative number. 2) In the second model, we adopt in addition to Δ effective = Ca -2 + D(b/a I ) 2 the phenomenological law b(t) = a(t)exp( -Qt) as we expect that at the origin of time, there is no distinction between the visible and extra dimensions; Q is a real number. 3) In the third model, we study a Δ - decaying extra-dimensional cosmology with a static traversable wormhole in which the four-dimensional Friedmann-Robertson-Walker spacetime is subject to the conventional perfect fluid while the extra-dimensional part is endowed by an exotic fluid violating strong energy condition and where the cosmological constant in (3+n+1) is assumed to decays like Δ(a) = 3Ca -2 . The three models are discussed and explored in some details where many interesting points are revealed. (author)

  13. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    Science.gov (United States)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  14. Using Harry Potter to Bridge Higher Dimensionality in Mathematics and High-interest Literature

    Science.gov (United States)

    Boerman-Cornell, William; Klanderman, David; Schut, Alexa

    2017-01-01

    The Harry Potter series is a favorite for out-of-school reading and has been used in school, largely as an object of study in language arts. Using a content analysis to highlight the ways in which J.K. Rowling's work could be used to teach higher dimensionality in math, the authors argues that the content is sufficient in such books to engage the…

  15. Existence of local degrees of freedom for higher dimensional pure Chern-Simons theories

    International Nuclear Information System (INIS)

    Banados, M.; Garay, L.J.; Henneaux, M.

    1996-01-01

    The canonical structure of higher dimensional pure Chern-Simons theories is analyzed. It is shown that these theories have generically a nonvanishing number of local degrees of freedom, even though they are obtained by means of a topological construction. This number of local degrees of freedom is computed as a function of the spacetime dimension and the dimension of the gauge group. copyright 1996 The American Physical Society

  16. On higher dimensional Einstein spacetimes with a non-degenerate double Weyl aligned null direction

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello; Pravda, Vojtěch; Pravdová, Alena

    Roč. 35, č. 7 ( 2018 ), č. článku 075004. ISSN 0264-9381 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * WANDs * Weyl tensor Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 3.119, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6382/aaae25

  17. Higher dimensional quantum Hall effect as A-class topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Kazuki, E-mail: khasebe@stanford.edu

    2014-09-15

    We perform a detail study of higher dimensional quantum Hall effects and A-class topological insulators with emphasis on their relations to non-commutative geometry. There are two different formulations of non-commutative geometry for higher dimensional fuzzy spheres: the ordinary commutator formulation and quantum Nambu bracket formulation. Corresponding to these formulations, we introduce two kinds of monopole gauge fields: non-abelian gauge field and antisymmetric tensor gauge field, which respectively realize the non-commutative geometry of fuzzy sphere in the lowest Landau level. We establish connection between the two types of monopole gauge fields through Chern–Simons term, and derive explicit form of tensor monopole gauge fields with higher string-like singularity. The connection between two types of monopole is applied to generalize the concept of flux attachment in quantum Hall effect to A-class topological insulator. We propose tensor type Chern–Simons theory as the effective field theory for membranes in A-class topological insulators. Membranes turn out to be fractionally charged objects and the phase entanglement mediated by tensor gauge field transforms the membrane statistics to be anyonic. The index theorem supports the dimensional hierarchy of A-class topological insulator. Analogies to D-brane physics of string theory are discussed too.

  18. Experimental two-dimensional quantum walk on a photonic chip.

    Science.gov (United States)

    Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min

    2018-05-01

    Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.

  19. Two-dimensional interpolation with experimental data smoothing

    International Nuclear Information System (INIS)

    Trejbal, Z.

    1989-01-01

    A method of two-dimensional interpolation with smoothing of time statistically deflected points is developed for processing of magnetic field measurements at the U-120M field measurements at the U-120M cyclotron. Mathematical statement of initial requirements and the final result of relevant algebraic transformations are given. 3 refs

  20. Higher dimensional operator corrections to the goldstino Goldberger-Treiman vertices

    International Nuclear Information System (INIS)

    Lee, T.

    2000-01-01

    The goldstino-matter interactions given by the Goldberger-Treiman relations can receive higher dimensional operator corrections of O(q 2 /M 2 ), where M denotes the mass of the mediators through which SUSY breaking is transmitted. These corrections in the gauge mediated SUSY breaking models arise from loop diagrams, and an explicit calculation of such corrections is presented. It is emphasized that the Goldberger-Treiman vertices are valid only below the mediator scale, and at higher energies goldstinos decouple from the MSSM fields. The implication of this fact for gravitino cosmology in GMSB models is mentioned. (orig.)

  1. Higher order BLG supersymmetry transformations from 10-dimensional super Yang Mills

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John [Alumnus of Physics Department, Imperial College,South Kensington, London, SW7 2AZ (United Kingdom); Low, Andrew [Physics Department, Wimbledon High School,Mansel Road, London, SW19 4AB (United Kingdom)

    2014-06-26

    We study a Simple Route for constructing the higher order Bagger-Lambert-Gustavsson theory - both supersymmetry transformations and Lagrangian - starting from knowledge of only the 10-dimensional Super Yang Mills Fermion Supersymmetry transformation. We are able to uniquely determine the four-derivative order corrected supersymmetry transformations, to lowest non-trivial order in Fermions, for the most general three-algebra theory. For the special case of Euclidean three-algbera, we reproduce the result presented in arXiv:1207.1208, with significantly less labour. In addition, we apply our method to calculate the quadratic fermion terms in the higher order BLG fermion supersymmetry transformation.

  2. Higher-dimensional bulk wormholes and their manifestations in brane worlds

    International Nuclear Information System (INIS)

    Rodrigo, Enrico

    2006-01-01

    There is nothing to prevent a higher-dimensional anti-de Sitter bulk spacetime from containing various other branes in addition to hosting our universe, presumed to be a positive-tension 3-brane. In particular, it could contain closed, microscopic branes that form the boundary surfaces of void bubbles and thus violate the null energy condition in the bulk. The possible existence of such micro branes can be investigated by considering the properties of the ground state of a pseudo-Wheeler-DeWitt equation describing brane quantum dynamics in minisuperspace. If they exist, a concentration of these micro branes could act as a fluid of exotic matter able to support macroscopic wormholes connecting otherwise-distant regions of the bulk. Were the brane constituting our universe to expand into a region of the bulk containing such higher-dimensional macroscopic wormholes, they would likely manifest themselves in our brane as wormholes of normal dimensionality, whose spontaneous appearance and general dynamics would seem inexplicably peculiar. This encounter could also result in the formation of baby universes of a particular type

  3. Vacuum polarization and classical self-action near higher-dimensional defects

    Energy Technology Data Exchange (ETDEWEB)

    Grats, Yuri V.; Spirin, Pavel [Moscow State University, Department of Theoretical Physics, Faculty of Physics, Moscow (Russian Federation)

    2017-02-15

    We analyze the gravity-induced effects associated with a massless scalar field in a higher-dimensional spacetime being the tensor product of (d - n)-dimensional Minkowski space and n-dimensional spherically/cylindrically symmetric space with a solid/planar angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole (if n ≥ 3) or cosmic string (if n = 2) with (d - n - 1) flat extra dimensions. Thus, we refer to them as conical backgrounds. In terms of the angular-deficit value, we derive the perturbative expression for the scalar Green function, valid for any d ≥ 3 and 2 ≤ n ≤ d - 1, and compute it to the leading order. With the use of this Green function we compute the renormalized vacuum expectation value of the field square left angle φ{sup 2}(x) right angle {sub ren} and the renormalized vacuum averaged of the scalar-field energy-momentum tensor left angle T{sub MN}(x) right angle {sub ren} for arbitrary d and n from the interval mentioned above and arbitrary coupling constant to the curvature ξ. In particular, we revisit the computation of the vacuum polarization effects for a non-minimally coupled massless scalar field in the spacetime of a straight cosmic string. The same Green function enables to consider the old purely classical problem of the gravity-induced self-action of a classical point-like scalar or electric charge, placed at rest at some fixed point of the space under consideration. To deal with divergences, which appear in consideration of the two problems, we apply the dimensional-regularization technique, widely used in quantum field theory. The explicit dependence of the results upon the dimensionalities of both the bulk and conical submanifold is discussed. (orig.)

  4. Bulk emission by higher-dimensional black holes: almost perfect blackbody radiation

    International Nuclear Information System (INIS)

    Hod, Shahar

    2011-01-01

    We study the Hawking radiation emitted into the bulk by (D + 1)-dimensional Schwarzschild black holes. It is well known that the black-hole spectrum departs from exact blackbody form due to the frequency dependence of the 'greybody' factors. For intermediate values of D (3 ≤ D ∼ > 1, the typical wavelengths in the black-hole spectrum are much shorter than the size of the black hole. In this regime, the greybody factors are well described by the geometric-optics approximation according to which they are almost frequency independent. Following this observation, we argue that for higher-dimensional black holes with D >> 1, the total power emitted into the bulk should be well approximated by the analytical formula for perfect blackbody radiation. We test the validity of this analytical prediction with numerical computations.

  5. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  6. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Feng, Zhong-Wen [China West Normal University, College of Physics and Space Science, Nanchong (China); Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China)

    2018-01-15

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  7. Variational Homotopy Perturbation Method for Solving Higher Dimensional Initial Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam Noor

    2008-01-01

    Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.

  8. A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge

    International Nuclear Information System (INIS)

    Davis, Paul

    2006-01-01

    In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable

  9. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    International Nuclear Information System (INIS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  10. Higher Dimensional Spacetimes for Visualizing and Modeling Subluminal, Luminal and Superluminal Flight

    International Nuclear Information System (INIS)

    Froning, H. David; Meholic, Gregory V.

    2010-01-01

    This paper briefly explores higher dimensional spacetimes that extend Meholic's visualizable, fluidic views of: subluminal-luminal-superluminal flight; gravity, inertia, light quanta, and electromagnetism from 2-D to 3-D representations. Although 3-D representations have the potential to better model features of Meholic's most fundamental entities (Transluminal Energy Quantum) and of the zero-point quantum vacuum that pervades all space, the more complex 3-D representations loose some of the clarity of Meholic's 2-D representations of subluminal and superlumimal realms. So, much new work would be needed to replace Meholic's 2-D views of reality with 3-D ones.

  11. Grand unified theory precursors and nontrivial fixed points in higher-dimensional gauge theories

    International Nuclear Information System (INIS)

    Dienes, Keith R.; Dudas, Emilian; Gherghetta, Tony

    2003-01-01

    Within the context of traditional logarithmic grand unification at M GUT ≅10 16 GeV, we show that it is nevertheless possible to observe certain GUT states such as X and Y gauge bosons at lower scales, perhaps even in the TeV range. We refer to such states as 'GUT precursors'. These states offer an interesting alternative possibility for new physics at the TeV scale, and could be used to directly probe GUT physics even though the scale of gauge coupling unification remains high. Our results also give rise to a Kaluza-Klein realization of nontrivial fixed points in higher-dimensional gauge theories

  12. Spontaneous symmetry breaking and fermion chirality in higher-dimensional gauge theory

    International Nuclear Information System (INIS)

    Wetterich, C.

    1985-01-01

    The number of chiral fermions may change in the course of spontaneous symmetry breaking. We discuss solutions of a six-dimensional Einstein-Yang-Mills theory based on SO(12). In the resulting effective four-dimensional theory they can be interpreted as spontaneous breaking of a gauge group SO(10) to H=SU(3)sub(C)xSU(2)sub(L)xU(1)sub(R)xU(1)sub(B-L). For all solutions, the fermions which are chiral with respect to H form standard generations. However, the number of generations for the solutions with broken SO(10) may be different compared to the symmetric solutions. All solutions considered here exhibit a local generation group SU(2)sub(G)xU(1)sub(G). For the solutions with broken SO(10) symmetry, the leptons and quarks within one generation transform differently with respect to SU(2)sub(G)xU(1)sub(G). Spontaneous symmetry breaking also modifies the SO(10) relations among Yukawa couplings. All this has important consequences for possible fermion mass relations obtained from higher-dimensional theories. (orig.)

  13. Five-dimensional PPN formalism and experimental test of Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Xu Peng; Ma Yongge

    2007-01-01

    The parametrized post-Newtonian formalism for 5-dimensional metric theories with a compact extra dimension is developed. The relation of the 5-dimensional and 4-dimensional formulations is then analyzed, in order to compare the higher dimensional theories of gravity with experiments. It turns out that the value of post-Newtonian parameter γ in the reduced 5-dimensional Kaluza-Klein theory is two times smaller than that in 4-dimensional general relativity. The departure is due to the existence of an extra dimension in the Kaluza-Klein theory. Thus the confrontation between the reduced 4-dimensional formalism and Solar system experiments raises a severe challenge to the classical Kaluza-Klein theory

  14. Upper Estimates on the Higher-dimensional Multifractal Spectrum of Local Entropy%局部熵高维重分形谱的上界估计

    Institute of Scientific and Technical Information of China (English)

    严珍珍; 陈二才

    2008-01-01

    We discuss the problem of higher-dimensional multifractal spectrum of lo-cal entropy for arbitrary invariant measures. By utilizing characteristics of a dynam-ical system, namely, higher-dimensional entropy capacities and higher-dimensional correlation entropies, we obtain three upper estimates on the higher-dimensional mul-tifractal spectrum of local entropies. We also study the domain of higher-dimensional multifractal spetrum of entropies.

  15. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis

    Science.gov (United States)

    Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.

    2016-01-01

    Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; ptalent identification. PMID:27224653

  16. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

    Science.gov (United States)

    Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B

    2016-01-01

    Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; ptalent identification.

  17. Higher first Chern numbers in one-dimensional Bose-Fermi mixtures

    Science.gov (United States)

    Knakkergaard Nielsen, Kristian; Wu, Zhigang; Bruun, G. M.

    2018-02-01

    We propose to use a one-dimensional system consisting of identical fermions in a periodically driven lattice immersed in a Bose gas, to realise topological superfluid phases with Chern numbers larger than 1. The bosons mediate an attractive induced interaction between the fermions, and we derive a simple formula to analyse the topological properties of the resulting pairing. When the coherence length of the bosons is large compared to the lattice spacing and there is a significant next-nearest neighbour hopping for the fermions, the system can realise a superfluid with Chern number ±2. We show that this phase is stable in a large region of the phase diagram as a function of the filling fraction of the fermions and the coherence length of the bosons. Cold atomic gases offer the possibility to realise the proposed system using well-known experimental techniques.

  18. Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime

    International Nuclear Information System (INIS)

    Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan

    2007-01-01

    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.

  19. Black holes in higher dimensional gravity theory with corrections quadratic in curvature

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Shapiro, Ilya L.

    2009-01-01

    Static spherically symmetric black holes are discussed in the framework of higher dimensional gravity with quadratic in curvature terms. Such terms naturally arise as a result of quantum corrections induced by quantum fields propagating in the gravitational background. We focus our attention on the correction of the form C 2 =C αβγδ C αβγδ . The Gauss-Bonnet equation in four-dimensional spacetime enables one to reduce this term in the action to the terms quadratic in the Ricci tensor and scalar curvature. As a result the Schwarzschild solution which is Ricci flat will be also a solution of the theory with the Weyl scalar C 2 correction. An important new feature of the spaces with dimension D>4 is that in the presence of the Weyl curvature-squared term a necessary solution differs from the corresponding 'classical' vacuum Tangherlini metric. This difference is related to the presence of secondary or induced hair. We explore how the Tangherlini solution is modified by 'quantum corrections', assuming that the gravitational radius r 0 is much larger than the scale of the quantum corrections. We also demonstrated that finding a general solution beyond the perturbation method can be reduced to solving a single third order ordinary differential equation (master equation).

  20. On higher-dimensional loop algebras, pseudodifferential operators and Fock space realizations

    International Nuclear Information System (INIS)

    Westerberg, A.

    1997-01-01

    We discuss a previously discovered extension of the infinite-dimensional Lie algebra map(M,g) which generalizes the Kac-Moody algebras in 1+1 dimensions and the Mickelsson-Faddeev algebras in 3+1 dimensions to manifolds M of general dimensions. Furthermore, we review the method of regularizing current algebras in higher dimensions using pseudodifferential operator (PSDO) symbol calculus. In particular, we discuss the issue of Lie algebra cohomology of PSDOs and its relation to the Schwinger terms arising in the quantization process. Finally, we apply this regularization method to the algebra with partial success, and discuss the remaining obstacles to the construction of a Fock space representation. (orig.)

  1. Higher-dimensional black holes: hidden symmetries and separation of variables

    International Nuclear Information System (INIS)

    Frolov, Valeri P; Kubiznak, David

    2008-01-01

    In this paper, we discuss hidden symmetries in rotating black hole spacetimes. We start with an extended introduction which mainly summarizes results on hidden symmetries in four dimensions and introduces Killing and Killing-Yano tensors, objects responsible for hidden symmetries. We also demonstrate how starting with a principal CKY tensor (that is a closed non-degenerate conformal Killing-Yano 2-form) in 4D flat spacetime one can 'generate' the 4D Kerr-NUT-(A)dS solution and its hidden symmetries. After this we consider higher-dimensional Kerr-NUT-(A)dS metrics and demonstrate that they possess a principal CKY tensor which allows one to generate the whole tower of Killing-Yano and Killing tensors. These symmetries imply complete integrability of geodesic equations and complete separation of variables for the Hamilton-Jacobi, Klein-Gordon and Dirac equations in the general Kerr-NUT-(A)dS metrics

  2. Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.

    2018-04-01

    We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.

  3. The effective action for edge states in higher-dimensional quantum Hall systems

    International Nuclear Information System (INIS)

    Karabali, Dimitra; Nair, V.P.

    2004-01-01

    We show that the effective action for the edge excitations of a quantum Hall droplet of fermions in higher dimensions is generically given by a chiral bosonic action. We explicitly analyze the quantum Hall effect on complex projective spaces CP k , with a U(1) background magnetic field. The edge excitations are described by Abelian bosonic fields on S 2k-1 with only one spatial direction along the boundary of the droplet relevant for the dynamics. Our analysis also leads to an action for edge excitations for the case of the Zhang-Hu four-dimensional quantum Hall effect defined on S 4 with an SU(2) background magnetic field, using the fact that CP 3 is an S 2 -bundle over S 4

  4. The Fuzzy analogy of chiral diffeomorphisms in higher dimensional quantum field theories

    International Nuclear Information System (INIS)

    Fassarella, Lucio; Schroer, Bert

    2001-06-01

    Our observation that the chiral diffeomorphisms allow an interpretation as modular groups of local operator algebras in the sense of Tomita and takesaki allows us to conclude that the higher deimensional generalizations are certain infinite dimensional groups which act in a 'fuzzy' way on the operator algebras of local quantum physics. These actions do not require any spacetime noncommutativity and are in complete harmony with causality and localization principles. The use of an appropriately defined isomorphism reprocesses these fuzzy actions into partially geometric actions on the holographic image and in this way tightens the relation with chiral structures and makes recent attempts to explain the required universal structure of a would be quantum Bekenstein law in terms of Virasoro algebra structures more palatable. (author)

  5. Euclidean scalar Green function in a higher dimensional global monopole space-time

    International Nuclear Information System (INIS)

    Bezerra de Mello, E.R.

    2002-01-01

    We construct the explicit Euclidean scalar Green function associated with a massless field in a higher dimensional global monopole space-time, i.e., a (1+d)-space-time with d≥3 which presents a solid angle deficit. Our result is expressed in terms of an infinite sum of products of Legendre functions with Gegenbauer polynomials. Although this Green function cannot be expressed in a closed form, for the specific case where the solid angle deficit is very small, it is possible to develop the sum and obtain the Green function in a more workable expression. Having this expression it is possible to calculate the vacuum expectation value of some relevant operators. As an application of this formalism, we calculate the renormalized vacuum expectation value of the square of the scalar field, 2 (x)> Ren , and the energy-momentum tensor, μν (x)> Ren , for the global monopole space-time with spatial dimensions d=4 and d=5

  6. Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation

    KAUST Repository

    Jaber, Nizar; Ramini, Abdallah; Carreno, Armando Arpys Arevalo; Younis, Mohammad I.

    2016-01-01

    © 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using

  7. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

    Directory of Open Access Journals (Sweden)

    Kevin Till

    Full Text Available Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional. Players were blindly and randomly divided into an exploratory (n = 165 and validation dataset (n = 92. The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001, although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003. Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.

  8. An experimental study for qualitatively diagnosing stapes lesions by helical 3-dimensional CT

    International Nuclear Information System (INIS)

    Kawaue, Akifumi; Kuki, Kiyonori; Yamanaka, Noboru; Nishimura, Michihiko

    2001-01-01

    To evaluate qualitative diagnosis of stapes lesions by 3-dimensional computed tomography (3D-CT) combined with superselective image processing (3D-SS) of stapes, we studied helical 3D-CT on a phantom model of the temporal bone. Two stapes models were used-1 made from the bone filler, Celatite, consistent in bone density but changing in cross sectional area, and the other made from an apacerum rod used in quantitative computed tomography (QCT), consistent in cross sectional area but changing in bone density. These stapes models were put into a skull phantom and analyzed by helical 3D-CT. The influence of the tympanic cavity conditions on CT images of stapes was evaluated by filling the phantom model with Vaseline following 3D selective reconstruction. In all stapes models, lowering the lower CT window width threshold resulted in an enlarged cross-sectional area of the model. The higher the bone density, the lower the increase in cross-sectional area in the image. The stapes model with lower density had greater influence on the imaging by tympanic cavity conditions and was likely to be misdiagnosed as showing higher bone density. Based on the experimental study, 3D-SS by helical 3D-CT appears to be a useful measure for qualitatively diagnosing stapes lesions. (author)

  9. Exact solutions of Einstein and Einstein-Maxwell equations in higher-dimensional spacetime

    International Nuclear Information System (INIS)

    Xu Dianyan; Beijing Univ., BJ

    1988-01-01

    The D-dimensional Schwarzschild-de Sitter metric and Reissner-Nordstrom-de-Sitter metric are derived directly by solving the Einstein and Einstein-Maxwell equations. The D-dimensional Kerr metric is rederived by using the complex coordinate transformation method and the D-dimensional Kerr-de Sitter metric is also given. The conjecture about the D-dimensional metric of a rotating charged mass is given at the end of this paper. (author)

  10. Three-dimensional inviscid analysis of radial-turbine flow and a limited comparison with experimental data

    Science.gov (United States)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  11. Towards realistic models from Higher-Dimensional theories with Fuzzy extra dimensions

    CERN Document Server

    Gavriil, D.; Zoupanos, G.

    2014-01-01

    We briefly review the Coset Space Dimensional Reduction (CSDR) programme and the best model constructed so far and then we present some details of the corresponding programme in the case that the extra dimensions are considered to be fuzzy. In particular, we present a four-dimensional $\\mathcal{N} = 4$ Super Yang Mills Theory, orbifolded by $\\mathbb{Z}_3$, which mimics the behaviour of a dimensionally reduced $\\mathcal{N} = 1$, 10-dimensional gauge theory over a set of fuzzy spheres at intermediate high scales and leads to the trinification GUT $SU(3)^3$ at slightly lower, which in turn can be spontaneously broken to the MSSM in low scales.

  12. Fractal zeta functions and fractal drums higher-dimensional theory of complex dimensions

    CERN Document Server

    Lapidus, Michel L; Žubrinić, Darko

    2017-01-01

    This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the f...

  13. Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes

    Science.gov (United States)

    Araneda, Bernardo

    2018-04-01

    We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.

  14. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  15. Emission of massive scalar fields by a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Kanti, P.; Pappas, N.

    2010-01-01

    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.

  16. What we think about the higher dimensional Chern-Simons theories

    International Nuclear Information System (INIS)

    Fock, V.V.; Nekrasov, N.A.; Rosly, A.A.; Selivanov, K.G.

    1992-01-01

    This paper reports that one of the most interesting developments in mathematical physics was the investigation of the so-called topological field theories i.e. such theories which do not need a metric on the manifold for their definition a d hence the observable of which are topologically invariant. The Chern-Simons (CS) functionals considered as actions give us examples the theories of such a type. The CS theory on a 3d manifold was firstly considered in the Abelian case by A.S. Schwartz and then after papers of E. Witten there has been an explosive process of publications on this subject. This paper discusses topological invariants of the manifolds (like the Ray-Singer torsion) computed by the quantum field theory methods; conformal blocks of 2d conformal field theories as vectors in the CS theory Hilbert space; correlators of Wilson loop and the invariants of 1d links in 3d manifolds; braid groups; unusual relations between spin and statistics; here we would like to consider the generalization of a part of the outlined ideas to the CS theories on higher dimensional manifolds. Some of our results intersect with

  17. Partially-massless higher-spin algebras and their finite-dimensional truncations

    International Nuclear Information System (INIS)

    Joung, Euihun; Mkrtchyan, Karapet

    2016-01-01

    The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.

  18. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    Science.gov (United States)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  19. New Traveling Wave Solutions of the Higher Dimensional Nonlinear Partial Differential Equation by the Exp-Function Method

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2012-01-01

    Full Text Available We construct new analytical solutions of the (3+1-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.

  20. Higher dimensional models of cross-coupled oscillators and application to design

    KAUST Repository

    Elwakil, Ahmed S.; Salama, Khaled N.

    2010-01-01

    We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.

  1. Higher dimensional models of cross-coupled oscillators and application to design

    KAUST Repository

    Elwakil, Ahmed S.

    2010-06-01

    We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.

  2. Higher-dimensional generalizations of the Watanabe–Strogatz transform for vector models of synchronization

    Science.gov (United States)

    Lohe, M. A.

    2018-06-01

    We generalize the Watanabe–Strogatz (WS) transform, which acts on the Kuramoto model in d  =  2 dimensions, to a higher-dimensional vector transform which operates on vector oscillator models of synchronization in any dimension , for the case of identical frequency matrices. These models have conserved quantities constructed from the cross ratios of inner products of the vector variables, which are invariant under the vector transform, and have trajectories which lie on the unit sphere S d‑1. Application of the vector transform leads to a partial integration of the equations of motion, leaving independent equations to be solved, for any number of nodes N. We discuss properties of complete synchronization and use the reduced equations to derive a stability condition for completely synchronized trajectories on S d‑1. We further generalize the vector transform to a mapping which acts in and in particular preserves the unit ball , and leaves invariant the cross ratios constructed from inner products of vectors in . This mapping can be used to partially integrate a system of vector oscillators with trajectories in , and for d  =  2 leads to an extension of the Kuramoto system to a system of oscillators with time-dependent amplitudes and trajectories in the unit disk. We find an inequivalent generalization of the Möbius map which also preserves but leaves invariant a different set of cross ratios, this time constructed from the vector norms. This leads to a different extension of the Kuramoto model with trajectories in the complex plane that can be partially integrated by means of fractional linear transformations.

  3. Fermions Tunneling from Higher-Dimensional Reissner-Nordström Black Hole: Semiclassical and Beyond Semiclassical Approximation

    Directory of Open Access Journals (Sweden)

    ShuZheng Yang

    2016-01-01

    Full Text Available Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordström black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordström black hole space-time. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.

  4. Development of a three-dimensional PIV measurement technique for the experimental study of air bubble collapse phenomena

    International Nuclear Information System (INIS)

    Yang, Y.H.; Hassan, Y.A.; Schmidl, W.D.

    1995-01-01

    Particle image velocimetry (PIV) is a quantitative flow measurement technique. The objective of this study is to develop a new three-dimensional PIV technique for the experimental study of air bubble collapse phenomena. A three-dimensional measurement technique is necessary since bubble collapse is a three-dimensional phenomenon. The investigation of the velocity flow field around a collapsing air bubble can provide detailed three-dimensional quantitative information to help improve the understanding of the related heat transfer processes

  5. A higher-dimensional Bianchi type-I inflationary Universe in general ...

    Indian Academy of Sciences (India)

    Inflation, the stage of accelerated expansion of the Universe, first proposed ... ary model in the context of grand unified theory (GUT), which has been ... The role of self-interacting scalar fields in inflationary cosmology in four-dimensional.

  6. First law of black ring thermodynamics in higher dimensional Chern-Simons gravity

    International Nuclear Information System (INIS)

    Rogatko, Marek

    2007-01-01

    The physical process version and the equilibrium state version of the first law of black ring thermodynamics in n-dimensional Einstein gravity with Chern-Simons term were derived. This theory constitutes the simplest generalization of the five-dimensional one admitting a stationary black ring solution. The equilibrium state version of the first law of black ring mechanics was achieved by choosing any cross section of the event horizon to the future of the bifurcation surface

  7. A Natural Extension of Standard Warped Higher-Dimensional Compactifications: Theory and Phenomenology

    Science.gov (United States)

    Hong, Sungwoo

    Warped higher-dimensional compactifications with "bulk'' standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem'' remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement'', with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to all pairs of SM fermions, and a novel channel--decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. We present a detailed phenomenological study of the latter cascade decay processes. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at O(10) TeV, with subdominant resonance decays into a pair of Higgs/top-rich final states, giving the LHC an early "preview'' of the nature of the resolution of the hierarchy

  8. Higher dimensional maximally symmetric stationary manifold with pure gauge condition and codimension one flat submanifold

    International Nuclear Information System (INIS)

    Wiliardy, Abednego; Gunara, Bobby Eka

    2016-01-01

    An n dimensional flat manifold N is embedded into an n +1 dimensional stationary manifold M. The metric of M is derived from a general form of stationary manifold. By taking several assumption, such as 1) the ambient manifold M to be maximally symmetric space and satisfying a pure gauge condition, and 2) the submanifold is taken to be flat, then we find the solution that satisfies Ricci scalar of N . Moreover, we determine whether the solution is compatible with the Ricci and Riemann tensor of manifold N depending on the dimension. (paper)

  9. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    International Nuclear Information System (INIS)

    Zou, De-Cheng; Yue, Ruihong; Zhang, Ming

    2017-01-01

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c_im"2 of massive potential satisfy some certain conditions. (orig.)

  10. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, College of Physical Science and Technology, Yangzhou (China); Zhang, Ming [Xi' an Aeronautical University, Faculty of Science, Xi' an (China)

    2017-04-15

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c{sub i}m{sup 2} of massive potential satisfy some certain conditions. (orig.)

