WorldWideScience

Sample records for experimental fusion contribution

  1. Contribution to the study of copper and copper-arsenic archaeo-metallurgy using light element analysis and experimental fusion

    International Nuclear Information System (INIS)

    Papillon, F.

    1997-01-01

    The objective of this study is to try a direct reconstruction from ancient artefacts of the elaboration technology used in the dawning copper metallurgy. This word is based on both the light elements analysis and the carry out of the principles of physical metallurgy. However the study of an archaeological artefact necessitates the use of non destructive methods. A main aspect of this work consists in developing the most adequate metallographic technique and the methods for the determination of oxygen and carbon by ion beam analysis. Additionally experimental melting of copper and copper arsenic alloys were carried out in laboratory, under various temperature and atmosphere conditions, and 'on the field' in Archeodrome de Beaune, in order to reconstruct part of the prehistorical craftsmanship. The results of measurement are consistent with our general knowledge of oxido-reduction phenomena and the behaviour of copper and copper arsenic alloys s in agreement with the prediction of thermodynamics. The nuclear analysis of three ancient artefacts showed that the oxygen and carbon contents were closer to those of the Archeodrome than those of the laboratory. Further studies of the field should consider all parameters controlling the physical-chemistry of charcoal fire. (author)

  2. The contribution of fusion to sustainable development

    International Nuclear Information System (INIS)

    Ward, D.J.

    2007-01-01

    The world demand for energy is projected to more than double over the next 50 years, indeed this will be essential to bring much of the world out of poverty. At the same time there is increasing pressure to substantially reduce atmospheric pollution, most notably of carbon dioxide. Together, these conflicting goals drive a need to produce enormous amounts of non-carbon energy supply, much greater than our total present energy supply. This presents a huge challenge. As one of very few options for large-scale, non-carbon future supply of energy, fusion has the potential to make an important contribution to sustained energy supplies. Fusion's advantages of large fuel reserves, low atmospheric emissions and high levels of safety make it an important consideration in future energy strategies. Conceptual designs of fusion power plants have been optimised against safety and environmental criteria; the results are described here and the outcomes compared with other energy sources. To make a contribution to sustainable development, fusion must be economically viable in a future energy market. The calculated costs of electricity from fusion show that, particularly in an energy market where environmental constraints are playing an increasing role, fusion can make an important contribution

  3. JAERI contribution to the 19th IAEA Fusion Energy Conference

    International Nuclear Information System (INIS)

    2003-03-01

    This report compiles the contributed papers and presentation materials from JAERI to the 19th IAEA Fusion Energy Conference held at Lyon, France, from October 14th to 19th, 2002. The papers describe the recent progress in the experimental research in JT-60U and JFT-2M tokamaks, theoretical studies, fusion technology and R and D for ITER and fusion reactors. Total 32 papers consist of 1 overview talk, 14 oral and 17 poster presentations. Eight papers written by authors from other institutes and universities under collaboration with JAERI are also included. The 40 of the presented papers are indexed individually. (J.P.N.)

  4. The Contribution of Fusion to Sustainable Development

    International Nuclear Information System (INIS)

    Ward, D.

    2006-01-01

    The world demand for energy is projected to more than double over the next 50 years, indeed this will be essential to bring much of the world out of poverty. At the same time there is increasing pressure to substantially reduce atmospheric pollution, most notably of carbon dioxide. Together, these conflicting goals drive a need to produce enormous amounts of non-carbon energy supply, much greater than our total present energy supply. This presents an enormous challenge. As one of very few options for large-scale, non-carbon future supply of energy, fusion has the potential to make an important contribution to sustained energy supplies. Fusion's advantages of large fuel reserves, low atmospheric emissions and high levels of safety make it an important consideration in future energy strategies. - Fuel supplies are sufficient for at least thousands of years, and probably up to millions of years, of energy use. - Atmospheric emissions of CO 2 are very low and minor emissions of other pollutants are less harmful than those from most existing energy sources. - Hazards to the public will be very low because of the high levels of passive safety. - Waste materials will require little, or no, use of repository storage. Conceptual designs of fusion power plants have been optimised against safety and environmental criteria. The optimum designs vary both with the assessed progress in the development programme and according to the weight given to different criteria. The impact of this weighting on design, and the comparison of the outcomes with other energy sources, is described. To make a contribution to sustainable development, fusion must also be economically viable to enter the energy market. The calculated cost of electricity from fusion and other technologies, both new and existing, show that, particularly in an energy market where environmental constraints are playing an increasing role, fusion can make an important contribution. (author)

  5. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    1999-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  6. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    2001-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  7. Sub-barrier fusion: An experimental review

    International Nuclear Information System (INIS)

    Betts, R.R.

    1991-01-01

    This paper contains a review of the current status of the experimental study of heavy-ion fusion at sub-barrier energies. Emphasis is placed on the comparison of the experimentally observed quantities with theoretical expectations. Results of measurements of the spin distributions of the composite systems formed following fusion are critically examined with a view to understanding the large discrepancies between theory and experiment which exist for some systems. 20 refs., 14 figs

  8. Purdue Contribution of Fusion Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Brooks

    2011-09-30

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall

  9. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  10. ITER: the first experimental fusion reactor

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1995-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a multiphased project, at present proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement between the European Atomic Energy Community, the Government of Japan, the Government of the USA and the Government of Russia (''the parties''). The project is based on the tokamak, a Russian invention which has been brought to a high level of development and progress in all major fusion programs throughout the world.The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for commercial energy production and to test technologies for a demonstration fusion power plant. During the extended performance phase of ITER, it will demonstrate the characteristics of a fusion power plant, producing more than 1500MW of fusion power.The objective of the engineering design activity (EDA) phase is to produce a detailed, complete and fully integrated engineering design of ITER and all technical data necessary for the future decision on the construction of ITER.The ITER device will be a major step from present fusion experiments and will encompass all the major elements required for a fusion reactor. It will also require the development and the implementation of major new components and technologies.The inside surface of the plasma containment chamber will be designed to withstand temperature of up to 500 C, although normal operating temperatures will be substantially lower. Materials will have to be carefully chosen to withstand these temperatures, and a high neutron flux. In addition, other components of the device will be composed of state-of-the-art metal alloys, ceramics and composites, many of which are now in the early stage of development of testing. (orig.)

  11. Innovative safety ideas for fusion experimental machines

    International Nuclear Information System (INIS)

    Brereton, S.J.; Gouge, M.; Piet, S.J.; Merrill, B.J.; Holland, D.F.; Sze, D.K.

    1990-01-01

    Throughout the early stages of design of fusion experimental devices, such as ITER, safety experts have worked with designers to incorporate safety features into the design. Recent efforts have focused on passive safety features. Although designs of near-term fusion machines may appear consistent with expected regulatory requirements, the safety characteristics can potentially be more attractive. Here, a variety of suggestions that appear promising in terms of improving safety are given. These include new concepts, innovative technologies, further support of past concepts, and possible modification to operating scenarios. Some technical discussion on the feasibility of the proposals is provided. The ideas are generally conceptual at this stage and require further assessment and development work. However, each has the potential for enhancing the safety of experimental devices. 33 refs., 6 figs., 9 tabs

  12. Dust removal system for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y.; Seki, Y.; Ueda, S.; Aoki, I.

    1995-01-01

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors

  13. Dust removal system for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ueda, Y.; Takahashi, K.; Oda, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Seki, Y.; Ueda, S.; Aoki, I. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1995-12-31

    Development of a dust removal system using static electricity has been conducted. It is envisioned that the system can collect and transport dust under vacuum. In the system, the dust is charged by dielectric polarization and floated by an electrostatic attraction force that is generated by the DC electric field. The dust is then transported by the electric curtain formed by the three-phase AC electric field. Experimental investigation has been conducted to examine the characteristics of the system. Current research results indicate that the dust removal system using static electricity can be used for fusion experimental reactors.

  14. Management of Waste from the Fusion Experimental Breeder

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    <正> Fusion breeder might be an essential intermediate application of fusion energy at earlier term, which has the potential to provide plenty of commercial fissile fuel. Based on fusion physics and technologies available at present and in near future, the realistic Fusion Experimental Breeder, FEB-E was designed. The obiectives of the FEB-E are to demonstrate the engineering feasibility of

  15. Conceptual design of Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tone, T.; Fujisawa, N.

    1983-01-01

    Conceptual design studies of the Fusion Experimental Reactor (FER) have been performed. The FER has an objective of achieving selfignition and demonstrating engineering feasibility as a next generation tokamak to JT-60. Various concepts of the FER have been considered. The reference design is based on a double-null divertor. Optional design studies with some attractive features based on advanced concepts such as pumped limiter and RF current drive have been carried out. Key design parameters are; fusion power of 440 MW, average neutron wall loading of 1MW/m 2 , major radius of 5.5m, plasma minor radius of 1.1m, plasma elongation of 1.5, plasma current of 5.3MA, toroidal beta of 4%, toroidal field on plasma axis of 5.7T and tritium breeding ratio of above unity

  16. Radiation environment of fusion experimental reactor

    International Nuclear Information System (INIS)

    Mori, Seiji; Seki, Yasushi

    1988-01-01

    Next step device (experimental reactor), which is planned to succeed the large plasma experimental devices such as JT-60, JET and TFTR, generates radiation (neutron + gamma ray) during its operation. Radiation (neutronic) properties of the material are basis for the study on neutron utilization (energy recovery and tritium breeding), material selection (irradiation damage and lifetime evaluation) and radiation safety (personnel exposure and radiation waste). It is necessary, therefore, to predict radiation behaviour in the reactor correctly for the engineering design of the reactor. This report describes the outline of the radiation environment of the reactor based on the information obtained by the neutronic and shielding design calculation of the fusion experimental reactor (FER). (author)

  17. Experimental approaches to heavy ion fusion

    International Nuclear Information System (INIS)

    Obayashi, H.; Fujii-e, Y.; Yamaki, T.

    1986-01-01

    As a feasibility study on heavy-ion-beam induced inertial fusion (HIF) approach, a conceptual plant design called HIBLIC-I has been worked out since 1982. The characteristic features of this design are summarized. To experimentally confirm them and prove them at least in principle, considerations are made on possible experimental programs to give substantial information on these critical phenomena. In HIBLIC-I, an accelerator complex is adopted as driver system to provide 6 beams of 208 Pb +1 ions at 15 GeV, which will be simultaneously focussed on a single shell, three layered target. The target is designed to give an energy gain of 100, so that the total beam energy of 4 MJ with 160 TW power may release 400 MJ fusion energy. A reactor chamber is cylindrical with double-walled structure made of HT-9. There are three layers of liquid Li flow inside the reactor. The innermost layer forms a Li curtain which is effective to recover the residual cavity pressure. A thick upward flow serves as coolant and tritium breeder. Tritium will be recovered by yttrium gettering system. A driver system is operated at the repetition rate of 10 Hz and supplies beams for 10 reactor chambers. Then the plant yield of fusion power becomes 4000 MWt, corresponding a net electric output of 1.5 GW. Experimental programs related to HIBLIC-I is described and discussed, including those for heavy-ion-beam experiments and proposals for lithium curtain by electron beam to clarify the key phenomena in HIBLIC-I cavity. (Nogami, K.)

  18. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  19. Contributions to the 14th Symposium on fusion technology

    International Nuclear Information System (INIS)

    Andreani, R.

    1987-01-01

    The ENEA contributions to the 14. Symposium on fusion technology is represented by 15 papers. They are dealing mainly with the FTU (Frascati Tokamak Upgrade), a device under construction, through which high densities and confinement times will be obtained

  20. NIFS contributions to 19th IAEA fusion energy conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    NIFS has presented 21 papers at the 19th IAEA Fusion Energy Conference (Lyon, France, 14-19 October 2002). The contributed papers are collected in this report. The 21 papers are indexed individually. (J.P.N.)

  1. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Science.gov (United States)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future) fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN) and fusion (FuseNet) in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  2. ANNETTE Project: Contributing to The Nuclearization of Fusion

    Directory of Open Access Journals (Sweden)

    Ambrosini W.

    2018-01-01

    Full Text Available The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN and fusion (FuseNet in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  3. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    A conceptual design study (option C) has been carried out for the fusion experimental reactor (FER). In addition to design of the tokamak reactor and associated systems based on the reference design specifications, feasibility of a water-shield reactor concept was examined as a topical study. The design study for the reference tokamak reactor has produced a reactor concept for the FER, along with major R D items for the concept, based on close examinations on thermal design, electromagnetics, neutronics and remote maintenance. Particular efforts have been directed to the area of electromagnetics. Detailed analyses with close simulation models have been performed on PF coil arrangements and configurations, shell effects of the blanket for plasma position unstability, feedback control, and eddy currents during disruptions. The major design specifications are as follows; Peak fusion power 437 MW Major radius 5.5 m Minor radius 1.1 m Plasma elongation 1.5 Plasma current 5.3 MA Toroidal beta 4 % Field on axis 5.7 T (author)

  4. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1985-01-01

    The Fusion Experimental Reactor (FER) being developed at JAERI as a next generation tokamak to JT-60 has a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. During FY82 and FY83 a comprehensive and intensive conceptual design study has been conducted for a pulsed operation FER as a reference option which employs a conventional inductive current drive and a double-null divertor. In parallel with the reference design, studies have been carried out to evaluate advanced reactor concepts such as quasi-steady state operation and steady state operation based on RF current drive and pumped limiter, and comparative studies for single-null divertor/pumped limiter. This report presents major results obtained primarily from FY83 design studies, while the results of FY82 design studies are described in previous references (JAERI-M 83-213--216). (author)

  5. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-01-01

    Conceptual Design of Fusion Experimental Reactor (FER) of which the objective will be to realize self-ignition with D-T reaction is reported. Mechanical Configurations of FER are characterized with a noncircular plasma and a double-null divertor. The primary aim of design studies is to demonstrate fissibility of reactor structures as compact and simple as possible with removable torus sectors. The structures of each component such as a first-wall, blanket, shielding, divertor, magnet and so on have been designed. It is also discussed about essential reactor plant system requirements. In addition to the above, a brief concept of a steady-state reactor based on RF current drive is also discussed. The main aim, in this time, is to examine physical studies of a possible RF steady-state reactor. (author)

  6. Recent contributions to fusion reactor design and technology development

    International Nuclear Information System (INIS)

    1979-11-01

    The report contains a collection of 16 recent fusion technology papers on the STARFIRE Project, the study of alternate fusion fuel cycles, a maintainability study, magnet safety, neutral beam power supplies and pulsed superconducting magnets and energy transfer. This collection of papers contains contributions for Argonne National Laboratory, McDonnell Douglas Astronautics Company, General Atomic Company, The Ralph M. Parsons Company, the University of Illinois, and the University of Wisconsin. Separate abstracts are presented for each paper

  7. Collection of experimental data for fusion neutronics benchmark

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Yamamoto, Junji; Ichihara, Chihiro; Ueki, Kotaro; Ikeda, Yujiro.

    1994-02-01

    During the recent ten years or more, many benchmark experiments for fusion neutronics have been carried out at two principal D-T neutron sources, FNS at JAERI and OKTAVIAN at Osaka University, and precious experimental data have been accumulated. Under an activity of Fusion Reactor Physics Subcommittee of Reactor Physics Committee, these experimental data are compiled in this report. (author)

  8. External events analysis for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1990-01-01

    External events are those off-normal events that threaten facilities either from outside or inside the building. These events, such as floods, fires, and earthquakes, are among the leading risk contributors for fission power plants, and the nature of fusion facilities indicates that they may also lead fusion risk. This paper gives overviews of analysis methods, references good analysis guidance documents, and gives design tips for mitigating the effects of floods and fires, seismic events, and aircraft impacts. Implications for future fusion facility siting are also discussed. Sites similar to fission plant sites are recommended. 46 refs

  9. Maximum neutron yeidls in experimental fusion devices

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-02-01

    The optimal performances of 12 types of fusion devices are compared with regard to neutron production rate, neutrons per pulse, and fusion energy multiplication, Q/sub p/ (converted to the equivalent value in D-T operation). The record values in all categories are held by the beam-injected tokamak plasma, followed by other beam-target systems. The achieved values of Q/sub p/ for nearly all laboratory plasma fusion devices (magnetically or inertially confined) are found to roughly satisfy a common empirical scaling, Q/sub p/ approx. 10 -6 E/sub in//sup 3/2/, where E/sub in/ is the energy (in kilojoules) injected into the plasma during one or two energy confinement times, or the total energy delivered to the target for inertially confined systems. Fusion energy break-even (Q/sub p/ = 1) in any system apparently requires E/sub in/ approx. 10,000 kJ

  10. Overview on Fusion Nuclear Technology Experimental Testing

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Kysela, J.

    2016-01-01

    Roč. 2, č. 2 (2016), č. článku 021018. ISSN 2332-8983 Institutional support: RVO:61389021 Keywords : fusion * corrosion * thermohydraulic * LiPb * HHF * ITER Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  11. Review for 'Nattoh' model and experimental findings during cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki

    1993-01-01

    A review is described for the Nattoh model that provides the framework of the mechanisms of cold fusion. The model classifies the reactions into two categories: fundamental and associated reactions. The former involves the new 'hydrogen-catalyzed' fusion reaction and the chain-reactions of hydrogens. And extremely exciting physics are involved in the latter. Furthermore experimental findings are described. (author)

  12. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  13. Contributions to the sixth international conference on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-15

    The ICFRM series has documented progress in the field of fusion reactor materials since the first conference held in Tokyo in 1984. The conference series has continually increased its coverage to the point where it now includes the comprehensive range of materials science and technology areas that enable systems designers to meet the needs of current experiments and to present innovative solutions for future energy systems. This publication contains five contributions to the sixth international conference which have each been indexed separately.

  14. The Penning fusion experiment-ions

    International Nuclear Information System (INIS)

    Schauer, M. M.; Umstadter, K. R.; Barnes, D. C.

    1999-01-01

    The Penning fusion experiment (PFX) studies the feasibility of using a Penning trap as a fusion confinement device. Such use would require spatial and/or temporal compression of the plasma to overcome the Brillouin density limit imposed by the nonneutrality of Penning trap plasmas. In an earlier experiment, we achieved enhanced plasma density at the center of a pure, electron plasma confined in a hyperbolic, Penning trap by inducing spherically convergent flow in a nonthermal plasma. The goal of this work is to induce similar flow in a positive ion plasma confined in the virtual cathode provided by a spherical, uniform density electron plasma. This approach promises the greatest flexibility in operating with multi-species plasmas (e.g. D + /T + ) or implementing temporal compression schemes such as the Periodically Oscillating Plasma Sphere of Nebel and Barnes. Here, we report on our work to produce and diagnose the necessary electron plasma

  15. Fusion Materials Irradiation Test Facility: experimental capabilities and test matrix

    International Nuclear Information System (INIS)

    Opperman, E.K.

    1982-01-01

    This report describes the experimental capabilities of the Fusion Materials Irradiation Test Facility (FMIT) and reference material specimen test matrices. The description of the experimental capabilities and the test matrices has been updated to match the current single test cell facility ad assessed experimenter needs. Sufficient detail has been provided so that the user can plan irradiation experiments and conceptual hardware. The types of experiments, irradiation environment and support services that will be available in FMIT are discussed

  16. Canadian contributions to the safety and environmental aspects of fusion

    International Nuclear Information System (INIS)

    Stasko, R.; Wong, K.

    1987-05-01

    Since next-step fusion devices will be fuelled with mixtures of tritium and deuterium, the knowledge base and tritium handling experience associated with the operation of CANDU reactors is viewed as relevant to the development of safe fusion technology. Fusion safety issues will be compared with fission safety experience, after which specific Canadian activities in support of fusion safety will be overviewed. In addition, recommendations for appropriate fusion safety criteria will be summarized. 18 refs

  17. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  18. Conceptual design study of Fusion Experimental Reactor (FY87FER)

    International Nuclear Information System (INIS)

    1988-05-01

    The design study of Fusion Experimental Reactor(FER) which has been proposed to be the next step fusion device has been conducted by JAERI Reactor System Laboratory since 1982 and by FER design team since 1984. This is the final report of the FER design team program and describes the results obtained in FY1987 (partially in FY1986) activities. The contents of this report consist of the reference design which is based on the guideline in FY1986 by the Subcomitees set up in Nuclear Fusion Council of Atomic Energy Commission of Japan, the Low-Physics-Risk reactor design for achieving physics mission more reliably and the system study of FER design candidates including above two designs. (author)

  19. Remote maintenance for fusion experimental reactor

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Takeda, Nobukazu

    2000-01-01

    Here was introduced on maintenance of reactor core portion operated by remote control among maintenance of the International Thermonuclear Experimental Reactor (ITER) begun on its design since 1988 under international cooperation of U.S.A., Europe, Russia and Japan. Every appliances constructing the reactor core portion is necessary to carry out all of their inspection and maintenance by using remote controlled apparatus because of their radiation due to neutron generated by DT combustion of plasma. For engineering design activity (EDA) in ITER, not only design and development of the remote control appliances but also design under consideration of remote maintenance for from structural design of maintained objective appliances to access method to appliances, transportation and preservation method of radiated matters, and out-reactor maintenance in a hot cell, is now under progress. Here were also reported on basic concept on maintenance and conservation of ITER, maintenance design of diverter and blanket with high maintenance frequency and present state on development of maintenance appliances. (G.K.)

  20. Contributions to 28th European physical society conference on controlled fusion and plasma physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001) from LHD experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The LHD experimental group has presented nineteen papers at the 28th European Physical Society Conference on Controlled Fusion and Plasma Physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001). The contributed papers are collected in this report. (author)

  1. [Contribution of animal experimentation to pharmacology].

    Science.gov (United States)

    Sassard, Jean; Hamon, Michel; Galibert, Francis

    2009-11-01

    Animal experimentation is of considerable importance in pharmacology and cannot yet be avoided when studying complex, highly integrated physiological functions. The use of animals has been drastically reduced in the classical phases of pharmacological research, for example when comparing several compounds belonging to the same pharmacological class. However, animal experiments remain crucial for generating and validating new therapeutic concepts. Three examples of such research, conducted in strict ethical conditions, will be used to illustrate the different ways in which animal experimentation has contributed to human therapeutics.

  2. Neutronics analysis of International Fusion Material Irradiation Facility (IFMIF). Japanese contributions

    International Nuclear Information System (INIS)

    Oyama, Yukio; Noda, Kenji; Kosako, Kazuaki.

    1997-10-01

    In fusion reactor development for demonstration reactor, i.e., DEMO, materials tolerable for D-T neutron irradiation are absolutely required for both mechanical and safety point of views. For this requirement, several kinds of low activation materials were proposed. However, experimental data by actual D-T fusion neutron irradiation have not existed so far because of lack of fusion neutron irradiation facility, except fundamental radiation damage studies at very low neutron fluence. Therefore such a facility has been strongly requested. According to agreement of need for such a facility among the international parties, a conceptual design activity (CDA) of International Fusion Material Irradiation Facility (IFMIF) has been carried out under the frame work of the IEA-Implementing Agreement. In the activity, a neutronics analysis on irradiation field optimization in the IFMIF test cell was performed in three parties, Japan, US and EU. As the Japanese contribution, the present paper describes a neutron source term as well as incident deuteron beam angle optimization of two beam geometry, beam shape (foot print) optimization, and dpa, gas production and heating estimation inside various material loading Module, including a sensitivity analysis of source term uncertainty to the estimated irradiation parameters. (author)

  3. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  4. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  5. Contribution to the 22. IAEA Fusion Energy Conference

    International Nuclear Information System (INIS)

    2008-01-01

    This report is a compilation of the papers, concerning the FAST (Fusion Advanced Studies Torus) proposal, presented to the 22. IAEA conference on Fusion Energy. FAST is a new machine proposed to support ITER experimental exploitation as well as to anticipate DEMO relevant physics and technology. FAST is aimed at studying, in burning plasma relevant conditions, fast particle physics, plasma operations and plasma wall interaction in an integrated way. FAST has the capability to approach all the ITER scenarios significantly closer than present day experiments by using Deuterium plasmas. The necessity of achieving ITER relevant performance with a moderate cost has led to conceiving a compact Tokamak (R=1.82 m, a= 0.64 m) with high toroidal field (BT up to 8.5 T) and plasma current (Ip up to 8 MA). In order to study fast particle behaviours in conditions similar to those of ITER, the project has been provided with a dominant Ion Cyclotron Resonance Heating System (ICRH; 30 MW on the plasma). Moreover, the experiment foresees the use of 6 MW of Lower Hybrid (LHCD), essentially for plasma control and for non-inductive Current Drive, and of Electron Cyclotron Resonance Heating (ECRH, 4MW) for localized electron heating and plasma control. The ports have been designed to accommodate up to 10 MW of negative beams (NNBI) in the energy range of 0.5-1 MeV. The total power input will be in the 30-40 MW range in the different plasma scenarios with a wall power load comparable with that of ITER (P/R∼22 MW/m). All the ITER scenarios will be studied: from the reference H-mode, with plasma edge and ELMs characteristics similar to the ITER ones (Q up to ≅ 2.5), to a full current drive scenario, lasting around 170 s. The first wall as well as the divertor plates will be of Tungsten in order to ensure reactor relevant operation regimes. The divertor itself is designed to be completely removable by remote handling. This will allow studying (in view of DEMO) the behaviour of

  6. Railgun pellet injection system for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Oda, Y. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Azuma, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Satake, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Kasai, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan); Hasegawa, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan)

    1995-11-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s{sup -1} using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s{sup -1} using a 3 m long railgun. (orig.).

  7. Railgun pellet injection system for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Hasegawa, K.

    1995-01-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s -1 using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s -1 using a 3 m long railgun. (orig.)

  8. First preliminary design of an experimental fusion reactor

    International Nuclear Information System (INIS)

    1977-09-01

    A preliminary design of a tokamak experimental fusion reactor to be built in the near future is under way. The goals of the reactor are to achieve reactor-level plasma conditions for a sufficiently long operation period and to obtain design, construction and operational experience for the main components of full-scale power reactors. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics, shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel circulating system, reactor cooling system, tritium recovery system and maintenance scheme. The main design parameters are as follows: the reactor fusion power 100 MW, torus radius 6.75 m, plasma radius 1.5 m, first wall radius 1.75 m, toroidal magnet field on axis 6 T, blanket fertile material Li 2 O, coolant He, structural material 316SS and tritium breeding ratio 0.9. (auth.)

  9. Tritium system design studies of fusion experimental breeder

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua

    2003-01-01

    A summary of the tritium system design studies for the engineering outline design of a fusion experimental breeder (FEB-E) is presented. This paper is divided into three sections. In first section, the geometry, loading features and tritium concentrations in liquid lithium of tritium breeding zones of blanket are described. The tritium flow chart corresponding to the tritium fuel cycle system has been constructed, and the inventories in ten subsystems are calculated using SWITRIM code in section 2. Results show that the necessary initial tritium storage to start up FEB-E with fusion power of 143 MW is about 319 g. In final section, the tritium leakage issues under different operation circumstances have been analyzed. It was found that the potential danger of tritium leakage could be resulted from the exhausted gas of the diverter system. It is important to elevate the tritium burnup fraction and reduce the tritium throughput. (authors)

  10. Contribution to the study of copper and copper-arsenic archaeo-metallurgy using light element analysis and experimental fusion; Contribution a l`etude de la paleometallurgie du cuivre et du cuivre-arsenic a partir de l`analyse des elements legers et de fusions experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Papillon, F

    1997-12-31

    The objective of this study is to try a direct reconstruction from ancient artefacts of the elaboration technology used in the dawning copper metallurgy. This word is based on both the light elements analysis and the carry out of the principles of physical metallurgy. However the study of an archaeological artefact necessitates the use of non destructive methods. A main aspect of this work consists in developing the most adequate metallographic technique and the methods for the determination of oxygen and carbon by ion beam analysis. Additionally experimental melting of copper and copper arsenic alloys were carried out in laboratory, under various temperature and atmosphere conditions, and `on the field` in Archeodrome de Beaune, in order to reconstruct part of the prehistorical craftsmanship. The results of measurement are consistent with our general knowledge of oxido-reduction phenomena and the behaviour of copper and copper arsenic alloys s in agreement with the prediction of thermodynamics. The nuclear analysis of three ancient artefacts showed that the oxygen and carbon contents were closer to those of the Archeodrome than those of the laboratory. Further studies of the field should consider all parameters controlling the physical-chemistry of charcoal fire. (author) 96 refs.

  11. Experimental studies of tritium barrier concepts for fusion reactors

    International Nuclear Information System (INIS)

    Maroni, V.A.; Van Deventer, E.H.; Renner, T.A.; Pelto, R.H.; Wierdak, C.J.

    1976-01-01

    Ongoing experimental studies at ANL aimed at the development of methods to reduce tritium migration in fusion reactor systems currently include (1) work on the development of multilayered metal composites and impurity-coated refractory metals as barriers to tritium permeation in elevated temperature (greater than 300 0 C) structures and (2) investigations of the kinetics of tritium trapping reactions in inert gas purge streams under conditions that emulate fusion reactor environments. Significant results obtained thus far are (1) demonstration of greater than 50-fold reductions in the hydrogen permeability of stainless steel structures by using stainless steel-clad composites containing an intermediate layer of a selected copper alloy and (2) verification that surface-oxide coatings lead to greater than 100-fold reductions in the hydrogen permeability of vanadium, but that severe oxygen penetration and embrittlement of the vanadium occur at temperatures in the range from 300 to 800 0 C and under conditions of extremely low oxygen potential. Other considerations pertaining to the large-scale use of metal composites in fusion reactors are discussed, and progress in efforts to demonstrate the fabricability of metal composites is reviewed. Also presented are results of studies of the efficiencies of (1) CuO and CuO--MnO 2 beds in converting HT to HTO and (2) magnesium metal beds in converting HTO to HT

  12. Remote welding and cutting techniques for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, M.; Ishide, T.; Oda, Y.; Nagaoka, E.; Ue, K.; Kamei, H.

    1995-01-01

    Experimental investigation of the YAG laser cutting/welding and plasma gouging techniques has been conducted to examine their suitability for remote maintenance systems in future fusion experimental reactors. Using a hybrid beam coupling system, two laser beams of 500W and 740W powers were successfully combined to provide a 1,240W beam power. The combined laser was transmitted through the optical fiber for cutting and welding. The transmission loss for the beams is in the range of 13% to 14%, which is low. As for plasma gouging, the shallow gouging made a groove measuring 10 mm in width and 4 mm in depth on the stainless steel plates at a traversing speed of 75 cm/min, while the deep gouging made a groove of 12 mm in width and 7.5 mm in depth at a traversing speed of 50 cm/min. In addition, it was found that the shallow gouging did not leave byproducts from the material, providing a clean surface. Based on the findings, it is shown that the YAG laser cutting/welding and plasma gouging techniques can be us3ed for remote welding and cutting in future fusion experimental reactors

  13. Remote welding and cutting techniques for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Ishide, T.; Oda, Y.; Nagaoka, E.; Ue, K.; Kamei, H. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan)

    1995-12-31

    Experimental investigation of the YAG laser cutting/welding and plasma gouging techniques has been conducted to examine their suitability for remote maintenance systems in future fusion experimental reactors. Using a hybrid beam coupling system, two laser beams of 500W and 740W powers were successfully combined to provide a 1,240W beam power. The combined laser was transmitted through the optical fiber for cutting and welding. The transmission loss for the beams is in the range of 13% to 14%, which is low. As for plasma gouging, the shallow gouging made a groove measuring 10 mm in width and 4 mm in depth on the stainless steel plates at a traversing speed of 75 cm/min, while the deep gouging made a groove of 12 mm in width and 7.5 mm in depth at a traversing speed of 50 cm/min. In addition, it was found that the shallow gouging did not leave byproducts from the material, providing a clean surface. Based on the findings, it is shown that the YAG laser cutting/welding and plasma gouging techniques can be us3ed for remote welding and cutting in future fusion experimental reactors.

  14. Second preliminary design of JAERI experimental fusion reactor (JXFR)

    International Nuclear Information System (INIS)

    Sako, Kiyoshi; Tone, Tatsuzo; Seki, Yasushi; Iida, Hiromasa; Yamato, Harumi

    1979-06-01

    Second preliminary design of a tokamak experimental fusion reactor to be built in the near future has been performed. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics radiation shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel recirculating system, reactor cooling and tritium recovery systems and maintenance scheme. Safety analyses of the reactor system have been also performed. This paper gives a brief description of the design as of January, 1979. The feasibility study of raising the power density has been also studied and is shown as appendix. (author)

  15. Review of Fusion Systems and Contributing Technologies for SIHS-TD (Examen des Systemes de Fusion et des Technologies d'Appui pour la DT SIHS)

    National Research Council Canada - National Science Library

    Angel, Harry H; Ste-Croix, Chris; Kittel, Elizabeth

    2007-01-01

    The major objectives of the report were to identify and review the field of image fusion and contributing technologies and to recommend systems, algorithms and metrics for the proposed SIHS TD Vision SST fusion test bed...

  16. Electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Abe, Tetsuya; Murakami, Yoshio [Japan Atomic Energy Research Inst., Naka (Japan)

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al{sub 2}O{sub 3}, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs.

  17. Electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  18. ANNETTE Project : contributing to the nuclearization of fusion

    NARCIS (Netherlands)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new

  19. Fusion connection: contributions to industry, defense, and basic science resulting from scientific advances made in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Finn, T.; Woo, J.; Temkin, R.

    1985-10-01

    Fusion research has led to significant contributions in many different areas of industry, defense, and basic science. This diversity is represented visually in the introductory figure which shows both a radio galaxy, and a microchip produced by plasma etching. Some of these spin-off technologies are discussed

  20. Prediction of enthalpy of fusion of pure compounds using an Artificial Neural Network-Group Contribution method

    International Nuclear Information System (INIS)

    Gharagheizi, Farhad; Salehi, Gholam Reza

    2011-01-01

    Highlights: → An Artificial Neural Network-Group Contribution method is presented for prediction of enthalpy of fusion of pure compounds at their normal melting point. → Validity of the model is confirmed using a large evaluated data set containing 4157 pure compounds. → The average percent error of the model is equal to 2.65% in comparison with the experimental data. - Abstract: In this work, the Artificial Neural Network-Group Contribution (ANN-GC) method is applied to estimate the enthalpy of fusion of pure chemical compounds at their normal melting point. 4157 pure compounds from various chemical families are investigated to propose a comprehensive and predictive model. The obtained results show the Squared Correlation Coefficient (R 2 ) of 0.999, Root Mean Square Error of 0.82 kJ/mol, and average absolute deviation lower than 2.65% for the estimated properties from existing experimental values.

  1. Invited and contributed papers presented at the 22. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    In this report one invited and fifteen contributed papers by researchers of the `Centre de Recherche en Physique des Plasmas`, Lausanne, to the 22. EPS Conference on Controlled Fusion and Plasma Physics are assembled. figs., tabs., refs.

  2. Contributions to the third international symposium on fusion nuclear technologies (ISFNT-3)

    International Nuclear Information System (INIS)

    1994-11-01

    The contributions of ENEA (Italian Agency for New Technologies, Energy and the Environment) Frascati center researchers to the 3rd international symposium on fusion nuclear technologies, held at Los Angeles, 27 June-1 July 1994, are presented

  3. Summary report for IAEA CRP on lifetime prediction for the first wall of a fusion machine (JAERI contribution)

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Araki, Masanori; Akiba, Masato

    1993-03-01

    IAEA Coordinated Research Program (CRP) on 'Lifetime Prediction for the First Wall of a Fusion Machine' was started in 1989. Five participants, Joint Research Centre (JRC-Ispra), The NET team, Kernforschungszentrum Karlsruhe (KfK), Russian Research Center and Japan Atomic Energy Research Institute, contributed in this activity. The purpose of the CRP is to evaluate the thermal fatigue behavior of the first wall of a next generation fusion machine by means of numerical methods and also to contribute the design activities for ITER (International Thermonuclear Experimental Reactor). Thermal fatigue experiments of a first wall mock-up which were carried out in JRC-Ispra were selected as a first benchmark exercise model. All participants performed finite element analyses with various analytical codes to predict the lifetime of the simulated first wall. The first benchmark exercise has successfully been finished in 1992. This report summarizes a JAERI's contribution for this first benchmark exercise. (author)

  4. Conceptual design study of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1986-11-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. During two years from 1984 to 1985 FER concept was reviewed and redesigned. This report is the summary of the results obtained in the review and redesign activities in 1984 and 85. In the first year FER concept was discussed again and its frame work was reestablished. According to the new frame work the major reactor components of FER were designed. In the second year the whole plant system design including plant layout plan was conducted as well as the more detailed design analysis of the reactor conponents. The newly established frame for FER design is as follows: 1) Plasma : Self-ignition. 2) Operation scenario : Quasi-steady state operation with long burn pulse. 3) Neutron fluence on the first wall : 0.3 MWY/M 2 . 4) Blanket : Non-tritium breeding blanket with test modules for breeding blanket development. 5) Magnets : Superconducting Magnets. (author)

  5. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Kobayashi, Takeshi; Yamada, Masao; Mizoguchi, Tadanori

    1987-09-01

    This report describes the results of the reactor configuration/structure design for the fusion experimental reactor (FER) performed in FY 1986. The design was intended to meet the physical and engineering mission of the next step device which was decided by the subcommittee on the next step device of the nuclear fusion council. The objectives of the design study in FY 1986 are to advance and optimize the design concept of the last year because the recommendation of the subcommittee was basically the same as the design philosophy of the last year. Six candidate reactor configurations which correspond to options C ∼ D presented by the subcommittee were extensively examined. Consequently, ACS reactor (Advanced Option-C with Single Null Divertor) was selected as the reference configuration from viewpoints of technical risks and cost performance. Regarding the reactor structure, the following items were investigated intensively: minimization of reactor size, protection of first wall against plasma disruption, simplification of shield structure, reactor configuration which enables optimum arrangement of poloidal field coils. (author)

  6. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Saito, Ryusei; Kashihara, Shin-ichiro; Itoh, Shin-ichi

    1987-08-01

    This report describes the results of conceptual design study on plant systems for the Fusion Experimental Reactor (FY86 FER). Design studies for FER plant systems have been continued from FY85, especially for design modifications made in accordance with revisions of plasma scaling parameters and system improvements. This report describes 1) system construction, 2) site and reactor building plan, 3) repaire and maintenance system, 4) tritium circulation system, 5) heating, ventilation and air conditioning system, 6) tritium clean-up system, 7) cooling and baking system, 8) waste treatment and storage system, 9) control system, 10) electric power system, 11) site factory plan, all of which are a part of FY86 design work. The plant systems described in this report generally have been based on the FY86 FER (ACS Reactor) which is an one of the six candidates for FER. (author)

  7. Manipulator system for remote maintenance of fusion experimental reactor

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Munakata, Tadashi; Murakami, Shin; Kondoh, Mitsunori.

    1991-01-01

    We have completed the conceptual design for a rail-mounted vehicle type remote maintenance system for the fusion experimental reactor (FER), which will be the first D-T burning reactor in Japan. We have fabricated a 1/5-scale model and confirmed the feasibility of the design. In this system, a rail is deployed into the vessel and supported at four horizontal ports. A vehicle then moves along the rail and handles in-vessel components with manipulators. The advantages of this concept are the high stiffness and high reliability of the rail, and the high mobility of the vehicle for efficient maintenance operations. In the FER, this concept is considered to be the first option for in-vessel maintenance. This paper describes the conceptual design of the system and the feasibility study using the 1/5-scale model. (author)

  8. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu.

    1987-08-01

    This report describes the study on safety for FER(Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. This report consists of two chapters. The first chapter of this report summaries the FER system and describes FMEA(Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including the purification, isotope separation system and storage system. Here, probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA. (author)

  9. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  10. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-01-01

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  11. Thought-shape fusion in anorexia nervosa: an experimental investigation.

    Science.gov (United States)

    Radomsky, Adam S; de Silva, Padmal; Todd, Gillian; Treasure, Janet; Murphy, Tara

    2002-10-01

    Cognitive biases and cognitive distortions have been implicated as important factors in the development and maintenance of many disorders. The concept of thought-shape fusion (TSF) in eating disorders was developed by Shafran, Teachman, Kerry, and Rachman (British Journal of Clinical Psychology 38 (1999) 167) as a variant of thought-action fusion, described by Shafran, Thordarson and Rachman (Journal of Anxiety Disorders 10 (1996) 379). TSF occurs when thinking about eating certain types of food increases a person's estimate of their shape and/or weight, elicits a perception of moral wrongdoing, and/or makes the person feel fat. Shafran et al. (1999) examined both the psychometric and experimental properties of TSF in an undergraduate sample. This paper reports an extension of this work to a clinical group (N=20) of patients with anorexia nervosa. After completing a set of relevant questionnaires, participants were asked to think about a food which they considered extremely fattening. They were then asked to write out the sentence, "I am eating--.", inserting the name of the fattening food in the blank. After being asked to rate their anxiety, guilt, feelings about their weight, morality, etc., participants were given the opportunity to neutralize their statement in any way they chose. The majority of the participants neutralized in ways consistent with the findings of Shafran et al. (1999). The results are discussed in terms of cognitive-behavioural formulations of eating disorders, and of the influence of cognitive biases and cognitive distortions on the processing of information relevant to food, weight and shape in anorexia nervosa.

  12. The FENIX [Fusion ENgineering International EXperimental] test facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Chaplin, M.R.; Miller, J.R.; Shen, S.S.; Summers, L.T.; Kerns, J.A.

    1989-01-01

    The Fusion ENgineering International EXperimental Magnet Facility (FENIX), under construction at Lawrence Livermore National Laboratory (LLNL), is a significant step forward in meeting the testing requirements necessary for the development of superconductor for large-scale, superconducting magnets. A 14-T, transverse field over a test volume of 150 x 60 x 150 mm in length will be capable of testing conductors the size of the International Thermonuclear Experimental Reactor (ITER). Proposed conductors for ITER measure ∼35 mm on one side and will operate at currents of up to 40 kA at fields of ∼14 T. The testing of conductors and associated components, such as joints, will require large-bore, high-field magnet facilities. FENIX is being constructed using the existing A 2o and A 2i magnets from the idle MFTF. The east and west A 2 pairs will be mounted together to form a split-pair solenoid. The pairs of magnets will be installed in a 4.0-m cryostat vessel located in the HFTF building at LLNL. Each magnet is enclosed in its own cryostat, the existing 4.0-m vessel serving only as a vacuum chamber. 4 refs., 8 figs

  13. Experimental results on advanced inertial fusion schemes obtained within the HiPER project

    International Nuclear Information System (INIS)

    Batani, Dimitri; Santos, Jorge J.; Schurtz, Guy; Hulin, Sebastien; Ribeyre, Xavier; Nicolai, Philippe; Vauzour, Benjamin; Dorchies, Fabien; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Honrubia, Javier; Antonelli, Luca; Morace, Alessio; Volpe, Luca; Nazarov, Wiger; Pasley, John; Richetta, Maria; Lancaster, Kate; Spindloe, Christopher; Tolley, Martin; Neely, David; Kozlova, Michaela; Nejdl, Jaroslav; Rus, Bedrich; Wolowski, Jerzy; Badziak, Jan

    2012-01-01

    This paper presents the results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities. (authors)

  14. Contribution to the numerical modeling of inertial confinement fusion

    International Nuclear Information System (INIS)

    Maire, P.H.

