Experimental core electron density of cubic boron nitride
DEFF Research Database (Denmark)
Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse
as well as experimental result. The redistribution of electron density will, if not accounted for, result in increased thermal parameters. It is estimated that 1.7-2 electrons is transferred from boron to nitrogen. [1]: N. Bindzus, T. Straasø, N. Wahlberg, J. Becker, L. Bjerg, N. Lock, A.-C. Dippel, and B......Experimental core electron density of cubic boron nitride Nanna Wahlberg*, Niels Bindzus*, Lasse Bjerg*, Jacob Becker*, and Bo B. Iversen* *Aarhus University, Department of Chemistry, CMC, Langelandsgade 140, 8000 Århus, Denmark The resent progress in powder diffraction provides data of quality...... obtained. The displacement parameters reported here are significantly lower than those previously reported, stressing the importance of an adequate description of the core density. The charge transfer from boron to nitrogen clearly affects the inner electron density, which is evident from theoretical...
Electron density measurement in an evolving plasma. Experimental devices
International Nuclear Information System (INIS)
Consoli, Terenzio; Dagai, Michel
1960-01-01
The experimental devices described here allow the electron density measurements in the 10 16 e/m 3 to 10 20 e/m 3 interval. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1223-1225, sitting of 15 February 1960 [fr
Angioni, C.; Peeters, A. G.; Garbet, X.; Manini, A.; Ryter, F.; ASDEX Upgrade Team
2004-08-01
Theory of ion temperature gradient (ITG) and trapped electron modes (TEMs) is applied to the study of particle transport in experimental conditions with central electron heating. It is shown that in the unstable domain of TEMs, the electron thermodiffusive flux is directed outwards. By means of such a flux, a mechanism is identified likely to account for density flattening with central electron heating. Theoretical predictions are compared with experimental observations in ASDEX Upgrade. A parameter domain (including L- and H-mode plasmas) is identified, in which flattening with central electron heating is observed in the experiments. In general, this domain turns out to be the same domain in which the dominant plasma instability is a TEM. On the contrary, the dominant instability is an ITG in plasmas whose density profile is not affected significantly by central electron heating. The flattening predicted by quasi-linear theory for low density L-mode plasmas is too small compared to the experimental observations. At very high density, even when the dominant instability is an ITG, electron heating can provide density flattening, via the coupling with the ion heat channel. In these conditions the anomalous diffusivity increases in response to the increased ion heat flux, while the large collisionality makes the anomalous pinch small and the Ware pinch important.
Experimental electron density profiles of the mid-latitude lower ionosphere and winter anomaly
International Nuclear Information System (INIS)
Rapoport, Z.Ts.; Sinel'nikov, V.M.
1996-01-01
Summarized measurements of high-latitude electron density profiles of N e lower ionosphere, obtained at M100B meteorological rockets by precision method of coherent frequencies during 1979-1990 at the Volgograd test site (φ = 48 deg 41' N; λ = 44 deg 21 E), are presented. The profiles obtained represent average values of electron density at various altitudes of lower ionosphere (h = 70-100 km) during night and day time hours in winter and non winter periods. Increased electron density values during daytime hours in winter are related to winter anomaly phenomenon. 36 refs.; 1 fig
Experimental Electron Density Distribution in Two Cocrystals of Betaines with p-Hydroxybenzoic Acid
Directory of Open Access Journals (Sweden)
Agata Owczarzak
2018-03-01
Full Text Available Experimental determination of electron density distribution in crystals by means of high-resolution X-ray diffraction allows, among others, for studying the details of intra- and inter-molecular interactions. In case of co-crystals, this method may help in finding the conditions of creating such species. The results of such analysis for two co-crystals containing betaines, namely trigonelline (TRG: nicotinic acid N-methylbetaine, IUPAC name: 1-methylpyridinium-3-carboxylate and N-methylpiperidine betaine (MPB: 1-methylpiperidinium-1-yl-carboxylate with p-hydroxybenzoic acid (HBA are reported. TRG-HBA crystallizes as a hydrate. For both of the co-crystals, high-quality diffraction data were collected up to sinθ/λ = 1.13 Å−1. Hansen-Coppens multipolar model was then applied for modelling the electron density distribution and Atoms-In-Molecules approach was used for detailed analysis of interactions in crystals. A number of intermolecular interactions was identified, ranging from strong O-H···O hydrogen bonds through C-H···O to C-H···π and π···π interactions. Correlations between the geometrical characteristics of the contacts and the features of their critical points were analyzed in detail. Atomic charges show that in zwitterionic species there are regions of opposite charges, rather than charges that are localized on certain atoms. In case of MPB-HBA, a significant charge transfer between the components of co-crystal (0.5 e was found, as opposed to TRG-HBA, where all of the components are almost neutral.
Energy Technology Data Exchange (ETDEWEB)
Kim, YooSung; Shi, Yue-Jiang, E-mail: yjshi@snu.ac.kr; Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Chung, Kyoung-Jae [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Oh, Soo-Ghee [Division of Energy Systems Research, Ajou University, Suwon 442-749 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advanced Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)
2016-11-15
Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of H{sub α} and H{sub β} radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.
Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed
2012-11-01
New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.
International Nuclear Information System (INIS)
Alazo, K.; Coisson, P.; Radicella, S.M.
2003-01-01
The pattern of the topside electron density profiles is not yet very well represented by the IRI model. In this work the topside profiles obtained by the ISIS-2 satellite during low solar activity conditions are compared to those modeled by IRI. We take the quantitative parameter ε to measure the deviation of the model from the observed profiles. The results showed that the IRI overestimation of the topside profile is higher for low dip latitudes. The dispersion of the epsilon values is from 40 to 140%, more in equinoctial months and some lower for Winter. The best modeling is about 20% to 40% in middle and high latitudes of the North Hemisphere. (author)
Experimental study on the production of high density electron bunches from a GaAs photocathode
International Nuclear Information System (INIS)
Calabrese, R.; Masoli, F.; Gong, J.M.; Guidi, V.; Tecchio, L.
1991-01-01
In order to obtain a high charge, low emittance electron source, useful for FEL electron injector and for e + e - collider experiments, we performed a test experiment on a gallium arsenide photocathode, activated by negative electron affinity technique and illuminated with a 10 ns long laser pulse of 532 nm wavelength. We measured a maximum charge delivered, at relatively low potentials, of about 18 nC/bunch. The mean lifetime is greater than 60 h. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.; Dittrich, Birger; Schirmeister, Tanja; Luger, Peter; Hesse, Malte; Chen, Yu-Sheng; Spackman, Peter R.; Spackman, Mark A.; Grabowsky, Simon (Heinrich-Heine); (Freie); (UC); (Bremen); (JG-UM); (UWA)
2017-01-24
The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us to predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.
Solar corona electron density distribution
International Nuclear Information System (INIS)
Esposito, P.B.; Edenhofer, P.; Lueneburg, E.
1980-01-01
Three and one-half months of single-frequency (f= 0 2.2 x 10 9 Hz) time delay data (earth-to-spacecraft and return signal travel time) were acquired from the Helios 2 spacecraft around the time of its solar occupation (May 16, 1976). Following the determination of the spacecraft trajectory the excess time delay due to the integrated effect of free electrons along the signal's ray path could be separated and modeled. An average solar corona, equatorial, electron density profile, during solar minimum, was deduced from time delay measurements acquired within 5--60 solar radii (R/sub S/) of the sun. As a point of reference, at 10 R/sub S/ from the sun we find an average electron density of 4500 el cm -3 . However, there appears to be an asymmtry in the electron density as the ray path moved from the west (preoccultation) to east (post-occulation) solar limb. This may be related to the fact that during entry into occulation the heliographic latitude of the ray path (at closes approach to the sun) was about 6 0 , whereas during exit it became -7 0 . The Helios electron density model is compared with similar models deduced from a variety of different experimental techniques. Within 5--20 R/sub S/ of the sun the models separate according to solar minimum or maximum conditions; however, anomalies are evident
Directory of Open Access Journals (Sweden)
A. Osepian
2009-10-01
Full Text Available Accurate measurements of electron density in the lower D-region (below 70 km altitude are rarely made. This applies both with regard to measurements by ground-based facilities and by sounding rockets, and during both quiet conditions and conditions of energetic electron precipitation. Deep penetration into the atmosphere of high-energy solar proton fluxes (during solar proton events, SPE produces extra ionisation in the whole D-region, including the lower altitudes, which gives favourable conditions for accurate measurements using ground-based facilities. In this study we show that electron densities measured with two ground-based facilities at almost the same latitude but slightly different longitudes, provide a valuable tool for validation of model computations. The two techniques used are incoherent scatter of radio waves (by the EISCAT 224 MHz radar in Tromsø, Norway, 69.6° N, 19.3° E, and partial reflection of radio-waves (by the 2.8 MHz radar near Murmansk, Russia, 69.0° N, 35.7° E. Both radars give accurate electron density values during SPE, from heights 57–60 km and upward with the EISCAT radar and between 55–70 km with the partial reflection technique. Near noon, there is little difference in the solar zenith angle between the two locations and both methods give approximately the same values of electron density at the overlapping heights. During twilight, when the difference in solar zenith angles increases, electron density values diverge. When both radars are in night conditions (solar zenith angle >99° electron densities at the overlapping altitudes again become equal. We use the joint measurements to validate model computations of the ionospheric parameters f+, λ, αeff and their variations during solar proton events. These parameters are important characteristics of the lower ionosphere structure which cannot be determined by other methods.
International Nuclear Information System (INIS)
Koch, J.A.; Key, M.H.; Hatchett, S.P.; Lee, R.W.; Pennington, D.; Tabak, M.; Freeman, R.R.; Stephens, R.B.
2002-01-01
In our experiments, we irradiated solid CH targets with a 400 J, 5 ps, 3x10 19 W/cm 2 laser, and we used x-ray imaging and spectroscopic diagnostics to monitor the keV x-ray emission from thin Al or Au tracer layers buried within the targets. The experiments were designed to quantify the spatial distribution of the thermal electron temperature and density as a function of buried layer depth; these data provide insights into the behavior of relativistic electron currents which flow within the solid target and are directly and indirectly responsible for the heating. We measured ∼200-350 eV temperatures and near-solid densities at depths ranging from 5 to 100 μm beneath the target surface. Time-resolved x-ray spectra from Al tracers indicate that the tracers emit thermal x rays and cool slowly compared to the time scale of the laser pulse. Most intriguingly, we consistently observe annular x-ray images in all buried tracer-layer experiments, and these data show that the temperature distribution is columnar, with enhanced heating along the edges of the column. The ring diameters are much greater than the laser focal spot diameter and do not vary significantly with the depth of the tracer layer for depths greater than 30 μm. The local temperatures are 200-350 eV for all tracer depths. We discuss recent simulations of the evolution of electron currents deep within solid targets irradiated by ultra-high-intensity lasers, and we discuss how modeling and analytical results suggest that the annular patterns we observe may be related to locally strong growth of the Weibel instability. We also suggest avenues for future research in order to further illuminate the complex physics of relativistic electron transport and energy deposition inside ultra-high-intensity laser-irradiated solid targets
Transition densities with electron scattering
International Nuclear Information System (INIS)
Heisenberg, J.
1985-01-01
This paper reviews the ground state and transition charge densities in nuclei via electron scattering. Using electrons as a spectroscopic tool in nuclear physics, these transition densities can be determined with high precision, also in the nuclear interior. These densities generally ask for a microscopic interpretation in terms of contributions from individual nucleons. The results for single particle transitions confirm the picture of particle-phonon coupling. (Auth.)
Li, X.; Selesnick, R.; Schiller, Q. A.; Zhang, K.; Zhao, H.; Baker, D. N.; Temerin, M. A.
2017-12-01
The galaxy is filled with cosmic ray particles, mostly protons with kinetic energy above hundreds of mega-electron volts (MeV). Soon after the discovery of Earth's Van Allen radiation belts almost six decades ago, it was recognized that the main source of inner belt protons, with kinetic energies of tens to hundreds of MeV, is Cosmic Ray Albedo Neutron Decay (CRAND). In this process, cosmic rays reaching the upper atmosphere from throughout the galaxy interact with neutral atoms to produce albedo neutrons which, being unstable to 𝛽 decay, are a potential source of geomagnetically trapped protons and electrons. Protons retain most of the neutrons' kinetic energy while the electrons have lower energies, mostly below 1 MeV. The viability of the electron source was, however, uncertain because measurements showed that electron intensity can vary greatly while the neutron decay rate should be almost constant. Recent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat now show that CRAND is the main electron source for the radiation belt near its inner edge, and also contributes to the inner belt elsewhere. Furthermore, measurement of the CRAND electron intensity provides the first experimental determination of the neutron density in near-Earth space, 2x10-9/cm3, confirming earlier theoretical estimates.
Statistical theory of electron densities
International Nuclear Information System (INIS)
Pratt, L.R.; Hoffman, G.G.; Harris, R.A.
1988-01-01
An optimized Thomas--Fermi theory is proposed which retains the simplicity of the original theory and is a suitable reference theory for Monte Carlo density functional treatments of condensed materials. The key ingredient of the optimized theory is a neighborhood sampled potential which contains effects of the inhomogeneities in the one-electron potential. In contrast to the traditional Thomas--Fermi approach, the optimized theory predicts a finite electron density in the vicinity of a nucleus. Consideration of the example of an ideal electron gas subject to a central Coulomb field indicates that implementation of the approach is straightforward. The optimized theory is found to fail completely when a classically forbidden region is approached. However, these circumstances are not of primary interest for calculations of interatomic forces. It is shown how the energy functional of the density may be constructed by integration of a generalized Hellmann--Feynman relation. This generalized Hellmann--Feynman relation proves to be equivalent to the variational principle of density functional quantum mechanics, and, therefore, the present density theory can be viewed as a variational consequence of the constructed energy functional
Preionization electron density measurement by collecting electric charge
International Nuclear Information System (INIS)
Giordano, G.; Letardi, T.
1988-01-01
A method using electron collection for preionization-electron number density measurements is presented. A cathode-potential drop model is used to describe the measurement principle. There is good agreement between the model and the experimental result
Electronic structure and electron momentum density in TiSi
Energy Technology Data Exchange (ETDEWEB)
Ghaleb, A.M. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq); Mohammad, F.M. [Department of Physics, College of Science, University of Tikreet, Tikreet (Iraq); Sahariya, Jagrati [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India); Sharma, Mukesh [Physics Division, Forensic Science Laboratory, Jaipur, Rajasthan (India); Ahuja, B.L., E-mail: blahuja@yahoo.com [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur 313001, Rajasthan (India)
2013-03-01
We report the electron momentum density in titanium monosilicide using {sup 241}Am Compton spectrometer. Experimental Compton profile has been compared with the theoretical profiles computed using linear combination of atomic orbitals (LCAO). The energy bands, density of states and Fermi surface structures of TiSi are reported using the LCAO and the full potential linearized augmented plane wave methods. Theoretical anisotropies in directional Compton profiles are interpreted in terms of energy bands. To confirm the conducting behavior, we also report the real space analysis of experimental Compton profile of TiSi.
Electron densities in planetary nebulae
International Nuclear Information System (INIS)
Stanghellini, L.; Kaler, J.B.
1989-01-01
Electron densities for 146 planetary nebulae have been obtained for analyzing a large sample of forbidden lines by interpolating theoretical curves obtained from solutions of the five-level atoms using up-to-date collision strengths and transition probabilities. Electron temperatures were derived from forbidden N II and/or forbidden O III lines or were estimated from the He II 4686 A line strengths. The forbidden O II densities are generally lower than those from forbidden Cl III by an average factor of 0.65. For data sets in which forbidden O II and forbidden S II were observed in common, the forbidden O II values drop to 0.84 that of the forbidden S II, implying that the outermost parts of the nebulae might have elevated densities. The forbidden Cl II and forbidden Ar IV densities show the best correlation, especially where they have been obtained from common data sets. The data give results within 30 percent of one another, assuming homogeneous nebulae. 106 refs
Fingerprint-based structure retrieval using electron density.
Yin, Shuangye; Dokholyan, Nikolay V
2011-03-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.
Kapre, Ruta; Ray, Kallol; Sylvestre, Isabelle; Weyhermüller, Thomas; DeBeer George, Serena; Neese, Frank; Wieghardt, Karl
2006-05-01
Two oxo-bis(benzene-1,2-dithiolato)chromate(V) complexes, namely, [CrO(L(Bu))2]1- and [CrO(L(Me))2]1-, have been synthesized and studied by UV-vis, EPR, magnetic circular dichroism (MCD), and X-ray absorption spectroscopy and by X-ray crystallography; their electro- and magnetochemistries are reported. H2L(Bu) represents the pro-ligand 3,5-di-tert-butylbenzene-1,2-dithiol, and H2L(Me) is the corresponding 4-methyl-benzene-1,2-dithiol. A structural feature of interest for both the complexes is the folding of the dithiolate ligands about the S-S vector providing Cs symmetry to the complexes. Geometry optimizations using all-electron density functional theory with scalar relativistic corrections at the second-order Douglas-Kroll-Hess (DKH2) and zeroth-order regular approximation (ZORA) levels result in excellent agreement with the experimentally determined structures and electronic and S K-edge X-ray absorption spectra. From DFT calculations, the Cs instead of C2v symmetry for the complexes is attributed to the strong S(3p) --> Cr(3d(x2-y2)) pi-donation in Cs geometry providing additional stability to the complexes.
Czech Academy of Sciences Publication Activity Database
Labate, L.; Förster, E.; Giulietti, A.; Giulietti, D.; Höfer, S.; Kämpfer, T.; Köster, P.; Kozlová, Michaela; Levato, T.; Lötzsch, R.; Lübecke, A.; Mocek, Tomáš; Polan, Jiří; Rus, Bedřich; Uschmann, I.; Zamponi, F.; Gizzi, L.A.
2009-01-01
Roč. 27, č. 4 (2009), s. 643-649 ISSN 0263-0346 R&D Projects: GA MŠk(CZ) 7E09092 EU Projects: European Commission(XE) 12843 - TUIXS Institutional research plan: CEZ:AV0Z10100523 Keywords : anisotropic Bremsstrahlung * fast electron diagnostics * fast electron transport * high-density matter * relativistic electrons Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.420, year: 2008
Electron density measurements on the plasma focus
International Nuclear Information System (INIS)
Rueckle, B.
1976-01-01
The paper presents a determination of the maximum electron density in a plasma focus, produced with the NESSI experimental setup, by the method of laser beam deflection. For each discharge a time-resolved measurement was performed at four different places. Neutron efficiency as well as the time of the initial X-ray emission was registrated. The principle and the economic aspects of the beam deflection method are presented in detail. The experimental findings and the resulting knowledge of the neutron efficiency are discussed. (GG) [de
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-12-15
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Experimental level densities of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Guttormsen, M.; Bello Garrote, F.L.; Eriksen, T.K.; Giacoppo, F.; Goergen, A.; Hagen, T.W.; Klintefjord, M.; Larsen, A.C.; Nyhus, H.T.; Renstroem, T.; Rose, S.J.; Sahin, E.; Siem, S.; Tornyi, T.G.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Aiche, M.; Ducasse, Q.; Jurado, B. [University of Bordeaux, CENBG, CNRS/IN2P3, B.P. 120, Gradignan (France); Bernstein, L.A.; Bleuel, D.L. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Byun, Y.; Voinov, A. [Ohio University, Department of Physics and Astronomy, Athens, Ohio (United States); Gunsing, F. [CEA Saclay, DSM/Irfu/SPhN, Cedex (France); Lebois, L.; Leniau, B.; Wilson, J. [Institut de Physique Nucleaire d' Orsay, Orsay Cedex (France); Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West (South Africa)
2015-12-15
It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. (orig.)
Electron density profile in multilayer systems
International Nuclear Information System (INIS)
Toekesi, K.
2004-01-01
Complete text of publication follows. Electron energy loss spectroscopy (EELS) has been used extensively to study the multilayer systems, where the thickness of layers are in the nanometer range. These studies has received considerable attention because of its technological interest, for example in the nanotechnology. On the most fundamental level, its importance is derived from the basic physics that is involved. One key quantities of interest is the response of a many-body system to an external perturbation: How act and how modify the interface between the solid-solid or solid-vacuum the excitations in the solid and in the vicinity of the interfaces. In this work, as a starting point of such investigations we calculated the electron density profile for multilayer systems. Our approach employs the time-dependent density functional theory (TDDFT), that is, the solution of a time-dependent Schroedinger equation in which the potential and forces are determined selfconsistently from the dynamics governed by the Schroedinger equation. We treat the problem in TDDFT at the level of the local-density approximation (LDA). Later, the comparison of experimentally obtained loss functions and the theory, based on our TDDFT calculations can provide deeper understanding of surface physics. We performed the calculations for half-infinite samples characterized by r s =1.642 and r s =1.997. We also performed the calculations for double layer systems. The substrate was characterized by r s =1.997 and the coverage by r s =1.642. Fig. 1. shows the obtained electron density profile in LDA approximation. Because of the sharp cutoff of electronic wave vectors at the Fermi surface, the densities in the interior exhibit slowly decaying Friedel oscillations. To highlight the Friedel oscillation we enlarged the electron density profile in Fig. 1a. and Fig. 1b. The work was supported by the Hungarian Scientific Research Found: OTKA No. T038016, the grant 'Bolyai' from the Hungarian Academy of
Analyticity of the density of electronic wavefunctions
DEFF Research Database (Denmark)
Fournais, Søren; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas
2004-01-01
We prove that the electronic densities of atomic and molecular eigenfunctions are real analytic in R^3 away from the nuclei.......We prove that the electronic densities of atomic and molecular eigenfunctions are real analytic in R^3 away from the nuclei....
Breuers, Verena; Lehmann, Christian W; Frank, Walter
2015-03-16
Five dispirocyclic λ(3),λ(5)-tetraphosphetes [{R2Si(NR(1))(NR(2))P2}2] (R(1) = R(2) and R(1) ≠ R(2)) are easily prepared in almost quantitative yields via photolysis of the respective bis(trimethylsilyl)phosphanyldiazaphosphasiletidines with intense visible light. These deep-yellow low-coordinate phosphorus compounds can be considered as the first higher congeners of the well-known cyclodiphosphazenes. The tetraphosphetes are remarkably stable in air and show unexpected molecular properties related to the unique bonding situation of the central four-π-electron four-membered phosphorus ring. The extent of rhombic distortion of the central P4 ring is remarkable due to an unusually acute angle at the σ(2)-phosphorus atoms. All of the P-P bonds are approximately equal in length. The distances are in the middle of the range given by phosphorus single and double bonds. The anisotropic absorption of visible light that can easily be observed in the case of the yellow/colorless dichroic crystals of [{Me2Si(NtBu)(NtBu)P2}2] and the exceptional (31)P NMR chemical shift of the σ(2)-phosphorus atoms are the most remarkable features of the λ(3),λ(5)-tetraphosphetes. In the case of [{Me2Si(NtBu)(NtBu)P2}2], the Hansen-Coppens multipole model is applied to extract the electron density from high-resolution X-ray diffraction data obtained at 100 K. Static deformation density and topological analysis reveal a unique bonding situation in the central unsaturated P4 fragment characterized by polar σ-bonding, pronounced out-of-ring non-bonding lone pair density on the σ(2)-phosphorus atoms, and an additional non-classical three-center back-bonding contribution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron velocity and momentum density
International Nuclear Information System (INIS)
Perkins, G.A.
1978-01-01
A null 4-vector eta + sigma/sub μ/based on Dirac's relativistic electron equation, is shown explicitly for a plane wave and various Coulomb states. This 4-vector constitutes a mechanical ''model'' for the electron in those staes, and expresses the important spinor quantities represented conventionally by n, f, g, m, j, kappa, l, and s. The model for a plane wave agrees precisely with the relation between velocity and phase gradient customarily used in quantum theory, but the models for Coulomb states contradict that relation
Experimental studies of electron capture
International Nuclear Information System (INIS)
Pedersen, E.H.
1983-01-01
This thesis discusses the main results of recent experimental studies of electron capture in asymmetric collisions. Most of the results have been published, but the thesis also contains yet unpublished data, or data presented only in unrefereed conference proceedings. The thesis aims at giving a coherent discussion of the understanding of the experimental results, based first on simple qualitative considerations and subsequently on quantitative comparisons with the best theoretical calculations currently available. (Auth.)
Limitations in accurate electron density studies
International Nuclear Information System (INIS)
Wal, R. van der.
1982-01-01
Most of X-ray diffraction studies are devoted to the determination of three-dimensional crystal structures from the electron density distributions. In these cases the density distributions are described by the independent atom model (IAM model), which consists of a superposition of spherically averaged free atom densities, which are smeared by thermal vibrations. During the last few decades studies have been made into the deviations of the density distribution from the IAM model, which enables a study of the chemical binding between atoms. The total density can be described using pseudo-atom multipole models as a superposition of aspherical pseudo-atom densities. A fundamental problem is that the separation of this density into an IAM and a deformation part is not unique. This thesis considers the problem and besides deformation densities from X-ray diffraction also considers the corresponding deformation electric field and deformation potential. (C.F.)
Anomalous evolution of Ar metastable density with electron density in high density Ar discharge
International Nuclear Information System (INIS)
Park, Min; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung; Shin, Yong-Hyeon
2011-01-01
Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.
Energy Technology Data Exchange (ETDEWEB)
Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.
Energy Technology Data Exchange (ETDEWEB)
Hauf, Christoph
2014-12-17
The topological analysis of experimentally determined electron density distributions, employing the quantum theory of atoms in molecules developed by Richard FW Bader, was used in this thesis to study chemically or physically motivated questions in appropriate model systems. First, transition metal complexes with activated C-H bonds or Si-H bonds were examined which led to a better understanding of agostic interactions. An important tool during these investigations is the so called atomic graph, which describes the characteristic spatial arrangement of the critical points of the Laplacefield of the electron density distribution in the valence shell of the relevant atoms. It reveals zones with a locally concentrated or depleted electron density distribution. This leads to the empirical rule, that a strong activation of C-H bonds or Si-H bonds is only observed when the hydrogen atom faces a pronounced charge depletion zone at the transition metal atom. In addition, the quasi one-dimensional rare-earth transition metal carbides Sc{sub 3}FeC{sub 4}, Sc{sub 3}CoC{sub 4} and Sc{sub 3}NiC{sub 4} were examined. Although all three compounds are isotypic at room temperature, it was revealed during this thesis, that only Sc{sub 3}CoC{sub 4} undergoes a structural phase transition at a temperature of ∝ 70 K and becomes superconducting below a critical temperature of 4.5 K. The main reason for this behaviour is the variation of the valence electrons through the exchange of Fe by Co or Ni. This results in the occupation of progressively higher energy electronic states and a raising of the Fermi level. The change in the nature of the electronic states at the Fermi level is in turn reflected by the different atomic graphs of the transition metal atoms and the distinct physical properties of these three compounds.
Bedforms formed by experimental supercritical density flows
Naruse, Hajime; Izumi, Norihiro; Yokokawa, Miwa; Muto, Tetsuji
2014-05-01
This study reveals characteristics and formative conditions of bedforms produced by saline density flows in supercritical flow conditions, especially focusing on the mechanism of the formation of plane bed. The motion of sediment particles forming bedforms was resolved by high-speed cameras (1/1000 frame/seconds). Experimental density flows were produced by mixtures of salt water (1.01-1.04 in density) and plastic particles (1.5 in specific density, 140 or 240 mm in diameter). Salt water and plastic particles are analogue materials of muddy water and sand particles in turbidity currents respectively. Acrylic flume (4.0 m long, 2.0 cm wide and 0.5 m deep) was submerged in an experimental tank (6.0 m long, 1.8 m wide and 1.2 m deep) that was filled by clear water. Features of bedforms were observed when the bed state in the flume reached equilibrium condition. The experimental conditions range 1.5-4.2 in densimetric Froude number and 0.2-0.8 in Shields dimensionless stress. We report the two major discoveries as a result of the flume experiments: (1) Plane bed under Froude-supercritical flows and (2) Geometrical characteristics of cyclic steps formed by density flows. (1) Plane bed was formed under the condition of supercritical flow regime. In previous studies, plane bed has been known to be formed by subcritical unidirectional flows (ca. 0.8 in Froude number). However, this study implies that plane bed can also be formed by supercritical conditions with high Shields dimensionless stress (>0.4) and very high Froude number (> 4.0). This discovery may suggest that previous estimations of paleo-hydraulic conditions of parallel lamination in turbidites should be reconsidered. The previous experimental studies and data from high-speed camera suggest that the region of plane bed formation coincides with the region of the sheet flow developments. The particle transport in sheet flow (thick bedload layer) induces transform of profile of flow shear stress, which may be
Models for Experimental High Density Housing
Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia
2017-10-01
The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.
Experimental Investigation of Runaway Electron Generation in Textor
R. Jaspers,; Finken, K.H.; Mank, G.; Hoenen, F.; Boedo, J. A.; Cardozo, N. J. L.; Schüller, F. C.
1993-01-01
An experimental study of the generation of runaway electrons in TEXTOR has been performed. From the infrared synchrotron radiation emitted by relativistic electrons, the number of runaway electrons can be obtained as a function of time. In low density discharges (n(e)BAR < 1 X 10(19) m-3)
X-ray electron density distribution of GaAs
International Nuclear Information System (INIS)
Pietsch, U.
1986-01-01
Using ten X-ray structure amplitudes of strong reflections and nine weak reflections both, the valence electron and the difference electron density distribution of GaAs, are calculated. The experimental data are corrected for anomalous dispersion using a bond charge model. The calculated plots are compared with up to now published band structure-based and semiempirically calculated density plots. Taking into account the experimental data of germanium, measured on the same absolute scale, the difference density between GaAs and Ge is calculated. This exhibits the charge transfer between both the f.c.c.-sublattices as well as both, the shift and the decrease of the bond charge, quite closely connected to the theoretical results published by Baur et al. (author)
Teaching Chemistry with Electron Density Models
Shusterman, Gwendolyn P.; Shusterman, Alan J.
1997-07-01
Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.
Determination of electron temperature and electron density in ...
African Journals Online (AJOL)
It is seen that the electron temperature increases from 5.8 × 102 oK to 7.83 × 104 oK as the pd is reduced from 130mm Hg × mm to 60 mm Hg × mm for argon. The electron densities increases from 2.8 × 1011/cm3 to 3.2 × 1011 /cm3 for the same variation of pds. For air the electron temperature increases from 3.6 × 104 oK to ...
Improving experimental phases for strong reflections prior to density modification
International Nuclear Information System (INIS)
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; Read, Randy J.
2013-01-01
A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ▶), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography
Topside electron density at low latitudes
International Nuclear Information System (INIS)
Ezquer, R.G.; Cabrera, M.A.; Flores, R.F.; Mosert, M.
2002-01-01
The validity of IRI to predict the electron density at the topside electron density profile over the low latitude region is checked. The comparison with measurements obtained with the Taiyo satellite during low solar activity shows that, the disagreement between prediction and measurement is lower than 40% for 70% of considered cases. These IRI predictions are better than those obtained in a previous work at the southern peak of the equatorial anomaly for high solar activity. Additional studies for low solar activity, using ionosonde data as input parameters in the model, are needed in order to check if the observed deviations are due to the predicted peak characteristics or to the predicted shape of the topside profile. (author)
Electron density measurement for steady state plasmas
International Nuclear Information System (INIS)
Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira
2000-01-01
Electron density of a large tokamak has been measured successfully by the tangential CO 2 laser polarimeter developed in JT-60U. The tangential Faraday rotation angles of two different wavelength of 9.27 and 10.6 μm provided the electron density independently. Two-color polarimeter concept for elimination of Faraday rotation at vacuum windows is verified for the first time. A system stability for long time operation up to ∼10 hours is confirmed. A fluctuation of a signal baseline is observed with a period of ∼3 hours and an amplitude of 0.4 - 0.7deg. In order to improve the polarimeter, an application of diamond window for reduction of the Faraday rotation at vacuum windows and another two-color polarimeter concept for elimination of mechanical rotation component are proposed. (author)
Experimental study of particle transport and density fluctuation in LHD
International Nuclear Information System (INIS)
Tanaka, K.; Michael, C.; Sanin, A.
2005-01-01
A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained in the standard configuration from density modulation experiments. The values of D and V are estimated separately in the core and edge. The diffusion coefficients are found to be a strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in the core and T e 1.1±0.14 in the edge. Edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in the edge is close to gyro-Bohm-like in nature. Non-zero V is observed and it is found that the electron temperature gradient can drive particle convection, particularly in the core region. The convection velocity in the core reverses direction from inward to outward as the T e gradient increases. In the edge, convection is inward directed in most cases of the present data set. It shows a modest tendency, being proportional to T e gradient and remaining inward directed. However, the toroidal magnetic field also significantly affects the value and direction of V. The density fluctuation spectrum varies with heating power suggesting that it has an influence on particle transport. The value of K sub(perpendicular) ρ i is around 0.1, as expected for gyro-Bohm diffusion. Fluctuations are localized in both positive and negative density gradient regions of the hollow density profiles. The fluctuation power in each region is clearly distinguished having different phase velocity profiles. (author)
Fukin, Georgy K.; Samsonov, Maxim A.; Arapova, Alla V.; Mazur, Anton S.; Artamonova, Tatiana O.; Khodorkovskiy, Mikhail A.; Vasilyev, Aleksander V.
2017-10-01
In this paper we present the results of a high-resolution single crystal X-ray diffraction experiment of a triphenylantimony diacrylate (Ph3Sb(O2CCH=CH2)2 (1)) and a subsequent charge density study based on a topological analysis according to quantum theory of atoms in molecules (QTAIM) together with density functional theory (DFT) calculation of isolated molecule. The QTAIM was used to investigate nature of the chemical bonds and molecular graph of Ph3Sb(O2CCH=CH2)2 complex. The molecular graph shows that only in one acrylate group there is an evidence of bonding between antimony and carbonyl oxygen atom in terms of the presence of a bond path. Thus the molecular graph for this class of compounds does not provide a definitive picture of the chemical bonding and should be complemented with other descriptors, such as and a source function (SF), noncovalent interaction (NCI) index and delocalization index (DI). Moreover the realization of π…π interactions between double bonds of acrylate groups in adjacent molecules allowed us to carry out a thermopolimerization reaction in crystals of Ph3Sb(O2CCH=CH2)2 complex and to determine a probable structure of polymer by solid state CP/MAS 13C NMR.
Electron density and plasma dynamics of a colliding plasma experiment
Energy Technology Data Exchange (ETDEWEB)
Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)
2016-07-15
We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.