  11. Hawking Radiation Spectra for Scalar Fields by a Higher-Dimensional Schwarzschild-de-Sitter Black Hole

    OpenAIRE

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-01-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de-Sitter black hole as well as on the projected-on-the-brane 4-dimensional background. The scalar fields have also a non-minimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then pro...

  12. Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation

    NARCIS (Netherlands)

    P.W. Hemker (Piet); M.H. van Raalte (Marc)

    2002-01-01

    textabstractIn this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann-Oden and for the symmetric DG method, we give a detailed analysis of the

  13. Faster exact algorithms for computing Steiner trees in higher dimensional Euclidean spaces

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Brazil, Marcus; Winter, Pawel

    The Euclidean Steiner tree problem asks for a network of minimum total length interconnecting a finite set of points in d-dimensional space. For d ≥ 3, only one practical algorithmic approach exists for this problem --- proposed by Smith in 1992. A number of refinements of Smith's algorithm have...

  14. Dimensional reduction of 10d heterotic string effective lagrangian with higher derivative terms

    International Nuclear Information System (INIS)

    Lalak, Z.; Pawelczyk, J.

    1989-11-01

    Dimensional reduction of the 10d Supergravity-Yang-Mills theories containing up to four derivatives is described. Unexpected nondiagonal corrections to 4d gauge kinetic function and negative contributions to scalar potential are found. We analyzed the general structure of the resulting lagrangian and discuss the possible phenomenological consequences. (author)

  15. Uniqueness in some higher order elliptic boundary value problems in n dimensional domains

    Directory of Open Access Journals (Sweden)

    C.-P. Danet

    2011-07-01

    Full Text Available We develop maximum principles for several P functions which are defined on solutions to equations of fourth and sixth order (including a equation which arises in plate theory and bending of cylindrical shells. As a consequence, we obtain uniqueness results for fourth and sixth order boundary value problems in arbitrary n dimensional domains.

  16. Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction.

    Science.gov (United States)

    Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2015-03-01

    PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.

  17. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  18. Singularity Structure Analysis of the Higher-Dimensional Time-Gated Manakov System: Periodic Excitations and Elastic Scattering

    International Nuclear Information System (INIS)

    Kuetche, Victor Kamgang; Bouetou, Thomas Bouetou; Kofane, Timoleon Crepin

    2010-12-01

    We investigate the singularity structure analysis of the higher-dimensional time-gated Manakov system referring to the (2+1)-dimensional coupled nonlinear Schroedinger (CNLS) equations, and we show that these equations are Painleve-integrable. By means of the Weiss et al.'s methodology, we show the arbitrariness of the expansion coefficients and the consistency of the truncation corresponding to a special Baecklund transformation (BT) of these CNLS equations. In the wake of such transformation, following the Hirota's formalism, we derive a one-soliton solution. Besides, by using the Zakharov-Shabat (ZS) scheme which provides a general Lax-representation of an evolution system, we show that the (2+1)-dimensional CNLS system under interests is completely integrable. Furthermore, using the arbitrariness of the above coefficients, we unearth and investigate a typical spectrum of periodic coherent structures while depicting elastic interactions amongst such patterns. (author)

  19. Maximal locality and predictive power in higher-dimensional, compactified field theories

    International Nuclear Information System (INIS)

    Kubo, Jisuke; Nunami, Masanori

    2004-01-01

    To realize maximal locality in a trivial field theory, we maximize the ultraviolet cutoff of the theory by fine tuning the infrared values of the parameters. This optimization procedure is applied to the scalar theory in D + 1 dimensional (D ≥ 4) with one extra dimension compactified on a circle of radius R. The optimized, infrared values of the parameters are then compared with the corresponding ones of the uncompactified theory in D dimensions, which is assumed to be the low-energy effective theory. We find that these values approximately agree with each other as long as R -1 > approx sM is satisfied, where s ≅ 10, 50, 50, 100 for D = 4,5,6,7, and M is a typical scale of the D-dimensional theory. This result supports the previously made claim that the maximization of the ultraviolet cutoff in a nonrenormalizable field theory can give the theory more predictive power. (author)

  20. Higher conservation laws for ten-dimensional supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Abdalla, E.; Forger, M.; Freiburg Univ.; Jacques, M.

    1988-01-01

    It is shown that ten-dimensional supersymmetric Yang-Mills theories are integrable systems, in the (weak) sense of admitting a (superspace) Lax representation for their equations of motion. This is achieved by means of an explicit proof that the equations of motion are not only a consequence of but in fact fully equivalent to the superspace constraint F αβ =0. Moreover, a procedure for deriving infinite series of non-local conservation laws is outlined. (orig.)

  1. Late-time tails of wave propagation in higher dimensional spacetimes

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Yoshida, Shijun; Dias, Oscar J.C.; Lemos, Jose P.S.

    2003-01-01

    We study the late-time tails appearing in the propagation of massless fields (scalar, electromagnetic, and gravitational) in the vicinities of a D-dimensional Schwarzschild black hole. We find that at late times the fields always exhibit a power-law falloff, but the power law is highly sensitive to the dimensionality of the spacetime. Accordingly, for odd D>3 we find that the field behaves as t -(2l+D-2) at late times, where l is the angular index determining the angular dependence of the field. This behavior is entirely due to D being odd; it does not depend on the presence of a black hole in the spacetime. Indeed this tail is already present in the flat space Green's function. On the other hand, for even D>4 the field decays as t -(2l+3D-8) , and this time there is no contribution from the flat background. This power law is entirely due to the presence of the black hole. The D=4 case is special and exhibits, as is well known, t -(2l+3) behavior. In the extra dimensional scenario for our Universe, our results are strictly correct if the extra dimensions are infinite, but also give a good description of the late-time behavior of any field if the large extra dimensions are large enough

  2. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models

    International Nuclear Information System (INIS)

    Goldberg, L.F.

    1990-08-01

    The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year's funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge

  3. Experimental investigation of coupling between widely spaced modes of a beam using higher-order spectra

    International Nuclear Information System (INIS)

    Khan, K.A.

    2001-01-01

    Experimental studies related to a thin isotropic steel beam are presented. The beam was harmonically excited along its axis creating a situation of parametric excitation. A possible two-to-one internal resonance was considered between the third and fourth modes of the beam with an external resonance of its fourth mode. The coupling phenomenon responsible for transfer of energy from high frequency modes to a widely spaced low frequency mode was studied by using conventional tools and higher-order spectra (third-order spectrum (bispectrum) and fourth-order spectrum (trispectrum)). Pointwise dimensions of the attractors were examined to ascertain their chaotic character. The potential of higher-order spectra in detecting the quadratic and cubic phase couplings among the participating modes during bifurcations, periodically modulated motions, and chaotically modulated motions was also examined. The experimental results are provided in the form of power spectra, fractal dimensions, bispectra, bicoherence spectra, and trispectrum. Experimental observations of transitions from periodic to periodically modulated to chaotically-modulated motions are also presented. (author)

  4. Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation

    KAUST Repository

    Jaber, Nizar

    2016-01-06

    © 2016 IOP Publishing Ltd. In this study, we demonstrate analytically and experimentally the excitations of the higher order modes of vibrations in electrostatically actuated clamped-clamped microbeam resonators. The concept is based on using partial electrodes with shapes that induce strong excitation of the mode of interest. The devices are fabricated using polyimide as a structural layer coated with nickel from the top and chrome and gold layers from the bottom. Experimentally, frequency sweeps with different electro-dynamical loading conditions are shown to demonstrate the excitation of the higher order modes of vibration. Using a half electrode, the second mode is excited with high amplitude of vibration compared with almost zero response using the full electrode. Also, using a two-third electrode configuration is shown to amplify the third mode resonance amplitude compared with the full electrode under the same electrical loading conditions. An analytical model is developed based on the Euler-Bernollui beam model and the Galerkin method to simulate the device response. Good agreement between the simulation results and the experimental data is reported.

  5. Scalar QNMs for higher dimensional black holes surrounded by quintessence in Rastall gravity

    Energy Technology Data Exchange (ETDEWEB)

    Graca, J.P.M.; Lobo, Iarley P. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2018-02-15

    The spacetime solution for a black hole, surrounded by an exotic matter field, in Rastall gravity, is calculated in an arbitrary d-dimensional spacetime. After this, we calculate the scalar quasinormal modes of such solution, and study the shift on the modes caused by the modification of the theory of gravity, i.e., by the introduction of a new term due to Rastall. We conclude that the shift strongly depends on the kind of exotic field one is studying, but for a low density matter that supposedly pervades the universe, it is unlikely that Rastall gravity will cause an instability for the probe field. (orig.)

  6. Approaches to analysis of data that concentrate near higher-dimensional manifolds

    International Nuclear Information System (INIS)

    Friedman, J.H.; Tukey, J.W.; Tukey, P.A.

    1979-01-01

    The need to explore structure in high-dimensional clouds of data points that may concentrate near (possibly nonlinear) manifolds of lower dimension led to the current development of three new approaches. The first is a computer-graphic system (PRIM'79) that facilitates interactive viewing and manipulation of an ensemble of points. The other two are automatic procedures for separating a cloud into more manageable pieces. One of these (BIDEC) performs successive partitioning of the cloud by use of hyperplanes; the other (Cake Maker) explores expanding sequences of neighborhoods. Both procedures provide facilities for examining the resulting pieces and the relationships among them

  7. Experimental observation of both negative and positive phase velocities in a two-dimensional sonic crystal

    International Nuclear Information System (INIS)

    Lu, Ming-Hui; Feng, Liang; Liu, Xiao-Ping; Liu, Xiao-Kang; Chen, Yan-Feng; Zhu, Yong-Yuan; Mao, Yi-Wei; Zi, Jian

    2007-01-01

    Both negative and positive phase velocities for acoustic waves have been experimentally established in a two-dimensional triangular sonic crystal (SC) consisting of steel cylinders embedded in air at first. With the increase of the SCs thickness layer by layer in the experiments, phase shifts decrease in the second band but increase in the first band, showing the negative and the positive phase velocities, respectively. Moreover, the dispersion relation of the SC is constructed by the phase information, which is consistent well with the theoretical results. These abundant characteristics of acoustic wave propagation in the SC might be useful for the device applications

  8. Electromagnetic three-dimensional reconstruction of targets from free space experimental data

    International Nuclear Information System (INIS)

    Geffrin, J.-M.; Chaumet, P. C.; Eyraud, C.; Belkebir, K.; Sabouroux, P.

    2008-01-01

    This paper deals with the problem of reconstructing the relative permittivity of three-dimensional targets using experimental scattered fields. The fields concerned were measured in an anechoic chamber on the surface of a sphere surrounding the target. The inverse scattering problem is reformulated as an optimization problem that is iteratively solved thanks to a conjugate gradient method and by using the coupled dipoles method as a forward problem solver. The measurement technique and the inversion procedure are briefly described with the inversion results. This work demonstrates the reliability of the experiments and the efficiency of the proposed inverse scattering scheme

  9. Experimental study on two-dimensional film flow with local measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-12-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  10. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Lomonosov, Alexey M. [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); General Physics Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation)

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  11. Experimental study on two-dimensional film flow with local measurement methods

    International Nuclear Information System (INIS)

    Yang, Jin-Hwa; Cho, Hyoung-Kyu; Kim, Seok; Euh, Dong-Jin; Park, Goon-Cherl

    2015-01-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  12. Experimental investigation of an actively controlled three-dimensional turret wake

    Science.gov (United States)

    Shea, Patrick R.

    Hemispherical turrets are bluff bodies commonly used to house optical systems on airborne platforms. These bluff bodies develop complex, three-dimensional flow fields that introduce high mean and fluctuating loads to the turret as well as the airframe support structure which reduce the performance of both the optical systems and the aircraft. An experimental investigation of the wake of a three-dimensional, non-conformal turret was performed in a low-speed wind tunnel at Syracuse University to develop a better understanding of the fundamental flow physics associated with the turret wake. The flow field was studied at a diameter based Reynolds number of 550,000 using stereoscopic particle image velocimetry and dynamic pressure measurements both with and without active flow control. Pressure measurements were simultaneously sampled with the PIV measurements and taken on the surrounding boundary layer plate and at several locations on the turret geometry. Active flow control of the turret wake was performed around the leading edge of the turret aperture using dynamic suction in steady open-loop, unsteady open-loop, and simple closed-loop configurations. Analysis of the uncontrolled wake provided insight into the complex three-dimensional wake when evaluated spatially using PIV measurements and temporally using spectral analysis of the pressure measurements. Steady open-loop suction was found to significantly alter the spatial and temporal nature of the turret wake despite the control being applied locally to the aperture region of the turret. Unsteady open-loop and simple closed-loop control were found to provide similar levels of control to the steady open-loop forcing with a 45% reduction in the control input as calculated using the jet momentum coefficient. The data set collected provides unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations. These data can be used to

  13. Two-dimensional N=(2,2) lattice gauge theories with matter in higher representations

    International Nuclear Information System (INIS)

    Joseph, Anosh

    2014-06-01

    We construct two-dimensional N=(2,2) supersymmetric gauge theories on a Euclidean spacetime lattice with matter in the two-index symmetric and anti-symmetric representations of SU(N c ) color group. These lattice theories preserve a subset of the supercharges exact at finite lattice spacing. The method of topological twisting is used to construct such theories in the continuum and then the geometric discretization scheme is used to formulate them on the lattice. The lattice theories obtained this way are gauge-invariant, free from fermion doubling problem and exact supersymmetric at finite lattice spacing. We hope that these lattice constructions further motivate the nonperturbative explorations of models inspired by technicolor, orbifolding and orientifolding in string theories and the Corrigan-Ramond limit.

  14. EXPERIMENTAL RESEARCH OF THE THREE-DIMENSIONAL PERFORMANCE OF COMPOSITE STEEL AND CONCRETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Zamaliev Farit Sakhapovich

    2012-12-01

    steel-concrete slabs limits their use in the construction of residential housing. This article describes the composition, geometry, reinforcement, and anchors to enable the use of concrete slabs and steel beams. The article contains photographs that illustrate the load distribution model. Methods of testing of fiber strains of concrete slabs and steel profiles, deflections of beams, shear stresses in the layers of the "steel-to-concrete" contact area that may involve slab cracking are analyzed. Dynamics of fiber deformations of concrete slabs, steel beams, and layers of the "steel-to-concrete" contact areas, deflection development patterns, initial cracking and crack development to destruction are analyzed. The author also describes the fracture behavior of the floor model. Results of experimental studies of the three-dimensional overlapping of structural elements are compared to the test data of individual composite beams. Peculiarities of the stress-strain state of composite steel and concrete slabs, graphs of strains and stresses developing in sections of middle and external steel-and-concrete beams, deflection graphs depending on the loading intensity are provided. The findings of the experimental studies of the three-dimensional performance of composite steel-and-concrete slabs are provided, as well.

  15. Experimental study on the spin-orbit coupling property in low-dimensional semiconductor structures

    International Nuclear Information System (INIS)

    Zhao, Hongming

    2010-01-01

    The spin-orbit coupling and optical properties have been studied in several low-dimensional semiconductor structures. First, the spin dynamics in (001) GaAs/AlGaAs two-dimensional electron gas was investigated by time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic. The results show that the electron density in two-dimensional electron gas channel strongly affects the Rashba spin-orbit coupling. Then, a large anisotropy of the magnitude of in-plane conduction electron g factor in asymmetric (001) GaAs/AlGaAs QWs was observed and its tendency of temperature dependence was studied. Second, the experimental study of the in-plane-orientation dependent spin splitting in the C(0001) GaN/AlGaN two-dimensional electron gas at room temperature was reported. The measurement of circular photo-galvanic effect current clearly shows the isotropic in-plane spin splitting in this system for the first time. Third, the first measurement of conduction electron g factor in GaAsN at room temperature was done by using time resolved Kerr rotation technique. It demonstrates that the g factor can be modified drastically by introducing a small amount of nitrogen in GaAs bulk. Finally, the optical characteristic of indirect type II transition in a series of size and shape-controlled linear CdTe/CdSe/CdTe heterostructure nano-rods was studied by steady-state and time resolved photoluminescence. Results show the steady transfer from the direct optical transition (type I) within CdSe to the indirect transition (type II) between CdSe/CdTe as the length of the nano-rods increases. (author)

  16. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  17. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    International Nuclear Information System (INIS)

    Chen, Yihang; Wang, Xinggang; Yong, Zehui; Zhang, Yunjuan; Chen, Zefeng; He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah; Wang, Yu

    2012-01-01

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ eff ) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ eff gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ eff gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ eff gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ eff gap were observed in the microwave regime. ► The width and depth of the zero-φ eff gap were experimentally adjusted. ► Zero-φ eff gap was observed to be close when two match conditions were satisfied.

  18. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: eon.chen@yahoo.com.cn [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Xinggang [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Yong, Zehui; Zhang, Yunjuan [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Chen, Zefeng [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Yu, E-mail: apywang@inet.polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2012-03-19

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ{sub eff}) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ{sub eff} gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ{sub eff} gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ{sub eff} gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ{sub eff} gap were observed in the microwave regime. ► The width and depth of the zero-φ{sub eff} gap were experimentally adjusted. ► Zero-φ{sub eff} gap was observed to be close when two match conditions were satisfied.

  19. Three-dimensional shape optimization of a cemented hip stem and experimental validations.

    Science.gov (United States)

    Higa, Masaru; Tanino, Hiromasa; Nishimura, Ikuya; Mitamura, Yoshinori; Matsuno, Takeo; Ito, Hiroshi

    2015-03-01

    This study proposes novel optimized stem geometry with low stress values in the cement using a finite element (FE) analysis combined with an optimization procedure and experimental measurements of cement stress in vitro. We first optimized an existing stem geometry using a three-dimensional FE analysis combined with a shape optimization technique. One of the most important factors in the cemented stem design is to reduce stress in the cement. Hence, in the optimization study, we minimized the largest tensile principal stress in the cement mantle under a physiological loading condition by changing the stem geometry. As the next step, the optimized stem and the existing stem were manufactured to validate the usefulness of the numerical models and the results of the optimization in vitro. In the experimental study, strain gauges were embedded in the cement mantle to measure the strain in the cement mantle adjacent to the stems. The overall trend of the experimental study was in good agreement with the results of the numerical study, and we were able to reduce the largest stress by more than 50% in both shape optimization and strain gauge measurements. Thus, we could validate the usefulness of the numerical models and the results of the optimization using the experimental models. The optimization employed in this study is a useful approach for developing new stem designs.

  20. Generating a New Higher-Dimensional Coupled Integrable Dispersionless System: Algebraic Structures, Bäcklund Transformation and Hidden Structural Symmetries

    International Nuclear Information System (INIS)

    Abbagari, Souleymanou; Bouetou, Thomas B.; Kofane, Timoleon C.

    2013-01-01

    The prolongation structure methodologies of Wahlquist—Estabrook [H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16 (1975) 1] for nonlinear differential equations are applied to a more general set of coupled integrable dispersionless system. Based on the obtained prolongation structure, a Lie-Algebra valued connection of a closed ideal of exterior differential forms related to the above system is constructed. A Lie-Algebra representation of some hidden structural symmetries of the previous system, its Bäcklund transformation using the Riccati form of the linear eigenvalue problem and their general corresponding Lax-representation are derived. In the wake of the previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + 1)-dimensional coupled integrable dispersionless system is unveiled along with its inverse scattering formulation, which applications are straightforward in nonlinear optics where additional propagating dimension deserves some attention. (general)

  1. A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids

    Energy Technology Data Exchange (ETDEWEB)

    Bungartz, H.J. [Technische Universitaet Muenchen (Germany)

    1996-12-31

    In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.

  2. Surface Casimir densities and induced cosmological constant in higher dimensional braneworlds

    International Nuclear Information System (INIS)

    Saharian, Aram A.

    2006-01-01

    We investigate the vacuum expectation value of the surface energy-momentum tensor for a massive scalar field with general curvature coupling parameter obeying the Robin boundary conditions on two codimension one parallel branes in a (D+1)-dimensional background spacetime AdS D 1 +1 xΣ with a warped internal space Σ. These vacuum densities correspond to a gravitational source of the cosmological constant type for both subspaces of the branes. Using the generalized zeta function technique in combination with contour integral representations, the surface energies on the branes are presented in the form of the sum of single-brane and second-brane-induced parts. For the geometry of a single brane both regions, on the left and on the right of the brane, are considered. At the physical point the corresponding zeta functions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total zeta function is finite. The renormalization procedure for the surface energies and the structure of the corresponding counterterms are discussed. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation and are investigated in various asymptotic regions of the parameters. In particular, it is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. The total energy of the vacuum including the bulk and boundary contributions is evaluated by the zeta function technique and the energy balance between separate parts is discussed

  3. Experimental Demonstration of OCDMA Transmission Using a Three-Dimensional (Time-Wavelength-Polarization) Codeset

    Science.gov (United States)

    McGeehan, John E.; Motaghian Nezam, S. M. R.; Saghari, P.; Willner, Alan E.; Omrani, Reza; Vijay Kumar, P.

    2005-10-01

    We experimentally demonstrate a three-dimensional (3-D) optical code-division multiple-access (OCDMA) transmission system that encodes data on time, wavelength, and polarization. Such a system may be ideal for use in short-distance optical local area networks (LANs), where polarization states remain fairly stable. This type of coding can increase the number of potential users, by a factor of approximately 2kappa, over a conventional two-dimensional (2-D) code given the same code constraints, where"kappa"is the number of collisions the codeset will allow. We encode 1-Gbit/s, 11-Gchip/s data with an 11-chip, 4-wavelength, weight-4 (per polarization) code using free-space and fiber delay lines and polarization beam combiners and decode using a polarization beam splitter, wavelength demultiplexers, and additional fiber/free-space delays. After threshold detection using independent detectors for each polarization state, we obtain 1-Gbit/s nonreturn to zero (NRZ) output data. Encoding, transmission decoding, and detection carry a penalty of 1.8 dB.

  4. Higher-fidelity yet efficient modeling of radiation energy transport through three-dimensional clouds

    International Nuclear Information System (INIS)

    Hall, M.L.; Davis, A.B.

    2005-01-01

    Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both climate modeling with GCMs (Global Climate Models) and remote sensing. Previous modeling efforts have taken advantage of extreme aspect ratios (cells that are very wide horizontally) by assuming a 1-D treatment vertically - the Independent Column Approximation (ICA). Recent attempts to resolve radiation transport through the clouds have drastically changed the aspect ratios of the cells, moving them closer to unity, such that the ICA model is no longer valid. We aim to provide a higher-fidelity atmospheric radiation transport model which increases accuracy while maintaining efficiency. To that end, this paper describes the development of an efficient 3-D-capable radiation code that can be easily integrated into cloud resolving models as an alternative to the resident 1-D model. Applications to test cases from the Intercomparison of 3-D Radiation Codes (I3RC) protocol are shown

  5. Higher Dimensional Charged Black Hole Solutions in f(R Gravitational Theories

    Directory of Open Access Journals (Sweden)

    G. G. L. Nashed

    2018-01-01

    Full Text Available We present, without any assumption, a class of electric and magnetic flat horizon D-dimension solutions for a specific class of f(R=R+αR2, all of which behave asymptotically as Anti-de-Sitter spacetime. The most interesting property of these solutions is that the higher dimensions black holes, D>4, always have constant electric and magnetic charges in contrast to what is known in the literature. For D=4, we show that the magnetic field participates in the metric on equal foot as the electric field participates. Another interesting result is the fact that the Cauchy horizon is not identical with the event horizon. We use Komar formula to calculate the conserved quantities. We study the singularities and calculate the Hawking temperature and entropy and show that the first law of thermodynamics is always satisfied.

  6. Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Bachant, Peter; Ferrara, Giovanni; Ferrari, Lorenzo

    2017-01-01

    Highlights: • 2D CFD simulations compared to experimental tow-tank data on the RVAT test model. • The use of CFD with open-field-like boundaries is suggested. • A reliable estimation of the turbine performance and the wake structure is obtained. • The transitional turbulence model is recommended for low TSRs and/or small rotors. • The wake analysis identified the main vortical structures generated by the blades. - Abstract: Thanks to the continuous improvement of calculation resources, computational fluid dynamics (CFD) is expected to provide in the next few years a cost-effective and accurate tool to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines. This rotor type is in fact increasingly welcome by the wind energy community, especially in case of small size applications and/or non-conventional installation sites. In the present study, unique tow tank experimental data on the performance curve and the near-wake structure of a Darrieus rotor were used as a benchmark to validate the effectiveness of different CFD approaches. In particular, a dedicated analysis is provided to assess the suitability, the effectiveness and the future prospects of simplified two-dimensional (2D) simulations. The correct definition of the computational domain, the selection of the turbulence models and the correction of simulated data for the parasitic torque components are discussed in this study. Results clearly show that, (only) if properly set, two-dimensional CFD simulations are able to provide - with a reasonable computational cost - an accurate estimation of the turbine performance and also quite reliably describe the attended flow-field around the rotor and its wake.

  7. Experimental investigation of new low-dimensional spin systems in vanadium oxides

    International Nuclear Information System (INIS)

    Kaul, E.E.

    2005-01-01

    In this dissertation we reported our experimental investigation of the magnetic properties of nine low-dimensional vanadium compounds. Two of these materials are completely new (Pb 2 V 5 O 12 and Pb 2 VO(PO 4 ) 2 ) and were found during our search for new low-dimensional vanadium oxides. Among the other seven vanadium compounds studied, three were physically investigated for the first time (Sr 2 VO(PO 4 ) 2 , BaZnVO(PO 4 ) 2 and SrZnVO(PO 4 ) 2 ). Two had hitherto only preliminary, and wrongly interpreted, susceptibility measurements reported in the literature (Sr 2 V 3 O 9 and Ba 2 V 3 O 9 ) while the remaining two (Li 2 VOSiO 4 and Li 2 VOGeO 4 ) were previously investigated in some detail but the interpretation of the data was controversial. We investigated the magnetic properties of these materials by means of magnetic susceptibility and specific heat (C p (T)) measurements (as well as single crystal ESR measurements in the case of Sr 2 V 3 O 9 ). We synthesized the samples necessary for our physical studies. That required a search of the optimal synthesis conditions for obtaining pure, high quality, polycrystalline samples. Single crystals of Sr 2 V 3 O 9 and Pb 2 VO(PO 4 ) 2 were also successfully grown. Pb 2 VO(PO 4 ) 2 , BaZnVO(PO 4 ) 2 , SrZnVO(PO 4 ) 2 , Li 2 VOSiO 4 and Li 2 VOGeO 4 were found to be experimental examples of frustrated square-lattice systems which are described by theJ 1 -J 2 model. We found that Li 2 VOSiO 4 and Li 2 VOGeO 4 posses a weakly frustrated antiferromagnetic square lattice while Pb 2 VO(PO 4 ) 2 , BaZnVO(PO 4 ) 2 and SrZnVO(PO 4 ) 2 form a more strongly frustrated ferromagnetic square lattice. Pb 2 V 5 O 12 is structurally and compositionally related to the two dimensional A 2+ V 4+ n O 2n+1 vanadates. Its structure consists of layers formed by edge- and corner-shared square VO 5 pyramids. The basic structural units are plaquettes consisting of six corner-shared pyramids pointing in the same direction, which form a spin

  8. The phase structure of higher-dimensional black rings and black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.; RodrIguez, Maria J.

    2007-01-01

    We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D ≥ 5 by matching the near-horizon solution for a bent boosted black string, to a linearized gravity solution away from the horizon. The rotating black ring solution has a regular horizon of topology S 1 x S D-3 and incorporates the balancing condition of the ring as a zero-tension condition. For D = 5 our method reproduces the thin ring limit of the exact black ring solution. For D ≥ 6 we show that the black ring has a higher entropy than the Myers-Perry black hole in the ultra-spinning regime. By exploiting the correspondence between ultra-spinning black holes and black membranes on a two-torus, we take steps towards qualitatively completing the phase diagram of rotating blackfolds with a single angular momentum. We are led to propose a connection between MP black holes and black rings, and between MP black holes and black Saturns, through merger transitions involving two kinds of 'pinched' black holes. More generally, the analogy suggests an infinite number of pinched black holes of spherical topology leading to a complicated pattern of connections and mergers between phases

  9. Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry

    International Nuclear Information System (INIS)

    Afshar, Hamid; Creutzig, Thomas; Grumiller, Daniel; Hikida, Yasuaki; Rønne, Peter B.

    2014-01-01

    We investigate whether there are unitary families of W-algebras with spin one fields in the natural example of the Feigin-Semikhatov W_n"("2")-algebra. This algebra is conjecturally a quantum Hamiltonian reduction corresponding to a non-principal nilpotent element. We conjecture that this algebra admits a unitary real form for even n. Our main result is that this conjecture is consistent with the known part of the operator product algebra, and especially it is true for n=2 and n=4. Moreover, we find certain ranges of allowed levels where a positive definite inner product is possible. We also find a unitary conformal field theory for every even n at the special level k+n=(n+1)/(n−1). At these points, the W_n"("2")-algebra is nothing but a compactified free boson. This family of W-algebras admits an ’t Hooft limit. Further, in the case of n=4, we reproduce the algebra from the higher spin gravity point of view. In general, gravity computations allow us to reproduce some leading coefficients of the operator product.

  10. Fundamental and higher two-dimensional resonance modes of an Alpine valley

    Science.gov (United States)

    Ermert, Laura; Poggi, Valerio; Burjánek, Jan; Fäh, Donat

    2014-08-01

    We investigated the sequence of 2-D resonance modes of the sediment fill of Rhône Valley, Southern Swiss Alps, a strongly overdeepened, glacially carved basin with a sediment fill reaching a thickness of up to 900 m. From synchronous array recordings of ambient vibrations at six locations between Martigny and Sion we were able to identify several resonance modes, in particular, previously unmeasured higher modes. Data processing was performed with frequency domain decomposition of the cross-spectral density matrices of the recordings and with time-frequency dependent polarization analysis. 2-D finite element modal analysis was performed to support the interpretation of processing results and to investigate mode shapes at depth. In addition, several models of realistic bedrock geometries and velocity structures could be used to qualitatively assess the sensitivity of mode shape and particle motion dip angle to subsurface properties. The variability of modal characteristics due to subsurface properties makes an interpretation of the modes purely from surface observations challenging. We conclude that while a wealth of information on subsurface structure is contained in the modal characteristics, a careful strategy for their interpretation is needed to retrieve this information.