    2011-02-01

    This work was realized by writing the CHIC code, which is a software for designing and restoring experience in the field of inertial confinement fusion. The theoretical model describing the implosion of a laser target is a system of partial differential equations in the center of which is the Euler equations written in Lagrangian formalism, coupled with diffusion equations modeling the nonlinear transport of energy by electrons and photons. After a brief review of the physical context, we describe two novel methods which constitute the backbone of the CHIC code. These are 2 high-order finite volume schemes respectively dedicated to solving the equations of Lagrangian hydrodynamics and the anisotropic diffusion equations on bi-dimensional unstructured grids. The first scheme, called EUCCLHYD (Explicit Unstructured Lagrangian Hydrodynamics), solves the equations of gas dynamics on a moving mesh that moves at the speed of light. It is obtained from a general formalism based on the concept of sub-cell forces. In this context, the numerical fluxes are expressed in terms of the sub-cell force and the nodal velocity. Their determination is based on 3 basic principles: geometric compatibility between the movement of nodes and the volume change of mesh (geometric conservation law), compatibility with the second law of thermodynamics and conservation of total energy and momentum. The high-order extension is performed using a method based on solving a generalized Riemann problem in the acoustic approximation. The second scheme, called CCLAD (Cell-Centered Lagrangian Diffusion), solves the anisotropic heat equation. The corresponding discretization relies on a discrete variational formulation based on the sub-cell that allows to build a multipoint approximation of heat flux. This high-order discretization makes possible the resolution of the equations of anisotropic diffusion with satisfactory accuracy on highly distorted Lagrangian meshes. (author)

  15. Conceptual design study of fusion experimental reactor (FY86FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Yamamoto, Shin; Ohara, Yoshihiro; Watanabe, Kazuhiro; Mizuno, Makoto; Araki, Masanori; Uede, Taisei; Okano, Kunihiko.

    1987-09-01

    This report describes the results of applicability studies for the negative ion-based neutral beam injector to the Fusion Experimental Reactor (FER). The operation scenario of FER has been proposed to adopt the neutral injection method as one of candidates, which has three functions of heating, current drive and profile control. One of the fundamental requirements is the tangential injection of the neutral beam. For neutral beam injectors, three port sections are available. Supposing to adopt the beam line with the straight long neutralizer which has been designed in JAERI, the geometrical arrangement was determined so as to avoid any trouble to the reactor structure. The conceptual study for major components which compose the beam line system was carried out including the estimation of the neutron streaming. The power supply system was studied also and the work was concentrated on the acceleration power supply which requires the output voltage of 500 kV and fast cut-off time. A basic concept, in which a inverter with a AC switch is used and the frequency of the supplied AC line is increased was proposed. In these works, the configuration of the neutral beam injection system was detailed and it was shown that the beam line seems to be well implemented with the geometrical constraints related to the reactor configuration. (author)

  16. Remote maintenance design for Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tachikawa, K.; Iida, H.; Nishio, S.; Tone, T.; Aota, T.; Iwamoto, T.; Niikura, S.; Nishizawa, H.

    1984-01-01

    Design of Fusion Experimental Reactor, FER, has been conducted by Japan Atomic Energy Research Institute (JAERI) since 1981. Two typical reactors can be classified in general from the viewpoints of remote maintenance among four design concepts of FER. In the case of the type 1 FER, the torus module consists of shield structure and blanket, and the connective joints between toruses provided at the outer region of the reactor. As for the type 2 FER, the shield structure is joined with the vacuum cryostat, and only the blanket module is allowed to move, but connection between toruses are located in the inner region of the reactor. Comparing type 1 with type 2 FER, this paper describes on the remote maintenance of FER including reactor configurations, work procedures, remote systems/equipments, repairing facility and future R and D problems. Reviewing design studies and investigation for the existing robotics technologies, R and D for FER remote maintenance technology should be performed under the reasonable long-term program. The main items of remote technology required to start urgently are multi-purpose manipulator system with performance of dextrousity, tele-viewing system which reduces operator fatigue and remote tests for commercially available components

  17. Conceptual design study of fusion experimental reactor (FY86FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Ishigaki, Yukio; Ozaki, Akira; Yamane, Minoru.

    1987-09-01

    This report describes the results of the capacity estimation for the electrical power system on the typical two candidates for the FER (Fusion Experimental Reactor) which were picked out through the process of '86 FER scoping studies. Main concern in the electrical systems is coil power supplies which have a capacity of about 1 GW, and this is dominated by poloidal coil power supplies. Then, studies to reduce the converter capacity are concentrated on the poloidal coil power system in relation to the sypplying poloidal flux at the initial phase of plasma ramp-up. A quench protection circuit was proposed on the toroidal coil power supply. On the position control power supply, a circuit with reasonable functions was proposed. Under these system studies, general specifications were determined and the capacity of each power supply unit was estimated. On the poloidal coil power supply system, the accumulated capacity of converters amounted to 885 MW for the one candidate and 782 MW for another. (author)

  18. Controlled Nuclear Fusion Research, September 1965: Review Of Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, Lyman Jr. [Princeton University, Princeton, NJ (United States)

    1966-04-15

    To my way of thinking the most significant milestone of the present meeting is the substantial body of evidence that has been presented on the hydromagnetic stabilization of open-ended systems. The success of minimum magnetic-field ('minimum-B') configurations in stabilizing a plasma marks one more area where theory and experiment in the field of plasma physics have been brought together with gratifying results. Let me go back a little into history and discuss the gradual growth of our information on hydromagnetic instabilities generally. Many of you will remember that hydromagnetic theory was applied to the self-pinched discharge in the early years of the controUed fusion programme. The predictions of this theory were very shortly fulfilled by the observations; the effects were so unmistakable that it was not difficult to compare the theory with the observations. On the streak pictures of the linear or toroidal discharges that were obtained in those early years one saw clearly the diffuse plasma column, which first contracted to a narrow filament and then started to distort and kink until finally it hit the wall. Under some conditions the plasma was observed to break up into a series of blobs like a string of sausages. Since the behaviour was exactly what the theory had predicted, it took no very great experimental wisdom to conclude that observations had confirmed theory.

  19. Conceptual design study of fusion experimental reactor (FY86 FER)

    International Nuclear Information System (INIS)

    Nakashima, Kunihiko; Okano, Kunihiko; Miyamoto, Kazuhiro.

    1987-09-01

    This report describes the results of a conceptual study on the RF system in the typical candidates for the Fusion Experimental Reactor (FER), which were picked out through the '86FER scoping studies. According to the FER operation scenario, three RF systems, that is, ICRF (heating), LHRF (current drive and heating), ECRF (auxiliary heating) were studied. Main concern in these RF systems is the launcher, which may be so designed that required power match the geometrical constraints of the reactor. Then studies were concentrated on the launcher configuration. A prug-in concept of the launcher was adopted in each system and vacancies except transmission space were filled with water. The ICRF launcher had the 2 x 2 loop arrays antenna and the faraday shield area of 1.5 m x 1 m to provide a power of 20 MW. The LHRF launcher had the grillantenna with 28 x 8 open waveguides, and included multi junction-type power splitters which were connected to 56 transmission wave guides. The grild was designed to have two functions of current drive and heating, and provide a power of 20 MW each. The ECRF launcher had a boundle of open wave guides which a reflection mirror each, and three plain mirrors. Assuming a oscillator unit size of 200 kW, it had 40 oversized wave guides to provide a power of 3 MW. (author)

  20. Stress analysis of blanket vessel for JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Minato, A.

    1979-01-01

    A blanket structure of JAERI Experimental Fusion Reactor (JXFR) consists of about 2,300 blanket cells with round cornered rectangular cross sections (twelve slightly different shapes) and is placed in a vacuum vessel. Each blanket vessel is a double-walled thin-shell structure made of Type 316 stainless steel with a spherical domed surface at the plasma side. Ribs for coolant channel are provided between inner and outer walls. The blanket cell contains Li 2 O pebbles and blocks for tritium breeding and stainless steel blocks for neutron reflection. A coolant is helium gas at 10 kgf/cm 2 (0.98 MPa) and its inlet and outlet temperatures are 300 0 C and 500 0 C. The maxima of heat flux and nuclear heating rate at the first wall are 12 W/cm 2 and 2 W/cc. A design philosophy of the blanket structure is based on high tritium breeding ratio and more effective shielding performance. The thin-shell vessel with a rectangular cross section satisfies the design philosophy. We have designed the blanket structure so that the adjacent vessels are mutually supporting in order to decrease the large deformation and stress due to internal pressure in case of the thin-shell vessel. (orig.)

  1. Nuclear fusion experimental study on 16 O + 60 Ni system

    International Nuclear Information System (INIS)

    Silva, C.P. da.

    1990-01-01

    Nuclear fusion cross section measurements were performed in the energy range near The Coulomb Barrier (E Lab -> 40-72 MeV), for the system 16 O + 60 Ni, aiming the study of Fusion Process involving heavy ions. (L.C.J.A.)

  2. Identification and selection of initiating events for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    This paper describes the current approaches used in probabilistic risk assessment (PRA) to identify and select accident initiating events for study in either probabilistic safety analysis or PRA. Current methods directly apply to fusion facilities as well as other types of industries, such as chemical processing and nuclear fission. These identification and selection methods include the Master Logic Diagram, historical document review, system level Failure Modes and Effects Analysis, and others. A combination of the historical document review, such as Safety Analysis Reports and fusion safety studies, and the Master Logic Diagram with appropriate quality assurance reviews, is suggested for standardizing US fusion PRA effects. A preliminary set of generalized initiating events applicable to fusion facilities derived from safety document review is presented as a framework to start from for the historical document review and Master Logic Diagram approach. Fusion designers should find this list useful for their design reviews. 29 refs., 2 tabs

  3. Identification and selection of initiating events for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    This paper describes the current approaches used in probabilistic risk assessment (PRA) to identify and select accident initiating events for study in either probabilistic safety analysis or PRA. Current methods directly apply to fusion facilities as well as other types of industries, such as chemical processing and nuclear fission. These identification and selection methods include the Master Logic Diagram, historical document review, system level Failure Modes and Effects Analysis, and others. A combination of the historical document review, such as Safety Analysis Reports and fusion safety studies, and the Master Logic Diagram with appropriate quality assurance reviews, is suggested for standardizing U.S. fusion PRA efforts. A preliminary set of generalized initiating events applicable to fusion facilities derived from safety document review is presented as a framework to start from for the historical document review and Master Logic Diagram approach. Fusion designers should find this list useful for their design reviews. 29 refs., 1 tab

  4. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution

    Directory of Open Access Journals (Sweden)

    Mitsuru Kikuchi

    2010-11-01

    Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.

  5. Experimental study of electron temperature gradient influence on impurity turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Villegas, D.

    2010-01-01

    Understanding impurity transport is a key to an optimal regime for a future fusion device. In this thesis, the theoretical and experimental influence of the electron temperature gradient R/L Te on heavy impurity transport is analyzed both in Tore Supra and ASDEX Upgrade. The electron temperature profile is modified locally by heating the plasma with little ECRH power deposited at two different radii. Experimental results have been obtained with the impurity transport code (ITC) which has been completed with a genetic algorithm allowing to determine the transport coefficient profiles with more accuracy. Transport coefficient profiles obtained by a quasilinear gyrokinetic code named QuaLiKiz are consistent with the experimental ones despite experimental uncertainties on gradients. In the core dominated by electron modes, the lower R/L Te the lower the nickel diffusion coefficient. The latter tends linearly to the neoclassical level when the instability threshold is approached. The experimental threshold is in agreement with the one computed by QuaLiKiz. Further out, where the plasma is dominated by ITG, which are independent of R/L Te , both experimental and simulated results show no modification in the diffusion coefficient profile. Furthermore, the convection velocity profile is not modified. This is attributed to a very small contribution of the thermodiffusion (1/Z dependence) in the total convection. On ASDEX, the preliminary results, very different from the Tore Supra ones, show a internal transport barrier for impurities located at the same radius as the strong ECRH power deposit. (author) [fr

  6. Conceptual design studies of experimental and demonstration fusion reactors

    International Nuclear Information System (INIS)

    1978-01-01

    Since 1973 the FINTOR Group has been involved in conceptual design studies of TOKAMAK-type fusion reactors to precede the construction of a prototype power reactor plant. FINTOR-1 was the first conceptual design aimed at investigating the main physics and engineering constraints on a minimum-size (both dimensions and thermal power) tokamak experimental reactor. The required plasma energy confinement time as evaluated by various power balance models was compared with the values resulting from different transport models. For the reference design, an energy confinement time ten times smaller than neoclassical was assumed. This also implied a rather high (thermally stable) working temperature (above 20 keV) for the reactor. Other relevant points of the design were: circular plasma cross section, single-null axisymmetric divertor; lithium breeder, stainless steel structures, helium coolant; modular blanket and shield structure; copper-stabilized, superconducting Nb-Ti toroidal field and divertor coils; vertical field and transformer coils inside the toroidal coils; vacuum-tight containment vessel. Solutions involving air and iron transformer cores were compared. These assumptions led to a minimum size reactor with a thermal power of about 100MW and rather large dimensions (major radius of about 9m) similar to those of full-scale power reactors considered in other conceptual studies. The FINTOR-1 analysis was completed by the end of 1976. In 1977 a conceptual design of a Demonstration Power Reactor Plant (FINTOR-D) was started. In this study the main working assumptions differing from those of FINTOR-1 are: non-circular plasma cross section; plasma confinement compatible with trapped ion instabilities; cold (gas) blanket sufficient for wall protection (no divertor); wall loading between 1-3MW/m 2 and thermal power of a few GW. (author)

  7. Cryogenic structures of superconducting coils for fusion experimental reactor 'ITER'

    International Nuclear Information System (INIS)

    Nakajima, Hideo; Iguchi, Masahide; Hamada, Kazuya; Okuno, Kiyoshi; Takahashi, Yoshikazu; Shimamoto, Susumu

    2013-01-01

    This paper describes both structural materials and structural design of the Toroidal Field (TF) coil and Central Solenoid (CS) for the International Thermonuclear Experimental Reactor (ITER). All the structural materials used in the superconducting coil system of the ITER are austenitic stainless steels. Although 316LN is used in the most parts of the superconducting coil system, the cryogenic stainless steels, JJ1 and JK2LB, which were newly developed by the Japan Atomic Energy Agency (JAEA) and Japanese steel companies, are used in the highest stress area of the TF coil case and the whole CS conductor jackets, respectively. These two materials became commercially available based on demonstration of productivity and weldability of materials, and evaluations of 4 K mechanical properties of trial products including welded parts. Structural materials are classified into five grades depending on stress distribution in the TF coil case. JAEA made an industrial specification for mass production based on the ITER requirements. In order to simplify quality control in mass production, JAEA has used materials specified in the material section of 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure (2008)' issued by the Japan Society of Mechanical Engineers (JSME) in October 2008, which was established using an extrapolation method of 4 K material strengths from room temperature strength and chemical compositions developed by JAEA. It enables steel suppliers to easily control the quality of products at room temperature. JAEA has already started actual production with several manufacturing companies. The first JJ1 product to be used in the TF coil case and the first JK2LB jackets for CS were completed in October and September 2013, respectively. (author)

  8. 8th international workshop on plasma edge theory in fusion devices. Abstracts of invited and contributed papers

    International Nuclear Information System (INIS)

    Sipilae, S.K.; Heikkinen, J.A.

    2001-01-01

    The 8th International Workshop on Plasma Edge Theory in Fusion Devices, held at Dipoli Congress Centre, Espoo, Finland, is organised on behalf of the International Scientific Committee by Helsinki University of Technology and VTT (Technical Research Centre of Finland). Similar to the seven preceding Workshops, it addresses the theory for the boundary layer of magnetically confined fusion plasmas. It reflects the present status of the theory for the edge region of fusion plasmas. Emphasis is placed on the development of theory and of appropriate numerical methods as well as on self-consistent modelling of experimental data (including also empirical elements). The following topics are covered: basic edge plasma theory, models of special phenomena and edge control, and integrated edge plasma modelling. The International Scientific Committee has selected the papers and compiled the scientific programme. All other arrangements have been made by the Local Organising Committee. The Workshop is supported by the European Commission, High-Level Scientific Conferences. This Book of Abstracts contains the scientific programme and the abstracts of the invited and contributed papers. The Workshop has seven invited lectures of 60 minutes duration (including 10 minutes for discussion). In addition, 10 contributed papers were selected for oral presentation of 30 minutes duration (including five minutes for discussion). All oral presentations are given in plenary sessions. The remaining 34 contributed papers are presented as posters in three sessions. The invited lectures and contributed oral papers are presented also as posters. All invited and contributed papers will be refereed and published also as a regular issue of the journal Contributions to Plasma Physics. (orig.)

  9. Critical safety function guidelines for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    As fusion experiments proceed toward deuterium-tritium operation, more attention is being given to public safety. This paper presents the four classes of functions that fusion experiments must provide to assure safe, stable shutdown and retention of radionuclides. These functions are referred to as critical safety functions (CSFs). Selecting CSFs is an important step in probabilistic risk assessment (PRA). An example of CSF selection and usage for the Compact Ignition Tokamak (CIT) is also presented. 10 refs., 6 figs

  10. Critical safety function guidelines for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    As fusion experiments proceed toward deuterium-tritium operation, more attention is being given to public safety. This paper presents the four classes of functions that fusion experiments must provide to assure safe, stable shutdown and retention of radionuclides. These functions are referred to as critical safety functions (CSFs). Selecting CSFs is an important step in probabilistic risk assessment (PRA). An example of CSF selection and usage for the Compact Ignition Tokamak (CIT) is also presented

  11. Experimental Study on Bioluminescence Tomography with Multimodality Fusion

    Directory of Open Access Journals (Sweden)

    Yujie Lv

    2007-01-01

    Full Text Available To verify the influence of a priori information on the nonuniqueness problem of bioluminescence tomography (BLT, the multimodality imaging fusion based BLT experiment is performed by multiview noncontact detection mode, which incorporates the anatomical information obtained by the microCT scanner and the background optical properties based on diffuse reflectance measurements. In the reconstruction procedure, the utilization of adaptive finite element methods (FEMs and a priori permissible source region refines the reconstructed results and improves numerical robustness and efficiency. The comparison between the absence and employment of a priori information shows that multimodality imaging fusion is essential to quantitative BLT reconstruction.

  12. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  13. Experimental laser fusion devices and related vacuum problems

    International Nuclear Information System (INIS)

    O'Neal, W.C.; Campbell, D.E.; Glaros, S.S.; Hurley, C.A.; Kobierecki, M.W.; McFann, C.B. Jr.; Monjes, J.A.; Patton, H.G.; Rienecker, F. Jr.

    1977-01-01

    Laser fusion experiments require hard vacuum in the laser-beam spatial filters, target chambers and for target diagnostics instruments. Laser focusing lenses and windows, and target alignment windows must hold vacuum without optical distortion, and must be protected from target debris. The vacuum must be sufficient to prevent residual gas breakdown in focused laser light, avoid arcing at high voltage terminals, minimize contamination and melting of cryogenic targets, and prevent adsorption of the target's microfusion radiation before it reaches the diagnostics instruments

  14. Development step toward fusion power plant and role of experimental reactor ITER

    International Nuclear Information System (INIS)

    Hiwatari, Ryouji; Asaoka, Yoshiyuki; Okano, Kunihiko

    2005-01-01

    The development of fusion energy is going into the experimental reactor stage, and the thermal energy from the fusion reaction will be generated in a plant scale through the ITER (International Thermonuclear Experimental Reactor) project. The remaining critical issue toward the realization of fusion energy is to map out the development strategy. Recently early realization approach as for the fusion energy development is being discussed in Japan, Europe, and the United States. This approach implies that the devices for a Demo reactor and a proto-type reactor as seen in the fast breeder reactor are combined into a single device in order to advance the fusion energy development. On the other hand, a clear development road map for fusion energy hasn't been suggested yet, and whether that early realization approach is feasible or not is still ambiguous. In order to realize the fusion energy as an user-friendly energy system, the suggestion of the development missions and the road map from the user-side point of view is instructive not only to Japanese but also to other country's development policy after the ITER project. In this report, first of all, the development missions from the user's point of view have been structured. Second, the development target required to demonstrate net electric generation and to introduce the fusion energy into the market is investigated, respectively. This investigation reveals that the completion of the ITER reference operation gives the outlook toward the demonstration of net electric generation and that the completion of the ITER advanced operation gives the possibility to introduce the fusion energy into the market. At last, the electric demonstration power plant Demo-CREST and the commercial power plant CREST are proposed to construct the development road map for fusion energy. (author)

  15. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium.

    Science.gov (United States)

    Losick, Vicki P; Fox, Donald T; Spradling, Allan C

    2013-11-18

    Reestablishing epithelial integrity and biosynthetic capacity is critically important following tissue damage. The adult Drosophila abdominal epithelium provides an attractive new system to address how postmitotic diploid cells contribute to repair. Puncture wounds to the adult Drosophila epidermis close initially by forming a melanized scab. We found that epithelial cells near the wound site fuse to form a giant syncytium, which sends lamellae under the scab to re-epithelialize the damaged site. Other large cells arise more peripherally by initiating endocycles and becoming polyploid, or by cell fusion. Rac GTPase activity is needed for syncytium formation, while the Hippo signaling effector Yorkie modulates both polyploidization and cell fusion. Large cell formation is functionally important because when both polyploidization and fusion are blocked, wounds do not re-epithelialize. Our observations indicate that cell mass lost upon wounding can be replaced by polyploidization instead of mitotic proliferation. We propose that large cells generated by polyploidization or cell fusion are essential because they are better able than diploid cells to mechanically stabilize wounds, especially those containing permanent acellular structures, such as scar tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. ASDEX contributions to the 17th European conference on controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-09-01

    The 'ASDEX contributions to the 17th European conference on controlled fusion and plasma heating' (Amsterdam, June 25-29, 1990) hold one invited paper (Physics of enhanced confinement with peaked and board density profiles) and 12 chapters containing 44 contributed papers dealing with the following topics: Lower hybrid current drive and heating; Ion cyclotron heating; General confinement studies; Fluctuation studies; Direct measurement of transport coefficients; H-mode studies; Pellet studies; Divertor and SOL-studies; Impurity and impurity transport studies; Density limit studies; MHD studies; Diagnostic development. (orig./AH)

  17. Experimental studies on cold fusion and hydrogen-metal

    International Nuclear Information System (INIS)

    Locou, P.

    2007-01-01

    The cold fusion is a nuclear fusion realized in pervading conditions of temperature and pressure. My own process is parallel to that of the team of the University of Los Angeles, but shaped in 1996 within my personal and private Laboratory: A small cylinder in which we replace the air by some deuterium to the gas state in - 33 d egree (the deuterium is some hydrogen with a neutron, which we find in quantity in the sea water). We introduce a crystal there, extremely rare - the property of which is to emit continuously one thousand times dose of successful energy and it during several years without outside pyro, natural excitement - electric - that is it creates an electric field in the slightest change in temperature. We carry then the whole in + 7 d egree, what generates in some seconds a 200 000 volt electric field, an intense enough field to separate the pits of the deuterium of their electrons and to admit them to collide with those of the crystal. There is a fusion of protons between them (positive particles of the pit (core)) and a emission of neutrons, which do not merge. It is this emission which serves for measuring the quantity of energy produced by the fusion (merger). We so managed to produce some energy in unlimited quantity, allowing us to feed our installation with electric current in total autarky, and to reduce so our costs of functioning to divers domains. This crystal is exceptional in its applications and to give it the name would return has to break our current headway: the thorough problem, in this current period of takeover by the financial bodies of the possible patents, brought to us to the biggest caution as regards our results. And, as we look for no outside financing, we do not need to submit ourselves to the requirements lauded by the scientific Community, only our results are strictly estimated. For example we can make estimate our bars or patches of Hydrogen - Metal: a simple spectroscopy in YEW will give as result, only, the element H

  18. Hefei experimental hybrid fusion-fission reactor conceptual design

    International Nuclear Information System (INIS)

    Qiu Lijian; Luan Guishi; Xu Qiang

    1992-03-01

    A new concept of hybrid reactor is introduced. It uses JET-like(Joint European Tokamak) device worked at sub-breakeven conditions, as a source of high energy neutrons to induce a blanket fission of depleted uranium. The solid breeding material and helium cooling technique are also used. It can produce 100 kg of 239 Pu per year by partial fission suppressed. The energy self-sustained of the fusion core is not necessary. Plasma temperature is maintained by external 20 MW ICRF (ion cyclotron resonance frequency) and 10 MW ECRF (electron cyclotron resonance frequency) heating. A steady state plasma current at 1.5 Ma is driven by 10 MW LHCD (lower hybrid current driven). Plasma density will be kept by pellet injection. ICRF can produce a high energy tail in ion distribution function and lead to significant enhancement of D-T reaction rate by 2 ∼ 5 times so that the neutron source strength reaches to the level of 1 x 10 19 n/s. This system is a passive system. It's power density is 10 W/cm 3 and the wall loading is 0.6 W/cm 2 that is the lower limitation of fusion and fission technology. From the calculation of neutrons it could always be in sub-critical and has intrinsic safety. The radiation damage and neutron flux distribution on the first wall are also analyzed. According to the conceptual design the application of this type hybrid reactor earlier is feasible

  19. Contributions of the National Ignition Facility to the development of Inertial Fusion Energy

    International Nuclear Information System (INIS)

    Tobin, M.; Logan, G.; Diaz De La Rubia, T.; Schrock, V.; Schultz, K.; Tokheim, R.; Abdou, M.; Bangerter, R.

    1994-06-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NIF will use a ≥ 1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. The benefits of a micro-fusion capability in the laboratory include: essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF. Additionally, we believe it is feasible to inject up to four targets and engage them with the NIF laser by triggering the beams in groups of ∼50 separated in time by ∼0.1 s. Sub-ignition neutron yields would allow an indication of symmetry achieved in such proof-of-principle rep-rate experiments

  20. Early history of experimental inertial confinement fusion and diagnostics in China

    International Nuclear Information System (INIS)

    Wang Chuanke; Jiang Shao'en; Ding Yongkun

    2014-01-01

    The early history of China's research on experimental laser inertial confinement fusion (ICF) and diagnostics technology is reviewed. The long and difficult path started from scratch, from learning the basics, looking up the literature and copying experiments, to independent research and development of comprehensive experimental facilities. This article fills a gap in the history of China's ICF experimental and diagnostics research. (authors)

  1. Recent experimental results in sub- and near-barrier heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Montagnoli, Giovanna [Dipartimento di Fisica e Astronomia, Universita di Padova (Italy); INFN Sezione di Padova (Italy); Stefanini, Alberto M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2017-08-15

    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus is mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations overpredict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars. (orig.)

  2. Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion

    Science.gov (United States)

    Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo

    2018-03-01

    We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.

  3. Design, calculation and experimental studies for liquid metal system main parameters in support of the liquid lithium fusion reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.

    2001-01-01

    A new concept of a Liquid Lithium Fusion Reactor and the first experimental results were presented at the 16th IAEA Conference on Fusion Energy. During the past two years theoretical estimations have been made, and calculated and experimental results have been obtained in confirmation of this concept and supporting its progress. The main results of this work are given in the paper. (author)

  4. Design, calculation and experimental studies for liquid metal system main parameters in support of the liquid lithium fusion reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.

    1999-01-01

    A new concept of a Liquid Lithium Fusion Reactor and the first experimental results were presented at the 16th IAEA Conference on Fusion Energy. During the past two years theoretical estimations have been made, and calculated and experimental results have been obtained in confirmation of this concept and supporting its progress. The main results of this work are given in the paper. (author)

  5. The international thermonuclear experimental reactor and the future of nuclear fusion energy

    International Nuclear Information System (INIS)

    Pan Chuanhong

    2010-01-01

    Energy shortage and environmental problems are now the two largest challenges for human beings. Magnetic confinement nuclear fusion, which has achieved great progress since the 1990's, is anticipated to be a way to realize an ideal source of energy in the future because of its abundance, environmental compatibility, and zero carbon release. Exemplified by the construction of the International Thermonuclear Experimental Reactor (ITER), the development of nuclear fusion energy is now in its engineering phase, and should be realized by the middle of this century if all objectives of the ITER project are met. (author)

  6. Conceptual design study of quasi-steady state fusion experimental reactor (FEQ-Q), part 1

    International Nuclear Information System (INIS)

    1985-12-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 JER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. The results of the following design items are included; core plasma, reactor structure, reactor core components, magnets. (author)

  7. Conceptual design study of quasi-steady state fusion experimental reactor (FER-Q), part 2

    International Nuclear Information System (INIS)

    1985-12-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 FER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. The results of the following design items are included: heating/current drive system, plasma position control, power supply, diagnostics, neutronics, blanket test module, repair and maintenance and safety. (author)

  8. Remote experimental site concept for diagnostic collaborations in fusion

    International Nuclear Information System (INIS)

    Casper, T.A.

    1991-08-01

    The next generation of tokamaks, ITER or BPX, will be characterized by an even greater emphasis on joint operation and experimentation. With anticipation of an increased number and diversity of collaborations, especially in the area of diagnostics, we are preparing for such shared facilities by developing a systematic approach to remote, joint physics operation involving experimental teams at several locations. The local area network of computers used for control and data acquisition on present and future experiments can be extended over a wide area network to provide a mechanism for remote operation of subsystems (e.g. diagnostics) required for physics experiments. The technology required for high bandwidth (≥45Mbps) connections between multiple sites either exists or will be available over the next few years. With the rapid development of high performance workstations, network interfaces, distributed computing, and video conferencing, we can proceed with the development of a system of control and analysis sites to provide for consistent, efficient, and continuing collaborations. Early establishment of such sites could also enhance existing joint design and development efforts

  9. EURATOM-CEA association contributions to the 18. IAEA fusion energy conference

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Peysson, Y.; Hoang, G.T. [and others

    2000-12-01

    The 9 contributions of EURATOM-Cea association to the fusion energy conference hold at Sorrento are gathered in this document with 7 additional papers. The different titles are: 1) Ergodic divertor experiments on the route to steady state operation of Tore-Supra, 2) High power lower hybrid current drive experiments in Tore-Supra tokamak, 3) Electron transport and improved confinement on Tore-Supra, 4) ECRH experiments and developments for long pulse in Tore-Supra, 5) Impurity penetration and contamination in Tore-Supra ergodic divertor experiments, 6) Real time plasma feed-back control: an overview of Tore-Supra achievements, 7) Numerical assessment of the ion turbulent thermal transport scaling laws, 8) Design of next step tokamak: consistent analysis of plasma flux consumption and poloidal, 9) Large superconducting conductors and joints for fusion magnets: from conceptual design to test at full size scale, 10) Burst-prone transport in tokamaks with internal transport barriers, 11) Electrostatic turbulence with finite parallel correlation length and radial electric field generation, 12) Theoretical issues in tokamak confinement: internal-edge transport barriers and runaway avalanche confinement, 13) Core and edge confinement studies with different heating methods in JET, 14) Confinement and transport studies of conventional scenarios in ASDEX upgrade, 15) First test results for the ITER central solenoid model coil, and 16) Progress of the ITER central solenoid model coil program.

  10. EURATOM-CEA association contributions to the 18. IAEA fusion energy conference

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Peysson, Y.; Hoang, G.T.

    2000-12-01

    The 9 contributions of EURATOM-Cea association to the fusion energy conference hold at Sorrento are gathered in this document with 7 additional papers. The different titles are: 1) Ergodic divertor experiments on the route to steady state operation of Tore-Supra, 2) High power lower hybrid current drive experiments in Tore-Supra tokamak, 3) Electron transport and improved confinement on Tore-Supra, 4) ECRH experiments and developments for long pulse in Tore-Supra, 5) Impurity penetration and contamination in Tore-Supra ergodic divertor experiments, 6) Real time plasma feed-back control: an overview of Tore-Supra achievements, 7) Numerical assessment of the ion turbulent thermal transport scaling laws, 8) Design of next step tokamak: consistent analysis of plasma flux consumption and poloidal, 9) Large superconducting conductors and joints for fusion magnets: from conceptual design to test at full size scale, 10) Burst-prone transport in tokamaks with internal transport barriers, 11) Electrostatic turbulence with finite parallel correlation length and radial electric field generation, 12) Theoretical issues in tokamak confinement: internal-edge transport barriers and runaway avalanche confinement, 13) Core and edge confinement studies with different heating methods in JET, 14) Confinement and transport studies of conventional scenarios in ASDEX upgrade, 15) First test results for the ITER central solenoid model coil, and 16) Progress of the ITER central solenoid model coil program

  11. Conceptual design of fusion experimental reactor (FER/ITER)

    International Nuclear Information System (INIS)

    Kimura, Haruyuki; Saigusa, Mikio; Saitoh, Yasushi

    1991-06-01

    Conceptual design of the Ion Cyclotron Wave (ICW) system for FER and Japanese contribution to the conceptual design of the ITER ICW system are presented. A frequency range of the FER ICW system is 50-85 MHz, which covers 2ω cT heating, current drive by transit time magnetic pumping (TTMP) and 2ω cD heating. Physics analyses show that the FER and the ITER ICW systems are suitable for the central ion heating and the burn control. The launching systems of the FER ICW system and the ITER high frequency ICW system are characterized by in-port plug and ridged-waveguide-fed 5x4 phased loop array. Merits of those systems are (1) a ceramic support is not necessary inside the cryostat and (2) remote maintenance of the front end part of the launcher is relatively easy. Overall structure of the launching system is consistent with radiation shielding, cooling, pumping, tritium safety and remote maintenance. The launcher has injection capability of 20 MW in the frequency range of 50-85 MHz with the separatrix-antenna distance of 15 cm and steep scrape-off density profile of H-mode. The shape of the ridged waveguide is optimized to provide desired frequency range and power handling capability with a finite element method. Matching between the current strap and the ridged waveguide is satisfactorily good. Thermal analysis of the Faraday shield shows that high electric conductivity low Z material such as beryllium should be chosen for a protection tile of the Faraday shield. Thick Faraday shield is necessary to tolerate electromagnetic force during disruptions. R and D needs for the ITER/FER ICW systems are identified and gain from JT-60/60U ICRF experiments and operations are indicated in connection with them. (author)

  12. Neutron spectrometer for DD/DT burning ratio measurement in fusion experimental reactor

    International Nuclear Information System (INIS)

    Asai, Keisuke; Naoi, Norihiro; Iguchi, Tetsuo; Watanabe, Kenichi; Kawarabayashi, Jun; Nishitani, Takeo

    2006-01-01

    The most feasible fuels for a fusion reactor are D (Deuterium) and T (Tritium). DD and/or DT fusion reaction or nuclear burning reaction provides two kinds of neutrons, DD neutron and DT neutron, respectively. DD/DT burning ratio, which can be estimated by DD/DT neutron ratio in the burning plasma, is essential for burn control, alpha particle emission rate monitoring and tritium fuel cycle estimation. Here we propose a new neutron spectrometer for the absolute DD/DT burning ratio measurement. The system consists of a Proton Recoil Telescope (PRT) and a Time-of-Flight (TOF) technique. We have conducted preliminary experiments with a prototype detector and a DT neutron beam (φ20 mm) at the Fusion Neutronics Source, Japan Atomic Energy Agency (JAEA), to assess its basic performance. The detection efficiency obtained by the experiment is consistent with the calculation results in PRT, and sufficient energy resolution for the DD/DT neutron discrimination has been achieved in PRT and TOF. The validity of the Monte Carlo calculation has also been confirmed by comparing the experimental results with the calculation results. The design consideration of this system for use in ITER (International Thermonuclear Experimental Reactor) has shown that this system is capable of monitoring the line-integrated DD/DT burning ratio for the plasma core line of sight with the required measurement accuracy of 20% in the upper 4 decades of the ITER operation (fusion power: 100 kW-700 MW). (author)

  13. Contributions to the 20. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-15

    The Conference covers research on different aspects of plasma physics and fusion technology, like technical aspects of Tokamak devices; plasma instabilities and impurities, development and testing of materials for fusion reactors etc.

  14. Contribution to the actual discussion on the technological problems of nuclear fusion energy exploitation

    International Nuclear Information System (INIS)

    Seifritz, W.

    1982-02-01

    Recently increased criticism has been raised from many sides as to the technical realization of fusion reactors. The basic argument is continually stated whether it is really sensible to invest the enormous sums of money in order to produce a commercial fusion reactor. In this article, the principle problems facing nuclear fusion are presented and it is outlined which priorities should be set for the realization of fusion energy in the near future. (Auth.)

  15. Development of electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Tsujimura, S. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Toyoda, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Inoue, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Abe, T. [Japan Atomic Energy Research Inst., Naka (Japan); Murakami, Y. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al{sub 2}O{sub 3} has been selected as an insulation material, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.).

  16. Development of electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Tsujimura, S.; Toyoda, M.; Inoue, M.; Abe, T.; Murakami, Y.

    1995-01-01

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al 2 O 3 has been selected as an insulation material, while Cr 3 C 2 -NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.)

  17. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  18. Integrated assessment of thermal hydraulic processes in W7-X fusion experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, T., E-mail: tadas.kaliatka@lei.lt; Uspuras, E.; Kaliatka, A.

    2017-02-15

    Highlights: • The model of Ingress of Coolant Event experiment facility was developed using the RELAP5 code. • Calculation results were compared with Ingress of Coolant Event experiment data. • Using gained experience, the numerical model of Wendelstein 7-X facility was developed. • Performed analysis approved pressure increase protection system for LOCA event. - Abstract: Energy received from the nuclear fusion reaction is one of the most promising options for generating large amounts of carbon-free energy in the future. However, physical and technical problems existing in this technology are complicated. Several experimental nuclear fusion devices around the world have already been constructed, and several are under construction. However, the processes in the cooling system of the in-vessel components, vacuum vessel and pressure increase protection system of nuclear fusion devices are not widely studied. The largest amount of radioactive materials is concentrated in the vacuum vessel of the fusion device. Vacuum vessel is designed for the vacuum conditions inside the vessel. Rupture of the in-vessel components of the cooling system pipe may lead to a sharp pressure increase and possible damage of the vacuum vessel. To prevent the overpressure, the pressure increase protection system should be designed and implemented. Therefore, systematic and detailed experimental and numerical studies, regarding the thermal-hydraulic processes in cooling system, vacuum vessel and pressure increase protection system, are important and relevant. In this article, the numerical investigation of thermal-hydraulic processes in cooling systems of in-vessel components, vacuum vessels and pressure increase protection system of fusion devices is presented. Using the experience gained from the modelling of “Ingress of Coolant Event” experimental facilities, the numerical model of Wendelstein 7-X (W7-X) experimental fusion device was developed. The integrated analysis of the

  19. Contributions of experimental psychiatry to research on the psychosis prodrome

    Directory of Open Access Journals (Sweden)

    Mitja eBodatsch

    2013-12-01

    Full Text Available In the recent decades, a paradigmatic change in psychosis research and treatment shifted attention towards the early and particularly the prodromal stages of illness. Despite substantial progress with regard to the neuronal underpinnings of psychosis development, the crucial biological mechanisms leading to manifest illness are yet insufficiently understood. Until today, one significant approach to elucidate the neurobiology of psychosis has been the modeling of psychotic symptoms by psychedelic substances in healthy individuals. These models bear the opportunity to evoke particular neuronal aberrations and the respective psychotic symptoms in a controlled experimental setting. In the present paper, we hypothesize that experimental psychiatry bears unique opportunities in elucidating the biological mechanisms of the prodromal stages of psychosis. Psychosis risk symptoms are attenuated, transient, and often only retrospectively reported. The respective neuronal aberrations are thought being dynamic. The correlation of unstable psychopathology with observed, e. g., neurophysiological disturbances is thus yet largely unclear. In modeling psychosis, the experimental setting allows not only for evoking particular symptoms, but for the concomitant assessment of psychopathology, neurophysiology, and neuropsychology. Herein, the glutamatergic model will be highlighted exemplarily, with special emphasis on its potential contribution to the elucidation of psychosis development. This model of psychosis appears as candidate for modeling the prodrome since it induces psychopathological, neurocognitive and neurofunctional changes that are comparable to clinical features of the prodrome.As exemplarily illustrated by the PCP/NMDA model of psychosis many aspects advocate that prodromal stages might be validly mimicked by psychedelic substances. In summary, experimental psychiatry bears the potential to further elucidate the biological mechanisms of the psychosis

  20. Some manufacture and installation problems in experimental assemblies for fusion research

    International Nuclear Information System (INIS)

    Partridge, J.E.; Rappe, G.; Hoare, F.; McDonald, J.

    1976-01-01

    Many of the manufacturing problems encountered when developing specialised items of fusion apparatus are only solved after much experimentation and a good deal of trial and error. After the experiment is built such problems may be forgotten and are often not recorded so that subsequent workers in the same field may start with no past experience on which to build. The paper therefore highlights some of the manufacturing problems which have been solved during the construction of some of the experimental apparatus at Culham

  1. Li2O-pebble type tritium breeding blanket for fusion experimental reactor, 1

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Iida, Hiromasa; Tanaka, Yoshihisa

    1984-01-01

    The fusion experimental reactor is the next stage device in Japan, which is planned to be constructed following the critical plasma experimental device JT-60 being constructed at present. The breeding blanket installed in nuclear fusion reactors is one of most important structures, and it is required to satisfy the fundamental performance of producing and continuously recovering tritium as the nuclear fusion fuel, and other requirement in good coordination. The Li 2 O pebble type breeding blanket that Kawasaki Heavy Industries Ltd. has examined is the concept for resolving the problems of the mass transfer and thermal stress cracking of Li 2 O, which are important in blanket design. In this paper, the concept and characteristics of this breeding blanket are discussed from the viewpoint of the breeding and continuous recovery of tritium, the ease of manufacture and the maintenance of soundness. The breeding blanket is composed of breeding region, tritium purge region, cooling region, plasma stabilizing conductors and blanket container. Li 2 O is excellent in its tritium breeding performance and heat conductivity. The functions required for the breeding blanket, the fundamental structure, the examples of breeding blanket concept, the selection of breeding blanket concept, the characteristics of Li 2 O pebble type blanket and its future prospect are described. (Kako, I.)

  2. Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Sreenivasa R Sankavaram

    Full Text Available It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss.In the brain, fusion of bone marrow-derived cells appears to be restricted to the complex and large Purkinje cells, raising the question whether the size of the recipient cell is important for cell fusion in the central nervous system. Purkinje cells are among the largest neurons in the central nervous system and accordingly can harbor two nuclei.Using a well-characterized model for heterokaryon formation in the cerebellum (experimental autoimmune encephalomyelitis - a mouse model of multiple sclerosis, we report for the first time that green fluorescent protein-labeled bone marrow-derived cells can fuse and form heterokaryons with spinal cord motor neurons. These spinal cord heterokaryons are predominantly located in or adjacent to an active or previously active inflammation site, demonstrating that inflammation and infiltration of immune cells are key for cell fusion in the central nervous system. While some motor neurons were found to contain two nuclei, co-expressing green fluorescent protein and the neuronal marker, neuron-specific nuclear protein, a number of small interneurons also co-expressed green fluorescent protein and the neuronal marker, neuron-specific nuclear protein. These small heterokaryons were scattered in the gray matter of the spinal cord.This novel finding expands the repertoire of neurons that can form heterokaryons with bone marrow-derived cells in the central nervous system, albeit in low numbers, possibly leading to a novel therapy for spinal cord

  3. Feasibility study of teleoperational maintenance using real-time simulator for experimental fusion reactor

    International Nuclear Information System (INIS)

    Hamada, Tomoyuki; Tanaka, Keiji; Oka, Kiyoshi; Shibanuma, Kiyoshi

    2004-01-01

    The maintenance manipulator for the experimental fusion reactor has long vertical and horizontal telescopic booms to access the neutral beam injector of the fusion reactor. Due to this boom structure, the vibration and deflection of the manipulator are the critical issues for the accurate operation. A real-time simulation system was constructed to evaluate the maneuverability of the manipulator under these vibration and deflection. In this simulation system, the dynamic behavior of the flexible manipulator is calculated synchronized with the real-time control input of the human operator. A vibration and position compensation method was adapted to improve the maneuverability. Through the evaluation using the real-time simulation system, it was verified that the manipulator is maneuverable by using vibration and position compensation. (author)

  4. Parametric and alternative studies for fusion experimental reactor (FER) (FY 1984)

    International Nuclear Information System (INIS)

    1986-01-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 FER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. This report includes the following parametric and alternative studies for the FER reference design: 1) parametric studies concerning with core plasma magnets, and operation scenario and power supply, 2) tritium breeding blanket, 3) the study for the steady state operation FER, 4) OTHERS. (AUTHOR)

  5. EURATOM-CEA Association Contributions to the 16. European Conference on Controlled Fusion and Plasma Physics

    International Nuclear Information System (INIS)

    1989-01-01

    The contributions to the 16th European Conference on controlled fusion and Plasma Physics are presented. The following subjects, concerning Tore Supra, are discussed: runaway electrons dynamics and confinement; spectroscopic studies of plasma surface interactions; ergodic divertor experiments; magnetic field structure and transport induced by the ergodic divertor; fast ions losses during neutral beam injection; current profile control by electron-cyclotron and lower-hybrid waves; and electromagnetic analysis of the lower hybrid system. The report also includes studies on: a possible explanation for the runaway energy limit (resonant interaction with the ripple field); thermal equilibrium of the edge plasma with an ergodic divertor; neutral confinement in pump limiter with a throat; microtearing turbulence and heat transport; toroidal coupling and frequency spectrum of tearing modes; collisionless fast ion dynamics in tokamaks; variational description of lower hybrid wave propagation and absorption in tokamaks; magnetodrift turbulence and disruptions; specific turbulence associated with sawtooth relaxations in TFR plasmas; detailed structure of the q profile around q = 1 in JET; turbulence propagation during pellet injection; tokamak reactor concept with 100% bootstrap current; optimization of a steady state tokamak driven by lower hybrid waves; and thermodesorption of graphite exposed to a deuterium plasma

  6. Contribution to the experimental study of the hydraulic jump in ...

    African Journals Online (AJOL)

    The purpose of this study is to study experimentally the hydraulic jump evolving in a symmetric trapezoidal channel with a positive slope, requires the use of an experimental protocol, and to find experimental relations linking the characteristics of the formed projection. The experimental study investigated the variation of the ...