Stopping power of degenerate electron liquid at metallic densities
International Nuclear Information System (INIS)
Tanaka, Shigenori; Ichimaru, Setsuo
1985-01-01
We calculate the stopping power of the degenerate electron liquid at metallic densities in the dielectric formalism. The strong Coulomb-coupling effects beyond the random-phase approximation are taken into account through the static and dynamic local-field corrections. It is shown that those strong-coupling and dynamic effects act to enhance the stopping power substantially in the low-velocity regime, leading to an improved agreement with experimental data. (author)
Experimental study of particle transport and density fluctuation in LHD
International Nuclear Information System (INIS)
Tanaka, K.; Morita, S.; Sanin, A.; Michael, C.; Kawahata, K.; Yamada, H.; Miyazawa, J.; Tokuzawa, T.; Akiyama, T.; Goto, M.; Ida, K.; Yoshinuma, M.; Narihara, K.; Yamada, I.; Yokoyama, M.; Masuzaki, S.; Morisaki, T.; Sakamoto, R.; Funaba, H.; Komori, A.; Vyacheslavov, L.N.; Murakami, S.; Wakasa, A.
2005-01-01
A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained from density modulation experiments in the standard configuration. The values of D and V are estimated separately at the core and edge. The diffusion coefficients are strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in core and T e 1.1±0.14 in edge. And edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in edge is close to gyro-Bohm-like in nature. The existence of non-zero V is observed. It is observed that the electron temperature (T e ) gradient can drive particle convection. This is particularly clear in the core region. The convection velocity in the core region reverses direction from inward to outward as the T e gradient increases. In the edge, the convection is inward directed in the most of the case of the present data set. And it shows modest tendency, whose value is proportional to T e gradient keeping inward direction. However, the toroidal magnetic field also significantly affects value and direction of V. The spectrum of density fluctuation changes at different heating power suggesting that it has an influence on particle transport. The peak wavenumber is around 0.1 times the inversed ion Larmor radius, as is expected from gyro-Bohm diffusion. The peaks of fluctuation intensity are localized at the plasma edge, where density gradient becomes negative and diffusion contributes most to the particle flux. These results suggest a qualitative correlation of fluctuations with particle diffusion. (author)
Electron scattering by nuclei and transition charge densities
International Nuclear Information System (INIS)
Gul'karov, I.S.
1988-01-01
Transition charge densities for states of electric type, for nuclei with A≤40--50 as obtained from data on inelastic electron scattering, are studied. The formalism of electroexcitation of nuclei is considered, together with various models (macroscopic and microscopic) used to calculate form factors, transition charge densities, and the moments of these densities: B(Eλ) and R/sub λ/ . The macroscopic models are derived microscopically, and it is shown that the model-independent sum rules lead to the same transition densities as calculations based on various hydrodynamic models. The sum rules with and without allowance for the Skyrme exchange interaction are discussed. The results of the calculations are compared with the experimental form factors of electron scattering by nuclei from 12 C to 48 Ca with excitation in them of normal-parity states with I/sup π/ = 0 + , 1 - , 2 + , 3 - , 4 + , 5 - and T = 0. The model-independent transition charge densities for the weakly collectivized excitations differ strongly from the model-dependent densities. The influence of neutrons on the transition charge densities of the nuclear isotopes 16 /sup ,/ 18 O, 32 /sup ,/ 34 S, and 40 /sup ,/ 48 Ca is considered
Electron Density Calibration for Radiotherapy Treatment Planning
International Nuclear Information System (INIS)
Herrera-Martinez, F.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Ruiz-Trejo, C.; Celis-Lopez, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, A.
2006-01-01
Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density (ρe) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a large range of ρe to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head
Density-dependent electron transport and precise modeling of GaN high electron mobility transistors
Energy Technology Data Exchange (ETDEWEB)
Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Reza, Shahed; Chumbes, Eduardo M. [Raytheon Integrated Defense Systems, Andover, Massachusetts 01810 (United States); Khurgin, Jacob [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-10-12
We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.
Density-dependent electron transport and precise modeling of GaN high electron mobility transistors
International Nuclear Information System (INIS)
Bajaj, Sanyam; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth
2015-01-01
We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10 7 cm/s at a low sheet charge density of 7.8 × 10 11 cm −2 . An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs
Potential and electron density calculated for freely expanding plasma by an electron beam
International Nuclear Information System (INIS)
Ho, C. Y.; Tsai, Y. H.; Ma, C.; Wen, M. Y.
2011-01-01
This paper investigates the radial distributions of potential and electron density in free expansion plasma induced by an electron beam irradiating on the plate. The region of plasma production is assumed to be cylindrical, and the plasma expansion is assumed to be from a cylindrical source. Therefore, the one-dimensional model in cylindrical coordinates is employed in order to analyze the radial distributions of the potential and electron density. The Runge-Kutta method and the perturbation method are utilized in order to obtain the numerical and approximate solutions, respectively. The results reveal that the decrease in the initial ion energy makes most of the ions gather near the plasma production region and reduces the distribution of the average positive potential, electron, and ion density along the radial direction. The oscillation of steady-state plasma along the radial direction is also presented in this paper. The ions induce a larger amplitude of oscillation along the radial direction than do electrons because the electrons oscillate around slowly moving ions due to a far smaller electron mass than ion mass. The radial distributions of the positive potential and electron density predicted from this study are compared with the available experimental data.
International Nuclear Information System (INIS)
Calderon, M.A.G.; Simonet, F.
1984-12-01
The feasibility of a swept microwave reflectometer, with one antenna only, for plasma electron density measurement is studied. Experimental results obtained in the laboratory by simulating the plasma with a metallic mirror are presented
Density-dependent electron scattering in photoexcited GaAs
DEFF Research Database (Denmark)
Mics, Zoltán; D'Angio, Andrea; Jensen, Søren A.
2013-01-01
—In a series of systematic optical pump - terahertz probe experiments we study the density-dependent electron scattering rate in photoexcited GaAs in a large range of carrier densities. The electron scattering time decreases by as much as a factor of 4, from 320 to 60 fs, as the electron density...
Electron density interferometry measurement in laser-matter interaction
International Nuclear Information System (INIS)
Popovics-Chenais, C.
1981-05-01
This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr
Energy Technology Data Exchange (ETDEWEB)
Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)
2015-12-07
The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.
Imaginary time density-density correlations for two-dimensional electron gases at high density
Energy Technology Data Exchange (ETDEWEB)
Motta, M.; Galli, D. E. [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Moroni, S. [IOM-CNR DEMOCRITOS National Simulation Center and SISSA, Via Bonomea 265, 34136 Trieste (Italy); Vitali, E. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)
2015-10-28
We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.
Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional
Joubert, Daniel P.
2011-01-01
The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.
Interaction effects in liquids with low electron densities
International Nuclear Information System (INIS)
Warren, W.W. Jr.
1987-01-01
The author discusses two complementary classes of systems in which strong electron-electron or electron-ion interactions appear at low electron densities. The first are the expanded liquid alkali metals (cesium) in which electron correlation effects have a profound effect on the magnetic properties on the metallic side of the metal-nonmetal transition. The second group are molten alkali halides containing low densities of localized electrons introduced, say, by dissolution of small amounts of excess metal. (Auth.)
International Nuclear Information System (INIS)
Hamilton, B; Jacobs, J; Missous, M
2003-01-01
This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined
Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua
2011-08-28
We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.
Experimental evidence for density dependence of reproduction in great tits
Both, Christiaan
1998-01-01
1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not
Experimental evidence for density dependence of reproduction in great tits
Both, C.
1998-01-01
1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not
Experimental study of intensive electron beam scattering in melting channel
International Nuclear Information System (INIS)
Balagura, V.S.; Kurilko, V.I.; Safronov, B.G.
1988-01-01
Multiple scattering of an intensive electron beam at 28 keV energy passing through a melting channel in iron targets is experimentally studied. The dependence of scattering on the melting current value is established. The material density in the channel on the basis of the binary collision method is evaluated. It is shown that these density values are of three orders less than the estimations made on the basis of the data on energy losses of electrons in the channel. 6 refs.; 4 figs
Interferometer for electron density measurement in exploding wire plasma
International Nuclear Information System (INIS)
Batra, Jigyasa; Jaiswar, Ashutosh; Kaushik, T.C.
2016-12-01
Mach-Zehnder Interferometer (MZI) has been developed for measuring electron density profile in pulsed plasmas. MZI is to be used for characterizing exploding wire plasmas for correlating electron density dynamics with x-rays emission. Experiments have been carried out for probing electron density in pulsed plasmas produced in our laboratory like in spark gap and exploding wire plasmas. These are microsecond phenomenon. Changes in electron density have been registered in interferograms with the help of a streak camera for specific time window. Temporal electron density profiles have been calculated by analyzing temporal fringe shifts in interferograms. This report deals with details of MZI developed in our laboratory along with its theory. Basic introductory details have also been provided for exploding wire plasmas to be probed. Some demonstrative results of electron density measurements in pulsed plasmas of spark gap and single exploding wires have been described. (author)
Laboratory Astrophysics Using High Energy Density Photon and Electron Beams
Bingham, Robert
2005-01-01
The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.
Energy Technology Data Exchange (ETDEWEB)
Nguyen Trong, Khoi [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1960-07-01
Theoretical discussions and experimental verifications of one radioelectric resonance method for measuring plasma electronic density and collision frequency. (author) [French] Discussions theoriques et verifications experimentales sur une methode de resonance radioelectrique pour la mesure de la densite electronique et de la frequence de collision d'un plasma d'une decharge dans le gaz. (auteur)
Current density monitor for intense relativistic electron beams
International Nuclear Information System (INIS)
Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.
1986-01-01
We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment
Recent experimental results on level densities for compound reaction calculations
International Nuclear Information System (INIS)
Voinov, A.V.
2012-01-01
There is a problem related to the choice of the level density input for Hauser-Feshbach model calculations. Modern computer codes have several options to choose from but it is not clear which of them has to be used in some particular cases. Availability of many options helps to describe existing experimental data but it creates problems when it comes to predictions. Traditionally, different level density systematics are based on experimental data from neutron resonance spacing which are available for a limited spin interval and one parity only. On the other hand reaction cross section calculations use the total level density. This can create large uncertainties when converting the neutron resonance spacing to the total level density that results in sizable uncertainties in cross section calculations. It is clear now that total level densities need to be studied experimentally in a systematic manner. Such information can be obtained only from spectra of compound nuclear reactions. The question is does level densities obtained from compound nuclear reactions keep the same regularities as level densities obtained from neutron resonances- Are they consistent- We measured level densities of 59-64 Ni isotopes from proton evaporation spectra of 6,7 Li induced reactions. Experimental data are presented. Conclusions of how level density depends on the neutron number and on the degree of proximity to the closed shell ( 56 Ni) are drawn. The level density parameters have been compared with parameters obtained from the analysis of neutron resonances and from model predictions
Electronic DC transformer with high power density
Pavlovský, M.
2006-01-01
This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components
International Nuclear Information System (INIS)
Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.
2011-01-01
In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.
Experimental Evidence for Static Charge Density Waves in Iron Oxypnictides
Martinelli, A.; Manfrinetti, P.; Provino, A.; Genovese, Alessandro; Caglieris, F.; Lamura, G.; Ritter, C.; Putti, M.
2017-01-01
In this Letter we report high-resolution synchrotron x-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge driven.
Experimental Evidence for Static Charge Density Waves in Iron Oxypnictides
Martinelli, A.
2017-02-01
In this Letter we report high-resolution synchrotron x-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge driven.
Electron density measurements in the TRIAM-1 tokamak
Energy Technology Data Exchange (ETDEWEB)
Mitarai, O; Nakashima, H; Nakamura, K; Hiraki, N; Toi, K [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1980-02-01
Electron density measurements in the TRIAM-1 tokamak are carried out by a 140 GHz microwave interferometer. To follow rapid density variations, a high-speed direct-reading type interferometer is constructed. The density of (1 - 20) x 10/sup 13/ cm/sup -3/ is measured.
Electron density measurements in the TRIAM-1 tokamak
International Nuclear Information System (INIS)
Mitarai, Osamu; Nakashima, Hisatoshi; Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo
1980-01-01
Electron density measurements in the TRIAM-1 tokamak are carried out by a 140 GHz microwave interferometer. To follow rapid density variations, a high-speed direct-reading type interferometer is constructed. The density of (1 - 20) x 10 13 cm -3 is measured. (author)
Effective atomic numbers and electron density of dosimetric material
Directory of Open Access Journals (Sweden)
Kaginelli S
2009-01-01
Full Text Available A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, m/r, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates. The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes.
Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko
2018-01-01
Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.
Thermal electron mobilities in low density gaseous mixtures
International Nuclear Information System (INIS)
Dmitriev, O.W.; Tchorzewska, W.; Szamrej, I.; Forys, M.
1992-01-01
A new method of obtaining thermal electron mobilities from experimental dependencies observed in the electron swarm is described; the method is suitable for both electron accepting and non-accepting systems. The electron mobilities for CO 2 , CH 4 C 2 H 6 as well as for N 2 , Ar, Xe, Kr and their mixtures with carbon dioxide are obtained. (Author)
Schmitz, O.; Beigman, I. L.; Vainshtein, L. A.; Schweer, B.; Kantor, M.; Pospieszczyk, A.; Xu, Y.; Krychowiak, M.; Lehnen, M.; Samm, U.; Unterberg, B.
2008-01-01
Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T-e(r, t) and electron density ne(r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed
Simulation of the electron cloud density in BEPC II
International Nuclear Information System (INIS)
Liu Yudong; Guo Zhiyuan; Wang Jiuqing
2004-01-01
Electron Cloud Instability (ECI) may take place in positron storage ring when the machine is operated with multi-bunch positron beam. According to the actual shape of the vacuum chamber in the BEPC II, a program has been developed. With the code, authors can calculate the electron density in the chamber with different length of antechamber and the different secondary electron yield respectively. By the simulation, the possibility to put clearing electrodes in the chamber to reduce the electron density in the central region of the chamber is investigated. The simulation provides meaningful and important results for the BEPC II project and electron cloud instability research
Acceleration of high charge density electron beams in the SLAC linac
International Nuclear Information System (INIS)
Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.
1984-01-01
The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures
Determination of Jupiter's electron density profile from plasma wave observations
International Nuclear Information System (INIS)
Gurnett, D.A.; Scarf, F.L.; Kurth, W.S.; Shaw, R.R.; Poynter, R.L.
1981-01-01
This paper summarizes the electron density measurements obtained in the Jovian magnetosphere from the plasma wave instruments on the Voyager 1 and 2 spacecraft. Three basic techniques are discussed for determining the electron density: (1) local measurements from the low-frequency cutoff of continuum radiation, (2) local measurements from the frequency of upper hybrid resonance emissions, and (3) integral measurements from the dispersion of whistlers. The limitations and advantages of each technique are critically reviewed. In all cases the electron densities are unaffected by spacecraft charging or sheath effects, which makes these measurements of particular importance for verifying in situ plasma and low-energy charged particle measurments. In the outer regions of the dayside magnetosphere, beyond about 40 R/sub J/, the electron densities range from about 3 x 10 -3 to 3 x 10 -2 cm -3 . On Voyager 2, several brief excursions apparently occurred into the low-density region north of the plasma sheet with densities less than 10 -3 cm -3 . Approaching the planet the electron density gradually increases, with the plasma frequency extending above the frequency range of the plasma wave instrument (56 kHz, or about 38 electrons cm -3 ) inside of about 8 R/sub J/. Within the high-density region of the Io plasma torus, whistlers provide measurements of the north-south scale height of the plasma torus, with scale heights ranging from about 0.9 to 2.5 R/sub J/
Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry
Directory of Open Access Journals (Sweden)
Luis R. Domingo
2016-09-01
Full Text Available A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT, is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT, the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.
Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.
Domingo, Luis R
2016-09-30
A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.
Electron density distribution in Si and Ge using multipole, maximum ...
Indian Academy of Sciences (India)
Si and Ge has been studied using multipole, maximum entropy method (MEM) and ... and electron density distribution using the currently available versatile ..... data should be subjected to maximum possible utility for the characterization of.
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
Apparatus and method for generating high density pulses of electrons
International Nuclear Information System (INIS)
Lee, C.; Oettinger, P.E.
1981-01-01
An apparatus and method are described for the production of high density pulses of electrons using a laser energized emitter. Caesium atoms from a low pressure vapour atmosphere are absorbed on and migrate from a metallic target rapidly heated by a laser to a high temperature. Due to this heating time being short compared with the residence time of the caesium atoms adsorbed on the target surface, copious electrons are emitted which form a high current density pulse. (U.K.)
Ion transition heights from topside electron density profiles
International Nuclear Information System (INIS)
Titheridge, J.E.
1976-01-01
Theoretical electron density profiles are calculated for the topside ionosphere to determine the major factors controlling the profile shape. Only the mean temperature, the vertical temperature gradient and the O + /H + ion transition height are important. Vertical proton fluxes alter the ion transition height but have no other effect on the profile shape. Diffusive equilibrium profiles including only these three effects fit observed profiles, at all latitudes, to within experimental accuracy. Values of plasma temperature, temperature gradient and ion transition height hsub(T) were determined by fitting theoretical models to 60,000 experimental profiles obtained from Alouette 1 ionograms, at latitudes of 75 0 S to 85 0 N near solar minimum. Inside the plasmasphere hsub(T) varies from about 500 km on winter nights to 850 km on summer days. Diurnal variations are caused primarily by the production and loss of O + in the ionosphere. The approximately constant winter night value of hsub(T) is close to the level for chemical equilibrium. In summer hsub(T) is always above the equilibrium level, giving a continual production of protons which travel along lines of force to aid in maintaining the conjugate winter night ionosphere. Outside the plasmasphere hsub(T) is 300 to 600 km above the equilibrium level at all times. This implies a continual near-limiting upwards flux of protons which persists down to latitudes of about 60 0 at night and 50 0 during the day. (author)
Experimental observations of anomalous potential drops over ion density cavities
International Nuclear Information System (INIS)
Bohm, M.
1991-08-01
Experiments are reported showing the plasma potential response when a step voltage is applied over the plasma column between the two plasma sources in a triple plasma machine. The time resolution is sufficient to resolve potential variations caused essentially by the electron motion, and two independent probe methods are used to obtain this time resolution. Depending on the initial conditions two different responses were observed on the time scale of the electron motion. When the initial ion density varies along the plasma column and has a local minimum (that is, forms an ion density cavity), the applied potential drop becomes distributed over the cavity after a few electron transit times. Later the profile steepens to a double layer on the time scale of the ion motion. The width of the cavity is comparable to the length of the plasma column. When the initial density is axially uniform, most of the potential drop instead concentrates to a narrow region at the low potential end of the plasma column after a few electron transit times. On the time scale of the ion motion this potential drop begins to propagate into the plasma as a double layer. The results obtained are consistent with those from numerical simulations with similar boundary conditions. Further experiments are necessary to get conclusive insight into the voltage supporting capability of an ion density cavity. (au) (34 refs.)
High current density M-type cathodes for vacuum electron devices
International Nuclear Information System (INIS)
Li Ji; Yu Zhiqiang; Shao Wensheng; Zhang Ke; Gao Yujuan; Yuan Haiqing; Wang Hui; Huang Kaizhi; Chen Qilue; Yan Suqiu; Cai Shaolun
2005-01-01
We investigated high current density emission capabilities of M-type cathodes used for vacuum electron devices (VEDs). The experimental results of emission and lifetime evaluating in both close-spaced diode structure and electron gun testing vehicles are given. Emission current densities measured in the diode structure at 1020 deg. C Br in the CW mode were above 10 A/cm 2 ; while in electron gun testing vehicles, emission current densities were above 8 A/cm 2 in CW mode and above 32 A/cm 2 in pulsed mode, respectively. The current density above 94 A/cm 2 has been acquired in no. 0306 electron gun vehicle while the practical temperature is 1060 deg. C Br . For a comparison some of the data from I-scandate cathodes are presented. Finally, several application examples in practical travelling wave tubes (TWTs) and multi beam klystrons (MBKs) are also reported
Wigner-like crystallization of Anderson-localized electron systems with low electron densities
Slutskin, A A; Pepper, M
2002-01-01
We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...
International Nuclear Information System (INIS)
Sahu, G K; Baruah, S; Thakur, K B
2012-01-01
Electron beam is preferably used for large scale evaporation of refractory materials. Material evaporation from a long and narrow source providing a well collimated wedge shaped atomic beam has applications in isotopic purification of metals relevant to nuclear industry. The electron beam from an electron gun with strip type filament provides a linear heating source. However, the high power density of the electron beam can lead to turbulence of the melt pool and undesirable splashing of molten metal. For obtaining quiet surface evaporation, the linear electron beam is generally scanned along its length. To further reduce the power density to maintain quiet evaporation the width of the vapour source can be controlled by rotating the electron gun on its plane, thereby scanning an inclined beam over the molten pool. The rotation of gun has further advantages. When multiple strip type electron guns are used for scaling up evaporation length, a dark zone appears between two beams due to physical separation of adjacent guns. This dark zone can be reduced by rotating the gun and thereby bringing two adjacent beams closer. The paper presented here provides the simulation results of the electron beam trajectory and incident power density originating from two strip electron guns by using in-house developed code. The effect of electron gun rotation on the electron beam trajectory and power density is studied. The simulation result is experimentally verified with the image of molten pool and heat affected zone taken after experiment. This technique can be gainfully utilized in controlling the time averaged power density of the electron beam and obtaining quiet evaporation from the metal molten pool.
Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi
2018-04-01
Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.
Electron temperature and density profiles measurement in the TJ-1 tokamak by Thomson scattering
International Nuclear Information System (INIS)
Pardo, C.; Zurro, B.
1986-01-01
Electron temperature and density profiles of ohmically heated hydrogen plasmas in the TJ-1 tokamak have been measured by Thomson scattering. The temperature profile peaks sharply in the central region while the density profile is very flat. Temperature values between 100 and 390 eV have been measured for densities in the range of 5.10 12 to 2.6.10 13 cm -3 . Parameters characterizing TJ-1 plasma, such as confinement times Z eff , have been deduced from experimental data. Energy confinement times are compared with experimental scaling laws. (author)
Tomography of the ionospheric electron density with geostatistical inversion
Directory of Open Access Journals (Sweden)
D. Minkwitz
2015-08-01
Full Text Available In relation to satellite applications like global navigation satellite systems (GNSS and remote sensing, the electron density distribution of the ionosphere has significant influence on trans-ionospheric radio signal propagation. In this paper, we develop a novel ionospheric tomography approach providing the estimation of the electron density's spatial covariance and based on a best linear unbiased estimator of the 3-D electron density. Therefore a non-stationary and anisotropic covariance model is set up and its parameters are determined within a maximum-likelihood approach incorporating GNSS total electron content measurements and the NeQuick model as background. As a first assessment this 3-D simple kriging approach is applied to a part of Europe. We illustrate the estimated covariance model revealing the different correlation lengths in latitude and longitude direction and its non-stationarity. Furthermore, we show promising improvements of the reconstructed electron densities compared to the background model through the validation of the ionosondes Rome, Italy (RO041, and Dourbes, Belgium (DB049, with electron density profiles for 1 day.
Kumar, Krishan; Moudgil, R K
2012-10-17
We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.
Plasma density profiles and finite bandwidth effects on electron heating
International Nuclear Information System (INIS)
Spielman, R.B.; Mizuno, K.; DeGroot, J.S.; Bollen, W.M.; Woo, W.
1980-01-01
Intense, p-polarized microwaves are incident on an inhomogeneous plasma in a cylindrical waveguide. Microwaves are mainly absorbed by resonant absorption near the critical surface (where the plasma frequency, ω/sub pe/, equals the microwave frequency, ω/sub o/). The localized plasma waves strongly modify the plasma density. Step-plateau density profiles or a cavity are created depending on the plasma flow speed. Hot electron production is strongly affected by the microwave bandwidth. The hot electron temperature varies as T/sub H/ is proportional to (Δ ω/ω) -0 25 . As the hot electron temperature decreases with increasing driver bandwidth, the hot electron density increases. This increase is such that the heat flux into the overdense region (Q is proportional to eta/sub H/T/sub H/ 3 2 ) is nearly constant
Precision Electron Density Measurements in the SSX MHD Wind Tunnel
Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.
2017-10-01
We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.
Experimental study on working characteristics of density lock
International Nuclear Information System (INIS)
Sun Furong; Yan Changqi; Gu Haifeng
2011-01-01
The working principle of density lock was introduced in this paper, and the experimental loop was built so that researches on working performance of density lock in the system were done at steady-state operation and pump trip conditions. The results show that at steady-state operation conditions, density lock can keep close in a long run, which will separate passive residual heat removal circuit from primary circuit. As a result, passive residual heat removal circuit is in the non-operating conditions, which dose not influence normal operation of reactors. At the pump trip conditions, density lock can be automatically opened quickly, which will make primary and passive residual heat removal system communicated. The natural circulation is well established in the two systems, and is enough to ensure removal of residual heat. (authors)
Electron density and gas density measurements in a millimeter-wave discharge
Energy Technology Data Exchange (ETDEWEB)
Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology 167 Albany St., Bldg. NW16, Cambridge, Massachusetts 02139 (United States)
2016-08-15
Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.
Electron density and gas density measurements in a millimeter-wave discharge
International Nuclear Information System (INIS)
Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.
2016-01-01
Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.
International Nuclear Information System (INIS)
March, N.H.
2006-08-01
A differential equation for the Dirac density matrix γ(r, r'), given ground-state electron- and kinetic energy-densities, has been derived by March and Suhai for one- and two-level occupancy. For ten-electron spin-compensated spherical systems, it is shown here that γ ≡ γ[ρ, t g ] where ρ and t g are electron- and kinetic energy-densities. The philosophy of March and Suhai is confirmed beyond two-level filling. An important byproduct of the present approach is an explicit expression for the one-body potential of DFT in terms of the p-shell electron density. (author)
Feeder density enhances house finch disease transmission in experimental epidemics.
Moyers, Sahnzi C; Adelman, James S; Farine, Damien R; Thomason, Courtney A; Hawley, Dana M
2018-05-05
Anthropogenic food provisioning of wildlife can alter the frequency of contacts among hosts and between hosts and environmental sources of pathogens. Despite the popularity of garden bird feeding, few studies have addressed how feeders influence host contact rates and disease dynamics. We experimentally manipulated feeder density in replicate aviaries containing captive, pathogen-naive, groups of house finches ( Haemorhous mexicanus ) and continuously tracked behaviours at feeders using radio-frequency identification devices. We then inoculated one bird per group with Mycoplasma gallisepticum (Mg), a common bacterial pathogen for which feeders are fomites of transmission, and assessed effects of feeder density on house finch behaviour and pathogen transmission. We found that pathogen transmission was significantly higher in groups with the highest density of bird feeders, despite a significantly lower rate of intraspecific aggressive interactions relative to the low feeder density groups. Conversely, among naive group members that never showed signs of disease, we saw significantly higher concentrations of Mg-specific antibodies in low feeder density groups, suggesting that birds in low feeder density treatments had exposure to subclinical doses of Mg. We discuss ways in which the density of garden bird feeders could play an important role in mediating the intensity of Mg epidemics.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).
Electron momentum density and Compton profile by a semi-empirical approach
Aguiar, Julio C.; Mitnik, Darío; Di Rocco, Héctor O.
2015-08-01
Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the valence electrons. This expression is similar to a Fermi-Dirac distribution function with two parameters, one of which coincides with the ground state kinetic energy of the free-electron gas and the other resembles the electron-electron interaction energy. In the proposed scheme conduction electrons are neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include correlation effects. We tested the approach for all metals with Z=3-50 and showed the results for three representative elements: Li, Be and Al from high-resolution experiments.
Experimental study of fast electron transport in dense plasmas
International Nuclear Information System (INIS)
Vaisseau, Xavier
2014-01-01
The framework of this PhD thesis is the inertial confinement fusion for energy production, in the context of the electron fast ignition scheme. The work consists in a characterization of the transport mechanisms of fast electrons, driven by intense laser pulses (10 19 - 10 20 W/cm 2 ) in both cold-solid and warm-dense matter. The first goal was to study the propagation of a fast electron beam, characterized by a current density ≥ 10 11 A/cm 2 , in aluminum targets initially heated close to the Fermi temperature by a counter-propagative planar shock. The planar compression geometry allowed us to discriminate the energy losses due to the resistive mechanisms from collisional ones by comparing solid and compressed targets of the same initial areal densities. We observed for the first time a significant increase of resistive energy losses in heated aluminum samples. The confrontation of the experimental data with the simulations, including a complete characterization of the electron source, of the target compression and of the fast electron transport, allowed us to study the time-evolution of the material resistivity. The estimated resistive electron stopping power in a warm-compressed target is of the same order as the collisional one. We studied the transport of the fast electrons generated in the interaction of a high-contrast laser pulse with a hollow copper cone, buried into a carbon layer, compressed by a counter-propagative planar shock. A X-ray imaging system allowed us to visualize the coupling of the laser pulse with the cone at different moments of the compression. This diagnostic, giving access to the fast electron spatial distribution, showed a fast electron generation in the entire volume of the cone for late times of compression, after shock breakout from the inner cone tip. For earlier times, the interaction at a high-contrast ensured that the source was contained within the cone tip, and the fast electron beam was collimated into the target depth by
Rocket measurements of electron density irregularities during MAC/SINE
Ulwick, J. C.
1989-01-01
Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.
Electron sputtering in the analytical electron microscope: Calculations and experimental data
International Nuclear Information System (INIS)
Zaluzec, N.J.; Mansfield, J.F.
1987-03-01
The environment of the electron microscope is particularly severe when one considers the energy deposited in a specimen during typical experimental conditions. Conventional imaging experiments tend to employ electron current densities ranging from ∼0.1 to 1 A/cm 2 while during microanalysis conditions probe current densities can range from 10 to values as high as 10 5 A/cm 2 . At 100 kV this corresponds to power densities from 100 Kilowatts/cm 2 to 10 4 Megawatts/cm 2 . These energy deposition rates can result in electron irradiation damage which can substantially alter the structure and composition of a specimen through either ionization damage in organics or by displacement damage in inorganics and/or combinations thereof. For the most part materials scientists operating an analytical electron microscope (AEM) in the 100 to 200 kV regime studying metallic and/or ceramic specimens have been spared the need to consider either of these effects as their specimens have tended to be sufficiently resilient. However, the advent of the new medium voltage microscopes operating in the 300 to 400 kV regime with high brightness guns and clean or ultrahigh vacuum systems has necessitated a reevaluation of the effects of higher voltage operation in light of the destructive nature of the electron beam particularly under microanalysis conditions
WEBEXPIR: Windowless target electron beam experimental irradiation
International Nuclear Information System (INIS)
Dierckx, Marc; Schuurmans, Paul; Heyse, Jan; Rosseel, Kris; Tichelen, Katrien Van; Nactergal, Benoit; Vandeplassche, Dirk; Aoust, Thierry; Abs, Michel; Guertin, Arnaud; Buhour, Jean-Michel; Cadiou, Arnaud; Abderrahim, Hamid Ait
2008-01-01
The windowless target electron beam experimental irradiation (WEBEXPIR) program was set-up as part of the MYRRHA/XT-ADS R and D effort on the spallation target design to investigate the interaction of a proton beam with a liquid lead-bismuth eutectic (LBE) free surface. In particular, possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation were assessed. An experiment was conceived at the IBA TT-1000 Rhodotron, where a 7 MeV electron beam was used to simulate the high power deposition at the MYRRHA/XT-ADS LBE free surface. The geometry and the LBE flow characteristics in the WEBEXPIR set-up were made as representative as possible of the actual situation in the MYRRHA/XT-ADS spallation target. Irradiation experiments were carried out at beam currents of up to 10 mA, corresponding to 40 times the nominal beam current necessary to reproduce the MYRRHA/XT-ADS conditions. Preliminary analyses show that the WEBEXPIR free surface flow was not disturbed by the interaction with the electron beam and that vacuum conditions stayed well within the design specifications
Proposed non-interferometric FIR electron density measuring scheme for Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Dodel, G; Kunz, W [Stuttgart Univ. (TH) (Germany, F.R.). Inst. fuer Plasmaforschung
1979-08-01
Extension of FIR polarimetry to electron density measurements in Tokamaks is suggested as a possible alternative for devices in which FIR interferometry is not applicable or difficult to handle due to reduced accessibility or strong mechanical vibrations. The method is numerically simulated. The relative experimental simplicity compared with interferometry has to be paid for with symmetry assumptions which enter into the evaluation process.
Construction of New Electronic Density Functionals with Error Estimation Through Fitting
DEFF Research Database (Denmark)
Petzold, V.; Bligaard, T.; Jacobsen, K. W.
2012-01-01
We investigate the possibilities and limitations for the development of new electronic density functionals through large-scale fitting to databases of binding energies obtained experimentally or through high-quality calculations. We show that databases with up to a few hundred entries allow for u...
Electron density and temperature determination in a Tokamak plasma using light scattering
International Nuclear Information System (INIS)
Perez-Navarro Gomez, A.; Zurro Hernandez, B.
1976-01-01
A theoretical foundation review for light scattering by plasmas is presented. Furthemore, a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, is included in a Tokamak plasma using spectral analysis of the scattered radiation. (author) [es
Electron density and temperature determination in a Tokamak plasma using light scattering
International Nuclear Information System (INIS)
Perez-Navarro Gomerz, A.; Zurro Hernandez, B.
1976-01-01
A theoretical foundation review for light scattering by plasmas is presented. Furthermore, we have included a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, in a Tokamak plasma using spectral analysis of the scattered radiation. (Author) 13 refs
Electron density profile measurements by microwave reflectometry on Tore Supra
International Nuclear Information System (INIS)
Clairet, F.; Paume, M.; Chareau, J.M.
1995-01-01
A proposal is presented developing reflectometry diagnostic for electron density profile measurements as routine diagnostic without manual intervention as achieved at JET. Since density fluctuations seriously perturb the reflected signal and the measurement of the group delay, a method is described to overcome the irrelevant results with the help of an adaptive filtering technique. Accurate profiles are estimated for about 70% of the shots. (author) 3 refs.; 6 figs
Reconstruction of the ionospheric electron density by geostatistical inversion
Minkwitz, David; van den Boogaart, Karl Gerald; Hoque, Mainul; Gerzen, Tatjana
2015-04-01
The ionosphere is the upper part of the atmosphere where sufficient free electrons exist to affect the propagation of radio waves. Typically, the ionosphere extends from about 50 - 1000 km and its morphology is mainly driven by solar radiation, particle precipitation and charge exchange. Due to the strong ionospheric impact on many applications dealing with trans-ionospheric signals such as Global Navigation Satellite Systems (GNSS) positioning, navigation and remote sensing, the demand for a highly accurate reconstruction of the electron density is ever increasing. Within the Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) the utilization of the upcoming radar mission TanDEM-L and its related products are prepared. The TanDEM-L mission will operate in L-band with a wavelength of approximately 24 cm and aims at an improved understanding of environmental processes and ecosystem change, e.g. earthquakes, volcanos, glaciers, soil moisture and carbon cycle. Since its lower frequency compared to the X-band (3 cm) and C-band (5 cm) radar missions, the influence of the ionosphere will increase and might lead to a significant degradation of the radar image quality if no correction is applied. Consequently, our interest is the reconstruction of the ionospheric electron density in order to mitigate the ionospheric delay. Following the ionosphere's behaviour we establish a non-stationary and anisotropic spatial covariance model of the electron density separated into a vertical and horizontal component. In order to estimate the model's parameters we chose a maximum likelihood approach. This approach incorporates GNSS total electron content measurements, representing integral measurements of the electron density between satellite to receiver ray paths, and the NeQuick model as a non-stationary trend. Based on a multivariate normal distribution the spatial covariance model parameters are optimized and afterwards the 3D electron density can be
NATO Advanced Study Institute on Electron and Magnetization Densities in Molecules and Crystals
1980-01-01
The interest of describing the ground state properties of a system in terms of one electron density (or its two spin components) is obvious, in particular due to the simple physical significance of this function. Recent experimental progress in diffraction made the measurement of charge and magnetization densities in crystalline solids possible, with an accuracy at least as good as theoretical accuracy. Theoretical developments of the many-body problem have proved the extreme importance of the one electron density function and presently, accurate methods of band structure determination become available. Parallel to the diffraction techniques, other domains of research (inelastic scattering, resonance, molecular spectroscopy) deal with quantities directly related to the one particle density. But the two types of studies do not interfere enough and one should obviously gain more information by interpreting all experiments that are related to the density together. It became necessary to have an International Sch...