  11. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    Science.gov (United States)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  12. Evidence of low dimensional chaos in renal blood flow control in genetic and experimental hypertension

    Science.gov (United States)

    Yip, K.-P.; Marsh, D. J.; Holstein-Rathlou, N.-H.

    1995-01-01

    We applied a surrogate data technique to test for nonlinear structure in spontaneous fluctuations of hydrostatic pressure in renal tubules of hypertensive rats. Tubular pressure oscillates at 0.03-0.05 Hz in animals with normal blood pressure, but the fluctuations become irregular with chronic hypertension. Using time series from rats with hypertension we produced surrogate data sets to test whether they represent linearly correlated noise or ‘static’ nonlinear transforms of a linear stochastic process. The correlation dimension and the forecasting error were used as discriminating statistics to compare surrogate with experimental data. The results show that the original experimental time series can be distinguished from both linearly and static nonlinearly correlated noise, indicating that the nonlinear behavior is due to the intrinsic dynamics of the system. Together with other evidence this strongly suggests that a low dimensional chaotic attractor governs renal hemodynamics in hypertension. This appears to be the first demonstration of a transition to chaotic dynamics in an integrated physiological control system occurring in association with a pathological condition.

  13. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds

    Science.gov (United States)

    Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola

    2018-02-01

    Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.

  14. E6 unification model building. III. Clebsch-Gordan coefficients in E6 tensor products of the 27 with higher dimensional representations

    International Nuclear Information System (INIS)

    Anderson, Gregory W.; Blazek, Tomas

    2005-01-01

    E 6 is an attractive group for unification model building. However, the complexity of a rank 6 group makes it nontrivial to write down the structure of higher dimensional operators in an E 6 theory in terms of the states labeled by quantum numbers of the standard model gauge group. In this paper, we show the results of our computation of the Clebsch-Gordan coefficients for the products of the 27 with irreducible representations of higher dimensionality: 78, 351, 351 ' , 351, and 351 ' . Application of these results to E 6 model building involving higher dimensional operators is straightforward

  15. Experimental Demonstration of Higher Precision Weak-Value-Based Metrology Using Power Recycling

    Science.gov (United States)

    Wang, Yi-Tao; Tang, Jian-Shun; Hu, Gang; Wang, Jian; Yu, Shang; Zhou, Zong-Quan; Cheng, Ze-Di; Xu, Jin-Shi; Fang, Sen-Zhi; Wu, Qing-Lin; Li, Chuan-Feng; Guo, Guang-Can

    2016-12-01

    The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology. Here we experimentally realize the power-recycled interferometric weak-value-based beam-deflection measurement and obtain the amplitude of the detected signal and white noise by discrete Fourier transform. Our results show that the detected signal can be strengthened by power recycling, and the power-recycled weak-value-based signal-to-noise ratio can surpass the upper limit of the classical scheme, corresponding to the shot-noise limit. This work sheds light on higher precision metrology and explores the real advantage of the weak-value-based metrology over classical metrology.

  16. Higher levels of spontaneous breathing reduce lung injury in experimental moderate acute respiratory distress syndrome.

    Science.gov (United States)

    Carvalho, Nadja C; Güldner, Andreas; Beda, Alessandro; Rentzsch, Ines; Uhlig, Christopher; Dittrich, Susanne; Spieth, Peter M; Wiedemann, Bärbel; Kasper, Michael; Koch, Thea; Richter, Torsten; Rocco, Patricia R; Pelosi, Paolo; de Abreu, Marcelo Gama

    2014-11-01

    To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. Multiple-arm randomized experimental study. University hospital research facility. Thirty-six juvenile pigs. Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p ventilation more than 0-30% and more than 30-60% showed a less consistent pattern of improvement in lung function, inflammation, and damage compared with biphasic positive airway

  17. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    Science.gov (United States)

    Saxena, Priyank

    In order to enhance the fuel efficiency of an engine and to control pollutant formation, an improved understanding of the combustion chemistry of the fuels at a fundamental level is paramount. This knowledge can be gained by developing detailed reaction mechanisms of the fuels for various combustion processes and by studying combustion analytically employing reduced-chemistry descriptions. There is a need for small detailed reaction mechanisms for alkane and alcohol fuels with reduced uncertainties in their combustion chemistry that are computationally cheaper in multidimensional CFD calculations. Detailed mechanisms are the starting points in identifying reduced-chemistry descriptions of combustion processes to study problems analytically. This research includes numerical, experimental and analytical studies. The first part of the dissertation consists of numerical and experimental studies of ethanol flames. Although ethanol has gained popularity as a possible low-pollution source of renewable energy, significant uncertainties remain in its combustion chemistry. To begin to address ethanol combustion, first a relatively small detailed reaction mechanism, commonly known as the San Diego Mech, is developed for the combustion of hydrogen, carbon monoxide, formaldehyde, methane, methanol, ethane, ethylene, and acetylene, in air or oxygen-inert mixtures. This mechanism is tested for autoignition, premixed-flame burning velocities, and structures and extinction of diffusion flames and of partially premixed flames of many of these fuels. The reduction in uncertainties in the combustion chemistry can best be achieved by consistently updating a reaction mechanism with reaction rate data for the elementary steps based on newer studies in literature and by testing it against as many experimental conditions as available. The results of such a testing for abovementioned fuels are reported here along with the modifications of reaction-rate parameters of the most important

  18. Sufficient condition for existence of solutions for higher-order resonance boundary value problem with one-dimensional p-Laplacian

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2007-10-01

    Full Text Available By using coincidence degree theory of Mawhin, existence results for some higher order resonance multipoint boundary value problems with one dimensional p-Laplacian operator are obtained.

  19. Fermion tunnels of higher-dimensional anti-de Sitter Schwarzschild black hole and its corrected entropy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kai, E-mail: lk314159@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China); Yang Shuzheng, E-mail: szyangcwnu@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)

    2009-10-12

    Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the 'tortoise' coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r-t) sector is important to our research. Because we only need to study the (r-t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.

  20. Confronting Theoretical Predictions With Experimental Data; Fitting Strategy For Multi-Dimensional Distributions

    Directory of Open Access Journals (Sweden)

    Tomasz Przedziński

    2015-01-01

    Full Text Available After developing a Resonance Chiral Lagrangian (RχL model to describe hadronic τ lepton decays [18], the model was confronted with experimental data. This was accomplished using a fitting framework which was developed to take into account the complexity of the model and to ensure the numerical stability for the algorithms used in the fitting. Since the model used in the fit contained 15 parameters and there were only three 1-dimensional distributions available, we could expect multiple local minima or even whole regions of equal potential to appear. Our methods had to thoroughly explore the whole parameter space and ensure, as well as possible, that the result is a global minimum. This paper is focused on the technical aspects of the fitting strategy used. The first approach was based on re-weighting algorithm published in [17] and produced results in around two weeks. Later approach, with improved theoretical model and simple parallelization algorithm based on Inter-Process Communication (IPC methods of UNIX system, reduced computation time down to 2-3 days. Additional approximations were introduced to the model decreasing time to obtain the preliminary results down to 8 hours. This allowed to better validate the results leading to a more robust analysis published in [12].

  1. Experimental Observation of the Aubry Transition in Two-Dimensional Colloidal Monolayers

    Science.gov (United States)

    Brazda, T.; Silva, A.; Manini, N.; Vanossi, A.; Guerra, R.; Tosatti, E.; Bechinger, C.

    2018-01-01

    The possibility to achieve entirely frictionless, i.e., superlubric, sliding between solids holds enormous potential for the operation of mechanical devices. At small length scales, where mechanical contacts are well defined, Aubry predicted a transition from a superlubric to a pinned state when the mechanical load is increased. Evidence for this intriguing Aubry transition (AT), which should occur in one dimension (1D) and at zero temperature, was recently obtained in few-atom chains. Here, we experimentally and theoretically demonstrate the occurrence of the AT in an extended two-dimensional (2D) system at room temperature using a colloidal monolayer on an optical lattice. Unlike the continuous nature of the AT in 1D, we observe a first-order transition in 2D leading to a coexistence regime of pinned and unpinned areas. Our data demonstrate that the original concept of Aubry not only survives in 2D but is relevant for the design of nanoscopic machines and devices at ambient temperature.

  2. Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    King, J. D., E-mail: kingjd@fusion.gat.com [Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830-8050 (United States); General Atomics, P.O. Box 85608, San Diego, California 92816-5608 (United States); Strait, E. J.; Ferraro, N. M.; Lanctot, M. J.; Paz-Soldan, C.; Turnbull, A. D. [General Atomics, P.O. Box 85608, San Diego, California 92816-5608 (United States); Lazerson, S. A.; Logan, N. C.; Park, J.-K.; Nazikian, R.; Okabayashi, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Haskey, S. R. [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australia National University, Canberra, Australian Capital Territory 0200 (Australia); Hanson, J. M. [Columbia University, 2960 Broadway, New York, New York 10027 (United States); Liu, Yueqiang [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shiraki, D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States)

    2015-07-15

    DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. These tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. Scans of the applied poloidal spectrum and edge safety factor confirm that low-pressure, n = 1 non-axisymmetric tokamak equilibria are determined by a single, dominant, stable eigenmode. However, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.

  3. Quantum Statistical Entropy of Non-extreme and Nearly Extreme Black Holes in Higher-Dimensional Space-Time

    Institute of Scientific and Technical Information of China (English)

    XU Dian-Yan

    2003-01-01

    The free energy and entropy of Reissner-Nordstrom black holes in higher-dimensional space-time are calculated by the quantum statistic method with a brick wall model. The space-time of the black holes is divided into three regions: region 1, (r > r0); region 2, (r0 > r > n); and region 3, (T-J > r > 0), where r0 is the radius of the outer event horizon, and r, is the radius of the inner event horizon. Detailed calculation shows that the entropy contributed by region 2 is zero, the entropy contributed by region 1 is positive and proportional to the outer event horizon area, the entropy contributed by region 3 is negative and proportional to the inner event horizon area. The total entropy contributed by all the three regions is positive and proportional to the area difference between the outer and inner event horizons. As rt approaches r0 in the nearly extreme case, the total quantum statistical entropy approaches zero.

  4. The IR obstruction to UV completion for Dante’s Inferno model with higher-dimensional gauge theory origin

    Energy Technology Data Exchange (ETDEWEB)

    Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India); Koyama, Yoji [National Center for Theoretical Sciences, National Tsing-Hua University,Hsinchu 30013, Taiwan R.O.C. (China)

    2016-06-21

    We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.

  5. The IR obstruction to UV completion for Dante’s Inferno model with higher-dimensional gauge theory origin

    International Nuclear Information System (INIS)

    Furuuchi, Kazuyuki; Koyama, Yoji

    2016-01-01

    We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.

  6. Experimental investigations of higher-order springing and whipping-WILS project

    Directory of Open Access Journals (Sweden)

    Hong Sa Young

    2014-12-01

    Full Text Available Springing and whipping are becoming increasingly important considerations in ship design as container ships increase in size. In this study, the springing and whipping characteristics of a large container ship were investigated through a series of systematic model tests in waves. A multi-segmented hull model with a backbone was adopted for measurement of springing and whipping signals. A conversion method for extracting torsion springing and whipping is described in this paper for the case of an open-section backbone. Higher-order springing, higher-mode torsion responses, and the effects of linear and nonlinear springing in irregular waves are highlighted in the discussion.

  7. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    International Nuclear Information System (INIS)

    Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei

    2009-01-01

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 μm pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of ±20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.

  8. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States); Siemens AG Healthcare, Henkestrasse 127, D-91052 Erlangen (Germany); Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)

    2009-01-15

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 {mu}m pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of {+-}20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.

  9. Experimental observation of a multi-dimensional mixing behavior of steam-water flow in the MIDAS test facility

    International Nuclear Information System (INIS)

    Kweon, T. S.; Yun, B. J.; Ah, D. J.; Ju, I. C.; Song, C. H.; Park, J. K.

    2001-01-01

    Multi-dimensional thermal-hydraulic hehavior, such as ECC (Emergency Core Cooling) bypass, ECC penetration, steam-water condensation and accumulated water level, in an annular downcomer of a PWR (Pressurized Water Reactor) reactor vessel with a DVI(Direct Vessel Injection) injection mode is presented based on the experimental observations in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water facility. From the steady-state tests to similate a late reflood phase of LBLOCA (Large Break Loss-of-Coolant Accidents), major thermal-hydraulic phenomena in the downcomer are quantified under a wide range of test conditions. Especially, isothermal lines show well multi-dimensional phenomena of phase interaction between steam and water in the annulus downcomer. Overall test results show that multi-dimensional thermal-hydraulic behaviors occur in the downcomer annulus region as expected. The MIDAS test facility is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of a 1400 MWe PWR type of nuclear reactor, with focusing on understanding multi-dimensional thermal-hydraulic phenomena in annulus downcomer with various types of safety injection location during refill or reflood phase of a LBLOCA in PWR

  10. Experimental study on the potential of higher octane number fuels for low load partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; van der Waart, K.; Somers, B.; de Goey, P.

    2017-01-01

    The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30

  11. Experimental and Modeling Studies on the Synthesis and Properties of Higher Fatty Esters of Corn Starch

    NARCIS (Netherlands)

    Junistia, Laura; Sugih, Asaf K.; Manurung, Robert; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    This paper describes a systematic study on the synthesis of higher fatty esters of corn starch (starch laurate and starch stearate) by using the corresponding vinyl esters. The reactions were carried out in DMSO using basic catalysts (Na(2)HPO(4), K(2)CO(3), and Na-acetate). The effect of the

  12. Experimental demonstrations in audible frequency range of band gap tunability and negative refraction in two-dimensional sonic crystal.

    Science.gov (United States)

    Pichard, Hélène; Richoux, Olivier; Groby, Jean-Philippe

    2012-10-01

    The propagation of audible acoustic waves in two-dimensional square lattice tunable sonic crystals (SC) made of square cross-section infinitely rigid rods embedded in air is investigated experimentally. The band structure is calculated with the plane wave expansion (PWE) method and compared with experimental measurements carried out on a finite extend structure of 200 cm width, 70 cm depth and 15 cm height. The structure is made of square inclusions of 5 cm side with a periodicity of L = 7.5 cm placed inbetween two rigid plates. The existence of tunable complete band gaps in the audible frequency range is demonstrated experimentally by rotating the scatterers around their vertical axis. Negative refraction is then analyzed by use of the anisotropy of the equi-frequency surface (EFS) in the first band and of a finite difference time domain (FDTD) method. Experimental results finally show negative refraction in the audible frequency range.

  13. An experimental study of the dynamics of saltation within a three-dimensional framework

    Science.gov (United States)

    O'Brien, Patrick; McKenna Neuman, Cheryl

    2018-04-01

    Our understanding of aeolian sand transport via saltation lacks an experimental determination of the particle borne kinetic energy partitioned into 3 dimensions relative to the mean flow direction. This in turn creates a disconnect between global wind erosion estimates and particle scale processes. The present study seeks to address this deficiency through an extended analysis of data obtained from a series of particle tracking velocimetry experiments conducted in a boundary layer wind tunnel under transport limited conditions. Particle image diameter, as it appeared within each camera frame, was extensively calibrated against that obtained by sieving, and the ballistic trajectories detected were disassembled into discrete particle image pairs whose distribution and dynamics were then examined in vertical profile with sub-millimeter resolution. The vertical profile of the wind aligned particle transport rate was found to follow a power relation within 10 mm of the bed surface. The exponent of this power function changes with increasing spanwise angle (θ) to produce a family of curves representing particle diffusion in 3 dimensions. Particle mass was found to increase with θ, and the distribution of the total particle kinetic energy was found to be very similar to that for the particle concentration. The spanwise component of the kinetic energy of a saltating particle peaks at θ = 45°, with the stream-aligned component an order of magnitude higher in value. Low energy, splashed particles near the bed account for a majority of the kinetic energy distributed throughout the particle cloud, regardless of their orientation.

  14. Experimental generation and application of the superposition of higher-order Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2009-07-01

    Full Text Available Academy of Sciences of Belarus 4 School of Physics, University of Stellenbosch Presented at the 2009 South African Institute of Physics Annual Conference University of KwaZulu-Natal Durban, South Africa 6-10 July 2009 Page 2 © CSIR 2008... www.csir.co.za Generation of Bessel Fields: • METHOD 1: Ring Slit Aperture • METHOD 2: Axicon Adaptation of method 1 to produce superpositions of higher-order Bessel beams: J. Durnin, J.J. Miceli and J.H. Eberly, Phys. Rev. Lett. 58 1499...

  15. An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk; Kilicaslan, Ibrahim; Canakci, Mustafa; Ozsezen, Necati [Kocaeli Univ., Dept. of Mechanical Education, Izmit (Turkey)

    2005-06-01

    In this study, the effect of using higher-octane gasoline than that of engine requirement on the performance and exhaust emissions was experimentally studied. The test engine chosen has a fuel system with carburettor because 60% of the vehicles in Turkey are equipped with the carburettor. The engine, which required 91-RON (Research Octane Number) gasoline, was tested using 95-RON and 91-RON. Results show that using octane ratings higher than the requirement of an engine not only decreases engine performance but also increases exhaust emissions. (Author)

  16. Experimental Evidence for Improved Neuroimaging Interpretation Using Three-Dimensional Graphic Models

    Science.gov (United States)

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more…

  17. Experimental investigation of three-dimensional flow instabilities in a rotating lid-driven cavity

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I.; Mikkelsen, Robert Flemming

    2006-01-01

    liquid. For the first time the onset of three-dimensionality and transition are analysed by combining the high spatial resolution of Particle Image Velocimetry (PIV) and the temporal accuracy of Laser Doppler Anemometry (LDA). A detailed mapping of the transition from steady and axisymmetric flow...

  18. Focus: Two-dimensional electron-electron double resonance and molecular motions: The challenge of higher frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H., E-mail: jhf3@cornell.edu [Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853 (United States)

    2015-06-07

    The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane

  19. Focus: Two-dimensional electron-electron double resonance and molecular motions: The challenge of higher frequencies

    International Nuclear Information System (INIS)

    Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H.

    2015-01-01

    The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane

  20. Phase transitions between lower and higher level management learning in times of crisis: an experimental study based on synergetics.

    Science.gov (United States)

    Liening, Andreas; Strunk, Guido; Mittelstadt, Ewald

    2013-10-01

    Much has been written about the differences between single- and double-loop learning, or more general between lower level and higher level learning. Especially in times of a fundamental crisis, a transition between lower and higher level learning would be an appropriate reaction to a challenge coming entirely out of the dark. However, so far there is no quantitative method to monitor such a transition. Therefore we introduce theory and methods of synergetics and present results from an experimental study based on the simulation of a crisis within a business simulation game. Hypothesized critical fluctuations - as a marker for so-called phase transitions - have been assessed with permutation entropy. Results show evidence for a phase transition during the crisis, which can be interpreted as a transition between lower and higher level learning.

  1. Bispectral experimental estimation of the nonlinear energy transfer in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Manz, P.; Ramisch, M.; Stroth, U.

    2008-01-01

    Experimental density and potential fluctuation data from a 2D probe array have been analysed to study the turbulent cascade in a toroidally confined magnetized plasma. The bispectral analysis technique used is from Ritz et al ( 1989 Phys. Fluids B 1 153) and Kim et al ( 1996 Phys. Plasmas 3 3998...... scales. This is the first experimental evidence for the dual turbulent cascade in a magnetized plasma....

  2. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state

    Energy Technology Data Exchange (ETDEWEB)

    Baskan, O.; Clercx, H. J. H [Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Speetjens, M. F. M. [Energy Technology Laboratory, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Metcalfe, G. [Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria 3190 (Australia); Swinburne University of Technology, Department of Mechanical Engineering, Hawthorn VIC 3122 (Australia)

    2015-10-15

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  3. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state.

    Science.gov (United States)

    Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H

    2015-10-01

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  4. Experimental Investigation on Low-velocity Impact and Compression After Impact Properties of Three-dimensional Five-directional Braided Composites

    Directory of Open Access Journals (Sweden)

    YAN Shi

    2017-12-01

    Full Text Available The low-velocity impact and compression after impact (CAI properties of three-dimensional (3D five-directional carbon fiber/epoxy resin braided composites were experimentally investigated. Specimens prepared with different braiding angles were tested at the same impact energy level. Residual post-impact mechanical properties of the different configurations were characterized by compression after impact tests. Results show that the specimens with bigger braiding angle sustain higher peak loads, and smaller impact damage area, mainly attributes to a more compact space construction. The CAI strength and damage mechanism are found to be mainly dependent on the axial support of the braiding fiber tows. With the increase of braiding angle, the CAI strength decreases, and the damage mode of the composites is changed from transverse fracture to shear failure.

  5. Experimental investigations of superconductivity in quasi-two-dimensional epitaxial copper oxide superlattices and trilayers

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Norton, D.P.

    1993-01-01

    Epitaxial trilayer and superlattice structures grown by pulsed laser ablation have been used to study the superconducting-to-normal transition of ultrathin (one and two c-axis unit cells) YBa 2 Cu 3 O 7-x layers. The normalized flux-flow resistances for several epitaxial structures containing two-cell-thick YBa 2 Cu 3 O 7-x films collapse onto the ''universal'' curve of the Ginzburg-Landau Coulomb Gas (GLCG) model. Analysis of normalized resistance data for a series of superlattices containing one-cell-thick YBa 2 Cu 3 O 7-x layers also is consistent with the behavior expected for quasi-two-dimensional layers in a highly anisotropic, layered three-dimensional superconductor. Current-voltage measurements for one of the trilayer structures also are consistent with the normalized resistance data, and with the GLCG model. Scanning tunneling microscopy, transmission electron microscopy, and electrical transport studies show that growth-related steps in ultrathin YBa 2 Cu 3 O 7-x layers affect electrical continuity over macroscopic distances, acting as weak links. However , the perturbation of the superconducting order parameter can be minimized by utilizing hole-doped buffer and cap layers, on both sides of the YBa 2 Cu 3 O 7-x layer, in trilayers and superlattices. These results demonstrate the usefulness of epitaxial trilayer and superlattice structures as tools for systematic, fundamental studies of high-temperature superconductivity

  6. Experimental Investigation of the Peak Shear Strength Criterion Based on Three-Dimensional Surface Description

    Science.gov (United States)

    Liu, Quansheng; Tian, Yongchao; Ji, Peiqi; Ma, Hao

    2018-04-01

    The three-dimensional (3D) morphology of joints is enormously important for the shear mechanical properties of rock. In this study, three-dimensional morphology scanning tests and direct shear tests are conducted to establish a new peak shear strength criterion. The test results show that (1) surface morphology and normal stress exert significant effects on peak shear strength and distribution of the damage area. (2) The damage area is located at the steepest zone facing the shear direction; as the normal stress increases, it extends from the steepest zone toward a less steep zone. Via mechanical analysis, a new formula for the apparent dip angle is developed. The influence of the apparent dip angle and the average joint height on the potential contact area is discussed, respectively. A new peak shear strength criterion, mainly applicable to specimens under compression, is established by using new roughness parameters and taking the effects of normal stress and the rock mechanical properties into account. A comparison of this newly established model with the JRC-JCS model and the Grasselli's model shows that the new one could apparently improve the fitting effect. Compared with earlier models, the new model is simpler and more precise. All the parameters in the new model have clear physical meanings and can be directly determined from the scanned data. In addition, the indexes used in the new model are more rational.

  7. Modeling the basin of attraction as a two-dimensional manifold from experimental data: Applications to balance in humans

    Science.gov (United States)

    Zakynthinaki, Maria S.; Stirling, James R.; Cordente Martínez, Carlos A.; Díaz de Durana, Alfonso López; Quintana, Manuel Sillero; Romo, Gabriel Rodríguez; Molinuevo, Javier Sampedro

    2010-03-01

    We present a method of modeling the basin of attraction as a three-dimensional function describing a two-dimensional manifold on which the dynamics of the system evolves from experimental time series data. Our method is based on the density of the data set and uses numerical optimization and data modeling tools. We also show how to obtain analytic curves that describe both the contours and the boundary of the basin. Our method is applied to the problem of regaining balance after perturbation from quiet vertical stance using data of an elite athlete. Our method goes beyond the statistical description of the experimental data, providing a function that describes the shape of the basin of attraction. To test its robustness, our method has also been applied to two different data sets of a second subject and no significant differences were found between the contours of the calculated basin of attraction for the different data sets. The proposed method has many uses in a wide variety of areas, not just human balance for which there are many applications in medicine, rehabilitation, and sport.

  8. Experimental validation for combustion analysis of GOTHIC 6.1b code in 2-dimensional premixed combustion experiments

    International Nuclear Information System (INIS)

    Lee, J. Y.; Lee, J. J.; Park, K. C.

    2003-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. In the experimental results, we could confirm the propagation characteristics of hydrogen flame such as buoyancy effect, flame front shape etc.. The combustion time of the tests was about 0.1 sec.. In the GOTHIC analyses results, the GOTHIC code could predict the overall hydrogen flame propagation characteristics but the buoyancy effect and flame shape did not compare well with the experimental results. Especially, in case of the flame propagate to the dead-end, GOTHIC predicted the flame did not affected by the flow and this cause quite different results in flame propagation from experimental results. Moreover the combustion time of the analyses was about 1 sec. which is ten times longer than the experimental result. To obtain more reasonable analysis results, it is necessary that combustion model parameters in GOTHIC code apply appropriately and hydrogen flame characteristics be reflected in solving governing equations

  9. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)

    2017-05-15

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)

  10. Experimental evaluation of a perspective tunnel display for three-dimensional helicopter approaches

    Science.gov (United States)

    Grunwald, A. J.; Robertson, J. B.; Hatfield, J. J.

    1981-01-01

    A computer-generated perspective tunnel display for a steep and strongly curved three-dimensional helicopter approach is studied. The necessary control variables for following a curved trajectory are analyzed, the effectiveness of superimposed predictor symbology is investigated, and a suitable predictor law is formulated. The theoretical considerations are validated by an extensive fixed-base simulator program. The tunnel display with a superimposed predictor symbol is shown to outperform conventional-type displays in its abilities to follow a curved trajectory in the presence of gust disturbances, to enter the trajectory from an unknown position outside this trajectory, as well as to monitor automatic approaches. The feasibility of the tunnel display for operation in actual flight has been demonstrated in an exploratory flight test.

  11. Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: In-vitro experimental and three-dimensional finite element analyses.

    Science.gov (United States)

    Wu, Aaron Yu-Jen; Hsu, Jui-Ting; Chee, Winston; Lin, Yun-Te; Fuh, Lih-Jyh; Huang, Heng-Li

    2016-09-01

    Small-diameter dental implants are associated with a higher risk of implant failure. This study used both three-dimensional finite-element (FE) simulations and in-vitro experimental tests to analyze the stresses and strains in both the implant and the surrounding bone when using one-piece (NobelDirect) and two-piece (NobelReplace) small-diameter implants, with the aim of understanding the underlying biomechanical mechanisms. Six experimental artificial jawbone models and two FE models were prepared for one-piece and two-piece 3.5-mm diameter implants. Rosette strain gauges were used for in-vitro tests, with peak values of the principal bone strain recorded with a data acquisition system. Implant stability as quantified by Periotest values (PTV) were also recorded for both types of implants. Experimental data were analyzed statistically using Wilcoxon's rank-sum test. In FE simulations, the peak value and distribution of von-Mises stresses in the implant and bone were selected for evaluation. In in-vitro tests, the peak bone strain was 42% lower for two-piece implants than for one-piece implants. The PTV was slightly lower for one-piece implants (PTV = -6) than for two-piece implants (PTV = -5). In FE simulations, the stresses in the bone and implant were about 23% higher and 12% lower, respectively, for one-piece implants than those for two-piece implants. Due to the higher peri-implant bone stresses and strains, one-piece implants (NobelDirect) might be not suitable for use as small-diameter implants. Copyright © 2016. Published by Elsevier B.V.

  12. On the de Sitter and Nariai solutions in general relativity and their extension in higher dimensional space-time

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Ishihara, Hideki.

    1983-01-01

    Various geometrical properties of Nariai's less-familiar solution of the vacuum Einstein equations R sub( mu nu ) = lambda g sub( mu nu ) is f irst summarized in comparison with de Sitter's well-known solution. Next an extension of both solutions is performed in a six-dimensional space on the supposition that such an extension will in future become useful to elucidate more closely the creation of particles in an inflationary stage of the big-bang universe. For preparation, the behavior of a massive scalar field in the extended space-time is studied in a classical level. (author)

  13. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function.

    Science.gov (United States)

    Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise

    2014-07-01

    The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.

  14. On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Bengt E.W. [Fundamental Physics, Chalmers University of Technology,SE-412 96 Göteborg (Sweden)

    2016-08-24

    We propose field equations for the conformal higher spin system in three dimensions coupled to a conformal scalar field with a sixth order potential. Both the higher spin equation and the unfolded equation for the scalar field have source terms and are based on a conformal higher spin algebra which we treat as an expansion in multi-commutators. Explicit expressions for the source terms are suggested and subjected to some simple tests. We also discuss a cascading relation between the Chern-Simons action for the higher spin gauge theory and an action containing a term for each spin that generalizes the spin 2 Chern-Simons action in terms of the spin connection expressed in terms of the frame field. This cascading property is demonstrated in the free theory for spin 3 but should work also in the complete higher spin theory.