  7. Anomalous bilateral contribution of extensor pollicis longus and muscle fusion of the first compartment of the wrist

    Directory of Open Access Journals (Sweden)

    Rodrigo César Rosa

    2016-04-01

    Full Text Available Knowledge of the anatomical variations of the muscles of the first dorsal compartments of the wrist is clinically relevant to De Quervain's tenosynovitis and to reconstructive surgeries. In the literature, there are many reports of the presence of multiple insertion tendons in the first dorsal compartment of the wrist, but few reports describe occurrences of fusion and muscle contributions. This case report describes an anomalous bilateral contribution of the extensor pollicis longus. This anomalous contribution was found through a slender auxiliary tendon that crossed laterally under the extensor retinaculum, entered the first dorsal compartment of the wrist and merged with the tendon of the extensor pollicis brevis muscle. In the same cadaver in which this contribution was present, there was atypical muscle fusion of the abductor pollicis longus muscle and extensor pollicis brevis muscle. In conclusion, anomalous bilateral contribution of the extensor pollicis longus muscle and atypical muscle fusion, concomitant with a variant insertion pattern, are the highlight of this case report. Furthermore, it is concluded that additional tendons may be effectively used in reconstructive surgeries, but that there is a need for knowledge of the possible numerical and positional variations of these tendons, with a view to making more effective surgical plans.

  8. Recent theoretical and experimental evidence on the cold fusion of elementary particles

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1993-01-01

    Recent experiments have shown the apparent existence of the cold fusion/chemical synthesis of protons and electrons into neutrons (plus neutrinos), much along Rutherford's original conception. These findings have received indirect, yet significant experimental confirmations in Bose-Einstein correlations, superconductivity and other fields to warrant additional studies. In this paper we present a quantitative theoretical study of the apparent tendency of all massive particles to form a bound state at small distances which is enhanced at low energy. The study is centrally dependent on the isominkowskian geometrization of the expected nonlocal interactions due to total mutual penetrations, and their causal description via the isopoincare symmetry. The cold fusion considered is then made possible by isorenormalizations of the 'intrinsic' characteristics of particles originating from the contact-nonhamiltonian character of the internal nonlocal effects. This latter feature illustrates the reasons why the cold fusion considered is simply beyond the descriptive capacities of relativistic quantum mechanics, but it is fully predicted by its isotopic covering. 23 refs

  9. General description of preliminary design of an experimental fusion reactor and the future problems

    International Nuclear Information System (INIS)

    Sako, Kiyoshi

    1976-01-01

    Recently, the studies on plasma physics has progressed rapidly, and promising experimental data emerged successively. Especially expectation mounts high that Tokamak will develop into power reactors. In Japan, the construction of large plasma devices such as JT-60 of JAERI is going to start, and after several years, the studies on plasma physics will come to the end of first stage, then the main research and development will be directed to power reactors. The studies on the design of practical fusion reactors have been in progress since 1973 in JAERI, and the preliminary design is being carried out. The purposes of the preliminary design are the clarification of the concept of the experimental reactor and the requirements for the studies on core plasma, the examination of the problems for developing main components and systems of the reactor, and the development of design technology. The experimental reactor is the quasi-steady reactor of 100 MW fusion reaction output, and the conditions set for the design and the basis of their setting are explained. The outline of the design, namely core plasma, blankets, superconductive magnets and the shielding with them, vacuum wall, neutral particle injection heating device, core fuel supply and exhaust system, and others, is described. In case of scale-up the reactor structural material which can withstand neutron damage must be developed. (Kako, I.)

  10. Preliminary study on power balance in the plasma of an experimental fusion reactor

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Yamato, Harumi

    1976-03-01

    The preliminary study on power balance in the plasma is described in the first-stage design of an experimental fusion reactor. The purpose is to show the ranges of plasma parameters for the design output of about 100 MW with an injection power less than 50 MW. The impurity is permitted to the extent of Zsub(eff) -- 5 to meet the design requirement. Influences of the uncertainty in scaling law on the power output and injection power are discussed, and also possibility of the self-ignition. (auth.)

  11. Some considerations on a plasma in the JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Tone, T.; Yamato, H.; Maki, K.

    1976-01-01

    The preliminary analysis of the plasma characteristics for the JAERI tokamak experimental fusion reactor is reported. In order to make the reactor compact, the self-sustaining condition has been removed. Stationary heating by 200 keV neutral deuteron beam to maintain the power balance is applied expecting the power amplification by the TCT effect. The main parameters determined are power output of 100 MW, toroidal field on axis of 6 T, aspect ratio of 4.5 and major radius of 6.75 m. The results of the plasma power balance, fueling by means of the gas blanket scheme, power stabilization with feedback and the start-up are presented

  12. Development of a remote handling system for replacement of armor tiles in the Fusion Experimental Reactor

    International Nuclear Information System (INIS)

    Adachi, J.; Kakudate, S.; Oka, K.; Seki, M.

    1995-01-01

    The armor tiles of the Fusion Experimental Reactor (FER) planned by JAERI are categorized as scheduled maintenance components, since they are damaged by severe heat and particle loads from the plasma during operation. A remote handling system is thus required to replace a large number of tiles rapidly in the highly activated reactor. However, the simple teaching-playback method cannot be adapted to this system because of deflection of the tiles caused by thermal deformation and so on. We have developed a control system using visual feedback control to adapt to this deflection and an end-effector for a single arm. We confirm their performance in tests. (orig.)

  13. On experimental determination of characteristics of nuclear fusion reactions from mu-molecular resonance states

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Pen'kov, F.M.

    1997-01-01

    Charge-nonsymmetrical deuterium-helium muon complexes (dμHe) are studied. A method is proposed for experimentally determining the rates of nuclear fusion reactions in dμHe molecules in the J=1 and J=0 states (J is the orbital moment of the system) and the partial rates for radiative decay of these complexes in these states. Experiments are supposed to be carried out at meson factories with gaseous and cryogenic targets filled with a mixture of deuterium and helium

  14. Source term evaluation for accident transients in the experimental fusion facility ITER

    Energy Technology Data Exchange (ETDEWEB)

    Virot, F.; Barrachin, M.; Cousin, F. [IRSN, BP3-13115, Saint Paul lez Durance (France)

    2015-03-15

    We have studied the transport and chemical speciation of radio-toxic and toxic species for an event of water ingress in the vacuum vessel of experimental fusion facility ITER with the ASTEC code. In particular our evaluation takes into account an assessed thermodynamic data for the beryllium gaseous species. This study shows that deposited beryllium dusts of atomic Be and Be(OH){sub 2} are formed. It also shows that Be(OT){sub 2} could exist in some conditions in the drain tank. (authors)

  15. Contributions to the 7th International Conference on plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains three papers presented in the 7th International Conference on plasma surface interactions in controlled fusion devices held in Princeton (USA) 5-9 May 1986, all referred to the FT Tokamak

  16. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    International Nuclear Information System (INIS)

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis

  17. Contribution to fusion research from IAEA coordinated research projects and joint experiments

    Czech Academy of Sciences Publication Activity Database

    Gryaznevich, M.; Van Oost, G.; Stöckel, Jan; Kamendje, R.; Kuteev, B.N.; Melnikov, A.; Popov, T.; Svoboda, V.

    2015-01-01

    Roč. 55, č. 10 (2015), s. 104019-104019 ISSN 0029-5515. [Fusion Energy Conference 2014 (FEC) /25./. St Petersburg, 13.10.2014-18.10.2014] Institutional support: RVO:61389021 Keywords : IAEA CRP * IAEA JE * small tokamaks * fusion neutron source Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/0029-5515/55/10/104019

  18. Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

  19. Generation of thermonuclear fusion neutrons by means of a pure explosion. Part 2. Experimental results

    International Nuclear Information System (INIS)

    Derentowicz, H.; Kaliski, S.; Wolski, J.; Ziolkowski, Z.

    1977-01-01

    This paper presents the experimental results of the generation of a thermonuclear fusion neutrons by means of explosion. The experimental set is based on a quasi-spherical experiment in which a polyethylene layer is shot into a conic region hollowed out in a golden target and filled with deuterium gas. The speeding-up system is based on shooting the conic liner onto the surface of the Cu cone in which the Mach wave is generated and propagates along the cone axis leading to an implosion velocity of the polyethylene layer of the order of (4 - 5).10 6 cm/s. This affords a 10 3 -multiple compression of the D 2 gas (p 0 approximately 1.2 atm) and a neutron emission of the order of 3.10 7 from a mass of about 10 -7 g. This result is in full agreement with theoretical estimates. This is the first published and documented experiment in which a neutron stream of thermonuclear fusion was obtained by means of a pure explosion. (author)

  20. Experimental validation of decay heat calculation codes and associated nuclear data libraries for fusion energy

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Wada, Masayuki; Ikeda, Yujiro

    2001-01-01

    Validity of decay heat calculations for safety designs of fusion reactors was investigated by using decay heat experimental data on thirty-two fusion reactor relevant materials obtained at the 14-MeV neutron source facility of FNS in JAERI. Calculation codes developed in Japan, ACT4 and CINAC version 4, and nuclear data bases such as JENDL/Act-96, FENDL/A-2.0 and Lib90 were used for the calculation. Although several corrections in algorithms for both the calculation codes were needed, it was shown by comparing calculated results with the experimental data that most of activation cross sections and decay data were adequate. In cases of type 316 stainless steel and copper which were important for ITER, prediction accuracy of decay heat within ±10% was confirmed. However, it was pointed out that there were some problems in parts of data such as improper activation cross sections, e,g., the 92 Mo(n, 2n) 91g Mo reaction in FENDL, and lack of activation cross section data, e.g., the 138 Ba(n, 2n) 137m Ba reaction in JENDL. Modifications of cross section data were recommended for 19 reactions in JENDL and FENDL. It was also pointed out that X-ray and conversion electron energies should be included in decay data. (author)

  1. Experimental validation of decay heat calculation codes and associated nuclear data libraries for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Wada, Masayuki; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    Validity of decay heat calculations for safety designs of fusion reactors was investigated by using decay heat experimental data on thirty-two fusion reactor relevant materials obtained at the 14-MeV neutron source facility of FNS in JAERI. Calculation codes developed in Japan, ACT4 and CINAC version 4, and nuclear data bases such as JENDL/Act-96, FENDL/A-2.0 and Lib90 were used for the calculation. Although several corrections in algorithms for both the calculation codes were needed, it was shown by comparing calculated results with the experimental data that most of activation cross sections and decay data were adequate. In cases of type 316 stainless steel and copper which were important for ITER, prediction accuracy of decay heat within {+-}10% was confirmed. However, it was pointed out that there were some problems in parts of data such as improper activation cross sections, e,g., the {sup 92}Mo(n, 2n){sup 91g}Mo reaction in FENDL, and lack of activation cross section data, e.g., the {sup 138}Ba(n, 2n){sup 137m}Ba reaction in JENDL. Modifications of cross section data were recommended for 19 reactions in JENDL and FENDL. It was also pointed out that X-ray and conversion electron energies should be included in decay data. (author)

  2. Experimental measurement of the 12C+16O fusion cross sections at astrophysical energies

    Science.gov (United States)

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; de Souza, R.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2018-05-01

    The total cross sections of the 12C+16O fusion have been experimentally determined at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam was produced by the 5MV pelletron accelerator at the University of Notre Dame impinging on a thick ultra-pure graphite target. Protons and γ-rays were measured simultaneously in the center-of-mass energy range from 3.64 to 5.01 MeV, using strip silicon and HPGe detectors. Statistical model calculations were employed to interpret the experimental results. A new broad resonance-like structure is observed for the 12C+16O reaction, and a decreasing trend of its S-factor towards low energies is found.

  3. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    International Nuclear Information System (INIS)

    Araki, Masanori

    1993-03-01

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 ± 1 MW/m 2 was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate has been analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads. (J.P.N.) 62 refs

  4. Numerical and experimental study of Ti6Al4V components manufactured using powder bed fusion additive manufacturing

    OpenAIRE

    Zielinski, J.; Mindt, H.-W.; Düchting, J.; Schleifenbaum, J.H.; Megahed, M.

    2017-01-01

    Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing t...

  5. Experimental measurement of 12C+16O fusion at stellar energies

    Science.gov (United States)

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; deSouza, R. T.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2017-10-01

    The total cross section of the 12C+16O fusion reaction has been measured at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam, produced by the 5 MV pelletron accelerator at the University of Notre Dame, impinged on a thick, ultrapure graphite target. Protons and γ rays were simultaneously measured in the center-of-mass energy range from 3.64 to 5.01 MeV for singles and from 3.73 to 4.84 MeV for coincidence events, using silicon and Ge detectors. Statistical model calculations were employed to interpret the experimental results. The emergence of a new resonance-like broad structure and a decreasing trend in the S -factor data towards lower energies (opposite to previous data) are found for the 12C+16O fusion reaction. Based on these results the uncertainty range of the reaction rate within the temperature range of late stellar burning environments is discussed.

  6. Contributions of CEA to the 18th symposium on fusion technology

    International Nuclear Information System (INIS)

    1994-01-01

    The Symposium covered a large variety of topics on fusion technology: plasma engineering, design and testing of plasma facing components and magnets, plasma heating, tritium technology, safety, blanket technology and thermonuclear reactor material studies. 52 documents have been indexed individually for the INIS database. (K.A.)

  7. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    Science.gov (United States)

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.

  8. Reconnaissance blind multi-chess: an experimentation platform for ISR sensor fusion and resource management

    Science.gov (United States)

    Newman, Andrew J.; Richardson, Casey L.; Kain, Sean M.; Stankiewicz, Paul G.; Guseman, Paul R.; Schreurs, Blake A.; Dunne, Jeffrey A.

    2016-05-01

    This paper introduces the game of reconnaissance blind multi-chess (RBMC) as a paradigm and test bed for understanding and experimenting with autonomous decision making under uncertainty and in particular managing a network of heterogeneous Intelligence, Surveillance and Reconnaissance (ISR) sensors to maintain situational awareness informing tactical and strategic decision making. The intent is for RBMC to serve as a common reference or challenge problem in fusion and resource management of heterogeneous sensor ensembles across diverse mission areas. We have defined a basic rule set and a framework for creating more complex versions, developed a web-based software realization to serve as an experimentation platform, and developed some initial machine intelligence approaches to playing it.

  9. Design and R and D activities on ceramic breeder blanket for fusion experimental reactors in JAERI

    International Nuclear Information System (INIS)

    Kurasawa, T.; Takatsu, H.; Sato, S.; Nakahira, M.; Furuya, K.; Hashimoto, T.; Kawamura, H.; Kuroda, T.; Tsunematsu, T.; Seki, M.

    1995-01-01

    Design and R and D activities on ceramic breeder blanket of a fusion experimental reactor have been progressed in JAERI. A layered pebble bed type ceramic breeder blanket with water cooling is a prime candidate concept. Design activities have been concentrated on improvement of the design by conducting detailed analyses and also by fabrication procedure consideration based on the current technologies. A wide variety of R and Ds have also been conducted in accordance with the design activities. Development of fabrication technology of the blanket box structure and its mechanical testing, elementary testing on thermal performances of the pebble bed, and engineering-oriented material tests of breeder and beryllium pebbles are the main achievements during the last two years. (orig.)

  10. Numerical simulation and experimental study of CLAM T-shapes for fusion applications by hydroforming

    International Nuclear Information System (INIS)

    Guo Xunzhong; Tao Jie; Liu Hongbing; Li Ming

    2010-01-01

    The integral hydroforming process to prepare CLAM T-shapes for fusion applications was evaluated by means of numerical simulation. The paper firstly investigated the effect of different paths on the protrusion height and distribution of thickness thinning rate of T-shapes. Then, it discussed that the friction coefficient between die and tube blank played an important role in manufacturing high quality T-shapes. Subsequently, the practical hydroforming was performed based on the simulation results with the aid of special lubrication coatings with friction coefficient 0.07. It is obviously indicated that the simulation results agree well with the experimental ones in geometry size and wall thickness distribution. The results indicate that the numerical simulation guides the practical hydroforming of CLAM tube effectively and determines the actual cold forming process parameters rapidly. The sound CLAM T-shapes with proper geometry size and thickness distribution can be obtained by the optimal hydroforming process. (authors)

  11. A proposed safety assurance method and its application to the fusion experimental reactor

    International Nuclear Information System (INIS)

    Okazaki, T.; Seki, Y.; Inabe, T.; Aoki, I.

    1995-01-01

    Importance categorization and hazard identification methods have been proposed for a fusion experimental reactor. A parameter, the system index, is introduced in the categorization method. The relative importance of systems with safety functions can be classified by the largeness of the system index and whether or not the system acts as a boundary for radioactive materials. This categorization can be used as the basic principle in determining structure design assessment, seismic design criteria etc. For the hazard identification the system time energy matrix is proposed, where the time and spatial distributions of hazard energies are used. This approach is formulated more systematically than an ad-hoc identification of hazard events and it is useful to select design basis events which are employed in the assessment of safety designs. (orig.)

  12. Contribution of computer science to the evaluation of experimental data

    International Nuclear Information System (INIS)

    Steuerwald, J.

    1978-11-01

    The GALE data acquisition system and EDDAR data processing system, used at Max-Planck-Institut fuer Plasmaphysik, serve to illustrate some of the various ways in which computer science plays a major role in developing the evaluation of experimental data. (orig.) [de

  13. Contributions to 30th European Physical Society conference on controlled fusion and plasma physics (St. Petersburg, Russia, 7-11 July 2003) from NIFS

    International Nuclear Information System (INIS)

    2003-08-01

    25 contributed papers to the 30th European Physical Society Conference on Controlled Fusion and Plasma Physics (St. Petersburg, Russia, 7-11 July 2003) from the activity of NIFS are collected in this report. (author)

  14. Invited and contributed papers presented by the theory group at the joint Varenna-Lausanne international workshop 'theory of fusion plasmas'

    International Nuclear Information System (INIS)

    1996-09-01

    In this report eight invited and contributed papers of the theory group are included which were presented at joint Varenna-Lausanne international workshop on 'theory of fusion plasmas'. (author) figs., tabs., refs

  15. Test of quantum electrodynamics by muonic atoms: An experimental contribution

    International Nuclear Information System (INIS)

    Tauscher, L.; Backenstoss, G.; Fransson, K.; Koch, H.; Nilsson, A.; De Raedt, J.

    1975-01-01

    The large unexplained deviations of the experimental muonic 4-3 transitions in Ba and 5-4 transitions in Pb from calculations were found not to be existent. The absolute energies of these transitions agree, on the average, with theory to within 10 eV: The differences between experimental and calculated energies E)-E) are +2plus-or-minus13 and -2plus-or-minus12 eV for the μ - -Ba 4f 5 / 2 -3d 3 / 2 and 4f 7 / 2 -3d 5 / 2 transitions, respectively, and 10plus-or-minus16 and -13plus-or-minus14 eV for the μ - -Pb 5g 7 / 2 -4f 5 / 2 and 5g 9 / 2 -4f 7 / 2 transitions, respectively

  16. Experimental study of deceleration process of traveling wave direct energy converter for advanced fusion

    International Nuclear Information System (INIS)

    Takeno, Hormasa; Yamamoto, Takayoshi; Takada, Kousuke; Yasaka, Yasuyoshi

    2007-01-01

    Advanced fusion is attractive in the view point of utilization of high efficiency direct energy conversion from fusion produced ions. Deuterium-helium-3 reaction is the most possible, however, the energy of created fast proton is so enormous that conventional electro-static converters cannot be applied. Use of a traveling wave direct energy converter (TWDEC), the principle of which was inverse process of a linear accelerator, was proposed for recovering energy of the fast protons. In order to realize the TWDEC, the authors are continuing experimental study by employing a small-scale simulator. A TWDEC consists of a modulator and a decelerator. Fast proton beam extracted from a reactor is introduced in the modulator where radio frequency (RF) electrostatic field modulate the beam velocity, and hence, the protons are bunched and density-modulated in the downstream. The density-modulated protons flow into the decelerator where a number of electrodes connected to a transmission circuit are axially aligned. The flowing protons induce RF current which creates RF traveling voltage on the electrodes. The RF traveling field between aligned electrodes decelerates the protons, thus their energy is recovered into RF power. In this paper, deceleration process of TWDEC is experimentally examined. In our experimental simulator, because of the small beam current, the induced potential, i.e. the deceleration field is so weak that the beam cannot be decelerated. Thus, we examined the process by dividing into two: one was induction of the deceleration field by the modulated beam, which was called as passive decelerator. The other was energy recovery through interaction between the deceleration field and the modulated beam. In this latter experiment, the deceleration field was supplied externally, and we called this as active decelerator. As for the active decelerator mode, we performed higher beam energy experiment than previous one. As the beam energy increases, the divergence of

  17. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M.

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  18. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee DRFC, 13 - Saint-Paul-lez-Durance (France)

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  19. Overview of the RFX-mod contribution to the international Fusion Science Program

    Czech Academy of Sciences Publication Activity Database

    Puiatti, M.E.; Dal Bello, S.; Marrelli, L.; Martin, P.; Agostinetti, P.; Agostini, M.; Antoni, V.; Auriemma, F.; Barbisan, M.; Barbui, T.; Baruzzo, M.; Battistella, M.; Belli, F.; Bettini, P.; Bigi, M.; Bilel, R.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cester, D.; Chacon, L.; Chapman, B.E.; Chitarin, G.; Ciaccio, G.; Cooper, W.A.; Dalla Palma, M.; Deambrosis, S.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Dong, J.Q.; Escande, D.F.; Esposito, B.; Fassina, A.; Fellin, F.; Ferro, A.; Finotti, C.; Franz, P.; Frassinetti, L.; Furno Palumbo, M.; Gaio, E.; Ghezzi, F.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Gonzales, W.A.; Grando, L.; Guo, S.C.; Hanson, J.D.; Hirshman, S.P.; Innocente, P.; Jackson, J.L.; Kiyama, S.; Komm, Michael; Laguardia, L.; Li, C.; Liu, Y.Q.; Lorenzini, R.; Luce, T.C.; Luchetta, A.; Maistrello, A.; Manduchi, G.; Mansfield, D.K.; Marchiori, G.; Marconato, N.; Marocco, D.; Marcuzzi, D.; Martines, E.; Martini, S.; Matsunaga, G.; Mazzitelli, G.; Miorin, E.; Momo, B.; Moresco, M.; Okabayashi, M.; Olofsson, E.; Paccagnella, R.; Patel, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pigatto, L.; Piovan, R.; Piovesan, P.; Piron, C.; Piron, L.; Predebon, I.; Rea, C.; Recchia, M.; Rigato, V.; Rizzolo, A.; Roquemore, A.L.; Rostagni, G.; Ruset, C.; Ruzzon, A.; Sajo-Bohus, L.; Sakakita, H.; Sanchez, R.; Sarff, J.S.; Sartori, E.; Sattin, F.; Scaghanm, A.; Scarin, P.; Schmitz, O.; Sonato, P.; Spada, E.; Spagnolo, S.; Spolaore, M.; Spong, D.A.; Spizzo, G.; Stevanato, L.; Takechi, M.; Taliercio, C.; Terranova, D.; Trevisan, G.L.; Urso, G.; Valente, M.; Valisa, M.; Veranda, M.; Vianello, N.; Viesti, G.; Villone, F.; Vincenzi, P.; Visona, N.; Wang, Z.R.; White, R.B.; Xanthopoulos, P.; Xu, X.Y.; Yanovskiy, V.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zuin, M.

    2015-01-01

    Roč. 55, č. 10 (2015), s. 104012-104012 ISSN 0029-5515. [Fusion Energy Conference 2014 (FEC) /25./. St Petersburg, 13.10.2014-18.10.2014] Institutional support: RVO:61389021 Keywords : plasma * tokamak * reversed field pinch * single helicity * 3D boundary Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/article/10.1088/0029-5515/55/10/104001

  20. Contributions to the 14th IEEE/NPSS Symposium on fusion engineering

    International Nuclear Information System (INIS)

    Navarro, A.P.; Almoguera, L.; Alonso Gozalo, J.; Alonso Candenas, J.; Blaumoser, M.

    1992-01-01

    Three communications about the TJ-II device, under construction at CIEMAT with preferential support from EURATOM, were presented to the 14th IEEE/NPSS Symposium on Fusion Engineering and are collected in this report. The first one describes in detail the device and its present status of design and construction. The remaining two deal with the two most critical components of the project: the vacuum vessel and the central hard conductor. (author) 16 fig. 16 ref

  1. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Sukun [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Kai [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Du, Tao [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Zheng, Chunfu [Soochow University, Institutes of Biology and Medical Sciences, Suzhou 215123 (China); Liu, Yalan [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Hu, Qinxue, E-mail: qhu@wh.iov.cn [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Institute for Infection and Immunity, St George' s University of London, London SW17 0RE (United Kingdom)

    2015-09-15

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.

  2. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    International Nuclear Information System (INIS)

    Luo, Sukun; Hu, Kai; He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin; Du, Tao; Zheng, Chunfu; Liu, Yalan; Hu, Qinxue

    2015-01-01

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry

  3. The contribution of thought-action fusion and thought suppression in the development of obsession-like intrusions in normal participants.

    Science.gov (United States)

    Rassin, E

    2001-09-01

    Both thought-action fusion (TAF: i.e., a cognitive bias implying an inflated sense of responsibility for one's own thoughts) and thought suppression have been claimed to contribute to the development of obsession-like intrusions. Therefore, it seems plausible that conjunction of these phenomena results in highly intense intrusions. However, possible interactions between TAF and thought suppression have not yet been investigated experimentally. In the current study, healthy volunteers were exposed to a TAF-like intrusion. They were, then, randomly assigned to a suppression (n=21) or non-suppression condition (n=19). Next, visual analogue scales (VASs) were completed measuring anxiety, feelings of responsibility and guilt, urge to neutralise and so on. Contrary to expectation, several VAS scores were lower for participants in the suppression group than for those in the non-suppression group. Hence, it is concluded that thought suppression may, at least in the short term, alleviate discomfort caused by TAF-like intrusions.

  4. Olive pomace based lightweight concrete, an experimental approach and contribution

    Directory of Open Access Journals (Sweden)

    Lynda Amel Chaabane

    2018-01-01

    Full Text Available Due to conventional aggregates resources depletion, material recycling has become an economic and ecologic alternative. In this paper, locally available natural residues such as olive pomace were investigated, when partially incorporated in the concrete formulation, since the mechanical characteristics of lightweight aggregate concrete strongly depend on its properties and proportions. Lightweight aggregates are more deformable than the cement matrix because of their high porosity, and their influence on the concrete strength remains complex. The purpose of this paper is to investigate the aggregates properties on lightweight concrete mechanical behaviour through an experimental approach. In addition, the different substitution sequences and the W/C ratio on lightweight concrete behaviour were evaluated, in order to determine the W/C ratio influence on the improvement of the lightweight concrete mechanical properties while knowing that the mixing water quantity gives the cement paste manoeuvrability and mechanical strength effects. The last part of this paper, therefore, was to provide statistical survey for estimating strength and weight reduction through the different natural aggregate substitutions to improve the lightweight concrete properties. The results achieved in a significant olive-pomace lower adhesion with the matrix after the cement setting, making the lightweight concrete mechanical strength weak. However, this work can open several perspectives: Results modeling and correlation with an experimental approach, the evolution and determination of lightweight concrete characteristics when exposed to high temperatures and thermohydric properties.

  5. Experimental Investigation of Muon-Catalyzed $dt$ Fusion in Wide Ranges of $D/T$ Mixture Conditions

    CERN Document Server

    Bom, V R; Demin, D L; van Eijk, C W E; Faifman, M P; Filchenkov, V V; Golubkov, A N; Grafov, N N; Grishenchkin, S K; Gritsaj, K I; Klevtsov, V G; Konin, A D; Kuryakin, A V; Medved', S V; Musyaev, R K; Perevozchikov, V V; Rudenko, A I; Sadetsky, S M; Vinogradov, Yu I; Yukhimchuk, A A; Yukhimchuk, S A; Zinov, V G; Zlatoustovskii, S V

    2004-01-01

    A vast program of the experimental investigation of muon-catalyzed $dt$ fusion was performed at the JINR Phasotron. Parameters of the $dt$ cycle were obtained in a wide range of $D/T$ mixture conditions: temperatures of $20\\div 800$ K, densities of $0.2\\div1.2$ LHD and tritium concentrations of $15\\div 86\\%$. The results obtained are summarized.

  6. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  7. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas

    International Nuclear Information System (INIS)

    Bailey, J. E.; Rochau, G. A.; Mancini, R. C.; Iglesias, C. A.; MacFarlane, J. J.; Golovkin, I. E.; Blancard, C.; Cosse, Ph.; Faussurier, G.

    2009-01-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156±6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques.

  8. Basic experiments during loss of vacuum event (LOVE) in fusion experimental reactor

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Kunugi, Tomoaki; Seki, Yasushi

    1993-01-01

    If a loss of vacuum event (LOVE) occurs due to damage of the vacuum vessel of a nuclear fusion experimental reactor, some chemical reactions such as a graphic oxidation and a buoyancy-driven exchange flow take place after equalization of the gas pressure between the inside and outside of the vacuum vessel. The graphite oxidation would generate inflammable carbon monoxide and release tritium retained in the graphite. The exchange flow through the breaches may transport the carbon monoxide and tritium out of the vacuum vessel. To add confidence to the safety evaluations and analyses, it is important to grasp the basic phenomena such as the exchange flow and the graphite oxidation. Experiments of the exchange flow and the graphite oxidation were carried out to obtain the exchange flow rate and the rate constant for the carbon monoxide combustion, respectively. These experimental results were compared with existing correlations. The authors plan a scaled-model test and a full-scale model test for the LOVE

  9. Theoretical and experimental study on the magnetomechanical behavior of superconducting helical coils for a fusion reactor

    International Nuclear Information System (INIS)

    Takaghi, T.; Miya, K.; Yamada, H.; Takagi, T.

    1984-01-01

    The magnetomechanical behavior of superconducting helical coils for a magnetic fusion reactor was investigated experimentally and theoretically. Deformations of straight and torus type helical coils were caused due to static electromagnetic forces in the liquid helium cryostat and were analysed with the finite element computer code made here. Despite of a large scatter of experimental data due to a non-uniform friction force between the helical coil and the torus of stainless steel, the numerical results are very close to the mean value of the data. Numerical analysis of the force distribution acting on the helical coils was also performed for a Heliotron's coil system to characterize its nature. The force could be categorized conveniently as an extensional force, a tangential force and a toroidal force which correspond respectively to the kind of forces acting on toroidal field coils. Additionally, the effect of mechanical constraint on the magnetomechanical behavior is discussed and shows that the location of the constraint significantly affects the stress distributions in the coils. (orig.)

  10. Contribution to the experimental qualification of PWR fuel storage calculations

    International Nuclear Information System (INIS)

    Marsault, Philippe.

    1980-12-01

    Experiments were carried out on assemblies representative of those used in PWR reactors in a configuration made critical with a driver zone. In this way, certain parameters were able to be measured using current classical techniques. As the multiplication factor for a group of assemblies cannot be determined directly, substitutions were made with an equivalent homogeneous lattice in which Laplacian measurements could be made. The k(infinite) factor was obtained by introducing a migration area which can only be obtained from calculations. Experimental storage studies realized during the CRISTO 1 campaign utilize: 1) a lattice with 4 14x14 pin assemblies immersed in ordinary water; 2) a lattice with 4 14x14 pin assemblies and 3) a regular lattice. The CRISTO experiment enabled criticality calculations to be qualified with these lattices for storage under accidental conditions [fr

  11. ASDEX contributions to the 15th European conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1988-05-01

    This report is a collection of 23 IPP Garching contributions concerning confinement studies, plasma heating, impurity studies, plasma stability, and plasma diagnostics. 5 of these contributions have been separately indexed into the data base. (GG)

  12. NUCLEAR HEATING IN LIF DOSEMETERS IN A FUSION NEUTRON FIELD, TRIAL OF DIRECT COMPARISON OF EXPERIMENTAL AND SIMULATED RESULTS.

    Science.gov (United States)

    Pohorecki, Wladyslaw; Obryk, Barbara

    2017-09-29

    The results of nuclear heating measured by means of thermoluminescent dosemeters (TLD-LiF) in a Cu block irradiated by 14 MeV neutrons are presented. The integral Cu experiment relevant for verification of copper nuclear data at neutron energies characteristic for fusion facilities was performed in the ENEA FNG Laboratory at Frascati. Five types of TLDs were used: highly photon sensitive LiF:Mg,Cu,P (MCP-N), 7LiF:Mg,Cu,P (MCP-7) and standard, lower sensitivity LiF:Mg,Ti (MTS-N), 7LiF:Mg,Ti (MTS-7) and 6LiF:Mg,Ti (MTS-6). Calibration of the detectors was performed with gamma rays in terms of air-kerma (10 mGy of 137Cs air-kerma). Nuclear heating in the Cu block was also calculated with the use of MCNP transport code Nuclear heating in Cu and air in TLD's positions was calculated as well. The nuclear heating contribution from all simulated by MCNP6 code particles including protons, deuterons, alphas tritons and heavier ions produced by the neutron interactions were calculated. A trial of the direct comparison between experimental results and results of simulation was performed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Optimization design study of an innovative divertor concept for future experimental tokamak-type fusion reactors

    International Nuclear Information System (INIS)

    Willem Janssens, Ir.; Crutzen, Y.; Farfaletti-Casali, F.; Matera, R.

    1991-01-01

    The design optimization study of an innovative divertor concept for future experimental tokamak-type fusion devices is both an answer to the actual problems encountered in the multilayer divertor proposals and an illustration of a rational modelling philosophy and optimization strategy for the development of a new divertor structure. Instead of using mechanical attachment or metallurgical bonding of the protective material to the heat sink as in most actual divertor concepts, the so-called brush divertor in this study uses an array of unidirectional fibers penetrating in both the protective armor and the underling composite heat sink. Although the approach is fully concentrated on the divertor performance, including both a description of its function from the theoretical point of view and an overview of the problems related to the materials choice and evaluation, both the approach followed in the numerical modelling and the judgment of the results are thought to be valid also for other applications. Therefore the spin-off of the study must be situated in both the technological progress towards a feasible divertor solution, which introduces no additional physical uncertainties, and in the general area of the thermo-mechanical finite-element modelling on both macro-and microscale. The brush divertor itself embodies the use, and thus the modelling, of advanced materials such as tailor-made metal matrix composites and dispersion strengthened metals, and is shown to offer large potential advantages, demanding however and experimental validation under working conditions. It is clearly indicated where the need originates for an integrated experimental program which must allow to verify the basic modelling assumptions in order to arrive at the use of numerical computation as a powerful and realistic tool of structural testing and life-time prediction

  14. Increased Cell Fusion in Cerebral Cortex May Contribute to Poststroke Regeneration

    Directory of Open Access Journals (Sweden)

    Alexander Paltsyn

    2013-01-01

    Full Text Available In this study, we used a model of a hemorrhagic stroke in a motor zone of the cortex in rats at the age of 3 months The report shows that cortical neurons can fuse with oligodendrocytes. In formed binuclear cells, the nucleus of an oligodendrocyte undergoes neuron specific reprogramming. It can be confirmed by changes in chromatin structure and in size of the second nucleus, by expression of specific neuronal markers and increasing total transcription rate. The nucleus of an oligodendrocyte likely transforms into a second neuronal nucleus. The number of binuclear neurons was validated with quantitative analysis. Fusion of neurons with oligodendrocytes might be a regenerative process in general and specifically following a stroke. The appearance of additional neuronal nuclei increases the functional outcome of the population of neurons. Participation of a certain number of binuclear cells in neuronal function might compensate for a functional deficit that arises from the death of a subset of neurons. After a stroke, the number of binuclear neurons increased in cortex around the lesion zone. In this case, the rate of recovery of stroke-damaged locomotor behavior also increased, which indicates the regenerative role of fusion.

  15. Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2017-04-15

    Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety concerns (Federici et al., 2001) . It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance (Ono et al., 2013, 2014) . The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium (LL) divertor (RLLD) concept (Ono et al., 2013) and its variant, the active liquid lithium divertor concept (ARLLD) (Ono et al., 2014) , taking advantage of the enhanced non-coronal Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/s of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤450 °C than the first wall ∼600–700 °C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ∼1 l/s (l/s) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust/impurities are removed by relatively simple filter and cold/hot trap systems. Using a

  16. Contribution to the damping identification: experimental and numerical approaches

    International Nuclear Information System (INIS)

    Crambuer, R.

    2013-01-01

    Since earthquakes are a natural threat in France, it seems reasonable to construct buildings capable of resisting them. Since 1955, A.S. 55 recommendations regulations have taken into account this risk in all new constructions. The rules were created following an earthquake in Orleansville (Algeria) on 9. September 1954 and since then they have been modified in the aftermath of several significant earthquakes. As it stands now, the law requires that measurements of energy dissipation be carried out during the earthquakes in an effective manner. However, at present it is a great challenge to determine this, especially where reinforced concrete structures are concerned. The reason for this is the many different causes of energy dissipation which can be material, such as steel yielding, cracking of the concrete or deterioration of the interface between the Steel/concrete interface or environmental, such as the interactions with neighbouring structures or radiative damping. These dissipations typically creep into the essential pattern of the structures as a uniform, slight damping, and which is heavily quantify such as modal or Rayleigh damping. The challenge is therefore to ascertain how to carry out damping in a way that relies more on the laws of physics themselves. This study aims at bringing some clarifications to this problem. In order to achieve this, two objectives were targeted during the case study: the first consisted in experimentally qualifying and quantifying the sources of damping in concrete, the second aims at developing a method which model both the overall behaviour and the damping in a realistic way with low computational costs. A series of reverse 3-point bending tests were carried out to determine and quantify the mechanisms responsible for damping. This approach was innovative in that the tests were carried out on not only sound beams, but also on pre-damaged beams. When processing the results of these experiments, we focused on the overall

  17. Review of the general atomic experimental fusion power reactor initial conceptual design

    International Nuclear Information System (INIS)

    Baker, C.C.; Sager, P.H. Jr.; Harder, C.R.

    1976-01-01

    The primary objective of the Experimental Power Reactor (EPR) is to provide the necessary interface between physics experiments and the first demonstration power plants. Since economically viable tokamak-type reactors may well have to be very high Q devices (ratio of fusion power out to power into the plasma), it will be essential for a tokamak demonstration reactor to operate at or near ignition conditions. Thus, it is believed that one of the primary objectives of the EPR must be to fully model the behavior of a D-T burning plasma required in the reactor of a demonstration plant. Therefore, a major objective of the EPR should be to achieve ignition conditions. In addition to demonstrating the ability to ignite and control a D-T plasma, it is also desirable that the EPR should produce, or at least demonstrate the ability to produce, a small amount of net electrical power. These objectives should be accomplished at a reasonable cost; this implies achieving a sufficiently high β (ratio of plasma pressure to magnetic field pressure). It is believed that noncircular cross section tokamaks offer the best chance of realizing these objectives. Consequently, noncircular cross sections are a major design feature of the General Atomic EPR

  18. Review of the conceptual design of a Doublet fusion experimental power reactor

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-01-01

    The results of a two-year, conceptual design study of a fusion experimental power reactor (EPR) are presented. For this study, the primary objectives of the EPR are to obtain plasma ignition conditions and produce net electrical power. The design features a Doublet plasma configuration with a major radius of 4.5 m. The average plasma beta is 10 percent which yields a thermonuclear power level of 410 MW during a 105-sec burn period. With a duty factor of 0.84, the gross electrical output is 124 MW(e) while the net output is 37 MW(e). The design features a 25-cm-thick, helium-cooled, modular, stainless-steel blanket with a 1-cm-thick, silicon carbide first wall. Sufficient shielding is provided to permit contact maintenance outside the shield envelope within 24 hr after shutdown. An overall plant concept has been developed including a superheated steam cycle power conversion system. Preliminary cost estimates and construction schedules have also been developed. 3 refs

  19. Experimental evaluation of torsional fatigue strength of welded bellows and application to design of fusion device

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Yamamoto, Masahiro; Shimizu, Masatsugu; Suzuki, Kazuo; Sonobe, Tadashi; Hayashi, Yuzo; Mizuno, Gen-ichiro.

    1984-01-01

    Torsional fatigue strength of the welded bellows was evaluated experimentally, aiming the application to a port of a fusion device. The welded bellows revealed elastic torsional buckling and spiral distorsion even under a small angle of torsion. Twisting load never leads the welded bellows to fracture easily so far as the angle of torsion is not excessively large, and the welded bellows has the torsional fatigue strength much larger than that expected so far. Two formulae were proposed to evaluate the stress of the welded bellows under the forced angle of torsion; shearing stress evaluation formula in the case that torsional buckling does not occur and the axial bending stress evaluation formula in the case that torsional buckling occurs. And the results of the torsional fatigue experiments showed that the former is reasonably conservative and simulates the actual behavior of the welded bellows better than the latter in the high cycle fatigue region and vice versa in the low cycle fatigue region from the viewpoint of the mechanical design. The present evaluation method of the torsional fatigue strength was applied to the welded bellows for the port of the JT-60 vacuum vessel and its structural integrity was confirmed under the design load condition. (author)

  20. Design study of a neutral beam injection system for the JAERI Experimental Fusion Reactor (JXFR)

    International Nuclear Information System (INIS)

    1977-10-01

    Design study has been made of a 200 kV, 45 MW D 0 neutral beam injection system for the JAERI Experimental Fusion Reactor (JXFR) covering the following: determination of the ion source specifications, design of components such as ion source with extraction electrodes, energy converter, cryopump and cooling system, and estimations of the energy conversion efficiency, overall power efficiency and total power required for operation of the NBI system, and also a hydrogen isotope separation method using cryo-sorption pumps. Optimizations and parameter studies of the neutralizing cell length, gas flow rate, operating pressure of ion sources, total pumping speed and pressure of energy converters are made in the design study based on reactor plasma requirements. Hollow cathode ion sources are proposed because of the extended operation time at low gas pressure (about 4.5 x 10 -3 Torr) and the high gas efficiency (40%). Life of the extraction electrodes is determined by blistering due to deuterium ions. Fast neutron radiation damage is relatively small. In-line direct converters with grounded recovery electrodes and neutralizing cells floated at negative potential -190 kV are used to recover residual deuterium ion energy without interrupting the neutral beam trajectories. Energy conversion efficiency of 80% and overall power efficiency of about 40% are obtained. (auth.)