Positivity of the spherically averaged atomic one-electron density
DEFF Research Database (Denmark)
Fournais, Søren; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas
2008-01-01
We investigate the positivity of the spherically averaged atomic one-electron density . For a which stems from a physical ground state we prove that for r ≥ 0. This article may be reproduced in its entirety for non-commercial purposes.......We investigate the positivity of the spherically averaged atomic one-electron density . For a which stems from a physical ground state we prove that for r ≥ 0. This article may be reproduced in its entirety for non-commercial purposes....
Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle
2017-09-25
One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.
Plasma density remote control system of experimental advanced superconductive tokamak
International Nuclear Information System (INIS)
Zhang Mingxin; Luo Jiarong; Li Guiming; Wang Hua; Zhao Dazheng; Xu Congdong
2007-01-01
In Tokamak experiments, experimental data and information on the density control are stored in the local computer system. Therefore, the researchers have to be in the control room for getting the data. Plasma Density Remote Control System (DRCS), which is implemented by encapsulating the business logic on the client in the B/S module, conducts the complicated science computation and realizes the synchronization with the experimental process on the client. At the same time, Web Services and Data File Services are deployed for the data exchange. It is proved in the experiments that DRCS not only meets the requirements for the remote control, but also shows an enhanced capability on the data transmission. (authors)
Electronic Structures of Strained InAs x P1-x by Density Functional Theory.
Lee, Seung Mi; Kim, Min-Young; Kim, Young Heon
2018-09-01
We investigated the effects of strain on the electronic structures of InAsxP1-x using quantum mechanical density functional theory calculations. The electronic band gap and electron effective mass decreased with the increase of the uniaxial tensile strain along the [0001] direction of wurtzite InAs0.75P0.25. Therefore, faster electron movements are expected. These theoretical results are in good agreement with the experimental measurements of InAs0.75P0.25 nanowire.
Evaporation of carbon using electrons of a high density plasma
International Nuclear Information System (INIS)
Muhl, S.; Camps, E.; Escobar A, L.; Garcia E, J.L.; Olea, O.
1999-01-01
The high density plasmas are used frequently in the preparation of thin films or surface modification, for example to nitridation. In these processes, are used mainly the ions and the neutrals which compose the plasma. However, the electrons present in the plasma are not used, except in the case of chemical reactions induced by collisions, although the electron bombardment usually get hot the work piece. Through the adequate polarization of a conductor material, it is possible to extract electrons from a high density plasma at low pressure, that could be gotten the evaporation of this material. As result of the interaction between the plasma and the electron flux with the vapor produced, this last will be ionized. In this work, it is reported the use of this novelty arrangement to prepare carbon thin films using a high density argon plasma and a high purity graphite bar as material to evaporate. It has been used substrates outside plasma and immersed in the plasma. Also it has been reported the plasma characteristics (temperature and electron density, energy and ions flux), parameters of the deposit process (deposit rate and ion/neutral rate) as well as the properties of the films obtained (IR absorption spectra and UV/Vis, elemental analysis, hardness and refractive index. (Author)
Experimental investigation of statistical density function of decaying radioactive sources
International Nuclear Information System (INIS)
Salma, I.; Zemplen-Papp, E.
1991-01-01
The validity of the Poisson and the λ P(k) modified Poisson statistical density functions of observing k events in a short time interval is investigated experimentally in radioactive decay detection for various measuring times. The experiments to measure radioactive decay were performed with 89m Y, using a multichannel analyzer. According to the results, Poisson statistics adequately describes the counting experiment for short measuring times. (author) 13 refs.; 4 figs
Our experimental study of physiological modifications of densities
International Nuclear Information System (INIS)
Lamarque, J.L.; Bruel, J.M.; Dondelinger, R.; Vendrell, B.; Pelissier, O.; Rouanet, J.P.; Michel, J.L.; Bengana, H.; Levy, P.; Bruno, C.; Balmes, M.; Lopez, P.; Triby, X.
1979-01-01
Results of a comparative study performed with anatomical sections to identify the anatomical structures of the abdomen are presented. An experimental study consisted of an assay of a comparative study of densities performed on cadavers. An in vivo study consisted of a statistical study involving 278 cases of densitometric readings performed in hepatic, panreatic, renal parenchyma, splenic mesenchyma and several other tissues such as: fat, bones, muscles, spinal cord. (Auth.)
X-ray electron charge density distribution in silicon
International Nuclear Information System (INIS)
Pietsch, U.
1986-01-01
During the last two years new highly accurate X-ray structure amplitudes for silicon have been published. Also the scattering phases of some 'forbidden' reflections have been determined using the X-ray three-beam case. This allows the construction of most precise valence and difference electron density plots and the comparison with those calculated on the basis of the Aldret-Hart X-ray pendelloesung data or theoretically. The density plots are discussed in details of both, the bond and the atomic site. The contributions of various Fourier components and the influence of different temperature factors on the difference density are studied. (author)
Electron density measurements during ion beam transport on Gamble II
International Nuclear Information System (INIS)
Weber, B.V.; Hinshelwood, D.D.; Neri, J.M.; Ottinger, P.F.; Rose, D.V.; Stephanakis, S.J.; Young, F.C.
1999-01-01
High-sensitivity laser interferometry was used to measure the electron density created when an intense proton beam (100 kA, 1 MeV, 50 ns) from the Gamble II generator was transported through low-pressure gas as part of a project investigating Self-Pinched Transport (SPT) of intense ion beams. This measurement is non-perturbing and sufficiently quantitative to allow benchmarking of codes (particularly IPROP) used to model beam-gas interaction and ion-beam transport. Very high phase sensitivity is required for this measurement. For example, a 100-kA, 1-MeV, 10-cm-radius proton beam with uniform current density has a line-integrated proton density equal to n b L = 3 x 10 13 cm -2 . An equal electron line-density, n e L = n b L, (expected for transport in vacuum) will be detected as a phase shift of the 1.064 microm laser beam of only 0.05degree, or an optical path change of 1.4 x 10 -4 waves (about the size of a hydrogen atom). The time-history of the line-integrated electron density, measured across a diameter of the transport chamber at 43 cm from the input aperture, starts with the proton arrival time and decays differently depending on the gas pressure. The gas conditions included vacuum (10 -4 Torr air), 30 to 220 mTorr He, and 1 Torr air. The measured densities vary by three orders of magnitude, from 10 13 to 10 16 cm -2 for the range of gas pressures investigated. In vacuum, the measured electron densities indicate only co-moving electrons (n e L approximately n b L). In He, when the gas pressure is sufficient for ionization by beam particles and SPT is observed, n e L increases to about 10 n b L. At even higher pressures where electrons contribute to ionization, even higher electron densities are observed with an ionization fraction of about 2%. The diagnostic technique as used on the SPT experiment will be described and a summary of the results will be given. The measurements are in reasonable agreement with theoretical predictions from the IPROP code
Electron and current density measurements on tokamak plasmas
International Nuclear Information System (INIS)
Lammeren, A.C.A.P. van.
1991-01-01
The first part of this thesis describes the Thomson-scattering diagnostic as it was present at the TORTUR tokamak. For the first time with this diagnostic a complete tangential scattering spectrum was recorded during one single laser pulse. From this scattering spectrum the local current density was derived. Small deviations from the expected gaussian scattering spectrum were observed indicating the non-Maxwellian character of the electron-velocity distribution. The second part of this thesis describes the multi-channel interferometer/ polarimeter diagnostic which was constructed, build and operated on the Rijnhuizen Tokamak Project (RTP) tokamak. The diagnostic was operated routinely, yielding the development of the density profiles for every discharge. When ECRH (Electron Cyclotron Resonance Heating) is switched on the density profile broadens, the central density decreases and the total density increases, the opposite takes place when ECRH is switched off. The influence of MHD (magnetohydrodynamics) activity on the density was clearly observable. In the central region of the plasma it was measured that in hydrogen discharges the so-called sawtooth collapse is preceded by an m=1 instability which grows rapidly. An increase in radius of this m=1 mode of 1.5 cm just before the crash is observed. In hydrogen discharges the sawtooth induced density pulse shows an asymmetry for the high- and low-field side propagation. This asymmetry disappeared for helium discharges. From the location of the maximum density variations during an m=2 mode the position of the q=2 surface is derived. The density profiles are measured during the energy quench phase of a plasma disruption. A fast flattening and broadening of the density profile is observed. (author). 95 refs.; 66 figs.; 7 tabs
Assessing the effect of electron density in photon dose calculations
International Nuclear Information System (INIS)
Seco, J.; Evans, P. M.
2006-01-01
Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown
Measurements of plasma temperature and electron density in laser
Indian Academy of Sciences (India)
The temperature and electron density characterizing the plasma are measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time window of 300–2000 ns. An echelle spectrograph coupled with a gated intensified charge coupled detector is used to record the plasma emissions.
Spectral density of electron concentration fluctuations in ionospheric D region
International Nuclear Information System (INIS)
Martynenko, S.I.
1989-01-01
Expression for spectral density of electron concentration fluctuations in D-region with regard to the effect of ionization-recombination proceses and negative ions is obtained in terms of atmospheric turbulence model which obeys Kolmogorov-Obukhov 2/3 law
Effective atomic number, electron density and kerma of gamma ...
Indian Academy of Sciences (India)
Abstract. An attempt has been made to estimate the effective atomic number, electron density (0.001 to 105 MeV) and kerma (0.001 to 20 MeV) of gamma radiation for a wide range of oxides of ... The lanthanide oxides ﬁnd remarkable applications in the ﬁeld of medicine, biology, nuclear engineering and space technology.
Ultra-stretchable Interconnects for high-density stretchable electronics
Shafqat, S.; Hoefnagels, J.P.M.; Savov, A.; Joshi, S.; Dekker, R.; Geers, M.G.D.
2017-01-01
The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for
Density functional theory study of structure, electronic and magnetic ...
Indian Academy of Sciences (India)
ABHIJIT DUTTA
2018-01-30
Jan 30, 2018 ... magnetic properties of non-metal (Group 13) doped stable. Rhn(n = 2−8) ... Deformed electron density was found to be higher in the case of Rh5B, Rh4Al, Rh7Al and ...... systems: Modeling of surface alloys and alloy surfaces.
Covariance and correlation estimation in electron-density maps.
Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna
2012-03-01
Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.
Behavior of the bottomside electron density profile over Pruhonice
Czech Academy of Sciences Publication Activity Database
Mosert, M.; Burešová, Dalia; Ezquer, R.; Mansilla, G.
2004-01-01
Roč. 34, č. 9 (2004), s. 1982-1989 ISSN 0273-1177 R&D Projects: GA AV ČR IAA3042102 Institutional research plan: CEZ:AV0Z3042911 Keywords : Electron density profiles * Variability Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.548, year: 2004
Windowless Electron Beam Experimental Irradiation WEBExplr
International Nuclear Information System (INIS)
Heyse, J.
2009-01-01
The design of the MYRRHA/XT-ADS, the European eXperimental Accelerator Driven System for the demonstration of Transmutation, includes a high power windowless spallation target operating with liquid LBE (Lead-Bismuth Eutectic) that will be irradiated with a 600 MeV proton beam at currents of up to 2.5 mA. When considering such a high power windowless target design, a number of questions need to be addressed, such as the stability of the free surface flow and its ability to remove the power deposited by the proton beam by forced convection, the compatibility of a large hot LBE reservoir with the beam line vacuum and the outgassing of the LBE in the spallation target circuit. These issues have been studied during previous experiments supported by numerical simulations. Another crucial point in the development of the spallation target is the demonstration of the safe and stable operation of the free LBE surface during irradiation with a high power proton beam. As a first step in this program, the WEBExpIr (Windowless target Electron Beam Experimental Irradiation) experiment was set up. The purpose of the WEBExpIr experiment was to investigate the influence of LBE surface heating caused by a charged particle beam in a situation representative of the MYRRHA/XT-ADS. More in particular, we wanted to assess possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation
International Nuclear Information System (INIS)
Zhang, L.; Ding, B. J.; Li, M. H.; Kong, E. H.; Wei, W.; Liu, F. K.; Shan, J. F.; Wu, Z. G.; Zhu, L.; Ma, W. D.; Tong, Y. Y.; Li, Y. C.; Wang, M.; Zhao, L. M.; Hu, H. C.; Liu, L.
2013-01-01
A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm −2 to 10.3 MWm −2 and the rate of puffing gas varies from 1.7 × 10 20 el/s to 14 × 10 20 el/s. The relation between the edge density (from 0.3 × n e-cutoff to 20 × n e-cutoff , where n e-cutoff is the cutoff density, n e-cutoff = 0.74 × 10 17 m −3 for 2.45 GHz lower hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive
Ligand Electron Density Shape Recognition Using 3D Zernike Descriptors
Gunasekaran, Prasad; Grandison, Scott; Cowtan, Kevin; Mak, Lora; Lawson, David M.; Morris, Richard J.
We present a novel approach to crystallographic ligand density interpretation based on Zernike shape descriptors. Electron density for a bound ligand is expanded in an orthogonal polynomial series (3D Zernike polynomials) and the coefficients from this expansion are employed to construct rotation-invariant descriptors. These descriptors can be compared highly efficiently against large databases of descriptors computed from other molecules. In this manuscript we describe this process and show initial results from an electron density interpretation study on a dataset containing over a hundred OMIT maps. We could identify the correct ligand as the first hit in about 30 % of the cases, within the top five in a further 30 % of the cases, and giving rise to an 80 % probability of getting the correct ligand within the top ten matches. In all but a few examples, the top hit was highly similar to the correct ligand in both shape and chemistry. Further extensions and intrinsic limitations of the method are discussed.
Relations among several nuclear and electronic density functional reactivity indexes
Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel
2003-11-01
An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.
Density-density functionals and effective potentials in many-body electronic structure calculations
International Nuclear Information System (INIS)
Reboredo, Fernando A.; Kent, Paul R.
2008-01-01
We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.
Sison Escaño, Mary Clare; Lacdao Arevalo, Ryan; Gyenge, Elod; Kasai, Hideaki
2014-09-01
The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4- on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.
Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms
Chapagain, N. P.; Rana, B.; Adhikari, B.
2017-12-01
Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.
Energy Technology Data Exchange (ETDEWEB)
Sonnad, Kiran G., E-mail: kgs52@cornell.edu [CLASSE, Cornell University, Ithaca, NY (United States); Hammond, Kenneth C. [Department of Physics, Harvard University, Cambridge, MA (United States); Schwartz, Robert M. [CLASSE, Cornell University, Ithaca, NY (United States); Veitzer, Seth A. [Tech-X Corporation, Boulder, CO (United States)
2014-08-01
The use of transverse electric (TE) waves has proved to be a powerful, noninvasive method for estimating the densities of electron clouds formed in particle accelerators. Results from the plasma simulation program VSim have served as a useful guide for experimental studies related to this method, which have been performed at various accelerator facilities. This paper provides results of the simulation and modeling work done in conjunction with experimental efforts carried out at the Cornell electron storage ring “Test Accelerator” (CESRTA). This paper begins with a discussion of the phase shift induced by electron clouds in the transmission of RF waves, followed by the effect of reflections along the beam pipe, simulation of the resonant standing wave frequency shifts and finally the effects of external magnetic fields, namely dipoles and wigglers. A derivation of the dispersion relationship of wave propagation for arbitrary geometries in field free regions with a cold, uniform cloud density is also provided.
Evolution of density-dependent movement during experimental range expansions.
Fronhofer, E A; Gut, S; Altermatt, F
2017-12-01
Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Reassessment of the electron density in Cu2O using γ-ray diffraction.
Jauch, Wolfgang; Reehuis, Manfred
2014-12-01
The electron-density distribution in Cu2O has been critically reexamined to test controversial conclusions from earlier experimental and theoretical studies. The electron density is derived via multipole refinement of high-quality single-crystal diffraction data, collected at room temperature with 316.5 keV gamma radiation. Four γ-lines in the energy range 200-600 keV have been used to extrapolate extinction-free low-order structure factors. The remaining extinction corrections refine to a crystal mosaicity identical to the observed one. There is no support for anharmonic contributions to the thermal parameters. Important features of the derived electron density are (i) a partially filled d_{z^2} orbital, (ii) an incomplete ionization of Cu and O, and (iii) no interstitial Cu-Cu charge pileup, thereby refuting the covalent bonding hypothesis.
Collimated fast electron beam generation in critical density plasma
Energy Technology Data Exchange (ETDEWEB)
Iwawaki, T., E-mail: iwawaki-t@eie.eng.osaka-u.ac.jp; Habara, H.; Morita, K.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Baton, S.; Fuchs, J.; Chen, S. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); Nakatsutsumi, M. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); European X-Ray Free-Electron Laser Facility (XFEL) GmbH (Germany); Rousseaux, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Filippi, F. [La SAPIENZA, University of Rome, Dip. SBAI, 00161 Rome (Italy); Nazarov, W. [School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland (United Kingdom)
2014-11-15
Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.
Energy Technology Data Exchange (ETDEWEB)
Scott, R. H. H.; Norreys, P. A. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Perez, F.; Baton, S. D. [LULI, Ecole Polytechnique, UMR 7605, CNRS/CEA/UPMC, Route de Saclay, 91128 Palaiseau (France); Santos, J. J.; Nicolai, Ph.; Hulin, S. [Univ. Bordeaux/CNRS/CEA, CELIA, UMR 5107, 33405 Talence (France); Ridgers, C. P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Davies, J. R. [GoLP, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lancaster, K. L.; Trines, R. M. G. M. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Bell, A. R.; Tzoufras, M. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Rose, S. J. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)
2012-05-15
A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of {approx}20 Degree-Sign . It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam.
Electron density in non-ideal metal complexes. Pt. 1
International Nuclear Information System (INIS)
Varghese, J.N.; Maslen, E.N.
1985-01-01
The structure of copper sulphate pentahydrate was refined using an accurate set of X-ray data: Msub(r)=249.68, triclinic, Panti 1, a=6.1224(4), b=10.7223(4), c=5.9681(4) A, α=82.35(2), β=107.33(2), γ=102.60(4) 0 , V=364.02(3) A 3 , Z=2, Dsub(x)=2.278 Mg m -3 , Mo Kα, lambda=0.71069 A, μ=3.419 mm -1 , F(000)=254.0, T=298 K, R=0.039 for 7667 reflections. The structural parameters are compared with those obtained by neutron diffraction. The differences between X-ray and neutron positions are related to the hydrogen bonding in the structure. The dominant features in the residual density near the two crystallographically independent Cu atoms result from the redistribution of 3d electrons due to bonding. The density is anisotropic, as expected in view of the Jahn-Teller distortion in the structure. Marked differences in the d-electron distributions for the two Cu atoms correlate with small variations in molecular geometry. Second-nearest-neighbour effects, such as those arising from differently oriented ligating waters, are significant in this structure. Sharp features in the difference density close to the Cu nuclei are similar to those in other Cu 2+ complexes, indicating that the electron density in this region is more reliable than previously believed. (orig.)
C library for topological study of the electronic charge density.
Vega, David; Aray, Yosslen; Rodríguez, Jesús
2012-12-05
The topological study of the electronic charge density is useful to obtain information about the kinds of bonds (ionic or covalent) and the atom charges on a molecule or crystal. For this study, it is necessary to calculate, at every space point, the electronic density and its electronic density derivatives values up to second order. In this work, a grid-based method for these calculations is described. The library, implemented for three dimensions, is based on a multidimensional Lagrange interpolation in a regular grid; by differentiating the resulting polynomial, the gradient vector, the Hessian matrix and the Laplacian formulas were obtained for every space point. More complex functions such as the Newton-Raphson method (to find the critical points, where the gradient is null) and the Cash-Karp Runge-Kutta method (used to make the gradient paths) were programmed. As in some crystals, the unit cell has angles different from 90°, the described library includes linear transformations to correct the gradient and Hessian when the grid is distorted (inclined). Functions were also developed to handle grid containing files (grd from DMol® program, CUBE from Gaussian® program and CHGCAR from VASP® program). Each one of these files contains the data for a molecular or crystal electronic property (such as charge density, spin density, electrostatic potential, and others) in a three-dimensional (3D) grid. The library can be adapted to make the topological study in any regular 3D grid by modifying the code of these functions. Copyright © 2012 Wiley Periodicals, Inc.
Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar
2017-11-01
Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below
International Nuclear Information System (INIS)
Shrimpton, P.C.
1981-01-01
Accurate direct measurements of electron density have been performed on specimens from 10 different tissue types of the human body, representing the major organs, using a Compton scatter technique. As a supplement to these experimental values, calculations have been carried out to determine the electron densities expected for these tissue types. The densities observed are in good agreement with the broad ranges deduced from the basic data previously published. The results of both the in vitro sample measurements and the approximate calculations indicate that the electron density of most normal healthy soft tissue can be expected to fall within the fairly restricted range of +- 5% around 3.4 X 10 23 electrons per cm 3 . The obvious exception to this generalisation is the result for lung tissue, which falls considerably below this range owing to the high air content inherent in its construction. In view of such an overall limited variation with little difference between tissues, it would appear that electron density alone is likely to be a rather poor clinical parameter for tissue analysis, with high accuracy and precision being essential in any in vivo Compton measurements for imaging or diagnosis on specific organs. (author)
Nishimoto, Yoshio
2015-09-07
We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.
Density effects on electronic configurations in dense plasmas
Faussurier, Gérald; Blancard, Christophe
2018-02-01
We present a quantum mechanical model to describe the density effects on electronic configurations inside a plasma environment. Two different approaches are given by starting from a quantum average-atom model. Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize the effects of the ionization potential depression treatment. Our approach compares well with experiment and is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression rather than with the method of Ecker and Kröll.
International Nuclear Information System (INIS)
Thiyagarajan, Magesh; Scharer, John
2008-01-01
We present measurements and analysis of laser induced plasma neutral densities and temperatures in dry air by focusing 200 mJ, 10 MW high power, 193 nm ultraviolet ArF (argon fluoride) laser radiation to a 30 μm radius spot size. We examine these properties that result from multiphoton and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnostic technique is used to obtain the plasma electron temperature just after the shock front and this is compared with optical emission spectroscopic measurements of nitrogen rotational and vibrational temperatures. Two-color laser interferometry is employed to measure time resolved spatial electron and neutral density decay in initial local thermodynamic equilibrium (LTE) and non-LTE conditions. The radiating species and thermodynamic characteristics of the plasma are analyzed by means of optical emission spectroscopy (OES) supported by SPECAIR, a special OES program for air constituent plasmas. Core plasma rotational and vibrational temperatures are obtained from the emission spectra from the N 2 C-B(2+) transitions by matching the experimental spectrum results with the SPECAIR simulation results and the results are compared with the electron temperature just behind the shock wave. The plasma density decay measurements are compared with a simplified electron density decay model that illustrates the dominant three-and two-body recombination terms with good correlation
Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.
Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter
2015-05-21
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.
Compression of a mixed antiproton and electron non-neutral plasma to high densities
Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano
2018-04-01
We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.
Wigner-like crystallization of Anderson-localized electron systems with low electron densities
International Nuclear Information System (INIS)
Slutskin, A.A.; Kovtun, H.A.; Pepper, M.
2002-01-01
We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the residual disorder of the AWG is characterized by a multi-valley ground-state degeneracy akin to that in a spin glass. Some general features of the AWG are discussed, and a new conduction mechanism of a creep type is predicted
The relationship between ionospheric temperature, electron density and solar activity
International Nuclear Information System (INIS)
McDonald, J.N.; Williams, P.J.S.
1980-01-01
In studying the F-region of the ionosphere several authors have concluded that the difference between the electron temperature Tsub(e) and the ion temperature Tsub(i) is related to the electron density N. It was later noted that solar activity (S) was involved and an empirical relationship of the following form was established: Tsub(e)-Tsub(i) = A-BN+CS. The present paper extends this work using day-time data over a four year period. The results are given and discussed. A modified form of the empirical relation is proposed. (U.K.)
Electron Density in Atmospheric Pressure Microwave Surface Wave Discharges
International Nuclear Information System (INIS)
Jasinski, M.; Zakrzewski, Z.; Mizeraczyk, J.
2008-01-01
In this paper, we present results of the spectroscopic measurements of the electron density in a microwave surface wave sustained discharges in Ar and Ne at atmospheric pressure. The discharge in the form of a plasma column was generated inside a quartz tube cooled with a dielectric liquid. The microwave power delivered to the discharge via rectangular waveguide was applied in the range of 200-1500 W. In all investigations presented in this paper, the gas flow rate was relatively low (0.5 l/min), so the plasma column was generated in the form of a single filament, and the lengths of the upstream and downstream plasma columns were almost the same. The electron density in the plasma columns was determined using the method based on the Stark broadening of H β spectral line, including plasma region inside the waveguide which was not investigated earlier
International Nuclear Information System (INIS)
Bertelli, N; Balakin, A A; Westerhof, E; Garcia, O E; Nielsen, A H; Naulin, V
2010-01-01
A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667].
The electronic density of states of disordered compounds
International Nuclear Information System (INIS)
Geertsma, W.; Dijkstra, J.
1984-11-01
Recently, the electronic properties of liquid alkali (Li, Na, K, Rb, Cs)-group IV (Si, Ge, Sn, Pb) alloys have been discussed by the present authors using a tight-binding model. Only anion orbitals (= group IV) are taken into account. Disorder is described by a pseudo lattice, which takes into account local coordination in one of the sublattices (cation or anion) only. In the first part of this paper it is shown that this approximation is consistent with the usual valence rules used by structural chemists for crystalline structures. In the second part of the paper the solutions for the density of states of the tight-binding Hamiltonian are studied for a number of pseudolattices. The infinite set of Green function equations is solved by using the effective transfer method, which replaces the famous Block condition. It is shown that such a model can explain the formation of bandgaps in disordered systems. By choosing the proper smallest cluster(s) of transfer loops to model the real structure by a pseudolattice, a density of states is obtained which represents properly that of the corresponding crystalline structure. Structures reminiscent to those caused by van Hove singularities already appear in the electronic density of states when relatively small cluster(s) of transfer loops are used. The approach outlined in this paper is capable of describing the electronic density of states due to various degrees of local order in a sublattice. Some of the peculiarities occurring in the solution of the density of states of certain pseudolattices, such as poles outside the band, are discussed in an appendix. (author)
New Data on the Topside Electron Density Distribution
Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert F.
2001-01-01
The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.
Effective atomic number and electron density of marble concrete
International Nuclear Information System (INIS)
Akkurt, I.; El-Khayatt, A.M.
2013-01-01
The effective atomic numbers (Z eff ) and effective electron density (N e ) of different type concrete have been measured and the results were compared with the calculation obtained using the mass attenuation coefficients (μ/ρ) obtained via XCOM in the photon energy range of 1 keV-100 GeV. Six different concrete in where marble has been used in the rate of 0, 5, 10, 15, 20, 25 %, has been used in the study. (author)
Mikheyev-Smirnov-Wolfenstein effect for linear electron density
International Nuclear Information System (INIS)
Lehmann, H.; Osland, P.; Wu, T.T.; European Organization for Nuclear Research, Geneva
2001-01-01
When the electron density is a linear function of distance, it is known that the MSW equations for two neutrino species can be solved in terms of known functions. It is shown here that more generally, for any number of neutrino species, these MSW equations can be solved exactly in terms of single integrals. While these integrals cannot be expressed in terms of known functions, some of their simple properties are obtained. Application to the solar neutrino problem is briefly discussed. (orig.)
Mikheyev-Smirnov-Wolfenstein Effect for Linear Electron Density
Lehmann, H; Wu Tai Tsun; Lehmann, Harry; Osland, Per; Wu, Tai Tsun
2001-01-01
When the electron density is a linear function of distance, it is known that the MSW equations for two neutrino species can be solved in terms of known functions. It is shown here that more generally, for any number of neutrino species, these MSW equations can be solved exactly in terms of single integrals. While these integrals cannot be expressed in terms of known functions, some of their simple properties are obtained. Application to the solar neutrino problem is briefly discussed.
Mikheyev-Smirnov-Wolfenstein Effect for Linear Electron Density
Lehmann, H; Osland, P; Wu Tai Tsun
2000-01-01
When the electron density is a linear function of distance, it is known that the MSW equations for two neutrino species can be solved in terms of known functions. It is shown here that more generally, for any number of neutrino species, these MSW equations can be solved exactly in terms of single integrals. While these integrals cannot be expressed in terms of known functions, some of their simple properties are obtained. Application to the solar neutrino problem is briefly discussed.
International Nuclear Information System (INIS)
Woo, M.K.; Cunningham, J.R.
1990-01-01
In the convolution/superposition method of photon beam dose calculations, inhomogeneities are usually handled by using some form of scaling involving the relative electron densities of the inhomogeneities. In this paper the accuracy of density scaling as applied to primary electrons generated in photon interactions is examined. Monte Carlo calculations are compared with density scaling calculations for air and cork slab inhomogeneities. For individual primary photon kernels as well as for photon interactions restricted to a thin layer, the results can differ significantly, by up to 50%, between the two calculations. However, for realistic photon beams where interactions occur throughout the whole irradiated volume, the discrepancies are much less severe. The discrepancies for the kernel calculation are attributed to the scattering characteristics of the electrons and the consequent oversimplified modeling used in the density scaling method. A technique called the kernel integration technique is developed to analyze the general effects of air and cork inhomogeneities. It is shown that the discrepancies become significant only under rather extreme conditions, such as immediately beyond the surface after a large air gap. In electron beams all the primary electrons originate from the surface of the phantom and the errors caused by simple density scaling can be much more significant. Various aspects relating to the accuracy of density scaling for air and cork slab inhomogeneities are discussed
Molecular surface mesh generation by filtering electron density map.
Giard, Joachim; Macq, Benoît
2010-01-01
Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.
Molecular Surface Mesh Generation by Filtering Electron Density Map
Directory of Open Access Journals (Sweden)
Joachim Giard
2010-01-01
Full Text Available Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.
A real-space stochastic density matrix approach for density functional electronic structure.
Beck, Thomas L
2015-12-21
The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.
Energy Technology Data Exchange (ETDEWEB)
Osmani, O; Duvenbeck, A; Akcoeltekin, E; Meyer, R; Schleberger, M [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany); Lebius, H [CIMAP, blvd Henri Becquerel, 14070 Caen (France)], E-mail: marika.schleberger@uni-due.de
2008-08-06
In recent experiments the irradiation of insulators of perovskite type with swift (E{approx}100 MeV) heavy ions under glancing incidence has been shown to provide a unique means to generate periodically arranged nanodots at the surface. The physical origin of these patterns has been suggested as stemming from a highly anisotropic electron density distribution within the bulk. In order to show the relevance of the electron density distribution of the target we present a model calculation for the system Xe{sup 23+} {yields} SrTiO{sub 3} that is known to produce the aforementioned surface modifications. On the basis of the Lindhard model of electronic stopping, we employ highly-resolved ab initio electron density data to describe the conversion of kinetic energy into excitation energy along the ion track. The primary particle dynamics are obtained via integration of the Newtonian equations of motion that are governed by a space- and time-dependent frictional force originating from Lindhard stopping. The analysis of the local electronic stopping power along the ion track reveals a pronounced periodic structure. The periodicity length varies strongly with the particular choice of the polar angle of incidence and is directly correlated to the experimentally observed formation of periodic nanodots at insulator surfaces.
International Nuclear Information System (INIS)
March, N.H.
2002-08-01
In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e 2 /r 12 , with r 12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)
Experimental Search for a Heavy Electron
Boley, C. D.; Elias, J. E.; Friedman, J. I.; Hartmann, G. C.; Kendall, H. W.; Kirk, P.N.; Sogard, M. R.; Van Speybroeck, L. P.; de Pagter, J. K.
1967-09-01
A search for a heavy electron of the type considered by Low and Blackmon has been made by studying the inelastic scattering of 5 BeV electrons from hydrogen. The search was made over a range of values of the mass of the heavy electron from 100 t0 1300 MeV. No evidence for such a particle was observed. Upper limits on the production cross sections were determined and employed to deducelimits on the values of the electron-photon-heavy electron coupling constant in Low and Blackmon=s theory.
Experimental observation of exploding electron bubbles
International Nuclear Information System (INIS)
Classen, J.; Su, C.K.; Hall, S.C.; Pettersen, M.S.; Maris, H.J.
1996-01-01
Since free electrons form small voids in liquid helium they are expected to be preferred sites for nucleating macroscopic bubbles when the liquid is exposed to sufficiently large negative pressures. We have performed a series of cavitation experiments using focussed ultrasound where free electrons were introduced into the liquid by a radioactive source. The electron bubbles are found to explode at negative pressures significantly lower than those required for homogeneous nucleation. We present measurements of the thresholds for cavitation at electrons in the temperature range 1 - 4.5 K. Reasonable agreement with a simple model for the stability limit of the electron bubble is obtained. (author)
Energy Technology Data Exchange (ETDEWEB)
Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)
2014-05-14
Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.
International Nuclear Information System (INIS)
Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M
2016-01-01
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)
Annenkov, Y. M.; Surzhikov, A. P.; Surzhikov, V. P.; Pogrebnjak, A. D.
1981-07-01
Optical absorption spectra and the angular distribution of annihilated positrons in MgO crystals irradiated by subtreshold superdense electron pulses are measured. The experimental results obtained show the effective contribution of the creation mechanism of non-impact radiation defects in MgO crystals at the highest electron irradiation densities.
DAMPING OF ELECTRON DENSITY STRUCTURES AND IMPLICATIONS FOR INTERSTELLAR SCINTILLATION
International Nuclear Information System (INIS)
Smith, K. W.; Terry, P. W.
2011-01-01
The forms of electron density structures in kinetic Alfven wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ∼ 10 8 -10 10 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.
International Nuclear Information System (INIS)
Doyle, John Gerard; Perez-Suarez, David; Singh, Avninda; Chapman, Steven; Bryans, Paul; Summers, Hugh; Savin, Daniel Wolf
2010-01-01
Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368 A and Mg X 625 A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04 MK compared to just below 0.82 MK at solar minimum.
Solitary electron density waves in a magnetized, plasma-loaded waveguide
International Nuclear Information System (INIS)
Lynov, J.-P.