  15. An Experimental Study on Solute Transport in One-Dimensional Clay Soil Columns

    Directory of Open Access Journals (Sweden)

    Muhammad Zaheer

    2017-01-01

    Full Text Available Solute transport in low-permeability media such as clay has not been studied carefully up to present, and we are often unclear what the proper governing law is for describing the transport process in such media. In this study, we composed and analyzed the breakthrough curve (BTC data and the development of leaching in one-dimensional solute transport experiments in low-permeability homogeneous and saturated media at small scale, to identify key parameters controlling the transport process. Sodium chloride (NaCl was chosen to be the tracer. A number of tracer tests were conducted to inspect the transport process under different conditions. The observed velocity-time behavior for different columns indicated the decline of soil permeability when switching from tracer introducing to tracer flushing. The modeling approaches considered were the Advection-Dispersion Equation (ADE, Two-Region Model (TRM, Continuous Time Random Walk (CTRW, and Fractional Advection-Dispersion Equation (FADE. It was found that all the models can fit the transport process very well; however, ADE and TRM were somewhat unable to characterize the transport behavior in leaching. The CTRW and FADE models were better in capturing the full evaluation of tracer-breakthrough curve and late-time tailing in leaching.

  16. A Computational/Experimental Platform for Investigating Three-Dimensional Puzzle Solving of Comminuted Articular Fractures

    Science.gov (United States)

    Thomas, Thaddeus P.; Anderson, Donald D.; Willis, Andrew R.; Liu, Pengcheng; Frank, Matthew C.; Marsh, J. Lawrence; Brown, Thomas D.

    2011-01-01

    Reconstructing highly comminuted articular fractures poses a difficult surgical challenge, akin to solving a complicated three-dimensional (3D) puzzle. Pre-operative planning using CT is critically important, given the desirability of less invasive surgical approaches. The goal of this work is to advance 3D puzzle solving methods toward use as a pre-operative tool for reconstructing these complex fractures. Methodology for generating typical fragmentation/dispersal patterns was developed. Five identical replicas of human distal tibia anatomy, were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate), and were fractured using an instrumented drop tower. Pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native (non-fracture) surfaces to a pre-fracture template. The tibias were precisely reconstructed with alignment accuracies ranging from 0.03-0.4mm. This novel technology has potential to significantly enhance surgical techniques for reconstructing comminuted intra-articular fractures, as illustrated for a representative clinical case. PMID:20924863

  17. Experimental investigation of flow over two-dimensional multiple hill models.

    Science.gov (United States)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke

    2017-12-31

    The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Experimental and biological variation of three-dimensional transcranial Doppler measurements

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg

    1993-01-01

    A new transcranial Doppler system (3-D Transscan, Eden Medizinische Elektronik) was evaluated in relation to sex, age, intersubject, interobserver, side-to-side, and day-to-day variation. Fifty-eight healthy volunteers participated (aged 18-80 yr). Mean velocity was higher in females than in male...

  19. Spinor Green function in higher-dimensional cosmic string space-time in the presence of magnetic flux

    International Nuclear Information System (INIS)

    Spinelly, J.; Mello, E.R. Bezerra de

    2008-01-01

    In this paper we investigate the vacuum polarization effects associated with quantum fermionic charged fields in a generalized (d+1)-dimensional cosmic string space-times considering the presence of a magnetic flux along the string. In order to develop this analysis we calculate a general expression for the respective Green function, valid for several different values of d, which is expressed in terms of a bispinor associated with the square of the Dirac operator. Adopting this result, we explicitly calculate the renormalized vacuum expectation values of the energy-momentum tensors, (T A B ) Ren. , associated with massless fields. Moreover, for specific values of the parameters which codify the cosmic string and the fractional part of the ratio of the magnetic flux by the quantum one, we were able to present in closed forms the bispinor and the respective Green function for massive fields.

  20. Experimental verification of three-dimensional plasmonic cloaking in free-space

    International Nuclear Information System (INIS)

    Rainwater, D; Kerkhoff, A; Melin, K; Soric, J C; Moreno, G; Alù, A

    2012-01-01

    We report the experimental verification of metamaterial cloaking for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite-length dielectric cylinder. We verify that scattering suppression is obtained all around the object in the near- and far-field and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our near-field and far-field measurements confirm that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects with moderate transverse cross-section at microwave frequencies. (paper)

  1. Two dimensional neutron transport calculation system for plate-reactors: experimental design and qualification with SILOE

    International Nuclear Information System (INIS)

    Roussos, N.

    1982-01-01

    The main objective of this work is to create a neutronic calculations system for the SILOE-SILOETTE reactors, adaptable to other types of plate reactors. The author presents the methodology and the development of the APOLLO 1D (99 gr.) calculations for the creation of cross sections libraries. After a recall of the Discrete Ordinate Method (DOT), the method accuracy is studied in order to optimize the spatial discretization of the calculations; calculations of DOT 3.5 and of SILOETTE core are conducted and their convergence and costs are examined. DOT calculations of SILOETTE and experimental tests results are then compared [fr

  2. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data.

    Science.gov (United States)

    Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F

    2016-10-25

    This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  4. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone.

    Science.gov (United States)

    Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo

    2017-01-01

    The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Osmotic dehydration and convective drying of coconut slices: Experimental determination and description using one-dimensional diffusion model

    Directory of Open Access Journals (Sweden)

    Wilton Pereira da Silva

    2014-06-01

    Full Text Available Mass migrations in coconut slices during osmotic dehydration and drying are described using a diffusion model with boundary condition of the third kind. The osmotic dehydration experiment was performed at 35°Brix (water and sucrose and 40 °C. The convective drying experiments were performed at 50, 60 and 70 °C. The one-dimensional solution of the diffusion equation for an infinite slab was coupled with an optimizer to determine the effective mass diffusivities D and convective mass transfer coefficients h of the five processes studied. The analyses of the obtained results indicate that there is a good agreement between each experimental dataset and the corresponding simulation using D and h determined by optimization.

  6. Experimental Validation of Methanol Crossover in a Three-dimensional, Two-Fluid Model of a Direct Methanol Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake...... in the ionomer phase of the catalytic layer, and detailed membrane transport of methanol and water. In order to verify the models ability to predict methanol crossover, simulation results are compared with experimental measurements under different current densities along with air and methanol stoichiometries....... Methanol crossover is indirectly measured based on the combined anode and cathode exhaust CO2 mole fraction and by accounting for the CO2 production at the anode as a function of current density. This approach is simple and assumes that all crossed over methanol is oxidized. Moreover, it takes CO2...

  7. Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters

    Science.gov (United States)

    Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2017-04-01

    A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.

  8. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    International Nuclear Information System (INIS)

    Akarsu, Özgür; Dereli, Tekin

    2013-01-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales

  9. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    Science.gov (United States)

    Akarsu, Özgür; Dereli, Tekin

    2013-02-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.

  10. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces

    Directory of Open Access Journals (Sweden)

    Farhad A. Namin

    2016-08-01

    Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.

  11. Experimental and clinical studies of fast three-dimensional MR imaging of the heart

    International Nuclear Information System (INIS)

    Sato, Shuhei

    1999-01-01

    MRI has been utilized since its inception to study the anatomy and physiology of the heart. However, the sensitivity of MRI to motion has always posed a major challenge in imaging this organ. The purpose of this study was to develop a 3D MP-RAGE technique for the heart, and to apply it clinically. In the experimental study, data acquisition timing was discussed by normal volunteers. Changes in magnetization recovery time affected imaging contrast very little in the phantom study. Fourteen adults and 21 children were examined. In the adults, MP-RAGE images were rated as high in quality in the visual estimation. In the quantitative estimation, the images provided almost the same anatomical information as those of cine MRI. In the children, MP-RAGE was useful for cases of partial anomalous pulmonary venous drainage, particularly in the evaluation of abnormal pulmonary veins. The 3D MP-RAGE technique was useful in imaging the heart because it was possible to obtain continuous views in the same cardiac cycle and to reconstruct views from any direction after the examination. (author)

  12. Experimental and clinical studies of fast three-dimensional MR imaging of the heart

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shuhei [Okayama Univ. (Japan). School of Medicine

    1999-07-01

    MRI has been utilized since its inception to study the anatomy and physiology of the heart. However, the sensitivity of MRI to motion has always posed a major challenge in imaging this organ. The purpose of this study was to develop a 3D MP-RAGE technique for the heart, and to apply it clinically. In the experimental study, data acquisition timing was discussed by normal volunteers. Changes in magnetization recovery time affected imaging contrast very little in the phantom study. Fourteen adults and 21 children were examined. In the adults, MP-RAGE images were rated as high in quality in the visual estimation. In the quantitative estimation, the images provided almost the same anatomical information as those of cine MRI. In the children, MP-RAGE was useful for cases of partial anomalous pulmonary venous drainage, particularly in the evaluation of abnormal pulmonary veins. The 3D MP-RAGE technique was useful in imaging the heart because it was possible to obtain continuous views in the same cardiac cycle and to reconstruct views from any direction after the examination. (author)

  13. Automorphosis of higher plants in space is simulated by using a 3-dimensional clinostat or by application of chemicals

    Science.gov (United States)

    Miyamoto, K.; Hoshino, T.; Hitotsubashi, R.; Yamashita, M.; Ueda, J.

    In STS-95 space experiments, etiolated pea seedlings grown under microgravity conditions in space have shown to be automorphosis. Epicotyls were almost straight but the most oriented toward the direction far from their cotyledons with ca. 45 degrees from the vertical line as compared with that on earth. In order to know the mechanism of microgravity conditions in space to induce automorphosis, we introduced simulated microgravity conditions on a 3-dimensional clinostat, resulting in the successful induction of automorphosis-like growth and development. Kinetic studies revealed that epicotyls bent at their basal region or near cotyledonary node toward the direction far from the cotyledons with about 45 degrees in both seedlings grown on 1 g and under simulated microgravity conditions on the clinostat within 48 hrs after watering. Thereafter epicotyls grew keeping this orientation under simulated microgravity conditions on the clinostat, whereas those grown on 1 g changed the growth direction to vertical direction by negative gravitropic response. Automorphosis-like growth and development was induced by the application of auxin polar transport inhibitors (2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid, 9-hydroxyfluorene-9-carboxylic acid), but not an anti-auxin, p-chlorophenoxyisobutyric acid. Automorphosis-like epicotyl bending was also phenocopied by the application of inhibitors of stretch-activated channel, LaCl3 and GdCl3, and by the application of an inhibitor of protein kinase, cantharidin. These results suggest that automorphosis-like growth in epicotyls of etiolated pea seedlings is due to suppression of negative gravitropic responses on 1 g, and the growth and development of etiolated pea seedlings under 1 g conditions requires for normal activities of auxin polar transport and the gravisensing system relating to calcium channels. Possible mechanisms of perception and transduction of gravity signals to induce automorphosis are discussed.

  14. Experimental study of multilayer solid epitaxy: two-dimensional critical behavior of a quantum solid/superfluid interface

    International Nuclear Information System (INIS)

    Ramesh, S.

    1985-01-01

    This thesis constitutes the first precise, quantitative experimental study of layering transitions, two-dimensional critical temperatures, and their relation to surface roughening. The experiments used superfluid fourth sound to probe the liquid solid 4 He interface, by coupling with surface waves unique to this interface. An annular resonator with electric transducers was used to measure the fourth sound velocity c 4 in an exfoliated graphite (Grafoil) superleak. Measurements of the pressure dependence of the fourth sound resonance frequencies (and attenuation) from ∼6 bar to ∼26 bar were made along eight isotherms from 1.0 K to 1.7 K. Plots of fourth sound resonance frequency versus coverage clearly indicate layer-by-layer solid nucleation and epitaxal growth of hcp solid 4 He on the basal plane of graphite. Further analysis yielded solid adsorption isotherms and a kinetic growth coefficient for the 4 He crystal surface and also indicated the existence of a critical temperature region and also indicated the existence of a critical temperature region around 1.0-1.2 K (the region of a bulk roughening transition). The acoustical theory for the experimental system was worked out using a parallel waveguide model; Landau's thermohydrodynamic equations were reformulated by including the mass- and heat-exchange effects occurring in the system; the equations were solved to obtain expressions for the velocity of sound propagation and attenuation

  15. Using Tabulated Experimental Data to Drive an Orthotropic Elasto-Plastic Three-Dimensional Model for Impact Analysis

    Science.gov (United States)

    Hoffarth, C.; Khaled, B.; Rajan, S. D.; Goldberg, R.; Carney, K.; DuBois, P.; Blankenhorn, Gunther

    2016-01-01

    An orthotropic elasto-plastic-damage three-dimensional model with tabulated input has been developed to analyze the impact response of composite materials. The theory has been implemented as MAT 213 into a tailored version of LS-DYNA being developed under a joint effort of the FAA and NASA and has the following features: (a) the theory addresses any composite architecture that can be experimentally characterized as an orthotropic material and includes rate and temperature sensitivities, (b) the formulation is applicable for solid as well as shell element implementations and utilizes input data in a tabulated form directly from processed experimental data, (c) deformation and damage mechanics are both accounted for within the material model, (d) failure criteria are established that are functions of strain and damage parameters, and mesh size dependence is included, and (e) the theory can be efficiently implemented into a commercial code for both sequential and parallel executions. The salient features of the theory as implemented in LS-DYNA are illustrated using a widely used composite - the T800S/3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber/resin unidirectional composite. First, the experimental tests to characterize the deformation, damage and failure parameters in the material behavior are discussed. Second, the MAT213 input model and implementation details are presented with particular attention given to procedures that have been incorporated to ensure that the yield surfaces in the rate and temperature dependent plasticity model are convex. Finally, the paper concludes with a validation test designed to test the stability, accuracy and efficiency of the implemented model.

  16. Study of three-dimensional PET and MR image registration based on higher-order mutual information

    International Nuclear Information System (INIS)

    Ren Haiping; Chen Shengzu; Wu Wenkai; Yang Hu

    2002-01-01

    Mutual information has currently been one of the most intensively researched measures. It has been proven to be accurate and effective registration measure. Despite the general promising results, mutual information sometimes might lead to misregistration because of neglecting spatial information and treating intensity variations with undue sensitivity. An extension of mutual information framework was proposed in which higher-order spatial information regarding image structures was incorporated into the registration processing of PET and MR. The second-order estimate of mutual information algorithm was applied to the registration of seven patients. Evaluation from Vanderbilt University and authors' visual inspection showed that sub-voxel accuracy and robust results were achieved in all cases with second-order mutual information as the similarity measure and with Powell's multidimensional direction set method as optimization strategy

  17. Conformal Windows of SU(N) Gauge Theories, Higher Dimensional Representations and The Size of The Unparticle World

    CERN Document Server

    Ryttov, Thomas A

    2007-01-01

    We present the conformal windows of SU(N) supersymmetric and nonsupersymmetric gauge theories with vector-like matter transforming according to higher irreducible representations of the gauge group. We determine the fraction of asymptotically free theories expected to develop an infrared fixed point and find that it does not depend on the specific choice of the representation. This result is exact in supersymmetric theories while it is an approximate one in the nonsupersymmetric case. The analysis allows us to size the unparticle world related to the existence of underlying gauge theories developing an infrared stable fixed point. We find that exactly 50 % of the asymptotically free theories can develop an infrared fixed point while for the nonsupersymmetric theories it is circa 25 %. When considering multiple representations, only for the nonsupersymmetric case, the conformal regions quickly dominate over the nonconformal ones. For four representations, 70 % of the asymptotically free space is filled by the ...

  18. THREE-DIMENSIONAL NON-VACUUM PULSAR OUTER-GAP MODEL: LOCALIZED ACCELERATION ELECTRIC FIELD IN THE HIGHER ALTITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Hirotani, Kouichi [Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei, Taiwan (China)

    2015-01-10

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  19. Communicative competences in Experimental Sciences degrees within the framework of the new European Space for Higher Education

    Directory of Open Access Journals (Sweden)

    Joseba Ezeiza Ramos

    2009-10-01

    Full Text Available The scenario for developing communicative competences in the Experimental Sciences degrees and within the new European Space for Higher Education is highly complex. This is confirmed by research reported in the White Papers on the new degrees in this subject area. Therefore, to smoothly integrate communicative and linguistic competences into future syllabi, I should first make a careful analysis of the main factors at work in the new situation. This paper seeks to provide a preliminary approach to the problem. First, I describe the academic and professional tasks that constitute the objectives of future European science degrees. This is followed by an analysis of the communicative and linguistic parameters considered essential for satisfactory attainment of these objectives. Finally, the specific skills that students must master in order to meet the demands imposed by the new framework are outlined. The results of this analysis will enable us to see how much the new situation differs from traditional university teaching. Under this new model, the development of communicative and linguistic competences will no longer be a mere adjunct to a science curriculum, but instead will become of prime importance to the academic and professional training of future scientists.

  20. Conformal windows of SU(N) gauge theories, higher dimensional representations, and the size of the unparticle world

    International Nuclear Information System (INIS)

    Ryttov, Thomas A.; Sannino, Francesco

    2007-01-01

    We present the conformal windows of SU(N) supersymmetric and nonsupersymmetric gauge theories with vectorlike matter transforming according to higher irreducible representations of the gauge group. We determine the fraction of asymptotically free theories expected to develop an infrared fixed point and find that it does not depend on the specific choice of the representation. This result is exact in supersymmetric theories while it is an approximate one in the nonsupersymmetric case. The analysis allows us to size the unparticle world related to the existence of underlying gauge theories developing an infrared stable fixed point. We find that exactly 50% of the asymptotically free theories can develop an infrared fixed point while for the nonsupersymmetric theories it is circa 25%. When considering multiple representations, only for the nonsupersymmetric case, the conformal regions quickly dominate over the nonconformal ones. For four representations, 70% of the asymptotically free space is filled by the conformal region. According to our theoretical landscape survey the unparticle physics world occupies a sizable amount of the particle world, at least in theory space, and before mixing it (at the operator level) with the nonconformal one

  1. Experimental and numerical investigations of higher mode effects on seismic inelastic response of reinforced concrete shear walls

    Science.gov (United States)

    Ghorbanirenani, Iman

    This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program

  2. Experimental characterization of a bi-dimensional array of negative capacitance piezo-patches for vibroacoustic control

    Science.gov (United States)

    Tateo, F.; Collet, M.; Ouisse, M.; Ichchou, M. N.; Cunefare, K. A.

    2013-04-01

    A recent technological revolution in the fields of integrated MEMS has finally rendered possible the mechanical integration of active smart materials, electronics and power supply systems for the next generation of smart composite structures. Using a bi-dimensional array of electromechanical transducers, composed by piezo-patches connected to a synthetic negative capacitance, it is possible to modify the dynamics of the underlying structure. In this study, we present an application of the Floquet-Bloch theorem for vibroacoustic power flow optimization, by means of distributed shunted piezoelectric material. In the context of periodically distributed damped 2D mechanical systems, this numerical approach allows one to compute the multi-modal waves dispersion curves into the entire first Brillouin zone. This approach also permits optimization of the piezoelectric shunting electrical impedance, which controls energy diffusion into the proposed semi-active distributed set of cells. Furthermore, we present experimental evidence that proves the effectiveness of the proposed control method. The experiment requires a rectangular metallic plate equipped with seventy-five piezo-patches, controlled independently by electronic circuits. More specifically, the out-of-plane displacements and the averaged kinetic energy of the controlled plate are compared in two different cases (open-circuit and controlled circuit). The resulting data clearly show how this proposed technique is able to damp and selectively reflect the incident waves.

  3. Experimental investigation of two-dimensional critical surface structure, stimulated Raman scattering, and two-plasmon decay instability. Annual report, January 1, 1981-April 30, 1982

    International Nuclear Information System (INIS)

    Wong, A.Y.; Eggleston, D.L.; Tanikawa, T.; Qian, S.J.

    1982-11-01

    Experimental observations of the space and time evolution of resonantly enhanced electrostatic electric fields and plasma density in cylindrical geometry demonstrate the development of two-dimensional caviton structure when an initial density perturbation is imposed on the plasma in the direction perpendicular to the driver field. This two-dimensional structure is observed after the development of profile modification and grows on the ion time scale. The existence of a large azimuthal electric field component is an observational signature of two-dimensional structure. Enhanced electric field maxima are found to be azimuthally correlated with the density minima. Both the density cavities and electric field peaks exhibit increased azimuthal location with the growth of two-dimensional structure. The two-dimensional development exhibits a strong dependence on both perturbation wavenumber and driver power. The related theoretical literature is reviewed and numerical, analytical, and qualitative hybrid models for a driven, two-dimensional, inhomogeneous plasma are presented. Preliminary work is presented in the following additional areas: weak magnetic field effects on critical surface physics, optical measurements of fast electron production, two-dimensional effects in microwave-plasma interactions, Langmuir wave trapping, stimulated Raman scattering and two-plasmon decay instability

  4. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process.

    Science.gov (United States)

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  5. Higher-dimensional Wannier Interpolation for the Modern Theory of the Dzyaloshinskii-Moriya Interaction: Application to Co-based Trilayers

    Science.gov (United States)

    Hanke, Jan-Philipp; Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2018-04-01

    We present an advanced first-principles formalism to evaluate the Dzyaloshinskii-Moriya interaction (DMI) in its modern theory as well as Berry curvatures in complex spaces based on a higher-dimensional Wannier interpolation. Our method is applied to the Co-based trilayer systems IrδPt1-δ/Co/Pt and AuγPt1-γ/Co/Pt, where we gain insights into the correlations between the electronic structure and the DMI, and we uncover prominent sign changes of the chiral interaction with the overlayer composition. Beyond the discussed phenomena, the scope of applications of our Wannier-based scheme is particularly broad as it is ideally suited to study efficiently the Hamiltonian evolution under the slow variation of very general parameters.

  6. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model.

    Science.gov (United States)

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches

    2015-10-01

    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  7. Accuracy and Precision of Three-Dimensional Low Dose CT Compared to Standard RSA in Acetabular Cups: An Experimental Study.

    Science.gov (United States)

    Brodén, Cyrus; Olivecrona, Henrik; Maguire, Gerald Q; Noz, Marilyn E; Zeleznik, Michael P; Sköldenberg, Olof

    2016-01-01

    Background and Purpose. The gold standard for detection of implant wear and migration is currently radiostereometry (RSA). The purpose of this study is to compare a three-dimensional computed tomography technique (3D CT) to standard RSA as an alternative technique for measuring migration of acetabular cups in total hip arthroplasty. Materials and Methods. With tantalum beads, we marked one cemented and one uncemented cup and mounted these on a similarly marked pelvic model. A comparison was made between 3D CT and standard RSA for measuring migration. Twelve repeated stereoradiographs and CT scans with double examinations in each position and gradual migration of the implants were made. Precision and accuracy of the 3D CT were calculated. Results. The accuracy of the 3D CT ranged between 0.07 and 0.32 mm for translations and 0.21 and 0.82° for rotation. The precision ranged between 0.01 and 0.09 mm for translations and 0.06 and 0.29° for rotations, respectively. For standard RSA, the precision ranged between 0.04 and 0.09 mm for translations and 0.08 and 0.32° for rotations, respectively. There was no significant difference in precision between 3D CT and standard RSA. The effective radiation dose of the 3D CT method, comparable to RSA, was estimated to be 0.33 mSv. Interpretation. Low dose 3D CT is a comparable method to standard RSA in an experimental setting.

  8. An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology

    International Nuclear Information System (INIS)

    Lifton, J J; McBride, J W; Malcolm, A A

    2016-01-01

    Scattered radiation and beam hardening introduce artefacts that degrade the quality of data in x-ray computed tomography (CT). It is unclear how these artefacts influence dimensional measurements evaluated from CT data. Understanding and quantifying the influence of these artefacts on dimensional measurements is required to evaluate the uncertainty of CT-based dimensional measurements. In this work the influence of scatter and beam hardening on dimensional measurements is investigated using the beam stop array scatter correction method and spectrum pre-filtration for the measurement of an object with internal and external cylindrical dimensional features. Scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, a gradient-based surface determination method is found to be robust to the influence of artefacts and leads to more accurate dimensional measurements than those evaluated using the ISO50 method. In addition to these observations the GUM method for evaluating standard measurement uncertainties is applied and the standard measurement uncertainty due to scatter and beam hardening is estimated. (paper)

  9. Experimental Research on How Instructing Students to Use Lecture Capture (Podcasting) Technology Affects Student Learning in Higher Education

    Science.gov (United States)

    Hall, William A., Jr.

    2012-01-01

    Students' use of new technology is prevalent. Many of them own mobile phones, laptop computers, and various entertainment devices. However, they are seldom taught how to maximize these technologies for academic purposes. This experimental study examined whether students who received instructions on how to use podcasts for academic purposes…

  10. Experimental Validation of a Numerical Model for Three-Dimensional High-Speed Railway Bridge Analysis by Comparison with a Small-Scale Model

    DEFF Research Database (Denmark)

    Sneideris, J.; Bucinskas, Paulius; Agapii, L.

    2015-01-01

    The aim of this paper is to perform dynamic analysis of a multi-span railway bridge interacting with the underlying soil. A small-scale model of a bridge structure is constructed for experimental testing and the results are compared with a computational model. The computational model in this paper...... dimensional 10-degrees-of-freedom system. The subsoil model utilizes Green’s function for a horizontally layered half-space. The small-scale experimental model consists of bridge deck, columns and footings which are made from Plexiglas. An electric vehicle travels along the bridge deck on a track to simulate...

  11. Experimental Validation of Methanol Crossover in a Three-dimensional, Two-Fluid Model of a Direct Methanol Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake in the i...

  12. Projection multiplex recording of computer-synthesised one-dimensional Fourier holograms for holographic memory systems: mathematical and experimental modelling

    Energy Technology Data Exchange (ETDEWEB)

    Betin, A Yu; Bobrinev, V I; Verenikina, N M; Donchenko, S S; Odinokov, S B [Research Institute ' Radiotronics and Laser Engineering' , Bauman Moscow State Technical University, Moscow (Russian Federation); Evtikhiev, N N; Zlokazov, E Yu; Starikov, S N; Starikov, R S [National Reseach Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-31

    A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)

  13. Numerical simulation and experimental validation of the three-dimensional flow field and relative analyte concentration distribution in an atmospheric pressure ion source.

    Science.gov (United States)

    Poehler, Thorsten; Kunte, Robert; Hoenen, Herwart; Jeschke, Peter; Wissdorf, Walter; Brockmann, Klaus J; Benter, Thorsten

    2011-11-01

    In this study, the validation and analysis of steady state numerical simulations of the gas flows within a multi-purpose ion source (MPIS) are presented. The experimental results were obtained with particle image velocimetry (PIV) measurements in a non-scaled MPIS. Two-dimensional time-averaged velocity and turbulent kinetic energy distributions are presented for two dry gas volume flow rates. The numerical results of the validation simulations are in very good agreement with the experimental data. All significant flow features have been correctly predicted within the accuracy of the experiments. For technical reasons, the experiments were conducted at room temperature. Thus, numerical simulations of ionization conditions at two operating points of the MPIS are also presented. It is clearly shown that the dry gas volume flow rate has the most significant impact on the overall flow pattern within the APLI source; far less critical is the (larger) nebulization gas flow. In addition to the approximate solution of Reynolds-Averaged Navier-Stokes equations, a transport equation for the relative analyte concentration has been solved. The results yield information on the three-dimensional analyte distribution within the source. It becomes evident that for ion transport into the MS ion transfer capillary, electromagnetic forces are at least as important as fluid dynamic forces. However, only the fluid dynamics determines the three-dimensional distribution of analyte gas. Thus, local flow phenomena in close proximity to the spray shield are strongly impacting on the ionization efficiency.

  14. The synthesis of higher oxides of alkali and alkaline earth metals in an electric discharge: Theoretical and experimental studies

    Science.gov (United States)

    Bell, A. T.; Sadhukhan, P.

    1974-01-01

    Potassium hydroxide was subjected to the products of an electrical discharge sustained in oxygen and produced both potassium peroxide and superoxide. The conversion to higher oxides was shown to strongly depend upon the particle size of KOH, the position of KOH in the discharge zone, and the operating conditions of the discharge. Similar experiments were performed with hydroxides of lithium and calcium which do not form superoxides, but are converted to peroxides. The yields of peroxides were shown to strongly depend upon the operating conditions of the discharge. The absence of superoxides and the presence of peroxides of lithium and calcium was explained from the consideration of relative thermodynamic stability of the oxides of lithium and calcium. Thermogravimetric analysis was shown to provide a more accurate means for determining the amount of KO2 than previous methods.

  15. The experimental study of hydrodynamic characteristics of the overland flow on a slope with three-dimensional Geomat

    Science.gov (United States)

    Wang, Guang-yue; Sun, Guo-rui; Li, Jian-kang; Li, Jiong

    2018-02-01

    The hydrodynamic characteristics of the overland flow on a slope with a three-dimensional Geomat are studied for different rainfall intensities and slope gradients. The rainfall intensity is adjusted in the rainfall simulation system. It is shown that the velocity of the overland flow has a strong positive correlation with the slope length and the rainfall intensity, the scour depth decreases with the increase of the slope gradient for a given rainfall intensity, and the scour depth increases with the increase of the rainfall intensity for a given slope gradient, the overland flow starts with a transitional flow on the top and finishes with a turbulent flow on the bottom on the slope with the three-dimensional Geomat for different rainfall intensities and slope gradients, the resistance coefficient and the turbulent flow Reynolds number are in positively related logarithmic functions, the resistance coefficient and the slope gradient are in positively related power functions, and the trend becomes leveled with the increase of the rainfall intensity. This study provides some important theoretical insight for further studies of the hydrodynamic process of the erosion on the slope surface with a three-dimensional Geomat.

  16. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  17. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-03-22

    The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field.

  18. Numerical and Experimental Investigation of Stop-Bands in Finite and Infinite Periodic One-Dimensional Structures

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Manconi, Elisabetta; Vanali, Marcello

    2016-01-01

    Adding periodicity to structures leads to wavemode interaction, which generates pass- and stop-bands. The frequencies at which stop-bands occur are related to the periodic nature of the structure. Thus structural periodicity can be shaped in order to design vibro-acoustic filters for reducing...... method deals with the evaluation of a vibration level difference (VLD) in a finite periodic structure embedded within an infinite one-dimensional waveguide. This VLD is defined to predict the performance in terms of noise and vibration insulation of periodic cells embedded in an otherwise uniform...

  19. The higher-dimensional Ablowitz–Ladik model: From (non-)integrability and solitary waves to surprising collapse properties and more exotic solutions

    International Nuclear Information System (INIS)

    Kevrekidis, P.G.; Herring, G.J.; Lafortune, S.; Hoq, Q.E.