  1. Experimental fusion power reactor conceptual design study. Final report. Volume II

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following sections: (1) reactor components, (2) auxiliary systems, (3) operations, (4) facility design, (5) program considerations, and (6) conclusions and recommendations

  2. Experimental fusion power reactor conceptual design study. Final report. Volume III

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following appendices: (1) tradeoff code analysis, (2) residual mode transport, (3) blanket/first wall design evaluations, (4) shielding design evaluation, (5) toroidal coil design evaluation, (6) E-coil design evaluation, (7) F-coil design evaluation, (8) plasma recycle system design evaluation, (9) primary coolant purification design evaluation, (10) power supply system design evaluation, (11) number of coolant loops, (12) power conversion system design evaluation, and (13) maintenance methods evaluation

  3. Design study of an armor tile handling manipulator for the Fusion Experimental Reactor

    International Nuclear Information System (INIS)

    Shibanuma, K.; Honda, T.; Satoh, K.; Terakado, T.; Kondoh, M.; Sasaki, N.; Munakata, T.; Murakami, S.

    1991-01-01

    A conceptual design of the Fusion Experimental Reactor (FER), which is a D-T burning reactor following on JT-60 in Japan, has been developed by Japan Atomic Energy Research Institute (JAERI). In FER, a rail-mounted vehicle concept is planned to be adopted for in-vessel maintenance, such as maintenance of divertor plates and armor tiles. Advantages of this concept are the high stiffness of the rail as a base structure for maintenance and the high mobility of the vehicle along the rail. Twin armor tile handling manipulators installed on both sides of the vehicle have been designed. The respective manipulators for armor tile handling have 8 degrees of freedom in order to have access to any place of the first wall and to go through the horizontal port by operating manipulator joints. If the two types of manipulators for divertor plates and armor tiles are installed on the vehicle and the divertor handling manipulator carries a case filled with armor tiles, the replacement time of armor tiles will be reduced. In FER, moreover, maintenance of armor tiles, which is a scheduled maintenance, is planned to be carried out by the autonomous control using position sensors etc. In order to accumulate the data base for the development of the autonomous control of the manipulator in armor tile maintenance, the present paper describes basic mechanical characteristics (stress, deflection and natural frequency) of the armor tile handling manipulator calculated by static stress and dynamic eigenvalue analyses. (orig.)

  4. Development of dust removal system using static electricity for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Ueda, Yasutoshi; Oda, Yasushi; Takahashi, Kenji [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao; Ueda, Shuzo; Kurihara, Ryoichi

    1997-11-01

    Tests to collect and transport metallic and non-metallic dust particles have been conducted using static electricity in a vacuum environment to investigate the applicability of a static electricity dust removal system for fusion experimental reactors. The dust particles are charged by electrostatic induction, floated and collected due to the Coulomb force generated by the AC electric field. They are then transported due to the gradient force induced by the electric curtain of the non-uniform travelling-wave electric field. Using a fully insulated electrode with a single-phase AC voltage up to 15 kV, aluminum and carbon dust were successfully collected. The highest collection rates for the aluminum and carbon dust were around 30 and 2 g/min, respectively. The linear-type electrodes, using as high as 22 kV of the three-phase AC voltage, transported aluminum dust up to an angle of 60deg. Applying a guide electrode to the linear-type electrode, the transportation rate was approximately doubled and almost constant at every angle, including a 90deg angle. The system transported aluminum dust up to the rate of 13 g/min. The influence of the 0.15 T magnetic field on the dust collection and transportation efficiencies was found to be negligible. (author)

  5. Development of dust removal system using static electricity for fusion experimental reactors

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Ueda, Yasutoshi; Oda, Yasushi; Takahashi, Kenji; Seki, Yasushi; Aoki, Isao; Ueda, Shuzo; Kurihara, Ryoichi.

    1997-01-01

    Tests to collect and transport metallic and non-metallic dust particles have been conducted using static electricity in a vacuum environment to investigate the applicability of a static electricity dust removal system for fusion experimental reactors. The dust particles are charged by electrostatic induction, floated and collected due to the Coulomb force generated by the AC electric field. They are then transported due to the gradient force induced by the electric curtain of the non-uniform travelling-wave electric field. Using a fully insulated electrode with a single-phase AC voltage up to 15 kV, aluminum and carbon dust were successfully collected. The highest collection rates for the aluminum and carbon dust were around 30 and 2 g/min, respectively. The linear-type electrodes, using as high as 22 kV of the three-phase AC voltage, transported aluminum dust up to an angle of 60deg. Applying a guide electrode to the linear-type electrode, the transportation rate was approximately doubled and almost constant at every angle, including a 90deg angle. The system transported aluminum dust up to the rate of 13 g/min. The influence of the 0.15 T magnetic field on the dust collection and transportation efficiencies was found to be negligible. (author)

  6. ASDEX contributions to the 14th European conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1987-06-01

    This report is a collection of 25 IPP Garching contributions concerning pellet refuelling, ion-cyclotron resonance heating, lower-hybrid heating and current drive, energy transport studies, particle transport studies, equilibrium and MHD, divertor physics and plasma diagnostics. The contributions have been taken up separately into the data base. (GG)

  7. Contribution to the theoretical and numerical study of inertial confinement fusion

    International Nuclear Information System (INIS)

    Tran Trach-Minh

    1983-01-01

    After an overview of problems faced for numerical simulations of inertial fusion, this research thesis reports the study of the behaviour of suprathermal ions by using the transport equation as model. The problem is then to find an appropriate numerical method to solve this equation, inspired by well known methods related to the transport of neutral particles (photons and neutrons) which however cannot be directly applied. The calculation scheme is introduced in an existing hydrodynamic code. Models are then proposed to take the partial ionisation of some materials into account in the target thermodynamics and in the slowing down of fast ions. In the next part, the author discusses the ion transport equation, and the calculation of the different coefficients which characterise their interaction with particles of the host medium. Problems faced for numerical processing are addressed. The coupling of ion transport calculation model with a hydrodynamic code is described. Effects of alphas transport during target ignition are analysed, as well as the penetration of external ion beams during the compression phase

  8. Experimental study of fast electron transport in the framework of fast ignition for inertial fusion

    International Nuclear Information System (INIS)

    Vauzour, B.

    2012-01-01

    The framework of this PhD thesis is the validation of the fast ignition scheme for the nuclear fusion by inertial confinement. It consists in the experimental study of the various processes involved in fast electron beams propagation, produced by intense laser pulses (10 19 W.cm -2 ), through dense matter either solid or compressed. In this work we present the results of three experiments carried out on different laser facilities in order to generate fast electron beams in various conditions and study their propagation in different states of matter, from the cold solid to the warm and dense plasma.The first experiment was performed with a high intensity contrast on the UHI100 laser facility (CEA Saclay). The study of fast electron energy deposition inside thin aluminium targets highlights a strong target heating at shallow depths, where the collective effects are predominant, thus producing a steep temperature profile between front (300 eV) and rear (20 eV) sides over 20μm thickness. A numerical simulation of the experiment shows that this temperature gradient induces the formation of a shock wave, breaking through the rear side of the target and thus leading to increase the thermal emission. The experimental chronometry of the shock breakthrough allowed validating the model of the collective transport of electrons.Two other experiments were dedicated to the study of fast electron beam propagation inside compressed targets. In the first experiment on the LULI2000 laser facility, the plane compression geometry allowed to precisely dissociate the energy losses due to resistive effects from those due to the collisional ones. By comparing our experimental results with simulations, we observed a significative increase of the fast electron beam energy losses with the compression and the target heating to temperatures close to the Fermi temperature. The second experiment, performed in a cylindrical geometry, demonstrated a fast electron beam guiding phenomenon due to

  9. Investigation on welding and cutting methods for blanket support legs of fusion experimental reactors

    International Nuclear Information System (INIS)

    Tokami, Ikuhide; Nakahira, Masataka; Kurasawa, Toshimasa; Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1996-07-01

    A toroidally-and poloidally-divided modular blanket has been proposed for a fusion experimental reactor, such as ITER, to enhance its maintainability as well as improve its fabricability. The blanket module, typically the size of 1 m wide, 1-2 m high and 0.4 m deep and the weight of 4 ton, will be supported by support legs which are extruded from back of the module and connected to a 70-100 mm thick strong back plate. The support leg has to withstand large electromagnetic force during plasma disruption and provide the way for in-situ module replacement by remote handling. For the connection method of the support leg to the back plate, a welding approach has been investigated here in terms of its high reliability against the large electromagnetic loads. For the welding approach, the support leg needs to be 70 mm thick, and the working space for welding/cutting heads are limited to 100 mm x 150 mm adjacent to the support leg. Based on a comparison of several welding methods, e.g. NGTIG, NGMIG and laser, NGTIG has been selected as a reference due to its well-established technology and the least R and D required. As for the cutting method, a plasma cutting has been given the highest priority to be pursued because of its compactness and high speed. Through preliminary design studies, the possibility of small welding/cutting heads that will work in the limited space has been shown, and maintenance route for in-situ module replacement with pre-and postfixture of the module has been investigated. Also preliminary R and Ds have resulted in; 1)the welding distortion is predictable according to the shape of weld groove and adjustable to meet the placement requirement of the module first wall, 2)the plasma cut surface can be rewelded without machining, 3)the welding/cutting time will meet the requirement of maintenance time. (author)

  10. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  11. Conceptual design and technology development of containment structure in Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Sato, Keisuke; Matsuoka, Fushiki; Kanamori, Naokazu; Koizumi, Koichi; Abe, Tetsuya; Hosobuchi, Hideo; Tada, Eisuke; Yamada, Masao.

    1991-05-01

    A conceptual design of FER (Fusion Experimental Reactor) containment structure and its associated R and D activities, conducted from '89 to '90, are described. The FER containment structure system which mainly consists of a vacuum vessel, shielding structures, in-vessel replaceable components, ports, a cooling pipe system, has been developed to fullfil the required function. As an initial stage of R and D activities, the elemental technologies common to a tokamak reactor have been developed. Among them, a locking mechanism for supporting in-vessel replaceable components and a technique for insulation/conduction are described. For the locking mechanism, a caulking cotter driven by hydraulic pressure has been employed. Three kinds of hydraulic driving mechanism have been manufactured by trial: a 'piston jack' type, a 'bellows' type and a 'flexible tube' type. In the latter type, the stroke is obtained by changing the cross section of the flexible tube from a flat racetrack shape to a fat shape by hydraulic pressure. As the result of preliminary performance test, the shape of 'flexible tube' has been found to be improved. For the insulation coating, Al 2 O 3 has been selected as the material and a plasma spray method has been applied as the coating procedure. For the conduction coating, Cr 3 C 2 has been selected as the material and JET-KOTE method has been applied as the coating procedure. Both methods have been successfully developed and have been confirmed to be applicable the actual machine. A one fifth scale model has been fabricated in order to verify the design feasibility, mainly geometrical consistency. Then some design modifications were found to be needed for some of the components based on the manufacturing experience. (author)

  12. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V A

    2012-06-07

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  13. Present activities for the preparation of a Japanese draft of structural design guidelines for the experimental fusion reactor

    International Nuclear Information System (INIS)

    Miya, K.; Muto, Y.; Takatsu, H.; Hada, K.; Koizumi, K.; Jitsukawa, S.; Arai, T.; Ohkawa, Y.; Shimakawa, T.; Aoto, K.; Shiraishi, H.; Takagi, T.; Miki, N.; Takahashi, S.; Sato, K.; Takemasa, F.; Kasaba, M.; Kudough, F.; Fujita, J.; Kajiura, S.; Kinoshita, S.

    1996-01-01

    Since November 1990, systematic research has been carried out in preparation for a Japanese draft of structural design guidelines for the experimental fusion reactor. This report summarizes the major results of the work and the status of these efforts. A classification of components and definition of operating conditions are proposed on the basis of the ITER-CDA design, in the light of the safety characteristics of the fusion reactor and relevant conventions for the existing fission reactor design code. Specific issues regarding the structural design of the experimental fusion reactor are discussed based on the experimental and analytical work. The validity of the existing structural design method is confirmed for the use of irradiated 316 SS, irrespective of the significant reduction in uniform elongation capability caused by heavy neutron irradiation. Further important phenomena are treated such as magnetic damping, magnetic stiffness and fracture due to electromagnetic forces. Finally, the issues concerned with welding and non-destructive examinations are discussed with relevance to component classification. (orig.)

  14. Contributions to 4th European fusion theory conference (Aspenaes, Sweden, 17th-19th June 1991)

    International Nuclear Information System (INIS)

    1991-11-01

    Papers contributed by the JET team are presented. Studies on ion cyclotron-resonance heating in the JET tokamak are included. Other topics covered are the destruction of drift surfaces in tokamak devices, the neoclassical impurity flux in the presence of anomalous transport, and nonlinear regimes in plasmas. (UK)

  15. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  16. Analysis of the accident with the coolant discharge into the plasma vessel of the W7-X fusion experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Ušpuras, E.; Kaliatka, A.; Kaliatka, T., E-mail: tadas@mail.lei.lt

    2013-06-15

    Highlights: • The accident with water ingress into the plasma vessel in Wendelstein nuclear fusion device W7-X was analyzed. • The analysis of the processes in the plasma vessel and ventilation system was performed using thermal-hydraulic RELAP5 Mod3.3 code. • The suitability of pressure increase prevention system was assessed. • All analyses results will be used for the optimization of W7-X design and to ensure safe operation of this nuclear fusion device. -- Abstract: Fusion is the energy production technology, which could potentially solve problems with growing energy demand of population in the future. Starting 2007, Lithuanian Energy Institute (LEI) is a member of European Fusion Development Agreement (EFDA) organization. LEI is cooperating with Max Planck Institute for Plasma Physics (IPP, Germany) in the frames of EFDA project by performing safety analysis of fusion device W7-X. Wendelstein 7-X (W7-X) is an experimental stellarator facility currently being built in Greifswald, Germany, which shall demonstrate that in the future energy could be produced in such type of fusion reactors. In this paper the safety analysis of 40 mm inner diameter coolant pipe rupture in cooling circuit and discharge of steam–water mixture through the leak into plasma vessel during the W7-X no-plasma “baking” operation mode is presented. For the analysis the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers) and plasma vessel was developed by employing system thermal-hydraulic state-of-the-art RELAP5 Mod3.3 code. This paper demonstrated that the developed RELAP5 model enables to analyze the processes in divertor cooling system and plasma vessel. The results of analysis demonstrated that the proposed burst disc, connecting the plasma vessel with venting system, opens and pressure inside plasma vessel does not exceed the limiting 1.1 × 10{sup 5} Pa absolute pressure. Thus, the plasma vessel remains intact after loss

  17. EURATOM-CEA association contributions to the 21st symposium on fusion technology

    International Nuclear Information System (INIS)

    Garin, P.; Grosman, A.; Beaumont, B.

    2000-11-01

    The 27 contributions of EURATOM-Cea association have been gathered with 6 additional papers and 1 invited paper in this document. Most papers concern Tore-Supra and deal with the ergodic divertor, particle injection, impedance concept for ICRF antennas, low hybrid current drive, RF systems, the 118 GHz ECRH experiment, the inner first wall, improved vacuum vessel protection, pellet injection, material activation, and the CIEL project. 3 of the additional papers concern the model coil of ITER

  18. EURATOM-CEA association contributions to the 21st symposium on fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Garin, P; Grosman, A; Beaumont, B [and others

    2000-11-01

    The 27 contributions of EURATOM-Cea association have been gathered with 6 additional papers and 1 invited paper in this document. Most papers concern Tore-Supra and deal with the ergodic divertor, particle injection, impedance concept for ICRF antennas, low hybrid current drive, RF systems, the 118 GHz ECRH experiment, the inner first wall, improved vacuum vessel protection, pellet injection, material activation, and the CIEL project. 3 of the additional papers concern the model coil of ITER.

  19. Proceedings of the second United Nations international conference on the peaceful uses of atomic energy. V. 31. Theoretical and experimental aspects of controlled nuclear fusion

    International Nuclear Information System (INIS)

    1958-01-01

    The main topics covered by the Conference are: possibility of controlled fusion and status of the research programmes in different countries (USSR, Germany, USA, UK); theoretical aspects of plasma physics; experimental aspects of plasma physics

  20. Experimental and analytical investigations to air and steam ingress into the vacuum vessel of fusion reactors

    International Nuclear Information System (INIS)

    Kruessenberg, A.K.

    1996-12-01

    The basic fusion safety objective is the development of fusion power plants with features that protect individuals, society and the environment by establishing and maintaining an effective defence against radiological and other hazards. The most important specific principle is the establishment of three sequential levels of defence, characterized in priority order by prevention, protection and mitigation. The safety conscious selection of materials as one prevention feature gives the basis for the work described in this report. In order to protect the metallic first wall of fusion reactors from direct interaction with the plasma an extra armour is foreseen. Carbon offers the features low atomic number, high melting point, high thermal conductivity and good mechanical stability up to high temperatures making it to a favourite armour material. Looking on the safety behaviour of fusion reactors it has to be noted that carbon is unstable against oxidizing media like oxygen and steam at high temperatures und carbon has a high sorption capacity for radiologically important tritium. And tritium used as intermediate fuel in the actual reactor concepts is the one form radioactivity is present in fusion reactors. Accidents like loss of vacuum (LOVA) will lead to an air ingress into the vacuum vessel, oxidation of the hot carbon and a partial mobilization of the sorbed tritium. In a similar manner loss of coolant into vacuum (LOCIV) will lead to a water/steam ingress into the vacuum vessel, also accompanied by carbon oxidation and tritium release. (orig.)

  1. EURATOM-CEA association contributions to the 26. EPS conference on controlled fusion and plasma physics, Maastricht

    International Nuclear Information System (INIS)

    1999-10-01

    This report references the EURATOM-CEA association contributions presented at the 26. EPS conference on controlled fusion and plasma physics, in Maastricht (Netherlands) the 14-18 June 1999. Two invited papers and 24 contributed papers are proposed. They deal with: tokamak devices; particle recirculation in ergodic divertor; current profile control and MHD stability in Tore Supra discharges; edge-plasma control by the ergodic divertor; electron heat transport in stochastic magnetic layer; bolometry and radiated power; particle collection by ergodic divertor; study and simulation of plasma impurities; line shape modelling for plasma edge conditions; dynamical study of the radial structure of the fluctuations measured by reciprocating Langmuir probe in Tore Supra; up-down asymmetry of density fluctuations; Halo currents in a circular tokamak; real time measurement of the position, density, profile and current profile at Tore Supra; poloidal rotation measurement by reflectometry; interpretation of q-profile dependence of the LH power deposition profile during LHCD experiments; ICFR plasma production and optimization; improved core electron confinement; measurement of hard X-ray emission profile; modelling of shear effects on thermal and particles transport; ion turbulence; current drive generation based on autoresonance and intermittent trapping mechanisms. (A.L.B.)

  2. EURATOM-CEA association contributions to the 26. EPS conference on controlled fusion and plasma physics, Maastricht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-15

    This report references the EURATOM-CEA association contributions presented at the 26. EPS conference on controlled fusion and plasma physics, in Maastricht (Netherlands) the 14-18 June 1999. Two invited papers and 24 contributed papers are proposed. They deal with: tokamak devices; particle recirculation in ergodic divertor; current profile control and MHD stability in Tore Supra discharges; edge-plasma control by the ergodic divertor; electron heat transport in stochastic magnetic layer; bolometry and radiated power; particle collection by ergodic divertor; study and simulation of pa impurities; line shape modelling for plasma edge conditions; dynamical study of the radial structure of the fluctuations measured by reciprocating Langmuir probe in Tore Supra; up-down asymmetry of density fluctuations; Halo currents in a circular tokamak; real time measurement of the position, density, profile and current profile at Tore Supra; poloidal rotation measurement by reflectometry; interpretation of q-profile dependence of the LH power deposition profile during LHCD experiments; ICFR plasma production and optimization; improved core electron confinement; measurement of hard X-ray emission profile; modelling of shear effects on thermal and particles transport; ion turbulence; current drive generation based on autoresonance and intermittent trapping mechanisms. (A.L.B.)

  3. Comprehensive safety analysis code system for nuclear fusion reactors II: Thermal analysis during plasma disruptions for international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Honda, T.; Maki, K.; Okazaki, T.

    1994-01-01

    Thermal characteristics of a fusion reactor [International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity] during plasma disruptions have been analyzed by using a comprehensive safety analysis code for nuclear fusion reactors. The erosion depth due to disruptions for the armor of the first wall depends on the current quench time of disruptions occurring in normal operation. If it is possible to extend the time up to ∼50 ms, the erosion depth is considerably reduced. On the other hand, the erosion depth of the divertor is ∼570 μm for only one disruption, which is determined only by the thermal flux during the thermal quench. This means that the divertor plate should be exchanged after about nine disruptions. Counter-measures are necessary for the divertor to relieve disruption influences. As other scenarios of disruptions, beta-limit disruptions and vertical displacement events were also investigated quantitatively. 13 refs., 5 figs

  4. Numerical and Experimental Study of Ti6Al4V Components Manufactured Using Powder Bed Fusion Additive Manufacturing

    Science.gov (United States)

    Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa

    2017-12-01

    Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.

  5. The library of evaluated and experimental data on charged particles for fusion application (SaBa). Summary documentation

    International Nuclear Information System (INIS)

    Zvenigorodskij, A.G.; Zherebtsov, V.A.; Lazarev, L.M.; Dunaeva, S.A.; Generalov, L.N.; Taova, S.M.; Kamskaya, E.V.; Marshalkina, R.I.

    1999-01-01

    An electronic version of the evaluated and experimental data on charged particles for thermonuclear applications (SaBa) was prepared on the base of handbook 'Nuclear Physics Constants for Thermonuclear Fusion', INDC(CCP)-326/L+F, Vienna, 1991. Data on 100 channels for 52 reactions are presented in the Library. Program code was performed using the object-oriented programming environment Borland C ++ Builder for Microsoft Windows 95 and Windows NT operating systems. Optimal set of data processing procedures and friendly interface provide remarkable possibilities for the active use of this program for various applications in the field of thermonuclear fusion. It is available online (http:/www-nds.iaea.or.at/reports/data/saba/disk1.zip, ../disk2.zip, ../disk3.zip, on CD-ROM or on a set of PC diskettes from the IAEA Nuclear Data Section, costfree, upon request. (author)

  6. A constitutive model for the thermo-mechanical behaviour of fusion-relevant pebble beds and its application to the simulation of HELICA mock-up experimental results

    International Nuclear Information System (INIS)

    Vella, G.; Maio, P.A. Di; Giammusso, R.; Tincani, A.; Orco, G. Dell

    2006-01-01

    Within the framework of the activities promoted by European Fusion Development Agreement on the technology of the Helium Cooled Pebble Bed Test Blanket Module to be irradiated in one of the ITER equatorial ports, attention has been focused on the theoretical modelling of the thermo-mechanical constitutive behaviour of both beryllium and lithiated ceramics pebble beds, that are envisaged to act respectively as neutron multiplier and tritium breeder. The thermo-mechanical behaviour of the pebble beds and their nuclear performances in terms of tritium production depend on the reactor relevant conditions (heat flux and neutron wall load), the pebble sizes and the breeder cell geometries (bed thickness, pebble packing factor, bed overall thermal conductivity). ENEA-Brasimone and the Department of Nuclear Engineering (DIN) of the Palermo University have performed intense research activities intended to investigate fusion-relevant pebble bed thermo-mechanical behaviour by adopting both experimental and theoretical approaches. In particular, ENEA has carried out several experimental campaigns on small scale mock-ups tested in out-of-pile conditions, while DIN has developed a proper constitutive model that has been implemented on commercial FEM code, for the prediction of the thermal and mechanical performances of fusion-relevant pebble beds and for the comparison with the experimental results of the ENEA tests. In that framework, HELICA mock-up has been set-up and tested to investigate the behaviour of pebble bed in reactor-relevant geometries, providing useful data sets to be numerically reproduced by means of the DIN constitutive model, contributing to its assessment. The paper presents the constitutive model developed and the main experimental results of two test campaigns on HELICA mock-up carried out at HE-FUS 3 facility of ENEA Brasimone, the geometry of the mock-up, the adopted thermal and mechanical boundary conditions and the test operating conditions. The most

  7. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  8. Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant

    DEFF Research Database (Denmark)

    Li, Haisheng; Zou, Xuenong; Woo, Charlotte

    2007-01-01

    the possibility of coating a biocompatible metal layer on top of the carbon fiber material, to improve its biological performance. Tantalum was chosen because of its bone compatibility, based on our previous studies. A novel spinal fusion cage was fabricated by applying a thin tantalum coating on the surface...

  9. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  10. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  11. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  12. Influence of INCONEL 625 composition on the activation characteristics of the vacuum vessel of experimental fusion tokamaks

    International Nuclear Information System (INIS)

    Cambi, G.; Cepraga, D.G.; Boeriu, S.; Maganzani, I.

    1995-01-01

    The radioactive inventory, the decay heat and the contact dose rate of permanent components such as the vacuum vessel of two experimental fusion tokamaks, the compact IGNITOR-ULT and the ITER-EDA fusion machines, are evaluated by using the ENEA-Bologna integrated methodology. The vacuum vessel material considered is the INCONEL 625. The neutron flux is calculated using the VITAMIN-C 171-group library, based on EFF-2 data and the 1-D transport code XSDRNPM in the S 8 -P 3 approximation. The ANITA-2 code, using updated cross sections and decay data libraries based on EAF-3 and IRDF90 evaluation files is used for activation calculations. The fusion neutron source has been normalised to a neutron first wall load of 2 MW/m 2 and 1 MW/m 2 for IGNITOR-ULT and ITER, respectively. The material irradiation have been described by multistep time histories, resulting in the designed total fluence. Variations in the composition of INCONEL 625 have been assessed and their impact on the activation characteristics are discussed, also from the point of view of waste disposal. (orig.)

  13. Evaluation of multimodality imaging using image fusion with ultrasound tissue elasticity imaging in an experimental animal model.

    Science.gov (United States)

    Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A

    2014-01-01

    To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a

  14. Analysis of Consequences in the Loss-of-Coolant Accident in Wendelstein 7-X Experimental Nuclear Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Uspuras, E., E-mail: algis@mail.lei.lt [Laboratory of Nuclear Installations Safety, Lithuanian Energy Institute, Kaunas (Lithuania)

    2012-09-15

    Full text: Fusion is the energy production technology, which could potentially solve problems with growing energy demand of population in the future. Starting 2007, Lithuanian energy institute (LEI) is a member of European Fusion Development Agreement (EFDA) organization. LEI is cooperating with Max Planck Institute for Plasma Physics (IPP, Germany) in the frames of EFDA project by performing safety analysis of fusion device W7-X. Wendelstein 7-X (W7-X) is an experimental stellarator facility currently being built in Greifswald, Germany, which shall demonstrate that in the future energy could be produced in such type of fusion reactors. The W7-X facility divertor cooling system consists of two coolant circuits: the main cooling circuit and the so-called 'baking' circuit. Before plasma operation, the divertor and other invessel components must be heated up in order to 'clean' the surfaces by thermal desorption and the subsequent pumping out of the released volatile molecules. The rupture of pipe, providing water for the divertor targets during the 'baking' regime is one of the critical failure events, since primary and secondary steam production leads to a rapid increase of the inner pressure in the plasma (vacuum) vessel. Such initiating event could lead to the loss of vacuum condition up to overpressure of the plasma vessel, damage of in-vessel components and bellows of the ports. In this paper the safety analysis of 40 mm inner diameter coolant pipe rupture in cooling circuit and discharge of steam-water mixture through the leak into plasma vessel during the W7-X no-plasma 'baking' operation mode is presented. For the analysis the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers) and plasma vessel was developed by employing system thermal-hydraulic state-of-the-art RELAP5 Mod 3.3 code. This paper demonstrated, that the developed RELAP5 model allows to analyze the processes in divertor cooling system and plasma vessel

  15. (Experimental development, testing and research work in support of the inertial confinement fusion program)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Luckhardt, R.; Terry, N.; Drake, D.; Gaines, J. (eds.)

    1990-04-27

    This KMS Fusion Semi-Annual Technical Report covers the period October 1989 through March 1990. It contains a review of work performed by KMS Fusion, Inc. (KMSF), in support of the national program to achieve inertially confined fusion (ICF). A major section of the report is devoted to target technology, a field which is expected to play an increasingly important role in the overall KMSF fusion effort. Among the highlights of our efforts in this area covered in this report are: improvements and new developments in target fabrication techniques, including a discussion of techniques for introducing gaussian bumps and bands on target surfaces. Development of a single automated system for the interferometric characterization of transparent shells. Residual gas analysis of the blowing gases contained in glass shells made from xerogels. These usually include CO{sub 2}, O{sub 2} and N{sub 2}, and are objectionable because they dilute the fuel. Efforts to observe the ice layers formed in the {beta}-layering process in cryogenic targets, and to simulate the formation of these layers. In addition to our work on target technology, we conducted experiments with the Chroma laser and supported the ICF effort at other labs with theoretical and computational support as well as diagnostic development. Included in the work covered in this report are: experiments on Chroma to study interpenetration of and ionization balance in laser generated plasmas. Diagnostic development, including an optical probe for the Aurora laser at Los Alamos National Laboratory, and a high energy x-ray continuum spectrograph for Aurora. Investigation of the radiation cooling instability as a possible mechanism for the generation of relatively cold, dense jets observed in ICF experiments.

  16. Experimental results on advanced inertial fusion schemes obtained within the HiPER project

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Gizzi, L.A.; Koester, P.; Labate, L.; Honrubia, J.; Antonelli, L.; Morace, A.; Volpe, L.; Santos, J.J.; Schurtz, G.; Hulin, S.; Ribeyre, X.; Nicolai, P.; Vauzour, B.; Dorchies, F.; Nazarov, W.; Pasley, J.; Richetta, M.; Lancaster, K.; Spindloe, C.; Tolley, M.; Neely, D.; Kozlová, Michaela; Nejdl, Jaroslav; Rus, Bedřich; Wolowski, J.; Badziak, J.

    2012-01-01

    Roč. 57, č. 1 (2012), s. 3-10 ISSN 0029-5922. [International Workshop and Summer School on Towards Fusion Energy /10./. Kudowa Zdroj, 12.06.2011-18.06.2011] Institutional research plan: CEZ:AV0Z10100502 Keywords : advanced ignition schemes * fast ignition * shock ignition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.507, year: 2012

  17. An experimental investigation of stimulated Brillouin scattering in laser-produced plasmas relevant to inertial confinement fusion

    International Nuclear Information System (INIS)

    Bradley, K.S.

    1993-01-01

    Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory's assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this series of experiments was the development of a new instrument, the Multiple Angle Time Resolving Spectrometer (MATRS). MATRS has the unique capability of both spectrally and temporally resolving absolute levels of scattered light at many angles simultaneously, and is the first of its kind used in laser-plasma experiments. A detailed comparison of the theoretical predictions and the experimental observations is made

  18. FENIX [Fusion ENgineering International eXperimental]: A test facility for ITER [International Thermonuclear Experimental Reactor] and other new superconducting magnets

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Miller, J.R.

    1990-01-01

    The Fusion ENgineering International eXperimental (FENIX) Test Facility which is nearing completion at Lawrence Livermore National Laboratory, is a 76-t set of superconducting magnets housed in a 4-m-diameter cryostat. It represents a significant step toward meeting the testing needs for the development of superconductors appropriate for large-scale magnet applications such as the International Thermonuclear Experimental Reactor (ITER). The magnet set is configured to allow radial access to the 0.4-m-diameter high-field region where maximum fields up to 14 T will be provided. The facility is fitted with a thermally isolated test well with a port to the high-field region that allows insertion and removal of test conductors without disturbing the cryogenic environment of the magnets. It is expected that the facility will be made available to magnet developers internationally, and this paper discusses its general design features, its construction, and its capabilities

  19. Experimental study of potential structure in a spherical IEC fusion device

    International Nuclear Information System (INIS)

    Gu, Y.; Miley, G.H.

    2000-01-01

    The spherical inertial-electrostatic confinement (SIEC) concept is designed to focus and accelerate ions and electrons radially inward towards the center of a negatively biased, highly transparent spherical grid. The converging ions create a high-density plasma core where a high fusion rate occurs. In addition, under proper conditions, the ion and electron flows create a space-charge induced double potential well (a negative potential well nested inside a positive potential well). This structure traps high-energy ions within the virtual anode created by the double potential, providing a high fusion density in the trap volume. The present experiment was designed to verify double potential well formation and trapping by a measurement of the radial birth profile of energetic (3-MeV) protons produced by D-D fusion reactions in a deuterium discharge. This experiment was designed to operate at high perveance (0.4 to 1.4 mA/kV 3/2 ), where formation of a double well is predicted theoretically. Additional steps to aid well formation included: use of the unique Star mode of operation to obtain ion beam focusing down to approximately 1.6 H the ballistic limit and the incorporation of a second electrically floating grid (in addition to the focusing/accelerating cathode grid) to reduce the ion radial energy spread to 0.34 mA/kV 3/2 . As the perveance increased, the depth of the double well also increased. At the maximum perveance studied, 1.38 mA/kV 3/2 (corresponding to 80 mA and 15 kV), the negative potential well depth, corresponding to the measured proton-rate density, was estimated to be 22%--27% of the applied cathode voltage. This represents the first conclusive demonstration of double well formation in an SIEC, since prior measurements by other researchers typically yielded marginal or negative results

  20. Experimental demonstration of ion extraction from magnetic thrust chamber for laser fusion rocket

    Science.gov (United States)

    Saito, Naoya; Yamamoto, Naoji; Morita, Taichi; Edamoto, Masafumi; Nakashima, Hideki; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi; Mori, Yoshitaka; Johzaki, Tomoyuki

    2018-05-01

    A magnetic thrust chamber is an important system of a laser fusion rocket, in which the plasma kinetic energy is converted into vehicle thrust by a magnetic field. To investigate the plasma extraction from the system, the ions in a plasma are diagnosed outside the system by charge collectors. The results clearly show that the ion extraction does not strongly depend on the magnetic field strength when the energy ratio of magnetic field to plasma is greater than 4.3, and the magnetic field pushes back the plasma to generate a thrust, as previously suggested by numerical simulation and experiments.

  1. Development of fatigue life criteria for experimental fusion reactor first-wall structures

    International Nuclear Information System (INIS)

    Nickell, R.E.; Esztegar, E.P.

    1980-01-01

    An approach to the rational design of fusion reactor first-wall structures against fatigue crack growth is proposed. The approach is motivated by microstructural observations of fatigue crack growth enhancement in uniruniradiated materials due to volumetric damage ahead of a propagating crack. Examples are cited that illustrate the effect of mean stress on void nucleation and coalescence, which represent the dominant form of volumetric damage at low temperature, and of grain boundary sliding and creep cavitation, which are the dominant volumetric damage mechanisms at high temperature. The analogy is then drawn between these forms of fatigue crack growth enhancement and those promoted by irradiation exposure in the fusion reactor environment, such as helium embrittlement and atomic displacement. An enhanced strain range is suggested as a macroscopic measure of the reduction in fatigue life due to the higher fatigue crack growth rates. The enhanced strain range permits a separation of volumetric and cyclic effects, and assists in the assignment of rational design factors to each effect. A series of experiments are outlined which should provide the numerical values of the parameters for the enhanced strain range. (orig.)

  2. Activation calculation and environmental safety analysis for fusion experimental breeder (FEB)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiming, Feng [Southwest Inst. of Physics, Leshan, SC (China)

    1996-04-01

    An activation calculation code FDKR and decay chain data library AFDCDLIB are used to calculate the radioactivity, decay heat, dose rate and biological hazard potential (BHP) form activation products, actinides and fission products in a Fusion Experiment Breeder (FEB). The code and library are introduced briefly, and calculation results and decay curves of related hazards after one year operation with 150 MW fusion power are given. The total radioactivity inventory, decay heat and BHP are 5.74 x 10{sup 20} Bq, 8.34 MW and 4.08 x 10{sup 8} km{sup 3} of air, respectively, at shutdown. Results obtained show that the first wall of FEB can meet the nuclear waste disposal criteria for the NRC 10 CFR61 Class C after a few weeks from shutdown. The inventory of important actinides for the fuel reprocessing, such as {sup 232}U and {sup 237}Np were also calculated. It was shown that their concentrations do not excess the limit value of environmental safety required. (9 refs., 4 figs., 9 tabs.).

  3. Quantum chemistry calculation and experimental study on coal ash fusion characteristics of coal blend

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yushuang; Zhang Zhong-xiao; Wu Xiao-jiang; Li Jie; Guang Rong-qing; Yan Bo [University of Shanghai for Science and Technology, Shanghai (China). Department of Power Engineering

    2009-07-01

    The coal ash fusion characteristics of high fusibility coal blending with two low fusibility coals respectively were studied. The data were analyzed using quantum chemistry methods and experiment from micro-and macro-molecular structures. The results show that Ca{sup 2+}, as the electron acceptor, easily enters into the lattice of mullite, causing a transition from mullite to anorthite. Mullite is much more stable than anorthite. Ca{sup 2+} of anorthite occupies the larger cavities with the (SiO{sub 4}){sup 4-} tetrahedral or (AlO{sub 4}){sup 5-} tetrahedral rings respectively. Ca atom linked O weakens Si-O bond, leading ash fusion point to reduce effectively. The chemistry, reactivity sites and bond-formation characteristics of minerals can well explain the reaction mechanism refractory minerals and flux ash melting process at high temperature. The results of experiment are agreed with the theory analysis by using ternary phase diagrams and quantitative calculation. 27 refs., 9 figs., 3 tabs.

  4. Effect of experimentally observed hydrogenic fractionation on inertial confinement fusion ignition target performance

    International Nuclear Information System (INIS)

    McKenty, P. W.; Wittman, M. D.; Harding, D. R.

    2006-01-01

    The need of cryogenic hydrogenic fuels in inertial confinement fusion (ICF) ignition targets has been long been established. Efficient implosion of such targets has mandated keeping the adiabat of the main fuel layer at low levels to ensure drive energies are kept at reasonable minima. The use of cryogenic fuels helps meet this requirement and has therefore become the standard in most ICF ignition designs. To date most theoretical ICF ignition target designs have assumed a homogeneous layer of deuterium-tritium (DT) fuel kept slightly below the triple point. However, recent work has indicated that, as cryogenic fuel layers are formed inside an ICF capsule, isotopic dissociation of the tritium (T), deuterium (D), and DT takes place leading to a 'fractionation' of the final ice layer. This paper will numerically investigate the effects that various scenarios of fractionation have on hot-spot formation, ignition, and burn in ICF ignition target designs

  5. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    International Nuclear Information System (INIS)

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2004-01-01

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm 2 was obtained under the same conditions that gave 57 45 mA/cm 2 of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl - was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm 2 , sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source

  6. Modelling of the edge of a fusion plasma towards ITER and experimental validation on JET

    International Nuclear Information System (INIS)

    Guillemaut, Christophe

    2013-01-01

    The conditions required for fusion can be obtained in tokamaks. In most of these machines, the plasma wall-interaction and the exhaust of heating power are handled in a cavity called divertor. However, the high heat flux involved and the limitations of the materials of the plasma facing components (PFC) are problematic. Many researches are done this field in the context of ITER which should demonstrate 500 MW of DT fusion power during ∼ 400 s. Such operations could bring the heat flux on the PFC too high to be handled. Its reduction to manageable levels relies on the divertor detachment involving the reduction of the particle and heat fluxes on the PFC. Unfortunately, this phenomenon is still difficult to model. The aim of this PhD is to use the modelling of JET experiments with EDGE2D-EIRENE to make some progress in the understanding of the detachment. The simulations reproduce the observed detachment in C and Be/W environments. The distribution of the radiation is well reproduced by the code for C but with some discrepancies in Be/W. The comparison between different sets of atomic physics processes shows that ion-molecule elastic collisions are responsible for the detachment seen in EDGE2D-EIRENE. This process provides good neutral confinement in the divertor and significant momentum losses at low temperature, when the plasma is recombining. Comparison between EDGE2D-EIRENE and SOLPS4.3 shows similar detachment trends but the importance of the ion-molecule elastic collisions is reduced in SOLPS4.3. Both codes suggest that any process capable of improving the neutral confinement in the divertor should help to improve the modelling of the detachment. (author) [fr

  7. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  8. Experimental measurement of oil–water two-phase flow by data fusion of electrical tomography sensors and venturi tube

    International Nuclear Information System (INIS)

    Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi

    2017-01-01

    Oil–water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil–water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates. (paper)

  9. First phase plan for experimental study of heavy-ion inertial fusion accelerator

    International Nuclear Information System (INIS)

    Hattori, Toshiyuki; Okamura, Masahiro; Oguri, Yoshiyuki; Aida, Toshihiro; Takeuchi, Kouichi; Sasa, Kimikazu; Itoh, Takashi; Okada, Masashi; Takahashi, Yousuke; Ishii, Yasuyuki.

    1993-01-01

    We propose the basic experiment plan of driver for heavy-ion inertial fusion by heavy-ion linac [1-3] system and the heavy-ion cooler synchrotron. As the first phase of planning, we will improve old heavy-ion accelerator system that accelerate small intensity around Cl ion with charge to mass ratio of 1/4 up to 2.4 MeV/amu. The injector of the system will exchange from the 1.6 MV Peletron Tandem accelerator to an RFQ type linac with an ECR heavy-ion source. According to building up the power sources of RF and focusing magnet, then it is able to accelerate intense around Xe ion with charge to mass ratio of 1/6 up to 2.4 MeV/amu. At the next stage of it, we will construct a heavy-ion cooler synchrotron having magneticrigidity of 3 or 6 Tm and begin to study about HIF driver. (author)

  10. Fusion technology 1998

    International Nuclear Information System (INIS)

    Beaumont, B.; Libeyre, P.; Gentile, B. de; Tonon, G.

    1998-01-01

    The Symposium On Fusion Technology (SOFT) is held every two years with the objective to set the stage for the exchange of information on the design, construction and operation of fusion experiments and on the technology which is being developed for the next step devices and fusion reactors. By decision of the International Organizing Committee, the 20. SOFT includes invited talks, and oral and poster contributions in the following topics: plasma facing components, plasma heating and current drive, plasma engineering and control, experimental systems and diagnostics, magnets and power supplies, fuel technologies, remote operation, blanket and shield technologies, safety and environment, and system engineering and future devices. This symposium differs from the previous ones of this series by the way the present proceedings are produced. In order to have the written material available to the participants and the community at the nearest to the conference event, the papers have been collected 2 months in advance and printed in the present books. The goal was to deliver them to each participant upon arrival to the conference centre. These books contain all the papers corresponding to poster presentation, and the abstracts of the oral contributions and invited papers. The papers corresponding to these presentations, both oral and invited, will be published in 1999, after a standard review process, in a supplement of Fusion Engineering and Design. (author)

  11. Periodontal CGRP contributes to orofacial pain following experimental tooth movement in rats.

    Science.gov (United States)

    Long, Hu; Liao, Lina; Gao, Meiya; Ma, Wenqiang; Zhou, Yang; Jian, Fan; Wang, Yan; Lai, Wenli

    2015-08-01

    Calcitonin-related gene peptide (CGRP) plays an important role in orofacial inflammatory pain. The aim of this study was to determine whether periodontal CGRP contributes to orofacial pain induced by experimental tooth movement in rats. Male Sprague-Dawley rats were used in this study. Closed coil springs were used to deliver forces. Rats were euthanized on 0d, 1d, 3d, 5d, 7d, and 14d following experimental tooth movement. Then, alveolar bones were obtained for immunostaining of periodontal tissues against CGRP. Two hours prior to euthanasia on each day, orofacial pain levels were assessed through rat grimace scale. CGRP and olcegepant (CGRP receptor antagonist) were injected into periodontal tissues to verify the roles of periodontal CGRP in orofacial pain induced by experimental tooth movement. Periodontal CGRP expression levels and orofacial pain levels were elevated on 1d, 3d, 5d, and 7d following experimental tooth movement. The two indices were significantly correlated with each other and fitted into a dose-response model. Periodontal administration of CGRP could elevate periodontal CGRP expressions and exacerbate orofacial pain. Moreover, olcegepant administration could decrease periodontal CGRP expressions and alleviate orofacial pain. Therefore, periodontal CGRP plays an important role in pain transmission and modulation following experimental tooth movement. We suggest that it may participate in a positive feedback aiming to amplify orofacial pain signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Peaceful fusion

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  13. Stimulating Contributions to Public Goods through Information Feedback: Some Experimental Results.