1980-08-01
Investigations of two different types of nonlinear, solitary electron density waves in a magnetized, plasma-loaded waveguide are presented. One of the wavetypes is a localized, compressional pulse identified as a Trivelpiece-Gould soliton. The modification of this soliton by the resonant electrons is studied theoretically, by direct numerical solution of the model equation, experimentally, and by numerical simulation of the experiment. The other wave is a localized, rarefactive pulse called an electron hole. It is a positive pulse consisting of a large number of trapped electrons and is a purely kinetic phenomenon. A simple waterbag model for the electron hole is derived and compared with the results from the experiment and the numerical simulation. Finally, interactions between the solitary waves are investigated. (Auth.)
Reconstruction of the electron momentum density distribution by the maximum entropy method
International Nuclear Information System (INIS)
Dobrzynski, L.
1996-01-01
The application of the Maximum Entropy Algorithm to the analysis of the Compton profiles is discussed. It is shown that the reconstruction of electron momentum density may be reliably carried out. However, there are a number of technical problems which have to be overcome in order to produce trustworthy results. In particular one needs the experimental Compton profiles measured for many directions, and to have efficient computational resources. The use of various cross-checks is recommended. (orig.)
Derivation of electron density and temperature from (S II) and (O II) line intensity ratios
Energy Technology Data Exchange (ETDEWEB)
Canto, J; Meaburn, J; Theokas, A C [Manchester Univ. (UK). Dept of Astronomy; Elliott, K H [Anglo-Australian Observatory, Epping (Australia)
1980-12-01
Line intensity ratios for (S II) and (O II) due to collisional de-excitation are briefly discussed. Comparison is made between various reaction rate parameters presented by separate investigators. Included are observations of ratios obtained from the Orion nebula which experimentally confirm the reaction rates of Pradhan as best representing the observed distribution of these ratios. (O II) and (S II) contour plots are also presented, which allow effective electron temperatures and densities to be estimated from pairs of line ratios.
International Nuclear Information System (INIS)
Bulka, B.R.
1982-04-01
A tight-binding one-dimensional distorted system with impurities is considered and the electron density of states is calculated in the coherent potential approximation. It is shown that two types of impurities, an impurity built in a chain and a domain wall (a soliton), play the essential role and a drastic reduction of the energy gap is observed for a few per cent of impurities. The experimental situation in polyacetylene is also discussed. (author)
X-ray electron density investigation of chemical bonding in van der Waals materials
Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.
2018-03-01
Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.
Automated Processing of ISIS Topside Ionograms into Electron Density Profiles
Reinisch, bodo W.; Huang, Xueqin; Bilitza, Dieter; Hills, H. Kent
2004-01-01
Modeling of the topside ionosphere has for the most part relied on just a few years of data from topside sounder satellites. The widely used Bent et al. (1972) model, for example, is based on only 50,000 Alouette 1 profiles. The International Reference Ionosphere (IRI) (Bilitza, 1990, 2001) uses an analytical description of the graphs and tables provided by Bent et al. (1972). The Alouette 1, 2 and ISIS 1, 2 topside sounder satellites of the sixties and seventies were ahead of their times in terms of the sheer volume of data obtained and in terms of the computer and software requirements for data analysis. As a result, only a small percentage of the collected topside ionograms was converted into electron density profiles. Recently, a NASA-funded data restoration project has undertaken and is continuing the process of digitizing the Alouette/ISIS ionograms from the analog 7-track tapes. Our project involves the automated processing of these digital ionograms into electron density profiles. The project accomplished a set of important goals that will have a major impact on understanding and modeling of the topside ionosphere: (1) The TOPside Ionogram Scaling and True height inversion (TOPIST) software was developed for the automated scaling and inversion of topside ionograms. (2) The TOPIST software was applied to the over 300,000 ISIS-2 topside ionograms that had been digitized in the fkamework of a separate AISRP project (PI: R.F. Benson). (3) The new TOPIST-produced database of global electron density profiles for the topside ionosphere were made publicly available through NASA s National Space Science Data Center (NSSDC) ftp archive at . (4) Earlier Alouette 1,2 and ISIS 1, 2 data sets of electron density profiles from manual scaling of selected sets of ionograms were converted fiom a highly-compressed binary format into a user-friendly ASCII format and made publicly available through nssdcftp.gsfc.nasa.gov. The new database for the topside ionosphere established
Dimmable electronic ballasts by variable power density modulation technique
Borekci, Selim; Kesler, Selami
2014-11-01
Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.
Density functional application to strongly correlated electron systems
International Nuclear Information System (INIS)
Eschrig, H.; Koepernik, K.; Chaplygin, I.
2003-01-01
The local spin density approximation plus onsite Coulomb repulsion approach (LSDA+U) to density functional theory is carefully reanalyzed. Its possible link to single-particle Green's function theory is occasionally discussed. A simple and elegant derivation of the important sum rules for the on-site interaction matrix elements linking them to the values of U and J is presented. All necessary expressions for an implementation of LSDA+U into a non-orthogonal basis solver for the Kohn-Sham equations are given, and implementation into the full-potential local-orbital solver (Phys. Rev. B 59 (1999) 1743) is made. Results of application to several planar cuprate structures are reported in detail and conclusions on the interpretation of the physics of the electronic structure of the cuprates are drawn
Electronic structure of the Fe2 molecule in the local-spin-density approximation
International Nuclear Information System (INIS)
Dhar, S.; Kestner, N.R.
1988-01-01
Ab initio self-consistent all-electron spin-polarized calculations have been performed for the ground-state properties of the Fe 2 molecule using the local-spin-density approximation. A Gaussian orbital basis is employed and all the two-electron integrals are evaluated analytically. The matrix elements of the exchange-correlation potential are computed numerically. The total energy, the binding energy, the equilibrium distance, vibrational frequency, and the ground-state configurations are reported and compared with other calculations and experimental results
Charge density of 58Ni, by scattering of electrons at high moment transfer
International Nuclear Information System (INIS)
Turck, Sylvaine
1976-01-01
Due to the unique electromagnetic interaction involved, electron elastic scattering allows a nuclear structure to be tested through nucleus magnetisation and charge distribution. In a first part, this research thesis reports experiments performed on the Saclay Linear Accelerator (ALS) with the 58 Ni nucleus, a well closed magic nucleus which allows a qualitative comparison between experiments and Hartree-Fock calculations to be performed. The author presents the experimental set-up, describes data acquisition, data reduction and corrections. The second part proposes a theoretical introduction to electron scattering, discusses the analysis without model, and theoretical predictions of charge density
International Nuclear Information System (INIS)
Yuan Zhongcai; Shi Jiaming; Xu Bo
2005-01-01
The plasma diagnostic method using the transmission attenuation of microwaves at double frequencies (PDMUTAMDF) indicates that the frequency and the electron-neutral collision frequency of the plasma can be deduced by utilizing the transmission attenuation of microwaves at two neighboring frequencies in a non-magnetized plasma. Then the electron density can be obtained from the plasma frequency. The PDMUTAMDF is a simple method to diagnose the plasma indirectly. In this paper, the interaction of electromagnetic waves and the plasma is analyzed. Then, based on the attenuation and the phase shift of a microwave in the plasma, the principle of the PDMUTAMDF is presented. With the diagnostic method, the spatially mean electron density and electron collision frequency of the plasma can be obtained. This method is suitable for the elementary diagnosis of the atmospheric-pressure plasma
Pre-storm electron density enhancements at middle latitudes
Czech Academy of Sciences Publication Activity Database
Burešová, Dalia; Laštovička, Jan
2008-01-01
Roč. 70, č. 15 (2008), s. 1848-1855 ISSN 1364-6826 R&D Projects: GA MŠk OC 091; GA MŠk 1P05OC030; GA AV ČR 1QS300120506; GA ČR GA205/08/1356 Grant - others:European Union(XE) COST 296 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * Electron density * Pre-stormenhancement Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.667, year: 2008
Regions of low electron density in the Earth plasmasphere
International Nuclear Information System (INIS)
Grigor'eva, V.P.; Pisareva, V.V.
1987-01-01
Regions with low electron density N e were detected in night, morning and evening hours according to observations of natural noise, made on board ''Prognos-5'' satellite from January till June, 1977 in the plasmasphere for the southern Earth semisphere. The largest regions with low N e values were located in the region of the Brazil magnetic anomaly in the range of geographic latitudes ∼ ± 30 deg from the equator and longitudes from 100 up to 240 deg E, as well as in the latitudes near-by the geomagnetic equator and in the regions with slight shift from it to the winter hemisphere
Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang
2018-04-01
Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.
Experimental study on secondary electron emission characteristics of Cu
Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang
2018-02-01
Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.
Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy
2018-01-09
Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.
Positron probing of electron momentum density in GaAs-AlAs superlattices and related materials
International Nuclear Information System (INIS)
Arutyunov, N.Y.; Sekkal, N.
2008-08-01
The band structure calculations based on the method proposed by Jaros et al. (Phys. Rev. B 31, 1205 (1985)) have been performed for the defect-free GaAs-AlAs superlattice and related AlAs and GaAs single crystals; the electron-positron momentum density distributions have been computed and analyzed. The results of calculations are in good agreement with the experimental data obtained ad hoc for GaAs and AlAs bulk materials by measuring the angular correlation of the annihilation radiation (ACAR). Small (but marked) features of the electron-positron momentum density of the valence band have been revealed both for constituent materials and GaAs-AlAs superlattice. The delocalization of positron in 'perfect' defect-'free' AlAs and GaAs single crystals to be observed experimentally is borne out by the results of pseudo-potential band calculations performed on the basis of method proposed by Sekkal et al. (Superlattices and Microstructures, 33, 63 (2003)). The prediction of the possibility of a certain confinement of positron in the interstitial area of GaAs- AlAs superlattice is confirmed by the agreement between the results of calculations and relevant experimental data obtained for GaAs and AlAs single crystals. No considerable effect of the enhancement of the annihilation rate (due to electron-positron interaction) upon the electron-positron momentum density distribution both in the superlattice and its constituent bulk materials has been found. The results of ACAR measurements and calculations performed suggest that a tangible improvement of the sensitivity of existing positron annihilation techniques is necessary for studying details of the electron-positron momentum density distributions in defect-'free' superlattices to be created on the basis of the diamond-like semiconductors possessing close values of the electron momentum densities. On the contrary, the positron-sensitive vacancy-type defects of various types in the superlattice may become a source of the
Experimental Determination of Bed Conditions in Concentrated Pyroclastic Density Currents
Winner, A.; Ferrier, K.; Dufek, J.
2016-12-01
Pyroclastic density currents (PDCs) are ground-hugging mixtures of hot gas and rock that can reach temperatures > 800 oC and speeds of 200 m/s. These flows are capable of eroding and entraining the underlying bed material into the flow, which can strongly influence flow momentum, runout distance, and hazards associated with PDCs. However, the mechanism of erosion remains poorly constrained, with proposed mechanisms including under-pressure following the head of the fluidized current, force chain enhanced stresses at the bed, and discrete particle impacts and friction. The interactions between PDCs and the bed have been difficult to observe in the field, as their infrequent occurrence, opacity, and hostile environment make real-time measurement difficult. This study is aimed at obtaining a better understanding of the interactions between PDCs and the bed through a quantitative analysis of bed forces. Our experimental apparatus consists of a rotating cylindrical flume of radius 22 cm, within which gas-rich granular material flows along the interior of the cylinder as it rotates. By using a rotating cylinder, we are able to simulate long-duration flows, allowing us to observe impact forces at the bed over timescales comparable to the flow duration of natural PDCs. To measure the distribution and evolution of forces imparted by the flow on the bed, we constructed a cylindrical insert with a non-erodible bed in which we embedded force sensor arrays parallel and perpendicular to the direction of flow. To measure the forces felt by the particles in the flow, we added "smart particles" 25 to 50 mm in diameter to the flow. Each smart particle contains a three-axis accelerometer and a micro SD card enclosed in a spherical plastic casing, and possesses a density similar to that of the pumice in the experimental flow. Each smart particle also contains a three-axis magnetometer which permits its location to be tracked by means of a unique applied magnetic field. Ultimately
Directory of Open Access Journals (Sweden)
H. Laakso
2002-11-01
Full Text Available Using spacecraft potential measurements of the Polar electric field experiment, we investigate electron density variations of key plasma regions within the magnetosphere, including the polar cap, cusp, trough, plasmapause, and auroral zone. The statistical results were presented in the first part of this study, and the present paper reports detailed structures revealed by individual satellite passes. The high-altitude (> 3 RE polar cap is generally one of the most tenuous regions in the magnetosphere, but surprisingly, the polar cap boundary does not appear as a steep density decline. At low altitudes (1 RE in summer, the polar densities are very high, several 100 cm-3 , and interestingly, the density peaks at the central polar cap. On the noonside of the polar cap, the cusp appears as a dense, 1–3° wide region. A typical cusp density above 4 RE distance is between several 10 cm-3 and a few 100 cm-3 . On some occasions the cusp is crossed multiple times in a single pass, simultaneously with the occurrence of IMF excursions, as the cusp can instantly shift its position under varying solar wind conditions, similar to the magnetopause. On the nightside, the auroral zone is not always detected as a simple density cavity. Cavities are observed but their locations, strengths, and sizes vary. Also, the electric field perturbations do not necessarily overlap with the cavities: there are cavities with no field disturbances, as well as electric field disturbances observed with no clear cavitation. In the inner magnetosphere, the density distributions clearly show that the plasmapause and trough densities are well correlated with geomagnetic activity. Data from individual orbits near noon and midnight demonstrate that at the beginning of geomagnetic disturbances, the retreat speed of the plasmapause can be one L-shell per hour, while during quiet intervals the plasmapause can expand anti-earthward at the same speed. For the trough region, it is found
International Nuclear Information System (INIS)
Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.
1982-01-01
The results of the experimental studies of the intense relativistic electron beam (IREB) propagation with ν/γ approximately 0.1, and γ approximately 1.6 (γ is an electron beam relativistic factor) in a collisionless plasma of small density over the 180 cm length are presented. Plasma is generated with the incomplete discharge over dielectric surface at the residual gas pressure of P approximately 10 -5 Torr. It is shown that the transportation efficiency may be essentially high, if the electron concentration in plasma satisfies the equilibrium conditions and if it is less or equal to the electron concentration in a beam. At concentration less than optimum one, the transportation efficiency decreases due to violations of equilibrium conditions. At high concentration the transportation efficiency also decreased due to the scattering and breaking on excited small-scale and plasma oscillations. The IREB propagation occurs without essential time delay under optimum conditions
International Nuclear Information System (INIS)
Sison Escaño, Mary Clare; Arevalo, Ryan Lacdao; Kasai, Hideaki; Gyenge, Elod
2014-01-01
The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH 4 − on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements. (topical review)
Electron density fluctuation measurements in the TORTUR tokamak
International Nuclear Information System (INIS)
Remkes, G.J.J.
1990-01-01
This thesis deals with measurements of electron-density fluctuations in the TORTUR tokamak. These measurements are carried out by making use of collective scattering of electromagnetic beams. The choice of the wavelength of the probing beam used in collective scattering experiments has important consequences. in this thesis it is argued that the best choice for a wavelength lies in the region 0.1 - 1 mm. Because sources in this region were not disposable a 2 mm collective scattering apparatus has been used as a fair compromise. The scattering theory, somewhat adapted to the specific TORTUR situation, is discussed in Ch. 2. Large scattering angles are admitted in scattering experiments with 2 mm probing beams. This had consequences for the spatial response functions. Special attention has been paid to the wave number resolution. Expressions for the minimum source power have been determined for two detection techniques. The design and implementation of the scattering apparatus has been described in Ch. 3. The available location of the scattering volume and values of the scattering angle have been determined. The effect of beam deflection due to refraction effects is evaluated. The electronic system is introduced. Ch. 4 presents the results of measurements of density fluctuations in the TORTUR tokamak in the frequency range 1 kHz to 100 MHz end the wave number region 400 - 4000 m -1 in different regions of the plasma. Correlation between density and magnetic fluctuations has been found in a number of cases. During the current decay at the termination of several plasma discharges minor disruptions occurred. The fluctuations during these disruptions have been monitored. Measurements have been performed in hydrogen as well as deuterium. A possible dependence of the wave number on the ion gyroradius has been investigated. The isotropy of the fluctuations in the poloidal plane was investigated. A theoretical discussion of the measured results is given in ch. 5. ( H.W.). 63
Li, Biyuan; Tang, Chen; Gao, Guannan; Chen, Mingming; Tang, Shuwei; Lei, Zhenkun
2017-06-01
Filtering off speckle noise from a fringe image is one of the key tasks in electronic speckle pattern interferometry (ESPI). In general, ESPI fringe images can be divided into three categories: low-density fringe images, high-density fringe images, and variable-density fringe images. In this paper, we first present a general filtering method based on variational image decomposition that can filter speckle noise for ESPI fringe images with various densities. In our method, a variable-density ESPI fringe image is decomposed into low-density fringes, high-density fringes, and noise. A low-density fringe image is decomposed into low-density fringes and noise. A high-density fringe image is decomposed into high-density fringes and noise. We give some suitable function spaces to describe low-density fringes, high-density fringes, and noise, respectively. Then we construct several models and numerical algorithms for ESPI fringe images with various densities. And we investigate the performance of these models via our extensive experiments. Finally, we compare our proposed models with the windowed Fourier transform method and coherence enhancing diffusion partial differential equation filter. These two methods may be the most effective filtering methods at present. Furthermore, we use the proposed method to filter a collection of the experimentally obtained ESPI fringe images with poor quality. The experimental results demonstrate the performance of our proposed method.
Experimental Benchmarking of Pu Electronic Structure
International Nuclear Information System (INIS)
Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, N.E. Jr.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L.
2008-01-01
The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.
Experimental study of the stability of a neutralized electron beam
International Nuclear Information System (INIS)
Kudelainen, V.I.; Parkhomchuk, V.V.; Pestrikov, D.V.
1983-01-01
Results are reported from measurements of the spectral properties of a long neutralized electron beam in the NAP-M proton storage ring. It is shown that when the number of secondary electrons is small, both the longitudinal and the transverse oscillations are strongly damped, so that beam instability is suppressed. The current density of the neutralized electron beam produced in the experiments was approx.10 2 times greater than the theoretical value determined from the instability threshold for nonaxisymmetric oscillations
International Nuclear Information System (INIS)
Holzhauer, E.; Dodel, G.
1990-01-01
In magnetically confined plasmas density fluctuations of apparently turbulent nature with broad spectra in wave number and frequency space are observed which are thought to be the cause for anomalous energy and particle transport across the confining magnetic field. Collective laser light scattering has been used to study the nature of these fluctuations. Specific problems of scattering from fusion plasmas are addressed and illustrated with experimental results from the 119 μm far infrared laser scattering experiment operated on the ASDEX tokamak. Using the system in the heterodyne mode the direction of propagation with respect to the laboratory frame can be determined. Spatial resolution has bean improved by making use of the change in pitch of the total magnetic field across the minor plasma radius. Special emphasis is placed on the ohmic phase where a number of parameter variations including electron density, electron temperature, toroidal magnetic field, and filling gas were performed
Pikus, F. G.; Efros, A. L.
1993-06-01
A two-dimensional electron liquid (TDEL), subjected to a smooth random potential, is studied in the regime of the fractional quantum Hall effect. An analytical theory of the nonlinear screening is presented for the case when the fractional gap is much less than the magnitude of the unscreened random potential. In this ``narrow-gap approximation'' (NGA), we calculate the electron density distribution function, the fraction of the TDEL which is in the incompressible state, and the thermodynamic density of states. The magnetocapacitance is calculated to compare with the recent experiments. The NGA is found to be not accurate enough to describe the data. The results for larger fractional gaps are obtained by computer modeling. To fit the recent experimental data we have also taken into account the anyon-anyon interaction in the vicinity of a fractional singularity.
International Nuclear Information System (INIS)
Gunell, H.; Loefgren, T.
1997-02-01
In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs
Electric field spikes formed by electron beam endash plasma interaction in plasma density gradients
International Nuclear Information System (INIS)
Gunell, H.; Loefgren, T.
1997-01-01
In the electron beam endash plasma interaction at an electric double layer the beam density is much higher than in the classical beam endash plasma experiments. The wave propagation takes place along the density gradient that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp open-quotes spikeclose quotes with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward traveling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. copyright 1997 American Institute of Physics
Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon
2016-08-25
This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.
Accuracy of ab initio electron correlation and electron densities in vanadium dioxide
Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.
2017-11-01
Diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3 d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et al. [Science 355, 371 (2017), 10.1126/science.aag0410] in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VO2, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development. With our reference data, the accuracy of both the energy and the electron density can be monitored simultaneously, which is useful for functional development. So far, this kind of detailed high accuracy reference data for correlated materials has been absent from the literature.
International Nuclear Information System (INIS)
Svane, A.; Trygg, J.; Johansson, B.; Eriksson, O.
1997-01-01
Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energy and a term proportional to the total orbital moment, L z 2 . The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. copyright 1997 The American Physical Society
Variations of the ionospheric electron density during the Bhuj seismic event
Directory of Open Access Journals (Sweden)
A. Trigunait
2004-12-01
Full Text Available Ionospheric perturbations by natural geophysical activity, such as volcanic eruptions and earthquakes, have been studied since the great Alaskan earthquake in 1964. Measurements made from the ground show a variation of the critical frequency of the ionosphere layers before and after the shock. In this paper, we present an experimental investigation of the electron density variations around the time of the Bhuj earthquake in Gujarat, India. Several experiments have been used to survey the ionosphere. Measurements of fluctuations in the integrated electron density or TEC (Total Electron Content between three satellites (TOPEX-POSEIDON, SPOT2, SPOT4 and the ground have been done using the DORIS beacons. TEC has been also evaluated from a ground-based station using GPS satellites, and finally, ionospheric data from a classical ionospheric sounder located close to the earthquake epicenter are utilized. Anomalous electron density variations are detected both in day and night times before the quake. The generation mechanism of these perturbations is explained by a modification of the electric field in the global electric circuit induced during the earthquake preparation. Key words. Ionosphere (ionospheric disturbances – Radio Science (ionospheric physics – History of geophysics (seismology
Rapid model building of beta-sheets in electron-density maps.
Terwilliger, Thomas C
2010-03-01
A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.
Electron density profile determination by means of laser blow-off injected neutral beam
International Nuclear Information System (INIS)
Kocsis, G.; Bakos, J.S.; Ignacz, P.N.; Kardon, B.; Koltai, L.; Veres, G.
1992-01-01
This paper is devoted to the experimental and theoretical studies of the determination of the electron density profiles by means of laser blow-off neutrals. For the determination of the density profile the time and spatial distributions of the spectral line radiation intensity of the injected neutrals are used. The method is compared to other previously proposed methods and the advantages and disadvantages of the different methods are discussed. The result of the comparison is that our method gives the most reliable result with the highest temporal resolution for the density profile of the edge plasma. The only disadvantage is the need of careful calibration of the sensitivity of the spatial channels. The advantage is the ability of the method as a standard diagnostic. (orig.)
Electronic density measurement in the TB R-1 tokamak using Faraday rotation
International Nuclear Information System (INIS)
Elizondo, Juan Iraburu
1996-01-01
In this work, the experimental results of electronic density measurements in the TBR-1 tokamak, obtained by Faraday rotation of a microwave beam, are presented, The beam (65 GHz, 500 MW) is generated by a Klystron and crosses the plasma in the horizontal plane. The density values obtained are in agreement with the measurements of a conventional microwave interferometer. As a result of numerical simulations and measurements, it can be concluded that it would be advisable the use of lower wavelengths, to minimize the beam refraction when it crosses the plasma. The results show the feasibility of the Faraday rotation method for density measurement, in the first experiment performed in a tokamak, for the geometry considered. (author)
Energy Technology Data Exchange (ETDEWEB)
Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); Rizzoli, R. [INFN—Bologna, Viale B. Pichat, 6/2, 40127 Bologna (Italy); CNR–Istituto per la Microelettronica ed i Microsistemi, Via Gobetti 101, 40129 Bologna (Italy); Mascali, D.; Castro, G.; Celona, L.; Gammino, S.; Neri, L. [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy)
2016-02-15
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.
Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L
2016-02-01
Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.
Experimental study of parametric dependence of electron-scale turbulence in a spherical tokamak
Energy Technology Data Exchange (ETDEWEB)
Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Mazzucato, E.; Bell, R. E.; Diallo, A.; LeBlanc, B. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Lee, K. C. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2012-05-15
Electron-scale turbulence is predicted to drive anomalous electron thermal transport. However, experimental study of its relation with transport is still in its early stage. On the National Spherical Tokamak Experiment (NSTX), electron-scale density fluctuations are studied with a novel tangential microwave scattering system with high radial resolution of {+-}2 cm. Here, we report a study of parametric dependence of electron-scale turbulence in NSTX H-mode plasmas. The dependence on density gradient is studied through the observation of a large density gradient variation in the core induced by an edge localized mode (ELM) event, where we found the first clear experimental evidence of density gradient stabilization of electron-gyro scale turbulence in a fusion plasma. This observation, coupled with linear gyro-kinetic calculations, leads to the identification of the observed instability as toroidal electron temperature gradient (ETG) modes. It is observed that longer wavelength ETG modes, k{sub Up-Tack }{rho}{sub s} Less-Than-Or-Equivalent-To 10 ({rho}{sub s} is the ion gyroradius at electron temperature and k{sub Up-Tack} is the wavenumber perpendicular to local equilibrium magnetic field), are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in electron thermal diffusivity. Comparisons with nonlinear ETG gyrokinetic simulations show ETG turbulence may be able to explain the experimental electron heat flux observed before the ELM event. The collisionality dependence of electron-scale turbulence is also studied by systematically varying plasma current and toroidal field, so that electron gyroradius ({rho}{sub e}), electron beta ({beta}{sub e}), and safety factor (q{sub 95}) are kept approximately constant. More than a factor of two change in electron collisionality, {nu}{sub e}{sup *}, was achieved, and we found that the spectral power of electron-scale turbulence appears to increase as {nu}{sub e}{sup *} is
A study of microwave interferometers for electron density measurements in REB-plasma experiments
International Nuclear Information System (INIS)
Saxena, A.C.; Paithankar, A.S.; Iyyengar, S.K.; Rohatgi, V.K.
1981-01-01
In order to select a suitable microwave interferometer for electron density measurements in Relativistic Electron Beam (REB)-Plasma Experiments, a study has been carried out of four types of interferometers, viz. simple interferometer, standing-wave interferometer, frequency and phase modulated interferometers. Various direct reading interferometers which give a voltage proportional to the phase shift, are also discussed. Systems have been analysed in terms of time resolution, phase sensitivity, system stability, ease of measurement etc. Theoretical and experimental limitations of various systems have been indicated. Summary of the various systems is presented in a table to aid the experimentalist to select the most appropriate system for the prevailina experimental conditions. Finally, an attempt has been made to find out the interferometer system best suited for REB-Plasma Experiments. (author)
One-electron densities of freely rotating Wigner molecules
Cioslowski, Jerzy
2017-12-01
A formalism enabling computation of the one-particle density of a freely rotating assembly of identical particles that vibrate about their equilibrium positions with amplitudes much smaller than their average distances is presented. It produces densities as finite sums of products of angular and radial functions, the length of the expansion being determined by the interplay between the point-group and permutational symmetries of the system in question. Obtaining from a convolution of the rotational and bosonic components of the parent wavefunction, the angular functions are state-dependent. On the other hand, the radial functions are Gaussians with maxima located at the equilibrium lengths of the position vectors of individual particles and exponents depending on the scalar products of these vectors and the eigenvectors of the corresponding Hessian as well as the respective eigenvalues. Although the new formalism is particularly useful for studies of the Wigner molecules formed by electrons subject to weak confining potentials, it is readily adaptable to species (such as ´balliums’ and Coulomb crystals) composed of identical particles with arbitrary spin statistics and permutational symmetry. Several examples of applications of the present approach to the harmonium atoms within the strong-correlation regime are given.
Ultra-Stretchable Interconnects for High-Density Stretchable Electronics
Directory of Open Access Journals (Sweden)
Salman Shafqat
2017-09-01
Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.
Electron density enhancement in a quasi isochronous storage ring
International Nuclear Information System (INIS)
Pellegrini, C.; Robin, D.
1991-01-01
The six dimensional phase-space density of an electron beam in a storage ring is determined by the emission of synchrotron radiation, and by the transverse and longitudinal focusing forces determining the particle trajectories. In the simplest case of uncoupled horizontal, vertical and longitudinal motion, the phase space volume occupied by the beam can be characterized by the product of its three projections on the single degree of freedom planes, the horizontal, vertical, and longitudinal emittances. To minimize the beam phase space volume the authors can minimize the transverse and longitudinal emittances. In the case of transverse emittances this problem is very important for synchrotron radiation sources, and has been studied by several authors. A method to minimize the longitudinal emittance, and produce electron bunches with a short pulse length, small energy spread and large peak current has been proposed and discussed recently by C. Pellegrini and D. Robin. This method uses a ring in which the revolution period is weakly dependent on the particle energy, Quasi Isochronous Ring (QIR), in other words a ring with a momentum compaction nearly zero. In this paper they will extend the previous analysis of the conditions for stable single particle motion in such a ring, and give simple criteria for the estimate of the energy spread and phase acceptance of a QIR
Fast electron current density profile and diffusion studies during LHCD in PBX-M
International Nuclear Information System (INIS)
Jones, S.E.; Kesner, J.; Luckhardt, S.; Paoletti, F.
1993-08-01
Successful current profile control experiments using lower hybrid current drive (LCHD) clearly require knowledge of (1) the location of the driven fast electrons and (2) the ability to maintain that location from spreading due to radial diffusion. These issues can be addressed by examining the data from the hard x-ray camera on PBX-M, a unique diagnostic producing two-dimensional, time resolved tangential images of fast electron bremsstrahlung. Using modeling, these line-of-sight images are inverted to extract a radial fast electron current density profile. We note that ''hollow'' profiles have been observed, indicative of off-axis current drive. These profiles can then be used to calculate an upper bound for an effective fast electron diffusion constant: assuming an extremely radially narrow lower hybrid absorption profile and a transport model based on Rax and Moreau, a model fast electron current density profile is calculated and compared to the experimentally derived profile. The model diffusion constant is adjusted until a good match is found. Applied to steady-state quiescent modes on PBX-M, we obtain an upper limit for an effective diffusion constant of about D*=1.1 m 2 /sec
International Nuclear Information System (INIS)
Zhang Man-Hong
2016-01-01
By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code. The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson’s algorithm, the one proposed by Eyert needs fewer total iteration numbers. (paper)
Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas
International Nuclear Information System (INIS)
Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.
2016-01-01
The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime
Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas
Energy Technology Data Exchange (ETDEWEB)
Tierno, S. P., E-mail: sp.tierno@upm.es; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L. [Department of Applied Physics, E.T.S.I. Aeronáutica y del Espacio. Universidad Politécnica de Madrid, 28040 Madrid (Spain)
2016-01-15
The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.
Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas
Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.
2016-01-01
The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.
Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak
International Nuclear Information System (INIS)
Abdullaev, S.S.; Finken, K.H.; Wongrach, K.; Willi, O.
2016-01-01
Theoretical and experimental studies of runaway electrons in tokamaks and their mitigations, particularly the recent studies performed by a group of the Heinrich-Heine University Duesseldorf in collaboration with the Institute of Energy and Climate Research of the Research Centre (Forschungszentrum) of Juelich are reviewed. The main topics focus on (i) runaway generation mechanisms, (ii) runaway orbits in equilibrium plasma, (iii) transport in stochastic magnetic fields, (iv) diagnostics and investigations of transport of runaway electron and their losses in low density discharges (v) runaway electrons during plasma disruptions, and (vi) runaway mitigation methods. The development of runaway diagnostics enables the measurement of runaway electrons in both the centre and edge of the plasma. The diagnostics provide an absolute runaway energy resolved measurement, the radial decay length of runaway electrons and, the structure and dynamics of runaway electron beams. The new mechanism of runaway electron formation during plasma disruptions is discussed.
Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak
Energy Technology Data Exchange (ETDEWEB)
Abdullaev, S.S.; Finken, K.H.; Wongrach, K.; Willi, O.
2016-07-01
Theoretical and experimental studies of runaway electrons in tokamaks and their mitigations, particularly the recent studies performed by a group of the Heinrich-Heine University Duesseldorf in collaboration with the Institute of Energy and Climate Research of the Research Centre (Forschungszentrum) of Juelich are reviewed. The main topics focus on (i) runaway generation mechanisms, (ii) runaway orbits in equilibrium plasma, (iii) transport in stochastic magnetic fields, (iv) diagnostics and investigations of transport of runaway electron and their losses in low density discharges (v) runaway electrons during plasma disruptions, and (vi) runaway mitigation methods. The development of runaway diagnostics enables the measurement of runaway electrons in both the centre and edge of the plasma. The diagnostics provide an absolute runaway energy resolved measurement, the radial decay length of runaway electrons and, the structure and dynamics of runaway electron beams. The new mechanism of runaway electron formation during plasma disruptions is discussed.
Effect of Electron Seeding on Experimentally Measured Multipactor Discharge Threshold
Noland, Jonathan; Graves, Timothy; Lemon, Colby; Looper, Mark; Farkas, Alex
2012-10-01
Multipactor is a vacuum phenomenon in which electrons, moving in resonance with an externally applied electric field, impact material surfaces. If the number of secondary electrons created per primary electron impact averages more than unity, the resonant interaction can lead to an electron avalanche. Multipactor is a generally undesirable phenomenon, as it can cause local heating, absorb power, or cause detuning of RF circuits. In order to increase the probability of multipactor initiation, test facilities often employ various seeding sources such as radioactive sources (Cesium 137, Strontium 90), electron guns, or photon sources. Even with these sources, the voltage for multipactor initiation is not certain as parameters such as material type, RF pulse length, and device wall thickness can all affect seed electron flux and energy in critical gap regions, and hence the measured voltage threshold. This study investigates the effects of seed electron source type (e.g., photons versus beta particles), material type, gap size, and RF pulse length variation on multipactor threshold. In addition to the experimental work, GEANT4 simulations will be used to estimate the production rate of low energy electrons (< 5 keV) by high energy electrons and photons. A comparison of the experimental fluxes to the typical energetic photon and particle fluxes experienced by spacecraft in various orbits will also be made. Initial results indicate that for a simple, parallel plate device made of aluminum, there is no threshold variation (with seed electrons versus with no seed electrons) under continuous-wave RF exposure.
Electron cloud density analysis using microwave cavity resonance
International Nuclear Information System (INIS)
Shin, Y-M; Thangaraj, J C; Tan, C-Y; Zwaska, R
2013-01-01
We report on a method to detect an electron cloud in proton accelerators through the measurement of the phase shift of microwaves undergoing controlled reflections with an accelerator vacuum vessel. Previous phase shift measurement suffered from interference signals due to uncontrolled reflections from beamline components, leading to an unlocalized region of measurement and indeterminate normalization. The method in this paper introduces controlled reflectors about the area of interest to localize the measurement and allow normalization. This paper describes analyses of the method via theoretical calculations, electromagnetic modeling, and experimental measurements with a bench-top prototype. Dielectric thickness, location and spatial profile were varied and the effect on phase shift is described. The effect of end cap aperture length on phase shift measurement is also reported. A factor of ten enhancement in phase shift is observed at certain frequencies.