    2012-01-01

    We propose a consideration of the properties of the two-dimensional Ablowitz–Ladik discretization of the ubiquitous nonlinear Schrödinger (NLS) model. We use singularity confinement techniques to suggest that the relevant discretization should not be integrable. More importantly, we identify the prototypical solitary waves of the model and examine their stability, illustrating the remarkable feature that near the continuum limit, this discretization leads to the absence of collapse and complete spectral wave stability, in stark contrast to the standard discretization of the NLS. We also briefly touch upon the three-dimensional case and generalizations of our considerations therein, and also present some more exotic solutions of the model, such as exact line solitons and discrete vortices. -- Highlights: ► The two-dimensional version of the Ablowitz–Ladik discretization of the nonlinear Schrödinger (NLS) equation is considered. ► It is found that near the continuum limit the fundamental discrete soliton is spectrally stable. ► This finding is in sharp contrast with the case of the standard discretization of the NLS equation. ► In the three-dimensional version of the model, the fundamental solitons are unstable. ► Additional waveforms such as exact unstable line solitons and discrete vortices are also touched upon.

  20. The higher-dimensional Ablowitz–Ladik model: From (non-)integrability and solitary waves to surprising collapse properties and more exotic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G., E-mail: kevrekid@gmail.com [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Herring, G.J. [Department of Mathematics and Statistics, Cameron University, Lawton, OK 73505 (United States); Lafortune, S. [Department of Mathematics, College of Charleston, Charleston, SC 29401 (United States); Hoq, Q.E. [Department of Mathematics and Computer Science, Western New England College, Springfield, MA 01119 (United States)

    2012-02-06

    We propose a consideration of the properties of the two-dimensional Ablowitz–Ladik discretization of the ubiquitous nonlinear Schrödinger (NLS) model. We use singularity confinement techniques to suggest that the relevant discretization should not be integrable. More importantly, we identify the prototypical solitary waves of the model and examine their stability, illustrating the remarkable feature that near the continuum limit, this discretization leads to the absence of collapse and complete spectral wave stability, in stark contrast to the standard discretization of the NLS. We also briefly touch upon the three-dimensional case and generalizations of our considerations therein, and also present some more exotic solutions of the model, such as exact line solitons and discrete vortices. -- Highlights: ► The two-dimensional version of the Ablowitz–Ladik discretization of the nonlinear Schrödinger (NLS) equation is considered. ► It is found that near the continuum limit the fundamental discrete soliton is spectrally stable. ► This finding is in sharp contrast with the case of the standard discretization of the NLS equation. ► In the three-dimensional version of the model, the fundamental solitons are unstable. ► Additional waveforms such as exact unstable line solitons and discrete vortices are also touched upon.

  1. A novel experimental approach for three-dimensional geometry assessment of calcified human stenotic arteries in vitro

    NARCIS (Netherlands)

    Boekhoven, R.W.; Lopata, R.G.P.; Sambeek, van M.R.H.M.; Vosse, van de F.N.; Rutten, M.C.M.

    2013-01-01

    To improve diagnosis and understanding of the risk of rupture of atherosclerotic plaque, new strategies to realistically determine mechanical properties of atherosclerotic plaque need to be developed. In this study, an in vitro experimental method is proposed for accurate 3-D assessment of

  2. Dimensional Ridge Preservation with a Novel Highly Porous TiO 2 Scaffold: An Experimental Study in Minipigs

    Directory of Open Access Journals (Sweden)

    Hanna Tiainen

    2012-01-01

    Full Text Available Despite being considered noncritical size defects, extraction sockets often require the use of bone grafts or bone graft substitutes in order to facilitate a stable implant site with an aesthetically pleasing mucosal architecture and prosthetic reconstruction. In the present study, the effect of novel TiO2 scaffolds on dimensional ridge preservation was evaluated following their placement into surgically modified extraction sockets in the premolar region of minipig mandibles. After six weeks of healing, the scaffolds were wellintegrated in the alveolar bone, and the convex shape of the alveolar crest was preserved. The scaffolds were found to partially preserve the dimensions of the native buccal and lingual bone walls adjacent to the defect site. A tendency towards more pronounced vertical ridge resorption, particularly in the buccal bone wall of the nongrafted alveoli, indicates that the TiO2 scaffold may be used for suppressing the loss of bone that normally follows tooth extraction.

  3. Experimental observations of the three-dimensional wake structures and dynamics generated by a rigid, bioinspired pitching panel

    Science.gov (United States)

    King, Justin T.; Kumar, Rajeev; Green, Melissa A.

    2018-03-01

    The effects of changing Strouhal number on the three-dimensional wake produced by a rigid, bioinspired trapezoidal pitching panel are analyzed through the use of stereoscopic particle image velocimetry over a Strouhal number range of 0.17-0.56. The results show that for all cases, at least some section of the wake comprises an alternating series of interacting vortex rings. The behavior of the flows induced by these vortex rings is consistent with the wake phenomena of spanwise compression and transverse expansion. Increases in Strouhal number correspond to an increased rate of spanwise compression, a greater amount of transverse expansion, and the movement of the location of wake breakdown onset upstream.

  4. Green-Kubo relation for viscosity tested using experimental data for a two-dimensional dusty plasma

    Science.gov (United States)

    Feng, Yan; Goree, J.; Liu, Bin; Cohen, E. G. D.

    2011-10-01

    The theoretical Green-Kubo relation for viscosity is tested using experimentally obtained data. In a dusty plasma experiment, micron-sized dust particles are introduced into a partially ionized argon plasma, where they become negatively charged. They are electrically levitated to form a single-layer Wigner crystal, which is subsequently melted using laser heating. In the liquid phase, these dust particles experience interparticle electric repulsion, laser heating, and friction from the ambient neutral argon gas, and they can be considered to be in a nonequilibrium steady state. Direct measurements of the positions and velocities of individual dust particles are then used to obtain a time series for an off-diagonal element of the stress tensor and its time autocorrelation function. This calculation also requires the interparticle potential, which was not measured experimentally but was obtained using a Debye-Hückel-type model with experimentally determined parameters. Integrating the autocorrelation function over time yields the viscosity for shearing motion among dust particles. The viscosity so obtained is found to agree with results from a previous experiment using a hydrodynamical Navier-Stokes equation. This comparison serves as a test of the Green-Kubo relation for viscosity. Our result is also compared to the predictions of several simulations.

  5. An Experimental Investigation of Cutting Temperature and Tool Wear in 2 Dimensional Ultrasonic Vibrations Assisted Micro-Milling

    Directory of Open Access Journals (Sweden)

    Ibrahim Mohd Rasidi

    2017-01-01

    Full Text Available Two dimensional Ultrasonic vibration assisted milling (2D UVAM well knows process that involved in high tech system to generate ultra range of frequency applied to the milling process. More industries nowadays become aware taking this opportunity to improve their productivity without decreasing their product accuracies. This paper investigate a comparative machining between UVAM and conventional machining (CM in tool wear and cutting temperature in milling process. Micro amplitude and sine wave frequency will be generate into the workpiece jig by piezo-actuator. Thus, creating a micro gap that allow heat remove effectively with the chip produces. A more complex tool trajectory mechanics of 2D UVAM has been found during this research. The approaching the tool tip into the workpiece surfaces is affected by the amplitude displacement along the frequency applied. It is found that the tool wear was reduce and surface roughness improvement by applying the 2D UVAM compared to the CM when choosing the optimum amplitude and appropriate frequency.

  6. Rat optic nerve head anatomy within three- dimensional histomorphometric reconstructions of normal and early experimental glaucoma eyes

    OpenAIRE

    Pazos López, Marta

    2016-01-01

    Objetciu: Reconstruir en 3D caps del nervi òptic (CNOs) de rata camb glaucoma experimental (GExp) precoç unilateral, per proporcionar la primera descripció histomorfomètrica del CNO de controls normales i amb GExp primerenc en aquesta espècie. Métodos: Es va injectar sèrum salí hipertònic unilateralment en les venes epiesclerals de 8 rates noruegues que van ser sacrificades 4 setmantes després (fixació-perfusió). Cinc observadors enmascarats graduaren el dany de seccions del nervi òptic (NO) ...

  7. Theoretical study for aerial image intensity in resist in high numerical aperture projection optics and experimental verification with one-dimensional patterns

    Science.gov (United States)

    Shibuya, Masato; Takada, Akira; Nakashima, Toshiharu

    2016-04-01

    In optical lithography, high-performance exposure tools are indispensable to obtain not only fine patterns but also preciseness in pattern width. Since an accurate theoretical method is necessary to predict these values, some pioneer and valuable studies have been proposed. However, there might be some ambiguity or lack of consensus regarding the treatment of diffraction by object, incoming inclination factor onto image plane in scalar imaging theory, and paradoxical phenomenon of the inclined entrance plane wave onto image in vector imaging theory. We have reconsidered imaging theory in detail and also phenomenologically resolved the paradox. By comparing theoretical aerial image intensity with experimental pattern width for one-dimensional pattern, we have validated our theoretical consideration.

  8. Experimental approach for the uncertainty assessment of 3D complex geometry dimensional measurements using computed tomography at the mm and sub-mm scales

    DEFF Research Database (Denmark)

    Jiménez, Roberto; Torralba, Marta; Yagüe-Fabra, José A.

    2017-01-01

    The dimensional verification of miniaturized components with 3D complex geometries is particularly challenging. Computed Tomography (CT) can represent a suitable alternative solution to micro metrology tools based on optical and tactile techniques. However, the establishment of CT systems......’ traceability when measuring 3D complex geometries is still an open issue. In this work, an alternative method for the measurement uncertainty assessment of 3D complex geometries by using CT is presented. The method is based on the micro-CT system Maximum Permissible Error (MPE) estimation, determined...... experimentally by using several calibrated reference artefacts. The main advantage of the presented method is that a previous calibration of the component by a more accurate Coordinate Measuring System (CMS) is not needed. In fact, such CMS would still hold all the typical limitations of optical and tactile...

  9. Experimental evidence for an original two-dimensional phase structure: An antiparallel semifluorinated monolayer at the air-water interface

    International Nuclear Information System (INIS)

    El Abed, A.; Faure, M-C.; Pouzet, E.; Abillon, O.

    2002-01-01

    We show the spontaneous formation of an antiparallel monolayer of diblock semifluorinated n-alkane molecules spread at the air-water interface. We used simultaneous measurements of surface pressure and surface potential versus molecular area and performed grazing x-ray reflectivity experiments to characterize the studied monolayer, which is obtained at almost zero surface pressure and precedes the formation of a bilayer at higher surface pressure. Its thickness, equal to 2.7 nm, was found to be independent of the molecular area. This behavior may be explained by van der Waals and electrostatic interactions

  10. Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system

    International Nuclear Information System (INIS)

    Wang, Yi; Li, Xiao-Sen; Li, Gang; Zhang, Yu; Li, Bo; Chen, Zhao-Yang

    2013-01-01

    Highlights: • The production behaviors of methane hydrate are obtained in the 3-D simulator. • The thermal stimulation method with a five-spot well is used for hydrate production. • The water and gas production, efficiency, recovery, production rate are analyzed. • The effect of injection rate change on the production behavior is investigated. - Abstract: The cubic hydrate simulator (CHS) is used to study the methane hydrate production behaviors in porous media by the thermal stimulation with a five-spot well system. The hot water injection rates range from 10.0 to 40.0 ml/min. The thermal stimulation process is analyzed, and the conclusions are that the hydrate decomposition boundary moves from the central point to the surroundings gradually and finally covers almost the entire hydrate field in the CHS during the thermal stimulation process. The heat conduction plays a more significant role than the convection for the heat diffusion in the thermal stimulation process. The increasing injection rate of the hot water enhances the rate of hydrate decomposition, shortens the production time, and decreases the water production volumes, while it has little influence on the final gas production volumes. Furthermore, the change of the hot water injection rate (R inj ) has little influence on the final gas recovery, however, the higher R inj leads to the higher average production rate and the lower energy efficiency

  11. Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: experimentally validated numerical model

    Science.gov (United States)

    Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.

    2016-09-01

    Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental

  12. Higher Dose of Dexamethasone Does Not Further Reduce Facial Swelling After Orthognathic Surgery: A Randomized Controlled Trial Using 3-Dimensional Photogrammetry.

    Science.gov (United States)

    Lin, Hsiu Hsia; Kim, Sun-Goo; Kim, Hye-Young; Niu, Lien-Shin; Lo, Lun-Jou

    2017-03-01

    The objective of this prospective, double-blind, randomized clinical trial was to compare the effect of 2 dexamethasone dosages on reducing facial swelling after orthognathic surgery through 3-dimensional (3D) photogrammetry. Patients were classified into group 1 (control group) and group 2 (study group), depending on the administered dexamethasone dosage (5 and 15 mg, respectively). Three-dimensional images were recorded at 5 time points: preoperative (T0) and postoperative at 48 ± 6 hours (T1), 1 week (T2), 1 month (T3), and 6 months (T4). A preliminary study was performed on 5 patients, in whom 3D images were captured at 24, 36, 48, and 60 hours postoperatively to record serial changes in facial swelling. Facial swelling at T1, T2, and T3 and the reduction in swelling at T2 and T3 compared with that at the baseline (T4) were calculated. Possible complications, namely, adrenal suppression, wound dehiscence, wound infection, and postoperative nausea and vomiting were evaluated. In total, 68 patients were enrolled, of whom 25 patients in group 1 and 31 patients in group 2 were eligible for final evaluation. No significant differences were found between the 2 groups at any period. On average, the swelling subsided by 86% at 1 month after the orthognathic surgery. Facial swelling peaked approximately 48 hours after the surgery. The incidence of nausea and vomiting did not differ significantly between the groups. The effect of 5 and 15 mg of dexamethasone on facial swelling reduction as well as on nausea and vomiting after orthognathic surgery was not significantly different.

  13. The Role of Three-Dimensional Boundary Stresses in Limiting the Occurrence and Size of Experimental Landslides

    Science.gov (United States)

    Prancevic, Jeffrey P.; Lamb, Michael P.; Palucis, Marisa C.; Venditti, Jeremy G.

    2018-01-01

    The occurrence of seepage-induced shallow landslides on hillslopes and steep channel beds is important for landscape evolution and natural hazards. Infinite-slope stability models have been applied for seven decades, but sediment beds generally require higher water saturation levels than predicted for failure, and controlled experiments are needed to test models. We initiated 90 landslides in a 5 m long laboratory flume with a range in sediment sizes (D = 0.7, 2, 5, and 15 mm) and hillslope angles (θ = 20° to 43°), resulting in subsurface flow that spanned the Darcian and turbulent regimes, and failures that occurred with subsaturated and supersaturated sediment beds. Near complete saturation was required for failure in most experiments, with water levels far greater than predicted by infinite-slope stability models. Although 3-D force balance models predict that larger landslides are less stable, observed downslope landslide lengths were typically only several decimeters, not the entire flume length. Boundary stresses associated with short landslides can explain the increased water levels required for failure, and we suggest that short failures are tied to heterogeneities in granular properties. Boundary stresses also limited landslide thicknesses, and landslides progressively thinned on lower gradient hillslopes until they were one grain diameter thick, corresponding to a change from near-saturated to supersaturated sediment beds. Thus, landslides are expected to be thick on steep hillslopes with large frictional stresses acting on the boundaries, whereas landslides should be thin on low-gradient hillslopes or in channel beds with a critical saturation level that is determined by sediment size.

  14. Inflation from higher dimensions

    International Nuclear Information System (INIS)

    Shafi, Q.

    1987-01-01

    We argue that an inflationary phase in the very early universe is related to the transition from a higher dimensional to a four-dimensional universe. We present details of a previously considered model which gives sufficient inflation without fine tuning of parameters. (orig.)

  15. A 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in black hole systems: a higher order polynomial approximation

    Science.gov (United States)

    Ghosh, Shubhrangshu

    2017-09-01

    The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solutions at high turbulent viscosity parameter α (≳ 0.3), and at a reduced scale-height, as magnetic stresses compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field B P is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand, differential magnetic torque (-{r}2{\\bar{B}}\\varphi {\\bar{B}}z) increases with the increase in \\dot{M}. {\\bar{B}}{{P}}, -{r}2{\\bar{B}}\\varphi {\\bar{B}}z as well as the plasma beta β P get strongly augmented with the increase in the value of α, enhancing the transport of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the thermal pressure gradient would play a more contributory role in the vertical transport of plasma.

  16. Experimental and numerical models of three-dimensional gravity-driven flow of shear-thinning polymer solutions used in vaginal delivery of microbicides.

    Science.gov (United States)

    Kheyfets, Vitaly O; Kieweg, Sarah L

    2013-06-01

    HIV/AIDS is a growing global pandemic. A microbicide is a formulation of a pharmaceutical agent suspended in a delivery vehicle, and can be used by women to protect themselves against HIV infection during intercourse. We have developed a three-dimensional (3D) computational model of a shear-thinning power-law fluid spreading under the influence of gravity to represent the distribution of a microbicide gel over the vaginal epithelium. This model, accompanied by a new experimental methodology, is a step in developing a tool for optimizing a delivery vehicle's structure/function relationship for clinical application. We compare our model with experiments in order to identify critical considerations for simulating 3D free-surface flows of shear-thinning fluids. Here we found that neglecting lateral spreading, when modeling gravity-induced flow, resulted in up to 47% overestimation of the experimental axial spreading after 90 s. In contrast, the inclusion of lateral spreading in 3D computational models resulted in rms errors in axial spreading under 7%. In addition, the choice of the initial condition for shape in the numerical simulation influences the model's ability to describe early time spreading behavior. Finally, we present a parametric study and sensitivity analysis of the power-law parameters' influence on axial spreading, and to examine the impact of changing rheological properties as a result of dilution or formulation conditions. Both the shear-thinning index (n) and consistency (m) impacted the spreading length and deceleration of the moving front. The sensitivity analysis showed that gels with midrange m and n values (for the ranges in this study) would be most sensitive (over 8% changes in spreading length) to 10% changes (e.g., from dilution) in both rheological properties. This work is applicable to many industrial and geophysical thin-film flow applications of non-Newtonian fluids; in addition to biological applications in microbicide drug delivery.

  17. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro.

    Science.gov (United States)

    Wu, Gui; Wu, Weigang; Zheng, Qixin; Li, Jingfeng; Zhou, Jianbo; Hu, Zhilei

    2014-07-19

    Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants' surfaces were observed with electron microscope. The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a "nest-shaped" way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day's release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was

  18. High-Order Weno Simulations of Three-Dimensional Reshocked Richtmyer-Meshkov Instability to Late Times: Dynamics, Dependence on Initial Conditions, and Comparisons to Experimental Data

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, O; Latini, M

    2010-01-12

    The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 x 257{sup 2} three-dimensional ninth-order weighted essentially nonoscillatory shock-capturing simulations. A two-mode initial perturbation with superposed random noise is used to model the Mach 1.5 air/SF{sub 6} Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces, and density cross-sections are utilized to show the detailed flow structure before, during, and after reshock. It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock. The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model. A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also presented. Finally, the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as well as the evolution of the baroclinic enstrophy production, buoyancy production, and shear production terms in the enstrophy and turbulent kinetic transport equations.

  19. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    Science.gov (United States)

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii

  20. Higher physiopathogenicity by Fasciola gigantica than by the genetically close F. hepatica: experimental long-term follow-up of biochemical markers.

    Science.gov (United States)

    Valero, M Adela; Bargues, M Dolores; Khoubbane, Messaoud; Artigas, Patricio; Quesada, Carla; Berinde, Lavinia; Ubeira, Florencio M; Mezo, Mercedes; Hernandez, Jose L; Agramunt, Veronica H; Mas-Coma, Santiago

    2016-01-01

    Fascioliasis is caused by Fasciola hepatica and F. gigantica. The latter, always considered secondary in human infection, nowadays appears increasingly involved in Africa and Asia. Unfortunately, little is known about its pathogenicity, mainly due to difficulties in assessing the moment a patient first becomes infected and the differential diagnosis with F. hepatica. A long-term, 24-week, experimental study comparing F. hepatica and F. gigantica was made for the first time in the same animal model host, Guirra sheep. Serum biochemical parameters of liver damage, serum electrolytes, protein metabolism, plasma proteins, carbohydrate metabolism, hepatic lipid metabolism and inflammation were analysed on a biweekly basis as morbidity indicators. Serum anti-Fasciola IgG, coproantigen and egg shedding were simultaneously followed up. rDNA and mtDNA sequencing and the morphometric study by computer image analysis system (CIAS) showed that fasciolids used fitted standard species characteristics. Results demonstrated that F. gigantica is more pathogenic, given its bigger size and biomass but not due to genetic differences which are few. Fasciola gigantica shows a delayed development of 1-2 weeks regarding both the biliary phase and the beginning of egg shedding, with respective consequences for biochemical modifications in the acute and chronic periods. The higher F. gigantica pathogenicity contrasts with previous studies which only reflected the faster development of F. hepatica observed in short-term experiments. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    International Nuclear Information System (INIS)

    Jacqmin, R.P.

    1991-01-01

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ''modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise

  2. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, Robert P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  3. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  4. Chiral anomalies in higher dimensional supersymmetric theories

    International Nuclear Information System (INIS)

    Bonora, L.; Pasti, P.; Tonin, M.

    1987-01-01

    We derive explicit formulas for pure gauge anomalies in a SYM theory in 6D as well as in 10D. Each anomaly consists of two terms: a gauge cocycle and a cocycle of the superdiffeomorphisms. The derivation is based essentially on a remarkable property of supersymmetric theories which we call Weil triviality and is directly connected with the constraints. The analogous problem for Lorentz anomalies is stated in the same way. However, in general, there are difficulties concerning Weil triviality. We prove that for pure SUGRA in 6D as well as in 10D it is possible to prove Weil triviality and, consequently, to obtain explict expressions for pure Lorentz anomalies. However, as far as SUGRA coupled to SYM a la Chapline-Manton or a la Green-Schwarz is concerned, no self-evident solution is available. (orig.)

  5. Experimental Approach for the Uncertainty Assessment of 3D Complex Geometry Dimensional Measurements Using Computed Tomography at the mm and Sub-mm Scales.

    Science.gov (United States)

    Jiménez, Roberto; Torralba, Marta; Yagüe-Fabra, José A; Ontiveros, Sinué; Tosello, Guido

    2017-05-16

    The dimensional verification of miniaturized components with 3D complex geometries is particularly challenging. Computed Tomography (CT) can represent a suitable alternative solution to micro metrology tools based on optical and tactile techniques. However, the establishment of CT systems' traceability when measuring 3D complex geometries is still an open issue. In this work, an alternative method for the measurement uncertainty assessment of 3D complex geometries by using CT is presented. The method is based on the micro-CT system Maximum Permissible Error (MPE) estimation, determined experimentally by using several calibrated reference artefacts. The main advantage of the presented method is that a previous calibration of the component by a more accurate Coordinate Measuring System (CMS) is not needed. In fact, such CMS would still hold all the typical limitations of optical and tactile techniques, particularly when measuring miniaturized components with complex 3D geometries and their inability to measure inner parts. To validate the presented method, the most accepted standard currently available for CT sensors, the Verein Deutscher Ingenieure/Verband Deutscher Elektrotechniker (VDI/VDE) guideline 2630-2.1 is applied. Considering the high number of influence factors in CT and their impact on the measuring result, two different techniques for surface extraction are also considered to obtain a realistic determination of the influence of data processing on uncertainty. The uncertainty assessment of a workpiece used for micro mechanical material testing is firstly used to confirm the method, due to its feasible calibration by an optical CMS. Secondly, the measurement of a miniaturized dental file with 3D complex geometry is carried out. The estimated uncertainties are eventually compared with the component's calibration and the micro manufacturing tolerances to demonstrate the suitability of the presented CT calibration procedure. The 2U/T ratios resulting from the

  6. Experimental determination of the electron effective masses and mobilities in each dimensionally-quantized subband in an InxGa1−xAs quantum well with InAs inserts

    International Nuclear Information System (INIS)

    Kulbachinskii, V. A.; Oveshnikov, L. N.; Lunin, R. A.; Yuzeeva, N. A.; Galiev, G. B.; Klimov, E. A.; Maltsev, P. P.

    2015-01-01

    HEMT structures with In 0.53 Ga 0.47 As quantum well are synthesized using molecular-beam epitaxy on InP substrates. The structures are double-side Si δ-doped so that two dimensionally-quantized subbands are occupied. The effect of the central InAs nanoinsert in the quantum well on the electron effective masses m* and mobilities in each subband is studied. For experimental determination of m*, the quantum μ q and transport μ t mobilities of the two-dimensional electron gas in each dimensionally-quantized subband, the Shubnikov-de Haas effect is measured at two temperatures of 4.2 and 8.4 K. The electron effective masses are determined by the temperature dependence of the oscillation amplitudes, separating the oscillations of each dimensionally-quantized subband. The Fourier spectra of oscillations are used to determine the electron mobilities μ q and μ t in each dimensionally-quantized subband. It is shown that m* decreases as the InAs-nanoinsert thickness d in the In 0.53 Ga 0.47 As quantum well and electron mobilities increase. The maximum electron mobility is observed at the insert thickness d = 3.4 nm

  7. Dimensional transition of the universe

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1989-08-01

    In the extended n-dimensional Einstein theory of gravitation, where the spacetime dimension can be taken as a 'dynamical variable' which is determined by the 'Hamilton principle' of minimizing the extended Einstein-Hilbert action, it is suggested that our Universe of four-dimensional spacetime may encounter an astonishing dimensional transition into a new universe of three-dimensional or higher-than-four-dimensional spacetime. (author)

  8. Experimental study on the natural gas dual fuel engine test and the higher the mixture ratio of hydrogen to natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Lee, Y.S.; Park, C.K. [Cheonnam University, Kwangju (Korea); Masahiro, S. [Kyoto University, Kyoto (Japan)

    1999-05-28

    One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of Total Hydrogen Carbon(THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. And when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the nocking limit decreases and the produce of NOx increases. 5 refs., 9 figs., 1 tab.

  9. Effect of plants in constructed wetlands for organic carbon and nutrient removal: a review of experimental factors contributing to higher impact and suggestions for future guidelines.

    Science.gov (United States)

    Jesus, João M; Danko, Anthony S; Fiúza, António; Borges, Maria-Teresa

    2018-02-01

    Constructed wetland is a proven technology for water pollution removal, but process mechanisms and their respective contribution are not fully understood. The present review details the effect of plants on removal efficiency of constructed wetlands by focusing on literature that includes experiments with unplanted controls for organic carbon and nutrient (N and P) removal. The contribution of plant direct uptake is also assessed. Although it was found that several studies, mostly at laboratory or pilot scales, showed no statistical differences between planted and unplanted controls, some factors were found that help maximize the effect of plants. This study intends to contribute to a better understanding of the significance of the effect of plants in a constructed wetland, as well as to suggest a set of experimental guidelines in this field.

  10. Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study.

    Science.gov (United States)

    Zaklit, Josette; Craviso, Gale L; Leblanc, Normand; Yang, Lisha; Vernier, P Thomas; Chatterjee, Indira

    2017-10-01

    Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca 2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca 2+ mobilization from Ca 2+ -storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca 2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.

  11. Higher bioavailability of iron from whole wheat bread compared with iron-fortified white breads in caco-2 cell model: an experimental study.

    Science.gov (United States)

    Nikooyeh, Bahareh; Neyestani, Tirang R

    2017-06-01

    Bread, as the staple food of Iranians, with average per capita consumption of 300 g d -1 , could potentially be a good vehicle for many fortificants, including iron. In this study, iron bioavailability from flat breads (three fortified and one whole wheat unfortified) was investigated using in vitro simulation of gastrointestinal digestion and absorption in a caco-2 cell model. Despite having a lower ferritin/protein ratio in comparison with fortified breads, whole wheat bread showed higher iron bioavailability than the other three types of bread. Assuming iron bioavailability from the ferrous sulfate supplement used as standard was about 10%, the estimated bioavailability of iron from the test breads was calculated as 5.0-8.0%. Whole wheat bread (∼8%), as compared with the fortified breads (∼5-6.5%), had higher iron bioavailability. Iron from unfortified whole wheat bread is more bioavailable than from three types of iron-fortified breads. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Computed and experimental motion picture determination of bubble and solids motion in a two-dimensional fluidized-bed with a jet and immersed obstacle

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Bouillard, J.; Gidaspow, D.

    1986-01-01

    Bubble and solids motion in a two-dimensional rectangular fluidized-bed having a high speed central jet with a rectangular obstacle above it and secondary air flow at minimum fluidization have been computer modeled. Computer generated motion pictures have been found to be necessary to analyze the computations since there are such a large number of time-dependent complex phenomena difficult to comprehend otherwise. Comparison of the computer generated motion pictures with high speed motion pictures of a flow visualization experiment reveal good agreement

  13. An experimental study: quantitatively evaluating the change of the content of collagen fibres in penis with two-dimensional ShearWave™ Elastography.

    Science.gov (United States)

    Qiao, X-H; Zhang, J-J; Gao, F; Li, F; Bai, M; Du, L-F; Xing, J-F

    2017-06-01

    The purpose of this study was to explore the value of two-dimensional ShearWave ™ Elastography (2D-SWE) on quantitatively evaluating the change of the content of collagen fibres in penis. Twenty male Sprague Dawley rats were divided into the pre-sexual maturity group (Group 1) and the sexual decline group (Group 2) according to age. The ultrafast ultrasound device Aixplorer ® (SuperSonic Imagine, Aix-en-Provence, France) was used for 2D-SWE imaging of penis, and the measurement index was shear wave stiffness (SWS). The immunohistochemistry was used to analyse the content of collagen fibres in penis, and the measurement index was positive area percentage (PAP). The differences of SWS between the two groups and PAP between the two groups were analysed. SWS of Group 1 and Group 2 was 10.18 ± 1.09 and 8.02 ± 1.34 kPa, and SWS of Group 2 was significantly lower than Group 1 (p penis measured with 2D-SWE would change significantly as well. Two-dimensional SWE can be used to quantitatively evaluate the change of the content of collagen fibres in penis. © 2016 Blackwell Verlag GmbH.