    Directory of Open Access Journals (Sweden)

    Marco A Janssen

    Full Text Available In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can make contributions to a linear public good by logging into a web application and performing virtual actions. We compared four treatments, with different group sizes and information of (relative performance of other groups. We find that information feedback about performance of other groups has a small positive effect if we control for various attributes of the groups. Moreover, we find a significant effect of the contributions of others in the group in the previous day on the number of points earned in the current day. Our results confirm that people participate more when participants in their group participate more, and are influenced by information about the relative performance of other groups.

  14. Enhancement of deuteron-fusion reactions in metals and experimental implications

    International Nuclear Information System (INIS)

    Huke, A.; Heide, P.; Czerski, K.; Ruprecht, G.; Targosz, N.; Zebrowski, W.

    2008-01-01

    Recent measurements of the reaction 2 H(d,p) 3 H in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for diverse host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls that make them and the data analysis particularly error prone. There are multiparameter collateral effects that are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations owing to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. To address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-Hueckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays can be clearly excluded

  15. PHILOSOPHY OF MIND; THEORETICAL AND EXPERIMENTAL CONTRIBUTION TO THE EMERGING VISION OF MIND-BRAIN INTERACTION.

    Directory of Open Access Journals (Sweden)

    Paul Ruiz Santos

    2011-12-01

    Full Text Available This work aims to contribute to the discussion of mind-brain interactions from an emergentism point of view of the Philosophy of Mind, using some of the naturalized theories. Some proposed bridges between mind and brain based on experimental naturalization are neuro-psychoanalysis, mirror neurons, and psychosomatics, among others. Naturalization can be achieved by earching for the link between psychological and biological processes. This biological-based approach can be developed avoiding mplification and reductionism of psychological processes. We discuss the access to new insights about the mind-brain relationship and its implications through neurophenomenology, from an emerging and interactionist point of view.

  16. Contributions of experimentation on studying reception: The case of wine labeling

    Directory of Open Access Journals (Sweden)

    Mihaela BONESCU

    2013-07-01

    Full Text Available Within an interdisciplinary perspective, this paper aims at examining a communication space (restricted to a wine label, by the simultaneous use of an experimental method and of a socio-semiotic approach. The purpose is to isolate and to measure, in an objective way, subjective variables from the symbolic and figurative area of the wine label. The innovative interdisciplinary design will help understanding the contribution of each measured parameter (for instance codes, attitudes, beliefs and their associated valorization to the global individual interpretation.

  17. Characterization of HIP bonded DS-Cu/SS316L joints for fusion experimental reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kanari, Moriyasu; Hatano, Toshihisa; Sato, Satoshi; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Abe, Tetsuya; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-02-01

    A shielding blanket design in a fusion reactor such as ITER has been proposed to be a modular structure integrated with the first wall. In view of the fabrication, HIP(Hot Isostatic Pressing) method has been proposed for the joining of dispersion strengthened copper (DS-Cu) and type 316L stainless steel (SS316L) at the first wall. Characterization of DS-Cu in HIP joints bonded at three different temperatures has been performed placing emphasis on metallurgical quality at the interfacial region of some hundred {mu}m by means of conventional observation and testing techniques. SEM(Scanning Electron Microscope) observation of these joints before and after intergranular corrosion to DS-Cu have shown that in two joints HIPed at 1253K and 1303K some voids of 1-4{mu}m exist in the vicinity to the interface, while in the other one HIPed at 1323K there is no void and the joint reveals good bondability. And in all the joints grain boundary has been developed parallel to the interface. SEM observation of DS-Cu grains have shown that in a joint at 1323K the grains have slightly coarsened to the size larger than as-received DS-Cu by a factor of 2, despite the hardness of that remains as as-received DS-Cu. While in the other two joints grain remains as large as as-received DS-Cu. EPMA(Electron Prove Microscopic Analysis) of aluminium in DS-Cu has shown that in all the joints accumulation of alumina has occurred in the vicinity to the interface and the length of the accumulated region increases as the increase of the HIP temperature and reaches up to 50{mu}m from the interface at 1323K. Vickers hardness test have shown that in a joint bonded at 1323K the hardness decreases to the level of an oxygen free copper in the vicinity to the interface, implying that the distribution of alumina has changed. From these experiments, it can be concluded that the joint at 1323K has exhibited the highest performance in terms of bondability. (J.P.N.)

  18. Experimental study of the initial conditions of the Rayleigh-Taylor instability at the ablation front in inertial confinement fusion

    International Nuclear Information System (INIS)

    Delorme, Barthelemy

    2015-01-01

    Numerous designs and experiments in the domain of Inertial Confinement Fusion (ICF) show that, in both direct and indirect drive approaches, one of the main limitations to reach the ignition is the Rayleigh-Taylor instability (RTI). It may lead to shell disruption and performance degradation of spherically imploding targets. Thus, the understanding and the control of the initial conditions of the RTI is of crucial importance for the ICF program. In this thesis, we present an experimental and theoretical study of the initial conditions of the ablative RTI in direct drive, by means of two experimental campaigns performed on the OMEGA laser facility (LLE, Rochester). The first campaign consisted in studying the laser-imprinted ablative Richtmyer-Meshkov instability (RMI) which starts at the beginning of the interaction and seeds the ablative RTI. We set up an experimental configuration that allowed to measure for the first time the temporal evolution of the laser-imprinted ablative RMI. The experimental results have been interpreted by a theoretical model and numerical simulations performed with the hydrodynamic code CHIC. We show that the best way to control the ablative RMI is to reduce the laser intensity inhomogeneities. This can be achieved with targets covered by a layer of a low density foam. Thus, in the second campaign, we studied for the first time the effect of underdense foams on the growth of the ablative RTI. A layer of low density foam was placed in front of a plastic foil, and the perturbation was imprinted by an intensity modulated laser beam. Experimental data are presented: backscattered laser energy, target dynamic obtained by side-on self emission measurement, and face-on radiographs showing the effect of the foams on the target areal density modulations. These data were interpreted using the CHIC code and the laser-plasma interaction code PARAX. We show that the foams noticeably reduce the amplitude of the laser intensity inhomogeneities and the

  19. Heavy-quark pair production in gluon fusion at next-to-next-to-leading O({alpha}{sup 4}{sub s}) order. One-loop squared contributions

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A.; Merebashvili, Z. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Koerner, J.G. [Mainz Univ. (Germany). Inst. fuer Physik; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-09-15

    We calculate the next-to-next-to-leading order O({alpha}{sup 4}{sub s}) one-loop squared corrections to the production of heavy quark pairs in the gluon-gluon fusion process. Together with the previously derived results on the q anti q production channel the results of this paper complete the calculation of the oneloop squared contributions of the next-to-next-to-leading order O({alpha}{sup 4}{sub s}) radiative QCD corrections to the hadroproduction of heavy flavours. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in dimensional regularization. (orig.)

  20. Heavy-quark pair production in gluon fusion at next-to-next-to-leading O(α4s) order. One-loop squared contributions

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Merebashvili, Z.

    2008-09-01

    We calculate the next-to-next-to-leading order O(α 4 s ) one-loop squared corrections to the production of heavy quark pairs in the gluon-gluon fusion process. Together with the previously derived results on the q anti q production channel the results of this paper complete the calculation of the oneloop squared contributions of the next-to-next-to-leading order O(α 4 s ) radiative QCD corrections to the hadroproduction of heavy flavours. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in dimensional regularization. (orig.)

  1. Experimental fusion excitation functions and derived barrier distributions for heavy ion systems involving prolate and oblate target nuclei

    International Nuclear Information System (INIS)

    Bierman, J.D.; Chan, P.; Liang, J.F.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.

    1996-01-01

    Fusion excitation functions spanning the entire barrier region in 1 MeV energy steps for the two systems 40 Ca + 192 Os, 194 Pt are presented. The results of fission fragment angular distribution measurements for fusion-fission of 40 Ca + 197 Au at several projectile energies within the barrier region are also presented. The fusion data is of high enough precision to allow for extraction of the distribution of fusion barriers from the second differential of the product of E and σ. Basic coupled channels calculations which are in quite good agreement with the data are shown and discussed

  2. Fusion reactors - types - problems

    International Nuclear Information System (INIS)

    Schmitter, K.H.

    1979-07-01

    A short account is given of the principles of fusion reactions and of the expected advantages of fusion reactors. Descriptions are presented of various Tokamak experimental devices being developed in a number of countries and of some mirror machines. The technical obstacles to be overcome before a fusion reactor could be self-supporting are discussed. (U.K.)

  3. W7-AS/W7-X contributions to the 20th European conference on controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1993-08-01

    This report contains the 23 contributions of the Max-Planck-Institut fuer Plasmaphysik to the above mentioned conference. The contributions deal with plasma heating problems in the Wendelstein stellarators. (WL)

  4. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  5. Conceptual studies of toroidal field magnets for the tokamak (fusion) experimental power reactor. Final report

    International Nuclear Information System (INIS)

    1976-01-01

    This report presents the results of ''Conceptual Studies of Toroidal Field Magnets for the Tokamak Experimental Power Reactor'' performed for the Energy Research and Development Administration, Oak Ridge Operations. Two conceptual coil designs are developed. One design approach to produce a specified 8 Tesla maximum field uses a novel NbTi superconductor design cooled by pool-boiling liquid helium. For a highest practicable field design, a unique NbSn 3 conductor is used with forced-flow, single-phase liquid helium cooling to achieve a 12 Tesla peak field. Fabrication requirements are also developed for these approximately 7 meter horizontal bore by 11 meter vertical bore coils. Cryostat design approaches are analyzed and a hybrid cryostat approach selected. Structural analyses are performed for approaches to support in-plane and out-of-plane loads and a structural approach selected. In addition to the conceptual design studies, cost estimates and schedules are prepared for each of the design approaches, major uncertainties and recommendations for research and development identified, and test coil size for demonstration recommended

  6. The fusion rate in the transmission resonance model

    International Nuclear Information System (INIS)

    Jaendel, M.

    1992-01-01

    Resonant transmission of deuterons through a chain of target deuterons in a metal matrix has been suggested as an explanation for the cold fusion phenomena. In this paper the fusion rate in such transmission resonance models is estimated, and the basic physical constraints are discussed. The dominating contribution to the fusion yield is found to come from metastable states. The fusion rate is well described by the Wentzel-Kramer-Brillouin approximation and appears to be much too small to explain the experimental anomalies

  7. Accuracy evaluation of the current data and method applied to shielding design of the Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Mori, Seiji; Kobayashi, Takeshi; Seki, Yasushi

    1988-06-01

    Shielding benchmarking study of the current data and method applied to the Fusion Experimental Reactor (FER) was performed. First, neutron and gamma ray fluxes were calculated by the one-dimensional S N code using various cross section libraries and the continuous energy Monte Carlo code. The results were compared in terms of the S N /MC ratio. The worst ratios are about 0.5 and 0.25 for neutron flux and gamma ray flux, respectively. Next, the analytical calculations of the iron sphere transmission experiment of 14 MeV neutrons were performed to examine the accuracy of cross section data of iron, which is the most important material of shield. The E/C ratio is larger than 2 even if the continuous energy Monte Carlo code was used. Thirdly, the influence of geometrical representation of the shield was investigated by comparing the homogeneous model and the heterogeneous model (alternating layers of SS316 and water). As a result, it was made clear that the homogeneous model underestimates neutron flux by a factor of 2. Finally, the necessity of benchmark experiment and improvement of cross section library was pointed out as the further R and D issues. (author)

  8. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Destler, W.W.; Granatstein, V.L. [Univ. of Maryland, College Park, MD (United States)] [and others

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  9. Enhancement of the power system efficiency using the hybrid-type harmonic filters for a KSTAR nuclear fusion experimental system

    International Nuclear Information System (INIS)

    Yoon, Dong-Hee; Lee, Hansang; Park, Byungju; Jang, Gilsoo

    2011-01-01

    Highlights: → The low power factor and power quality problems are occurred by the operation of the PF facility in KSTAR system. We model the power system of KSTAR system including the PF facility. We show a method of the filter insertion to improve the problem and conduct the simulations to verify our method. - Abstract: The KSTAR system, which includes a large amount of nonlinear load, is a relatively high reactive power consumption load which injects harmonic currents into the power system which could result in the possibility for a power system perturbation to occur in the transmission lines, affecting nearby customers. In order to maintain the power quality and power factor in the inner system of the KSTAR system and the adjacent distribution lines, the assessment of the effect of the DC power supply in the KSTAR system is required for appropriate countermeasures to be put in place. In this paper, on the basis of a preliminary inspection of the power system near a KSTAR system, the simulation of a compensating device is performed for the prevention of abnormal voltage variations caused by a large amount of reactive and nonlinear load. In addition, through the comparison of the pre- and post-application of compensation devices in the actual power system, it is verified that a stable operation of the KSTAR nuclear fusion experimental system can be achieved.

  10. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  11. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identification of damping and stiffness coefficients of active lubricated journal bearings. The main...... of the magnetic forces is conducted using different experimental tests: (a) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor, (b) by measuring the input current and bearing...

  12. Experimental study of the influence of partner structure in the fusion of the almost symmetrical systems; Etude experimentale de l`influence de la structure des partenaires dans la fusion de systemes presque symetriques

    Energy Technology Data Exchange (ETDEWEB)

    Stodel-Le Lay, Christelle [Lab. de Physique Corpusculaire, Caen Univ., 14 - Caen (France)

    1998-12-04

    The cross-sections for the formation of evaporation residues in {sup 70}Zn and {sup 86}Kr reactions with {sup 150}Nd and {sup 130,136}Xe isotopes were measured for excitation energies of the compound nuclei ({sup 216,220,222}Th) varied from 7 MeV to 70 MeV, at the linear accelerator UNILAC of the nuclear facility GSI, Darmstadt (Germany). After de-excitation by evaporation (xn,pxn and {alpha}xn), the residual nuclei are separated from the primary beam and from spurious reaction products by the velocity filter SHIP and implanted into a silicon localization detector. Their subsequent decay via alpha particles with characteristic energies allows us to identify them and to deduce their yields. Experimental fusion-evaporation excitation functions are compared with those leading to the same compound nuclei obtained with other projectile and target combinations and with those calculated with a code developed at GSI. This code allows us to evaluate the evolution of the fission probability as a function of the incident energy for each system. The variation of cross-sections and of the fusion probability is studied as a function of the macroscopic and microscopic variables of the partners. For the synthesis of super-heavy elements, these results demonstrate quantitatively the interest in using partners of fusion with closed shell structures and rich in neurons (the fusion cross-section increases by a factor of 9 for a complementary pair of neutrons). On the other hand, closed shell compound nuclei do not influence the fusion cross-section. It will be worth synthesizing isotopes approaching the predicted stability region, nuclei with Z greater than 110 using neutron rich projectiles coming from secondary beams. (author) 104 refs., 71 figs., 11 tabs.

  13. Experimental and theoretical contributions to X-ray phase-contrast techniques for medical imaging

    International Nuclear Information System (INIS)

    Diemoz, P.C.

    2011-01-01

    Several X-ray phase-contrast techniques have recently been developed. Unlike conventional X-ray methods, which measure the absorption properties of the tissues, these techniques derive contrast also from the modulation of the phase produced by the sample. Since the phase shift can be significant even for small details characterized by weak or absent absorption, the achievable image contrast can be greatly increased, notably for the soft biological tissues. These methods are therefore very promising for applications in the medical domain. The aim of this work is to contribute to a deeper understanding of these techniques, in particular propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GIFM), and to study their potential and the best practical implementation for medical imaging applications. An important part of this work is dedicated to the use of mathematical algorithms for the extraction, from the acquired images, of quantitative sample information (the absorption, refraction and scattering sample properties). In particular, five among the most known algorithms based on the geometrical optics approximation have been theoretically analysed and experimentally compared, in planar and tomographic modalities, by using geometrical phantoms and human bone-cartilage and breast samples. A semi-quantitative method for the acquisition and reconstruction of tomographic images in the ABI and GIFM techniques has also been proposed. The validity conditions are analyzed in detail and the method, enabling a considerable simplification of the imaging procedure, has been experimentally checked on phantoms and human samples. Finally, a theoretical and experimental comparison of the PBI, ABI and GIFM techniques is presented. The advantages and drawbacks of each of these techniques are discussed. The results obtained from this analysis can be very useful for determining the most adapted technique for a given application. (author)

  14. Finite element modeling and experimental study of brittle fracture in tempered martensitic steels for thermonuclear fusion applications

    International Nuclear Information System (INIS)

    Mueller, P. F.

    2009-10-01

    The present report studies the brittle fracture in high-chromium reduced activation tempered martensitic steels foreseen as structural materials for thermonuclear fusion reactors. Developing the adequate materials that can withstand the severe irradiation conditions of the burning plasma in a fusion reactor is one of the major challenges to be solved in order to make profit from the great advantages of thermonuclear fusion as an energy source. High-chromium tempered martensitic steels such as F82H and the most advanced version Eurofer97 are among the main candidate materials for structural applications in future fusion power plants due to low irradiation-induced swelling, good mechanical and thermal properties, and reasonably fast radioactive decay. Drawback of this kind of steels is irradiation embrittlement, which is manifested by a ductile-to-brittle transition temperature shift to higher temperatures after irradiation. The laboratory specimen fracture data has to be transferred to real components in order to assess the performance of these steels in the different operating and transient conditions they could find during the operation life of a fusion reactor. The specimen geometry effects and specimen size effects on measured fracture toughness need to be properly understood, taken into account and predicted with an appropriate model. The microstructure of Eurofer97 and F82H has been characterized and compared by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy in order to identify microstructural features that could play a role in the measured fracture toughness. Both steels have similar but slightly different chemical composition and final heat treatments but the prior austenitic grain size measured in F82H is approximately 8 times larger than in Eurofer97. The alloying element tantalum is added to stabilize the austenite grain size. In Eurofer97 it forms carbides of an

  15. RCC-MRx: Design and construction rules for mechanical components in high-temperature structures, experimental reactors and fusion reactors

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-MRx code was developed for sodium-cooled fast reactors (SFR), research reactors (RR) and fusion reactors (FR-ITER). It provides the rules for designing and building mechanical components involved in areas subject to significant creep and/or significant irradiation. In particular, it incorporates an extensive range of materials (aluminum and zirconium alloys in response to the need for transparency to neutrons), sizing rules for thin shells and box structures, and new modern welding processes: electron beam, laser beam, diffusion and brazing. The RCC-MR code was used to design and build the prototype Fast Breeder Reactor (PFBR) developed by IGCAR in India and the ITER Vacuum Vessel. The RCC-Mx code is being used in the current construction of the RJH experimental reactor (Jules Horowitz reactor). The RCC-MRx code is serving as a reference for the design of the ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration), for the design of the primary circuit in MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) and the design of the target station of the ESS project (European Spallation Source). Contents of the 2015 edition of the RCC-MRx code: Section I General provisions; Section II Additional requirements and special provisions; Section III Rules for nuclear installation mechanical components: Volume I: Design and construction rules: Volume A (RA): General provisions and entrance keys, Volume B (RB): Class 1 components and supports, Volume C (RC): Class 2 components and supports, Volume D (RD): Class 3 components and supports, Volume K (RK): Examination, handling or drive mechanisms, Volume L (RL): Irradiation devices, Volume Z (Ai): Technical appendices; Volume II: Materials; Volume III: Examinations methods; Volume IV: Welding; Volume V: Manufacturing operations; Volume VI: Probationary phase rules

  16. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  17. Savannah River Laboratory contribution to the Chalk River experimental HT release of June 1987

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1987-01-01

    Seventeen years ago, a series of experiments were conducted at Bruyeres-Le-Chatel by French scientists interested in atmospheric diffusion. The scientists used tritium as a tracer in these tests. The results showed nearly complete oxidation of the gas by the time the released material had been carried 10 kilometers from the source. It became clear that if the results were general, the doses projected for fusion reactors would be greatly increased over what had been expected from earlier experience with HT gas. For this reason, the Next European Torus (NET) fusion program funded a series of experiments to look further at tritium oxidation in the environment. SRL participation in the tests provided an opportunity to make field comparisons of the SRL design tritium gas samplers and also provided vegetation that had been exposed under controlled conditions which could be used to study the incorporation of tritium into vegetation organics, the subject of ongoing SRL research. 25 refs., 4 figs., 2 tabs

  18. Testing the effectiveness and the contribution of experimental supercharge (reversed) end-to-side nerve transfer.

    Science.gov (United States)

    Nadi, Mustafa; Ramachandran, Sudheesh; Islam, Abir; Forden, Joanne; Guo, Gui Fang; Midha, Rajiv

    2018-05-18

    OBJECTIVE Supercharge end-to-side (SETS) transfer, also referred to as reverse end-to-side transfer, distal to severe nerve compression neuropathy or in-continuity nerve injury is gaining clinical popularity despite questions about its effectiveness. Here, the authors examined SETS distal to experimental neuroma in-continuity (NIC) injuries for efficacy in enhancing neuronal regeneration and functional outcome, and, for the first time, they definitively evaluated the degree of contribution of the native and donor motor neuron pools. METHODS This study was conducted in 2 phases. In phase I, rats (n = 35) were assigned to one of 5 groups for unilateral sciatic nerve surgeries: group 1, tibial NIC with distal peroneal-tibial SETS; group 2, tibial NIC without SETS; group 3, intact tibial and severed peroneal nerves; group 4, tibial transection with SETS; and group 5, severed tibial and peroneal nerves. Recovery was evaluated biweekly using electrophysiology and locomotion tasks. At the phase I end point, after retrograde labeling, the spinal cords were analyzed to assess the degree of neuronal regeneration. In phase II, 20 new animals underwent primary retrograde labeling of the tibial nerve, following which they were assigned to one of the following 3 groups: group 1, group 2, and group 4. Then, secondary retrograde labeling from the tibial nerve was performed at the study end point to quantify the native versus donor regenerated neuronal pool. RESULTS In phase I studies, a significantly increased neuronal regeneration in group 1 (SETS) compared with all other groups was observed, but with modest (nonsignificant) improvement in electrophysiological and behavioral outcomes. In phase II experiments, the authors discovered that secondary labeling in group 1 was predominantly contributed from the donor (peroneal) pool. Double-labeling counts were dramatically higher in group 2 than in group 1, suggestive of hampered regeneration from the native tibial motor neuron pool

  19. Contributions to the stability analysis of self-similar supersonic heat waves related to inertial confinement fusion

    International Nuclear Information System (INIS)

    Dastugue, Laurent

    2013-01-01

    Exact self-similar solutions of gas dynamics equations with nonlinear heat conduction for semi-infinite slabs of perfect gases are used for studying the stability of flows in inertial confinement fusion. Both the similarity solutions and their linear perturbations are computed with a multi domain Chebyshev pseudo-spectral method, allowing us to account for, without any other approximation, compressibility and unsteadiness. Following previous results (Clarisse et al., 2008; Lombard, 2008) representative of the early ablation of a target by a nonuniform laser flux (electronic conduction, subsonic heat front downstream of a quasi-perfect shock front), we explore here other configurations. For this early ablation phase, but for a nonuniform incident X-radiation (radiative conduction), we study a compressible and a weakly compressible flow. In both cases, we recover the behaviours obtained for compressible flows with electronic heat conduction with a maximal instability for a zero wavenumber. Besides, the spectral method is extended to compute similarity solutions taking into account the supersonic heat wave ahead of the shock front. Based on an analysis of the reduced equations singularities (infinitely stiff front), this method allows us to describe the supersonic heat wave regime proper to the initial irradiation of the target and to recover the ablative solutions which were obtained under a negligible fore-running heat wave approximation. (author) [fr

  20. Experimental study of angular neutron flux spectra on a slab surface to assess nuclear data and calculational methods for a fusion reactor design

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1988-06-01

    This paper presents an experimental approach to interpret the results of integral experiments for fusion neutronics research. The measurement is described of the angular neutron flux on a restricted area of slab assemblies with D-T neutron bombardment by using the time-of-flight (TOF) method with an NE213 neutron detector over an energy range from 0.05 to 15 MeV. A two bias scheme was developed to obtain an accurate detection efficiency over a wide energy range. The detector-collimator response function was introduced to define the restricted surface area and to determine the effective measured area. A series of measurements of the angular neutron flux on slabs of fusion blanket materials, i.e., Be, C, and Li 2 O, as functions of neutron leaking angle and slab thickness have been performed to examine neutron transport characteristics in bulk materials. The calculational analyses of the experimental results have been also carried out by using Monte Carlo neutron transport codes, i.e., MORSE-DD and MCNP. The existing nuclear data files, i.e., JENDL-3PR1, -3PR2, ENDF/B-IV and -V were tested by comparing with the experimental results. From the comparisons, the data on C and 7 Li in the present files are fairly sufficient. Those on beryllium, however, is insufficient for the estimation of high threshold reactions such as tritium production in a fusion reactor blanket design. It is also found that the total and elastic cross sections are more important for accurate predictions of neutronic parameters at deep position. The comparisons between the measured and calculated results provide information to understand the results of the previous integral experiments for confirmation of accuracy of fusion reactor designs. (author)

  1. FOM-Rijnhuizen contributions to the 23. European Physical Society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1996-07-01

    Electron Cyclotron Current Drive (ECCD) experiments on the Rijnhuizen tokamak RTP have been performed utilizing 60 GHz waves launched from the high field side of the torus. The ECCD efficiency as a function of the position of the cold resonance layer has been measured and compared with Fokker-Planck simulations. The experimental results are consistent with these simulations. (orig.)

  2. FOM-Rijnhuizen contributions to the 23. European Physical Society conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Electron Cyclotron Current Drive (ECCD) experiments on the Rijnhuizen tokamak RTP have been performed utilizing 60 GHz waves launched from the high field side of the torus. The ECCD efficiency as a function of the position of the cold resonance layer has been measured and compared with Fokker-Planck simulations. The experimental results are consistent with these simulations. (orig.).

  3. Conference on Norwegian fusion research

    International Nuclear Information System (INIS)

    The question of instituting a systematic research programme in Norway on aspects of thermonuclear and plasma physics has been raised. The conference here reported was intended to provide basic information on the status of fusion research internationally and to discuss a possible Norwegian programme. The main contributions covered the present status of fusion research, international cooperation, fusion research in small countries and minor laboratories, fusion research in Denmark and Sweden, and a proposed fusion experiment in Bergen. (JIW)

  4. Lymphocytes contribute to biliary injury and fibrosis in experimental xenobiotic-induced cholestasis

    International Nuclear Information System (INIS)

    Joshi, Nikita; Kopec, Anna K.; Cline-Fedewa, Holly; Luyendyk, James P.

    2017-01-01

    The etiology of chronic bile duct injury and fibrosis in patients with autoimmune cholestatic liver diseases is complex, and likely involves immune cells such as lymphocytes. However, most models of biliary fibrosis are not autoimmune in nature. Biliary fibrosis can be induced experimentally by prolonged exposure of mice to the bile duct toxicant alpha-naphthylisothiocyanate (ANIT). We determined whether lymphocytes contributed to ANIT-mediated biliary hyperplasia and fibrosis in mice. Hepatic accumulation of T-lymphocytes and increased serum levels of anti-nuclear-autoantibodies were evident in wild-type mice exposed to ANIT (0.05% ANIT in chow). This occurred alongside bile duct hyperplasia and biliary fibrosis. To assess the role of lymphocytes in ANIT-induced biliary fibrosis, we utilized RAG1 −/− mice, which lack T- and B-lymphocytes. ANIT-induced bile duct injury, indicated by increased serum alkaline phosphatase activity, was reduced in ANIT-exposed RAG1 −/− mice compared to ANIT-exposed wild-type mice. Despite this reduction in biliary injury, ANIT-induced bile duct hyperplasia was similar in wild-type and RAG1 −/− mice. However, hepatic induction of profibrogenic genes including COL1A1, ITGβ6 and TGFβ2 was markedly attenuated in ANIT-exposed RAG1 −/− mice compared to ANIT-exposed wild-type mice. Peribiliary collagen deposition was also reduced in ANIT-exposed RAG1 −/− mice. The results indicate that lymphocytes exacerbate bile duct injury and fibrosis in ANIT-exposed mice without impacting bile duct hyperplasia.

  5. Interleukin-6 from subchondral bone mesenchymal stem cells contributes to the pathological phenotypes of experimental osteoarthritis

    Science.gov (United States)

    Wu, Xiaofeng; Cao, Lei; Li, Fan; Ma, Chao; Liu, Guangwang; Wang, Qiugen

    2018-01-01

    As a main cause of morbidity in the aged population, osteoarthritis (OA) is characterized by cartilage destruction, synovium inflammation, osteophytes, and subchondral bone sclerosis. To date its etiology remains elusive. Recent data highlight an important role of subchondral bone in the onset and progression of OA. Therefore, elucidating the mechanisms underlying abnormal subchondral bone could be of importance in the treatment of OA. Interleukin-6 is a proinflammatory cytokine involved in many physiological and pathological processes. Although in vitro and in vivo studies have indicated that IL-6 is an important cytokine in the physiopathogenesis of OA, its effects on subchondral bone have not been studied in OA animal models. In this study, we aimed to i) investigate the role of IL-6 in the pathological phenotypes of OA subchondral bone MSCs including increase in cell numbers, mineralization disorder and abnormal type I collagen production; ii) explore whether the systemic blockade of IL-6 signaling could alleviate the pathological phenotypes of experimental OA. We found that IL-6 was over-secreted by OA subchondral bone MSCs compared with normal MSCs and IL-6/STAT3 signaling was over-activated in subchondral bone MSCs, which contributed to the pathological phenotypes of OA subchondral bone MSCs. More importantly, systemic inhibition of IL-6/STAT3 signaling with IL-6 antibody or STAT3 inhibitor AG490 decreased the severity of pathological phenotypes of OA subchondral bone MSCs and cartilage lesions in OA. Our findings provide strong evidence for a pivotal role for IL-6 signaling in OA and open up new therapeutic perspectives. PMID:29736207

  6. Inertial confinement fusion (ICF)

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  7. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  8. Experimental study of the fusion dynamics of 32,34S + 197Au with quasi-elastic scattering

    International Nuclear Information System (INIS)

    Schuck, T.J.; Dasgupta, M.; Timmers, H.

    2000-01-01

    Full text: The fusion dynamics of heavy systems, such as 64 Ni + 208 Pb, leading to the synthesis of super-heavy elements is presently not fully understood. Typical beam energies in such reactions are of the order or smaller than the Coulomb barrier height to minimize the excitation energy of the compound system and increase the survival probability of evaporation residues. It is known that at such energies the relative motion of projectile and target couples to internal degrees of freedom of the system, such as collective motion and particle transfer. This can give rise to a distribution of fusion barriers, which generally leads to an enhancement of the fusion cross-section below the Coulomb barrier. The important role of the individual degrees of freedom can be identified by extracting representations of the barrier distribution from fusion excitation functions. Complementary representations can be obtained from measurements of the quasi-elastic or elastic scattering excitation functions at backward angles. The sensitivity of the representations from scattering is limited to the lower energy part of the barrier distribution, which, however, may contain important signatures of positive Q-value neutron transfer channels. Neutron transfer may be a precursor of neutron flow and neck-formation, which are considered in macroscopic models of the fusion of heavy systems. In order to study the influence of neutron transfer in heavy fusion reactions, quasielastic scattering has been measured for 32 , 34 S + 197 Au at energies spanning the Coulomb barrier. The quasi-elastic yield, including inelastic and transfer reactions, was detected at 165 deg with a Si-surface barrier detector. The excitation functions have been normalized to Rutherford scattering, detected at 30 deg using an existing gas ionisation detector. Representations of the barrier distributions have been extracted and are compared with earlier measurements for 32 S + 208 Pb

  9. Fusion Plasma Theory project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  10. Fusion Plasma Theory project summaries

    International Nuclear Information System (INIS)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program

  11. Fusion plasma theory project summaries

    Science.gov (United States)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.

  12. Fusion technology 1992

    International Nuclear Information System (INIS)

    Ferro, C.; Gasparatto, M.; Knoepfel, H.

    1993-01-01

    The aim of the biennial series of symposia on the title subject, organized by the European Fusion Laboratories, is the exchange of information on the design, construction and operation of fusion experiments and on the technology being developed for the next step devices and fusion reactors. The coverage of the volume includes the technological aspects of fusion reactors in relation to new developments, this forming a guideline for the definition of future work. These proceedings comprise three volumes and contain both the invited lectures and contributed papers presented at the symposium which was attended by 569 participants from around the globe. The 343 papers, including 12 invited papers, characterize the increasing interest of industry in the fusion programme, giving a broad and current overview on the progress and trends fusion technology is experiencing now, as well as indicating the future for fusion devices

  13. The European Fusion Energy Research Programme towards the realization of a fusion demonstration reactor

    International Nuclear Information System (INIS)

    Gasparotto, M.; Laesser, R.

    2006-01-01

    Since its inception, the European Fusion Programme has been orientated towards the establishment of the knowledge base needed for the definition of a reactor to be used for power production. Its ultimate goal is then to demonstrate the scientific and the technological feasibility of fusion power while incorporating the assessment of the safety, environmental, social and economic features of this type of energy source. At present, the JET device, the largest tokamak in the world, and the other medium-sized experimental machines are contributing essentially to the basic scientific phase of this development path. Their successful operation greatly contributed to support the design basis of ITER, the next step in fusion, which will aim to demonstrate the scientific and technical feasibility of fusion power production by achieving extended D-T burning plasma operation. Following ITER, the conception and construction of the DEMO device is planned. DEMO will be a demonstration power plant which will be the first fusion device to generate a significant amount of electrical power from fusion. This paper describes the status of fusion research and the European strategy for achievement of the ultimate goal of construction of a prototype reactor. (author)

  14. Contribution games and the end-game effect: When things get real - An experimental analysis

    OpenAIRE

    Bar-El, Ronen; Tobol, Yossi

    2013-01-01

    We conduct a contribution game for a real public good and show that when the contributors value the real public good highly, they increase their contributions in each round. Thus, contrary to previous literature, free riding decreases over rounds and the end-game effect is reversed.

  15. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  16. Comparison of explicit calculations for n = 3 to 8 dielectronic satellites of the FeXXV Kα resonance line with experimental data from the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Decaux, V.; Bitter, M.; Hsuan, H.; Hill, K.W.; von Goeler, S.; Park, H.; Bhalla, C.P.

    1991-12-01

    Dielectronic satellite spectra of the FeXXV Kα resonance line observed from the Tokamak Fusion Test Reactor (TFTR) plasmas have been compared with recent explicit calculations for the n = 3 to 8 dielectronic satellites as well as the earlier theoretical predictions, which were based on the 1/n 3 scaling law for n > 4 satellites. The analysis has been performed by least-squares fits of synthetic spectra to the experimental data. The synthetic spectra constructed from both theories are in good agreement with the observed data. However, the electron temperature values obtained from the fit of the present explicit calculations are in better agreement with independent measurements. 20 refs., 4 figs

  17. Contribution of the different erosion processes to material release from the vessel walls of fusion devices during plasma operation

    International Nuclear Information System (INIS)

    Behrisch, R.

    2002-01-01

    In high temperature plasma experiments several processes contribute to erosion and loss of material from the vessel walls. This material may enter the plasma edge and the central plasma where it acts as impurities. It will finally be re-deposited at other wall areas. These erosion processes are: evaporation due to heating of wall areas. At very high power deposition evaporation may become very large, which has been named ''blooming''. Large evaporation and melting at some areas of the vessel wall surface may occur during heat pulses, as observed in plasma devices during plasma disruptions. At tips on the vessel walls and/or hot spots on the plasma exposed solid surfaces electrical arcs between the plasma and the vessel wall may ignite. They cause the release of ions, atoms and small metal droplets, or of carbon dust particles. Finally, atoms from the vessel walls are removed by physical and chemical sputtering caused by the bombardment of the vessel walls with ions as well as energetic neutral hydrogen atoms from the boundary plasma. All these processes have been, and are, observed in today's plasma experiments. Evaporation can in principle be controlled by very effective cooling of the wall tiles, arcing is reduced by very stable plasma operation, and sputtering by ions can be reduced by operating with a cold plasma in front of the vessel walls. However, sputtering by energetic neutrals, which impinge on all areas of the vessel walls, is likely to be the most critical process because ions lost from the plasma recycle as neutrals or have to be refuelled by neutrals leading to the charge exchange processes in the plasma. In order to quantify the wall erosion, ''materials factors'' (MF) have been introduced in the following for the different erosion processes. (orig.)

  18. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling

    International Nuclear Information System (INIS)

    Panwisawas, Chinnapat; Perumal, Bama; Ward, R. Mark; Turner, Nathanael; Turner, Richard P.; Brooks, Jeffery W.; Basoalto, Hector C.

    2017-01-01

    High energy-density beam welding, such as electron beam or laser welding, has found a number of industrial applications for clean, high-integrity welds. The deeply penetrating nature of the joints is enabled by the formation of metal vapour which creates a narrow fusion zone known as a “keyhole”. However the formation of the keyhole and the associated keyhole dynamics, when using a moving laser heat source, requires further research as they are not fully understood. Porosity, which is one of a number of process induced phenomena related to the thermal fluid dynamics, can form during beam welding processes. The presence of porosity within a welded structure, inherited from the fusion welding operation, degrades the mechanical properties of components during service such as fatigue life. In this study, a physics-based model for keyhole welding including heat transfer, fluid flow and interfacial interactions has been used to simulate keyhole and porosity formation during laser welding of Ti-6Al-4V titanium alloy. The modelling suggests that keyhole formation and the time taken to achieve keyhole penetration can be predicted, and it is important to consider the thermal fluid flow at the melting front as this dictates the evolution of the fusion zone. Processing induced porosity is significant when the fusion zone is only partially penetrating through the thickness of the material. The modelling results are compared with high speed camera imaging and measurements of porosity from welded samples using X-ray computed tomography, radiography and optical micrographs. These are used to provide a better understanding of the relationship between process parameters, component microstructure and weld integrity.

  19. The HiPER project for inertial confinement fusion and some experimental results on advanced ignition schemes

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Koenig, M.; Baton, S.; Perez, F.; Gizzi, L.A.; Koester, P.; Labate, L.; Honrubia, J.; Antonelli, L.; Morace, A.; Volpe, L.; Santos, J.; Schurtz, G.; Hulin, S.; Kozlová, Michaela; Nejdl, Jaroslav; Rus, Bedřich

    2011-01-01

    Roč. 53, č. 12 (2011), s. 1-13 ISSN 0741-3335 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional research plan: CEZ:AV0Z10100523 Keywords : HiPER Project * PALS * laser- plasma coupling * fast electrons * inertial fusion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.425, year: 2011

  20. Contribution to the experimental study of excited states of 58,60,62,64Ni

    International Nuclear Information System (INIS)

    Beuzit, Pierre

    1971-01-01

    In its experimental part, this research thesis addresses the use of nuclear spectrometry to study electromagnetic properties of excited states of 58,60,62,64 Ni by using coincidence measurements of particles scattered by the nucleus, and of γ lines emitted by the nucleus in reaction. The author also computed energies, wave functions and transition probabilities of levels related to the quasi-particle model according the RPA (random phase approximation) approximation. After a description of the experimental device and a presentation of data reduction methods, the author reports the experimental results. Then, after a recall of theoretical models and calculation approximations, the author discusses the calculated results obtained within the framework of the layer model, and presents those obtained by using the quasi-particle model with the RPA approximation. By using experimental results, a level classification is proposed. The importance of the core configuration and of the proton-neutron interaction is highlighted

  1. Fusion Canada issue 8

    International Nuclear Information System (INIS)

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs

  2. Fusion Canada issue 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-08-01

    A short bulletin from the National Fusion Program. Included in this issue are Canada-ITER contributions, NET Fuel Processing Loop, Bilateral Meeting for Canada-Europe, report from Tokamak de Varennes and a report from the University of Toronto on materials research for Fusion Reactors. 3 figs.

  3. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  4. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    Science.gov (United States)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna

  5. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  6. Current status of the European contribution to the Remote Data Access System of the ITER Remote Experimentation Centre

    International Nuclear Information System (INIS)

    De Tommasi, G.; Manduchi, G.; Muir, D.G.; Ide, S.; Naito, O.; Urano, H.; Clement-Lorenzo, S.; Nakajima, N.; Ozeki, T.; Sartori, F.

    2015-01-01

    The ITER Remote Experimentation Centre (REC) is one of the projects under implementation within the BA agreement. The final objective of the REC is to allow researchers to take part in the experimentation on ITER from a remote location. Before ITER first operations, the REC will be used to evaluate ITER-relevant technologies for remote participation. Among the different software tools needed for remote participation, an important one is the Remote Data Access System (RDA), which provides a single software infrastructure to access data stored at the remotely participating experiment, regardless of the geographical location of the users. This paper introduces the European contribution to the RDA system for the REC.

  7. The controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2014-01-01

    After some generalities on particle physics, and on fusion and fission reactions, the author outlines that the fission reaction is easier to obtain than the fusion reaction, evokes the fusion which takes place in stars, and outlines the difficulty to manage and control this reaction: one of its application is the H bomb. The challenge is therefore to find a way to control this reaction and make it a steady and continuous source of energy. The author then presents the most promising way: the magnetic confinement fusion. He evokes its main issues, the already performed experiments (tokamak), and gives a larger presentation of the ITER project. Then, he evokes another way, the inertial confinement fusion, and the two main experimental installations (National Ignition Facility in Livermore, and the Laser Megajoule in Bordeaux). Finally, he gives a list of benefits and drawbacks of an industrial nuclear fusion

  8. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2007-01-01

    of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing...

  9. Corruption, investments and contributions to public goods: experimental evidence from rural Liberia

    NARCIS (Netherlands)

    Beekman, G.; Bulte, E.H.; Nillesen, E.E.M.

    2014-01-01

    We analyze how corruption affects incentives to invest or contribute to public goods. We obtain a proxy for corruption among Liberian community leaders by keeping track of a flow of inputs associated with a development intervention, measuring these inputs before and after giving them in custody to

  10. Voluntary disclosure of contributions: an experimental study on nonmandatory approaches for improving public good provision

    Directory of Open Access Journals (Sweden)

    Ursula W. Kreitmair

    2015-12-01

    Full Text Available There has been an increasing interest in nonpecuniary measures to encourage prosocial behavior. Among these is the use of social comparison, or social information. Although successful in promoting, for instance, greater resource conservation, studies of this measure have so far relied on the assumption of the availability of social information. In situations in which information is costly to collect and disseminate, alternative mechanisms must be considered. This study explores the use of voluntary disclosure to provide social information in a linear public goods game in a lab experiment. It finds that individuals tend to disclose their contribution information when given the option, suggesting that voluntarily disclosed social information remains a possible policy option when the cost of information collection is high. In addition, voluntarily revealed contributions are significantly higher than contributions under mandated disclosure, leading to greater cooperation in the voluntary disclosure treatments under certain circumstances. Finally, evidence is provided that voluntary disclosure may be helpful in attenuating the boomerang effect, i.e., when high contributors reduce their contributions in response to social information.

  11. Ethnic Heritage Studies: German-American Profiles and Contributions--Major Figures. Experimental Unit.

    Science.gov (United States)

    Allen, Talbott

    This teaching guide focuses on several prominent German-Americans and their contributions to American life, and provides some insights into German culture. It is part of the Louisville Area Ethnic Heritage Studies Project described in ED 150 043. The project materials are designed to foster communication across intercultural/ethnic lines. The…

  12. Fusion Canada issue 11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-06-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on operation at Tokamak de Varennes, CRITIC irradiations at AECL, Tritium systems at TFTR, physics contribution at ITER. 4 figs.

  13. Working Together: Contributions of Corpus Analyses and Experimental Psycholinguistics to Understanding Conversation.

    Science.gov (United States)

    Meyer, Antje S; Alday, Phillip M; Decuyper, Caitlin; Knudsen, Birgit

    2018-01-01

    As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation.