International Nuclear Information System (INIS)
Almbladh, C.-O.; Ekenberg, U.; Pedroza, A.C.
1983-01-01
The authors compare the electron densities and Hartree potentials in the local density and the Hartree-Fock approximations to the corresponding quantities obtained from more accurate correlated wavefunctions. The comparison is made for a number of two-electron atoms, Li, and for Be. The Hartree-Fock approximation is more accurate than the local density approximation within the 1s shell and for the spin polarization in Li, while the local density approximation is slightly better than the Hartree-Fock approximation for charge densities in the 2s shell. The inaccuracy of the Hartree-Fock and local density approximations to the Hartree potential is substantially smaller than the inaccuracy of the local density approximation to the ground-state exchange-correlation potential. (Auth.)
Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry
Luis R. Domingo
2016-01-01
A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through ...
Electron momentum density measurements by means of positron annihilation and Compton spectroscopy
International Nuclear Information System (INIS)
Gerber, W.; Dlubek, G.; Marx, U.; Bruemmer, O.; Prautzsch, J.
1982-01-01
The electron momentum density is measured applying positron annihilation and Compton spectroscopy in order to get information about electron wave functions. Compton spectroscopic measurements of Pd-Ag and Cu-Zn alloy systems are carried out taking into account crystal structure, mixability, and order state. Three-dimensional momentum densities of silicon are determined in order to get better information about its electronic structure. The momentum density and the spin density of ferromagnetic nickel are investigated using angular correlation curves
Experimental and theoretical study of the electron cascade induced in a gas by laser light
International Nuclear Information System (INIS)
Louis-Jacquet, Michel.
1978-10-01
In a laser gas interaction experiment, first electrons created by multiphoton ionization of atoms gain sufficient energy in the laser E.M. wave to promote collisional ionization of other atoms. An experimental and theoretical study of the electron-neutral atom inverse bremsstrahlung process and the consecutive electron cascade is presented. The main basic idea is to create an initial electron population and to study its evolution versus the photon density. A Boltzman equation including several collision terms can describe such a plasma. The resolution by a general eigen values method shows that the electron density growth rate is inversely proportionnal to both neutral atom density and laser light illumination. Experimental conditions were defined in order to insure negligible secondary mechanisms (multiphoton ionization, diffusion, recombination, ...). Using a macroscopic description of the interaction, the growth rate can be deduced from the experimental results. Values are in a rather good agreement with the theoretical ones. Moreover evidence is given of influence of the excited atoms on the multiplication process [fr
International Nuclear Information System (INIS)
Sundararaman, Ravishankar; Goddard, William A. III; Arias, Tomas A.
2017-01-01
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
Sundararaman, Ravishankar; Goddard, William A.; Arias, Tomas A.
2017-03-01
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
2016-11-01
Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is...AND SUBTITLE Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas 5a...SUPPLEMENTARY NOTES 14. ABSTRACT The Shack-Hartmann Electron Densitometer is a novel method to diagnose ultrashort pulse laser–produced plasmas
Feil, D.; Feil, Dirk
1992-01-01
Quantum chemistry and the concepts used daily in chemistry are increasingly growing apart. Among the concepts that are able to bridge the gap between theory and experimental practice, electron density distribution has an important place. The study of this distribution has led to new developments in
Ashihara, Y.; Ishisaka, K.; Miyake, T.; Okada, T.; Nagano, I.; Abe, T.; Ono, T.
2007-12-01
The radio wave propagation characteristic in the lower ionosphere is important because of its effect on commercial radio communication, navigation, and broadcast services. The electron density is of primary interest in this region because the high ion-neutral collision frequencies result in radio wave absorption. In order to investigate the ionization structure in the ionospheric D and E region by using the propagation characteristics of MF-band and LF-band radio waves, S-310-37 and S-520-23 sounding rocket experiments have been carried out at Uchinoura Space Center (USC). S-310-37 sounding rocket was launched at 11:20 LT on January 16, 2007. The apex of rocket trajectory was about 138 km. Then S-520-23 sounding rocket was launched at 19:20 LT on September 2, 2007. The apex was about 279 km. As a common measurement, these sounding rockets measure the fields intensities and the waveform of radio waves from NHK Kumamoto broadcasting station (873kHz, 500kW) and JJY signals from Haganeyama LF radio station (60kHz, 50kW). The approximate electron density profile can be determined from the comparison between these experimental results and propagation characteristics calculated by the full wave method. We will get the most probable electron density profile in the ionosphere. In presentation, we will show the propagation characteristic of LF/MF radio waves measured by two sounding rocket experiments. Then we will discuss the analysis method and the estimated electron density profile in the ionosphere.
Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening
International Nuclear Information System (INIS)
Dong Lifang; Ran Junxia; Mao Zhiguo
2005-01-01
We present a method and results for measurement of electron density in atmospheric-pressure dielectric barrier discharge. The electron density of microdischarge in atmospheric pressure argon is measured by using the spectral line profile method. The asymmetrical deconvolution is used to obtain Stark broadening. The results show that the electron density in single filamentary microdischarge at atmospheric pressure argon is 3.05x10 15 cm -3 if the electron temperature is 10,000 K. The result is in good agreement with the simulation. The electron density in dielectric barrier discharge increases with the increase of applied voltage
Experimental Electron Cloud Studies in the CERN Proton Synchrotron
Mahner, E; Caspers, Friedhelm
2008-01-01
Indications for a beam-induced electron cloud build-up are observed since 2000 for the nominal LHC beam in the PS to SPS transfer line and during the last turns before ejection from the PS. A new electron cloud setup was designed, built, and installed in the PS. It contains shielded button-type pickups, a dipole magnet, a vacuum gauge, and a dedicated stripline electrode to experimentally verify the beneficial effect of electron cloud clearing electrodes. During the 2007 run, the electron cloud effect was also clearly observed in the PS and efficient electron cloud suppression has been obtained for negative and positive bias voltages on the clearing electrode. Here, we present electron cloud measurements with different filling patterns and bunch spacings in the PS.
Off-axis and inline electron holography: Experimental comparison
International Nuclear Information System (INIS)
Latychevskaia, Tatiana; Formanek, Petr; Koch, C.T.; Lubk, Axel
2010-01-01
Electron holography is a very powerful technique for mapping static electric and magnetic potentials down to atomic resolution. While electron holography is commonly considered synonymous with its off-axis variant in the high energy electron microscopy community, inline electron holography is widely applied in low-energy electron microscopy, where the realization of the off-axis setup is still an experimental challenge. This paper demonstrates that both inline and off-axis holography may be used to recover amplitude and phase shift of the very same object, in our example latex spheres of 90 and 200 nm in diameter, producing very similar results, provided the object does not charge under the electron beam.
International Nuclear Information System (INIS)
Gori-Giorgi, Paola; Savin, Andreas
2006-01-01
The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals
Experimental measurements and prediction of liquid densities for n-alkane mixtures
International Nuclear Information System (INIS)
Ramos-Estrada, Mariana; Iglesias-Silva, Gustavo A.; Hall, Kenneth R.
2006-01-01
We present experimental liquid densities for n-pentane, n-hexane and n-heptane and their binary mixtures from (273.15 to 363.15) K over the entire composition range (for the mixtures) at atmospheric pressure. A vibrating tube densimeter produces the experimental densities. Also, we present a generalized correlation to predict the liquid densities of n-alkanes and their mixtures. We have combined the principle of congruence with the Tait equation to obtain an equation that uses as variables: temperature, pressure and the equivalent carbon number of the mixture. Also, we present a generalized correlation for the atmospheric liquid densities of n-alkanes. The average absolute percentage deviation of this equation from the literature experimental density values is 0.26%. The Tait equation has an average percentage deviation of 0.15% from experimental density measurements
Experimental studies of VpxB electron linear accelerator
International Nuclear Information System (INIS)
Taura, T.; Onihashi, H.; Otsuka, K.; Nishida, Y.; Yugami, N.
1989-01-01
In order to demonstrate a new electron linear accelerator an electron beam is accelerated either in the conventional linear accelerator scheme or in the V p xB scheme in a same machine and higher energy gain of about 18 % is observed in the V p xB scheme as is expected from the designed values. The experimental results are compared with the numerical simulation to show reasonable agreement. (author)
International Nuclear Information System (INIS)
Schmitz, O; Schweer, B; Pospieszczyk, A; Lehnen, M; Samm, U; Unterberg, B; Beigman, I L; Vainshtein, L A; Kantor, M; Xu, Y; Krychowiak, M
2008-01-01
Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T e (r, t) and electron density n e (r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed as well as the major factors for the measurement's accuracy are evaluated. On the experimental side, the hardware specifications are described and the impact of the beam atoms on the local plasma parameters is shown to be negligible. On the modeling side the collisional-radiative model (CRM) applied to infer n e and T e from the measured He line intensities is evaluated. The role of proton and deuteron collisions and of charge exchange processes is studied with a new CRM and the impact of these so far neglected processes appears to be of minor importance. Direct comparison to Thomson scattering and fast triple probe data showed that for high densities n e > 3.5 x 10 19 m -3 the T e values deduced with the established CRM are too low. However, the new atomic data set implemented in the new CRM leads in general to higher T e values. This allows us to specify the range of reliable application of BES on thermal helium to a range of 2.0 x 10 18 e 19 m -3 and 10 eV e < 250 eV which can be extended by routine application of the new CRM.
International Nuclear Information System (INIS)
Terwilliger, Thomas C.; Berendzen, Joel
1999-01-01
The correlation of local r.m.s. density is shown to be a good measure of the presence of distinct solvent and macromolecule regions in macromolecular electron-density maps. It has recently been shown that the standard deviation of local r.m.s. electron density is a good indicator of the presence of distinct regions of solvent and protein in macromolecular electron-density maps [Terwilliger & Berendzen (1999 ▶). Acta Cryst. D55, 501–505]. Here, it is demonstrated that a complementary measure, the correlation of local r.m.s. density in adjacent regions on the unit cell, is also a good measure of the presence of distinct solvent and protein regions. The correlation of local r.m.s. density is essentially a measure of how contiguous the solvent (and protein) regions are in the electron-density map. This statistic can be calculated in real space or in reciprocal space and has potential uses in evaluation of heavy-atom solutions in the MIR and MAD methods as well as for evaluation of trial phase sets in ab initio phasing procedures
An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics
Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.
2016-02-01
X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.
Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian
2017-12-01
We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .
The calculation of electron density of the non-ideal argon plasma
International Nuclear Information System (INIS)
Jiang Ming; Cheng Xinlu; Yang Xiangdong
2004-01-01
By the screened hydrogenic model, the paper calculates the electron densities of shock-generated argon plasma with temperature T∼2.0 eV and density of plasma ρ∼0.01 g/cm 3 -0.49 g/cm 3 , and studies the influence on electron density caused by interparticle interaction at the different temperature and density of plasma. (author)
Electron density distribution in ferromagnetic nickel: A γ -ray diffraction study
Jauch, W.; Reehuis, M.
2008-12-01
High-accuracy single-crystal structure factors, complete up to sinθ/λ=1.9Å-1 , have been measured from ferromagnetic nickel at 295 K using 316.5-keV gamma radiation. The experimental uncertainty of the structure factors is of the order of 10 millielectrons per atom for all data. A detailed description of the electron density distribution is presented in terms of a multipolar atomic deformation model. Achievement of a reliable Debye-Waller factor is of vital importance in this context. The charge asphericity is due to an excess eg orbital occupancy of 43.4(2)%. The 3d shell in the metal is contracted by 2.07(5)% relative to the free atom. The results are discussed and compared with earlier experimental and theoretical works. In contrast to bcc Cr and Fe, solid-state effects are less pronounced in fcc Ni. Clear disentanglement between the 3d and 4s valence electrons could be accomplished for the first time. The general expectation that the number of 3d electrons in the metal should be increased as compared to the atom was confirmed in the case of iron by combining spin and charge-density data. In the case of nickel, it is rejected as revealed by the γ -ray data alone. Only with the d8 configuration, consistency is achieved between observed and refined mosaic widths of the sample crystal. A 3d8 configuration implies that the majority-spin d band cannot be full. Strong support is lent to a localized atomic character of the valence electrons.
Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle
2014-01-01
Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...
Dynamic analysis of electron density in the course of the internal motion of molecular system
International Nuclear Information System (INIS)
Tachibana, A.; Hori, K.; Asai, Y.; Yamabe, T.
1984-01-01
The general dynamic aspect of electron density of a molecular system is studied on the basis of the general equation of the electron orbital which is formulated for the dynamic study of electronic motion. The newly defined electron orbital incorporates the dynamics of molecular vibration into the electronic structures. In this scheme, the change of electron distribution caused by excitation of vibrational state is defined as the ''dynamic electron transfer.'' The dynamic electron density is found to have the remarkable ''additive'' property. The time-dependent aspect of the dynamic electron redistribution is also analyzed on the basis of the ''coherent state.'' The new method relates the classical vibrational amplitude to the quantum number of the vibrational state. As a preliminary application of the present treatment, the dynamic electron densities of H 2 , HD, HT, HF, and HCl molecules are calculated by use of ab initio molecular orbital method
International Nuclear Information System (INIS)
He Yong; Zou Wen-Kang; Song Sheng-Yi
2011-01-01
In modern pulsed power systems, magnetically insulated transmission lines (MITLs) are used to couple power between the driver and the load. The circuit parameters of MITLs are well understood by employing the concept of flow impedance derived from Maxwell's equations and pressure balance across the flow. However, the electron density in an MITL is always taken as constant in the application of flow impedance. Thus effects of electron flow current density (product of electron density and drift velocity) in an MITL are neglected. We calculate the flow impedances of an MITL and compare them under three classical MITL theories, in which the electron density profile and electron flow current density are different from each other. It is found that the assumption of constant electron density profile in the calculation of the flow impedance is not always valid. The electron density profile and the electron flow current density have significant effects on flow impedance of the MITL. The details of the electron flow current density and its effects on the operation impedance of the MITL should be addressed more explicitly by experiments and theories in the future. (nuclear physics)
Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong
2017-10-01
Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.
Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro
2017-06-14
The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.
Experimental Evidence of Low Density Liquid Water under Decompression
Shen, G.; Lin, C.; Sinogeikin, S. V.; Smith, J.
2017-12-01
Water is not only the most important substance for life, but also plays important roles in liquid science for its anomalous properties. It has been widely accepted that water's anomalies are not a result of simple thermal fluctuation, but are connected to the formation of various structural aggregates in the hydrogen bonding network. Among several proposed scenarios, one model of fluctuations between two different liquids has gradually gained traction. These two liquids are referred to as a low-density liquid (LDL) and a high-density liquid (HDL) with a coexistence line in the deeply supercooled regime at elevated pressure. The LDL-HDL transition ends with decreasing pressure at a liquid-liquid critical point (LLCP) with its Widom line extending to low pressures. Above the Widom line lies mostly HDL which is favored by entropy, while LDL, mostly lying below the Widom line, is favored by enthalpy in the tetrahedral hydrogen bonding network. The origin of water's anomalies can then be explained by the increase in structural fluctuations, as water is cooled down to deeply supercooled temperatures approaching the Widom line. Because both the LLCP and the LDL-HDL transition line lie in water's "no man's land" between the homogeneous nucleation temperature (TH, 232 K) and the crystallization temperature (TX, 150 K), the success of experiments exploring this region has been limited thus far. Using a rapid decompression technique integrated with in situ x-ray diffraction, we observe that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. The change in crystallization rate with temperature indicates that the LDN is a LDL with its tetrahedrally-coordinated network fully developed and clearly linked to low-density amorphous ices. The observation of the tetrahedral LDL supports the two-liquid model for
Priya, Y. Sushma; Rao, K. Ramachandra; Chalapathi, P. V.; Satyavani, M.; Veeraiah, A.
2017-09-01
The vibrational and electronic properties of 2-coumaranone have been reported in the ground state using experimental techniques (FT-IR, FT-Raman, UV spectra and fluorescence microscopic imaging) and density functional theory (DFT) employing B3LYP correlation with the 6-31G(d, p) basis set. The theoretically reported optimized parameters, vibrational frequencies etc., were compared with the experimental values, which yielded good concurrence between the experimental and calculated values. The assignments of the vibrational spectra were done with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field(SQMFF) methodology. The whole assignments of fundamental modes were based on the potential energy distribution (PED) matrix. The electric dipole moment and the first order hyperpolarizability of the 2-coumaranone have been computed using quantum mechanical calculations. NBO and HOMO, LUMO analyses have been carried out. UV spectrum of 2-coumaranone was recorded in the region 100-300 nm and compared with the theoretical UV spectrum using TD-DFT and SAC-CI methods by which a good agreement is observed. Fluorescence microscopic imaging study reflects that the compound fluoresces in the green-yellow region.
Effects of density imbalance on the BCS-BEC crossover in semiconductor electron-hole bilayers
International Nuclear Information System (INIS)
Pieri, P.; Strinati, G. C.; Neilson, D.
2007-01-01
We study the occurrence of excitonic superfluidity in electron-hole bilayers at zero temperature. We not only identify the crossover in the phase diagram from the BCS limit of overlapping pairs to the BEC limit of nonoverlapping tightly bound pairs but also, by varying the electron and hole densities independently, we can analyze a number of phases that occur mainly in the crossover region. With different electron and hole effective masses, the phase diagram is asymmetric with respect to excess electron or hole densities. We propose, as the criterion for the onset of superfluidity, the jump of the electron and hole chemical potentials when their densities cross
Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime
DEFF Research Database (Denmark)
Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.
2013-01-01
In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...
Experimental study of high density foods for the Space Operations Center
Ahmed, S. M.
1981-01-01
The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.
Ligand identification using electron-density map correlations
International Nuclear Information System (INIS)
Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.
2007-01-01
An automated ligand-fitting procedure is applied to (F o − F c )exp(iϕ c ) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F o − F c )exp(iϕ c ) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule
ELECTRONIC SYSTEM FOR EXPERIMENTATION IN AC ELECTROGRAVIMETRY I: TECHNIQUE FUNDAMENTALS
Directory of Open Access Journals (Sweden)
Róbinson Torres
Full Text Available Basic fundamentals of AC electrogravimetry are introduced. Their main requirements and characteristics are detailed to establish the design of an electronic system that allows the appropriate extraction of data needed to determine the electrogravimetric transfer function (EGTF and electrochemical impedance (EI, in an experimental set-up for the AC electrogravimetry technique.
Experimental determination of the electron-avalanche and the electron-ion recombination coefficient
Ernst, G.J.; Boer, A.G.
1980-01-01
The electron-ion recombination coefficient γ and the avalanche coefficient δ = (α − a) · vd, where α and a are the ionizat ion and attachment coefficients respectively and vd the drift velocity of the electrons, have been experimentally determined in a self-sustained CO2-laser system (1:1:3 mixture)
Analysis and experimental study on hydraulic balance characteristics in density lock
International Nuclear Information System (INIS)
Gu Haifeng; Yan Changqi; Sun Furong
2009-01-01
Through the simplified theoretical model, the hydraulic balance condition which should be met in the density lock is obtained, when reactor operates normally and density lock is closed. The main parameters influencing this condition are analyzed, and the results show that the hydraulic balance in the density lock is characterized with self-stability in a certain range. Meantime, a simulating experimental loop is built and experimental verification on the self-stability characteristic is done. Moreover, experimental study is done on the conditions of flow change of work fluids in the primary circuit in the process of stable operations. The experimental results show that the hydraulic balance in the density lock can recovered quickly, depending on the self-stability characteristic without influences on the sealing performance of density lock and normal operation of reactor, after the change of operation parameters breaks the hydraulic balance. (authors)
Experimental Electron Heat Diffusion in TJ-II ECRH Plasmas
Energy Technology Data Exchange (ETDEWEB)
Vargas, V.I.; Lopez-Bruna, D.; Herranz, J.; Castejon, F.
2006-07-01
Interpretative transport has been used to revisit the global scalings of TJ-II ECRH plasmas from a local perspective. Density, rotational transform and ERCH power scans were analysed based upon Thomson Scattering data (electron density and temperature) in steady state discharges. A simple formula to obtain the thermal conductivity, assuming pure diffusion and negligible convective heat fluxes was used in a set of 161 discharges. All the analysis was performed with the ASTRA transport shell. The density scan indicates that inside n=0,4 there is no significant change of e with density in the range studied (0.4
Experimental Electron Heat Diffusion in TJ-II ECRH Plasmas
International Nuclear Information System (INIS)
Vargas, V.I.; Lopez-Bruna, D.; Herranz, J.; Castejon, F.
2006-01-01
Interpretative transport has been used to revisit the global scalings of TJ-II ECRH plasmas from a local perspective. Density, rotational transform and ERCH power scans were analysed based upon Thomson Scattering data (electron density and temperature) in steady state discharges. A simple formula to obtain the thermal conductivity, assuming pure diffusion and negligible convective heat fluxes was used in a set of 161 discharges. All the analysis was performed with the ASTRA transport shell. The density scan indicates that inside n=0,4 there is no significant change of e with density in the range studied (0.4 (1019m-3) 1.0), while in 0,5 <0,8 approximately, e decreases with density. In the rotational transform scan it is found that the values of e when a low order rational of the rotational transform is present locally seem to be smaller for the corresponding range, although it is apparent a general beneficial effect of the corresponding change in magnetic structure. Finally, in the ECRH power scan, e is found to have an overall increment in 0,2< n0,6 when QECH increases from 200 to 400 kW, although it is less significant in the density gradient region (n 0,7). (Author) 22 refs
The large density electron beam-plasma Buneman instability
International Nuclear Information System (INIS)
Mantei, T.D.; Doveil, F.; Gresillon, D.
1976-01-01
The threshold conditions and growth rate of the Buneman (electron beam-stationary ion) instability are calculated with kinetic theory, including a stationary electronic population. A criteria on the wave energy sign is used to separate the Buneman hydrodynamic instability from the ion-acoustic kinetic instability. The stationary electron population raises the instability threshold and, for large beam velocities yields a maximum growth rate oblique to the beam. (author)
Measurements of electron density profiles using an angular filter refractometer
International Nuclear Information System (INIS)
Haberberger, D.; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H.
2014-01-01
A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10 21 cm −3 with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres
Measurements of electron density profiles using an angular filter refractometer
Energy Technology Data Exchange (ETDEWEB)
Haberberger, D., E-mail: dhab@lle.rochester.edu; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States)
2014-05-15
A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21} cm{sup −3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ∼9 kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.
Method for controlling low-energy high current density electron beams
International Nuclear Information System (INIS)
Lee, J.N.; Oswald, R.B. Jr.
1977-01-01
A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams
International Nuclear Information System (INIS)
Turaev, N.Yu.; Turaev, E.Yu.; Khuzhakulov, E.S.; Seregin, P.P.
2006-01-01
Results of electron density change calculations for sites of the one-dimensional Kronig-Penny lattice at the superconducting phase transition have been presented. The transition from normal state to super conducting one is accompanied by the rise of the electron density at the unit cell centre. It is agreement with Moessbauer spectroscopy data. (author)
High Power Density Power Electronic Converters for Large Wind Turbines
DEFF Research Database (Denmark)
Senturk, Osman Selcuk
. For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...
Electron Cyclotron Resonance Heating of a High-Density Plasma
DEFF Research Database (Denmark)
Hansen, F. Ramskov
1986-01-01
Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...... of the electron cyclotron frequency. These are injected obliquely from the outside of the tokamak near an optimal angle to the magnetic field lines. This method involves two mode conversions. The ordinary waves are converted into extraordinary waves near the plasma cut-off layer. The extraordinary waves...... are subsequently converted into electrostatic electron Bernstein waves at the upper hybrid resonance layer, and the Bernstein waves are completely absorbed close to the plasma centre. Results are presented from ray-tracinq calculations in full three-dimensional geometry using the dispersion function for a hot non...
Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points
Bučinský , Luká š; Kucková , Lenka; Malček, Michal; Koží šek, Jozef; Biskupič, Stanislav; Jayatilaka, Dylan; Bü chel, Gabriel E.; Arion, Vladimir B.
2014-01-01
The change of picture of the quasirelativistic Hartree-Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl5(Hpz)]- and [RuCl5(NO)]2- transition metal complexes are considered. Both, scalar relativistic and spin-orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.©2014 Elsevier B.V. All rights reserved.
Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points
Bučinský, Lukáš
2014-06-01
The change of picture of the quasirelativistic Hartree-Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl5(Hpz)]- and [RuCl5(NO)]2- transition metal complexes are considered. Both, scalar relativistic and spin-orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.©2014 Elsevier B.V. All rights reserved.
Experimental study on generation of large area uniform electron beam
International Nuclear Information System (INIS)
Tang Ying; Yi Aiping; Liu Jingru; Qian Hang; Huang Xin; Yu Li; Su Jiancang; Ding Zhenjie; Ding Yongzhong; Yu Jianguo
2007-01-01
In the experiment of gas laser pumped by electron beam, large area uniform electron beam is important to generate high efficiency laser output. The experimental study on generation of large area uniform electron beam with SPG-200 pulsed power generator is introduced. SPG-200 is an all-solid-state components pulsed power generator based on SOS, and its open voltage is more than 350 kV. The cathode have the area of 24 mm x 294 mm, and the anode-cathode(A-C)gap spacing is adjustable from 0 to 49 mm. The electron beam of cathode emission is transported to the laser chamber through the diode pressure foil, which sepa-rates the vacuum chamber from the laser chamber. Velvet and graphite cathodes are studied, each generates large area electron beam. The diode parameters are presented, and the uniformity of e-beam is diagnosed. The experimental results show that the diode voltage of the graphite cathode is 240-280 kV, and the diode current is 0.7-1.8 kA. The diode voltage of the velvet cathode is 200-250 kV, and the diode current is 1.5-1.7 kA. The uniformity of the velvet cathode emission is better than that of the graphite cathode. (authors)
Effects of the light beam bending on the interferometric electron density measurements
International Nuclear Information System (INIS)
Matsumoto, Y.; Koyama, K.; Tanimoto, M.; Sugiura, M.
1980-01-01
In the measurements of plasma density profile with laser interferometers, the maximum relative errors due to the deflection of laser light caused by steep gradients of the electron density are analytically evaluated. As an example the errors in the measurements of density profile of a plasma focus by using a UV-N 2 laser are estimated. (author)
International Nuclear Information System (INIS)
Klepper, C.C.
1985-01-01
The spatial distribution of the electron source was measured spectroscopically in the Texas Experimental Tokamak. The method used involves the measurement of the emissivity of the Balmer α and β lines of neutral hydrogen. Modeling of the corresponding atomic transitions provides a relation between the emissivities and the electron source from the ionization of neutrals. Toroidal distributions were obtained by means of a set of relatively calibrated photodiode amplifier-filter packages referred to as plasma light monitors. Such monitors were distributed toroidally, and attached primarily to radial ports. Specially constructed, absolutely calibrated monitors provided absolute calibration. A scanning, rotating mirror system provided in-out brightness profiles. A TV camera system, viewing the limiter through a tangential port, provided a qualitative description of the poloidal asymmetry. Such description was necessary for the inversion of the rotating mirror data. Using electron density profiles obtained by means of far-infrared interferometry, and integrating the electron sources, the global particle confinement time (tau/sub p/) was computed. Parameter scans were performed in ohmically heated plasmas, varying the toroidal field, the plasma current, the electron density, and the plasma position with respect to the center of the poloidal ring limiter. It was found that tau/sub p/ peaks for a critical density that is independent of the other parameters
Lymphatic vessel density and function in experimental bladder cancer
International Nuclear Information System (INIS)
Saban, Marcia R; Wu, Xue-Ru; Saban, Ricardo; Towner, Rheal; Smith, Nataliya; Abbott, Andrew; Neeman, Michal; Davis, Carole A; Simpson, Cindy; Maier, Julie; Mémet, Sylvie
2007-01-01
The lymphatics form a second circulatory system that drains the extracellular fluid and proteins from the tumor microenvironment, and provides an exclusive environment in which immune cells interact and respond to foreign antigen. Both cancer and inflammation are known to induce lymphangiogenesis. However, little is known about bladder lymphatic vessels and their involvement in cancer formation and progression. A double transgenic mouse model was generated by crossing a bladder cancer-induced transgenic, in which SV40 large T antigen was under the control of uroplakin II promoter, with another transgenic mouse harboring a lacZ reporter gene under the control of an NF-κB-responsive promoter (κB-lacZ) exhibiting constitutive activity of β-galactosidase in lymphatic endothelial cells. In this new mouse model (SV40-lacZ), we examined the lymphatic vessel density (LVD) and function (LVF) during bladder cancer progression. LVD was performed in bladder whole mounts and cross-sections by fluorescent immunohistochemistry (IHC) using LYVE-1 antibody. LVF was assessed by real-time in vivo imaging techniques using a contrast agent (biotin-BSA-Gd-DTPA-Cy5.5; Gd-Cy5.5) suitable for both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF). In addition, IHC of Cy5.5 was used for time-course analysis of co-localization of Gd-Cy5.5 with LYVE-1-positive lymphatics and CD31-positive blood vessels. SV40-lacZ mice develop bladder cancer and permitted visualization of lymphatics. A significant increase in LVD was found concomitantly with bladder cancer progression. Double labeling of the bladder cross-sections with LYVE-1 and Ki-67 antibodies indicated cancer-induced lymphangiogenesis. MRI detected mouse bladder cancer, as early as 4 months, and permitted to follow tumor sizes during cancer progression. Using Gd-Cy5.5 as a contrast agent for MRI-guided lymphangiography, we determined a possible reduction of lymphatic flow within the tumoral area. In addition, NIRF
International Nuclear Information System (INIS)
Damla, N.; Baltas, H.; Celik, A.; Kiris, E.; Cevik, U.
2008-01-01
Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient, effective atomic, numbers (Z eff ), effective electron densities (N e ) and photon interaction cross section (σ a ) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. (authors)
Merli, Marcello; Pavese, Alessandro
2018-03-01
The critical points analysis of electron density, i.e. ρ(x), from ab initio calculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points, i.e. such that ∇ρ(x c ) = 0 and λ 1 , λ 2 , λ 3 ≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) at x c ], towards degenerate critical points, i.e. ∇ρ(x c ) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood of x c and allows one to rationalize the occurrence of instability in terms of electron-density topology and Gibbs energy. The phase/state transitions that TiO 2 (rutile structure), MgO (periclase structure) and Al 2 O 3 (corundum structure) undergo because of pressure and/or temperature are here discussed. An agreement of 3-5% is observed between the theoretical model and experimental pressure/temperature of transformation.
International Nuclear Information System (INIS)
Jayakumar, R.; Fleischmann, H.H.
1989-01-01
The production of intermediate energy secondary electrons in plasmas through collisions with fast charged particles is investigated. The density and the distribution of the secondary electrons are obtained by calculating the generation, slow down and diffusion rates, using basic Rutherford collision cross sections. It is shown that the total density of secondaries is much smaller than the fast particle density and that the energy distribution has roughly a 1/√E dependence. The higher generation secondary populations are also obtained. (orig.)
Hβ Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering
International Nuclear Information System (INIS)
Palomares, J.M.; Hübner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de; Sola, A.; Gamero, A.; Mullen, J.J.A.M. van der
2012-01-01
In the present work Stark broadening measurements have been carried out on low electron density (n e 19 m −3 ) and (relatively) low gas temperature (T g e . - Highlights: ► Stark broadening measurements at low density and temperature conditions ► Calibration with Thomson scattering ► Indications of the non-Lorentzian shape of the Stark broadening ► Impossibility of simultaneous diagnostic of gas temperature and electron density
Energy Technology Data Exchange (ETDEWEB)
Maaloul, L.; Gangwar, R. K.; Morel, S.; Stafford, L., E-mail: luc.stafford@umontreal.ca [Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada)
2015-11-15
Langmuir probe and trace rare gases optical emission spectroscopy were used to analyze the spatial structure of the electron density and electron energy distribution function (EEDF) in a cylindrical Ar magnetron plasma reactor used for sputter-deposition of ZnO-based thin films. While a typical Bessel (zero order) diffusion profile was observed along the radial direction for the number density of charged particles at 21 cm from the ZnO target, a significant rise of these populations with respect to the Bessel function was seen in the center of the reactor at 4 cm from the magnetron surface. As for the EEDF, it was found to transform from a more or less Maxwellian far from the target to a two-temperature Maxwellian with a depletion of high-energy electrons where magnetic field confinement effects become important. No significant change in the behavior of the electron density and EEDF across a wide range of pressures (5–100 mTorr) and self-bias voltages (115–300 V) was observed during magnetron sputtering of Zn, ZnO, and In{sub 2}O{sub 3} targets. This indicates that sputtering of Zn, In, and O atoms do not play a very significant role on the electron particle balance and electron heating dynamics, at least over the range of experimental conditions investigated.
Density functional study of : Electronic and optical properties
Indian Academy of Sciences (India)
K C Bhamu
3Department of Physics, Swami Keshvanand Insitute of Technology, Management and Gramothan, ... Published online 20 June 2017. Abstract. This paper focusses on the electronic and optical properties of scandium-based silver delafossite.
A theory of local and global processes which affect solar wind electrons. 2. Experimental support
International Nuclear Information System (INIS)
Scudder, J.D.; Olbert, S.
1979-05-01
The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals; the transthermals; and the extrathermals. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU
Two-component scattering model and the electron density spectrum
Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.
2010-02-01
In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.
Energy Technology Data Exchange (ETDEWEB)
Buecking, N
2007-11-05
In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the
Kiewisch, K.; Jacob, C.R.; Visscher, L.
2013-01-01
The ability to calculate accurate electron densities of full proteins or of selected sites in proteins is a prerequisite for a fully quantum-mechanical calculation of protein-protein and protein-ligand interaction energies. Quantum-chemical subsystem methods capable of treating proteins and other
International Nuclear Information System (INIS)
Hopkins, Mark A.; King, Lyon B.
2014-01-01
Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations
Basic concepts of Density Functional Theory: Electronic structure calculation
International Nuclear Information System (INIS)
Sharma, B. Indrajit
2016-01-01
We are looking for a material which possesses the required properties as demanded for technological applications. For this we have to repeat the preparation of the appropriate materials and its characterizations. So, before proceeding to experiments, one can study on computer generated structure and predict the properties of the desired material. To do this, a concept of Density Functional Theory comes out. (paper)
Reproducibility of the cutoff probe for the measurement of electron density
Energy Technology Data Exchange (ETDEWEB)
Kim, D. W.; Oh, W. Y. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, S. J., E-mail: sjyou@cnu.ac.kr [Department of Physics, Chungnam National University, Daejeon 305-701 (Korea, Republic of); Kwon, J. H.; You, K. H.; Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of); Yoon, J.-S. [Plasma Technology Research Center, National Fusion Research Institute, Gunsan 573-540 (Korea, Republic of)
2016-06-15
Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e., there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.