  14. An alternative dimensional reduction prescription

    International Nuclear Information System (INIS)

    Edelstein, J.D.; Giambiagi, J.J.; Nunez, C.; Schaposnik, F.A.

    1995-08-01

    We propose an alternative dimensional reduction prescription which in respect with Green functions corresponds to drop the extra spatial coordinate. From this, we construct the dimensionally reduced Lagrangians both for scalars and fermions, discussing bosonization and supersymmetry in the particular 2-dimensional case. We argue that our proposal is in some situations more physical in the sense that it maintains the form of the interactions between particles thus preserving the dynamics corresponding to the higher dimensional space. (author). 12 refs

  15. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  16. Charged gravastars in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S., E-mail: shnkghosh122@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, B. Garden, Howrah 711103, West Bengal (India); Rahaman, F., E-mail: rahaman@associates.iucaa.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Guha, B.K., E-mail: bkguhaphys@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, B. Garden, Howrah 711103, West Bengal (India); Ray, Saibal, E-mail: saibal@associates.iucaa.in [Department of Physics, Government College of Engineering and Ceramic Technology, 73 A.C.B. Lane, Kolkata 700010, West Bengal (India)

    2017-04-10

    We explore possibility to find out a new model of gravastars in the extended D-dimensional Einstein–Maxwell space–time. The class of solutions as obtained by Mazur and Mottola of a neutral gravastar have been observed as a competent alternative to D-dimensional versions of the Schwarzschild–Tangherlini black hole. The outer region of the charged gravastar model therefore corresponds to a higher dimensional Reissner–Nordström black hole. In connection to this junction conditions, therefore we have formulated mass and the related Equation of State of the gravastar. It has been shown that the model satisfies all the requirements of the physical features. However, overall observational survey of the results also provide probable indication of non-applicability of higher dimensional approach for construction of a gravastar with or without charge from an ordinary 4-dimensional seed as far as physical ground is concerned.

  17. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience

    Science.gov (United States)

    Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.; hide

    2003-01-01

    BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.

  18. Higher Education

    African Journals Online (AJOL)

    Kunle Amuwo: Higher Education Transformation: A Paradigm Shilt in South Africa? ... ty of such skills, especially at the middle management levels within the higher ... istics and virtues of differentiation and diversity. .... may be forced to close shop for lack of capacity to attract ..... necessarily lead to racial and gender equity,.

  19. Higher Education

    Science.gov (United States)

    & Development (LDRD) National Security Education Center (NSEC) Office of Science Programs Richard P Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute Scholarships STEM Education Programs Teachers (K-12) Students (K-12) Higher Education Regional Education

  20. Comparison of drift-velocity and drag coefficient approaches for one-dimensional two-fluid models in bubbly flow regime and validation with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Zarzuela, C.; Miró, R.; Verdú, G. [Institute for Industrial Safety, Radiology and Environmental (ISIRYM), Universitat Politècnica de València (Spain); Peña-Monferrer, C.; Chiva, S. [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellón de la Plana (Spain); Muñoz-Cobo, J.L., E-mail: congoque@iqn.upv.es, E-mail: cpena@uji.es [Institute for Energy Engineering, Universitat Politècnica de València (Spain)

    2017-07-01

    Two-phase flow simulation has been an extended research topic over the years due to the importance of predicting with accuracy the flow behavior within different installations, including nuclear power plants. Some of them are low pressure events, like low water pressure injection, nuclear refueling or natural circulation. This work is devoted to investigate the level of accuracy of the results when a two-phase flow experiment, which has been carried out at low pressure, is performed in a one-dimensional simulation code. In particular, the codes that have been selected to represent the experiment are the best-estimate system codes RELAP5/MOD3 and TRACE v5.0 patch4. The experiment consists in a long vertical pipe along which an air-water fluid in bubbly regime moves upwards in adiabatic conditions and atmospheric pressure. The simulations have been first performed in both codes with their original correlations, which are based on the drift flux model for the case of bubbly regime in vertical pipes. Then, a different implementation for the drag force has been undertaken, in order to perform a simulation with equivalent bubble diameter to the experiment. Results show that the calculation obtained from the codes are within the ranges of validity of the experiment with some discrepancies, which leads to the conclusion that the use of a drag correlation approach is more realistic than drift flux model. (author)

  1. Comparison of drift-velocity and drag coefficient approaches for one-dimensional two-fluid models in bubbly flow regime and validation with experimental data

    International Nuclear Information System (INIS)

    Gómez-Zarzuela, C.; Miró, R.; Verdú, G.; Peña-Monferrer, C.; Chiva, S.; Muñoz-Cobo, J.L.

    2017-01-01

    Two-phase flow simulation has been an extended research topic over the years due to the importance of predicting with accuracy the flow behavior within different installations, including nuclear power plants. Some of them are low pressure events, like low water pressure injection, nuclear refueling or natural circulation. This work is devoted to investigate the level of accuracy of the results when a two-phase flow experiment, which has been carried out at low pressure, is performed in a one-dimensional simulation code. In particular, the codes that have been selected to represent the experiment are the best-estimate system codes RELAP5/MOD3 and TRACE v5.0 patch4. The experiment consists in a long vertical pipe along which an air-water fluid in bubbly regime moves upwards in adiabatic conditions and atmospheric pressure. The simulations have been first performed in both codes with their original correlations, which are based on the drift flux model for the case of bubbly regime in vertical pipes. Then, a different implementation for the drag force has been undertaken, in order to perform a simulation with equivalent bubble diameter to the experiment. Results show that the calculation obtained from the codes are within the ranges of validity of the experiment with some discrepancies, which leads to the conclusion that the use of a drag correlation approach is more realistic than drift flux model. (author)

  2. Experimental characterization of an ultrafast Thomson scattering x-ray source with three-dimensional time and frequency-domain analysis

    Directory of Open Access Journals (Sweden)

    W. J. Brown

    2004-06-01

    Full Text Available We present a detailed comparison of the measured characteristics of Thomson backscattered x rays produced at the Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in the laser focus, and the transverse and longitudinal phase spaces of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x rays produced from the interaction are presented and shown to agree well with the simulations.

  3. Lower pole anatomy and mid-renal-zone classification applied to flexible ureteroscopy: experimental study using human three-dimensional endocasts.

    Science.gov (United States)

    Marroig, Bruno; Favorito, Luciano Alves; Fortes, Marco A; Sampaio, Francisco J B

    2015-12-01

    The aim of this study was to analyze the anatomy of the inferior pole collecting system and the mid-renal-zone classification in human endocasts applied to flexible ureteroscopy. 170 three-dimensional polyester resin endocasts of the kidney collecting system were obtained from 85 adult cadavers. We divided the endocasts into four groups: A1--kidney midzone (KM), drained by minor calices (mc) that are dependent on the superior or the inferior caliceal groups; A2--KM drained by crossed calices; B1--KM drained by a major caliceal group independent of both the superior and inferior groups; and B2--KM drained by mc entering directly into the renal pelvis. We studied the number of calices, the angle between the lower infundibulum and renal pelvis and the angle between the lower infundibulum and the inferior mc (LIICA). Means were statistically compared using ANOVA and the unpaired T test (p kidney midzone drained by minor calices that are dependent on the superior or on the inferior caliceal groups presented at least two restrictive anatomical features. The mid-renal-zone classification was predictive of anatomical risk factors for lower pole ureteroscopy difficulties.

  4. Dimensional comparison theory.

    Science.gov (United States)

    Möller, Jens; Marsh, Herb W

    2013-07-01

    Although social comparison (Festinger, 1954) and temporal comparison (Albert, 1977) theories are well established, dimensional comparison is a largely neglected yet influential process in self-evaluation. Dimensional comparison entails a single individual comparing his or her ability in a (target) domain with his or her ability in a standard domain (e.g., "How good am I in math compared with English?"). This article reviews empirical findings from introspective, path-analytic, and experimental studies on dimensional comparisons, categorized into 3 groups according to whether they address the "why," "with what," or "with what effect" question. As the corresponding research shows, dimensional comparisons are made in everyday life situations. They impact on domain-specific self-evaluations of abilities in both domains: Dimensional comparisons reduce self-concept in the worse off domain and increase self-concept in the better off domain. The motivational basis for dimensional comparisons, their integration with recent social cognitive approaches, and the interdependence of dimensional, temporal, and social comparisons are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  5. Three-dimensional simulations of plasma turbulence in the RFX-mod scrape-off layer and comparison with experimental measurements

    Science.gov (United States)

    Riva, Fabio; Vianello, Nicola; Spolaore, Monica; Ricci, Paolo; Cavazzana, Roberto; Marrelli, Lionello; Spagnolo, Silvia

    2018-02-01

    The tokamak scrape-off layer (SOL) plasma dynamics is investigated in a circular limiter configuration with a low edge safety factor. Focusing on the experimental parameters of two ohmic tokamak inner-wall limited plasma discharges in RFX-mod [Sonato et al., Fusion Eng. Des. 74, 97 (2005)], nonlinear SOL plasma simulations are performed with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The numerical results are compared with the experimental measurements, assessing the reliability of the GBS model in describing the RFX-mod SOL plasma dynamics. It is found that the simulations are able to quantitatively reproduce the RFX-mod experimental measurements of the electron plasma density, electron temperature, and ion saturation current density (jsat) equilibrium profiles. Moreover, there are indications that the turbulent transport is driven by the same instability in the simulations and in the experiment, with coherent structures having similar statistical properties. On the other hand, it is found that the simulation results are not able to correctly reproduce the floating potential equilibrium profile and the jsat fluctuation level. It is likely that these discrepancies are, at least in part, related to simulating only the tokamak SOL region, without including the plasma dynamics inside the last close flux surface, and to the limits of applicability of the drift approximation. The turbulence drive is then identified from the nonlinear simulations and with the linear theory. It results that the inertial drift wave is the instability driving most of the turbulent transport in the considered discharges.

  6. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies

    International Nuclear Information System (INIS)

    Ishihara, D; Horie, T; Niho, T

    2014-01-01

    The relative importance of the wing’s inertial and aerodynamic forces is the key to revealing how the kinematical characteristics of the passive pitching motion of insect flapping wings are generated, which is still unclear irrespective of its importance in the design of insect-like micro air vehicles. Therefore, we investigate three species of flies in order to reveal this, using a novel fluid-structure interaction analysis that consists of a dynamically scaled experiment and a three-dimensional finite element analysis. In the experiment, the dynamic similarity between the lumped torsional flexibility model as a first approximation of the dipteran wing and the actual insect is measured by the Reynolds number Re, the Strouhal number St, the mass ratio M, and the Cauchy number Ch. In the computation, the three-dimension is important in order to simulate the stable leading edge vortex and lift force in the present Re regime over 254. The drawback of the present experiment is the difficulty in satisfying the condition of M due to the limitation of available solid materials. The novelty of the present analysis is to complement this drawback using the computation. We analyze the following two cases: (a) The equilibrium between the wing’s elastic and fluid forces is dynamically similar to that of the actual insect, while the wing’s inertial force can be ignored. (b) All forces are dynamically similar to those of the actual insect. From the comparison between the results of cases (a) and (b), we evaluate the contributions of the equilibrium between the aerodynamic and the wing’s elastic forces and the wing’s inertial force to the passive pitching motion as 80–90% and 10–20%, respectively. It follows from these results that the dipteran passive pitching motion will be based on the equilibrium between the wing’s elastic and aerodynamic forces, while it will be enhanced by the wing’s inertial force. (paper)

  7. Higher Education.

    Science.gov (United States)

    Hendrickson, Robert M.

    This chapter reports 1982 cases involving aspects of higher education. Interesting cases noted dealt with the federal government's authority to regulate state employees' retirement and raised the questions of whether Title IX covers employment, whether financial aid makes a college a program under Title IX, and whether sex segregated mortality…

  8. Supersymmetric dimensional regularization

    International Nuclear Information System (INIS)

    Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.

    1980-01-01

    There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed

  9. An experimental investigation of the hemodynamic variations due to aplastic vessels within three-dimensional phantom models of the Circle of Willis.

    LENUS (Irish Health Repository)

    Fahy, Paul

    2013-09-10

    A complete circle of Willis (CoW) is found in approximately 30-50% of the population. Anatomical variations, such as absent or surgically clamped vessels, can result in undesirable flow patterns. These can affect the brain\\'s ability to maintain cerebral perfusion and the formation of cerebral aneurysms. An experimental test system was developed to simulate cerebral physiological conditions through three flexible 3D patient-specific models of complete and incomplete CoW geometries. Flow visualizations were performed with isobaric dyes and the mapped dye streamlines were tracked throughout the models. Three to seven flow impact locations were observed for all configurations, corresponding to known sites for aneurysmal formation. Uni and bi-directional cross-flows occurred along the communicating arteries. The greatest shunting of flow occurred for a missing pre-communicating anterior (A1) and posterior (P1) cerebral arteries. The anterior cerebral arteries had the greatest reduction (15-37%) in efferent flow rates for missing either a unilateral A1 or bilateral P1 segments. The bi-directional cross-flows, with multiple afferent flow mixing, observed along the communicating arteries may explain the propensity of aneurysm formation at these sites. Reductions in efferent flow rates due to aplastic vessel configurations may affect normal brain function.

  10. 串列风力机三维尾流场的实验研究%Experimental study of three-dimensional wake of tandem wind turbines

    Institute of Scientific and Technical Information of China (English)

    杨瑞; 张志勇; 王强; 王小丽

    2017-01-01

    In order to improve the efficiency of wind-farm and reduce the impact of upstream wind turbine wake on downstream wind turbine,reasonable arrangement mode of wind turbines on wind-farm is especially important.Axial fans were employed to provide the oncoming wind speed and the distribution of wake velocity and the diffusion pattern of wake flow of two 100 W horizontal-axis wind turbines with different tandem intervals were obtained by using three-dimensional ultrasonic anemometer.The result showed that the axial velocity would increase first and then decrease with the increase of the radial distance in the same measurement sectior.With tandem interval increasing,the axial velocity would gradually increase,the fluctuation amplitude and frequency of radial velocity would decrease,and the tangential velocity fluctuation amplitude would reduce in the same measurement section.The fluctuation amplitude of tangential velocity in the wake would remain almost the same when the radial distance was 2 times of wind turbine rotor radius;the axial velocity would gradually increase and the velocity variation amplitude would gradually become gentle when the tandem interval was constant.Also,the location of axial velocity peak from the center of the rotor and the fluctuation amplitude of radial and tangential velocity would reduce.The existence of upstream wind turbine would make the fluctuation amplitude of radial and tangential velocity in wake increased and the power of downstream wind turbine reduce.Therefore,the tandem arrangement of wind turbines should be avoided as possible in wind-farm planning.%为了提高风电场效率,减小上游风力机尾流对下游风力机的影响,风电场中风力机的布置形式尤为重要.利用轴流式风机提供来流风速,使用三维超声波风速仪获得两台100 W水平轴风力机在不同串列间距时的尾流场速度分布及尾迹流动扩散规律.结果表明:在同一测量断面上随着径向距离的增大,轴向

  11. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

    International Nuclear Information System (INIS)

    Je, U.K.; Lee, M.S.; Cho, H.S.; Hong, D.K.; Park, Y.O.; Park, C.K.; Cho, H.M.; Choi, S.I.; Woo, T.H.

    2015-01-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (<360°) views would enable fast scanning with reduced imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality

  12. K-dimensional trio coherent states

    International Nuclear Information System (INIS)

    Yi, Hyo Seok; Nguyen, Ba An; Kim, Jaewan

    2004-01-01

    We introduce a novel class of higher-order, three-mode states called K-dimensional trio coherent states. We study their mathematical properties and prove that they form a complete set in a truncated Fock space. We also study their physical content by explicitly showing that they exhibit nonclassical features such as oscillatory number distribution, sub-Poissonian statistics, Cauchy-Schwarz inequality violation and phase-space quantum interferences. Finally, we propose an experimental scheme to realize the state with K = 2 in the quantized vibronic motion of a trapped ion

  13. Three-dimensional contrast-enhanced MRI using an intravascular contrast agent for detection of traumatic intra-abdominal hemorrhage and abdominal parenchymal injuries: an experimental study

    International Nuclear Information System (INIS)

    Weishaupt, D.; Ruehm, S.G.; Patak, M.A.; Schmidt, M.; Debatin, J.F.; Hetzer, F.H.

    2000-01-01

    The aim of this study was to compare the performance of 3D MRI in conjunction with an intravascular contrast agent to spiral contrast-enhanced CT, regarding the detection of abdominal parenchymal injuries as well as peritoneal hemorrhage in an animal model. Liver and kidney injuries were created surgically in six female pigs under general anesthesia. All pigs underwent contrast-enhanced spiral CT and 3D MR imaging following administration of an intravascular contrast agent (NC100150 Injection). Two readers rated their confidence independently on MR and CT data sets using a five-point scale for the presence of organ injury and hemoperitoneum. Autopsy findings served as standard of reference. Sensitivity and specificity for MR in detecting hepatic and renal injuries as well as hemoperitoneum was 100 %. Computed tomography was less accurate with sensitivity and specificity values of 90 and 94 %, respectively. Receiver operating characteristics (ROC) analysis revealed a higher confidence when interpretation was based on MR images. In an animal model 3D MR imaging in conjunction with an intravascular contrast agent proved highly accurate in detecting and localizing parenchymal injuries to the upper abdomen as well as in detecting intraperitoneal blood collections. (orig.)

  14. Experimental RA reactor operation with 80% enriched fuel - Program of experimental operation: a) Program of experimental operation with 80% enriched fuel at low power, b) contents of the experimental operation with 80% enriched fuel at higher power levels; Program probnog rada: a) Program probnog rada reaktora sa 80% obogacenim gorivom na malim snagama, b) sadrzaj programa probnog rada reaktora RA sa 80% obogacenim gorivom na vecim snagama

    Energy Technology Data Exchange (ETDEWEB)

    Martinc, R; Sotic, O; Skoric, M; Cupac, S; Bulovic, V; Maric, I; Marinkov, L [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1980-10-15

    Highly enriched (80%) uranium oxide fuel was regularly used in the mixed reactor core with the 2% enriched fuel since 1976. The most important changes related to reactor operation, in comparison with the original design project were related to reactor core fuelling schemes. At the end of 1979 reactor was shutdown due to the corrosion coating noticed on some fuel elements and due to decrease quality of the heavy water. Subsequently the Sanitary inspector of Serbia has prohibited further reactor operation. Restart of the reactor will not be a simple continuation of operation. It is indispensable to perform complete experimental program including measurements of critical parameters at different power levels for the core with fresh 80% enriched fuel. The aim of this document is to obtain working permission and its contents are in agreement with the procedure demanded by the Safety Committee of the Institute. It includes results of optimization and safety analysis for the initial reactor core. Since the permission for restart is not obtained, a separate RA reactor safety report is prepared in addition to the program for experimental operation. This report includes: detailed program for reactor experimental operation with 80% enriched fuel in the core at low power levels, and contents of the experimental operation with 80% enriched fuel in the core at higher power levels. [Serbo-Croat] Od decembra 1976. godine redovno je korisceno 80% obogaceno gorivo u mesanoj resetki reaktorskog jezgra sa 2% obogacenim gorivom. Najvece izmene na reaktoru u odnosu na originalni projekat izvrsene su u nacinu rukovanja gorivom. Krajem marta 1979. godine obustavljen je rad reaktora usled naslaga na gorivnim elementima i loseg stanja teske vode. Naknadno je izdata zabrana za rad reaktora od strane Sanitarnog inspektora SR Srbije. Ponovno pustanje reaktora u rad nece biti jednostavan nastavak rada. Neophodno je da se izvede kompletan program merenja kriticnih parametara i drugih

  15. z -Weyl gravity in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Taeyoon; Oh, Phillial, E-mail: dpproject@skku.edu, E-mail: ploh@skku.edu [Department of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-09-01

    We consider higher dimensional gravity in which the four dimensional spacetime and extra dimensions are not treated on an equal footing. The anisotropy is implemented in the ADM decomposition of higher dimensional metric by requiring the foliation preserving diffeomorphism invariance adapted to the extra dimensions, thus keeping the general covariance only for the four dimensional spacetime. The conformally invariant gravity can be constructed with an extra (Weyl) scalar field and a real parameter z which describes the degree of anisotropy of conformal transformation between the spacetime and extra dimensional metrics. In the zero mode effective 4D action, it reduces to four-dimensional scalar-tensor theory coupled with nonlinear sigma model described by extra dimensional metrics. There are no restrictions on the value of z at the classical level and possible applications to the cosmological constant problem with a specific choice of z are discussed.

  16. Theory of superfluidity and drag force in the one-dimensional Bose gas

    NARCIS (Netherlands)

    Cherny, A.Y.; Caux, J.-S.; Brand, J.

    2012-01-01

    The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and

  17. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  18. Dimensional Analysis

    Indian Academy of Sciences (India)

    Dimensional analysis is a useful tool which finds important applications in physics and engineering. It is most effective when there exist a maximal number of dimensionless quantities constructed out of the relevant physical variables. Though a complete theory of dimen- sional analysis was developed way back in 1914 in a.

  19. Higher holonomies: comparing two constructions

    DEFF Research Database (Denmark)

    Schaetz, Florian; Arias Abad, Camilo

    2015-01-01

    , there are the higher holonomies associated with flat superconnections as studied by Igusa [7], Block–Smith [3] and Arias Abad–Schätz [1]. We first explain how by truncating the latter construction one obtains examples of the former. Then we prove that the two-dimensional holonomies provided by the two approaches...

  20. Quantum key distribution session with 16-dimensional photonic states

    Science.gov (United States)

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  1. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  2. Spiky higher genus strings

    International Nuclear Information System (INIS)

    Ambjoern, J.; Bellini, A.; Johnston, D.

    1990-10-01

    It is clear from both the non-perturbative and perturbative approaches to two-dimensional quantum gravity that a new strong coupling regime is setting in at d=1, independent of the genus of the worldsheet being considered. It has been suggested that a Kosterlitz-Thouless (KT) phase transition in the Liouville theory is the cause of this behaviour. However, it has recently been pointed out that the XY model, which displays a KT transition on the plane and the sphere, is always in the strong coupling, disordered phase on a surface of constant negative curvature. A higher genus worldsheet can be represented as a fundamental region on just such a surface, which might seem to suggest that the KT picture predicts a strong coupling region for arbitrary d, contradicting the known results. We resolve the apparent paradox. (orig.)

  3. On higher-spin supertranslations and superrotations

    Energy Technology Data Exchange (ETDEWEB)

    Campoleoni, Andrea [Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Francia, Dario; Heissenberg, Carlo [Scuola Normale Superiore and INFN,Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2017-05-22

    We study the large gauge transformations of massless higher-spin fields in four-dimensional Minkowski space. Upon imposing suitable fall-off conditions, providing higher-spin counterparts of the Bondi gauge, we observe the existence of an infinite-dimensional asymptotic symmetry algebra. The corresponding Ward identities can be held responsible for Weinberg’s factorisation theorem for amplitudes involving soft particles of spin greater than two.

  4. Dimensional analysis made simple

    International Nuclear Information System (INIS)

    Lira, Ignacio

    2013-01-01

    An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own. (paper)

  5. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  6. Cosmic censorship in higher dimensions

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.

    2004-01-01

    We show that the naked singularities arising in dust collapse from smooth initial data (which include those discovered by Eardley and Smarr, Christodoulou, and Newman) are removed when we make a transition to higher dimensional spacetimes. Cosmic censorship is then restored for dust collapse, which will always produce a black hole as the collapse end state for dimensions D≥6, under conditions to be motivated physically such as the smoothness of initial data from which the collapse develops

  7. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao; Zhang, Hua

    2015-01-01

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards

  9. On intermittency in heavy ion collisions and the importance of γ-conversion in a multi-dimensional intermittency analysis

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Alexandrov, Y.A.; Aggarwal, M.M.

    1992-03-01

    Non-statistical fluctuations are used to probe the dynamical behaviour of multiparticle production in heavy ion interactions at ultra-relativistic energies. In a one-dimensional analysis a 1/ρ-scaling is established and it is furthermore found that effects from higher order particle correlations are small. In a two-dimensional analysis it is shown that a small background of particle-pairs with a narrow opening angle can distort the observed signal. As an example we estimate of the influence of γ-conversion and find that in our experiment γ-conversion alone gives results consistent with the experimental observations from a two-dimensional analysis. Whereas a two-dimensional analysis filters events where two particles are extremely close in phase space, the one-dimensional analysis picks out events with particles clustered in pseudorapidity, which are at the same time diluted in the azimuthal plane. (au)

  10. Light higgsinos as heralds of higher-dimensional unification

    International Nuclear Information System (INIS)

    Bruemmer, F.; Buchmueller, W.

    2011-05-01

    Grand-unified models with extra dimensions at the GUT scale will typically contain exotic states with Standard Model charges and GUT-scale masses. They can act as messengers for gauge-mediated supersymmetry breaking. If the number of messengers is sizeable, soft terms for the visible sector fields will be predominantly generated by gauge mediation, while gravity mediation can induce a small μ parameter. We illustrate this hybrid mediation pattern with two examples, in which the superpartner spectrum contains light and near-degenerate higgsinos with masses below 200 GeV. The typical masses of all other superpartners are much larger, from at least 500 GeV up to several TeV. The lightest superparticle is the gravitino, which may be the dominant component of dark matter. (orig.)

  11. Higher-dimensional string theory in Lyra geometry

    Indian Academy of Sciences (India)

    Cosmic strings as source of gravitational field in general relativity was discussed by ... tensor theory of gravitation and constructed an analog of Einstein field ... As string concept is useful before the particle creation and can explain galaxy for-.

  12. Higher-dimensional cosmological model with variable gravitational ...

    Indian Academy of Sciences (India)

    variable G and bulk viscosity in Lyra geometry. Exact solutions for ... a comparative study of Robertson–Walker models with a constant deceleration .... where H is defined as H =(˙A/A)+(1/3)( ˙B/B) and β0,H0 are representing present values of β ...

  13. GUT precursors and fixed points in higher-dimensional theories

    Indian Academy of Sciences (India)

    that it is possible to construct self-consistent 'hybrid' models containing ... states associated with the emergence of a grand unified theory (GUT) at this en- .... However, even though these couplings are extremely weak, the true loop expansion.

  14. Simplicial models for trace spaces II: General higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    of directed paths with given end points in a pre-cubical complex as the nerve of a particular category. The paper generalizes the results from Raussen [19, 18] in which we had to assume that the HDA in question arises from a semaphore model. In particular, important for applications, it allows for models...

  15. Higher dimensional unitary braid matrices: Construction, associated structures and entanglements

    International Nuclear Information System (INIS)

    Abdesselam, B.; Chakrabarti, A.; Dobrev, V.K.; Mihov, S.G.

    2007-03-01

    We construct (2n) 2 x (2n) 2 unitary braid matrices R-circumflex for n ≥ 2 generalizing the class known for n = 1. A set of (2n) x (2n) matrices (I, J,K,L) are defined. R-circumflex is expressed in terms of their tensor products (such as K x J), leading to a canonical formulation for all n. Complex projectors P ± provide a basis for our real, unitary R-circumflex. Baxterization is obtained. Diagonalizations and block- diagonalizations are presented. The loss of braid property when R-circumflex (n > 1) is block-diagonalized in terms of R-circumflex (n = 1) is pointed out and explained. For odd dimension (2n + 1) 2 x (2n + 1) 2 , a previously constructed braid matrix is complexified to obtain unitarity. R-circumflexLL- and R-circumflexTT- algebras, chain Hamiltonians, potentials for factorizable S-matrices, complex non-commutative spaces are all studied briefly in the context of our unitary braid matrices. Turaev construction of link invariants is formulated for our case. We conclude with comments concerning entanglements. (author)

  16. Light higgsinos as heralds of higher-dimensional unification

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, F.; Buchmueller, W.

    2011-05-15

    Grand-unified models with extra dimensions at the GUT scale will typically contain exotic states with Standard Model charges and GUT-scale masses. They can act as messengers for gauge-mediated supersymmetry breaking. If the number of messengers is sizeable, soft terms for the visible sector fields will be predominantly generated by gauge mediation, while gravity mediation can induce a small {mu} parameter. We illustrate this hybrid mediation pattern with two examples, in which the superpartner spectrum contains light and near-degenerate higgsinos with masses below 200 GeV. The typical masses of all other superpartners are much larger, from at least 500 GeV up to several TeV. The lightest superparticle is the gravitino, which may be the dominant component of dark matter. (orig.)

  17. Extensions of three-dimensional higher-derivative gravity

    NARCIS (Netherlands)

    Yin, Yihao

    2013-01-01

    Driedimensionale zwaartekrachtmodellen met hogere afgeleiden, met in het bijzonder New Massive Gravity (NMG) en Topologically Massive Gravity (TMG), zijn speelmodellen die gebruikt worden door theoretische natuurkundigen om te onderzoeken hoe Einsteins algemene relativiteitstheorie verbeterd kan

  18. Higher Dimensional Mappings for Which the Area Formula Holds

    Science.gov (United States)

    Goffman, Casper; Ziemer, William P.

    1970-01-01

    For each continuous mapping of 2 space into n space, n ≥ 2, the Lebesgue area is given by the classical formula provided that the partial derivatives exist almost everywhere and belong to the class L2. The analogous question for mappings of m space into n space, 2 < m ≤ n, has been open for a long time. We answer this question in the affirmative in a more general setting. Accordingly, as a special case, we show that if a continuous mapping of m space into n space, m ≤ n, has partial derivatives which belong to Lm then the Lebesgue area is given by the classical formula. PMID:16591817

  19. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    associated 3-spaces obtained as hypersurfaces t = constant, 3-spheroids, are suit- ... pressure. Considering the Vaidya–Tikekar [12] spheroidal geometry, ... a relativistic star in hydrostatic equilibrium having the spheroidal geometry of the .... K = 1, the spheroidal 3-space degenerates into a flat 3-space and when K = 0 it.

  20. Learning higher mathematics

    CERN Document Server

    Pontrjagin, Lev Semenovič

    1984-01-01

    Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con­ tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac­ cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro­ fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge­ ometry in the plane and 3-dimensional space. Refin...