  14. Spin-off produced by the fusion research and development

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Konishi, T.; Tsuji, Hiroshi

    2001-03-01

    Nuclear fusion devices are constructed by the integration of many frontier technologies and fusion science based on a wide area of science such as physics, electromagnetics, thermodynamics, mechanics, electrical engineering, electronics, material engineering, heat transfer and heat flow, thermal engineering, neutronics, cryogenics, chemical engineering, control engineering, instrumentation engineering, vacuum engineering. For this, the research and development of elementary technology for fusion devices contributes to advance the technology level of each basic field. In addition, the mutual stimulus among various research fields contributes to increase the potential level of whole 'science and technology'. The spin-offs produced by the fusion technology development give much contribution not only to the general industrial technologies such as semiconductor technology, precision machining of large component, but also contribute to the progress of the accelerator technology, application technology of superconductivity, instrumentation and diagnostics, plasma application technology, heat-resistant and heavy radiation-resistant material technology, vacuum technology, and computer simulation technology. The spin-off produced by the fusion technology development expedite the development of frontier technology of other field and give much contribution to the progress of basic science on physics, space science, material science, medical science, communication, and environment. This report describes the current status of the spin-off effects of fusion research and development by focusing on the contribution of technology development for International Thermonuclear Experimental Reactor (ITER) to industrial technology. The possibilities of future application in the future are also included in this report from the view point of researchers working for nuclear fusion development. Although the nuclear fusion research has a characteristic to integrate the frontier technologies of

  15. Safety of magnetic fusion facilities: Guidance

    International Nuclear Information System (INIS)

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities

  16. A Novel Approach to Reinstating Tolerance in Experimental Autoimmune Myasthenia Gravis Using a Targeted Fusion Protein, mCTA1–T146

    Directory of Open Access Journals (Sweden)

    Alessandra Consonni

    2017-09-01

    Full Text Available Reinstating tissue-specific tolerance has attracted much attention as a means to treat autoimmune diseases. However, despite promising results in rodent models of autoimmune diseases, no established tolerogenic therapy is clinically available yet. In the experimental autoimmune myasthenia gravis (EAMG model several protocols have been reported that induce tolerance against the prime disease-associated antigen, the acetylcholine receptor (AChR at the neuromuscular junction. Using the whole AChR, the extracellular part or peptides derived from the receptor, investigators have reported variable success with their treatments, though, usually relatively large amounts of antigen has been required. Hence, there is a need for better formulations and strategies to improve on the efficacy of the tolerance-inducing therapies. Here, we report on a novel targeted fusion protein carrying the immunodominant peptide from AChR, mCTA1–T146, which given intranasally in repeated microgram doses strongly suppressed induction as well as ongoing EAMG disease in mice. The results corroborate our previous findings, using the same fusion protein approach, in the collagen-induced arthritis model showing dramatic suppressive effects on Th1 and Th17 autoaggressive CD4 T cells and upregulated regulatory T cell activities with enhanced IL10 production. A suppressive gene signature with upregulated expression of mRNA for TGFβ, IL10, IL27, and Foxp3 was clearly detectable in lymph node and spleen following intranasal treatment with mCTA1–T146. Amelioration of EAMG disease was accompanied by reduced loss of muscle AChR and lower levels of anti-AChR serum antibodies. We believe this targeted highly effective fusion protein mCTA1–T146 is a promising candidate for clinical evaluation in myasthenia gravis patients.

  17. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Chauhan, Sachin Singh; Sharma, Uttam; Choudhary, K.K.; Sanyasi, A.K.; Ghosh, J.; Sharma, Jayshree

    2013-01-01

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10 -6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with

  18. Quantitative image fusion in infrared radiometry

    Science.gov (United States)

    Romm, Iliya; Cukurel, Beni

    2018-05-01

    Towards high-accuracy infrared radiance estimates, measurement practices and processing techniques aimed to achieve quantitative image fusion using a set of multi-exposure images of a static scene are reviewed. The conventional non-uniformity correction technique is extended, as the original is incompatible with quantitative fusion. Recognizing the inherent limitations of even the extended non-uniformity correction, an alternative measurement methodology, which relies on estimates of the detector bias using self-calibration, is developed. Combining data from multi-exposure images, two novel image fusion techniques that ultimately provide high tonal fidelity of a photoquantity are considered: ‘subtract-then-fuse’, which conducts image subtraction in the camera output domain and partially negates the bias frame contribution common to both the dark and scene frames; and ‘fuse-then-subtract’, which reconstructs the bias frame explicitly and conducts image fusion independently for the dark and the scene frames, followed by subtraction in the photoquantity domain. The performances of the different techniques are evaluated for various synthetic and experimental data, identifying the factors contributing to potential degradation of the image quality. The findings reflect the superiority of the ‘fuse-then-subtract’ approach, conducting image fusion via per-pixel nonlinear weighted least squares optimization.

  19. Experimental public speaking: contributions to the understanding of the serotonergic modulation of fear.

    Science.gov (United States)

    Garcia-Leal, Cybele; Graeff, Frederico Guilherme; Del-Ben, Cristina Marta

    2014-10-01

    Public speaking is widely used as a model of experimental fear and anxiety. This review aimed to evaluate the effects of pharmacological challenges on public speaking responses and their implications for the understanding of the neurobiology of normal and pathological anxiety, specifically panic disorder. We also describe methodological features of experimental paradigms using public speaking as an inducer of fear and stress. Public speaking is a potent stressor that can provoke significant subjective and physiological responses. However, variations in the manners in which public speaking is modelled can lead to different responses that need to be considered when interpreting the results. Results from pharmacological studies with healthy volunteers submitted to simulated public speaking tests have similarities with the pharmacological responses of panic patients observed in clinical practice and panic patients differ from controls in the response to the public speaking test. These data are compatible with the Deakin and Graeff hypothesis that serotonin inhibits fear, as accessed by public speaking tasks, and that this inhibition is likely related to the actions of serotonin in the dorsal periaqueductal grey matter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Environmental epidemiology applied to urban atmospheric pollution: a contribution from the Experimental Air Pollution Laboratory (LPAE

    Directory of Open Access Journals (Sweden)

    André Paulo Afonso de

    2000-01-01

    Full Text Available Systematic investigation on the effects of human exposure to environmental pollution using scientific methodology only began in the 20th century as a consequence of several environmental accidents followed by an unexpected mortality increase above expected mortality and as a result of observational epidemiological and toxicological studies conducted on animals in developed countries. This article reports the experience of the Experimental Air Pollution Laboratory at the School of Medicine, University of São Paulo, concerning the respiratory system and pathophysiological mechanisms involved in responses to exposure to pollution using toxicological and experimental procedures, complemented by observational epidemiological studies conducted in the city of São Paulo. It also describes these epidemiological studies, pointing out that air pollution is harmful to public health, not only among susceptible groups but also in the general population, even when the concentration of pollutants is below the limits set by environmental legislation. The study provides valuable information to support the political and economic decision-making processes aimed at preserving the environment and enhancing quality of life.

  1. Investigation and experimental validation of the contribution of optical interconnects in the SYMPHONIE massively parallel computer

    International Nuclear Information System (INIS)

    Scheer, Patrick

    1998-01-01

    Progress in microelectronics lead to electronic circuits which are increasingly integrated, with an operating frequency and an inputs/outputs count larger than the ones supported by printed circuit board and back-plane technologies. As a result, distributed systems with several boards cannot fully exploit the performance of integrated circuits. In synchronous parallel computers, the situation is worsen since the overall system performances rely on the efficiency of electrical interconnects between the integrated circuits which include the processing elements (PE). The study of a real parallel computer named SYMPHONIE shows for instance that the system operating frequency is far smaller than the capabilities of the microelectronics technology used for the PE implementation. Optical interconnections may cancel these limitations by providing more efficient connections between the PE. Especially, free-space optical interconnections based on vertical-cavity surface-emitting lasers (VCSEL), micro-lens and PIN photodiodes are compatible with the required features of the PE communications. Zero bias modulation of VCSEL with CMOS-compatible digital signals is studied and experimentally demonstrated. A model of the propagation of truncated gaussian beams through micro-lenses is developed. It is then used to optimise the geometry of the detection areas. A dedicated mechanical system is also proposed and implemented for integrating free-space optical interconnects in a standard electronic environment, representative of the one of parallel computer systems. A specially designed demonstrator provides the experimental validation of the above physical concepts. (author) [fr

  2. Technical Description of Radar and Optical Sensors Contributing to Joint UK-Australian Satellite Tracking, Data-fusion and Cueing Experiment

    Science.gov (United States)

    Eastment, J.; Ladd, D.; Donnelly, P.; Ash, A.; Harwood, N.; Ritchie, I.; Smith, C.; Bennett, J.; Rutten, M.; Gordon, N.

    2014-09-01

    DSTL, DSTO, EOS and STFC have recently participated in a campaign of co-ordinated observations with both radar and optical sensors in order to demonstrate and to refine methodologies for orbit determination, data fusion and cross-sensor cueing. The experimental programme is described in detail in the companion paper by Harwood et al. At the STFC Chilbolton Observatory in Southern England, an S-band radar on a 25 m diameter fully-steerable dish antenna was used to measure object range and radar cross-section. At the EOS Space Systems facility on Mount Stromlo, near Canberra, Australia, an optical system comprising a 2 m alt / az observatory, with Coude path laser tracking at 400W power, was used to acquire, lock and laser track the cued objects, providing accurate orbit determinations for each. DSTO, located at Edinburgh, Australia, operated an optical system consisting of a small commercial telescope and mount, measuring the direction to the objects. Observation times were limited to the evening solar terminator period. Data from these systems was processed independently, using DSTL-developed and DSTO / EOS-developed algorithms, to perform orbit determination and to cross-cue: (i) the radar, based on the optical measurements; (ii) the optical system, based on the radar measurements; and (iii) the radar, using its own prior observations (self-cueing). In some cases, TLEs were used to initialise the orbit determination process; in other cases, the cues were derived entirely from sensor data. In all 3 scenarios, positive results were obtained for a variety of satellites in low earth orbits, demonstrating the feasibility of the different cue generation techniques. The purpose of this paper is to describe the technical characteristics of the radar and optical systems used, the modes of operation employed to acquire the observations, and details of the parameters measured and the data formats.

  3. Experimental investigation of silicon photomultipliers as compact light readout systems for gamma-ray spectroscopy applications in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nocente, M., E-mail: massimo.nocente@mib.infn.it; Gorini, G. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Fazzi, A.; Lorenzoli, M.; Pirovano, C. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola,” EURATOM-ENEA-CNR Association, Milano (Italy); Cazzaniga, C.; Rebai, M. [Dipartimento di Fisica “G. Occhialini,” Università degli Studi di Milano-Bicocca, Milano (Italy); Uboldi, C.; Varoli, V. [Dipartimento di Energia, CeSNEF, Politecnico di Milano, Milano (Italy)

    2014-11-15

    A matrix of Silicon Photo Multipliers has been developed for light readout from a large area 1 in. × 1 in. LaBr{sub 3} crystal. The system has been characterized in the laboratory and its performance compared to that of a conventional photo multiplier tube. A pulse duration of 100 ns was achieved, which opens up to spectroscopy applications at high counting rates. The energy resolution measured using radioactive sources extrapolates to 3%–4% in the energy range E{sub γ} = 3–5 MeV, enabling gamma-ray spectroscopy measurements at good energy resolution. The results reported here are of relevance in view of the development of compact gamma-ray detectors with spectroscopy capabilities, such as an enhanced gamma-ray camera for high power fusion plasmas, where the use of photomultiplier is impeded by space limitation and sensitivity to magnetic fields.

  4. Household energy consumption: the future is in our hands. ITER, an experimental fusion reactor. Do CO2-free energies exist? Liquefied natural gas, king of the gas market

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - Household energy consumption - the future is in our hands: With energy resources growing scarcer and more expensive, everyone has a duty to conserve energy. Because combating global warming also means adopting simple habits and using the right equipment - with help from our governments to lead us to change. A practical look at what we can do. 2 - ITER, an experimental fusion reactor: The entire international community is trying to reproduce here on Earth the fusion of hydrogen atoms occurring naturally in the Sun, lured by the promise of a virtually inexhaustible source of energy. More on ITER from the project's Director General. 3 - Do CO 2 -free energies exist?: As nations struggle to reduce greenhouse gas emissions, the question is moot. Environmental engineer Jean-Marc Jancovici gives us his point of view. 4 - Liquefied natural gas, king of the gas market: LNG's many advantages are enticing industry to develop supply routes and infrastructure to meet strong demand. But the race for LNG is not without its limits

  5. Incomplete fusion studies

    International Nuclear Information System (INIS)

    Singh, B.P.

    2011-01-01

    In order to study the incomplete fusion reaction dynamics at energies ≅ 4-7 MeV/nucleon, several experiments have been carried out using accelerator facilities available in India. The measurements presented here cover a wide range of projectile-target combinations and enhance significantly our knowledge about incomplete fusion reaction dynamics. Here, the three sets of measurements have been presented; (i) excitation functions, (ii) forward recoil range distributions and (iii) the spin distributions. The first evidence of these reactions has been obtained from the measurement and analysis of excitation functions for xn/αxn/2αxn-channels. The measured excitation functions have been analyzed within the framework of compound nucleus model. The results obtained indicate the occurrence of fusion incompleteness at low beam energies. However, in order to determine the relative contribution of complete and incomplete fusion reaction processes, the recoil range distributions of the heavy residues have also been measured and analyzed within the framework of breakup fusion model which confirmed the fusion incompleteness in several heavy ion reactions involving α-emitting reaction channels. Further, in order to study the role of l-values in these reactions the spin distributions of the residues populated in case of complete and incomplete channels have been measured and are found to be distinctly different. The analysis of the data on spin distribution measurements indicate that the mean values of driving input angular momenta associated with direct-α-emitting (incomplete fusion) channels are higher than that observed for fusion-evaporation xn or α-emitting (complete fusion) channels, and is found to increase with direct α-multiplicity in the forward cone. One of the important conclusions drawn in the present work is that, there is significant incomplete fusion contribution even at energies slightly above the barrier. Further, the projectile structure has been found to

  6. The contribution of the Georges Heights Experimental Radar Antenna to Australian radio astronomy

    Science.gov (United States)

    Orchiston, Wayne; Wendt, Harry

    2017-12-01

    During the late 1940s and throughout the1950s Australia was one of the world’s foremost astronomical nations owing primarily to the dynamic Radio Astronomy Group within the Commonwealth Scientific and Industrial Organisation’s Division of Radiophysics based in Sydney. The earliest celestial observations were made with former WWII radar antennas and simple Yagi aerials attached to recycled radar receivers, before more sophisticated purpose-built radio telescopes of various types were designed and developed. One of the recycled WWII antennas that was used extensively for pioneering radio astronomical research was an experimental radar antenna that initially was located at the Division’s short-lived Georges Heights Field Station but in 1948 was relocated to the new Potts Hill Field Station in suburban Sydney. In this paper we describe this unique antenna, and discuss the wide-ranging solar, galactic and extragalactic research programs that it was used for.

  7. Experimental basis for parameters contributing to energy dissipation in piping systems

    International Nuclear Information System (INIS)

    Ibanez, P.; Ware, A.G.

    1985-01-01

    The paper reviews several pipe testing programs to suggest the phenomena causing energy dissipation in piping systems. Such phenomena include material damping, plasticity, collision in gaps and between pipes, water dynamics, insulation straining, coupling slippage, restraints (snubbers, struts, etc.), and pipe/structure interaction. These observations are supported by a large experimental data base. Data are available from in-situ and laboratory tests (pipe diameters up to about 20 inches, response levels from milli-g's to responses causing yielding, and from excitation wave forms including sinusoid, snapback, random, and seismic). A variety of pipe configurations have been tested, including simple, bare, straight sections and complex lines with bends, snubbers, struts, and insulation. Tests have been performed with and without water and at zero to operating pressure. Both light water reactor and LMFBR piping have been tested

  8. Contribution of experimental fluid mechanics to the design of vertical slot fish passes

    Directory of Open Access Journals (Sweden)

    Wang R.W.

    2010-02-01

    Full Text Available This paper presents the main results of an experimental study of mean and turbulent characteristics of flow in a scale model of a vertical slot fish pass with varying width and slope (from 5% to 15%. Experimental hydraulic modelling was combined with the study of fish behaviour in the model. The discharge coefficient, which significantly affects the design of such facilities, varied from 0.67 to 0.89 and was strongly influenced by the slope. Two distinct flow patterns were observed, depending on the slope and the fish pass width. The point of transition between the two states was determined. Low velocity areas are likely resting zones for fish and particular attention was paid to evaluating these areas. Slope was found to affect both the volume of the low velocity zone, and the value of turbulent kinetic energy in these areas. The statistical characteristics of turbulent kinetic energy in the pools were linked primarily to the maximum velocity in the jet. An analysis of the behaviour of juvenile brown trout (Salmo trutta in the scale model clearly showed that the fish avoided the areas of high velocities in the jet, except at the slot itself where they took advantage of the jet’s non-stationary character. Low-velocity areas were not frequented uniformly by fish, which stayed most frequently in the zone located just downstream from the slot and behind the small side baffle. It is suggested that future studies might investigate lower pool-length to slot-width ratios, which might make it possible to increase the slope significantly and should also examine ways of improving hydraulic conditions for fish by carefully distributing obstacles in pools.

  9. Inertial confinement fusion at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lindman, E.; Baker, D.; Barnes, C.; Bauer, B.; Beck, J.B.

    1997-01-01

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed

  10. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  11. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design

    Science.gov (United States)

    Lawrence, David M.; Hurtt, George C.; Arneth, Almut; Brovkin, Victor; Calvin, Kate V.; Jones, Andrew D.; Jones, Chris D.; Lawrence, Peter J.; de Noblet-Ducoudré, Nathalie; Pongratz, Julia; Seneviratne, Sonia I.; Shevliakova, Elena

    2016-09-01

    Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions. (1) What are the effects of LULCC on climate and biogeochemical cycling (past-future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy, and are there regional land-management strategies with the promise to help mitigate climate change? In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on the separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land use, the unique impacts of land-cover change vs. land-management change, modulation of land-use impact on climate by land-atmosphere coupling strength, and the extent to which impacts of enhanced CO2 concentrations on plant photosynthesis are modulated by past and future land use.LUMIP involves three major sets of science activities: (1) development of an updated and expanded historical and future land-use data set, (2) an experimental protocol for specific LUMIP experiments for CMIP6, and (3) definition of metrics and diagnostic protocols that quantify model performance, and related sensitivities, with respect to LULCC. In this paper, we describe LUMIP activity (2), i.e., the LUMIP simulations that will formally be part of CMIP6. These experiments are explicitly designed to be

  12. Experimental and numerical contribution to heat transfer enhancement in compact plate heat exchangers - 15563

    International Nuclear Information System (INIS)

    Vitillo, F.; Cachon, L.; Millan, P.

    2015-01-01

    In the framework of the CEA program to develop an industrial prototype of sodium-cooled fast reactor named (ASTRID), the present work aims at proposing an innovative compact heat exchanger technology, to provide solid technological basis for the utilization of a Brayton power conversion system. This allows avoiding the energetic sodium-water interaction that could potentially occur if a traditional Rankine cycle was used. The design of the gas-side (which determines the heat transfer resistance of the heat exchanger) of the sodium-gas heat exchanger has been the object of the present work. Compact technologies are necessary for the present application because of the low heat transfer capacity of the gas foreseen, i.e. nitrogen. The basic idea of this work is to design a channel were the fluid flow is as much as 3-dimensional as possible. In particular the proposed channel can be thought as the result of the superposition of 2 single PCHE wavy channels in phase opposition. The innovative channel geometry has to be studied numerically and experimentally to demonstrate its industrial interest and the final compact gain. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. It has been demonstrated that the ASST model can provide a valuable alternative to more complex models. Given the innovation of the proposed geometry, no test case has been found in the literature to be fully applicable to the present study. So, 3 experimental facilities have been used to acquire an extensive aerodynamic database. The Laser Doppler Velocimetry (LDV), Particle Image Velocimetry (PIV) and VHEGAS facilities have been built to investigate the innovative channel flow and heat transfer characteristics. The ASST model, used with a SGDH turbulent heat flux model, has been validate against the acquired thermal-hydraulic database

  13. Superconducting magnet and conductor research activities in the US fusion program

    International Nuclear Information System (INIS)

    Michael, P.C.; Schultz, J.H.; Antaya, T.A.; Ballinger, R.; Chiesa, L.; Feng, J.; Gung, C.-Y.; Harris, D.; Kim, J.-H.; Lee, P.; Martovetsky, N.; Minervini, J.V.; Radovinsky, A.; Salvetti, M.; Takayasu, M.; Titus, P.

    2006-01-01

    Fusion research in the United States is sponsored by the Department of Energy's Office of Fusion Energy Sciences (OFES). The OFES sponsors a wide range of programs to advance fusion science, fusion technology, and basic plasma science. Most experimental devices in the US fusion program are constructed using conventional technologies; however, a small portion of the fusion research program is directed towards large scale commercial power generation, which typically relies on superconductor technology to facilitate steady-state operation with high fusion power gain, Q. The superconductor portion of the US fusion research program is limited to a small number of laboratories including the Plasma Science and Fusion Center at MIT, Lawrence Livermore National Laboratory (LLNL), and the Applied Superconductivity Center at University of Wisconsin, Madison. Although Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL) are primarily sponsored by the US's High Energy Physics program, both have made significant contributions to advance the superconductor technology needed for the US fusion program. This paper summarizes recent superconductor activities in the US fusion program

  14. Recent developments in identification of kinetic and transport models from experimental data. Contributed Paper IT-08

    International Nuclear Information System (INIS)

    Bhatt, Nirav P.

    2014-01-01

    In this presentation, we will discuss recent developments in area of identification of kinetic and transport models from experimental data, and their importance in spent fuel reprocessing. The traditional kinetic modelling approaches, differentiation and integral methods, will be presented to set the stage. Then, two frameworks of identifying kinetic and transport models will be presented in details. These frameworks can be classified as follows: (i) simultaneous or global model identification (SMI), and (ii) incremental model identification (IMI). In the SMI framework, as name indicates, rate expressions of all reactions are integrated to predict concentrations that are fitted to measured values via a least-squares problem simultaneously. Alternatively, the identification task can be split into a sequence of sub-problems such as the identification of stoichiometry and rate expressions. For each subproblem, the number of model candidates can be kept small. In addition, the information available at a given step can be used to refine the model in subsequent steps. Further, the advantages and disadvantages of these frameworks will be presented

  15. Experimental and numerical contribution to heat transfer enhancement in compact plate heat exchangers

    International Nuclear Information System (INIS)

    Vitillo, Francesco

    2014-01-01

    In the framework of CEA R and D program to develop an industrial prototype of Sodium cooled Fast Reactor, the present thesis aimed to propose an innovative compact heat exchanger technology. In order to increase the global compactness the basic idea of this work is to design a channel were the fluid flow is as much three-dimensional as possible. In particular the channel can be thought as the result of the superposition of two undulated channels in phase opposition. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. To validate the numerical model, two experimental sections have been used to acquire an extensive aerodynamic database, whereas, to validate the thermal modeling approach, the VHEGAS facility has been built. Once having validated the ASST model, correlations for friction factor and Nusselt number for various geometries could be obtained. Finally, it has been shown that the innovative channel is the most compact one among the most important existing industrial compact heat exchanger technologies. (author) [fr

  16. Effect of gas expansion on the front shape of a Taylor bubble: an experimental contribution

    Directory of Open Access Journals (Sweden)

    Santos Laura

    2014-03-01

    Full Text Available An experimental study where an individual Taylor bubble rises through water with different bubble volume expansion rates is presented with the (front bubble shape determination as main objective. A combination of two techniques, Particle Image Velocimetry (PIV and Pulsed Shadowgraphy (PS, was used to collect images for further treatment in order to characterize the liquid flow pattern in front of the bubble and the bubble shape. Processing the images acquired with pulsed illumination from behind the bubble it was possible to define with precision the bubble shape at different stages when it was expanding. The operation conditions used allowed a wide range of volume expansion rates (0 to 28.5 × 10-6 m3/s with a significant effect on the Taylor bubble velocity; increases in bubble velocity up to 21% were observed relatively to constant volume system condition. Nevertheless, it seems that the front shape of Taylor bubbles does not change significantly with the upward liquid flow rates induced by gas expansion, at least for the volume expansion rates used in the experiments.

  17. The role of the SIBLING, Bone Sialoprotein in skeletal biology - Contribution of mouse experimental genetics.

    Science.gov (United States)

    Bouleftour, Wafa; Juignet, Laura; Bouet, Guenaelle; Granito, Renata Neves; Vanden-Bossche, Arnaud; Laroche, Norbert; Aubin, Jane E; Lafage-Proust, Marie-Hélène; Vico, Laurence; Malaval, Luc

    2016-01-01

    Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  18. Contribution of the collagen adhesin Acm to pathogenesis of Enterococcus faecium in experimental endocarditis.

    Science.gov (United States)

    Nallapareddy, Sreedhar R; Singh, Kavindra V; Murray, Barbara E

    2008-09-01

    Enterococcus faecium is a multidrug-resistant opportunist causing difficult-to-treat nosocomial infections, including endocarditis, but there are no reports experimentally demonstrating E. faecium virulence determinants. Our previous studies showed that some clinical E. faecium isolates produce a cell wall-anchored collagen adhesin, Acm, and that an isogenic acm deletion mutant of the endocarditis-derived strain TX0082 lost collagen adherence. In this study, we show with a rat endocarditis model that TX0082 Deltaacm::cat is highly attenuated versus wild-type TX0082, both in established (72 h) vegetations (P Acm the first factor shown to be important for E. faecium pathogenesis. In contrast, no mortality differences were observed in a mouse peritonitis model. While 5 of 17 endocarditis isolates were Acm nonproducers and failed to adhere to collagen in vitro, all had an intact, highly conserved acm locus. Highly reduced acm mRNA levels (>or=50-fold reduction relative to an Acm producer) were found in three of these five nonadherent isolates, including the sequenced strain TX0016, by quantitative reverse transcription-PCR, indicating that acm transcription is downregulated in vitro in these isolates. However, examination of TX0016 cells obtained directly from infected rat vegetations by flow cytometry showed that Acm was present on 40% of cells grown during infection. Finally, we demonstrated a significant reduction in E. faecium collagen adherence by affinity-purified anti-Acm antibodies from E. faecium endocarditis patient sera, suggesting that Acm may be a potential immunotarget for strategies to control this emerging pathogen.

  19. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma.

    Science.gov (United States)

    McKnight, Christopher G; Morris, Suzanne C; Perkins, Charles; Zhu, Zhenqi; Hildeman, David A; Bendelac, Albert; Finkelman, Fred D

    2017-01-01

    CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD). Because we find 2-3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT) mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb) to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.

  20. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma.

    Directory of Open Access Journals (Sweden)

    Christopher G McKnight

    Full Text Available CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD. Because we find 2-3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.

  1. Experimental investigations on the contribution of the splash-zones in counter-flow cooling towers for water cooling

    International Nuclear Information System (INIS)

    Vladea, I.; Barbu, V.

    1976-01-01

    The relatively high cost of cooling tower packs has led to investigate the contribution of the splash-zones in counter-flow cooling towers, and thereby to determine whether the pack could not be reduced so far, as to be - under certain circumstance - completely eliminated. In this case, one would come to a pure splash cooling tower which would contain inside the equipment required for drop formation only. This problem was investigated experimentally, and it was found that the pack of such a cooling tower could not be eliminated without a reduction in tower effectiveness. (orig.) [de

  2. Design of Fire/Gas Penetration Seals and fire exposure tests for Tokamak Fusion Test Reactor experimental areas

    International Nuclear Information System (INIS)

    Cavalluzzo, S.

    1983-01-01

    A Fire/Gas Penetration Seal is required in every penetration through the walls and ceilings into the Test Cell housing the Tokamak Fusion Test Reactor (TFTR), as well as other adjacent areas to protect the TFTR from fire damage. The penetrations are used for field coil lead stems, diagnostics systems, utilities, cables, trays, mechanical devices, electrical conduits, vacuum liner, air conditioning ducts, water pipes, and gas pipes. The function of the Fire/Gas Penetration Seals is to prevent the passage of fire and products of combustion through penetrations for a period of time up to three hours and remain structurally intact during fire exposure. The Penetration Seal must withstand, without rupture, a fire hose water stream directed at the hot surface. There are over 3000 penetrations ranging in size from several square inches to 100 square feet, and classified into 90 different types. The material used to construct the Fire/Gas Penetration Seals consist of a single and a two-component room temperature vulcanizing (RTV) silicone rubber compound. Miscellaneous materials such as alumina silica refractory fibers in board, blanket and fiber forms are also used in the construction and assembly of the Seals. This paper describes some of the penetration seals and the test procedures used to perform the three-hour fire exposure tests to demonstrate the adequacy of the seals

  3. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through...... individual fusion events using time-lapse and antagonists of CD47 and syncytin-1. All time-lapse recordings have been studied by two independent observers. A total of 1808 fusion events were analyzed. The present study shows that CD47 and syncytin-1 have different roles in osteoclast fusion depending...... broad contact surfaces between the partners' cell membrane while syncytin-1 mediate fusion through phagocytic-cup like structure. J. Cell. Physiol. 9999: 1-8, 2016. © 2016 Wiley Periodicals, Inc....

  4. Experimental pressure drop and heat transfer in square array rod bundle for fusion-fission hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, J.A.; Bhowmik, P.K. [Seoul National Univ., Gwanak Gu, Seoul (Korea, Republic of); Suh, K.Y., E-mail: kysuh@snu.ac.kr [Seoul National Univ., Gwanak Gu, Seoul (Korea, Republic of); PhiloSophia Inc., Gwanak Gu, Seoul (Korea, Republic of)

    2014-07-01

    The effects of grid spacer flow restriction on pressure drop are evaluated experimentally for a wide range of flow rates. The results are compared against predictions by using most well known correlations. The convective heat transfer coefficients are evaluated using ANSYS 12.1 for a 3x3 rod bundle for pure water and alumina nanofluid. It is observed that the experimental pressure drop falls within 10%~20% of the predictions. Heat transfer of the 4% alumina nanofluid increases about 18% over pure water under the same inlet flow condition. (author)

  5. Experimental pressure drop and heat transfer in square array rod bundle for fusion-fission hybrid system

    International Nuclear Information System (INIS)

    Shamim, J.A.; Bhowmik, P.K.; Suh, K.Y.

    2014-01-01

    The effects of grid spacer flow restriction on pressure drop are evaluated experimentally for a wide range of flow rates. The results are compared against predictions by using most well known correlations. The convective heat transfer coefficients are evaluated using ANSYS 12.1 for a 3x3 rod bundle for pure water and alumina nanofluid. It is observed that the experimental pressure drop falls within 10%~20% of the predictions. Heat transfer of the 4% alumina nanofluid increases about 18% over pure water under the same inlet flow condition. (author)

  6. Benchmarking the cad-based attila discrete ordinates code with experimental data of fusion experiments and to the results of MCNP code in simulating ITER

    International Nuclear Information System (INIS)

    Youssef, M. Z.

    2007-01-01

    Attila is a newly developed finite element code based on Sn neutron, gamma, and charged particle transport in 3-D geometry in which unstructured tetrahedral meshes are generated to describe complex geometry that is based on CAD input (Solid Works, Pro/Engineer, etc). In the present work we benchmark its calculation accuracy by comparing its prediction to the measured data inside two experimental mock-ups bombarded with 14 MeV neutrons. The results are also compared to those based on MCNP calculations. The experimental mock-ups simulate parts of the International Thermonuclear Experimental Reactor (ITER) in-vessel components, namely: (1) the Tungsten mockup configuration (54.3 cm x 46.8 cm x 45 cm), and (2) the ITER shielding blanket followed by the SCM region (simulated by alternating layers of SS316 and copper). In the latter configuration, a high aspect ratio rectangular streaming channel was introduced (to simulate steaming paths between ITER blanket modules) which ends with a rectangular cavity. The experiments on these two fusion-oriented integral experiments were performed at the Fusion Neutron Generator (FNG) facility, Frascati, Italy. In addition, the nuclear performance of the ITER MCNP 'Benchmark' CAD model has been performed with Attila to compare its results to those obtained with CAD-based MCNP approach developed by several ITER participants. The objective of this paper is to compare results based on two distinctive 3-D calculation tools using the same nuclear data, FENDL2.1, and the same response functions of several reaction rates measured in ITER mock-ups and to enhance confidence from the international neutronics community in the Attila code and how it can precisely quantify the nuclear field in large and complex systems, such as ITER. Attila has the advantage of providing a full flux mapping visualization everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. In addition, the

  7. International research co-operation in the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2003-01-01

    This final report for the Swiss Federal Office of Education and Science presents a review of activities carried out in 2002 within the framework of the International Experimental Thermonuclear Reactor (ITER) project that involves contributions from Canada, Japan, the Russian Federation and the European Union. Further agreements on the development of a fusion reactor with other countries, including Switzerland, the USA and China, are mentioned. The first chapter describes the current state of research on electricity production using nuclear fusion and discusses feasibility, safety, environmental, fuel supply and economic aspects. A second chapter reviews global efforts in the fusion area, including ITER and EURATOM projects and the activities running under the European Fusion Development Agreement EFDA and the JET Implementing Agreement. Finally, a third chapter deals with fusion research activities in Switzerland and the contributions made to international research by Swiss universities and institutes

  8. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  9. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  10. What have fusion reactor studies done for you today?

    International Nuclear Information System (INIS)

    Kulchinski, G.L.

    1985-01-01

    The University of Wisconsin examines the fusion program and puts into perspective what return is being made on investments in fusion reactor studies. Illustations show financial support for fusion research from the four major programs, FY'82 expenditures on fusion research, and the total expenditures on fusion research since 1951. Topics discussed include the estimated number of scientists conducting fusion research, the conceptual design study of a fusion reactor, scoping study of a reactor, the chronology of fusion reactor design studies, published fusion reactor studies 1967-1983, conceptual fusion reactor design studies, STARFIRE reference design, MARS central cell, HYLIFE reaction chamber, and selected contributions of reactor design studies to base programs

  11. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  12. How does incomplete fusion show up at slightly above barrier energies?

    Directory of Open Access Journals (Sweden)

    Prasad R.

    2012-02-01

    Full Text Available Experimental results on the onset of incomplete fusion at slightly above barrier energies are discussed in this paper. Spin-distributions of evaporation residues populated via complete and/or incomplete fusion of 12C,16O (Elab ≈ 4–7 MeV with 169Tm have been measured to probe associated ℓ–values. Particle (Z=1,2 – γ – coincidence technique has been used for channel selection. Entirely different entry state spin populations have been observed during the de-excitation of complete and incomplete composites. The complete fusion residues are found to be strongly fed over a broad spin range. While, a narrow range feeding for only high spin states has been observed in case of incomplete fusion residues. In the present work, incomplete fusion is shown to be a promising tool to populate high spin states in final reaction products. For better insight into the onset and strength of incomplete fusion, the relative contributions of complete and incomplete fusion have been deduced from the analysis of excitation functions and forward recoil ranges. A significant fraction of ICF has been observed even at energy as low as ≈ 7% above the barrier. The relative strengths of complete and incomplete fusion deduced from the analysis of forward-recoil-ranges and excitation functions complement each other. All the available results are discussed in light of the Morgenstern’s mass-asymmetry systematics. Incomplete fusion fraction is found to be large for more mass-asymmetric systems for individual projectiles, which points towards the projectile structure effect on incomplete fusion fraction. Experimentally measured forward ranges of recoils complement the existence of incomplete fusion at slightly above barrier energies, where more than one linear-momentum-transfer components associated with full- and/or partial-fusion of projectile(s have been observed. Present results conclusively demonstrate the possibility to selectively populate high spin states

  13. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  14. Structural materials for fusion and spallation sources

    International Nuclear Information System (INIS)

    Cottrell, G.A.; Baker, L.J.

    2003-01-01

    Experimental investigation of neutron-induced irradiation damage in structural materials is fundamental to the development of magnetic confinement fusion. Proposals for the testing of candidate materials are described, indicating that a period of at least 10 years will elapse before a suitable high neutron fluence fusion test facility becomes available. In this circumstance, the possibility that neutron spallation sources could be exploited to shorten the time-scale of fusion materials development is attractive. Although fusion displacement and transmutation reaction rates can be replicated in spallation sources, there are significant differences arising from the harder neutron spectra and the presence of energetic protons. These differences, including higher energy PKA, electron heating effects, transmutation rates and pulsing are described and their consequences discussed, together with the concomitant development of theoretical models, needed to understand the effects. It is concluded that spallation source experiments could make a significant contribution to the database required for the validation of theoretical models, and hence reduce the time scale of fusion materials development

  15. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  16. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  17. Fusion safety regulations in the United States: Progress and trends

    International Nuclear Information System (INIS)

    DeLooper, J.

    1994-01-01

    This paper explores the issue of regulations as they apply to current and future fusion experimental machines. It addresses fusion regulatory issues, current regulations used for fusion, the Tokamak Fusion Test Reactor experience with regulations, and future regulations to achieve fusion's safety and environmental potential

  18. On the role of delocalization in benzene: Theoretical and experimental investigation of the effects of strained ring fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faust, Rudiger [Univ. of California, Berkeley, CA (United States)

    1993-04-01

    When an important compound`s discovery dates back as far as 1825, one would imagine that every facet of its chemical and physical properties has been illuminated in the meantime. Benzene, however, has not ceased to challenge the chemist`s notion of structure and bonding since its first isolation by Michael Faraday. This report is divided into the following six chapters: 1. Aromaticity -- Criteria, manifestations, structural limitations; 2. The role of delocalization in benzene; 3. The thermochemical properties of benzocyclobutadienologs; 4. Ab initio study of benzenes fused to four-membered rings; 5. Non-planar polycyclic aromatic hydrocarbons; and 6. Experimental details and input decks. 210 Refs.

  19. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    International Nuclear Information System (INIS)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-01-01

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo

  20. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  1. Experimental verification of integrated pressure suppression systems in fusion reactors at in-vessel loss-of-coolant events

    International Nuclear Information System (INIS)

    Takase, K.; Akimoto, H.

    2001-01-01

    An integrated ICE (Ingress-of-Coolant Event) test facility was constructed to demonstrate that the ITER safety design approach and design parameters for the ICE events are adequate. Major objectives of the integrated ICE test facility are: to estimate the performance of an integrated pressure suppression system; to obtain the validation data for safety analysis codes; and to clarify the effects of two-phase pressure drop at a divertor and the direct-contact condensation in a suppression tank. A scaling factor between the test facility and ITER-FEAT is around 1/1600. The integrated ICE test facility simulates the ITER pressure suppression system and mainly consists of a plasma chamber, vacuum vessel, simulated divertor, relief pipe and suppression tank. From the experimental results it was found quantitatively that the ITER pressure suppression system is very effective to reduce the pressurization due to the ICE event. Furthermore, it was confirmed that the analytical results of the TRAC-PF1 code can simulate the experimental results with high accuracy. (author)

  2. Experimental investigation of the confinement of d(3He,p)α and d(d,p)t fusion reaction products in JET

    DEFF Research Database (Denmark)

    Bonheure, Georges; Hult, M.; Gonzalez de Orduna, R.

    2012-01-01

    In ITER, magnetic fusion will explore the burning plasma regime. Because such burning plasma is sustained by its own fusion reactions, alpha particles need to be confined (Hazeltine 2010 Fusion Eng. Des. 7–9 85). New experiments using d(3He,p)α and d(d,p)t fusion reaction products were performed...... in JET. Fusion product loss was measured from MHD-quiescent plasmas with a charged particle activation probe installed at a position opposite to the magnetic field ion gradient drift (see figure 1)—1.77 m above mid-plane—in the ceiling of JET tokamak. This new kind of escaping ion detector (Bonheure et...... al 2008 Fusion Sci. Technol. 53 806) provides for absolutely calibrated measurements. Both the mechanism and the magnitude of the loss are dealt with by this research. Careful analysis shows measured loss is in quantitative agreement with predictions from the classical orbit loss model. However...

  3. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    International Nuclear Information System (INIS)

    Villar Colome, J.

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  4. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    Energy Technology Data Exchange (ETDEWEB)

    Villar Colome, J. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Universitat Polytechnica de Catalunya (Spain)

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  5. Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research. Report of a Coordinated Research Project 2011–2016

    International Nuclear Information System (INIS)

    2016-12-01

    The IAEA actively promotes the development of controlled fusion as a source of energy. Through its coordinated research activities, the IAEA helps Member States to exchange and establish scientific and technical knowledge required for the design, construction and operation of a fusion reactor. Due to their compactness, flexibility and low operation costs, small fusion devices are a great resource for supporting and accelerating the development of mainstream fusion research on large fusion devices such as the International Thermonuclear Experimental Reactor. They play an important role in investigating the physics of controlled fusion, developing innovative technologies and diagnostics, testing new materials, training highly qualified personnel for larger fusion facilities, and supporting educational programmes for young scientists. This publication reports on the research work accomplished within the framework of the Coordinated Research Project (CRP) on Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research, organized and conducted by the IAEA in 2011–2016. The CRP has contributed to the coordination of a network of research institutions, thereby enhancing international collaboration through scientific visits, joint experiments and the exchange of information and equipment. A total of 16 institutions and 14 devices from 13 Member States participated in this CRP (Belgium, Bulgaria, Canada, China, Costa Rica, the Czech Republic, the Islamic Republic of Iran, Kazakhstan, Pakistan, Portugal, the Russian Federation, Ukraine and the United Kingdom).

  6. Parâmetros operacionais no processamento de zeólitas desativadas por fusão com KHSO4 Experimental parameters for spent zeolites processing via fusion with KHSO4

    Directory of Open Access Journals (Sweden)

    Luciano Aragão de Mendonça

    2007-04-01

    Full Text Available This work presents a study on the determination of the optimal experimental conditions for processing spent commercial zeolites in order to recover lanthanide elements and eventually other elements. The process is based on the fusion of the sample with potassium hydrogenosulfate (KHSO4. Three experimental parameters were studied: temperature, reaction time and catalyst/flux mass ratio. After fusion the solid was dissolved in water and the amount of insoluble matter was used to determine the efficiency of the process. The optimized experimental parameters depend on the composition of the sample processed. Under such conditions the insoluble residue corresponds to SiO2. Lanthanide elements and aluminum present in solution were isolated by conventional precipitation techniques; the yields were at least 75 wt%. The final generated wastes correspond to neutral colorless solutions containing alkali chlorides/sulfates and solids that can be disposed of in industrial dumps.

  7. Assessing the contribution of beach-cast seagrass wrack to global GHGs emissions: experimental models, problems and perspectives

    Science.gov (United States)

    Misson, Gloria; Incerti, Guido; Alberti, Giorgio; Delle Vedove, Gemini; Pirelli, Tiziana; Peressotti, Alessandro

    2017-04-01

    Carbon stock in coastal seagrass ecosystems is estimated to be 4.2-8.4 Pg C. While covering less than 0.2% of the ocean floor, seagrasses store about 10% of the carbon buried in the oceans each year. However, such a potential contribution is reduced by the annual loss of seagrasses globally (-1.5% per year) mainly because of anthropogenic coastal development and climate change. Like many terrestrial higher plants, marine seagrasses lose their old leaves during annual or inter-annual senescence, and a significant proportion of these residues is transported in surface waters and washed up on shores by surf, tides and winds. This beach-cast seagrass wrack provides important ecosystem services, such as reducing wave impact, protecting beaches from erosion, providing habitat to bird and invertebrate species that colonize shorelines, and being a primary food resource for beach detritivores. However, accumulation of seagrass wrack on beaches, following degradation of meadows, can negatively impact tourism. Therefore, wrack piles are frequently collected and disposed of in landfills or biomass waste facilities, and the adoption of these management practices implies substantial environmental and economic costs. On the other hand, wrack piles might be a significant source of greenhouse emissions (GHGs). Recent studies reported CO2 emission rates and suggested possible mitigation options, such as energy conversion and biochar production through pyrolysis. Even though quantitative estimates of both seagrass coastal distribution and residues disposal to seashores are partially available, at least at regional level, the assessment of their contribution to global GHGs emissions is still lacking, due to a knowledge gap about the effects of peculiar environmental conditions of beach ecosystems on seagrass decay rates. In this framework, we propose an experimental model to assess seagrass wrack decomposition dynamics in both controlled conditions and experimental fields in North

  8. Fusion energy

    International Nuclear Information System (INIS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R ampersand D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R ampersand D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase

  9. Experimental evaluation of brazed molybdenum-graphite bonds for the divertor of the NET/ITER nuclear fusion device

    International Nuclear Information System (INIS)

    Smid, I.; Linke, J.; Nickel, H.; Kny, E.; Reheis, N.; Kneringer, G.; Bolt, H.