Electronic and Optical Properties of Sodium Niobate: A Density Functional Theory Study
Directory of Open Access Journals (Sweden)
Daniel Fritsch
2018-01-01
Full Text Available In recent years, much effort has been devoted to replace the most commonly used piezoelectric ceramic lead zirconate titanate Pb[ZrxTi1−x]O3 (PZT with a suitable lead-free alternative for memory or piezoelectric applications. One possible alternative to PZT is sodium niobate as it exhibits electrical and mechanical properties that make it an interesting material for technological applications. The high-temperature simple cubic perovskite structure undergoes a series of structural phase transitions with decreasing temperature. However, particularly the phases at room temperature and below are not yet fully characterised and understood. Here, we perform density functional theory calculations for the possible phases at room temperature and below and report on the structural, electronic, and optical properties of the different phases in comparison to experimental findings.
Reproducibility of the cutoff probe for the measurement of electron density
International Nuclear Information System (INIS)
Kim, D. W.; Oh, W. Y.; You, S. J.; Kwon, J. H.; You, K. H.; Seo, B. H.; Kim, J. H.; Yoon, J.-S.
2016-01-01
Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e., there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.
A method to measure the suprathermal density distribution by electron cyclotron emission
International Nuclear Information System (INIS)
Tutter, M.
1986-05-01
Electron cyclotron emission spectra of suprathermal electrons in a thermal main plasma are calculated. It is shown that for direction of observation oblique to the magnetic field, which decays in direction to the receiver, one may obtain information on the spatial density distribution of the suprathermal electrons from those spectra. (orig.)
Electronic zero-point oscillations in the strong-interaction limit of density functional theory
Gori Giorgi, P.; Vignale, G.; Seidl, M.
2009-01-01
The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0
Effect of disorder on the density of states of a two-dimensional electron gas under magnetic field
International Nuclear Information System (INIS)
Bonifacie, S.; Meziani, Y.M.; Chaubet, C.; Jouault, B.; Raymond, A.
2004-01-01
We have calculated the density of states (DOS) of a two-dimensional electron gas in a perpendicular magnetic field, using a multiple scattering method, in the ultraquantum limit. We have considered doped and disordered 2D systems. The results of the scattering method are compared with direct simulations of disordered samples. Using the DOS, we have studied the metal-insulator transition and the magnetic freeze-out including a comparison with experimental results
International Nuclear Information System (INIS)
Torres, J; Jonkers, J; Sande, M J van de; Mullen, J J A M van der; Gamero, A; Sola, A
2003-01-01
This paper discusses the possibility of determining, at the same time, both the electron density and temperature in a discharge produced at atmospheric pressure using the Stark broadening of lines spontaneously emitted by a plasma. This direct method allows us to obtain experimental results that are in good agreement with others previously obtained for the same type of discharge. Its advantages and disadvantages compared to other direct methods of diagnostics, namely Thomson scattering, are also discussed. (rapid communication)
Pulsed time-of-flight refractometry measurements of the electron density in the T-11M tokamak
International Nuclear Information System (INIS)
Petrov, A.A.; Petrov, V.G.; Malyshev, A.Yu.; Markov, V.K.; Babarykin, A.V.
2002-01-01
A new method for measuring the plasma density in magnetic confinement systems - pulsed time-of-flight refractometry - is developed and tested experimentally in the T-11M tokamak. The method is based on the measurements of the time delay of short (with a duration of several nanoseconds) microwave pulses propagating through the plasma. When the probing frequency is much higher than the plasma frequency, the measured delay in the propagation time is proportional to the line-averaged electron density regardless of the density profile. A key problem in such measurements is the short time delay of the pulse in the plasma (∼1 ns or less for small devices) and, consequently, low accuracy of the measurements of the average density. Various methods for improving the accuracy of such measurements are proposed and implemented in the T-11M experiments. The measurements of the line-averaged density in the T-11M tokamak in the low-density plasma regime are performed. The results obtained agree satisfactorily with interferometric data. The measurement errors are analyzed, and the possibility of using this technique to measure the electron density profile and the position of the plasma column is discussed
Directory of Open Access Journals (Sweden)
H. J. Harsan Ma
2015-08-01
Full Text Available The two-dimensional electron gas (2DEG formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO3 (LAO and non-polar SrTiO3 (STO. Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La0.5Sr0.5TiO3 (LSTO layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.
International Nuclear Information System (INIS)
Hofer, Werner A
2012-01-01
In a recent paper we introduced a model of extended electrons, which is fully compatible with quantum mechanics in the formulation of Schrödinger. However, it contradicts the current interpretation of electrons as point-particles. Here, we show by a statistical analysis of high-resolution scanning tunneling microscopy (STM) experiments, that the interpretation of electrons as point particles and, consequently, the interpretation of the density of electron charge as a statistical quantity will lead to a conflict with the Heisenberg uncertainty principle. Given the precision in these experiments we find that the uncertainty principle would be violated by close to two orders of magnitude, if this interpretation were correct. We are thus forced to conclude that the density of electron charge is a physically real, i.e. in principle precisely measurable quantity, as derived in a recent paper. Experimental evidence to the contrary, in particular high-energy scattering experiments, is briefly discussed. The finding is expected to have wide implications in condensed matter physics, chemistry, and biology, scientific disciplines which are based on the properties and interactions of electrons.
Directory of Open Access Journals (Sweden)
Jiguang Du
2016-04-01
Full Text Available The interaction natures between Pu and different ligands in several plutonyl (VI complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC basis set. The Pu– O y l bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM analyses. Meanwhile, we found that some Pu–Ligand bonds, like Pu–OH−, show weak covalent. The interactive nature of Pu–ligand bonds were revealed based on the interaction quantum atom (IQA energy decomposition approach, and our results indicate that all Pu–Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI approach it has been found that some weak and repulsion interactions existed in plutonyl(VI complexes, which can not be distinguished by QTAIM, can be successfully identified.
Exploring the temporally resolved electron density evolution in extreme ultra-violet induced plasmas
International Nuclear Information System (INIS)
Van der Horst, R M; Beckers, J; Nijdam, S; Kroesen, G M W
2014-01-01
We measured the electron density in an extreme ultra-violet (EUV) induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. The measured electron density just after the EUV pulse is 2.6 × 10 16 m −3 . This is in good agreement with a theoretical prediction from photo-ionization, which yields a density of 4.5 × 10 16 m −3 . After the EUV pulse the density slightly increases due to electron impact ionization. The plasma (i.e. electron density) decays in tens of microseconds. (fast track communication)
Measurements of transient electron density distributions by femtosecond X-ray diffraction
International Nuclear Information System (INIS)
Freyer, Benjamin
2013-01-01
This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.
The study of dynamics of electrons in the presence of large current densities
International Nuclear Information System (INIS)
Garcia, G.
2007-11-01
The runaway electron effect is considered in different fields: nuclear fusion, or the heating of the solar corona. In this thesis, we are interested in runaway electrons in the ionosphere. We consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a parallel electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. A computational example is given illustrating the approach to equilibrium and the impact of the different terms. Then, a static electric field is applied in a new sample run. In this run, the electrons move in the z direction, parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density up to 20% of the total current density. Nevertheless, we note that the divergence free of the current density is not conserved. We introduce major changes in order to take into account the variation of the different moments of the ion distribution functions. We observe that the electron distribution functions are still non-Maxwellian. Runaway electrons are created and carry the current density. The core distribution stay at rest. As these electrons undergo less collisions, they increase the plasma conductivity. We make a parametric study. We fit the electron distribution function by two Maxwellian. We show that the time to reach the maximal current density is a key point. Thus, when we increase this time, we modify the temperatures. The current density plays a primary role. When the current density increases, all the moments of the distributions increase: electron density and mean velocity of the suprathermal distribution and the electron temperature of the core and
International Nuclear Information System (INIS)
Dobrzynski, Ludwik
2000-01-01
The Bayesian analysis of the spherical part of the electron momentum density was carried out with the goal of finding the best estimation of the spherically averaged renormalization parameter, z , quantifying the discontinuity in the electron momentum density distribution in Li metal. Three models parametrizing the electron momentum density were considered and nuisance parameters integrated out. The analysis show that the most likely value of z following from the data of Sakurai et al is in the range of 0.45-0.50, while 0.55 is obtained for the data of Schuelke et al . In the maximum entropy reconstruction of the spherical part of the electron momentum density three different algorithms were used. It is shown that all of them produce essentially the same results. The paper shows that the accurate Compton scattering experiments are capable of bringing information on this very important Fermiological aspect of the electron gas in a metal. (author)
International Nuclear Information System (INIS)
Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi
1989-11-01
A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed
CO2 laser interferometer for temporally and spatially resolved electron density measurements
Brannon, P. J.; Gerber, R. A.; Gerardo, J. B.
1982-09-01
A 10.6-μm Mach-Zehnder interferometer has been constructed to make temporally and spatially resolved measurements of electron densities in plasmas. The device uses a pyroelectric vidicon camera and video memory to record and display the two-dimensional fringe pattern and a Pockels cell to limit the pulse width of the 10.6-μm radiation. A temporal resolution of 14 ns has been demonstrated. The relative sensitivity of the device for electron density measurements is 2×1015 cm-2 (the line integral of the line-of-sight length and electron density), which corresponds to 0.1 fringe shift.
CO2 laser interferometer for temporally and spatially resolved electron density measurements
International Nuclear Information System (INIS)
Brannon, P.J.; Gerber, R.A.; Gerardo, J.B.
1982-01-01
A 10.6-μm Mach--Zehnder interferometer has been constructed to make temporally and spatially resolved measurements of electron densities in plasmas. The device uses a pyroelectric vidicon camera and video memory to record and display the two-dimensional fringe pattern and a Pockels cell to limit the pulse width of the 10.6-μm radiation. A temporal resolution of 14 ns has been demonstrated. The relative sensitivity of the device for electron density measurements is 2 x 10 15 cm -2 (the line integral of the line-of-sight length and electron density), which corresponds to 0.1 fringe shift
Electric field and electron density thresholds for coherent auroral echo onset
International Nuclear Information System (INIS)
Kustov, A.V.; Uspensky, M.V.; Sofko, G.J.; Koehler, J.A.; Jones, G.O.L.; Williams, P.J.S.
1993-01-01
The authors study the threshold dependence of electron density and electric field for the observation of coherent auroral echo onset. They make use of Polar Geophysical Institute 83 MHz auroral radar and the EISCAT facility in Scandanavia, to simultaneously get plasma parameter information and coherent scatter observations. They observe an electron density threshold of roughly 2.5x10 11 m -3 for electric fields of 15 - 20 mV/m (near the Farley-Buneman instability threshold). For electric fields of 5 - 10 mV/m echos are not observed for even twice the previous electron density. Echo strength is observed to have other parametric dependences
Electron density profiles in the background of LF absorption during Forbush-decrease and PSE
International Nuclear Information System (INIS)
Satori, G.
1989-01-01
Based on the simulation of different Forbush decrease and particle precipitation effects in the D region, electron density profiles in the mid-latitudes the ionospheric absorption of low frequency (LF) radio waves was determined. The absorption variations at different frequenceis are strongly affected by the shape of the electron density profile. A structure appears which sometimes resembles the letter S (in a sloping form). Both the height (around 70 to 72 km) and the depth of the local minimum in the electron density contribute to the computed absorption changes of various degree at different frequencies. In this way several observed special absorption events can be interpreted
Electronic structure of ZrS{sub x}Se{sub 2-x} by density functional theory
Energy Technology Data Exchange (ETDEWEB)
Ghafari, Ailakbar; Moustafa, Mohamed; Janowitz, Christoph; Dwelk, Helmut; Manzke, Recardo [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Bouchani, Arash [Physics Department, Islamic Azad University, Kermanshah Branch (Iran, Islamic Republic of)
2011-07-01
The electronic properties of the ZrS{sub x}Se{sub 2-x} (x varies between zero and two) semiconductors have been calculated by density functional theory (using the Wien2K code) employing the full potential Hamiltonian within the Generalized Gradient Approximation (GGA) method. The results obtained for the end members of the series, i.e. ZrS{sub 2} and ZrSe{sub 2} reveal that the valence band maximum and conduction band minimum are located at {gamma} and between {gamma} and K respectively which is in agreement with our photoemission experimental data. Trends in the electronic structure for the whole substitution series are discussed.
International Nuclear Information System (INIS)
Thode, L.E.
1978-04-01
Based upon recent theoretical and experimental advances, the potential for using a 10 to 30 MeV electron beam to heat a 10 17 to 10 20 cm -3 density plasma has been investigated. Taking into account anode foil scattering, external magnetic field strength, electron-ion collision rate, beam self-magnetic field discontinuity, and plasma temperature, a coupling efficiency of 15 to 50% is achievable for such a plasma. Moreover, the beam generator requirements seem to be within present pulse power technology
International Nuclear Information System (INIS)
Ashur, S. M.
2007-01-01
In this work current voltage characteristics and voltage spectral density, in both forward and reverse bias operations were evaluated for a group of mono- crystalline silicon solar cells. The cells were tested for the sake of device quality evaluation and identification of failure modes and mechanisms. Experimental results showed transport characteristics with varying slopes. In addition, electrical noise density versus frequency response, for the constant voltage mode, showed an extremum of noise voltage spectral density at zero D.C. frequency. It decreased with increasing frequency and revealed spikes of the noise voltage density at certain frequencies. (author)
Bond charge approximation for valence electron density in elemental semiconductors
International Nuclear Information System (INIS)
Bashenov, V.K.; Gorbachov, V.E.; Marvakov, D.I.
1985-07-01
The spatial valence electron distribution in silicon and diamond is calculated in adiabatic bond charge approximation at zero temperature when bond charges have the Gaussian shape and their tensor character is taken into account. An agreement between theory and experiment has been achieved. For this purpose Xia's ionic pseudopotentials and Schulze-Unger's dielectric function are used. By two additional parameters Asub(B) and Zsub(B)sup(') we describe the spatial extent of the bond charge and local-field corrections, respectively. The parameter Zsub(B)sup(') accounts for the ratio between the Coulomb and exchange correlation interactions of the valence electrons and its silicon and diamond values have different signs. (author)
Morishita, Tetsuya
2009-05-21
We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).
International Nuclear Information System (INIS)
Tereshchenko, E.D.; Khudukon, B.Z.; Gurevich, A.V.; Zybin, K.P.; Frolov, V.L.; Myasnikov, E.N.; Muravieva, N.V.; Carlson, H.C.
2004-01-01
Observations of the ionospheric electron density modified by a powerful wave of the Sura HF heating facility were carried out in Russia at middle latitudes in August 2002. Amplitude scintillations and variations of the phase of VHF signals from Russian orbiting satellites passing over the heated region along the chain of three satellite receivers have been recorded. The experimental data were converted to electron density maps using a stochastic inversion. Tomographic measurements conducted during a low magnetic activity revealed that HF powerful waves can produce significant electron density disturbances up to heights significantly exceeding altitudes of the F layer peak. Both large-scale plasma enhancements and small-scale density irregularities can be generated by the HF radiation. Wavy density structures were also observed within a sector which is much wider than the area covered by the main lobe of the heating antenna. Small-scale density irregularities are mostly field-aligned although large-scale structures can be detected within a much larger area. A distinctive peculiarity of electron density changes occurred during heating is producing a zone of low density inside the area illuminated by the antenna beam. The results indicate that satellite radio tomography and scintillation measurements are effective diagnostic techniques giving a valuable information to studies of effects induced by HF modification. The complete system of plasma density disturbances describing by the theory of 'the magnetic zenith effect' has been for the first time studied in this Letter. A good agreement between the theory and experimental data has been obtained
Comparative study of the electron density profiles in the compact torus plasma merging experiments
International Nuclear Information System (INIS)
Hayashiya, Hitoshi; Asaka, Takeo; Katsurai, Makoto
2003-01-01
Following two previous papers on the comparative studies of the electron density distributions for a single compact torus (CT) and a spherical tokamak (ST), and for the a single ST and a merged ST, a comparative study on the dynamics of the electron density profile and after the CT and ST plasma merging process was performed. The sharpness of the peak in the electron density profile around the mid-plane just after the merging of CT with a low safety factor (q value) such as RFP or spheromak is found to be related to the speed of the magnetic axis during the plasma merging process. It is also found that the electron density gradient near the plasma edge in a high q ST is larger than that of a low q CT. High q ST is found to be provided with the magnetic structure which is able to sustain a large thermal pressure by a strong j x B force. Despite these differences in the electron density profile between CT and ST during merging, the confinement characteristics evaluated from the number of electrons confined within the magnetic separatrix after the completion of the merging is almost similar between in the merging CT and in the merging ST. For all configurations, the electron density profiles after the completion of the merging are analogous to those of the corresponding single configuration produced without the merging process. (author)
Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei
2016-05-01
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.
Energy Technology Data Exchange (ETDEWEB)
Sun, Jianwei; Yang, Zenghui; Peng, Haowei [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)
2016-05-21
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.
International Nuclear Information System (INIS)
Sun, Jianwei; Yang, Zenghui; Peng, Haowei; Perdew, John P.
2016-01-01
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.
Electron-positron momentum density in TTF-TCNQ
DEFF Research Database (Denmark)
Ishibashi, S.; Manuel, A.A.; Hoffmann, L.
1997-01-01
We present measurements of the positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) in TTF-TCNQ. We report also theoretical simulations of the 2D-ACAR in which the electron wave functions were expressed as TTF or TCNQ molecular orbitals obtained from self-consistent qu...... from a study of the Kohn anomaly. We investigate also the shape and position of the Fermi surface and conclude that a simple planar Fermi surface is consistent with our measurements....
International Nuclear Information System (INIS)
Njau, E.C.
1990-12-01
We develop generalized mathematical expressions for time and space variations of peak electron densities of the ionospheric D, E, F1 and F2 layers as well as corresponding variations in the altitudes of the electron density peaks in each of these layers. On the basis of the Chapman characteristics of the E and F1 layers and other techniques, a generalized expression is developed for the electron density height profile of each of the four ionospheric layers. Consequently a generalized mathematical expression is developed for the entire electron density height profile of the whole ionosphere as a function of time, latitude and longitude. The latter mathematical expression may be used to compute or predict ionospheric parameters associated with ratio and satellite communications. Finally we show that some well documented equations on ionospheric parameters are simplified (or approximated) versions of some of our mathematical expressions. (author). 29 refs
Mechanism of electron density reduction in the region of stable subauroral red arcs
International Nuclear Information System (INIS)
Pavlov, A.V.
1993-01-01
For geomagnetic storm on 18.12.71 are fulfilled calculations of electron density N e and temperature Te and intensity of the atmosphere luminescence at 630 nm in the region of the subauroral red are and outside its
Electron density diagnostics in the 10-100 A interval for a solar flare
Brown, W. A.; Bruner, M. E.; Acton, L. W.; Mason, H. E.
1986-01-01
Electron density measurements from spectral-line diagnostics are reported for a solar flare on July 13, 1982, 1627 UT. The spectrogram, covering the 10-95 A interval, contained usable lines of helium-like ions C V, N VI, O VII, and Ne IX which are formed over the temperature interval 0.7-3.5 x 10 to the 6th K. In addition, spectral-line ratios of Si IX, Fe XIV, and Ca XV were compared with new theoretical estimates of their electron density sensitivity to obtain additional electron density diagnostics. An electron density of 3 x 10 to the 10th/cu cm was obtained. The comparison of these results from helium-like and other ions gives confidence in the utility of these tools for solar coronal analysis and will lead to a fuller understanding of the phenomena observed in this flare.
Experimental research of double-pulse linear induction electron accelerator
International Nuclear Information System (INIS)
Liao Shuqing; Cheng Cheng; Zheng Shuxin; Tang Chuanxiang; Lin Yuzheng; Jing Xiaobing; Mu Fan; Pan Haifeng
2009-01-01
The Mini-LIA is a double-pulse linear induction electron accelerator with megahertz repetition rates, which consists of a double-pulse power system, a thermal cathode electron gun, two induction cells, beam transportation systems and diagnosis systems, etc. Experiments of the Mini-LIA have been conducted. The double-pulse high voltage was obtained with several hundred nanosecond pulse intervals (i. e. megahertz repetition rate) and each pulse had an 80 kV amplitude with a FWHM of 80 ns. In the gap of the induction cell, the double-pulse accelerating electric field was measured via E-field probes, and the double-pulse electron beam with a current about 1.1 A has been obtained at the Mini-LIA exit. These experimental results show that the double-pulse high voltage with megahertz repetition rates can be generated by an insulation and junction system. And they also indicate that the induction cell with metglas as the ferromagnetic material and the LaB 6 thermal cathode electron gun suit the double-pulse operation with megahertz repetition rates. (authors)
Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon
2018-04-05
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
Electron heating caused by parametrically driven turbulence near the critical density
International Nuclear Information System (INIS)
Mizuno, K.; DeGroot, J.S.; Estabrook, K.G.
1986-01-01
Microwave-driven experiments and particle simulation calculations are presented that model s-polarized laser light incident on a pellet. In the microwave experiments, the incident microwaves are observed to decay into ion and electron waves near the critical density if the microwave power is above a well-defined threshold. Significant absorption, thermal electron heating, and hot electron generation are observed for microwave powers above a few times threshold. Strong absorption, strong profile modification, strongly heated hot electrons with a Maxwellian distribution, a hot-electron temperature that increases slowly with power, and a hot-electron density that is almost constant, are all observed in both the microwave experiments and simulation calculations for high powers. In addition, the thermal electrons are strongly heated for high powers in the microwave experiments
Garza, Alejandro J.
history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma--the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the f0 actinyl series (UO2 2+, NpO 23+, PuO24+, the isoelectronic NUN, and Thorium (ThO, ThO2+) and Nobelium (NoO, NoO2) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.
International Nuclear Information System (INIS)
Lediankine, A.
1996-01-01
The profiles of temperature and electronic density at the plasma edge are important to study the wall-plasma interaction and the radiative layers in the Tokamak plasmas. The laser ablation technique of the lithium allows to measure the profile of electronic density. To measure the profile of temperature, it has been used for the first time, the injection of a fluorine neutral atoms beam. The experiments, the results are described in this work. (N.C.)
Some new features of electron density irregularities over SHAR during strong spread F
Directory of Open Access Journals (Sweden)
S. Raizada
Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms^{-1}. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.
Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics
Some new features of electron density irregularities over SHAR during strong spread F
Directory of Open Access Journals (Sweden)
S. Raizada
2000-02-01
Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip latitude 5.5°N to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150-300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165-178 km, in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200-330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms-1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.Key words: Ionosphere (equatorial ionosphere; ionospheric irregularities - Radio science (ionospheric physics
Electron density in the emission-line region of Wolf-Rayet stars
International Nuclear Information System (INIS)
Varshni, Y.P.
1978-01-01
The Inglis-Teller relation, generalized for a hydrogen-like or alkali-like ion with an arbitrary core charge, is used to estimate the electron density in the emission-like region of Wolf-Rayet stars. It is found that the electron density in the region which gives rise to He II emission lines is approximately = 4 x 10 14 cm -3 . (Auth.)
Fast-electron self-collimation in a plasma density gradient
International Nuclear Information System (INIS)
Yang, X. H.; Borghesi, M.; Robinson, A. P. L.
2012-01-01
A theoretical and numerical study of fast electron transport in solid and compressed fast ignition relevant targets is presented. The principal aim of the study is to assess how localized increases in the target density (e.g., by engineering of the density profile) can enhance magnetic field generation and thus pinching of the fast electron beam through reducing the rate of temperature rise. The extent to which this might benefit fast ignition is discussed.
Experimental investigations of interaction of supercritical electron beams with plasma
International Nuclear Information System (INIS)
Chupikov, P.T.; Medvedev, D.V.; Onishchenko, I.N.; Panasenko, B.D.; Faehl, R.J.
2002-01-01
The first section of the collective ions acceleration based on simultaneous temporal and spatial modulation of relativistic electron beam (REB) was studied experimentally. The virtual cathode was originated in the electrodynamic structure consisting of two tubes with different diameters (jump of electrodynamics) by REB, produced in magnetically insulated diode. At plasma assistance the low-frequency oscillations of REB current and the low-frequency microwave radiation were obtained due to the virtual cathode periodical relaxation in the processes of charge compensation by ionized residual gas
Energy Technology Data Exchange (ETDEWEB)
Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu, Sichuan 610200 (China); Lee, S. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Shi, Y. J. [Department of Nuclear Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)
2016-11-15
An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.
A new Langmuir probe concept for rapid sampling of space plasma electron density
International Nuclear Information System (INIS)
Jacobsen, K S; Pedersen, A; Moen, J I; Bekkeng, T A
2010-01-01
In this paper we describe a new Langmuir probe concept that was invented for the in situ investigation of HF radar backscatter irregularities, with the capability to measure absolute electron density at a resolution sufficient to resolve the finest conceivable structure in an ionospheric plasma. The instrument consists of two or more fixed-bias cylindrical Langmuir probes whose radius is small compared to the Debye length. With this configuration, it is possible to acquire absolute electron density measurements independent of electron temperature and rocket/satellite potential. The system was flown on the ICI-2 sounding rocket to investigate the plasma irregularities which cause HF backscatter. It had a sampling rate of more than 5 kHz and successfully measured structures down to the scale of one electron gyro radius. The system can easily be adapted for any ionospheric rocket or satellite, and provides high-quality measurements of electron density at any desired resolution
Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation
Energy Technology Data Exchange (ETDEWEB)
Sikora, John P., E-mail: jps13@cornell.edu [CLASSE, Cornell University, Ithaca, NY 14853 (United States); Carlson, Benjamin T. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Duggins, Danielle O. [Gordon College, Wenham, MA 01984 (United States); Hammond, Kenneth C. [Columbia University, New York, NY 10027 (United States); De Santis, Stefano [LBNL, Berkeley, CA 94720 (United States); Tencate, Alister J. [Idaho State University, Pocatello, ID 83209 (United States)
2014-08-01
An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.
An experimental and theoretical investigation into the excited electronic states of phenol
Energy Technology Data Exchange (ETDEWEB)
Jones, D. B.; Chiari, L. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Lopes, M. C. A. [Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others
2014-08-21
We present experimental electron-energy loss spectra (EELS) that were measured at impact energies of 20 and 30 eV and at angles of 90° and 10°, respectively, with energy resolution ∼70 meV. EELS for 250 eV incident electron energy over a range of angles between 3° and 50° have also been measured at a moderate energy resolution (∼0.9 eV). The latter spectra were used to derive differential cross sections and generalised oscillator strengths (GOS) for the dipole-allowed electronic transitions, through normalization to data for elastic electron scattering from benzene. Theoretical calculations were performed using time-dependent density functional theory and single-excitation configuration interaction methods. These calculations were used to assign the experimentally measured spectra. Calculated optical oscillator strengths were also compared to those derived from the GOS data. This provides the first investigation of all singlet and triplet excited electronic states of phenol up to the first ionization potential.
Nonlocal exchange and kinetic-energy density functionals for electronic systems
International Nuclear Information System (INIS)
Glossman, M.D.; Rubio, A.; Balbas, L.C.; Alonso, J.A.
1992-01-01
The nonlocal weighted density approximation (WDA) to the exchange and kinetic-energy functionals of many electron systems proposed several years ago by Alonso and Girifalco is used to compute, within the framework of density functional theory, the ground-state electronic density and total energy of noble gas atoms and of neutral jellium-like sodium clusters containing up to 500 atoms. These results are compared with analogous calculations using the well known Thomas-Fermi-Weizsacker-Dirac (TFWD) approximations for the kinetic (TFW) and exchange (D) energy density functionals. An outstanding improvement of the total and exchange energies, of the density at the nucleus and of the expectation values is obtained for atoms within the WDA scheme. For sodium clusters the authors notice a sizeable contribution of the nonlocal effects to the total energy and to the density profiles. In the limit of very large clusters these effects should affect the surface energy of the bulk metal
Vibrational and electronic spectra of 2-nitrobenzanthrone: An experimental and computational study
Onchoke, Kefa K.; Chaudhry, Saad N.; Ojeda, Jorge J.
2016-01-01
The environmental pollutant 2-nitrobenzanthrone (2-NBA) poses human health hazards, and is formed by atmospheric reactions of NOX gases with atmospheric particulates. Though its mutagenic effects have been studied in biological systems, its comprehensive spectroscopic experimental data are scarce. Thus, vibrational and optical spectroscopic analysis (UV-Vis, and fluorescence) of 2-NBA was studied using both experimental and density functional theory employing B3LYP method with 6-311 + G(d,p) basis set. The scaled theoretical vibrational frequencies show good agreement to experiment to within 5 cm- 1 and NBA, respectively. On the basis of normal coordinate analysis complete assignments of harmonic experimental infrared and Raman bands are made. The influence of the nitro group substitution upon the benzanthrone structure and symmetric CH vibrations, and electronic spectra is noted. This study is useful for the development of spectroscopy-mutagenicity relationships in nitrated polycyclic aromatic hydrocarbons.
Proton and neutron densities from elastic electron scattering
International Nuclear Information System (INIS)
Frois, B.
1979-01-01
Elastic electron scattering has now determined extremely fine details of the shape of the nuclear groound state. The combination of (e,e) and muonic X-rays data are giving informations that are among the most precise on nuclear structure. This enables to see all the limitations of existing theories. However, we begin to have a very coherent description of nuclei with the self consistent field theories to a few percent. A very significant progress has been achieved with the calculations of RPA correlations in the round state in a self consistent way. Only recent experiments (on medium and heavy nuclei) of some significance for the understanding of the structure of the nucleus are reviewed
Project on comparison of structural parameters and electron density maps of oxalic acid dihydrate
Coppens, Philip; Dam, J.; Harkema, Sybolt; Feil, D.
1984-01-01
Results obtained from four X-ray and five neutron data sets collected under a project sponsored by the Commission on Charge, Spin and Momentum Densities are analyzed by comparison of thermal parameters, positional parameters and X - N electron density maps. Three sets of theoretical calculations are
DEFF Research Database (Denmark)
Hedegård, Erik D.; Knecht, Stefan; Kielberg, Jesper Skau
2015-01-01
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electroncorrelation...... effects in multiconfigurational electronic structure problems....
Role of substituents on the reactivity and electron density profile of ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 5. Role of substituents on the reactivity and electron density profile of diimine ligands: A density functional theory based study. Bhakti S Kulkarni Deepti Mishra Sourav Pal. Volume 125 Issue 5 September 2013 pp 1247-1258 ...
Intense electron-beam propagation in low-density gases using PHERMEX
International Nuclear Information System (INIS)
Moir, D.C.; Newberger, B.S.; Thode, L.E.
1980-01-01
Preliminary propagation experiments have been performed using the LASL-PHERMEX 21-MeV electron beam with current densities of 40 kA/cm 2 . Gas densities are varied from 10-m torr to 580 torr. Results indicate the presence of microinstabilities
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
Directory of Open Access Journals (Sweden)
Mihai V. Putz
2009-11-01
Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.
Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi
2018-06-01
A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.
Belmonte, Donato; Gatti, Carlo; Ottonello, Giulio; Richet, Pascal; Vetuschi Zuccolini, Marino
2016-11-10
Thermodynamic and thermophysical properties of Na 2 SiO 3 in the Cmc2 1 structural state are computed ab initio using the hybrid B3LYP density functional method. The static properties at the athermal limit are first evaluated through a symmetry-preserving relaxation procedure. The thermodynamic properties that depend on vibrational frequencies, viz., heat capacities, thermal expansion, thermal derivative of the bulk modulus, thermal correction to internal energy, enthalpy, and Gibbs free energy, are then computed in the framework of quasi-harmonic approximation. Acoustic branches are computed by solving the Christoffel determinant and are assumed to follow sine wave dispersion when traveling within the Brillouin zone. The procedure generates several thermo-physical properties of interest in materials science and geophysics (transverse and longitudinal wave velocities, shear modulus, Young modulus, Poisson ratio) all consistent with experimentally determined properties. A representative cluster is then abstracted from the cell and a detailed electron localization/delocalization analysis is performed on it, in the ground state geometry, and on deformed states imposed by two peculiar mixed asymmetric stretching/bending modes affecting the silicate chain that, according to literature data, have anomalous mode Grüneisen parameters. A Bader analysis reveals an intriguing feature associated with these deformations: an increase in the covalence of the Si-O bond that strengthens the linkage opposing the weakening induced by thermal stress. Finally, on the same cluster, the Ramsey contributions to the J NM coupling are evaluated by the gauge-independent atomic orbital method. The calculated isotropic chemical shifts of both 23 Na and 29 Si are again in substantial agreement with observations.
International Nuclear Information System (INIS)
March, Norman H.; Akbari, Ali; Rubio, Angel
2007-01-01
For arbitrary interparticle interaction u(r 12 ), the model two-electron atom in the title is shown to be such that the ground-state electron density ρ(r) is determined uniquely by the correlated kinetic energy density t R (r) of the relative motion. Explicit results for t R (r) are presented for the Hookean atom with force constant k=1/4, and also for u(r 12 )=(λ)/(r 12 2 ) . Possible relevance of the Hookean atom treatment to the ground state of the helium atom itself is briefly discussed
Influence of carrier density on the electronic cooling channels of bilayer graphene
Limmer, T.; Houtepen, A.J.; Niggebaum, A.; Tautz, R.; Da Como, E.
2011-01-01
We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25–1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons
Czech Academy of Sciences Publication Activity Database
Zelinka, Jiří; Oral, Martin; Radlička, Tomáš
2015-01-01
Roč. 21, S4 (2015), s. 246-251 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : electron optical system * calculations of current density Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015
On extending Kohn-Sham density functionals to systems with fractional number of electrons.
Li, Chen; Lu, Jianfeng; Yang, Weitao
2017-06-07
We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.
International Nuclear Information System (INIS)
Komolov, A.S.; Lazneva, E.F.; Gerasimova, N.B.; Panina, Yu.A.; Zashikhin, G.D.; Baramygin, A.V.; Si, P.; Akhremtchik, S.N.; Gavrikov, A.A.
2015-01-01
Graphical abstract: - Highlights: • DOUS of the ultrathin films of the aziridinylphenylpyrrol substituted C_6_0 was determined by using the transmission of the low-energy electrons technique and by the DFT calculations. • The introduction of the APP substituent to C_6_0 molecule was accompanied by the modifications of DOUS in the energy range from 2 eV to 9 eV above E_F. • The major DOUS bands were assigned π* and σ* - type character using the spatial distribution of the relevant orbitals obtained from the DFT calculation results. - Abstract: The ultrathin films of aziridinylphenylpyrrol-C_6_0 (APP-C_6_0) and of the unsubstituted C_6_0 thermally deposited in UHV on an oxidized silicon substrate (SiO_2)n-Si were studied experimentally using the very low energy electron diffraction (VLEED) method and the total current spectroscopy (TCS) measurement scheme. The density of the unoccupied electronic states (DOUS) located 2-20 eV above the Fermi level (E_F) of the films under study was determined using the TCS results and using the results of the density functional theory (DFT) calculations of the vacant electronic orbitals of the APP-C_6_0 and C_6_0 molecules. The DOUS peak structure obtained on the basis of the calculation results corresponds well to the structure of the major DOUS bands obtained from the TCS experiment. The comparison of the DOUS spectra of the APP-C_6_0 and C_6_0 films under study showed that the introduction of the APP substituent to the C_6_0 molecule was accompanied by the pronounced changes of the π* DOUS bands in the energy range from 2 eV to 5 eV above E_F and of the DOUS band composed from both π* and σ* - type orbitals in the energy range from 5 eV to 9 eV above E_F. The formation of the low-lying σ* DOUS band in the APP-C_6_0 film in the energy range from 8 eV to 13 eV above E_F can be explained by the superposition of the relevant DOUS maxima from the C_6_0 film and from the APP fragment.