  1. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  2. Unsteady three-dimensional behavior of natural convection in horizontal annulus

    International Nuclear Information System (INIS)

    Ohya, Toshizo; Miki, Yasutomi; Morita, Kouji; Fukuda, Kenji; Hasegawa, Shu

    1988-01-01

    An numerical analysis has been performed on unsteady three-dimensional natural convection in a concentric horizontal annulus filled with air. The explicit leap-frog scheme is used for integrating three-dimensional time-dependent equations and the fast Fourier transform (FFT) for solving the Poisson equations for pressure. An oscillatory flow is found to occur at high Rayleigh numbers, which agree qualitatively with the experimental observation made by Bishop et al. An experiment is also conducted to measure temperature fluctuations; a comparison between periods of fluctuations obtained numerically and experimentally shows a good agreement. Numerical calculations yield various statistical parameters of turbulence at higher Rayleigh numbers, which wait experimental verificaions, however. (author)

  3. Gravitating multidefects from higher dimensions

    CERN Document Server

    Giovannini, Massimo

    2007-01-01

    Warped configurations admitting pairs of gravitating defects are analyzed. After devising a general method for the construction of multidefects, specific examples are presented in the case of higher-dimensional Einstein-Hilbert gravity. The obtained profiles describe diverse physical situations such as (topological) kink-antikink systems, pairs of non-topological solitons and bound configurations of a kink and of a non-topological soliton. In all the mentioned cases the geometry is always well behaved (all relevant curvature invariants are regular) and tends to five-dimensional anti-de Sitter space-time for large asymptotic values of the bulk coordinate. Particular classes of solutions can be generalized to the framework where the gravity part of the action includes, as a correction, the Euler-Gauss-Bonnet combination. After scrutinizing the structure of the zero modes, the obtained results are compared with conventional gravitating configurations containing a single topological defect.

  4. Coset space dimensional reduction of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (Physik Dept., Technische Univ. Muenchen, Garching (Germany)); Zoupanos, G. (CERN, Geneva (Switzerland))

    1992-10-01

    We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.).

  5. Coset space dimensional reduction of gauge theories

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1992-01-01

    We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.)

  6. On butterfly effect in higher derivative gravities

    Energy Technology Data Exchange (ETDEWEB)

    Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-11-07

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  7. On butterfly effect in higher derivative gravities

    International Nuclear Information System (INIS)

    Alishahiha, Mohsen; Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid

    2016-01-01

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  8. Quadratic divergences and dimensional regularisation

    International Nuclear Information System (INIS)

    Jack, I.; Jones, D.R.T.

    1990-01-01

    We present a detailed analysis of quadratic and quartic divergences in dimensionally regulated renormalisable theories. We perform explicit three-loop calculations for a general theory of scalars and fermions. We find that the higher-order quartic divergences are related to the lower-order ones by the renormalisation group β-functions. (orig.)

  9. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  10. On dimensional reduction over coset spaces

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    Gauge theories defined in higher dimensions can be dimensionally reduced over coset spaces giving definite predictions for the resulting four-dimensional theory. We present the most interesting features of these theories as well as an attempt to construct a model with realistic low energy behaviour within this framework. (author)

  11. Higher order harmonics of reactor neutron equation

    International Nuclear Information System (INIS)

    Li Fu; Hu Yongming; Luo Zhengpei

    1996-01-01

    The flux mapping method using the higher order harmonics of the neutron equation is proposed. Based on the bi-orthogonality of the higher order harmonics, the process and formulas for higher order harmonics calculation are derived via the source iteration method with source correction. For the first time, not only any order harmonics for up-to-3-dimensional geometry are achieved, but also the preliminary verification to the capability for flux mapping have been carried out

  12. -Dimensional Fractional Lagrange's Inversion Theorem

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  13. Classification of the Weyl tensor in higher dimensions and applications

    International Nuclear Information System (INIS)

    Coley, A

    2008-01-01

    We review the theory of alignment in Lorentzian geometry and apply it to the algebraic classification of the Weyl tensor in higher dimensions. This classification reduces to the well-known Petrov classification of the Weyl tensor in four dimensions. We discuss the algebraic classification of a number of known higher dimensional spacetimes. There are many applications of the Weyl classification scheme, especially when used in conjunction with the higher dimensional frame formalism that has been developed in order to generalize the four-dimensional Newman-Penrose formalism. For example, we discuss higher dimensional generalizations of the Goldberg-Sachs theorem and the peeling theorem. We also discuss the higher dimensional Lorentzian spacetimes with vanishing scalar curvature invariants and constant scalar curvature invariants, which are of interest since they are solutions of supergravity theory. (topical review)

  14. Physics of low-dimensional systems

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas

  15. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  16. Simulation of TunneLadder traveling-wave tube cold-test characteristics: Implementation of the three-dimensional, electromagnetic circuit analysis code micro-SOS

    Science.gov (United States)

    Kory, Carol L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive time-consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion characteristics and beam interaction impedance of a TunneLadder traveling-wave tube slow-wave structure were simulated using the code. When reasonable dimensional adjustments are made, computer results agree closely with experimental data. Modifications to the circuit geometry that would make the TunneLadder TWT easier to fabricate for higher frequency operation are explored.

  17. Intercomparison of ion beam analysis software for the simulation of backscattering spectra from two-dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M., E-mail: matej.mayer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Malinský, P. [Nuclear Physics Institute of the Czech Academy of Sciences v.v.i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Schiettekatte, F. [Regroupement Québécois sur les Matériaux de Pointe (RQMP), Département de Physique, Université de Montréal, Montréal, QC (Canada); Zolnai, Z. [Centre for Energy Research, Institute of Technical Physics and Materials Science (MFA), Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary)

    2016-10-15

    The codes RBS-MAST, STRUCTNRA, F95-Rough and CORTEO are simulation codes for ion beam analysis spectra from two- or three-dimensional sample structures. The codes were intercompared in a code-code comparison using an idealized grating structure and by comparison to experimental data from a silicon grating on tantalum interlayer. All codes are in excellent agreement at higher incident energies and not too large energy losses. At lower incident energies, grazing angles of incidence and/or larger energy losses plural scattering effects play an increasing role. Simulation codes with plural scattering capabilities offer higher accuracy and better agreement to experimental results in this regime.

  18. Some spacetimes with higher rank Killing-Staeckel tensors

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Houri, T.; Kubiznak, D.; Warnick, C.M.

    2011-01-01

    By applying the lightlike Eisenhart lift to several known examples of low-dimensional integrable systems admitting integrals of motion of higher-order in momenta, we obtain four- and higher-dimensional Lorentzian spacetimes with irreducible higher-rank Killing tensors. Such metrics, we believe, are first examples of spacetimes admitting higher-rank Killing tensors. Included in our examples is a four-dimensional supersymmetric pp-wave spacetime, whose geodesic flow is superintegrable. The Killing tensors satisfy a non-trivial Poisson-Schouten-Nijenhuis algebra. We discuss the extension to the quantum regime.

  19. Similarity measurement method of high-dimensional data based on normalized net lattice subspace

    Institute of Scientific and Technical Information of China (English)

    Li Wenfa; Wang Gongming; Li Ke; Huang Su

    2017-01-01

    The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity, leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals, and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this meth-od, three data types are used, and seven common similarity measurement methods are compared. The experimental result indicates that the relative difference of the method is increasing with the di-mensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition, the similarity range of this method in different dimensions is [0, 1], which is fit for similarity analysis after dimensionality reduction.

  20. Riccion from higher-dimensional space-time with D-dimensional ...

    Indian Academy of Sciences (India)

    suggest that space-time above 3 05¢1016 GeV should be fractal. .... Here VD is the volume of SD, g´4·Dµ is the determinant of the metric tensor gMN (M ...... means that above 3.05x1016 GeV, SD is not a smooth surface whereas M4 is smooth.

  1. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  2. Neutronic evolution of SENA reactor during the first and second cycles. Comparison between the experimental power distributions obtained from the in-core instrumentation evaluation code CIRCE and the theoretical power values computed with the two-dimensional diffusion-evolution code EVOE

    International Nuclear Information System (INIS)

    Andrieux, Chantal

    1976-03-01

    The neutronic evolution of the reacteur Sena during the first and second cycles is presented. The experimental power distributions, obtained from the in-core instrumentation evaluation code CIRCE are compared with the theoretical powers calculated with the two-dimensional diffusion-evolution code EVOE. The CIRCE code allows: the study of the evolution of the principal parameters of the core, the comparison of the results of measured and theoretical estimates. Therefore this study has a great interest for the knowledge of the neutronic evolution of the core, as well as the validation of the refinement of theoretical estimation methods. The core calculation methods and requisite data for the evaluation of the measurements are presented after a brief description of the SENA core and its inner instrumentation. The principle of the in-core instrumentation evaluation code CIRCE, and calculation of the experimental power distributions and nuclear core parameters are then exposed. The results of the evaluation are discussed, with a comparison of the theoretical and experimental results. Taking account of the approximations used, these results, as far as the first and second cycles at SENA are concerned, are satisfactory, the deviations between theoretical and experimental power distributions being lower than 3% at the middle of the reactor and 9% at the periphery [fr

  3. Experimental verification of multidimensional quantum steering

    Science.gov (United States)

    Li, Che-Ming; Lo, Hsin-Pin; Chen, Liang-Yu; Yabushita, Atsushi

    2018-03-01

    Quantum steering enables one party to communicate with another remote party even if the sender is untrusted. Such characteristics of quantum systems not only provide direct applications to quantum information science, but are also conceptually important for distinguishing between quantum and classical resources. While concrete illustrations of steering have been shown in several experiments, quantum steering has not been certified for higher dimensional systems. Here, we introduce a simple method to experimentally certify two different kinds of quantum steering: Einstein-Podolsky-Rosen (EPR) steering and single-system (SS) steering (i.e., temporal steering), for dimensionality (d) up to d = 16. The former reveals the steerability among bipartite systems, whereas the latter manifests itself in single quantum objects. We use multidimensional steering witnesses to verify EPR steering of polarization-entangled pairs and SS steering of single photons. The ratios between the measured witnesses and the maximum values achieved by classical mimicries are observed to increase with d for both EPR and SS steering. The designed scenario offers a new method to study further the genuine multipartite steering of large dimensionality and potential uses in quantum information processing.

  4. Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator.

    Science.gov (United States)

    He, Ling Yan; Wang, Tie-Jun; Wang, Chuan

    2016-07-11

    High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator. In our scheme, the required number of interaction times between the photon and solid state system reduce greatly compared with the traditional method which decomposes the high-dimensional Hilbert space into 2-dimensional quantum space, and it is on a shorter temporal scale for the experimental realization. Moreover, we discuss the performance and feasibility of our hybrid CF gate, concluding that it can be easily extended to a 2n-dimensional case and it is feasible with current technology.

  5. Higher class groups of Eichler orders

    International Nuclear Information System (INIS)

    Guo Xuejun; Kuku, Aderemi

    2003-11-01

    In this paper, we prove that if A is a quaternion algebra and Λ an Eichler order in A, then the only p-torsion possible in even dimensional higher class groups Cl 2n (Λ) (n ≥ 1) are for those rational primes p which lie under prime ideals of O F at which Λ are not maximal. (author)

  6. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  7. Wave equations in higher dimensions

    CERN Document Server

    Dong, Shi-Hai

    2011-01-01

    Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader’s disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativisti...

  8. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  9. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  10. On the gravitational seesaw in higher-derivative gravity

    Energy Technology Data Exchange (ETDEWEB)

    Accioly, Antonio; Giacchini, Breno L. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2017-08-15

    Local gravitational theories with more than four derivatives are superrenormalizable. They also may be unitary in the Lee-Wick sense. Thus it is relevant to study the low-energy properties of these theories, especially to identify observables which might be useful for experimental detection of higher derivatives. Using an analogy with the neutrino physics, we explore the possibility of a gravitational seesaw mechanism in which several dimensional parameters of the same order of magnitude produce a hierarchy in the masses of propagating particles. Such a mechanism could make a relatively light degree of freedom detectable in low-energy laboratory and astrophysical observations, such as torsion-balance experiments and the bending of light. We demonstrate that such a seesaw mechanism in the six- and more-derivative theories is unable to reduce the lightest mass more than in the simplest four-derivative model. Adding more derivatives to the four-derivative action of gravity makes heavier masses even greater, while the lightest massive ghost is not strongly affected. This fact is favorable for protecting the theory from instabilities but makes the experimental detection of higher derivatives more difficult. (orig.)

  11. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  12. Dimensional cosmological principles

    International Nuclear Information System (INIS)

    Chi, L.K.

    1985-01-01

    The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle

  13. Low-Dimensional Feature Representation for Instrument Identification

    Science.gov (United States)

    Ihara, Mizuki; Maeda, Shin-Ichi; Ikeda, Kazushi; Ishii, Shin

    For monophonic music instrument identification, various feature extraction and selection methods have been proposed. One of the issues toward instrument identification is that the same spectrum is not always observed even in the same instrument due to the difference of the recording condition. Therefore, it is important to find non-redundant instrument-specific features that maintain information essential for high-quality instrument identification to apply them to various instrumental music analyses. For such a dimensionality reduction method, the authors propose the utilization of linear projection methods: local Fisher discriminant analysis (LFDA) and LFDA combined with principal component analysis (PCA). After experimentally clarifying that raw power spectra are actually good for instrument classification, the authors reduced the feature dimensionality by LFDA or by PCA followed by LFDA (PCA-LFDA). The reduced features achieved reasonably high identification performance that was comparable or higher than those by the power spectra and those achieved by other existing studies. These results demonstrated that our LFDA and PCA-LFDA can successfully extract low-dimensional instrument features that maintain the characteristic information of the instruments.

  14. Experimental facility of innovative types as the laboratory analog of research reactor experimental device

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Zabud'ko, A.N.; Kremenetskij, A.K.; Nikolaev, A.N.; Trykov, L.A.

    1991-01-01

    The paper analyses capability of creating laboratory analogs of complex experimental facilities at research reactors utilizing power radionuclide neutron sources fabricated in industrial conditions. Some experimental and calculational investigations of neutron-physical characteristics are presented, which have been attained at the RIZ research reactor laboratory analog. Experimental results are supplemented by calculational investigations, fulfilled by means of the BRAND three-dimensional computational complex and the ROZ-6 one-dimensional program. 4 refs.; 3 figs

  15. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  16. Nonlinearity management in higher dimensions

    International Nuclear Information System (INIS)

    Kevrekidis, P G; Pelinovsky, D E; Stefanov, A

    2006-01-01

    In the present paper, we revisit nonlinearity management of the time-periodic nonlinear Schroedinger equation and the related averaging procedure. By means of rigorous estimates, we show that the averaged nonlinear Schroedinger equation does not blow up in the higher dimensional case so long as the corresponding solution remains smooth. In particular, we show that the H 1 norm remains bounded, in contrast with the usual blow-up mechanism for the focusing Schroedinger equation. This conclusion agrees with earlier works in the case of strong nonlinearity management but contradicts those in the case of weak nonlinearity management. The apparent discrepancy is explained by the divergence of the averaging procedure in the limit of weak nonlinearity management

  17. Bianchi identities in higher dimensions

    International Nuclear Information System (INIS)

    Pravda, V; Pravdova, A; Coley, A; Milson, R

    2004-01-01

    A higher dimensional frame formalism is developed in order to study implications of the Bianchi identities for the Weyl tensor in vacuum spacetimes of the algebraic types III and N in arbitrary dimension n. It follows that the principal null congruence is geodesic and expands isotropically in two dimensions and does not expand in n - 4 spacelike dimensions or does not expand at all. It is shown that the existence of such principal geodesic null congruence in vacuum (together with an additional condition on twist) implies an algebraically special spacetime. We also use the Myers-Perry metric as an explicit example of a vacuum type D spacetime to show that principal geodesic null congruences in vacuum type D spacetimes do not share this property

  18. Experimental demonstration of water based tunable metasurface

    DEFF Research Database (Denmark)

    Odit, Mikhail; Kapitanova, Polina; Andryieuski, Andrei

    2016-01-01

    A simple dynamically tunable metasurface (two-dimensional metamaterial) operating at microwave frequencies is developed and experimentally investigated. Conceptually, the simplicity of the approach is granted by reconfigurable properties of unit cells partially filled with distilled water...

  19. Globalisation and Higher Education

    NARCIS (Netherlands)

    Marginson, Simon; van der Wende, Marijk

    2007-01-01

    Economic and cultural globalisation has ushered in a new era in higher education. Higher education was always more internationally open than most sectors because of its immersion in knowledge, which never showed much respect for juridical boundaries. In global knowledge economies, higher education

  20. Magneto-optical studies of low-dimensional organic conductors

    Directory of Open Access Journals (Sweden)

    Hitoshi Ohta, Motoi Kimata and Yugo Oshima

    2009-01-01

    Full Text Available Our periodic orbit resonance (POR results on quasi-two-dimensional (q2D, highly anisotropic q2D and quasi-one-dimensional (q1D organic conductors are reviewed together with our rotational cavity magneto-optical measurement system. Higher order POR up to seventh order has been observed in the q2D system (BEDT-TTF2Br(DIA, and the experimental conditions to observe POR and the cyclotron resonance (CR are discussed. Highly anisotropic q2D Fermi surface (FS in β''-(BEDT-TTF(TCNQ, which was considered to have q1D FS previously, is proposed by our POR measurements, and the possible interpretations of other experimental results of β''-(BEDT-TTF(TCNQ are discussed assuming the highly anisotropic q2D FS. Finally, detailed q1D FS of (DMET2I3, obtained from our POR results, is discussed in connection with the typical q1D system (TMTSF2ClO4.

  1. Persuasion in experimental ultimatum games

    DEFF Research Database (Denmark)

    Andersson, Ola; Galizzi, Matteo M.; Hoppe, Tim

    2010-01-01

    We study persuasion effects in experimental ultimatum games and find that Proposers' payoffs significantly increase if, along with offers, they can send messages which Responders read before deciding. Higher payoffs are driven by both lower offers and higher acceptance rates.......We study persuasion effects in experimental ultimatum games and find that Proposers' payoffs significantly increase if, along with offers, they can send messages which Responders read before deciding. Higher payoffs are driven by both lower offers and higher acceptance rates....

  2. Degenerate conformal theories on higher-genus surfaces

    International Nuclear Information System (INIS)

    Gerasimov, A.A.

    1989-01-01

    Two-dimensional degenerate field theories on higher-genus surfaces are investigated. Objects are built on the space of moduli, whose linear combinations are hypothetically conformal blocks in degenerate theories

  3. FROM ZERO-DIMENSIONAL TO 2-DIMENSIONAL CARBON NANOMATERIALS - part I: TYPES OF CNs

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2012-05-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. In this review paper are presented some of the most important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. The synthesis techniques are used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional CNs (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls.

  4. Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators

    Science.gov (United States)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1996-01-01

    A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.

  5. The search for higher symmetry in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Witten, E [Institute for Advanced Study, Princeton, NJ (USA)

    1989-11-17

    Some remarks are made about the nature and role of the search for higher symmetry in string theory. These symmetries are most likely to be uncovered in a mysterious 'unbroken phase', for which (2+1)-dimensional gravity provides an interesting and soluble model. New insights about conformal field theory, in which one gets 'out of flatland' to see a wider symmetry from a higher-dimensional vantage point, may offer clues to the unbroken phase of string theory. (author).

  6. Spherical dust collapse in higher dimensions

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.

    2004-01-01

    We consider here whether it is possible to recover cosmic censorship when a transition is made to higher-dimensional spacetimes, by studying the spherically symmetric dust collapse in an arbitrary higher spacetime dimension. It is pointed out that if only black holes are to result as the end state of a continual gravitational collapse, several conditions must be imposed on the collapsing configuration, some of which may appear to be restrictive, and we need to study carefully if these can be suitably motivated physically in a realistic collapse scenario. It would appear, that, in a generic higher-dimensional dust collapse, both black holes and naked singularities would develop as end states as indicated by the results here. The mathematical approach developed here generalizes and unifies the earlier available results on higher-dimensional dust collapse as we point out. Further, the dependence of black hole or naked singularity end states as collapse outcomes on the nature of the initial data from which the collapse develops is brought out explicitly and in a transparent manner as we show here. Our method also allows us to consider here in some detail the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse

  7. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  8. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; van Heijst, G.J.F.

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  9. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; Heijst, van G.J.F.

    2009-01-01

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  10. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d -dimensional regular lattices

    Science.gov (United States)

    Dias, W. S.; Bertrand, D.; Lyra, M. L.

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d >4 .

  11. Bose-Einstein condensation in chains with power-law hoppings: Exact mapping on the critical behavior in d-dimensional regular lattices.

    Science.gov (United States)

    Dias, W S; Bertrand, D; Lyra, M L

    2017-06-01

    Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d>4.

  12. How the flip target behaves in four-dimensional space

    International Nuclear Information System (INIS)

    Antillon, A.; Kats, J.

    1985-01-01

    We use available coupling theory for understanding how a flip target in a 4-dimensional phase space reduces a gaussian beam of particles. Experimental evidence at the AGS can be qualitatively explained by this theory

  13. Topological higher gauge theory: From BF to BFCG theory

    International Nuclear Information System (INIS)

    Girelli, F.; Pfeiffer, H.; Popescu, E. M.

    2008-01-01

    We study generalizations of three- and four-dimensional BF theories in the context of higher gauge theory. First, we construct topological higher gauge theories as discrete state sum models and explain how they are related to the state sums of Yetter, Mackaay, and Porter. Under certain conditions, we can present their corresponding continuum counterparts in terms of classical Lagrangians. We then explain that two of these models are already familiar from the literature: the ΣΦEA model of three-dimensional gravity coupled to topological matter and also a four-dimensional model of BF theory coupled to topological matter

  14. Playful learning in higher education

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Toft-Nielsen, Claus; Whitton, Nicola

    2017-01-01

    in higher education through the metaphor of the ‘magic circle’. This approach stimulates intrinsic motivation and educational drive, creates safe spaces for academic experimentation and exploration, and promotes reflective risk-taking, ideation, and participation in education. We present a model of playful......Increased focus on quantifiable performance and assessment in higher education is creating a learning culture characterised by fear of failing, avoidance of risk, and extrinsic goal-oriented behaviours. In this article, we explore possibilities of a more playful approach to teaching and learning...... learning, drawing on notions of signature pedagogies, field literature, and two qualitative studies on learner conceptions of enjoyment and reasons for disengagement. We highlight the potential of this approach to invite a different mind-set and environment, providing a formative space in which failure...

  15. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    Science.gov (United States)

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  16. Higher Education and Inequality

    Science.gov (United States)

    Brown, Roger

    2018-01-01

    After climate change, rising economic inequality is the greatest challenge facing the advanced Western societies. Higher education has traditionally been seen as a means to greater equality through its role in promoting social mobility. But with increased marketisation higher education now not only reflects the forces making for greater inequality…

  17. Higher Education in California

    Science.gov (United States)

    Public Policy Institute of California, 2016

    2016-01-01

    Higher education enhances Californians' lives and contributes to the state's economic growth. But population and education trends suggest that California is facing a large shortfall of college graduates. Addressing this short­fall will require strong gains for groups that have been historically under­represented in higher education. Substantial…

  18. Reimagining Christian Higher Education

    Science.gov (United States)

    Hulme, E. Eileen; Groom, David E., Jr.; Heltzel, Joseph M.

    2016-01-01

    The challenges facing higher education continue to mount. The shifting of the U.S. ethnic and racial demographics, the proliferation of advanced digital technologies and data, and the move from traditional degrees to continuous learning platforms have created an unstable environment to which Christian higher education must adapt in order to remain…

  19. Happiness in Higher Education

    Science.gov (United States)

    Elwick, Alex; Cannizzaro, Sara

    2017-01-01

    This paper investigates the higher education literature surrounding happiness and related notions: satisfaction, despair, flourishing and well-being. It finds that there is a real dearth of literature relating to profound happiness in higher education: much of the literature using the terms happiness and satisfaction interchangeably as if one were…

  20. Gender and Higher Education

    Science.gov (United States)

    Bank, Barbara J., Ed.

    2011-01-01

    This comprehensive, encyclopedic review explores gender and its impact on American higher education across historical and cultural contexts. Challenging recent claims that gender inequities in U.S. higher education no longer exist, the contributors--leading experts in the field--reveal the many ways in which gender is embedded in the educational…

  1. Quality of Higher Education

    DEFF Research Database (Denmark)

    Zou, Yihuan

    is about constructing a more inclusive understanding of quality in higher education through combining the macro, meso and micro levels, i.e. from the perspectives of national policy, higher education institutions as organizations in society, individual teaching staff and students. It covers both......Quality in higher education was not invented in recent decades – universities have always possessed mechanisms for assuring the quality of their work. The rising concern over quality is closely related to the changes in higher education and its social context. Among others, the most conspicuous...... changes are the massive expansion, diversification and increased cost in higher education, and new mechanisms of accountability initiated by the state. With these changes the traditional internally enacted academic quality-keeping has been given an important external dimension – quality assurance, which...

  2. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  3. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  4. Clustering high dimensional data

    DEFF Research Database (Denmark)

    Assent, Ira

    2012-01-01

    High-dimensional data, i.e., data described by a large number of attributes, pose specific challenges to clustering. The so-called ‘curse of dimensionality’, coined originally to describe the general increase in complexity of various computational problems as dimensionality increases, is known...... to render traditional clustering algorithms ineffective. The curse of dimensionality, among other effects, means that with increasing number of dimensions, a loss of meaningful differentiation between similar and dissimilar objects is observed. As high-dimensional objects appear almost alike, new approaches...... for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster...

  5. Creating marketing strategies for higher education institutions

    OpenAIRE

    Lidia Białoń

    2015-01-01

    The article presents a thesis that the primary premise of creating marketing strategies for higher education institution is a three-dimensional notion of marketing. The first dimension lies in the theoretical notions of the essence of marketing, including the transactional marketing (1.0), relationship marketing (2.0) and spiritual marketing (3.0). The second dimension is formed by methods of marketing research and accurate notions of marketing, while the third are channels of marketing infor...

  6. Higher English for CFE

    CERN Document Server

    Bridges, Ann; Mitchell, John

    2015-01-01

    A brand new edition of the former Higher English: Close Reading , completely revised and updated for the new Higher element (Reading for Understanding, Analysis and Evaluation) - worth 30% of marks in the final exam!. We are working with SQA to secure endorsement for this title. Written by two highly experienced authors this book shows you how to practice for the Reading for Understanding, Analysis and Evaluation section of the new Higher English exam. This book introduces the terms and concepts that lie behind success and offers guidance on the interpretation of questions and targeting answer

  7. Control of Higher–Dimensional PDEs Flatness and Backstepping Designs

    CERN Document Server

    Meurer, Thomas

    2013-01-01

    This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smar...

  8. Two-dimensional fruit ripeness estimation using thermal imaging

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2013-06-01

    Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.

  9. Ion distributions in a two-dimensional reconnection field geometry

    International Nuclear Information System (INIS)

    Curran, D.B.; Goertz, C.K.; Whelan, T.A.

    1987-01-01

    ISEE observations have shown trapped ion distributions in the magnetosphere along with streaming ion distributions in the magnetosheath. The more energetic ion beams are found to exist further away from the magnetopause than lower-energy ion beams. In order to understand these properties of the data, we have taken a simple two-dimensional reconnection model which contains a neutral line and an azimuthal electric field and compared its predictions with the experimental data of September 8, 1978. Our model explains trapped particles in the magnetosphere due to nonadiabatic mirroring in the magnetosheath and streaming ions in the magnetosheath due to energization at the magnetopause. The model also shows the higher-energy ions extending further into the magnetosheath, away from the magnetopause than the lower-energy ions. This suggests the ion data of September 8, 1978 are consistent with a reconnection geometry. Copyright American Geophysical Union 1987

  10. USACDEC Experimentation Manual

    Science.gov (United States)

    1981-10-01

    Commander, Instrumentation Command (Prov) who is responsible for the cinematic form of the films. The writing requirements for discrete sections of the...level of simulated realism required. Higher levels of simulated realism will require higher degrees of control to insure the test events occur as...experimentation, the "enemy" created to add realism . Aggressor forces may be represented by live troops In the field or by mechanical targets with or

  11. Planning for Higher Education.

    Science.gov (United States)

    Lindstrom, Caj-Gunnar

    1984-01-01

    Decision processes for strategic planning for higher education institutions are outlined using these parameters: institutional goals and power structure, organizational climate, leadership attitudes, specific problem type, and problem-solving conditions and alternatives. (MSE)

  12. Advert for higher education

    OpenAIRE

    N.V. Provozin; А.S. Teletov

    2011-01-01

    The article discusses the features advertising higher education institution. The analysis results of marketing research students for their choice of institutions and further study. Principles of the advertising campaign on three levels: the university, the faculty, the separate department.

  13. High dimensional neurocomputing growth, appraisal and applications

    CERN Document Server

    Tripathi, Bipin Kumar

    2015-01-01

    The book presents a coherent understanding of computational intelligence from the perspective of what is known as "intelligent computing" with high-dimensional parameters. It critically discusses the central issue of high-dimensional neurocomputing, such as quantitative representation of signals, extending the dimensionality of neuron, supervised and unsupervised learning and design of higher order neurons. The strong point of the book is its clarity and ability of the underlying theory to unify our understanding of high-dimensional computing where conventional methods fail. The plenty of application oriented problems are presented for evaluating, monitoring and maintaining the stability of adaptive learning machine. Author has taken care to cover the breadth and depth of the subject, both in the qualitative as well as quantitative way. The book is intended to enlighten the scientific community, ranging from advanced undergraduates to engineers, scientists and seasoned researchers in computational intelligenc...

  14. On higher derivative gravity

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1987-01-01

    A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt

  15. Higher Spins & Strings

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.

  16. Generating superpositions of higher order bessel beams [Conference paper

    CSIR Research Space (South Africa)

    Vasilyeu, R

    2009-10-01

    Full Text Available An experimental setup to generate a superposition of higher-order Bessel beams by means of a spatial light modulator and ring aperture is presented. The experimentally produced fields are in good agreement with those calculated theoretically....