    1995-01-01

    Composites consisting of plasma-facing carbon material brazed to molybdenum (TZM) substrates are a promising system for the divertor of the Next European Torus (NET) and the International Thermonuclear Experimental Reactor (ITER). Isotropic graphite and a refractory metal (molybdenum or TZM, a high temperature alloy of molybdenum), two dissimilar substrate materials, yet closely matched in their thermal expansivities, were joined with the use of four different high-temperature brazes: Zr, 90Ni-10Ti, 90Cu- 10Ti, and 70Ag-27Cu-3Ti (compositions in wt%). A summary is given of experiments on mechanical strength, heat transfer capability, structural changes, and failure modes under high heat loads of brazed bonds. Tensile-strength tests on the brazing interface prove the suitability of the brazes up to their melting point. The expected enhancement in thermal contact compared with graphite is confirmed. Passively cooled tiles of dimensions 25 mm x 25 mm were subjected to thermal cycling in electron-beam simulations. Heat fluxes of up to 10 MW m -2 were applied. (author)

  10. Experimental evaluation of brazed molybdenum-graphite bonds for the divertor of the NET/ITER nuclear fusion device

    International Nuclear Information System (INIS)

    Smid, Ivica; Linke, Jochen; Nickel, Hubertus; Kny, Erich; Reheis, Nikolaus; Kneringer, Guenther; Bolt, Harald

    1990-01-01

    Composites consisting of plasma-facing carbon material brazed to molybdenum (TZM) substrates are a promising system for the divertor of the Next European Torus (NET) and the International Thermonuclear Experimental Reactor (ITER). Isotropic graphite and a refractory metal (molybdenum or TZM, a high temperature alloy of molybdenum), two dissimilar substrate materials, yet closely matched in their thermal expansivities, were joined with the use of four different high-temperature brazes: Zr,90Ni-10Ti,90Cu-10Ti, and 70Ag-27Cu-3Ti(compositions in wt%). A summary is given of experiments on mechanical strength, heat transfer capability, structural changes, and failure modes under high heat loads of brazed bonds. Tensile-strength tests on the brazing interface prove the suitability of the brazes up to their melting point. The expected enhancement in thermal contact compared with graphite is confirmed. Passively cooled tiles of dimensions 25 mm x 25 mm were subjected to thermal cycling in electron-beam simulations. Heat fluxes of up to 10 MW m -2 were applied. (author)

  11. Welding and cutting characteristics of blanket/first wall module to back plate for fusion experimental reactor

    International Nuclear Information System (INIS)

    Sato, Shinichi; Osaki, Toshio; Koga, Shinji

    1996-01-01

    The first wall and the blanket of the International Thermonuclear Experimental Reactor (ITER) are used under severe conditions such as the neutron irradiation by plasma, surface thermal load, the electromagnetic force at the time of plasma disruption and others. Consequently, from the viewpoint of the necessity for disassembling and maintenance, those are divided into modules in toroidal and poloidal directions. In this study, as to the welding of the back plate and the legs supporting blanket modules, which are installed in a vacuum vessel, the characteristic test paying attention to the deformation at the time of welding was carried out, and the optimal welding conditions and the characteristics of welding deformation and others were clarified. Moreover, when water jet method was used for cutting the welded parts of the supporting legs, the properties of the cut parts, the time for cutting and others were examined. The performance required for the welded parts of blanket modules with back plate is shown. The basic test of welding conditions using plate models, partial model test and whole model test are reported. The test of water jet cutting for the maintenance of shielding blanket modules is described. (K.I.)

  12. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  13. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1984-04-01

    KfK participates to the Fusion Technology Programme of the European Community. Most of the work in progress addresses the Next European Torus (NET) and the long term technology aspects as defined in the 82/86 programme. A minor part serves to preparation of future contributions and to design studies on fusion concepts in a wider perspective. The Fusion Technology Programme of Euratom covers mainly aspects of nuclear engineering. Plasma engineering, heating, refueling and vacuum technology are at present part of the Physics Programme. In view of NET, integration of the different areas of work will be mandatory. KfK is therefore prepared to address technical aspects beyond the actual scope of the physics experiments. The technology tasks are reported project wise under title and code of the Euratom programme. Most of the projects described here are shared with other European fusion laboratories as indicated in the table annexed to this report. (orig./GG)

  14. Contributions to a rational design of heterogeneous catalysts: from experimentation to numerical simulation; Contributions a une conception rationnelle des catalyseurs heterogenes: de l'experimentation a la simulation numerique

    Energy Technology Data Exchange (ETDEWEB)

    Toulhoat, H

    2002-03-01

    I present through this dissertation a synthesis of my contributions to the field of heterogeneous catalysis, along two decades of research undertaken as a scientist at Institut Francais du Petrole. I started my itinerary on the 'floor', with the task of developing industrial hydro-treating catalysts, then I had the nice opportunity to lead advanced research on various subjects. However, I have been devoting myself for the past ten years to the encounter between catalysis and theoretical chemistry. The presentation of my work follows therefore a guideline starting with preparation and ending at modelization of the catalytic solid, after having gone through its characterization and the assessment of its activity. Modelization is thus founded on a consistent set of experimental informations. This guideline is applied to the four main themes to which this work is confined: hydro-treating catalysts, hydro-de-metallation catalysts, thio-resistance of noble metals, and solid acids. In summary, I believe I have contributed significantly, on the one hand to strong conceptual and technical advances in the area of ab initio simulation of elementary phenomena in heterogeneous catalysis, with the elaboration of original knowledge on catalysis by sulfides, metals and acids, as well as the genesis of alumina carriers, and on the other hand to a new approach of periodic trends in catalysis: this can be considered as a re-visitation of the principle of Sabatier, leading to a predictive tool for catalytic activity of solids. In a near future it will be possible to say if practical results validate this conceptual tool, and justify or not the ambitious title I gave to my work. (author)

  15. Contributions to a rational design of heterogeneous catalysts: from experimentation to numerical simulation; Contributions a une conception rationnelle des catalyseurs heterogenes: de l'experimentation a la simulation numerique

    Energy Technology Data Exchange (ETDEWEB)

    Toulhoat, H.

    2002-03-01

    I present through this dissertation a synthesis of my contributions to the field of heterogeneous catalysis, along two decades of research undertaken as a scientist at Institut Francais du Petrole. I started my itinerary on the 'floor', with the task of developing industrial hydro-treating catalysts, then I had the nice opportunity to lead advanced research on various subjects. However, I have been devoting myself for the past ten years to the encounter between catalysis and theoretical chemistry. The presentation of my work follows therefore a guideline starting with preparation and ending at modelization of the catalytic solid, after having gone through its characterization and the assessment of its activity. Modelization is thus founded on a consistent set of experimental informations. This guideline is applied to the four main themes to which this work is confined: hydro-treating catalysts, hydro-de-metallation catalysts, thio-resistance of noble metals, and solid acids. In summary, I believe I have contributed significantly, on the one hand to strong conceptual and technical advances in the area of ab initio simulation of elementary phenomena in heterogeneous catalysis, with the elaboration of original knowledge on catalysis by sulfides, metals and acids, as well as the genesis of alumina carriers, and on the other hand to a new approach of periodic trends in catalysis: this can be considered as a re-visitation of the principle of Sabatier, leading to a predictive tool for catalytic activity of solids. In a near future it will be possible to say if practical results validate this conceptual tool, and justify or not the ambitious title I gave to my work. (author)

  16. Controlled Nuclear Fusion Research, September 1965: Review Of Experimental Results; Issledovaniya v oblasti upravlyaemogo yadernogo sinteza/sentyabr' 1965 g. obzor rezul'tatov ehksperimentov

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, Lyman Jr. [Princeton University, Princeton, New Jersey (United States)

    1966-04-15

    To my way of thinking the most significant milestone of the present meeting is the substantial body of evidence that has been presented on the hydromagnetic stabilization of open-ended systems. The success of minimum magnetic-field ('minimum-B') configurations in stabilizing a plasma marks one more area where theory and experiment in the field of plasma physics have been brought together with gratifying results. Let me go back a little into history and discuss the gradual growth of our information on hydromagnetic instabilities generally. Many of you will remember that hydromagnetic theory was applied to the self-pinched discharge in the early years of the controUed fusion programme. The predictions of this theory were very shortly fulfilled by the observations; the effects were so unmistakable that it was not difficult to compare the theory with the observations. On the streak pictures of the linear or toroidal discharges that were obtained in those early years one saw clearly the diffuse plasma column, which first contracted to a narrow filament and then started to distort and kink until finally it hit the wall. Under some conditions the plasma was observed to break up into a series of blobs like a string of sausages. Since the behaviour was exactly what the theory had predicted, it took no very great experimental wisdom to conclude that observations had confirmed theory.

  17. The experimental plan for cryogenic layered target implosions on the National Ignition Facility - The inertial confinement approach to fusion

    International Nuclear Information System (INIS)

    Edwards, M. J.; Lindl, J. D.; Spears, B. K.; Weber, S. V.; Atherton, L. J.; Bleuel, D. L.; Bradley, D. K.; Callahan, D. A.; Cerjan, C. J.; Clark, D; Collins, G. W.; Fair, J. E.; Fortner, R. J.; Glenzer, S. H.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatchett, S. P.; Izumi, N.; Jacoby, B.

    2011-01-01

    Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm 2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm 2 . A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 x more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼10 14-15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about the assembled fuel either by imaging the photons emitted by the hot central plasma, or by active probing of the dense shell by a separate high energy short pulse flash. The planned use of these targets and diagnostics to assess and optimize the assembly of the fuel and how this relates to the predicted performance of DT targets is described. It is found that a good predictor of DT target performance is the THD measurable parameter, Experimental Ignition Threshold Factor, ITFX ∼ Y x dsf 2.3 , where Y is the measured neutron yield between 13 and 15 MeV, and dsf is the down scattered neutron fraction defined as the ratio of neutrons between 10 and 12 MeV and those between 13 and 15 MeV.

  18. Feasibility study of the water Cherenkov detector as a D-T fusion power monitor in the system using neutron activation of flowing water. First experimental phase

    International Nuclear Information System (INIS)

    Verzilov, Yury M.; Ochiai, Kentaro; Nishitani, Takeo

    2003-09-01

    The technique of monitoring D-T neutrons using water flow is based on the reaction of the 16 O(n, p) 16 N. In order to significantly improve the D-T neutron monitoring system in the ITER reactor in comparison with the system that uses a γ-ray scintillation detector, a new approach was proposed. The basic idea of this approach is to utilize the Cherenkov light, produced by energetic β-particles from 16 N in water near the first wall of the fusion reactor, and then deliver the light by the optical fiber to the remote light detector. The proof of the principle experiment is divided into two phases. The main idea of the first experimental phase is to examine Cherenkov light measurements using a remotely located water and light detector. During the second phase the water radiator will be placed next to the neutron source, then the Cherenkov light will be transferred by an optical fiber to the remotely located light detector. For the purpose of the first experimental phase, a water Cherenkov detector was installed in the shielded measurement room. A closed water loop, with circulating water, was used to transport 16 N from the D-T source to the Cherenkov detector. The experiment was carried out at FNS/JAERI, with the accelerator set to a direct current mode, the source neutron yield around 2 x 10 11 n/s, and the water flowage approximately 2 m/s. The registered Cherenkov signal was identified as the light produced by β-particles from 16 N using the time decay and the energy spectra data. According to the present study, the water Cherenkov detector is very effective for measurements of the 16 N activity, due to high counting efficiency, absence of the scintillation detector and simplicity of the method. (author)

  19. Santa Rita Experimental Range: 100 years (1903 to 2003) of accomplishments and contributions; conference proceedings; 2003 October 30-November 1; Tucson, AZ

    Science.gov (United States)

    Mitchel P. McClaran; Peter F. Ffolliott; Carleton B. Edminster

    2003-01-01

    The purpose of this conference was to celebrate the 100 years of accomplishments and contributions of the Santa Rita Experimental Range, the longest continuously operating research area dedicated to the sustainable management of North American rangelands. The conference consisted of one-and-a-half days of invited synthesis papers and contributed poster presentations...

  20. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, Francisco Alberto

    2016-01-01

    The Breeder Units contains pebble beds of lithium orthosilicate (Li_4SiO_4) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li_4SiO_4 and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such low intrusion has been confirmed by in

  1. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, Francisco Alberto

    2016-10-14

    The Breeder Units contains pebble beds of lithium orthosilicate (Li{sub 4}SiO{sub 4}) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li{sub 4}SiO{sub 4} and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such

  2. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  3. Tunnelling effect enhanced by lattice screening as main cold fusion mechanism: An brief theoretical overview

    International Nuclear Information System (INIS)

    Frisone, F.

    2007-01-01

    In this paper are illustrated the main features of tunneling traveling between two deuterons within a lattice. Considering the screening effect due lattice electrons we compare the d-d fusion rate evaluated from different authors assuming different screening efficiency and different d-d potentials. Then, we propose a effective potential which describe very well the attractive contribute due to plasmon exchange between two deuterons and by means of it we will compute the d-d fusion rates for different energy values. Finally the good agreement between theoretical and experimental results proves the reality of cold fusion phenomena and the reliability of our model

  4. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  5. Fusion power and its prospects

    International Nuclear Information System (INIS)

    Kammash, T.

    1981-01-01

    Recent progress in research towards the development of fusion power is reviewed. In the magnetic approach, the impressive advances made in Tokamak research in the past few years have bolstered the confidence that experimental Tokamak devices currently under construction will demonstrate the break-even condition or scientific feasibility of fusion power. Exciting and innovative ideas in mirror magnetic confinement are expected to culminate in high-Q devices which will make open-ended confinement a serious contender for fusion reactors. In the inertial confinement approach, conflicting pellet temperature requirements have placed severe constraints on useful laser intensities and wavelengths for laser-driven fusion. Relativistic electron beam fusion must solve critical focusing and pellet coupling problems, and the newly proposed heavy ion beam fusion, though feasible and attractive in principle, requires very high energy particles for which the accelerator technology may not be available for some time to come

  6. Inertial fusion sciences and applications 99: state of the art 1999

    International Nuclear Information System (INIS)

    Labaune, Ch.; Hogan, W.J.; Tanaka, K.A.

    2000-01-01

    This book brings together the texts of the communications presented at the conference 'Inertial fusion sciences and applications' held in Paris in 1999. These proceedings are shared into five sessions: laser fusion physics, fusion with particle beams, fusion with implosions, inertial fusion energy, and experimental applications of inertial fusion. (J.S.)

  7. The big experimental manual of Free Energy. Cold Fusion - Tesla-Waves - Space-Quantum-Energy - a.o.; Das grosse Freie Energie Experimentier-Handbuch. Kalte Fusion - Tesla-Wellen - Raum-Quanten-Energie - u.v.m.

    Energy Technology Data Exchange (ETDEWEB)

    Lay, P.; Chmela, H.; Wiedergut, W.

    2004-07-01

    The main topics of the lectures are: Experiments on cold fusion; Information on space-quantum energy; phenomena of rotating magnets; advanced electrostatic motors; generation of scalar waves; complex rotating fields and levitation from an advanced view; free energy converters. (GL)

  8. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  9. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  10. Fusion Canada issue 7

    International Nuclear Information System (INIS)

    1989-05-01

    A short bulletin from the National Fusion Program. Included in this issue are CFFTP highlights on the Karlsruhe Isotope Separation System, a report on ITER tritium process systems, an experimental update on Tokamak de Varennes and Canada-U.S. bilateral technical collaboration topics. 2 figs

  11. Cold fusion - todays situation

    International Nuclear Information System (INIS)

    Malmqvist, K.

    1993-01-01

    A brief review of the history of cold fusion is given. It is noted that it is not possible to draw any definite conclusions about all the experimental and theoretical details, but that some of the results presented do not seem to be reached according to the normal scientific methods. 6 figs

  12. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  13. Bouillabaisse sushi fusion power

    CERN Multimedia

    2004-01-01

    "If avant-garde cuisine is any guide, Japanese-French fusion does not work all that well. And the interminable discussions over the International Thermonuclear Experimental Reactor (ITER) suggest that what is true of cooking is true of physics" (1 page)

  14. Fusion reactor materials

    International Nuclear Information System (INIS)

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  15. Fusion Canada issue 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-05-01

    A short bulletin from the National Fusion Program. Included in this issue are CFFTP highlights on the Karlsruhe Isotope Separation System, a report on ITER tritium process systems, an experimental update on Tokamak de Varennes and Canada-U.S. bilateral technical collaboration topics. 2 figs.

  16. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  17. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  18. Experimental study of gaseous lithium deuterides and lithium oxides. Implications for the use of lithium and Li2O as breeding materials in fusion reactor blankets

    International Nuclear Information System (INIS)

    Ihle, H.R.; Wu, C.H.; Kudo, H.

    1980-01-01

    In addition to LiH, which has been studied extensively by optical spectroscopy, the existence of a number of other stable lithium hydrides has been predicted theoretically. By analysis of the saturated vapour over dilute solutions of the hydrogen isotopes in lithium, using Knudsen effusion mass spectrometry, all lithium hydrides predicted to be stable were found. Solutions of deuterium in lithium were used predominantly because of practical advantages for mass spectrometric measurements. The heats of dissociation of LiD, Li 2 D, LiD 2 and Li 2 D 2 , and the binding energies of their singly charged positive ions were determined, and the constants of the gas/liquid equilibria were calculated. The existence of these lithium deuterides in the gas phase over solutions of deuterium in lithium leads to enrichment of deuterium in the gas above 1240 K. The enrichment factor, which increases exponentially with temperature and is independent of concentration for low concentrations of deuterium in the liquid, was determined by Rayleigh distillation experiments. It was found that it is thermodynamically possible to separate deuterium from lithium by distillation. One of the alternatives to the use of lithium in (D,T)-fusion reactors as tritium-breeding blanket material is to employ solid lithium oxide. This has a high melting point, a high lithium density and still favourable tritium-breeding properties. Because of its rather high volatility, an experimental study of the vaporization of Li 2 O was undertaken by mass spectrometry. It vaporizes to give lithium and oxygen, and LiO, Li 2 O, Li 3 O and Li 2 O 2 . The molecule Li 3 O was found as a new species. Heats of dissociation, binding energies of the various ions and the constants of the gas/solid equilibria were determined. The effect of using different materials for the Knudsen cells and the relative thermal stabilities of lithium-aluminium oxides were also studied. (author)

  19. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  20. Myoblast fusion in Drosophila

    International Nuclear Information System (INIS)

    Haralalka, Shruti; Abmayr, Susan M.

    2010-01-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  1. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Davies, N.A.

    1989-01-01

    The author discusses international progress in fusion research during the last three years. Much of the technical progress has been achieved through international collaboration in magnetic fusion research. This progress has stimulated political interest in a multinational effort, aimed at designing and possibly constructing the world's first experimental fusion reactor. This interest was reflected in recent summit-level discussions involving President Mitterand, General Secretary Gorbachev, and President Reagan. Most recently, the European Community (EC), Japan, the United States, and the U.S.S.R. have decided to begin serious preparation for taking the next step toward practical fusion energy. These parties have agreed to begin the design and supporting R and D for an International Thermonuclear Experimental Reactor (ITER) under the auspices of the International Atomic Energy Agency (IAEA). The initiation of this international program to prepare for a fusion test reactor is discussed

  2. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios

  3. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  4. [Fusion energy research

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer

  5. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  6. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints

    Science.gov (United States)

    Lambart, Sarah; Laporte, Didier; Schiano, Pierre

    2013-02-01

    Based on previous and new results on partial melting experiments of pyroxenites at high pressure, we attempt to identify the major element signature of pyroxenite partial melts and to evaluate to what extent this signature can be transmitted to the basalts erupted at oceanic islands and mid-ocean ridges. Although peridotite is the dominant source lithology in the Earth's upper mantle, the ubiquity of pyroxenites in mantle xenoliths and in ultramafic massifs, and the isotopic and trace elements variability of oceanic basalts suggest that these lithologies could significantly contribute to the generation of basaltic magmas. The question is how and to what degree the melting of pyroxenites can impact the major-element composition of oceanic basalts. The review of experimental phase equilibria of pyroxenites shows that the thermal divide, defined by the aluminous pyroxene plane, separates silica-excess pyroxenites (SE pyroxenites) on the right side and silica-deficient pyroxenites (SD pyroxenites) on the left side. It therefore controls the melting phase relations of pyroxenites at high pressure but, the pressure at which the thermal divide becomes effective, depends on the bulk composition; partial melt compositions of pyroxenites are strongly influenced by non-CMAS elements (especially FeO, TiO2, Na2O and K2O) and show a progressive transition from the liquids derived from the most silica-deficient compositions to those derived from the most silica-excess compositions. Another important aspect for the identification of source lithology is that, at identical pressure and temperature conditions, many pyroxenites produce melts that are quite similar to peridotite-derived melts, making the determination of the presence of pyroxenite in the source regions of oceanic basalts difficult; only pyroxenites able to produce melts with low SiO2 and high FeO contents can be identified on the basis of the major-element compositions of basalts. In the case of oceanic island basalts

  7. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence.

    Science.gov (United States)

    Zhang, Yunlin; van Dijk, Mark A; Liu, Mingliang; Zhu, Guangwei; Qin, Boqiang

    2009-10-01

    Eight field campaigns in the eutrophic, shallow, Lake Taihu in the summers from 2005 to 2007, and a phytoplankton degradation experiment of 33 days, were carried out to determine the contribution of phytoplankton degradation to CDOM. Significant and positive correlations were found between the CDOM absorption coefficient at 355 nm [a(CDOM)(355)], normalized fluorescence emission (QSU) at 450 nm from excitation at 355 nm [F(n)(355)], and the chlorophyll a (Chla) concentration for all eight field campaigns, which indicates that the decomposition and degradation of phytoplankton is an important source of CDOM. In the degradation experiment, the CDOM absorption coefficient increased as phytoplankton broke down during the first 12 days, showing the production of CDOM from phytoplankton. After 12 days, a(CDOM)(355) had increased from the initial value 0.41+/-0.03 m(-1) to 1.37+/-0.03 m(-1) (a 234% increase), and the Chla concentration decreased from the initial value of 349.1+/-11.2 microg/L to 30.4+/-13.2 microg/L (a 91.3% decrease). The mean daily production rate of CDOM from phytoplankton was 0.08 m(-1) for a(CDOM)(355). Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra, and four components were identified: a terrestrial-like humic component, two marine-like humic components, and a protein-like component. The rapid increase in marine-like humic fluorophores (C3 and C4) during the degradation experiment suggests that in situ production of CDOM plays an important role in the dynamics of CDOM. The field campaigns and experimental data in the present study show that phytoplankton can be one of the important CDOM producers in eutrophic shallow lakes.

  8. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  9. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  10. Atomic data for fusion

    International Nuclear Information System (INIS)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research

  11. Cold fusion in perspective

    International Nuclear Information System (INIS)

    Sanford, L.

    1989-01-01

    Since early April a great deal of excitement has been created over the Fleischmann/Pons cold fusion experiment, which if it performs as advertised, could turn out to be mankind's best hope of heading off the energy crisis scheduled for early in the next century. Dozens of groups around the world are now attempting to duplicate the experiment to see if Fleischmann and Pons' discovery is an experimental mistake, an unknown electrochemical effect or a new kind of fusion reaction. This article puts the experiment into the perspective of today and looks at how it might affect the energy scene tomorrow if it should turn out to be commercially exploitable. (author)

  12. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1985-05-01

    In the current Fusion Technology Programme of the European Community the KfK association is working at present on 16 R and D contracts. Most of the work is strongly oriented towards the Next European Torus. Direct support to NET is given by three KfK delegates being member of the NET study group. In addition to the R and D contracts the association is working on 11 NET study contracts. Though KfK contributes to all areas defined in fusion technology, the main emphasis is put on superconducting magnet and breeding blanket development. Other important fields are tritium technology, materials research, and remote handling. (orig./GG)

  13. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    Komori, Akio; Sakakibara, Satoru; Sagara, Akio; Horiuchi, Ritoku; Yamada, Hiroshi; Takeiri, Yasuhiko

    2011-01-01

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  14. Research into thermonuclear fusion

    International Nuclear Information System (INIS)

    Schumacher, U.

    1989-01-01

    The experimental and theoretical studies carried out in close international cooperation in the field of thermonuclear fusion by magnetic plasma confinement have achieved such progress towards higher plasma temperatures and densities, longer confinement times and, thus, increased fusion product, that emphasis now begins to be shifted from problems of physics to those of technology as a next major step is being prepared towards a large international project (ITER) to achieve thermonuclear burning. The generation and maintenance of a burning fusion plasma in an experimental physics phase will be followed by a phase of technical materials studies at high fluxes of fusion neutrons. These goals have been pursued since 1983 by an international study group at Garching working on the design of a Next European Torus (NET). Since May 1988, an international study group comprising ten experts each from the USSR, USA, Japan, and the European Community has begun to work on a design draft of ITER (International Thermonuclear Experimental Reactor) in Garching under the auspices of IAEA. (orig.) [de

  15. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  16. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  17. Fusion research at ORNL

    International Nuclear Information System (INIS)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  18. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  19. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  20. Canadian fusion program

    International Nuclear Information System (INIS)

    Brown, T.S.

    1982-06-01

    The National Research Council of Canada is establishing a coordinated national program of fusion research and development that is planned to grow to a total annual operating level of about $20 million in 1985. The long-term objective of the program is to put Canadian industry in a position to manufacture sub-systems and components of fusion power reactors. In the near term the program is designed to establish a minimum base of scientific and technical expertise sufficient to make recognized contributions and thereby gain access to the international effort. The Canadian program must be narrowly focussed on a few specializations where Canada has special indigenous skills or technologies. The programs being funded are the Tokamak de Varennes, the Fusion Fuels Technology Project centered on tritium management, and high-power gas laser technology and associated diagnostic instrumentation

  1. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  2. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  3. Fusion Canada issue 29

    International Nuclear Information System (INIS)

    1995-10-01

    A short bulletin from the National Fusion Program highlighting in this issue Canada-Europe Accords: 5 year R and D collaboration for the International Thermonuclear Experimental Reactor (ITER) AECL is designated to arrange and implement the Memorandum of Understanding (MOU) and the ITER Engineering Design Activities (EDA) while EUROTAM is responsible for operating Europe's Fusion R and D programs plus MOU and EDA. The MOU includes tokamaks, plasma physics, fusion technology, fusion fuels and other approaches to fusion energy (as alternatives to tokamaks). STOR-M Tokamak was restarted at the University of Saskatchewan following upgrades to the plasma chamber to accommodate the Compact Toroid (CT) injector. The CT injector has a flexible attachment thus allowing for injection angle adjustments. Real-time video images of a single plasma discharge on TdeV showing that as the plasma density increases, in a linear ramp divertor, the plasma contact with the horizontal plate decreases while contact increases with the oblique plate. Damage-resistant diffractive optical elements (DOE) have been developed for Inertial Confinement Fusion (ICF) research by Gentac Inc. and the National Optics Institute, laser beam homogeniser and laser harmonic separator DOE can also be made using the same technology. Studies using TdeV indicate that a divertor will be able to pump helium from the tokamak with a detached-plasma divertor but helium extraction performance must first be improved, presently the deuterium:helium retention radio-indicates that in order to pump enough helium through a fusion reactor, too much deuterium-tritium fuel would be pumped out. 2 fig

  4. Fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  5. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  6. Experimental study of fast electron transport and of the propagation of shock waves generated by laser in the framework of inertial fusion

    International Nuclear Information System (INIS)

    Sakaki, T.

    2016-01-01

    This document presents 3 experiments carried out within the framework of inertial fusion. The first experiment was devoted to the study of fast electron beam transport in a compressed target. The implosion of the target with a cylindrical geometry was carried out with the GEKKO XII laser facility (ILE Osaka, Japan). The fast electron beam was generated by the LFEX laser (∼10"1"9 W/cm"2) and its propagation through the compressed cylinder was observed with several X-ray diagnostics. This experiment showed the guiding effect of the electron beam resulting from self-generated magnetic fields. Furthermore, the results of this experiment were in good agreement with numerical simulations. Two other experiments were performed to study the propagation of strong shock waves created by lasers in a plasma. They were carried out with different laser systems. In the first experiment with the Gekko XII laser, we observed the creation and the propagation of two successive shock waves in an ablation plasma in CH and Be. The objective of characterizing the amplification of a transmitted shock by the collision of two counter-propagating shocks has been partially realized. The comparison of the experimental results with the hydrodynamic simulations enabled us to confirm an amplification of the shock by a factor 2 in pressure in the condition of this experiment. The shot with a Be target allowed the development and validation of the diagnostic method of X-ray radiography for shock wave propagation. The second experiment was performed with PHELIX GSI laser (Darmstadt, Germany). The purpose of this experiment was to study the generation of strong shocks. They were applied to study the equation of state of carbon in the WDM state. The condition of pressure and density for the carbon were obtained by deducing the pressure and the velocity of the shock wave chronometric diagnostics employed in this experiment. In this experiment, diamond was at the metallic liquid phase with a pressure

  7. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  8. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  9. Material for fusion reactor

    International Nuclear Information System (INIS)

    Abhishek, Anuj; Ranjan, Prem

    2011-01-01

    To make nuclear fusion power a reality, the scientists are working restlessly to find the materials which can confine the power generated by the fusion of two atomic nuclei. A little success in this field has been achieved, though there are still miles to go. Fusion reaction is a special kind of reaction which must occur at very high density and temperature to develop extremely large amount of energy, which is very hard to control and confine within using the present techniques. As a whole it requires the physical condition that rarely exists on the earth to carry out in an efficient manner. As per the growing demand and present scenario of the world energy, scientists are working round the clock to make effective fusion reactions to real. In this paper the work presently going on is considered in this regard. The progress of the Joint European Torus 2010, ITER 2005, HiPER and minor works have been studied to make the paper more object oriented. A detailed study of the technological and material requirement has been discussed in the paper and a possible suggestion is provided to make a contribution in the field of building first ever nuclear fusion reactor

  10. Contribution to the experimental study of the polarized liquid helium-3; Contributions a l'etude experimentale de l'helium-3 liquide polarise

    Energy Technology Data Exchange (ETDEWEB)

    Villard, B

    1999-07-15

    Spin-polarized liquid helium-3 is prepared by laser optical pumping in low magnetic field and at room temperature, prior to fast liquefaction of the polarized sample. The use of a new helium-3 cryostat enabled us to obtain liquid helium-3 with polarization rates up to 25 % at well-stabilized temperatures (around 0.5 K). We could thereby study the effect of nuclear polarization on liquid-vapour equilibrium, and particularly on the saturated vapour pressure. Very sensitive capacitive gauges were developed. We estimated (to first order in M{sup 2}) the expected effects when the polarization M is suddenly destroyed. These effects were experimentally observed in helium-3/helium-4 mixtures, in pure helium-3, only a transient increase in pressure has been recorded. We then describe in a third part a preliminary experiment which aimed at determining the longitudinal relaxation time T1 in mixtures. Relaxation on the walls is efficiently reduced by a cesium coating and T1s of order 20 minutes were observed. A careful determination of the helium-3 concentration in the liquid phase was made. Finally we studied the effects of dipolar field on transverse polarisation decay in our strongly polarized samples. We observed the free precession of polarization after a NMR pulse, and analysed in detail its decay time constant as a function of different parameters. This time constant drastically varied with the tipping angle, an effect which could be linked to NMR dynamical instabilities. (author)

  11. Comparison of activation cross section measurements and experimental techniques for fusion reactor technology. Summary report of the IAEA specialists' meeting held in St. Petersburg, Russia, 7 to 9 September 1994

    International Nuclear Information System (INIS)

    Pashchenko, A.B.

    1995-02-01

    The report contains the Summary of the IAEA Specialists' Meeting on ''Comparison of Activation Cross Section Measurements and Experimental Techniques for Fusion Reactor Technology''. The meeting was organized by the IAEA Nuclear Data Section (NDS) with co-operation and assistance of local organizers from the V.G. Khlopin Radium Institute, KRI, and held in St. Petersburg, Russia, from 7 to 9 September 1994. The aim of the meeting was to discuss and evaluate the preliminary results of the researches carried out in the framework of the international programme on Comparison of Activation Cross Section Measurements and Experimental Techniques for Fusion Reactor Technology coordinated by the IAEA Nuclear Data Section and to identify further measurements and actions of participating laboratories. The detailed conclusions and recommendations of the meeting are presented in Attachment 1 of the summary report. It was confirmed that for further comparison of experimental techniques the experimental groups at JAERI (Tokai, Japan), KRI (St. Petersburg, Russia), IPPE (Obninsk, Russia) and IEP (Debrecen, Hungary) will join in a collaborative program on comparing their measurement techniques and do measurements for reactions where discrepancies between their previous measurements exist. In cases where the JAERI results are the only existing data or deviate strongly from previous measurements, collaboration between KRI, IEP, IPPE and other institutions can consider measurements of these cross sections in order to clarify the situation. (author)

  12. Cold fusion catalyzed by muons and electrons

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as ''Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed

  13. Fusion barrier distributions - What have we learned?

    International Nuclear Information System (INIS)

    Hinde, D. J.; Dasgupta, M.

    1998-01-01

    The study of nuclear fusion received a strong impetus from the realisation that an experimental fusion barrier distribution could be determined from precisely measured fusion cross-sections. Experimental data for different reactions have shown in the fusion barrier distributions clear signatures of a range of nuclear excitations, for example the effects of static quadrupole and hexadecapole deformations, single- and double-phonon states, transfer of nucleons, and high-lying excited states. The improved understanding of fusion barrier distributions allows more reliable prediction of fusion angular momentum distributions, which aids interpretation of fission probabilities and fission anisotropies, and understanding of the population of super-deformed bands for nuclear structure studies. Studies of the relationship between the fusion barrier distribution and the extra-push energy should improve our understanding of the mechanism of the extra-push effect, and may help to predict new ways of forming very heavy or super-heavy nuclei

  14. Is there hope for fusion?

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1990-01-01

    From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs

  15. Experimental investigation of the confinement of d(He-3,p)alpha and d(d,p)t fusion reaction products in JET

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Hult, M.; González de Orduña, R.; Arnold, D.; Dombrowski, H.; Laubenstein, M.; Wieslander, E.; Vidmar, T.; Vermaercke, P.; Von Thun, C.P.; Reich, M.; Jachmich, S.; Murari, A.; Popovichev, S.; Mlynář, Jan; Salmi, A.; Asunta, O.; Garcia-Munoz, M.; Pinches, S.; Koslowski, R.; Nielsen, S.K.

    2012-01-01

    Roč. 52, č. 8 (2012), s. 083004 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * activation * diagnostics * fusion * confinement Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.734, year: 2012 http://iopscience.iop.org/0029-5515/52/8/083004?fromSearchPage=true

  16. Building the US National Fusion Grid: results from the National Fusion Collaboratory Project

    International Nuclear Information System (INIS)

    Schissel, D.P.; Burruss, J.R.; Finkelstein, A.; Flanagan, S.M.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Papka, M.; Peng, Q.; Randerson, L.; Sanderson, A.; Stillerman, J.; Stevens, R.; Thompson, M.R.; Wallace, G.

    2004-01-01

    The US National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion research. The project is creating a robust, user-friendly collaborative software environment and making it available to more than 1000 fusion scientists in 40 institutions who perform magnetic fusion research in the United States. In particular, the project is developing and deploying a national Fusion Energy Sciences Grid (FusionGrid) that is a system for secure sharing of computation, visualization, and data resources over the Internet. The FusionGrid goal is to allow scientists at remote sites to fully participate in experimental and computational activities as if they were working at a common site thereby creating a virtual organization of the US fusion community. The project is funded by the USDOE Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and unites fusion and computer science researchers to directly address these challenges

  17. World progress toward fusion energy

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1989-09-01

    This paper will describe the progress in fusion science and technology from a world perspective. The paper will cover the current technical status, including the understanding of fusion's economic, environmental, and safety characteristics. Fusion experiments are approaching the energy breakeven condition. An energy gain (Q) of 30 percent has been achieved in magnetic confinement experiments. In addition, temperatures required for an ignited plasma (Ti = 32 KeV) and energy confinements about 75 percent of that required for ignition have been achieved in separate experiments. Two major facilities have started the experimental campaign to extend these results and achieve or exceed Q = 1 plasma conditions by 1990. Inertial confinement fusion experiments are also approaching thermonuclear conditions and have achieved a compression factor 100-200 times liquid D-T. Because of this progress, the emphasis in fusion research is turning toward questions of engineering feasibility. Leaders of the major fusion R and D programs in the European Community (EC), Japan, the United States, and the U.S.S.R. have agreed on the major steps that are needed to reach the point at which a practical fusion system can be designed. The United States is preparing for an experiment to address the last unexplored scientific issue, the physics of an ignited plasma, during the late 1990's. The EC, Japan, U.S.S.R., and the United States have joined together under the auspices of the International Atomic Energy Agency (IAEA) to jointly design and prepare the validating R and D for an international facility, the International Thermonuclear Experimental Reactor (ITER), to address all the remaining scientific issues and to explore the engineering technology of fusion around the turn of the century. In addition, a network of international agreements have been concluded between these major parties and a number of smaller fusion programs, to cooperate on resolving a complete spectrum of fusion science and

  18. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  19. Experimental plasma research project summaries

    International Nuclear Information System (INIS)

    1992-06-01

    This is the latest in a series of Project Summary books going back to 1976 and is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma and innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into these three categories of plasma physics, diagnostic development and atomic physics

  20. New trends in fusion research

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to sustained burn using additional heating and a control of plasma-wall interaction and energy and particle exhaust. These lectures address recent advances in plasma science and technology that are relevant to the development of fusion energy. Mention will be made of the inertial confinement line of research, but...

  1. Fusion Power measurement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  2. Quasi-elastic scattering an alternative tool for mapping the fusion barriers for heavy-ion induced fusion reaction

    International Nuclear Information System (INIS)

    Behera, B.R.

    2016-01-01

    Heavy element synthesis through heavy-ion induced fusion reaction is an active field in contemporary nuclear physics. Exact knowledge of fusion barrier is one of the essential parameters for planning any experiments for heavy element production. Theoretically there are many models available to predict the exact barrier. Though these models are successful for predicting the fusion of medium mass nuclei, it somehow fails for predicting the exact location of barrier for fusion of heavy nuclei. Experimental determination of barrier for such reactions is required for future experiments for the synthesis of heavy elements. Traditionally fusion barrier is determined taking a double derivative of fusion excitation function. However, such method is difficult in case of fusion of heavy nuclei due to its very low fusion/capture cross section and its experimental complications. Alternatively fusion barrier can be determined by measuring the quasi-elastic cross section at backward angles. This method can be applied for determining the fusion barrier for the fusion of heavy nuclei. Experimental determination of fusion barrier by different methods and comparison of the fusion excitation function and quasi-elastic scattering methods for the determination of fusion barrier are reviewed. At IUAC, New Delhi recently a program has been started for the measurement of fusion barrier through quasi-elastic scattering methods. The experimental facility and the first results of the experiments carried out with this facility are presented. (author)

  3. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1984-10-01

    The KfK-Association has continued work on 17 R and D contracts of the Fusion Technology Programme. An effort of 94 manyears per year is at present contributed by 10 KfK departments, covering all aereas defined in the Fusion Technology Programme. The dominant part of the work is directed towards the need of the NET design or supporting experiments. Some additional effort addresses long term technological issues and system studies relevant to DEMO or confinement schemes alternative to tokamaks. Direct contribution to the NET team has increased by augmentation of NET study contracts and delegation of personnel, three KfK delegates being at present members of the NET team. In reverse, specifications and design guidelines worked out by NET have started to have an impact on the current R and D-work in the laboratory. (orig./GG)

  4. Fusion events

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The fusion reactions between low energy heavy ions have a very high cross section. First measurements at energies around 30-40 MeV/nucleon indicated no residue of either complete or incomplete fusion, thus demonstrating the disappearance of this process. This is explained as being due to the high amount o energies transferred to the nucleus, what leads to its total dislocation in light fragments and particles. Exclusive analyses have permitted to mark clearly the presence of fusion processes in heavy systems at energies above 30-40 MeV/nucleon. Among the complete events of the Kr + Au reaction at 60 MeV/nucleon the majority correspond to binary collisions. Nevertheless, for the most considerable energy losses, a class of events do occur for which the detected fragments appears to be emitted from a unique source. These events correspond to an incomplete projectile-target fusion followed by a multifragmentation. Such events were singled out also in the reaction Xe + Sn at 50 MeV/nucleon. For the events in which the energy dissipation was maximal it was possible to isolate an isotropic group of events showing all the characteristics of fusion nuclei. The fusion is said to be incomplete as pre-equilibrium Z = 1 and Z = 2 particles are emitted. The cross section is of the order of 25 mb. Similar conclusions were drown for the systems 36 Ar + 27 Al and 64 Zn + nat Ti. A cross section value of ∼ 20 mb was determined at 55 MeV/nucleon in the first case, while the measurement of evaporation light residues in the last system gave an upper limit of 20-30 mb for the cross section at 50 MeV/nucleon

  5. Physics of mirror fusion systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  6. Animal experimentation contribution to the study of electric and magnetic fields (50/60 Hz) effects; Contribution de l`experimentation animale a l`etude des effets des champs electriques et magnetiques (50/60 Hz)

    Energy Technology Data Exchange (ETDEWEB)

    Lambrozo, J. [Electricite de France (EDF), 75 - Paris (France); Brugere, H. [Ecole Nationale Veterinaire d`Alfort, 94 - Maison-Alfort (France)

    1996-10-01

    Since 20 years, studies have been made on the biological effects of 50 / 60 Hz electric and magnetic fields, due to environmental exposure. Two topic have been studied, thanks to rat experimentation. For the first topic: mutagen and reproduction impacts, no obvious effect appeared. For the second one, concerning carcinogen effects for the different organs, a slight tumor promoting effect appeared with magnetic fields for cerebral cortex, and a slightly more significant one for mammary glands. (D.L.)

  7. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence

    NARCIS (Netherlands)

    Zhang, Y.; Van Dijk, M.A.; Liu, M.; Zhu, G.; Qin, B.

    2009-01-01

    Eight field campaigns in the eutrophic, shallow, Lake Taihu in the summers from 2005 to 2007, and a phytoplankton degradation experiment of 33 days, were carried out to determine the contribution of phytoplankton degradation to CDOM. Significant and positive correlations were found between the CDOM

  8. Group Contribution Method for Evaluation of Volumetric Properties of Ionic Liquids Using Experimental Data Recommended by Mathematical Gnostics.

    Czech Academy of Sciences Publication Activity Database

    Zhao, N.; Menegollo, H.B.; Degirmenci, V.; Wagner, Zdeněk; Bendová, Magdalena; Jacquemin, J.

    Roč. 56, č. 23 ( 2017 ), s. 6827-6840 ISSN 0888-5885 Grant - others:CEA(GB) 4600261677/P6E31; EPSRC(GB) EP/M021785/1 Institutional support: RVO:67985858 Keywords : ionic liquids * matematical gnostics * group-contribution method Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.843, year: 2016

  9. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  10. Short fusion

    CERN Multimedia

    2002-01-01

    French and UK researchers are perfecting a particle accelerator technique that could aid the quest for fusion energy or make X-rays that are safer and produce higher-resolution images. Led by Dr Victor Malka from the Ecole Nationale Superieure des Techniques Avancees in Paris, the team has developed a better way of accelerating electrons over short distances (1 page).