Energy Technology Data Exchange (ETDEWEB)
Pal, Sougata; Jasper-Toennies, Torben; Hack, Michael; Pehlke, Eckhard [Institut fuer Theoretische Physik und Astrophysik, Universitaet Kiel (Germany)
2011-07-01
The structure and electronic properties of the ZnO(0001) and ZnO(000 anti 1) surfaces as studied by density functional calculations are presented. The stability of the surface has already been investigated by various groups. The electronic surface band structure, however, in particular the existence of surface states and the differences between experimental band dispersion for both terminations, still appears to pose open problems. To address these issues, we compare Kohn Sham band structures and electrostatic potentials close to the surface for the relaxed (1 x 1)-surface, (2 x 2) vacancy reconstructions, and surfaces with pits. In particular the effect of the bending of the electrostatic potential at the surface on the eigenstates is quantified. Comparing the adsorption energies of Fe atoms for various adsorption sites on ZnO(000 anti 1), the fcc hollow position turned out to be energetically favorable. The oxidation state of the Fe atom is derived from the projected density of states.
International Nuclear Information System (INIS)
Kurudirek, M.; Canimkurbey, B.; Coban, M.; Ayguen, M.; Erzeneoglu, S. Z.
2010-01-01
Trommel sieve waste and some commonly used building materials (Portland cement, lime and pointing) have been investigated in terms of effective atomic numbers (Z e ff) and effective electron densities (N e ) by using X- and γ- rays at 22.1, 25 and 88 keV photon energies. A high resolution Si(Li) detector was employed to detect X- and/or γ- radiation coming through in a narrow beam good geometry set-up. Chemical compositions of the materials used in the present study were determined using a wave length dispersive X-ray fluorescence spectrometer (WDXRFS). The variations in photon interaction parameters were discussed regarding the photon energy and chemical composition. The experimental values of effective atomic numbers and effective electron densities were compared with the ones obtained from theory.
Ernst, D.
2015-11-01
We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.
Influence of carrier density on the electronic cooling channels of bilayer graphene
Limmer, T.; Houtepen, A. J.; Niggebaum, A.; Tautz, R.; Da Como, E.
2011-09-01
We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25-1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons and holes. Two regimes of carrier cooling, dominated by optical and acoustic phonons emission, are clearly identified. For increasing carrier density, the crossover between the two regimes occurs at larger carrier temperatures, since cooling via optical phonons experiences a bottleneck. Acoustic phonons, which are less sensitive to saturation, show an increasing contribution at high density.
International Nuclear Information System (INIS)
Gudur, Madhu Sudhan Reddy; Hara, Wendy; Le, Quynh-Thu; Wang, Lei; Xing, Lei; Li, Ruijiang
2014-01-01
MRI significantly improves the accuracy and reliability of target delineation in radiation therapy for certain tumors due to its superior soft tissue contrast compared to CT. A treatment planning process with MRI as the sole imaging modality will eliminate systematic CT/MRI co-registration errors, reduce cost and radiation exposure, and simplify clinical workflow. However, MRI lacks the key electron density information necessary for accurate dose calculation and generating reference images for patient setup. The purpose of this work is to develop a unifying method to derive electron density from standard T1-weighted MRI. We propose to combine both intensity and geometry information into a unifying probabilistic Bayesian framework for electron density mapping. For each voxel, we compute two conditional probability density functions (PDFs) of electron density given its: (1) T1-weighted MRI intensity, and (2) geometry in a reference anatomy, obtained by deformable image registration between the MRI of the atlas and test patient. The two conditional PDFs containing intensity and geometry information are combined into a unifying posterior PDF, whose mean value corresponds to the optimal electron density value under the mean-square error criterion. We evaluated the algorithm’s accuracy of electron density mapping and its ability to detect bone in the head for eight patients, using an additional patient as the atlas or template. Mean absolute HU error between the estimated and true CT, as well as receiver operating characteristics for bone detection (HU > 200) were calculated. The performance was compared with a global intensity approach based on T1 and no density correction (set whole head to water). The proposed technique significantly reduced the errors in electron density estimation, with a mean absolute HU error of 126, compared with 139 for deformable registration (p = 2 × 10 −4 ), 283 for the intensity approach (p = 2 × 10 −6 ) and 282
Measurements of low density, high velocity flow by electron beam fluorescence technique
International Nuclear Information System (INIS)
Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru
1981-01-01
A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)
Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations
Gupta, M.; Singh, D. J.; Gupta, R.
2005-03-01
The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.
Chemical bonding in view of electron charge density and kinetic energy density descriptors.
Jacobsen, Heiko
2009-05-01
Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. 2008 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Rachael K Walsh
Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.
Energy-momentum density of graphite by electron-momentum spectroscopy
International Nuclear Information System (INIS)
Vos, M.; Fang, Z.; Canney, S.; Kheifets, A.; McCarthy, I.E.; Weigold, E.
1996-11-01
The energy-resolved electron momentum density of graphite has been measured along a series of well-defined directions using electron momentum spectroscopy (EMS). This is the first measurement of this kind performed on a single-crystal target with a thoroughly controlled orientation which clearly demonstrates the different nature of the σ and π bands in graphite. Good agreement between the calculated density and the measured one is found, further establishing that fact that EMS yields more direct and complete information on the valence electronic structure that any other method. 12 refs., 2 figs
Energy Technology Data Exchange (ETDEWEB)
Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1981-04-01
The temporal evolution of the electron temperature and density are measured in a turbulent heating experiment in TRIAM-1. Skin-like profiles of the electron temperature and density are clearly observed. The anomality in the electrical resistivity of the plasma in this skin-layer is estimated, and the plasma heating in this skin-layer is regarded as being due to anomalous joule heating arising from this anomalous resistivity. The ratio of drift velocity to electron thermal velocity in the layer is also calculated, and it is shown that the conditions needed to make the current-driven ion-acoustic instability triggerable are satisfied.
The implementation of real-time plasma electron density calculations on EAST
Energy Technology Data Exchange (ETDEWEB)
Zhang, Z.C., E-mail: zzc@ipp.ac.cn; Xiao, B.J.; Wang, F.; Liu, H.Q.; Yuan, Q.P.; Wang, Y.; Yang, Y.
2016-11-15
Highlights: • The real-time density calculation system (DCS) has been applied to the EAST 3-wave polarimeter-interferometer (POINT) system. • The new system based on Flex RIO acquires data at high speed and processes them in a short time. • Roll-over module is developed for density calculation. - Abstract: The plasma electron density is one of the most fundamental parameters in tokamak experiment. It is widely used in the plasma control system (PCS) real-time control, as well as plasma physics analysis. The 3-wave polarimeter-interferometer (POINT) system had been used to measure the plasma electron density on the EAST since last campaign. This paper will give the way to realize the real-time measurement of plasma electron density. All intermediate frequency (IF) signals after POINT system, in the 0.5–3 MHz range, stream to the real-time density calculation system (DCS) to extract the phase shift information. All the prototype hardware is based on NI Flex RIO device which contains a high speed Field Programmable Gate Array (FPGA). The original signals are sampled at 10 M Samples/s, and the data after roll-over module are transmitted to PCS by reflective memory (RFM). With this method, real-time plasma electron density data with high accuracy and low noise had been obtained in the latest EAST tokamak experiment.
A theoretical-electron-density databank using a model of real and virtual spherical atoms.
Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian
2017-08-01
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak
Energy Technology Data Exchange (ETDEWEB)
Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands)
1993-12-31
Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z{sub eff}. In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z{sub eff}, and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs.
Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak
International Nuclear Information System (INIS)
Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P.
1993-01-01
Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z eff . In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z eff , and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs
Calculation of flux density distribution on irradiation field of electron accelerator
International Nuclear Information System (INIS)
Tanaka, Ryuichi
1977-03-01
The simple equation of flux density distribution in the irradiation field of an ordinary electron accelerator is a function of the physical parameters concerning electron irradiation. Calculation is based on the mean square scattering angle derived from a simple multiple scattering theory, with the correction factors of air scattering, beam scanning and number transmission coefficient. The flux density distribution was measured by charge absorption in a graphite target set in the air. For the calculated mean square scattering angles of 0.089-0.29, the values of calculation agree with those by experiment within about 10% except at large scattering angles. The method is applicable to dose evaluation of ordinary electron accelerators and design of various irradiators for radiation chemical reaction. Applicability of the simple multiple scattering theory in calculation of the scattered flux density and periodical variation of the flux density of scanning beam are also described. (auth.)
Lara, A; Riquelme, M; Vöhringer-Martinez, E
2018-05-11
Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model
Probing the Milky Way electron density using multi-messenger astronomy
Breivik, Katelyn; Larson, Shane
2015-04-01
Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.
International Nuclear Information System (INIS)
Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.
1990-01-01
The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs
International Nuclear Information System (INIS)
Zhang, Yan; Hao, Huilian; Wang, Linlin
2016-01-01
Highlights: • Different morphologies of ERGO on the surface of GCE were prepared via different methods. • The defect densities of ERGO were controlled by tuning the mass or concentration of GO. • A higher defect density of ERGO accelerates electron transfer rate. • ERGO with more exposed edge planes shows significantly higher electron transfer kinetics. • Both edge planes and defect density contribute to electron transfer of ERGO. - Abstract: Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k"0) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k"0 values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k"0 valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yan, E-mail: yanzhang@sues.edu.cn [School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Hao, Huilian, E-mail: huilian.hao@sues.edu.cn [School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Wang, Linlin, E-mail: wlinlin@mail.ustc.edu.cn [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)
2016-12-30
Highlights: • Different morphologies of ERGO on the surface of GCE were prepared via different methods. • The defect densities of ERGO were controlled by tuning the mass or concentration of GO. • A higher defect density of ERGO accelerates electron transfer rate. • ERGO with more exposed edge planes shows significantly higher electron transfer kinetics. • Both edge planes and defect density contribute to electron transfer of ERGO. - Abstract: Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k{sup 0}) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k{sup 0} values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k{sup 0} valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.
Using bremsstrahlung for electron density estimation and correction in EAST tokamak
Energy Technology Data Exchange (ETDEWEB)
Chen, Yingjie, E-mail: bestfaye@gmail.com; Wu, Zhenwei; Gao, Wei; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Zhang, Ling; Zhao, Junyu
2013-11-15
Highlights: • The visible bremsstrahlung diagnostic provides a simple and effective tool for electron density estimation in steady state discharges. • This method can make up some disadvantages of present FIR and TS diagnostics in EAST tokamak. • Line averaged electron density has been deduced from central VB signal. The results can also be used for FIR n{sub e} correction. • Typical n{sub e} profiles have been obtained with T{sub e} and reconstructed bremsstrahlung profiles. -- Abstract: In EAST electron density (n{sub e}) is measured by the multi-channel far-infrared (FIR) hydrogen cyanide (HCN) interferometer and Thomson scattering (TS) diagnostics. However, it is difficult to obtain accurate n{sub e} profile for that there are many problems existing in current electron density diagnostics. Since the visible bremsstrahlung (VB) emission coefficient has a strong dependence on electron density, the visible bremsstrahlung measurement system developed to determine the ion effective charge (Z{sub eff}) may also be used for n{sub e} estimation via inverse operations. With assumption that Z{sub eff} has a flat profile and does not change significantly in steady state discharges, line averaged electron density (n{sup ¯}{sub e}) has been deduced from VB signals in L-mode and H-mode discharges in EAST. The results are in good coincidence with n{sup ¯}{sub e} from FIR, which proves that VB measurement is an effective tool for n{sub e} estimation. VB diagnostic is also applied to n{sup ¯}{sub e} correction when FIR n{sup ¯}{sub e} is wrong for the laser phase shift reversal together with noise causes errors when electron density changed rapidly in the H-mode discharges. Typical n{sub e} profiles in L-mode and H-mode phase are also deduced with reconstructed bremsstrahlung profiles.
Using Fe XXII to Determine the Electron Density of Stellar Coronae
Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Gu, M. F.
2010-03-01
Lines from Fe XXII, both in the EUV and X-ray region, are known to be sensitive to the electron density and have in recent years been used as diagnostics of stellar coronae, such as AB Dor and Ex Hya. We have recently obtained spectral data from laboratory sources in which the electron density is known either from non-spectroscopic means or from K-shell density diagnostics. The densities of the laboratory sources range from 5x1011 cm-3 to 5x1014 cm-3. The measurements have been used to test the spectral models underlying the Fe XXII density diagnostic line ratios. This work was supported by the NASA APRA program and the DOE General Plasma Science program.
Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu
2013-04-01
The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).
Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes
Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y.-C.; Contributors, JET
2017-03-01
A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I (2p-2s) line radiation using 26 channels with ∼1 cm spatial resolution and 10∼ 20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li I line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly developed method to infer JET edge electron density profiles has the following advantages in comparison to the conventional method: (i) providing full posterior distributions of edge density profiles, including their associated uncertainties, (ii) the available radial range for density profiles is increased to the full observation range (∼26 cm), (iii) an assumption of monotonic electron density profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is automatically estimated overcoming the limitation of the conventional technique and allowing us to infer the electron density profiles for all pulses without preprocessing the data or an additional boundary condition, and (v) since the full spectrum is modelled, the procedure of modulating the beam to measure the background signal is only necessary for the case of overlapping of the Li I line with impurity lines.
Energy Technology Data Exchange (ETDEWEB)
Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
Pseudoclassical approach to electron and ion density correlations in simple liquid metals
International Nuclear Information System (INIS)
Vericat, F.; Tosi, M.P.; Pastore, G.
1986-04-01
Electron-electron and electron-ion structural correlations in simple liquid metals are treated by using effective pair potentials to incorporate quantal effects into a pseudoclassical description of the electron fluid. An effective pair potential between simultaneous electron density fluctuations is first constructed from known properties of the degenerate jellium model, which are the plasmon sum rule, the Kimball-Niklasson relation and Yasuhara's values of the electron pair distribution function at contact. An analytic expression is thereby obtained in the Debye-Hueckel approximation for the electronic structure factor in jellium over a range of density appropriate to metals, with results which compare favourably with those of fully quantal evaluations. A simple pseudoclassical model is then set up for a liquid metal: this involves a model of charged hard spheres for the ion-ion potential and an empty core model for the electron-ion potential, the Coulombic tails being scaled as required by the relation between the long-wavelength partial structure factors and the isothermal compressibility of the metal. The model is solved analytically by a pseudoclassical linear response treatment of the electron-ion coupling and numerical results are reported for partial structure factors in liquid sodium and liquid beryllium. Contact is made for the latter system with data on the electron-electron structure factor in the crystal from inelastic X-ray scattering experiments of Eisenberger, Marra and Brown. (author)
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; do N. Varella, M. T.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Limão-Vieira, P.; Brunger, M. J.
2016-03-01
We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C5H4O2). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C5H4O2. The measurements were carried out at energies in the range 20-40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ˜80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6-50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.
International Nuclear Information System (INIS)
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; Costa, R. F. da; Varella, M. T. do N; Bettega, M. H. F.; Lima, M. A. P.; García, G.
2016-01-01
We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C 5 H 4 O 2 ). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C 5 H 4 O 2 . The measurements were carried out at energies in the range 20–40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6–50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.
Energy Technology Data Exchange (ETDEWEB)
Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Neves, R. F. C. [Instituto Federal do Sul de Minas Gerais, Câmpus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, UFJF, Juiz de Fora, Minas Gerais 36036-900 (Brazil); Lopes, M. C. A. [Departamento de Física, UFJF, Juiz de Fora, Minas Gerais 36036-900 (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580 (Brazil); Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, São Paulo 13083-859 (Brazil); Varella, M. T. do N [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, Curitiba, Paraná 81531-990 (Brazil); Lima, M. A. P., E-mail: maplima@ifi.unicamp.br [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, São Paulo 13083-859 (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others
2016-03-28
We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C{sub 5}H{sub 4}O{sub 2}). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C{sub 5}H{sub 4}O{sub 2}. The measurements were carried out at energies in the range 20–40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6–50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.
Electron mobility in supercritical pentanes as a function of density and temperature
International Nuclear Information System (INIS)
Itoh, Kengo; Nakagawa, Kazumichi; Nishikawa, Masaru
1988-01-01
The excess electron mobility in supercritical n-, iso- and neopentane was measured isothermally as a function of density. The density-normalized mobility μN in all three isomers goes through a minimum at a density below the respective critical densities, and the mobility is quite temperature-dependent in this region, then goes through a minimum. The μN behavior around the minimum in n-pentane is well accounted for by the Cohen-Lekner model with the structure factor S(K) estimated from the speed of sound, while that in iso- and neopentane is not. (author)
DEFF Research Database (Denmark)
Bertelli, N.; Balakin, A.A.; Westerhof, E.
2010-01-01
are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.
Williams, Jennifer L; Levine, Jonathan M
2018-04-01
Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.
International Nuclear Information System (INIS)
Lamberti, Francesco; Ferraro, Davide; Giomo, Monica; Elvassore, Nicola
2013-01-01
Electrochemical sensors are growing in number and importance. Surface modifications could enhance charge transfer properties occurring at the interfaces and carbon nanoassemblies is one of the most used strategy to improve sensitivity to measurements. However, well defined protocols of surface modification are needed in order to fabricate electrochemically effective nanostructured sensors. Therefore, we aim at investigating the electrochemical properties of single-walled carbon nanotube (SWCNT) forests as a function of height and nanotube surface density. Height of the forests is accurately controlled tuning the oxidation temperatures in the range of 293–313 K of SWCNTs. The surface density of carbon nanotubes was adjusted developing cysteamine/2-mercaptoethanol (CYS/ME) self-assembled monolayers (SAMs) on gold surfaces at different ratios (1:0, 1:3, 1:10, 1:100, 0:1). Apparent electron transfer rate was analyzed with electrochemical impedance spectroscopy (EIS) and experimental data show that transfer rate constant, k app , increases from 1 × 10 −4 cm/s to 6 × 10 −4 cm/s rising oxidation temperatures (i.e. lowering forest height); therefore forests with reduced height show higher electron transfer rate without significant difference in electrodic reversibility. On the other hand, tuning SWCNT surface density, forests obtained with no ME show optimal Δ peak value of 0.087 ± 0.015 V and highest k app value of 9.15 × 10 −3 cm/s. Surprisingly, electrochemical surface area analysis shows that samples with lower amount of cysteamine have an active surface area three times bigger than samples with 1:3 CYS/ME ratio. Low electrochemical efficiency associated with high active surface may be related to unwanted SWCNT bundles adsorbed on the surface for 1:10 and 1:100 CYS/ME ratio samples as confirmed by AFM morphological characterization. Further investigation shows that a transition from a semi-infinite planar diffusion mechanism to a radial diffusion one takes
International Nuclear Information System (INIS)
Festa, Floriane
2013-01-01
Matter in extreme conditions belongs to Warm Dense Matter regime which lays between dense plasma regime and condensed matter. This regime is still not well known, indeed it is very complex to generate such plasma in the laboratory to get experimental data and validate models. The goal of this thesis is to study electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy. Experimentally aluminum has reached high densities and high temperatures, up to now unexplored. An X-ray source has also been generated to probe highly compressed aluminum. Two spectrometers have recorded aluminum absorption spectra and aluminum density and temperature conditions have been deduced thanks to optical diagnostics. Experimental spectra have been compared to ab initio spectra, calculated in the same conditions. The theoretical goal was to validate the calculation method in high densities and high temperatures regime with the study of K-edge absorption modifications. We also used absorption spectra to study the metal-non metal transition which takes place at low density (density ≤ solid density). This transition could be study with electronic structure modifications of the system. (author) [fr
Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...
Experimental determination of ideal concrete density used for applications in bunkers
International Nuclear Information System (INIS)
Bitelli, T.; Coelho, G.M.
1988-01-01
Comparisons between barite concrete of different densities and exactly equal measures, subjected to gamma irradiation of 192 Ir source, with changeless measure of geometry are presented. The experimental results and the applied statistics with 95% of trust, confirm that the barite added supplies a significant increase of irradiation attenuation. (C.M.) [pt
International Nuclear Information System (INIS)
Molchanov, V.N.; Kazanskij, L.P.; Torchenkova, E.A.; Spitsyn, V.I.
1978-01-01
X-ray electron spectra of some iso- and heteropolymolybdates relating to different structure types are investigated to study electron structure of complex polyoxyion-heteropolyanions. Binding energies of Modsub(5/2) and 01s-electrons in iso- and heteropolycompounds line are measured and their interdependence is detected. The effective charge of oxygen and molybdenum atoms in heteropolymolybdates increases with decreasing a number of external sphere cations per an oxygen atom and a number of Mo=0 multiple bonds
Experimental study of fast electron transport in the framework of fast ignition for inertial fusion
International Nuclear Information System (INIS)
Vauzour, B.
2012-01-01
The framework of this PhD thesis is the validation of the fast ignition scheme for the nuclear fusion by inertial confinement. It consists in the experimental study of the various processes involved in fast electron beams propagation, produced by intense laser pulses (10 19 W.cm -2 ), through dense matter either solid or compressed. In this work we present the results of three experiments carried out on different laser facilities in order to generate fast electron beams in various conditions and study their propagation in different states of matter, from the cold solid to the warm and dense plasma.The first experiment was performed with a high intensity contrast on the UHI100 laser facility (CEA Saclay). The study of fast electron energy deposition inside thin aluminium targets highlights a strong target heating at shallow depths, where the collective effects are predominant, thus producing a steep temperature profile between front (300 eV) and rear (20 eV) sides over 20μm thickness. A numerical simulation of the experiment shows that this temperature gradient induces the formation of a shock wave, breaking through the rear side of the target and thus leading to increase the thermal emission. The experimental chronometry of the shock breakthrough allowed validating the model of the collective transport of electrons.Two other experiments were dedicated to the study of fast electron beam propagation inside compressed targets. In the first experiment on the LULI2000 laser facility, the plane compression geometry allowed to precisely dissociate the energy losses due to resistive effects from those due to the collisional ones. By comparing our experimental results with simulations, we observed a significative increase of the fast electron beam energy losses with the compression and the target heating to temperatures close to the Fermi temperature. The second experiment, performed in a cylindrical geometry, demonstrated a fast electron beam guiding phenomenon due to
Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E.; ASDEX Upgrade Team
2018-05-01
Measurements of turbulent electron temperature fluctuation amplitudes, δTe ⊥/Te , frequency spectra, and radial correlation lengths, Lr(Te ⊥) , have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k⊥scale non-linear gyrokinetic turbulence simulations of the outer core (ρtor = 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which δTe ⊥/Te measurements were available, and Lr(Te ⊥) and αnT were then predicted using synthetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for Lr(Te ⊥) and αnT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values.
International Nuclear Information System (INIS)
Palomares, J.M.; Iordanova, E.; Veldhuizen, E.M. van; Baede, L.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der
2010-01-01
The axial profiles of the electron density n e and electron temperature T e of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10 18 e 19 m -3 and 1.1 e e and T e down to 8% and 3%, respectively. It is found that n e decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T e does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.
Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki
2016-09-01
The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.
The electron localization as the information content of the conditional pair density
Energy Technology Data Exchange (ETDEWEB)
Urbina, Andres S.; Torres, F. Javier [Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Química e Ingeniería Química, Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Rincon, Luis, E-mail: lrincon@usfq.edu.ec, E-mail: lrincon@ula.ve [Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Química e Ingeniería Química, Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Departamento de Química, Facultad de Ciencias, Universidad de Los Andes (ULA), La Hechicera, Mérida-5101 (Venezuela, Bolivarian Republic of)
2016-06-28
In the present work, the information gained by an electron for “knowing” about the position of another electron with the same spin is calculated using the Kullback-Leibler divergence (D{sub KL}) between the same-spin conditional pair probability density and the marginal probability. D{sub KL} is proposed as an electron localization measurement, based on the observation that regions of the space with high information gain can be associated with strong correlated localized electrons. Taking into consideration the scaling of D{sub KL} with the number of σ-spin electrons of a system (N{sup σ}), the quantity χ = (N{sup σ} − 1) D{sub KL}f{sub cut} is introduced as a general descriptor that allows the quantification of the electron localization in the space. f{sub cut} is defined such that it goes smoothly to zero for negligible densities. χ is computed for a selection of atomic and molecular systems in order to test its capability to determine the region in space where electrons are localized. As a general conclusion, χ is able to explain the electron structure of molecules on the basis of chemical grounds with a high degree of success and to produce a clear differentiation of the localization of electrons that can be traced to the fluctuation in the average number of electrons in these regions.
International Nuclear Information System (INIS)
Streek, Jacco van de; Neumann, Marcus A.
2010-01-01
The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect
Yost, Dillon C.; Yao, Yi; Kanai, Yosuke
2017-09-01
In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.
International Nuclear Information System (INIS)
Vaisburd, D.I.; Evdokimov, K.E.
2005-01-01
The paper is concerned with fast and ultra-fast processes in insulating materials under the irradiation by a high-current-density electron beam of a nanosecond pulse duration. The inflation process induced by the interaction of a high-intensity electron beam with a dielectric is examined. The ''instantaneous'' distribution of non-ionizing electrons and holes is one of the most important stages of the process. Ionization-passive electrons and holes make the main contribution to many fast processes with a characteristic time in the range 10 -14 /10 -12 s: high-energy conductivity, intraband luminescence, etc. A technique was developed for calculation of the ''instantaneous'' distribution of non-ionizing electrons and holes in a dielectric prior to electron-phonon relaxation. The following experimental effects are considered: intraband luminescence, coexistence of intraband electron luminescence and band-to-band hole luminescence in CsI, high energy conductivity; generation of mechanical fields and their interaction with cracks and dislocations. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Experimental and numerical study of flow deflection effects on electronic air-cooling
International Nuclear Information System (INIS)
Arfaoui, Ahlem; Ben Maad, Rejeb; Hammami, Mahmoud; Rebay, Mourad; Padet, Jacques
2009-01-01
This work present a numerical and experimental investigation of the influence of transversal flow deflector on the cooling of a heated block mounted on a flat plate. The deflector is inclined and therefore it guides the air flow to the upper surface of the block. This situation is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic board. The electronic component are assumed dissipating a low or medium heat flux (with a density lower than 5000 W/m 2 ), as such the forced convection air cooling without fan or heat sink is still sufficient. The study details the effects of the angle of deflector on the temperature and the heat transfer coefficient along the surface of the block and around it. The results of the numerical simulations and the InfraRed camera measurements show that the deviation caused by deflector may significantly enhance the heat transfer on the top face of block
Variational and robust density fitting of four-center two-electron integrals in local metrics
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł
2008-09-01
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Electron density and temperature in NIO1 RF source operated in oxygen and argon
Barbisan, M.; Zaniol, B.; Cavenago, M.; Pasqualotto, R.; Serianni, G.; Zanini, M.
2017-08-01
The NIO1 experiment, built and operated at Consorzio RFX, hosts an RF negative ion source, from which it is possible to produce a beam of maximum 130 mA in H- ions, accelerated up to 60 kV. For the preliminary tests of the extraction system the source has been operated in oxygen, whose high electronegativity allows to reach useful levels of extracted beam current. The efficiency of negative ions extraction is strongly influenced by the electron density and temperature close to the Plasma Grid, i.e. the grid of the acceleration system which faces the source. To support the tests, these parameters have been measured by means of the Optical Emission Spectroscopy diagnostic. This technique has involved the use of an oxygen-argon mixture to produce the plasma in the source. The intensities of specific Ar I and Ar II lines have been measured along lines of sight close to the Plasma Grid, and have been interpreted with the ADAS package to get the desired information. This work will describe the diagnostic hardware, the analysis method and the measured values of electron density and temperature, as function of the main source parameters (RF power, pressure, bias voltage and magnetic filter field). The main results show that not only electron density but also electron temperature increase with RF power; both decrease with increasing magnetic filter field. Variations of source pressure and plasma grid bias voltage appear to affect only electron temperature and electron density, respectively.
Kronik, Leeor; Endres, James; Egger, David A.; Kulbak, Michael; Kerner, Ross A.; Zhao, Lianfeng; Silver, Scott H.; Hodes, Gary; Rand, Barry P.; Cahen, David; Kahn, Antoine
We present results for the valence and conduction band density of states (DOS), measured via ultraviolet and inverse photoemission spectroscopies for three lead halide perovskites. Specifically, the DOS of MAPbI3, MAPbBr3, and CsPbBr3, grown on different substrates, are compared. Theoretical DOS, calculated via hybrid density functional theory and including spin-orbit coupling, are compared to experimental data. The agreement between experiment and theory, obtained after correcting the latter for quantitative discrepancies, leads to the identification of valence and conduction band spectral features. In particular, this comparison allows for precise determination of the energy position of the band edges, namely ionization energies and electron affinities of these materials. We find an unusually low DOS at the valence band maximum (VBM) of these systems, which confirms and generalizes previous findings of strong band dispersion and low DOS at the VBM of MAPbI3. This calls for special attention when using electron spectroscopy to determine the frontier electronic states of lead halide perovskites.
International Nuclear Information System (INIS)
Koops, Hans W.P.
2013-01-01
Focused electron beam induced deposition is a novel bottom up nano-structurization technology. An electron beam of high power density is used to generate nano- structures with dimensions > 20 nm, but being composed from amorphous or nanogranular materials with crystals of 2 to 5 nm diameter embedded in a Fullerene matrix. Those compounds are generated in general by secondary or low energy electrons in layers of inorganic, organic, organometallic compounds absorbed to the sample. Those are converted into nanogranular materials by the electron beam following chemical and physical laws, as given by 'Mother Nature'. Metals and amorphous mixtures of chemical compounds from metals are normal resistors, which can carry a current density J 2 . Nanogranular composites like Au/C or Pt/C with metal nanocrystals embedded in a Fullerene matrix have hopping conduction with 0-dimensional Eigen-value characteristics and show 'anomalous electron transport' and can carry 'Giant Current Densities' with values from > 1 MA/cm 2 to 0.1 GA/cm 2 without destruction of the materials. However the area connecting the nanogranular material with a metal with a 3-dimensional electron gas needs to be designed, that the flowing current is reduced to the current density values which the 3-D metal can support without segregation. The basis for a theoretical explanation of the phenomenon can be geometry quantization for Coulomb blockade, of electron surface orbitals around the nanocrystals, hopping conduction, and the limitation of the density of states for phonons in geometry confined non percolated granular materials with strong difference in mass and orientation. Several applications in electronics, signal generators, light sources, detectors, and solar energy harvesting are suggested. (author)
International Nuclear Information System (INIS)
Pavlov, R.L.; Pavlov, L.I.; Raychev, P.P.; Garistov, V.P.; Dimitrova-Ivanovich, M.
2002-01-01
The matrix elements and expectation values of the hyperfine interaction operators are presented in a form suitable for numerical implementation in density matrix methods. The electron-nuclear spin-spin (dipolar and contact) interactions are considered, as well as the interaction between nuclear spin and electron-orbital motions. These interactions from the effective Breit-Pauli Hamiltonian determine the hyperfine structure in ESR spectra and contribute to chemical shifts in NMR. Applying the Wigner-Eckart theorem in the irreducible tensor-operator technique and the spin-space separation scheme, the matrix elements and expectation values of these relativistic corrections are expressed in analytical form. The final results are presented as products, or sums of products, of factors determined by the spin and (or) angular momentum symmetry and a spatial part determined by the action of the symmetrized tensor-operators on the normalized matrix or function of the spin or charge distribution.
Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.
2013-10-01
The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.
International Nuclear Information System (INIS)
Kühn-Kauffeldt, M; Marques, J-L; Forster, G; Schein, J
2013-01-01
The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Yoshikazu; Nanao, Susumu [Institute of Industrial Science, The University of Tokyo, Roppongi, Minato, Tokyo 106 (Japan); Tanigawa, Shoichiro [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305 (Japan)
1997-12-15
The three-dimensional momentum density of annihilating electron - positron pairs has been studied for a single Al-Li-Cu icosahedral quasicrystal. A direct Fourier transform method is employed to reconstruct the three-dimensional momentum density from measurements of the two-dimensional angular correlation of positron annihilation radiation (2 D-ACAR). The crystallographic anisotropy in the momentum density is observed to be very small. The asphericity of the Fermi surface is not found explicitly within the experimental resolution in the momentum space. The features of the three-dimensional electron - positron momentum density agree with those obtained by means of Compton profile measurement. It is suggested that a strong lattice - electron interaction at the Fermi level occurs in this icosahedral phase. (author)
Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam
Energy Technology Data Exchange (ETDEWEB)
Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.
2010-06-28
A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 10^{16}cm^{-3}, results in substantial electron depletion, which attenuates the H_{α} emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.
Hydride vapor phase GaN films with reduced density of residual electrons and deep traps
International Nuclear Information System (INIS)
Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.
2014-01-01
Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10 17 cm −3 to (2–5) × 10 14 cm −3 . The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10 13 cm −3 versus 2.9 × 10 16 cm −3 in the standard samples, with a similar decrease in the electron traps concentration
Aishima, Jun; Russel, Daniel S; Guibas, Leonidas J; Adams, Paul D; Brunger, Axel T
2005-10-01
Automatic fitting methods that build molecules into electron-density maps usually fail below 3.5 A resolution. As a first step towards addressing this problem, an algorithm has been developed using an approximation of the medial axis to simplify an electron-density isosurface. This approximation captures the central axis of the isosurface with a graph which is then matched against a graph of the molecular model. One of the first applications of the medial axis to X-ray crystallography is presented here. When applied to ligand fitting, the method performs at least as well as methods based on selecting peaks in electron-density maps. Generalization of the method to recognition of common features across multiple contour levels could lead to powerful automatic fitting methods that perform well even at low resolution.
Time-dependent density functional theory for many-electron systems interacting with cavity photons.
Tokatly, I V
2013-06-07
Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.
Assembling phosphorene flexagons for 2D electron-density-guided nanopatterning and nanofabrication.
Kang, Kisung; Jang, Woosun; Soon, Aloysius
2017-07-27
To build upon the rich structural diversity in the ever-increasing polymorphic phases of two-dimensional phosphorene, we propose different assembly methods (namely, the "bottom-up" and "top-down" approaches) that involve four commonly reported parent phases (i.e. the α-, β-, γ-, and δ-phosphorene) in combination with the lately reported remarkably low-energy one-dimensional defects in α-phosphorene. In doing so, we generate various periodically repeated phosphorene patterns in these so-called phosphorene flexagons and present their local electron density (via simulated scanning tunneling microscopy (STM) images). These interesting electron density patterns seen in the flexagons (mimicking symmetry patterns that one may typically see in a kaleidoscope) may assist as potential 2D templates where electron-density-guided nanopatterning and nanofabrication in complex organized nanoarchitectures are important.
Energy Technology Data Exchange (ETDEWEB)
Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)
2016-09-01
We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.