  17. On infinite-dimensional state spaces

    International Nuclear Information System (INIS)

    Fritz, Tobias

    2013-01-01

    It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V −1 U 2 V=U 3 , then finite-dimensionality entails the relation UV −1 UV=V −1 UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V −1 U 2 V=U 3 holds only up to ε and then yields a lower bound on the dimension.

  18. On infinite-dimensional state spaces

    Science.gov (United States)

    Fritz, Tobias

    2013-05-01

    It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.

  19. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  20. Higher osmium beryllide

    International Nuclear Information System (INIS)

    Matyushenko, N.N.; Verkhorobin, L.F.; Serykh, V.P.; Pugachev, N.S.

    1982-01-01

    Results of experimental determination of composition and crystal structure of new beryllide OsBe 12 are presented. The beryllide is observed to be in equilibrium with Os 2 Be 17 (in the range of 90-92% Be) and α-Be phase (in the range of 93-99% Be). The structure OsBe 12 is similar to structures of the known beryllides Os 2 Be 17 and Os 3 Be 17

  1. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  2. Boundary effects in a quasi-two-dimensional driven granular fluid.

    Science.gov (United States)

    Smith, N D; Smith, M I

    2017-12-01

    The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.

  3. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  4. INTERNATIONALIZATION IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Catalina Crisan-Mitra

    2016-03-01

    Full Text Available Internationalization of higher education is one of the key trends of development. There are several approaches on how to achieve competitiveness and performance in higher education and international academic mobility; students’ exchange programs, partnerships are some of the aspects that can play a significant role in this process. This paper wants to point out the student’s perception regarding two main directions: one about the master students’ expectation regarding how an internationalized master should be organized and should function, and second the degree of satisfaction of the beneficiaries of internationalized master programs from Babe-Bolyai University. This article is based on an empirical qualitative research that was implemented to students of an internationalized master from the Faculty of Economics and Business Administration. This research can be considered a useful example for those preoccupied to increase the quality of higher education and conclusions drawn have relevance both theoretically and especially practically.

  5. Quality of Higher Education

    DEFF Research Database (Denmark)

    Zou, Yihuan; Zhao, Yingsheng; Du, Xiangyun

    . This transformation involves a broad scale of change at individual level, organizational level, and societal level. In this change process in higher education, staff development remains one of the key elements for university innovation and at the same time demands a systematic and holistic approach.......This paper starts with a critical approach to reflect on the current practice of quality assessment and assurance in higher education. This is followed by a proposal that in response to the global challenges for improving the quality of higher education, universities should take active actions...... of change by improving the quality of teaching and learning. From a constructivist perspective of understanding education and learning, this paper also discusses why and how universities should give more weight to learning and change the traditional role of teaching to an innovative approach of facilitation...

  6. Holography and higher-spin theories

    International Nuclear Information System (INIS)

    Petkou, T.

    2005-01-01

    I review recent work on the holographic relation between higher-spin theories in Anti-de Sitter spaces and conformal field theories. I present the main results of studies concerning the higher-spin holographic dual of the three-dimensional O(N) vector model. I discuss the special role played by certain double-trace deformations in Conformal Field Theories that have higher-spin holographic duals. Moreover, I show that duality transformations in a U(1) gauge theory on AdS 4 induce boundary double-trace deformations and argue that a similar effect takes place in the holography of linearized higher-spin theories on AdS 4 . (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  7. Reputation in Higher Education

    DEFF Research Database (Denmark)

    Martensen, Anne; Grønholdt, Lars

    2005-01-01

    leaders of higher education institutions to set strategic directions and support their decisions in an effort to create even better study programmes with a better reputation. Finally, managerial implications and directions for future research are discussed.Keywords: Reputation, image, corporate identity......The purpose of this paper is to develop a reputation model for higher education programmes, provide empirical evidence for the model and illustrate its application by using Copenhagen Business School (CBS) as the recurrent case. The developed model is a cause-and-effect model linking image...

  8. Reputation in Higher Education

    DEFF Research Database (Denmark)

    Plewa, Carolin; Ho, Joanne; Conduit, Jodie

    2016-01-01

    Reputation is critical for institutions wishing to attract and retain students in today's competitive higher education setting. Drawing on the resource based view and configuration theory, this research proposes that Higher Education Institutions (HEIs) need to understand not only the impact...... of independent resources but of resource configurations when seeking to achieve a strong, positive reputation. Utilizing fuzzy set qualitative comparative analysis (fsQCA), the paper provides insight into different configurations of resources that HEIs can utilize to build their reputation within their domestic...

  9. Navigating in higher education

    DEFF Research Database (Denmark)

    Thingholm, Hanne Balsby; Reimer, David; Keiding, Tina Bering

    Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur, Informati......Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur...

  10. A Shell Multi-dimensional Hierarchical Cubing Approach for High-Dimensional Cube

    Science.gov (United States)

    Zou, Shuzhi; Zhao, Li; Hu, Kongfa

    The pre-computation of data cubes is critical for improving the response time of OLAP systems and accelerating data mining tasks in large data warehouses. However, as the sizes of data warehouses grow, the time it takes to perform this pre-computation becomes a significant performance bottleneck. In a high dimensional data warehouse, it might not be practical to build all these cuboids and their indices. In this paper, we propose a shell multi-dimensional hierarchical cubing algorithm, based on an extension of the previous minimal cubing approach. This method partitions the high dimensional data cube into low multi-dimensional hierarchical cube. Experimental results show that the proposed method is significantly more efficient than other existing cubing methods.

  11. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  12. Exploring Higher Thinking.

    Science.gov (United States)

    Conover, Willis M.

    1992-01-01

    Maintains that the social studies reform movement includes a call for the de-emphasis of rote memory and more attention to the development of higher-order thinking skills. Discusses the "thinking tasks" concept derived from the work of Hilda Taba and asserts that the tasks can be used with almost any social studies topic. (CFR)

  13. Higher-Order Hierarchies

    DEFF Research Database (Denmark)

    Ernst, Erik

    2003-01-01

    This paper introduces the notion of higher-order inheritance hierarchies. They are useful because they provide well-known benefits of object-orientation at the level of entire hierarchies-benefits which are not available with current approaches. Three facets must be adressed: First, it must be po...

  14. Higher Education Funding Formulas.

    Science.gov (United States)

    McKeown-Moak, Mary P.

    1999-01-01

    One of the most critical components of the college or university chief financial officer's job is budget planning, especially using formulas. A discussion of funding formulas looks at advantages, disadvantages, and types of formulas used by states in budgeting for higher education, and examines how chief financial officers can position the campus…

  15. Liberty and Higher Education.

    Science.gov (United States)

    Thompson, Dennis F.

    1989-01-01

    John Stuart Mill's principle of liberty is discussed with the view that it needs to be revised to guide moral judgments in higher education. Three key elements need to be modified: the action that is constrained; the constraint on the action; and the agent whose action is constrained. (MLW)

  16. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-01-01

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines

  17. Evaluation in Higher Education

    Science.gov (United States)

    Bognar, Branko; Bungic, Maja

    2014-01-01

    One of the means of transforming classroom experience is by conducting action research with students. This paper reports about the action research with university students. It has been carried out within a semester of the course "Methods of Upbringing". Its goal has been to improve evaluation of higher education teaching. Different forms…

  18. Higher-level Innovization

    DEFF Research Database (Denmark)

    Bandaru, Sunith; Tutum, Cem Celal; Deb, Kalyanmoy

    2011-01-01

    we introduce the higher-level innovization task through an application of a manufacturing process simulation for the Friction Stir Welding (FSW) process where commonalities among two different Pareto-optimal fronts are analyzed. Multiple design rules are simultaneously deciphered from each front...

  19. Benchmarking for Higher Education.

    Science.gov (United States)

    Jackson, Norman, Ed.; Lund, Helen, Ed.

    The chapters in this collection explore the concept of benchmarking as it is being used and developed in higher education (HE). Case studies and reviews show how universities in the United Kingdom are using benchmarking to aid in self-regulation and self-improvement. The chapters are: (1) "Introduction to Benchmarking" (Norman Jackson…

  20. Creativity in Higher Education

    Science.gov (United States)

    Gaspar, Drazena; Mabic, Mirela

    2015-01-01

    The paper presents results of research related to perception of creativity in higher education made by the authors at the University of Mostar from Bosnia and Herzegovina. This research was based on a survey conducted among teachers and students at the University. The authors developed two types of questionnaires, one for teachers and the other…

  1. California's Future: Higher Education

    Science.gov (United States)

    Johnson, Hans

    2015-01-01

    California's higher education system is not keeping up with the changing economy. Projections suggest that the state's economy will continue to need more highly educated workers. In 2025, if current trends persist, 41 percent of jobs will require at least a bachelor's degree and 36 percent will require some college education short of a bachelor's…

  2. Cyberbullying in Higher Education

    Science.gov (United States)

    Minor, Maria A.; Smith, Gina S.; Brashen, Henry

    2013-01-01

    Bullying has extended beyond the schoolyard into online forums in the form of cyberbullying. Cyberbullying is a growing concern due to the effect on its victims. Current studies focus on grades K-12; however, cyberbullying has entered the world of higher education. The focus of this study was to identify the existence of cyberbullying in higher…

  3. Numerical simulation of stratified shear flow using a higher order Taylor series expansion method

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)

    1995-09-01

    A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.

  4. QUASI-ONE DIMENSIONAL CLASSICAL FLUIDS

    Directory of Open Access Journals (Sweden)

    J.K.Percus

    2003-01-01

    Full Text Available We study the equilibrium statistical mechanics of simple fluids in narrow pores. A systematic expansion is made about a one-dimensional limit of this system. It starts with a density functional, constructed from projected densities, which depends upon projected one and two-body potentials. The nature of higher order corrections is discussed.

  5. Gauge theories of infinite dimensional Hamiltonian superalgebras

    International Nuclear Information System (INIS)

    Sezgin, E.

    1989-05-01

    Symplectic diffeomorphisms of a class of supermanifolds and the associated infinite dimensional Hamiltonian superalgebras, H(2M,N) are discussed. Applications to strings, membranes and higher spin field theories are considered: The embedding of the Ramond superconformal algebra in H(2,1) is obtained. The Chern-Simons gauge theory of symplectic super-diffeomorphisms is constructed. (author). 29 refs

  6. Competitiveness - higher education

    Directory of Open Access Journals (Sweden)

    Labas Istvan

    2016-03-01

    Full Text Available Involvement of European Union plays an important role in the areas of education and training equally. The member states are responsible for organizing and operating their education and training systems themselves. And, EU policy is aimed at supporting the efforts of member states and trying to find solutions for the common challenges which appear. In order to make our future sustainable maximally; the key to it lies in education. The highly qualified workforce is the key to development, advancement and innovation of the world. Nowadays, the competitiveness of higher education institutions has become more and more appreciated in the national economy. In recent years, the frameworks of operation of higher education systems have gone through a total transformation. The number of applying students is continuously decreasing in some European countries therefore only those institutions can “survive” this shortfall, which are able to minimize the loss of the number of students. In this process, the factors forming the competitiveness of these budgetary institutions play an important role from the point of view of survival. The more competitive a higher education institution is, the greater the chance is that the students would like to continue their studies there and thus this institution will have a greater chance for the survival in the future, compared to ones lagging behind in the competition. Aim of our treatise prepared is to present the current situation and main data of the EU higher education and we examine the performance of higher education: to what extent it fulfils the strategy for smart, sustainable and inclusive growth which is worded in the framework of Europe 2020 programme. The treatise is based on analysis of statistical data.

  7. Convenience experimentation.

    Science.gov (United States)

    Krohs, Ulrich

    2012-03-01

    Systems biology aims at explaining life processes by means of detailed models of molecular networks, mainly on the whole-cell scale. The whole cell perspective distinguishes the new field of systems biology from earlier approaches within molecular cell biology. The shift was made possible by the high throughput methods that were developed for gathering 'omic' (genomic, proteomic, etc.) data. These new techniques are made commercially available as semi-automatic analytic equipment, ready-made analytic kits and probe arrays. There is a whole industry of supplies for what may be called convenience experimentation. My paper inquires some epistemic consequences of strong reliance on convenience experimentation in systems biology. In times when experimentation was automated to a lesser degree, modeling and in part even experimentation could be understood fairly well as either being driven by hypotheses, and thus proceed by the testing of hypothesis, or as being performed in an exploratory mode, intended to sharpen concepts or initially vague phenomena. In systems biology, the situation is dramatically different. Data collection became so easy (though not cheap) that experimentation is, to a high degree, driven by convenience equipment, and model building is driven by the vast amount of data that is produced by convenience experimentation. This results in a shift in the mode of science. The paper shows that convenience driven science is not primarily hypothesis-testing, nor is it in an exploratory mode. It rather proceeds in a gathering mode. This shift demands another shift in the mode of evaluation, which now becomes an exploratory endeavor, in response to the superabundance of gathered data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Experimental philosophy.

    Science.gov (United States)

    Knobe, Joshua; Buckwalter, Wesley; Nichols, Shaun; Robbins, Philip; Sarkissian, Hagop; Sommers, Tamler

    2012-01-01

    Experimental philosophy is a new interdisciplinary field that uses methods normally associated with psychology to investigate questions normally associated with philosophy. The present review focuses on research in experimental philosophy on four central questions. First, why is it that people's moral judgments appear to influence their intuitions about seemingly nonmoral questions? Second, do people think that moral questions have objective answers, or do they see morality as fundamentally relative? Third, do people believe in free will, and do they see free will as compatible with determinism? Fourth, how do people determine whether an entity is conscious?

  9. Inflationary scenario from higher curvature warped spacetime

    International Nuclear Information System (INIS)

    Banerjee, Narayan; Paul, Tanmoy

    2017-01-01

    We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR 2 in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n s ) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)

  10. Inflationary scenario from higher curvature warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-10-15

    We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR{sup 2} in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n{sub s}) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)

  11. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  12. Observables and Microcospic Entropy of Higher Spin Black Holes

    NARCIS (Netherlands)

    Compère, G.; Jottar, J.I.; Song, W.

    2013-01-01

    In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with W symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical

  13. Higher-spin fields in braneworlds

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)]. E-mail: c.germani@damtp.cam.ac.uk; Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)]. E-mail: kehagias@central.ntua.gr

    2005-10-03

    The dynamics of higher-spin fields in braneworlds is discussed. In particular, we study fermionic and bosonic higher-spin fields in AdS{sub 5} and their localization on branes. We find that four-dimensional zero modes exist only for spin-one fields, if there are no couplings to the boundaries. If boundary couplings are allowed, as in the case of the bulk graviton, all bosons acquire a zero mode irrespective of their spin. We show that there are boundary conditions for fermions, which generate chiral zero modes in the four-dimensional spectrum. We also propose a gauge invariant on-shell action with cubic interactions by adding non-minimal couplings, which depend on the Weyl tensor. In addition, consistent couplings between higher-spin fields and matter on the brane are presented. Finally, in the AdS/CFT correspondence, where bulk 5D theories on AdS are related to 4D CFTs, we explicitly discuss the holographic picture of higher-spin theories in AdS{sub 5} with and without boundaries.

  14. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  15. Three-dimensional effects of curved plasma actuators in quiescent air

    International Nuclear Information System (INIS)

    Wang Chincheng; Durscher, Ryan; Roy, Subrata

    2011-01-01

    This paper presents results on a new class of curved plasma actuators for the inducement of three-dimensional vortical structures. The nature of the fluid flow inducement on a flat plate, in quiescent conditions, due to four different shapes of dielectric barrier discharge (DBD) plasma actuators is numerically investigated. The three-dimensional plasma kinetic equations are solved using our in-house, finite element based, multiscale ionized gas (MIG) flow code. Numerical results show electron temperature and three dimensional plasma force vectors for four shapes, which include linear, triangular, serpentine, and square actuators. Three-dimensional effects such as pinching and spreading the neighboring fluid are observed for serpentine and square actuators. The mechanisms of vorticity generation for DBD actuators are discussed. Also the influence of geometric wavelength (λ) and amplitude (Λ) of the serpentine and square actuators on vectored thrust inducement is predicted. This results in these actuators producing significantly better flow mixing downstream as compared to the standard linear actuator. Increasing the wavelengths of serpentine and square actuators in the spanwise direction is shown to enhance the pinching effect giving a much higher vertical velocity. On the contrary, changing the amplitude of the curved actuator varies the streamwise velocity significantly influencing the near wall jet. Experimental data for a serpentine actuator are also reported for validation purpose.

  16. Radiosensitivity of higher plants

    International Nuclear Information System (INIS)

    Feng Zhijie

    1992-11-01

    The general views on radiosensitivity of higher plants have been introduced from published references. The radiosensitivity varies with species, varieties and organs or tissues. The main factors of determining the radiosensitivity in different species are nucleus volume, chromosome volume, DNA content and endogenous compounds. The self-repair ability of DNA damage and chemical group of biological molecules, such as -SH thiohydroxy of proteins, are main factors to determine the radiosensitivity in different varieties. The moisture, oxygen, temperature radiosensitizer and protector are important external factors for radiosensitivity. Both the multiple target model and Chadwick-Leenhouts model are ideal mathematical models for describing the radiosensitivity of higher plants and the latter has more clear significance in biology

  17. Higher Education Language Policy

    DEFF Research Database (Denmark)

    Lauridsen, Karen M.

    2013-01-01

    Summary of recommendations HEIs are encouraged, within the framework of their own societal context, mission, vision and strategies, to develop the aims and objectives of a Higher Education Language Policy (HELP) that allows them to implement these strategies. In this process, they may want......: As the first step in a Higher Education Language Policy, HEIs should determine the relative status and use of the languages employed in the institution, taking into consideration the answers to the following questions:  What is/are the official language(s) of the HEI?  What is/are the language...... and the level of internationalisation the HEI has or wants to have, and as a direct implication of that, what are the language proficiency levels expected from the graduates of these programme?  Given the profile of the HEI and its educational strategies, which language components are to be offered within...

  18. Experimental guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The paper proposes a model experimental design to study the effects of pesticides on particular ecosystem. It takes maize as a model crop and an alternative crop while studying the adverse effects on untargeted arthropods, residues in the soil and other plants. 5 refs, 7 figs

  19. Experimental studies

    International Nuclear Information System (INIS)

    Cowser, K.E.; Stansbury, P.S.; Poston, J.W.; Deus, S.F.; Chen, W.L.; Roswell, R.L.; Goans, R.E.; Cantrell, J.H. Jr.

    1978-01-01

    Spectral fluence measurements in an adult phantom are reported. A NaI(Tl) probe was used in various locations within the phantom and pulse-height spectra were obtained for seven beam configurations and three generating potentials. Some typical spectra results are presented. A comparison of calculated dose to experimental measurements is presented

  20. Spectroscopy of higher bottomonia

    Directory of Open Access Journals (Sweden)

    Ferretti J.

    2015-01-01

    Full Text Available In this contribution, we discuss our recent unquenched quark model results for the spectrum of bb̄ mesons with self energy corrections, due to the coupling to the meson-meson continuum. Our unquenched quark model predictions for the masses of the recently discovered χb(3P states are compared to those of a re-fit of Godfrey and Isgur’s relativized quark model to the most recent experimental data. The possible importance of continuum effects in the χb(3P states is discussed. Finally, we show our quark model results for the radiative decays of the χb(3P system and the open-bottom decays of bb̄ mesons.

  1. Higher Education in Scandinavia

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Lerche; Andreasen, Lars Birch

    2015-01-01

    Higher education systems around the world have been undergoing fundamental changes through the last 50 years from more narrow self-sustaining universities for the elite and into mass universities, where new groups of students have been recruited and the number of students enrolled has increased...... an impact on the educational systems in Scandinavia, and what possible futures can be envisioned?...... dramatically. In adjusting to the role of being a mass educational institution, universities have been challenged on how to cope with external pressures, such as forces of globalization and international markets, increased national and international competition for students and research grants, increased...

  2. Higher engineering mathematics

    CERN Document Server

    John Bird

    2014-01-01

    A practical introduction to the core mathematics principles required at higher engineering levelJohn Bird's approach to mathematics, based on numerous worked examples and interactive problems, is ideal for vocational students that require an advanced textbook.Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced mathematics engineering that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper level vocational courses. Now in

  3. Subjective figure reversal in two- and three-dimensional perceptual space.

    Science.gov (United States)

    Radilová, J; Radil-Weiss, T

    1984-08-01

    A permanently illuminated pattern of Mach's truncated pyramid can be perceived according to the experimental instruction given, either as a three-dimensional reversible figure with spontaneously changing convex and concave interpretation (in one experiment), or as a two-dimensional reversible figure-ground pattern (in another experiment). The reversal rate was about twice as slow, without the subjects being aware of it, if it was perceived as a three-dimensional figure compared to the situation when it was perceived as two-dimensional. It may be hypothetized that in the three-dimensional case, the process of perception requires more sequential steps than in the two-dimensional one.

  4. Creating marketing strategies for higher education institutions

    Directory of Open Access Journals (Sweden)

    Lidia Białoń

    2015-12-01

    Full Text Available The article presents a thesis that the primary premise of creating marketing strategies for higher education institution is a three-dimensional notion of marketing. The first dimension lies in the theoretical notions of the essence of marketing, including the transactional marketing (1.0, relationship marketing (2.0 and spiritual marketing (3.0. The second dimension is formed by methods of marketing research and accurate notions of marketing, while the third are channels of marketing information. Harmonizing these three dimensions is a precondition for effective marketing. Among other conditions for effective strategies there are: aligning goals of the chosen strategy with the mission of higher education institution, correct choice of targeted segments of the market and of marketing tools. The article also gives a sample classification of marketing strategies based on these criteria, with emphasis on the fact, that every higher education institution employs its own strategy.

  5. Radion stabilization in higher curvature warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Das, Ashmita [Indian Institute of Technology, Department of Physics, Guwahati, Assam (India); Mukherjee, Hiya; Paul, Tanmoy; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2018-02-15

    We consider a five dimensional AdS spacetime in presence of higher curvature term like F(R) = R + αR{sup 2} in the bulk. In this model, we examine the possibility of modulus stabilization from the scalar degrees of freedom of higher curvature gravity free of ghosts. Our result reveals that the model stabilizes itself and the mechanism of modulus stabilization can be argued from a geometric point of view. We determine the region of the parametric space for which the modulus (or radion) can to be stabilized. We also show how the mass and coupling parameters of radion field are modified due to higher curvature term leading to modifications of its phenomenological implications on the visible 3-brane. (orig.)

  6. Screening in two-dimensional gauge theories

    International Nuclear Information System (INIS)

    Korcyl, Piotr; Deutsches Elektronen-Synchrotron; Koren, Mateusz

    2012-12-01

    We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED 2 as a warmup for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.

  7. Screening in two-dimensional gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Korcyl, Piotr [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koren, Mateusz [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki

    2012-12-15

    We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED{sub 2} as a warmup for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.

  8. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    OpenAIRE

    Cowley, Benjamin R.; Kaufman, Matthew T.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2012-01-01

    The activity of tens to hundreds of neurons can be succinctly summarized by a smaller number of latent variables extracted using dimensionality reduction methods. These latent variables define a reduced-dimensional space in which we can study how population activity varies over time, across trials, and across experimental conditions. Ideally, we would like to visualize the population activity directly in the reduced-dimensional space, whose optimal dimensionality (as determined from the data)...

  9. Experimental insertions

    International Nuclear Information System (INIS)

    Sandweiss, J.; Kycia, T.F.

    1975-01-01

    A discussion is given of the eight identical experimental insertions for the planned ISABELLE storage rings. Four sets of quadrupole doublets are used to match the β functions in the insertions to the values in the cells, and the total free space available at the crossing point is 40 meters. An asymmetric beam energy operation is planned, which will be useful in a number of experiments

  10. Animal experimentation

    OpenAIRE

    Laz, Alak; Cholakova, Tanya Stefanova; Vrablova, Sofia; Arshad, Naverawaheed

    2016-01-01

    Animal experimentation is a crucial part of medical science. One of the ways to define it is any scientific experiment conducted for research purposes that cause any kind of pain or suffering to animals. Over the years, the new discovered drugs or treatments are first applied on animals to test their positive outcomes to be later used by humans. There is a debate about violating ethical considerations by exploiting animals for human benefits. However, different ethical theories have been made...

  11. Embedding of attitude determination in n-dimensional spaces

    Science.gov (United States)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1988-01-01

    The problem of attitude determination in n-dimensional spaces is addressed. The proper parameters are found, and it is shown that not all three-dimensional methods have useful extensions to higher dimensions. It is demonstrated that Rodriguez parameters are conveniently extendable to other dimensions. An algorithm for using these parameters in the general n-dimensional case is developed and tested with a four-dimensional example. The correct mathematical description of angular velocities is addressed, showing that angular velocity in n dimensions cannot be represented by a vector but rather by a tensor of the second rank. Only in three dimensions can the angular velocity be described by a vector.

  12. Animal experimentation.

    Science.gov (United States)

    Kolar, Roman

    2006-01-01

    Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation.

  13. Towards higher intensities

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Over the past 2 weeks, commissioning of the machine protection system has advanced significantly, opening up the possibility of higher intensity collisions at 3.5 TeV. The intensity has been increased from 2 bunches of 1010 protons to 6 bunches of 2x1010 protons. Luminosities of 6x1028 cm-2s-1 have been achieved at the start of fills, a factor of 60 higher than those provided for the first collisions on 30 March.   The recent increase in LHC luminosity as recorded by the experiments. (Graph courtesy of the experiments and M. Ferro-Luzzi) To increase the luminosity further, the commissioning crews are now trying to push up the intensity of the individual proton bunches. After the successful injection of nominal intensity bunches containing 1.1x1011 protons, collisions were subsequently achieved at 450 GeV with these intensities. However, half-way through the first ramping of these nominal intensity bunches to 3.5 TeV on 15 May, a beam instability was observed, leading to partial beam loss...

  14. Two-dimensional boundary-value problem for ion-ion diffusion

    International Nuclear Information System (INIS)

    Tuszewski, M.; Lichtenberg, A.J.

    1977-01-01

    Like-particle diffusion is usually negligible compared with unlike-particle diffusion because it is two orders higher in spatial derivatives. When the ratio of the ion gyroradius to the plasma transverse dimension is of the order of the fourth root of the mass ratio, previous one-dimensional analysis indicated that like-particle diffusion is significant. A two-dimensional boundary-value problem for ion-ion diffusion is investigated. Numerical solutions are found with models for which the nonlinear partial differential equation reduces to an ordinary fourth-order differential equation. These solutions indicate that the ion-ion losses are higher by a factor of six for a slab geometry, and by a factor of four for circular geometry, than estimated from dimensional analysis. The solutions are applied to a multiple mirror experiment stabilized with a quadrupole magnetic field which generates highly elliptical flux surfaces. It is found that the ion-ion losses dominate the electron-ion losses and that these classical radial losses contribute to a significant decrease of plasma lifetime, in qualitiative agreement with the experimental results

  15. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  16. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  17. Teaching at higher levels

    Science.gov (United States)

    1998-11-01

    Undergraduate physics programmes for the 21st century were under discussion at a recent event held in Arlington, USA, open to two or three members of the physics faculties of universities from across the whole country. The conference was organized by the American Association of Physics Teachers with co-sponsorship from the American Institute of Physics, the American Physical Society and Project Kaleidoscope. Among the various aims were to learn about physics departments that have successfully revitalized their undergraduate physics programmes with innovative introductory physics courses and multi-track majors programmes. Engineers and life scientists were to be asked directly how physics programmes can better serve their students, and business leaders would be speaking on how physics departments can help to prepare their students for the diverse careers that they will eventually follow. It was planned to highlight ways that departments could fulfil their responsibilities towards trainee teachers, to identify the resources needed for revitalizing a department's programme, and to develop guidelines and recommendations for a funding programme to support collaborative efforts among physics departments for carrying out the enhancements required. More details about the conference can be found on the AAPT website (see http://www.aapt.org/programs/rupc.html). Meanwhile the UK's Higher Education Funding Council has proposed a two-pronged approach to the promotion of high quality teaching and learning, as well as widening participation in higher education from 1999-2000. A total of £60m should be available to support these initiatives by the year 2001-2002. As part of this scheme the Council will invite bids from institutions to support individual academics in enhancing learning and teaching, as well as in recognition of individual excellence. As with research grants, such awards would enable staff to pursue activities such as the development of teaching materials

  18. Gravitational interaction of massless higher-spin fields

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A

    1987-04-30

    We show that, despite a widespread belief, the gravitational interaction of massless higher-spin fields (s>2) does exist at least in the first nontrivial order. The principal novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. Our construction is based on an infinite-dimensional higher-spin superalgebra proposed previously that leads to an infinite system of all spins s>1.

  19. Massless representations and admissibility condition for higher spin superalgebras

    Energy Technology Data Exchange (ETDEWEB)

    Konstein, S E; Vasiliev, M A

    1989-01-16

    Massless particle representations of various infinite-dimensional higher spin superalgebras proposed previously are constructed. We analyse which of higher spin superalgebras obey the requirement (the admissibility condition) of possessing massless unitary representations with the same spectra of spins as predicted by the structure of gauge fields originating from these superalgebras. It is argued that those higher spin superalgebras, which obey the admissibility condition, can serve as rigid supersymmetries in nontrivial consistent gauge theories of massless fields of all spins.

  20. New four-dimensional symmetry

    International Nuclear Information System (INIS)

    Hsu, J.P.

    1976-01-01

    A new picture of nature is proposed in which there are only two fundamental universal constants anti e (identical with e/c) and dirac constant (identical with dirac constant/c). The theory is developed within the framework of a new four-dimensional symmetry which is constructed on the basis of the Poincare--Einstein principle of relativity for the laws of physics and the Newtonian concept of time. One obtains a new space--light transformation law, a velocity-addition law, and so on. In this symmetry scheme, the speed of light is constant and is completely relative. The new theory is logically self-consistent, and it moreover is in agreement with all previously established experimental facts, such as the ''lifetime dilatation'' of unstable particles, the Michelson--Morley experiment, etc. There is a difference relative to the usual theory, though, in that our theory predicts a new law for the Doppler frequency shift, which can be tested experimentally by measuring the second-order frequency shift