  11. Magnetic fusion

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  12. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  13. Effect of projectile on incomplete fusion reactions at low energies

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2017-01-01

    Full Text Available Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n excess projectile 13C (as compared to 12C results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B and forward (F α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  14. Effect of projectile on incomplete fusion reactions at low energies

    Science.gov (United States)

    Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.

    2017-11-01

    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  15. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1985-10-01

    KfK is involved in the European Fusion Programme predominantly in the NET and Fusion Technology part. The following fields of activity are covered: Studies for NET, alternative confinement concepts, and needs and issues of integral testing. Research on structural materials. Development of superconducting magnets. Gyrotron development (part of the Physics Programme). Nuclear technology (breeding materials, blanket design, tritium technology, safety and environmental aspects of fusion, remote maintenance). Reported here are status and results of work under contracts with the CEC within the NET and Technology Programme. The aim of the major part of this R and D work is the support of NET, some areas (e.g. materials, safety and environmental impact, blanket design) have a wider scope and address problems of a demonstration reactor. In the current working period, several new proposals have been elaborated to be implemented into the 85/89 Euratom Fusion Programme. New KfK contributions relate to materials research (dual beam and fast reactor irradiations, ferritic steels), to blanket engineering (MHD-effects) and to safety studies (e.g. magnet safety). (orig./GG)

  16. Recommendations on the Nature and Level of U.S. Participation in the International Thermonuclear Experimental Reactor Extension of the Experimental Reactor Extension of the Engineering Design Activities. Panel Report To Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    1998-01-01

    The DOE Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to 'address the topic of U. S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction.' (Attachment 1: DOE Charge, September 1996). Given that there is expected to be a transition period of three to five years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to 'include the U.S. role in an interim period between the EDA and construction.' (Attachment 2: DOE Expanded Charge, May 1997). This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirety. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures.

  17. An experimental test of the contributions and condition dependence of microstructure and carotenoids in yellow plumage coloration

    OpenAIRE

    Shawkey, Matthew D; Hill, Geoffrey E; McGraw, Kevin J; Hood, Wendy R; Huggins, Kristal

    2006-01-01

    A combination of structural and pigmentary components is responsible for many of the colour displays of animals. Despite the ubiquity of this type of coloration, neither the relative contribution of structures and pigments to variation in such colour displays nor the relative effects of extrinsic factors on the structural and pigment-based components of such colour has been determined. Understanding the sources of colour variation is important because structures and pigments may convey differ...

  18. Discrimination of various contributions to the absorbed dose in BNCT: Fricke-gel imaging and intercomparison with other experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. E-mail: grazia.gambarini@mi.infn.it; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosi, G.; Tinti, R

    2000-11-15

    A method is described for the 3D measurements of absorbed dose in a ferrous sulphate gel phantom, exposed in the thermal column of a nuclear reactor. The method, studied for Boron Neutron Capture Therapy (BNCT) purposes, allows absorbed dose imaging and profiling, with the separation of different contributions coming from different secondary radiations, generated from thermal neutrons. In fact, the biological effectiveness of the different radiations is different. Tests with conventional dosimeters were performed too.

  19. Pavlov's methodological behaviorism as a pre-Socratic contribution of the melding of the differential and experimental psychology.

    Science.gov (United States)

    Furedy, John J

    2003-11-01

    The differential/experimental distinction that Cronbach specified is important because any adequate account of psychological phenomena requires the recognition of the validity of both approaches, and a meaningful melding of the two. This paper suggests that Pavlov's work in psychology, based on earlier traditions of inquiry that can be traced back to the pre-Socratics, provides a potential way of achieving this melding, although such features as systematic rather than anecdotal methods of observation need to be added. Pavlov's methodological behaviorist approach is contrasted with metaphysical behaviorism (as exemplified explicitly in Watson and Skinner, and implicitly in the computer-metaphorical, information-processing explanations employed by current "cognitive" psychology). A common feature of the metaphysical approach is that individual-differences variables like sex are essentially ignored, or relegated to ideological categories such as the treatment of sex as merely a "social construction." Examples of research both before and after the "cognitive revolution" are presented where experimental and differential methods are melded, and individual differences are treated as phenomena worthy of investigation rather than as nuisance factors that merely add to experimental error.

  20. Effect of plants in constructed wetlands for organic carbon and nutrient removal: a review of experimental factors contributing to higher impact and suggestions for future guidelines.

    Science.gov (United States)

    Jesus, João M; Danko, Anthony S; Fiúza, António; Borges, Maria-Teresa

    2018-02-01

    Constructed wetland is a proven technology for water pollution removal, but process mechanisms and their respective contribution are not fully understood. The present review details the effect of plants on removal efficiency of constructed wetlands by focusing on literature that includes experiments with unplanted controls for organic carbon and nutrient (N and P) removal. The contribution of plant direct uptake is also assessed. Although it was found that several studies, mostly at laboratory or pilot scales, showed no statistical differences between planted and unplanted controls, some factors were found that help maximize the effect of plants. This study intends to contribute to a better understanding of the significance of the effect of plants in a constructed wetland, as well as to suggest a set of experimental guidelines in this field.

  1. Collaborations in fusion research

    International Nuclear Information System (INIS)

    Barnes, D.; Davis, S.; Roney, P.

    1995-01-01

    This paper reviews current experimental collaborative efforts in the fusion community and extrapolates to operational scenarios for the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Current requirements, available technologies and tools, and problems, issues and concerns are discussed. This paper specifically focuses on the issues that apply to experimental operational collaborations. Special requirements for other types of collaborations, such as theoretical or design and construction efforts, will not be addressed. Our current collaborative efforts have been highly successful, even though the tools in use will be viewed as primitive by tomorrow's standards. An overview of the tools and technologies in today's collaborations can be found in the first section of this paper. The next generation of fusion devices will not be primarily institutionally based, but will be national (TPX) and international (ITER) in funding, management, operation and in ownership of scientific results. The TPX will present the initial challenge of real-time remotely distributed experimental data analysis for a steady state device. The ITER will present new challenges with the possibility of several remote control rooms all participating in the real-time operation of the experimental device. A view to the future of remote collaborations is provided in the second section of this paper

  2. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential.

    Science.gov (United States)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun

    2014-10-15

    Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The European fusion research and development programme and the ITER Project

    International Nuclear Information System (INIS)

    Green, B.J.

    2004-01-01

    The EURATOM fusion R and D programme is a well integrated and co-ordinated programme a good example of a European Research Area. Its goal is 'the joint creation of prototype reactors for power stations to meet the needs of society: operational safety, environmental compatibility, economic viability'. The programme is focussed on the magnetic confinement approach to fusion energy and supports 21 associated laboratories and a range of experimental and fusion technology facilities. The paper will briefly describe this programme and how it is organised and implemented. Its success and that of other national programmes has defined the international ITER Project, which is the next logical step in fusion R and D. The paper will describe ITER, its aims, its design, and the supporting manufacture of prototype components. The European contribution to ITER, as well as the exploitation of the Joint European Torus (JET) and long-term fusion reactor technology R and D are carried out under the European Fusion Development Agreement (EFDA). Finally, the potential advantages of fusion as an energy source will be presented. (author)

  4. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  5. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  6. Fusion research at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.

    1990-01-01

    The historical roots of fusion research at Imperial College can be traced back to 1946 with the pioneering work of G.P. Thomson. At present research in fusion is carried out in several research groups with interdisciplinary work managed by the Centre for Fusion Studies. The principal research activity will be centred on a newly funded 5 TW pulsed power facility allowing an experimental and theoretical study of radiation collapse and fusion conditions in the dense Z-pinch. Laser-plasma studies relevant to inertial confinement are carried out using the Rutherford-Appleton Laboratory's Central Laser Facility and the new ultra-short pulse (300 fs) laser facility at Imperial College. There is a significant collaboration on the Joint European Torus and the Next European Torus together with a continuation of a long association with Culham Laboratory. Several European collaborations funded by the Comission of the European Communities and other world-wide collaborations form an integral part of this university programme, which is by far the largest in the UK. After a sketch of the historical development of fusion activities, the current and future programme of fusion research at Imperial College is presented in each of the three broad areas: the Z-pinch, laser-driven inertial confinement fusion and tokamak and other conventional magnetic confinement schemes. A summary of the funding and collaborations is outlined. (author)

  7. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  8. Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Optimization of the surface charges is a promising strategy for increasing thermostability of proteins. Electrostatic contribution of ionizable groups to the protein stability can be estimated from the differences between the pKa values in the folded and unfolded states of a protein. Using this pKa-shift approach, we experimentally measured the electrostatic contribution of all aspartate and glutamate residues to the stability of a thermophilic ribosomal protein L30e from Thermococcus celer. The pKa values in the unfolded state were found to be similar to model compound pKas. The pKa values in both the folded and unfolded states obtained at 298 and 333 K were similar, suggesting that electrostatic contribution of ionizable groups to the protein stability were insensitive to temperature changes. The experimental pKa values for the L30e protein in the folded state were used as a benchmark to test the robustness of pKa prediction by various computational methods such as H++, MCCE, MEAD, pKD, PropKa, and UHBD. Although the predicted pKa values were affected by crystal contacts that may alter the side-chain conformation of surface charged residues, most computational methods performed well, with correlation coefficients between experimental and calculated pKa values ranging from 0.49 to 0.91 (p<0.01. The changes in protein stability derived from the experimental pKa-shift approach correlate well (r = 0.81 with those obtained from stability measurements of charge-to-alanine substituted variants of the L30e protein. Our results demonstrate that the knowledge of the pKa values in the folded state provides sufficient rationale for the redesign of protein surface charges leading to improved protein stability.

  9. Splenogonadal Fusion

    Directory of Open Access Journals (Sweden)

    Sung-Lang Chen

    2008-11-01

    Full Text Available Splenogonadal fusion (SGF is a rare congenital non-malignant anomaly characterized by fusion of splenic tissue to the gonad, and can be continuous or discontinuous. Very few cases have been diagnosed preoperatively, and many patients who present with testicular swelling undergo unnecessary orchiectomy under the suspicion of testicular neoplasm. A 16-year-old boy presented with a left scrotal mass and underwent total excision of a 1.6-cm tumor without damaging the testis, epididymis or its accompanying vessels. Pathologic examination revealed SFG (discontinuous type. If clinically suspected before surgery, the diagnosis may be confirmed by Tc-99m sulfur colloid imaging, which shows uptake in both the spleen and accessory splenic tissue within the scrotum. Frozen section should be considered if there remains any doubt regarding the diagnosis during operation.

  10. Fusion reactor systems studies

    International Nuclear Information System (INIS)

    1993-01-01

    Fusion Technology Institute personnel actively participated in the ARIES/PULSAR project during the present contract period. Numerous presentations were made at PULSAR project meetings, major contributions were written for the ARIES-II/IV Final Report presentations and papers were given at technical conferences contributions were written for the ARIES Lessons Learned report and a very large number of electronic-mail and regular-mail communications were sent. The remaining sections of this progress report win summarize the work accomplished and in progress for the PULSAR project during the contract period. The main areas of effort are: PULSAR Research; ARIES-II/IV Report Contributions; ARIES Lessons Learned Report Contributions; and Stellarator Study

  11. Development of fusion safety standards

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Petti, D.A.; Dinneen, G.A.; Herring, J.S.; DeLooper, J.; Levine, J.D.; Gouge, M.J.

    1996-01-01

    Two new U.S. Department of Energy (DOE) standards have been prepared to assist in the design and regulation of magnetic fusion facilities. They are DOE-STD-6002-96, 'Safety of Magnetic Fusion Facilities - Requirements,' and DOE-STD-6003-96 'Safety of Magnetic Fusion Facilities - Guidance.' The first standard sets forth requirements, mostly based on the Code of Federal Regulations, deemed necessary for the safe design and operation of fusion facilities and a set of safety principles to use in the design. The second standard provides guidance on how to meet the requirements identified in DOE-STD-6002-96. It is written specifically for a facility such as the International Thermonuclear Experimental Reactor (ITER) in the DOE regulatory environment. As technical standards, they are applicable only to the extent that compliance with these standards is included in the contracts of the developers. 7 refs., 1 fig

  12. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.

    2012-10-01

    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  13. Translational Science: How experimental research has contributed to the understanding of spontaneous Physical Activity and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Izabelle D Benfato

    2017-05-01

    Full Text Available Abstract Spontaneous physical activity (SPA consists of all daily living activities other than volitional exercise (e.g. sports and fitness-related activities. SPA is an important component of energy expenditure and may protect from overweight and obesity. Little is known about the biological regulation of SPA, but animal researchhas contributedsignificantly to expand our knowledge in this field. Studies in rodents have shown that SPA is influenced by nutrients and volitional exercise. High-fat diet seems to decrease SPA, which contributes to weigh gain. Volitional exercisemayalso reduce SPA, helping to explain the commonly reported low efficiency of exercise to cause weight loss, and highlighting the need to finda volume/intensity of exercise to maximize total daily energy expenditure. Animal studieshave also allowed for the identification of some brain areas and chemical mediatorsinvolved in SPA regulation. These discoveries could enable the development of new therapeutics aiming to enhance SPA.

  14. An experimental study of mixed convection; Contribution a l'etude experimentale de la convection mixte

    Energy Technology Data Exchange (ETDEWEB)

    Saez, M.

    1998-10-20

    The aim of our study is to establish a reliable database for improving thermal hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re = 10{sup 3} to 6.10{sup 4} and Ri = 10{sup -4} to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed database of turbulent mixed flow of free and forced convection. Part 2 presents the installation and the calibration system intended for probes calibration. Part 3 describes the measurement technique (constant temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part 4 relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part 5 presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the fluid structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part 5 gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author)

  15. Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection.

    Science.gov (United States)

    Nielubowicz, Greta R; Smith, Sara N; Mobley, Harry L T

    2010-06-01

    Proteus mirabilis, a Gram-negative bacterium, represents a common cause of complicated urinary tract infections in catheterized patients or those with functional or anatomical abnormalities of the urinary tract. ZnuB, the membrane component of the high-affinity zinc (Zn(2+)) transport system ZnuACB, was previously shown to be recognized by sera from infected mice. Since this system has been shown to contribute to virulence in other pathogens, its role in Proteus mirabilis was investigated by constructing a strain with an insertionally interrupted copy of znuC. The znuC::Kan mutant was more sensitive to zinc limitation than the wild type, was outcompeted by the wild type in minimal medium, displayed reduced swimming and swarming motility, and produced less flaA transcript and flagellin protein. The production of flagellin and swarming motility were restored by complementation with znuCB in trans. Swarming motility was also restored by the addition of Zn(2+) to the agar prior to inoculation; the addition of Fe(2+) to the agar also partially restored the swarming motility of the znuC::Kan strain, but the addition of Co(2+), Cu(2+), or Ni(2+) did not. ZnuC contributes to but is not required for virulence in the urinary tract; the znuC::Kan strain was outcompeted by the wild type during a cochallenge experiment but was able to colonize mice to levels similar to the wild-type level during independent challenge. Since we demonstrated a role for ZnuC in zinc transport, we hypothesize that there is limited zinc present in the urinary tract and P. mirabilis must scavenge this ion to colonize and persist in the host.

  16. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  17. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  18. EURATOM strategy towards fusion energy

    International Nuclear Information System (INIS)

    Varandas, C.

    2007-01-01

    Research and development (Research and Development) activities in controlled thermonuclear fusion have been carried out since the 60's of the last century aiming at providing a new clean, powerful, practically inexhaustive, safe, environmentally friend and economically attractive energy source for the sustainable development of our society.The EURATOM Fusion Programme (EFP) has the leadership of the magnetic confinement Research and Development activities due to the excellent results obtained on JET and other specialized devices, such as ASDEX-Upgrade, TORE SUPRA, FTU, TCV, TEXTOR, CASTOR, ISTTOK, MAST, TJ-II, W7-X, RFX and EXTRAP. JET is the largest tokamak in operation and the single device that can use deuterium and tritium mixes. It has produced 16 MW of fusion power, during 3 seconds, with an energy amplification of 0.6. The next steps of the EFP strategy towards fusion energy are ITER complemented by a vigorous Accompanying Programme, DEMO and a prototype of a fusion power plant. ITER, the first experimental fusion reactor, is a large-scale project (35-year duration, 10000 MEuros budget), developed in the frame of a very broad international collaboration, involving EURATOM, Japan, Russia Federation, United States of America, Korea, China and India. ITER has two main objectives: (i) to prove the scientific and technical viability of fusion energy by producing 500 MW, during 300 seconds and a energy amplification between 10 and 20; and (ii) to test the simultaneous and integrated operation of the technologies needed for a fusion reactor. The Accompanying Programme aims to prepare the ITER scientific exploitation and the DEMO design, including the development of the International Fusion Materials Irradiation Facility (IFMIF). A substantial part of this programme will be carried out in the frame of the Broader Approach, an agreement signed by EURATOM and Japan. The main goal of DEMO is to produce electricity, during a long time, from nuclear fusion reactions. The

  19. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  20. Towards assembly completion and preparation of experimental campaigns of Wendelstein 7-X in the perspective of a path to a stellarator fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, T., E-mail: thomas.klinger@ipp.mpg.de; Baylard, C.; Beidler, C.D.; Boscary, J.; Bosch, H.S.; Dinklage, A.; Hartmann, D.; Helander, P.; Maßberg, H.; Peacock, A.; Pedersen, T.S.; Rummel, T.; Schauer, F.; Wegener, L.; Wolf, R.

    2013-10-15

    Graphical abstract: The superconducting stellarator device Wendelstein 7-X, currently under construction, is the key device for the proof of stellarator optimization principles. To establish the optimized stellarator as a serious candidate for a fusion reactor, reactor-relevant plasma parameters must be achieved in fully integrated steady-state scenarios. After more than 10 years of construction time, the completion of the device is now approaching rapidly (mid-2014). We discuss the most important lessons learned during the device assembly, first experiences with coming major work packages, and the physics program of the first two operation phases. The concept of a stellarator fusion power plant is outlined, too. Highlights: • The superconducting stellarator device Wendelstein 7-X is presented. • The optimized stellarator may be a serious candidate for a fusion reactor. • Reactor-relevant plasma parameters must be achieved in integrated steady-state scenarios. • We discuss the most important lessons learned during the device assembly. • We discuss first experiences with coming major work packages. • We discuss the physics program of the first two operation phases. • The concept of a stellarator fusion power plant is outlined. -- Abstract: The superconducting stellarator device Wendelstein 7-X, currently under construction, is the key device for the proof of stellarator optimization principles. To establish the optimized stellarator as a serious candidate for a fusion reactor, reactor-relevant dimensionless plasma parameters must be achieved in fully integrated steady-state scenarios. After more than 10 years of construction time, the completion of the device is now approaching rapidly (mid-2014). We discuss the most important lessons learned during the device assembly and first experiences with coming major work packages. Those are (a) assembly of about 2500 large, water-cooled, 3d-shaped in-vessel component elements; (b) assembly of in total 14

  1. Fusion Simulation Program Definition. Final report

    International Nuclear Information System (INIS)

    Cary, John R.

    2012-01-01

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents

  2. An experimental evolution study confirms that discontinuous gas exchange does not contribute to body water conservation in locusts.

    Science.gov (United States)

    Talal, Stav; Ayali, Amir; Gefen, Eran

    2016-12-01

    The adaptive nature of discontinuous gas exchange (DGE) in insects is contentious. The classic 'hygric hypothesis', which posits that DGE serves to reduce respiratory water loss (RWL), is still the best supported. We thus focused on the hygric hypothesis in this first-ever experimental evolution study of any of the competing adaptive hypotheses. We compared populations of the migratory locust (Locusta migratoria) that underwent 10 consecutive generations of selection for desiccation resistance with control populations. Selected locusts survived 36% longer under desiccation stress but DGE prevalence did not differ between these and control populations (approx. 75%). Evolved changes in DGE properties in the selected locusts included longer cycle and interburst durations. However, in contrast with predictions of the hygric hypothesis, these changes were not associated with reduced RWL rates. Other responses observed in the selected locusts were higher body water content when hydrated and lower total evaporative water loss rates. Hence, our data suggest that DGE cycle properties in selected locusts are a consequence of an evolved increased ability to store water, and thus an improved capacity to buffer accumulated CO 2 , rather than an adaptive response to desiccation. We conclude that DGE is unlikely to be an evolutionary response to dehydration challenge in locusts. © 2016 The Author(s).

  3. Theoretical and experimental studies for selective removal of antimony from zircaloy using thiourea grafted polystyrene adsorbent. Contributed Paper MS-01

    International Nuclear Information System (INIS)

    Arora, Jyotsna S.; Gaikar, Vilas G.

    2014-01-01

    During the dissolution step in nuclear fuel reprocessing, hulls consisting of essentially zircaloy clad are produced as high active solid waste. For recovery and reuse of zircaloy from this solid waste, 58 Co and 125 Sb which are present as the activation products of cobalt and tin in zircaloy tubes need to be separated. The present work involves selective sorption of antimony on thiourea grafted polymeric adsorbent in the presence of cobalt and zirconium. The effect of pH for the optimum uptake of antimony ions was studied. Since the variation in pH influences the antimony species formed in the solution, density functional theoretical (DFT) studies were performed in order to understand the complexation of the metal species with the grafted adsorbent at the molecular level. The highest occupied molecular orbital (HOMO) of the adsorbent which is located on S atom of loaded thiourea interacts with lowest unoccupied molecular orbital (LUMO) of Sb(V). The grafted adsorbent exhibits higher interaction with antimony species as compared to cobalt and zirconium. The metal-S bond distances are in good agreement with the XRD values for similar systems. Including the effect of solvation model helps in validation of simulation results with experimental adsorption data suggesting the application of thiourea grafted adsorbent for antimony separation. (author)

  4. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil.

    Science.gov (United States)

    Jarvi, Mickey P; Burton, Andrew J

    2018-03-01

    We investigated the occurrence of and mechanisms responsible for acclimation of fine-root respiration of mature sugar maple (Acer saccharum) after 3+ years of experimental soil warming (+4 to 5 °C) in a factorial combination with soil moisture addition. Potential mechanisms for thermal respiratory acclimation included changes in enzymatic capacity, as indicated by root N concentration; substrate limitation, assessed by examining nonstructural carbohydrates and effects of exogenous sugar additions; and adenylate control, examined as responses of root respiration to a respiratory uncoupling agent. Partial acclimation of fine-root respiration occurred in response to soil warming, causing specific root respiration to increase to a much lesser degree (14% to 26%) than would be expected for a 4 to 5 °C temperature increase (approximately 55%). Acclimation was greatest when ambient soil temperature was warmer or soil moisture availability was low. We found no evidence that enzyme or substrate limitation caused acclimation but did find evidence supporting adenylate control. The uncoupling agent caused a 1.4 times greater stimulation of respiration in roots from warmed soil. Sugar maple fine-root respiration in warmed soil was at least partially constrained by adenylate use, helping constrain respiration to that needed to support work being performed by the roots. © 2017 John Wiley & Sons Ltd.

  5. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander

    2016-01-01

    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  6. Lipid Acrobatics in the Membrane Fusion Arena

    NARCIS (Netherlands)

    Markvoort, Albert J.; Marrink, Siewert J.; Chernomordik, Leonid V.; Kozlov, Michael M.

    2011-01-01

    In this review, we describe the recent contribution of computer simulation approaches to unravel the molecular details of membrane fusion. Over the past decade, fusion between apposed membranes and vesicles has been studied using a large variety of simulation methods and systems. Despite the variety

  7. The fusion evaluated data library (FENDL) its processing and related benchmark calculations

    International Nuclear Information System (INIS)

    Muir, D.W.

    1989-01-01

    FENDL is a nuclear data library being assembled by the IAEA Nuclear Data Section, in support of a variety of national and international fusion research projects. Notable examples of such projects are the International Experimental Thermonuclear Reactor (ITER), Fusion Engineering Reactor (FER, Japan), and the Next European Torus (NET). The development of the FENDL library is an approved program of the IAEA and is supported by several IAEA Coordinated Research Programs. It appears to me that the planned FENDL data processing and data testing efforts will be a shared effort, with significant contributions coming from the IAEA itself and from the participating research laboratories and data centers

  8. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    Science.gov (United States)

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  9. Impaired Leptomeningeal Collateral Flow Contributes to the Poor Outcome following Experimental Stroke in the Type 2 Diabetic Mice

    Science.gov (United States)

    Akamatsu, Yosuke; Nishijima, Yasuo; Lee, Chih Cheng; Yang, Shih Yen; Shi, Lei; An, Lin; Wang, Ruikang K.; Tominaga, Teiji

    2015-01-01

    Collateral status is an independent predictor of stroke outcome. However, the spatiotemporal manner in which collateral flow maintains cerebral perfusion during cerebral ischemia is poorly understood. Diabetes exacerbates ischemic brain damage, although the impact of diabetes on collateral dynamics remains to be established. Using Doppler optical coherent tomography, a robust recruitment of leptomeningeal collateral flow was detected immediately after middle cerebral artery (MCA) occlusion in C57BL/6 mice, and it continued to grow over the course of 1 week. In contrast, an impairment of collateral recruitment was evident in the Type 2 diabetic db/db mice, which coincided with a worse stroke outcome compared with their normoglycemic counterpart db/+, despite their equally well-collateralized leptomeningeal anastomoses. Similar to the wild-type mice, both db/+ and db/db mice underwent collateral growth 7 d after MCA stroke, although db/db mice still exhibited significantly reduced retrograde flow into the MCA territory chronically. Acutely induced hyperglycemia in the db/+ mice did not impair collateral flow after stroke, suggesting that the state of hyperglycemia alone was not sufficient to impact collateral flow. Human albumin was efficacious in improving collateral flow and outcome after stroke in the db/db mice, enabling perfusion to proximal MCA territory that was usually not reached by retrograde flow from anterior cerebral artery without treatment. Our results suggest that the impaired collateral status contributes to the exacerbated ischemic injury in mice with Type 2 diabetes, and modulation of collateral flow has beneficial effects on stroke outcome among these subjects. PMID:25740515

  10. Photovoltaic AC fusion converter (PVAC). Design consideration and experimental evaluation; Taiyoko hatsuden denryoku/shoyo denryoku kongo sochi no hoshiki to seino

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Y. [Hachinohe National College of Technology, Aomori (Japan); Sakakibara, T. [Toyohashi University, of Technology, Aichi (Japan)

    1997-11-25

    The photovoltaic AC fusion converter (PVAC), of which cost reduction of the total system is possible, was developed. PVAC controls the supply of commercial power by preferentially supplying photovoltaic power to loads for realization of energy conservation. Further, setting the maximum output of solar cell less than the rated load, the system was made the one with no need of storage batteries. This system was realized in a hybrid of the conventional rectification technology and the stand-alone maximum power point tracking photovoltaic system technology. The solar cell input efficiency had been measured as 84% at maximum. Main losses are consumption power of power source, switching loss of inverter, and continuity loss of diode. Ninety-seven percent of the commercial power input efficiency was obtained. Main losses are consumption power of power source, continuity loss of diode bridge, and resistance loss of smoothing reactor. The effect of energy conservation by the use of PVAC was also admitted. 6 refs., 7 figs.

  11. Experimental Determination of the Possible Deuterium - Deuterium Fusion Reaction Originated in a Single Cavitation Bubble Luminescence System Using CDCL3 and D2 O

    International Nuclear Information System (INIS)

    Barbaglia, Mario; Florido, Pablo; Mayer, Roberto; Bonetto, Fabian

    2003-01-01

    We focus this work on the measurement of the possible Deuterium - Deuterium reaction in a SCBL (Single Cavitation Bubble Luminescence) system.We measure the possible reaction at the bubble generation time and at the bubble collapse time. We use a Nd:YAG laser and CDCl 3 and D 2 O as a medium to generate the bubble. Since CDCl 3 accommodation coefficient is best than that of D 2 O, it is expected a greater collapse force than using D 2 O.To benefit the bubble collapse violence, we diminish the temperature of the liquids.To avoid false neutron detection, we developed a measuring system with high background reject using the characteristic experiment times.No neutrons attributable to Deuterium - Deuterium fusion reaction were measured

  12. Immunogenicity and Efficacy of Live L. tarentolae Expressing KMP11-NTGP96-GFP Fusion as a Vaccine Candidate against Experimental Visceral Leishmaniasis Caused by L. infantum

    Directory of Open Access Journals (Sweden)

    Vahid NASIRI

    2016-10-01

    Full Text Available Background: The aim of present study was to evaluate the protective efficacy of live recombinant L. tarentolae expressing KMP11-NTGP96-GFP fusion as candidates for live engineered recombinant vaccine against visceral leishmaniasis in BALB/c mice.Methods: KMP-11 and NT-GP96 genes cloned into the pJET1.2/blunt cloning vector and then into pEGFP-N1 expression vector. The KMP-11, NT-GP96 and GFP fused in pEGFP-N1 and subcloned into Leishmanian pLEXSY-neo vector. Finally this construct was transferred to L. tarentolae by electroporation. Tranfection was confirmed by SDS-PAGE, WESTERN blot, flowcytometry and RT-PCR. Protective efficacy of this construct was evaluated as a vaccine candidate against visceral leishmaniasis. Parasite burden, humoral and cellular immune responses were assessed before and at 4 weeks after challenge.Results: KMP- NT-Gp96-GFP Fusion was cloned successfully into pLEXSY -neo vector and this construct successfully transferred to L. tarentolae. Finding indicated that immunization with L. tarentolae tarentolae-KMP11-NTGP96-GFP provides significant protection against visceral leishmaniasis and was able to induce an increased expression of IFN-γ and IgG2a. Following challenge, a reduced parasite load in the spleen of the KMP11-NTGP96-GFP immunized group was detected.Conclusion: The present study is the first to use a combination of a Leishmania antigen with an immunologic antigen in live recombinant L. tarentolae and results suggest that L. tarentolae-KMP11-NTGP96-GFP could be considered as a potential tool in vaccination against visceral leishmaniasis and this vaccination strategy could provide a potent rout for future vaccine development. 

  13. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy.

    Directory of Open Access Journals (Sweden)

    Bryan E Hart

    2016-12-01

    Full Text Available Buruli ulcer (BU vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine.

  14. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant.

    Science.gov (United States)

    Camplani, M; Malizia, A; Gelfusa, M; Barbato, F; Antonelli, L; Poggi, L A; Ciparisse, J F; Salgado, L; Richetta, M; Gaudio, P

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  15. Contributed Review: Experimental characterization of inverse piezoelectric strain in GaN HEMTs via micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bagnall, Kevin R.; Wang, Evelyn N. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-06-15

    Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approach has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E{sub 2} high and A{sub 1} (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart from the

  16. Contributed Review: Experimental characterization of inverse piezoelectric strain in GaN HEMTs via micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Bagnall, Kevin R.; Wang, Evelyn N.

    2016-01-01

    Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approach has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E_2 high and A_1 (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart from the inverse

  17. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant.

    Science.gov (United States)

    Roques-Carmes, Thibault; Mathieu, Vincent; Gigante, Alexandra

    2010-04-01

    The dynamics of drop spreading of glycerol-water mixtures with and without surfactant on hydrophilic glass surfaces has been investigated. The influence of different factors, such as viscosity, drop volume and non-ionic alkyl (8-16) glucoside (Plantacare) surfactant concentration on the number and the nature of the spreading regimes is systematically investigated. More than 25 spreading experiments have been performed in order to obtain clear trends. The results confirm the existence of several spreading regimes for the duration of an experiment (200 s). For each regime, the radius can be expressed by a power law of the form R=Kt(n). Both n and K are necessary to identify the regime. The experimental data are compared with the analytical predictions of the combined theory of spreading. One of the main results of this study is that the nature of the regimes is strongly affected by the drop volume, the viscosity and the surfactant concentration. This behavior is not predicted by the theory. For drop volume less than or equal to 15 microL, a succession of two different regimes which depend on the viscosity and surfactant concentration are observed in the following order: a molecular-kinetic regime followed by a hydrodynamic regime (for high viscosity in the presence of surfactant) or a hydrodynamic regime and lastly a final asymptotic regime corresponding to a long relaxation time to equilibrium (for high viscosity in absence of surfactant and for low viscosity regardless of the presence of surfactant). The spreading follows quantitatively the predictions of the theory. Our results demonstrate that the theory is still valid for low viscosity liquids and in the presence of surfactant. The contact angle for which the crossover between molecular-kinetic regime and hydrodynamic regime occurs is thoroughly estimated since the theories do not allow the exact calculation of this value. Here for the first time, an empirical power law exponent (n=0.08+/-0.05) is proposed for

  18. The economic value of fusion energy

    International Nuclear Information System (INIS)

    Kim, S.H.; Clarke, J.; Edmonds, J.

    1996-01-01

    The potential economic benefit of fusion energy technology is significant and could dwarf the world's total expenditure on fusion energy research and development. However, the realization of these benefits will depend on the economic competitiveness of electricity generation from fusion energy technologies relative to that from other existing fossil fueled and renewable technologies, as well as the time in which fusion energy technologies are available for commercial operation. Utilizing the Second Generation Model, a long-term energy/economics model, the potential economic benefit of fusion energy technology for the United States was assessed. Model scenarios with hypothetical fusion power technologies based on the International Thermonuclear Experimental Reactor (ITER) design with varying cost and time of availability showed that significant economic benefit exists from a competitive fusion technology with cost of electricity (COE) of 0.06 $/kWhr and available in the year 2025. The fusion technology with these characteristics resulted in a total discounted GDP benefit of $105 billion from the year 1995 to 2100. On the other hand, uncompetitive fusion technologies with higher COE of 0.12 and 0.09 $/kWhr had little economic benefits. Moreover, delaying the introduction of all fusion technologies from 2025 to 2050 reduced the economic benefits of fusion technologies by more than 60 percent. Aside from the economic benefit of fusion technologies operating in the United States, the potential economic value of international trade in fusion technologies is likely to be even greater. If the United States could capture just a portion of the global electricity market, the export value of the fusion technology could amount to hundreds of billions of dollars, whereas the cost of importing the technology to the United States will erase any benefits derived from GDP increases

  19. Laser fusion experiments at LLL

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1980-06-16

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  20. Laser fusion experiments at LLL

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1980-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future

  1. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  2. Sub-Coulomb fusion with halo nuclei

    International Nuclear Information System (INIS)

    Fekou-Youmbi, V.; Sida, J.L.; Alamanos, N.; Auger, F.; Bazin, D.; Borcea, C.; Cabot, C.; Cunsolo, A.; Foti, A.; Gillibert, A.; Lepine, A.; Lewitowicz, M.; Liguori-Neto, R.; Mittig, W.; Pollacco, E.; Roussel-Chomaz, P.; Volant, C.; Yong Feng, Y.

    1995-01-01

    The nuclear structure of halo nuclei may have strong influence on the fusion cross section at sub-barrier energies. The actual theoretical debate is briefly reviewed and sub-barrier fusion calculations for the system 11 Be+ 238 U are presented. An experimental program on sub-barrier fusion for the systems 7,9,10,11 Be+ 238 U is underway at GANIL. First results with 9 Be and 11 Be beams were obtained using the F.U.S.ION detector. Relative fission cross sections are presented. ((orig.))

  3. Fusion Machines

    International Nuclear Information System (INIS)

    Weynants, R.R.

    2004-01-01

    A concise overview is given of the principles of inertial and magnetic fusion, with an emphasis on the latter in view of the aim of this summer school. The basis of magnetic confinement in mirror and toroidal geometry is discussed and applied to the tokamak concept. A brief discussion of the reactor prospects of this configuration identifies which future developments are crucial and where alternative concepts might help in optimising the reactor design. The text also aims at introducing the main concepts encountered in tokamak research that will be studied and used in the subsequent lectures

  4. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1991-04-01

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  5. Fusion Canada issue 10

    International Nuclear Information System (INIS)

    1990-02-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Fusion Materials Research, ITER physics research, fusion performance record at JET, and design options for reactor building. 4 figs

  6. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  7. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  8. On Korean strategy and plan for fusion energy

    International Nuclear Information System (INIS)

    Kim, H.J.; Choi, W-J.; Park, C.; Kim, H.C.

    2012-01-01

    In developing KSTAR (Korean Superconducting Tokamak Advanced Research), Korea had initiated a mid-entry strategy to catch up with the technologies required for the development of a fusion reactor, based on the tokamak magnetic confinement concept. Upon joining ITER (International Thermonuclear Experimental Reactor), Korean government enacted a promotional law for the fusion energy development. Under this promotional law the national promotional plans for developing fusion energy have been established. The National Fusion Research Institute (NFRI) developed the strategy and plan for a fusion DEMO program to realize the magnetic fusion energy. (author)

  9. On Korean strategy and plan for fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.J. [National Fusion Research Inst., Daejeon (Korea, Republic of); Choi, W-J. [Chungnam National Univ., Daejeon (Korea, Republic of); Park, C. [POSTECH, Pohang (Korea, Republic of); Kim, H.C. [National Fusion Research Inst., Daejeon (Korea, Republic of)

    2012-07-01

    In developing KSTAR (Korean Superconducting Tokamak Advanced Research), Korea had initiated a mid-entry strategy to catch up with the technologies required for the development of a fusion reactor, based on the tokamak magnetic confinement concept. Upon joining ITER (International Thermonuclear Experimental Reactor), Korean government enacted a promotional law for the fusion energy development. Under this promotional law the national promotional plans for developing fusion energy have been established. The National Fusion Research Institute (NFRI) developed the strategy and plan for a fusion DEMO program to realize the magnetic fusion energy. (author)

  10. Lasers and particle beam for fusion and strategic defense

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This special issue of the Journal of Fusion Energy consists of the edited transscripts of a symposium on the applications of laser and particle beams to fusion and strategic defense. Its eleven papers discuss these topics: the Strategic Defense Initiative; accelerators for heavy ion fusion; rf accelerators for fusion and strategic defense; Pulsed power, ICF, and the Strategic Defense Initiative; chemical lasers; the feasibility of KrF lasers for fusion; the damage resistance of coated optic; liquid crystal devices for laser systems; fusion neutral-particle beam research and its contribution to the Star Wars program; and induction linacs and free electron laser amplifiers for ICF devices and directed-energy weapons

  11. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Noushin Saljoughian

    Full Text Available Visceral leishmaniasis (VL is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L. tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB(-CTE as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB(-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB(-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.

  12. Proceedings of the heavy ion fusion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R C [ed.

    1978-01-01

    These proceedings contain reviews of current laboratory programs dealing with inertial fusion driven by beams of heavy ions, as well as several individually abstracted invited talks, workshop reports and contributed papers.

  13. Magnetic fusion 1985: what next

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion

  14. Computing for magnetic fusion energy research: An updated vision

    International Nuclear Information System (INIS)

    Henline, P.; Giarrusso, J.; Davis, S.; Casper, T.

    1993-01-01

    This Fusion Computing Council perspective is written to present the primary of the fusion computing community at the time of publication of the report necessarily as a summary of the information contained in the individual sections. These concerns reflect FCC discussions during final review of contributions from the various working groups and portray our latest information. This report itself should be considered as dynamic, requiring periodic updating in an attempt to track rapid evolution of the computer industry relevant to requirements for magnetic fusion research. The most significant common concern among the Fusion Computing Council working groups is networking capability. All groups see an increasing need for network services due to the use of workstations, distributed computing environments, increased use of graphic services, X-window usage, remote experimental collaborations, remote data access for specific projects and other collaborations. Other areas of concern include support for workstations, enhanced infrastructure to support collaborations, the User Service Centers, NERSC and future massively parallel computers, and FCC sponsored workshops

  15. Fusion neutronics experiments and analysis

    International Nuclear Information System (INIS)

    1992-01-01

    UCLA has led the neutronics R ampersand D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989

  16. Effect of breakup on near barrier fusion

    International Nuclear Information System (INIS)

    Dasgupta, M.; Berriman, A.C.; Butt, R.D.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    2000-01-01

    Full text: Unstable neutron-rich nuclei having very weakly bound neutrons exhibit characteristic features such as a neutron halo extending to large radii, and a low energy threshold for breakup. These features may dramatically affect fusion and other reaction processes. It is well accepted that the extended nuclear matter distribution will lead to an enhancement in fusion cross-sections over those for tightly bound nuclei. The effect of couplings to channels which act as doorways to breakup is, however, controversial, with model predictions differing in the relative magnitudes of enhancement and suppression. To investigate the effect on fusion of couplings specific to unstable neutron-rich nuclei, it is necessary to understand (and then predict) the cross-sections expected for their stable counterparts. This requires knowledge of the energy of the average fusion barrier, and information on the couplings. Experimentally all this information can be obtained from precisely measured fusion cross-sections. Such precision measurements of complete fusion cross-sections for 9 Be + 208 Pb and 6 Li, 7 Li + 209 Bi systems have been done at the Australian National University. The distribution of fusion barriers extracted from these data were used to reliably predict the expected fusion cross-sections. Comparison of the theoretical expectations with the experimentally measured cross-sections show conclusively that complete fusion, at above barrier energies, for all three systems is suppressed (by about 30%) compared with the fusion of more tightly bound nuclei. These measurements, in conjunction with incomplete fusion cross-sections, which were also measured, should encourage a complete theoretical description of fusion and breakup

  17. Experimental and theoretical contributions to X-ray phase-contrast techniques for medical imaging; Contributions experimentales et theoriques aux techniques de contraste de phase pour l'imagerie medicale par rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, P.C.

    2011-02-28

    Several X-ray phase-contrast techniques have recently been developed. Unlike conventional X-ray methods, which measure the absorption properties of the tissues, these techniques derive contrast also from the modulation of the phase produced by the sample. Since the phase shift can be significant even for small details characterized by weak or absent absorption, the achievable image contrast can be greatly increased, notably for the soft biological tissues. These methods are therefore very promising for applications in the medical domain. The aim of this work is to contribute to a deeper understanding of these techniques, in particular propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GIFM), and to study their potential and the best practical implementation for medical imaging applications. An important part of this work is dedicated to the use of mathematical algorithms for the extraction, from the acquired images, of quantitative sample information (the absorption, refraction and scattering sample properties). In particular, five among the most known algorithms based on the geometrical optics approximation have been theoretically analysed and experimentally compared, in planar and tomographic modalities, by using geometrical phantoms and human bone-cartilage and breast samples. A semi-quantitative method for the acquisition and reconstruction of tomographic images in the ABI and GIFM techniques has also been proposed. The validity conditions are analyzed in detail and the method, enabling a considerable simplification of the imaging procedure, has been experimentally checked on phantoms and human samples. Finally, a theoretical and experimental comparison of the PBI, ABI and GIFM techniques is presented. The advantages and drawbacks of each of these techniques are discussed. The results obtained from this analysis can be very useful for determining the most adapted technique for a given application. (author)

  18. Fusion for Energy: The European joint undertaking for ITER and the development of fusion energy

    International Nuclear Information System (INIS)

    Diegele, E.

    2009-01-01

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  19. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear fusion is one of the main activities of the Karlsruhe Nuclear Research Center (KfK). It is organized as a project under the Directorate of Reactor Development and Safety. The work of KfK concentrates on technology aspects of nuclear fusion with magnetic confinement. It is part of the European Fusion Programme where KfK participates as an association to EURATOM. Close links have been established to the Max Planck Institute for Plasma Physics (IPP). In the Entwicklungsgemeinschaft Kernfusion KfK and IPP cooperate for the development of future fusion experiments joining the experience gained in plasma physics (IPP) and materials, safety, and nuclear technology (KfK), respectively. As in the present strategy of the European Fusion Programme the Next European Tokamak (NET) is foreseen as the major next step, most of the activities of KfK address this subject. In addition to the contributions to NET, studies are carried out to innovate INTOR, the worldwide cooperation for an experimental reactor under the auspices of IAEA. Furthermore, the Entwicklungsgemeinschaft Kernfusion has evaluated the feasibility of a fusion reactor with a stellarator confinement. (orig./GG)

  20. Revitalizing Fusion via Fission Fusion

    Science.gov (United States)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000