International Nuclear Information System (INIS)
Feng Hongyan; Zhu Shunguan; Zhang Lin; Wan Xiaoxia; Li Yan; Shen Ruiqi
2010-01-01
Emission spectra of a semiconductor bridge (SCB) plasma in a visible range was studied in air. The electron density was measured in a conventional way from the broadening of the A1 I 394.4 nm Stark width. Based on the Saha equation, a system for recording the intensity of Si I 390.5 nm and Si II 413.1 nm was designed. With this technique, the SCB plasma electron density was measured well and accurately. Moreover, the electron density distribution Vs time was acquired from one SCB discharge. The individual result from the broadening of the Al I 394.4 nm Stark width and Saha equation was all in the range of 10 15 cm -3 to 10 16 cm -3 . Finally the presumption of the local thermodynamic equilibrium (LTE) condition was validated.
International Nuclear Information System (INIS)
Weatherford, Brandon R.; Barnat, E. V.; Xiong, Zhongmin; Kushner, Mark J.
2014-01-01
Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3 × 10 9 cm s −1 , depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.
International Nuclear Information System (INIS)
Nam, Y. U.; Chung, J.
2010-01-01
A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.
International Nuclear Information System (INIS)
Manohara, S R; Hanagodimath, S M; Gerward, L
2008-01-01
The effective atomic number, Z eff , the effective electron density, N el , and kerma have been calculated for some fatty acids and carbohydrates for photon interaction in the extended energy range from 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCom program. The significant variation of Z eff and N el is due to the variations in the dominance of different interaction processes in different energy regions. The maximum values of Z eff and N el are found in the low-energy range, where photoelectric absorption is the main interaction process. The minimum values of Z eff and N el are found at intermediate energies, typically 0.05 MeV eff is equal to the mean atomic number of the bio-molecule. Wherever possible, the calculations are compared with experimental results. A comparison is also made with the single values of the Z eff and N el provided by the program XMuDat. It is also observed that carbohydrates have a larger kerma than fatty acids in the low-energy region, where photoelectric absorption dominates. In contrast, fatty acids have a larger kerma than carbohydrates in the MeV range, where Compton scattering is the main interaction process. (note)
Investigation of bulk electron densities for dose calculations on cone-beam CT images
International Nuclear Information System (INIS)
Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.
2010-01-01
Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.
Excess electron mobility in ethane. Density, temperature, and electric field effects
International Nuclear Information System (INIS)
Doeldissen, W.; Schmidt, W.F.; Bakale, G.
1980-01-01
The excess electron mobility in liquid ethane was measured under orthobaric conditions as a function of temperature and electric field strength up to the critical temperature at 305.33 K. The low field mobility was found to rise strongly with temperature and exhibits a maximum value of 44 cm 2 V -1 s -1 at 2 0 below the critical temperature. At temperatures above 260 K the electron drift velocity shows a sublinear field dependence at high values of the electric field strength. These observations lead to the supposition that in liquid ethane a transition from transport via localized states to transport in extended states occurs. Measurements were also performed in fluid ethane at densities from 2.4 to 12.45 mol L -1 and temperatures from 290 to 340 K. On isochores in the vicinity of the critical density, an increase of the low field mobility with temperature was observed. This effect was found to disappear both at low (rho = 2.4 mol L -1 ) and high densities (rho greater than or equal to 9.2 mol L -1 ). In this density range, a sublinear field dependence of the drift velocities at high field strengths was noted. The critical velocity associated with the appearance of hot electrons was observed to decrease with higher densities indicating a smaller fractional energy transfer in electron molecule collisions. A compilation of electron mobilities in gaseous and liquid ethane shows that, up to densitiesof rho = 9.5 mol L -1 , μ proportional to n -1 is fulfilled if temperature effects are ignored. At intermediate densities, 9 mol L -1 -1 , a density dependence of μ proportional to rho -5 is found followed by a stronger mobility decrease toward the triple point. Positive ion mobilities measured under orthobaric conditions followed Walden's rule
Energy Technology Data Exchange (ETDEWEB)
Perez-Navarro Gomerz, A; Zurro Hernandez, B
1976-07-01
A theoretical foundation review for light scattering by plasmas is presented. Furthermore, we have included a review of the experimental methods for electron density and temperature measurements, with spatial and time resolution, in a Tokamak plasma using spectral analysis of the scattered radiation. (Author) 13 refs.
International Nuclear Information System (INIS)
Zucca, C.
2009-04-01
The current density in tokamak plasmas strongly affects transport phenomena, therefore its understanding and control represent a crucial challenge for controlled thermonuclear fusion. Within the vast framework of tokamak studies, three topics have been tackled in the course of the present thesis: first, the modelling of the current density evolution in electron Internal Transport Barrier (eITB) discharges in the Tokamak à Configuration Variable (TCV); second, the study of current diffusion and inversion of electron transport properties observed during Swing Electron Cyclotron Current Drive (Swing ECCD) discharges in TCV; third, the analysis of the current density tailoring obtained by local ECCD driven by the improved EC system for sawtooth control and reverse shear scenarios in the International Thermonuclear Experimental Reactor (ITER). The work dedicated to the study of eITBs in TCV has been undertaken to identify which of the main parameters, directly related to the current density, played a relevant role in the confinement improvement created during these advanced scenarios. In this context, the current density has to be modeled, there being no measurement currently available on TCV. Since the Rebut-Lallia-Watkins (RLW) model has been validated on TCV ohmic heated plasmas, the corresponding scaling factor has often been used as a measure of improved confinement on TCV. The many interpretative simulations carried on different TCV discharges have shown that the thermal confinement improvement factor, H RLW , linearly increases with the absolute value of the minimum shear outside ρ > 0.3, ρ indicating a normalized radial coordinate. These investigations, performed with the transport code ASTRA, therefore confirmed a general observation, formulated through previous studies, that the formation of the transport barrier is correlated with the magnetic shear reversal. This was, indeed, found to be true in all cases studied, regardless of the different heating and
Method of measuring the current density distribution and emittance of pulsed electron beams
International Nuclear Information System (INIS)
Schilling, H.B.
1979-07-01
This method of current density measurement employs an array of many Faraday cups, each cup being terminated by an integrating capacitor. The voltages of the capacitors are subsequently displayed on a scope, thus giving the complete current density distribution with one shot. In the case of emittance measurements, a moveable small-diameter aperture is inserted at some distance in front of the cup array. Typical results with a two-cathode, two-energy electron source are presented. (orig.)
Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas
Energy Technology Data Exchange (ETDEWEB)
Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)
2012-10-15
The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.
Behaviour of the electron density near an impurity with exchange and correlation
International Nuclear Information System (INIS)
Adawi, I.; Godwin, V.E.
1982-09-01
The behaviour of the electron density n(r) and potential energy V(r) near an impurity of charge Z is studied in the linear response theory of metals with exchange and correlation. The leading two terms in nsub(odd)(r) and the first three terms in Vsub(odd)(r) are the same as in the Lindhard theory, but corrections appear in the higher terms of the odd powers expansions of these functions. In all quantum linear response theories, the derivative n'(0)=-2Zn 0 /a 0 where n 0 is the free electron gas density and a 0 is the Bohr radius. (author)
Applications of electron density studies in molecular and solid state science
DEFF Research Database (Denmark)
Overgaard, Jacob
2015-01-01
of electron density studies in connection with the UN declared International Year of Crystallography in 2014. In addition, a number of reviews on the method have very recently appeared showing that the time is ripe to look back on the achievements of the last 10 years and also to look ahead to see where...... to the technical developments driven not least by the efforts from large commercial manufacturers such as Bruker AXS and Agilent Technologies. It is also not unwarranted to claim that the electron density community is a driving force in this technological improvement as it is essential to push these instruments...
Critical density for Landau damping in a two-electron-component plasma
Energy Technology Data Exchange (ETDEWEB)
Rupp, Constantin F.; López, Rodrigo A.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)
2015-10-15
The asymptotic evolution of an initial perturbation in a collisionless two-electron-component plasma with different temperatures is studied numerically. The transition between linear and nonlinear damping regimes is determined by slowly varying the density of the secondary electron-component using high-resolution Vlasov-Poisson simulations. It is shown that, for fixed amplitude perturbations, this transition behaves as a critical phenomenon with time scales and field amplitudes exhibiting power-law dependencies on the threshold density, similar to the critical amplitude behavior in a single-component plasma.
Simultaneous measurement of line electron density and Faraday rotation in the ISX-B tokamak
International Nuclear Information System (INIS)
Hutchinson, D.P.; Ma, C.H.; Staats, P.A.; Vander Sluis, K.L.
1981-01-01
A new diagnostic system utilizing a submillimetre-wave, phase-modulated polarimeter/interferometer has been used to simultaneously measure the time evolution of the line-averaged electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The measurements, performed along four chords of the plasma column, have been correlated with poloidal field changes associated with a ramp in the Ohmic-heating current and by neutral-beam injection. These are the first simultaneous measurements of line electron density and Faraday rotation to be made along a chord of submillimetre laser beam in a tokamak plasma. (author)
International Nuclear Information System (INIS)
Boerner, M.; Frank, A.; Pelka, A.; Schaumann, G.; Schoekel, A.; Schumacher, D.; Roth, M.; Fils, J.; Blazevic, A.; Hessling, T.; Basko, M. M.; Maruhn, J.; Tauschwitz, An.
2012-01-01
This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10 18 cm -3 , the maximal one is 2 x 10 20 cm -3 . Furthermore, it provides a resolution of the electron density in space of 50 μm and in time of 0.5 ns for one image with a customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.
Study on intense relativistic electron beam propagation in a low density collisionless plasma
International Nuclear Information System (INIS)
Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.
1982-01-01
The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam
Equatorial bottom and topside electron density profiles and comparison with IRI
International Nuclear Information System (INIS)
Reinisch, B.W.; Huang, X.; Conway, J.; Komjathy, A.
2001-01-01
A new technique of estimating the ionospheric topside profile from the information contained in the groundbased ionograms is described. The electron density profile above the F2 layer peak is approximated by an α-Chapman function with a constant scale height that is derived from the bottomside profile shape near the F2 peak. The scale height is obtained from the bottomside profile by representing the latter in terms of α-Chapman functions with scale heights H(h) that vary as a function of height. The scale height at the layer peak is then used for the topside profile. The bottomside and topside electron contents is obtained by integrating the electron density from h=0 to hmF2 and from hmF2 to ∞. The ionogram derived electron content values for Jicamarca in 1998 are compared with the respective IRI values. (author)
Monte Carlo modeling of electron density in hypersonic rarefied gas flows
Energy Technology Data Exchange (ETDEWEB)
Fan, Jin; Zhang, Yuhuai; Jiang, Jianzheng [State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-12-09
The electron density distribution around a vehicle employed in the RAM-C II flight test is calculated with the DSMC method. To resolve the mole fraction of electrons which is several orders lower than those of the primary species in the free stream, an algorithm named as trace species separation (TSS) is utilized. The TSS algorithm solves the primary and trace species separately, which is similar to the DSMC overlay techniques; however it generates new simulated molecules of trace species, such as ions and electrons in each cell, basing on the ionization and recombination rates directly, which differs from the DSMC overlay techniques based on probabilistic models. The electron density distributions computed by TSS agree well with the flight data measured in the RAM-C II test along a decent trajectory at three altitudes 81km, 76km, and 71km.
Dynamics of the spatial electron density distribution of EUV-induced plasmas
van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.
2015-11-01
We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.
Detection of an electron beam in a high density plasma via an electrostatic probe
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao
2017-10-01
The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.
Dynamics of the spatial electron density distribution of EUV-induced plasmas
International Nuclear Information System (INIS)
Van der Horst, R M; Beckers, J; Banine, V Y; Osorio, E A
2015-01-01
We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure. (fast track communication)
Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind
Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.
2018-04-01
Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.
International Nuclear Information System (INIS)
Baiao, D.; Medina, F.; Ochando, M.; Varandas, C.
2009-01-01
The TJ-II plasma soft X-ray emission was studied in order to establish an adequate setup for an electron temperature diagnostic suitable for high density, with spatial and temporal resolutions, based on the two-filters method. The preliminary experimental results reported were obtained with two diagnostics (an X-ray PHA based on a Ge detector and a tomography system) already installed in TJ-II stellarator. These results lead to the conclusion that the two-filters method was a suitable option for an electron temperature diagnostic for high-density plasmas in TJ-II. We present the design and fi rst results obtained with a prototype for the measurement of electron temperature in TJ-II plasmas heated with energetic neutral beams. This system consists in two AXUV20A detectors which measure the soft X-ray plasma emissivity trough beryllium filters of different thickness. From the two-filters technique it is possible to estimate the electron temperature. The analyses carried out allowed concluding which filter thicknesses are most suited for TJ-II plasmas, and enhanced the need of a computer code to simulate signals and plasma compositions. (Author) 7 refs.
Energy Technology Data Exchange (ETDEWEB)
Baiao, D.; Medina, F.; Ochando, M.; Varandas, C.
2009-07-01
The TJ-II plasma soft X-ray emission was studied in order to establish an adequate setup for an electron temperature diagnostic suitable for high density, with spatial and temporal resolutions, based on the two-filters method. The preliminary experimental results reported were obtained with two diagnostics (an X-ray PHA based on a Ge detector and a tomography system) already installed in TJ-II stellarator. These results lead to the conclusion that the two-filters method was a suitable option for an electron temperature diagnostic for high-density plasmas in TJ-II. We present the design and fi rst results obtained with a prototype for the measurement of electron temperature in TJ-II plasmas heated with energetic neutral beams. This system consists in two AXUV20A detectors which measure the soft X-ray plasma emissivity trough beryllium filters of different thickness. From the two-filters technique it is possible to estimate the electron temperature. The analyses carried out allowed concluding which filter thicknesses are most suited for TJ-II plasmas, and enhanced the need of a computer code to simulate signals and plasma compositions. (Author) 7 refs.
International Nuclear Information System (INIS)
Varella, Marcio Teixeira do Nascimento
2001-12-01
We have calculated annihilation probability densities (APD) for positron collisions against He atom and H 2 molecule. It was found that direct annihilation prevails at low energies, while annihilation following virtual positronium (Ps) formation is the dominant mechanism at higher energies. In room-temperature collisions (10 -2 eV) the APD spread over a considerable extension, being quite similar to the electronic densities of the targets. The capture of the positron in an electronic Feshbach resonance strongly enhanced the annihilation rate in e + -H 2 collisions. We also discuss strategies to improve the calculation of the annihilation parameter (Z eff ), after debugging the computational codes of the Schwinger Multichannel Method (SMC). Finally, we consider the inclusion of the Ps formation channel in the SMC and show that effective configurations (pseudo eigenstates of the Hamiltonian of the collision ) are able to significantly reduce the computational effort in positron scattering calculations. Cross sections for electron scattering by polyatomic molecules were obtained in three different approximations: static-exchange (SE); tatic-exchange-plus-polarization (SEP); and multichannel coupling. The calculations for polar targets were improved through the rotational resolution of scattering amplitudes in which the SMC was combined with the first Born approximation (FBA). In general, elastic cross sections (SE and SEP approximations) showed good agreement with available experimental data for several targets. Multichannel calculations for e - -H 2 O scattering, on the other hand, presented spurious structures at the electronic excitation thresholds (author)
Electrons of high perpendicular energy in the low-density regime of Tokamaks
International Nuclear Information System (INIS)
Bornatici, M.; Engelmann, F.
1978-01-01
Effects due to instabilities excited in the low-density regime of tokamaks by runaway electrons via the cyclotron resonance ω+Ω=kV along with the formation of a positive slope in the runaway distribution are considered. Conditions for the production of electrons of high perpendicular energy and their trapping in toroidal field ripples, leading to liner damage, are discussed and found to be rather stringent. Fairly good agreement with the experiments is found
Cooling of high-density and power electronics by means of heat pipes
International Nuclear Information System (INIS)
Hubbeling, L.
1980-06-01
This report describes how heat pipes can be used for cooling modern electronic equipment, with numerous advantages over air-cooled systems. A brief review of heat-pipe properties is given, with a detailed description of a functioning prototype. This is a single-width CAMAC unit containing high-density electronic circuits cooled by three heat pipes, and allowing a dissipation of over 120 W instead of the normal maximum of 20 W. (orig.)
Electron temperature and density relaxations during internal disruptions in TFR Tokamak plasmas
International Nuclear Information System (INIS)
Enriques, L.; Sand, F.
1977-01-01
Several diagnostics (soft X-ray, Thompson scattering, high frequency waves, and vacuum ultraviolet spectroscopy) have been used on TFR Tokamak plasmas in order to show that the soft X-ray relaxations are mainly due to electron temperature relaxations, with only small variations of the electron density. Values of ΔTsub(eo)/Tsub(eo) up to 17% and of Δnsub(eo)/nsub(eo) of a few % or less have been measured. (author)
Electron temperature and density relaxations during internal disruptions in TFR Tokamak plasmas
International Nuclear Information System (INIS)
1976-07-01
Several diagnostics (soft X-ray, Thomson scattering, high frequency waves, and vacuum ultraviolet spectroscopy) have been used on TFR Tokamak plasmas in order to show that the soft X-ray relaxations are mainly due to electron temperature relaxations, with only small variations of the electron density. Values of ΔTsub(e0)/Tsub(e0) up to 17% and of Δnsub(e0)/nsub(e0) of a few % or less have been measured
Mechanisms of the electron density depletion in the SAR arc region
A. V. Pavlov
1996-01-01
This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm), with the model results obtained using the time dependent one-dimensional mathematical model of the Earth's ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient i...
Electron number density profiles derived from radio occultation on the CASSIOPE spacecraft
DEFF Research Database (Denmark)
Shume, E. B.; Vergados, P.; Komjathy, A.
2017-01-01
This paper presents electron number density profiles derived from high resolution Global Positioning System (GPS) radio occultation (RO) observations performed using the Enhanced Polar Outflow Probe (e-POP) payload on the high inclination CAScade, Smallsat and IOnospheric Polar Explorer (CASSIOPE...... good agreement with density profiles estimated from ionosonde data, measured over nearby stations to the latitude and longitude of the RO tangent points, (2) in good agreement with density profiles inferred from GPS RO measured by the Constellation Observing System for Meteorology, Ionosphere...
2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.
Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J
2014-11-01
A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.
DEFF Research Database (Denmark)
Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas
2009-01-01
Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modele...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....
Study on electron density and average degree of ionization for the non-ideal argon plasmas
International Nuclear Information System (INIS)
Jing Ming; Huang Hua; Zhou Yisu; Wang Caixia
2008-01-01
Electron density and average degree of ionization of the non-ideal argon plasmas under different plasma temperature and density are calculated by using SHM model. It comes to a conclusion that the average degree of ionization is less than 0.5 for the non-ideal argon plasmas at temperature T=2.0eV and plasma density ρ=(0.01-0.5)g·cm -3 , and the average degree of ionization is reduced with the increase of plasma density ρ. This indicates that the non-ideal argon plasma has a very low degree of ionization so that most argon has not been ionized. In addition, the discussion on the ionization decrease with the increase of plasma density ρ is given. (authors)
Experimental study of self-balanced startup characteristics of density lock
International Nuclear Information System (INIS)
Gu Haifeng; Yan Changqi; Chen Wei
2013-01-01
With passive residual heat removal system which applies the density lock as background, combining the experimental study and theoretical analysis, researches on the operating characteristics and feasibility of self-balanced startup of density lock were made in this system. The results show that self-balanced startup can be divided into two stages: Warming up stage in which the valve is closed; self-balanced stage in which the valve is open. The two requisite conditions ensuring the closure of density lock can be realized respectively in these two stages, which ensure the separation of the passive residual heat removal system from the primary circuit system by the density lock. During the stage of warming up, with the help of special structure of the density lock, the position of the transition points of the heat transfer modes is controlled effectively, and the formation of interface between the cold and hot fluids is promoted. During the self-balanced stage, with the help of the characteristics of self-stability of the hydraulic balance, the motion of interface is controlled effectively, and the hydraulic balance is established automatically in the density lock. All of the results fully prove the feasibility of self-balanced startup. (authors)
International Nuclear Information System (INIS)
Burry, R.W.
1982-01-01
The distribution of electron microscopic autoradiographic grains over neurons in cerebellar cultures incubated with [ 3 H]gamma-aminobutyric acid ([ 3 H]GABA) was examined. With the unit density method of grain analysis, the number of grains over each structure was tested against the total grain density for the entire section. If an individual structure has a grain density higher than the expected grain density, it is considered one of the group of heavily labeled structures. The expected grain density for each structure is calculated based on the area for that structure, the total grain density and the Poisson distribution. A different expected grain density can be calculated for any P value required. The method provides an adequate population of structures for morphological analysis but excludes weakly labeled structures and thus may underestimate the number of labeled structures. The unit density method of grain analysis showed, as expected, a group of cell bodies and synapses that was labeled heavily. Cultures incubated with other [ 3 H]amino acids did not have any heavily labeled synaptic elements. In addition, serial section analysis of sections showed that synapses heavily labeled with [ 3 H]GABA are seen in adjacent sections. The advantage of the unit density method of grain analysis is that it can be used to separate two groups of metabolically different neurons even when no morphological differences are present. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Stoschus, H.; Hudson, B.; Munoz Burgos, J. M. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117 (United States); Thomas, D. M. [General Atomics, San Diego, California 92186-5608 (United States); Schweinzer, J. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, 85748 Garching (Germany)
2012-10-15
Four collisional radiative models (CRMs) for reconstruction of the edge electron density profile from the measured Li I (2s-2p) emission profile of an accelerated lithium beam are compared using experimental data from DIII-D. It is shown for both L- and H-mode plasmas that edge density profiles reconstructed with the CRMs DDD2, ABSOLUT, [Sasaki et al. Rev. Sci. Instrum. 64, 1699 (1993)] and a new model developed at DIII-D agree in a density scan from n{sub e}{sup ped}= (2.0-6.5) Multiplication-Sign 10{sup 19} m{sup -3} within 20%, 20%, <5%, and 40%, respectively, of the pedestal density measured with Thomson scattering. Profile shape and absolute density vary in a scan of the effective ion charge Z{sub eff}= 1-6 up to a factor of two but agree with Thomson data for Z{sub eff}= 1-2 within the error bars.
Mechanisms of the electron density depletion in the SAR arc region
Directory of Open Access Journals (Sweden)
A. V. Pavlov
1996-02-01
Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth\\'s ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields. Within this model framework the effect of the
Mechanisms of the electron density depletion in the SAR arc region
Directory of Open Access Journals (Sweden)
A. V. Pavlov
Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth's ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N_{2} and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O^{+}(^{4}S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s^{–1} in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields
Theory of local and global processes which affect solar wind electrons. 2. Experimental support
International Nuclear Information System (INIS)
Scudder, J.D.; Olbert, S.
1979-01-01
We have extended the theoretical considerations of Scudder and Olbert (1979) (hereafter called paper 1) to show from the microscopic characteristics of the Coulomb cross section that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E 7kT/sub c/. We present experimental support from three experimental groups on three different spacecraft over a radial range in the interplanetary medium for the five interrelations projected in paper 1 between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compressions and rarefactions) in stream dynamics: (2) the extrathermal fraction of the ambient electron density should be anticorrelated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anticorrelated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anticorrelated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 Au. From first principles and the spatial inhomogeneity of the plasma we show that the velocity dependence of Coulomb collisions in the solar wind plasmaproduces a bifurcation in the solar wind electron distribution function at a transition energy E*. This energy is theoretically shown to scale with the local thermal temperature as E*(r) approx. =GAMMAkT/sub c/(r). This scaling is observationally supported over the radial range from 0.45 to 0.9 AU and at 1 AU. The extrathermals, defined on the basis of Coulomb collisions, are synonymous with the subpopulation previously labeled in the literature as the 'halo' or 'hot' component
Experimental study of the density of the helium-nitrogen gas system at low temperatures.
Milyutin, V. A.
2017-11-01
At the Department of TOT, an experimental setup was created to measure the density of a binary gas system from 100 to 300 K and pressures up to 16 MPa and with any mixture compositions. Experimental density for the helium-nitrogen system were determined by the piezometer of constant volume method. The amount of substance in the piezometer was measured by volumetric method. In this setup, the mixture of He - N2 was prepared in a special mixer for a series of p-v-T experiments, the concentration was determined by calculation using the equations of state of pure components. In the experiment, mixtures were prepared with molar concentrations, lying close to the range: 0.2, 0.4, 0.6 and 0.8.
An experimental investigation of wastewater treatment using electron beam irradiation
Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.
2016-08-01
Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.
Experimental nuclear level densities and γ-ray strength functions in Sc and V isotopes
International Nuclear Information System (INIS)
Larsen, A. C.; Guttormsen, M.; Ingebretsen, F.; Messelt, S.; Rekstad, J.; Siem, S.; Syed, N. U. H.; Chankova, R.; Loennroth, T.; Schiller, A.; Voinov, A.
2008-01-01
The nuclear physics group at the Oslo Cyclotron Laboratory has developed a method to extract nuclear level density and γ-ray strength function from first-generation γ-ray spectra. This method is applied on the nuclei 44,45 Sc and 50,51 V in this work. The experimental level densities of 44,45 Sc are compared to calculated level densities using a microscopic model based on BCS quasiparticles within the Nilsson level scheme. The γ-ray strength functions are also compared to theoretical expectations, showing an unexpected enhancement of the γ-ray strength for low γ energies (E γ ≤3 MeV) in all the isotopes studied here. The physical origin of this enhancement is not yet understood
International Nuclear Information System (INIS)
Hughes, D.W.; Feeney, R.K.
1980-01-01
The absolute cross sections for the double, triple, and quadruple ionization of Rb + ions by electron impact have been measured from below their respective thresholds to approximately 3000 eV. This determination has been accomplished using a crossed beam facility in which monoenergetic beams of ions and electrons are caused to intersect at right angles in a well-defined collision volume. Multiply charged, product ions born as a result of the electron impact are deflected into their respective detectors by cascaded electrostatic analyzers. The multiply charged beam current component is measured by means of a vibrating reed electrometer operating in the rate-of-charge mode. The required singly charged rubidium ions are produced in a thermionic ion source and pass through a series of focusing, collimating and deflecting structures before entering the interaction region. A thermionically generated, rectangular electron beam intercepts the target ions in a spatially designated collision volume. Just prior to entering this interaction region the two beams can be made to pass through a movable slit scanner which determines their spatial profiles. The various charged particle currents, energies and beam current density distributions represent the experimental data from which the desired absolute cross sections have been determined. The results obtained with this technique are compared with available theoretical predictions of the appropriate cross sections
Directory of Open Access Journals (Sweden)
Falko Schmidt
2017-01-01
Full Text Available We perform a comprehensive theoretical study of the structural and electronic properties of potassium niobate (KNbO3 in the cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral phase, based on density-functional theory. The influence of different parametrizations of the exchange-correlation functional on the investigated properties is analyzed in detail, and the results are compared to available experimental data. We argue that the PBEsol and AM05 generalized gradient approximations as well as the RTPSS meta-generalized gradient approximation yield consistently accurate structural data for both the external and internal degrees of freedom and are overall superior to the local-density approximation or other conventional generalized gradient approximations for the structural characterization of KNbO3. Band-structure calculations using a HSE-type hybrid functional further indicate significant near degeneracies of band-edge states in all phases which are expected to be relevant for the optical response of the material.
Electronic properties of T graphene-like C-BN sheets: A density functional theory study
Majidi, R.
2015-11-01
We have used density functional theory to study the electronic properties of T graphene-like C, C-BN and BN sheets. The planar T graphene with metallic property has been considered. The results show that the presence of BN has a considerable effect on the electronic properties of T graphene. The T graphene-like C-BN and BN sheets show semiconducting properties. The energy band gap is increased by enhancing the number of BN units. The possibility of opening and controlling band gap opens the door for T graphene in switchable electronic devices.
Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys
Fukuhara, Mikio; Umemori, Yoshimasa
2013-11-01
The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.
Electron acceleration by a radially polarized laser pulse during ionization of low density gases
Directory of Open Access Journals (Sweden)
Kunwar Pal Singh
2011-03-01
Full Text Available The acceleration of electrons by a radially polarized intense laser pulse has been studied. The axial electric field of the laser is responsible for electron acceleration. The axial electric field increases with decreasing laser spot size; however, the laser pulse gets defocused sooner for smaller values and the electrons do not experience high electric field for long, reducing the energy they can reach. The electron remains confined in the electric field of the laser for longer and the electron energy peaks for the normalized laser spot size nearly equal to the normalized laser intensity parameter. Electron energy peaks for initial laser phase ϕ_{0}=π due to accelerating laser phase and decreases with transverse initial position of the electrons. The energy and angle of the emittance spectrum of the electrons generated during ionization of krypton and argon at low densities have been obtained and a right choice of laser parameters has been suggested to obtain high energy quasimonoenergetic collimated electron beams. It has been found that argon is more suitable than krypton to obtain high energy electron beams due to higher ionization potential of inner shells for the former.
Directory of Open Access Journals (Sweden)
Nyoman Sadra Dharmawan
2009-12-01
Full Text Available The objective of this study was to observe the development, distribution, and infection density ofTaenia saginata metacestodes in Bali cattle. Three Bali cattle were experimentally infected with T. saginataeggs which were collected from taeniasis patients. The experimental animal was inoculated with : i1000,00 T. saginata; ii 500,000 eggs; and iii 1,000,000 eggs, respectivelly 100,000 (cattle 1, 500,000(cattle 2, and 1,000,000 (cattle 3 T. saginata eggs, respectively. To observe the development of cysticerci,all cattle were slaughtered at 24 weeks post infection. To observe their distribution and density, slicingwas done to the cattle?s tissues. The study results showed that cysts were found distributed to all muscletissues and some visceral organs such as heart, diaphragm, lungs, and kidney of the cattle infected with100,000 and 500,000 T. saginata eggs. Density of the cyst was in the range of 11 to 95 cysts per 100 gramsof tissue. The highest density was noted in the heart (58/100 grams and in diaphragm (55/100 grams.This study has confirmed that T. saginata eggs derived from taeniasis patient in Bali, if infected to Balicattle can develop and spread to all muscle tissues and some visceral organs. From this study it wasconcluded that it is necessary to include the heart in the meat inspection at slaughter house for possibilityof T. saginata cyst infection.$?
Measuring Density Profiles of Electrons and Heavy Particles in a Stable Axially Blown Arc
Carstensen, J.; Stoller, P.; Galletti, B.; Doiron, C. B.; Sokolov, A.
2017-08-01
Two-color spatial carrier wave interferometry employing pulsed 532- and 671-nm lasers is used to measure the electron-density and heavy-particle-density profiles in the stagnation point of a stable, axially blown arc in argon for currents of 50 to 200 A and stagnation point pressures of 0.2 to 16 bar. This technique takes advantage of the fact that the free-electron contribution to the refractive index depends strongly on the wavelength, while that of the heavy particles does not. The high spatial resolution achieved allows the hot core of the arc to be readily distinguished from the surrounding boundary layer. A custom-built test device is used to ensure flow conditions that lead to a stable, axisymmetric arc; this permits the reconstruction of the density and temperature profiles using a single projection (interferometric image) of the refractive-index distribution through the arc (at two wavelengths). The arc radius determined from the heavy-particle density decreases with increasing stagnation pressure and increases with the current. These measurements are in good agreement with a simple axially blown arc model taking into account Ohmic heating, radiation losses, and enthalpy flow for core temperatures of approximately 16 500 K. The measured electron density at the center of the arc agrees well with a prediction based on local thermodynamic equilibrium.
A new interferometry-based electron density fluctuation diagnostic on Alcator C-Moda)
Kasten, C. P.; Irby, J. H.; Murray, R.; White, A. E.; Pace, D. C.
2012-10-01
The two-color interferometry diagnostic on the Alcator C-Mod tokamak has been upgraded to measure fluctuations in the electron density and density gradient for turbulence and transport studies. Diagnostic features and capabilities are described. In differential mode, fast phase demodulation electronics detect the relative phase change between ten adjacent, radially-separated (ΔR = 1.2 cm, adjustable), vertical-viewing chords, which allows for measurement of the line-integrated electron density gradient. The system can be configured to detect the absolute phase shift of each chord by comparison to a local oscillator, measuring the line-integrated density. Each chord is sensitive to density fluctuations with kR < 20.3 cm-1 and is digitized at up to 10 MS/s, resolving aspects of ion temperature gradient-driven modes and other long-wavelength turbulence. Data from C-Mod discharges is presented, including observations of the quasi-coherent mode in enhanced D-alpha H-mode plasmas and the weakly coherent mode in I-mode.
van Abbema, Joanne K.; van Goethem, Marc-Jan; Greuter, Marcel J. W.; van der Schaaf, Arjen; Brandenburg, Sytze; van der Graaf, Emiel R.
2015-01-01
Radiotherapy and particle therapy treatment planning require accurate knowledge of the electron density and elemental composition of the tissues in the beam path to predict the local dose deposition. We describe a method for the analysis of dual energy computed tomography (DECT) images that provides
Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team
2015-03-01
We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).
Microwave reflectrometry for electron density measurements in the TJ-1 tokamak plasma
International Nuclear Information System (INIS)
Anabitarte, E.; Bustamante, E.G.; Calderon, M.A.G.; Vegas, A.
1986-01-01
A study about microwave reflectometry to measure the outside profile of the electron plasma density on tokamak TJ-1 is presented. It is also presented the condition of applicability of this method after the characteristic parameters of the plasma and its resolution. The simulation of the plasma in laboratory by means of a metallic mirror causes the whole characterization of the reflectometer. (author)
Efficient k⋅p method for the calculation of total energy and electronic density of states
Iannuzzi, Marcella; Parrinello, Michele
2001-01-01
An efficient method for calculating the electronic structure in large systems with a fully converged BZ sampling is presented. The method is based on a k.p-like approximation developed in the framework of the density functional perturbation theory. The reliability and efficiency of the method are demostrated in test calculations on Ar and Si supercells
DEFF Research Database (Denmark)
Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif
2008-01-01
The effective atomic number, Z(eff), the effective electron density, N-el, and kerma have been calculated for some fatty acids and carbohydrates for photon interaction in the extended energy range from 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCo...
2010-07-01
http://www.iono.noa.gr/ElectronDensity/EDProfile.php The web service has been developed with the following open source tools: a) PHP , for the... MySQL for the database, which was based on the enhancement of the DIAS database. Below we present some screen shots to demonstrate the functionality
Electron density in reasonably real metallic surfaces, including interchange and correlation effects
International Nuclear Information System (INIS)
Moraga, L.A.; Martinez, G.
1981-01-01
By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt
Influence of the curve density relative electron in dosimetry clinic in treatments stereo tactics
International Nuclear Information System (INIS)
Moreno Saiz, C.; Benitez Villegas, E. M.; Casado Villalon, F. J.; Parra Osorio, V.; Bodineau Gil, C.; Garcia Pareja, S.
2013-01-01
The objective of this study is to analyze the difference between clinical dosimetry in the treatments with radiosurgery and stereotactic radiotherapy fractional obtained from the relative Electron density curve (Schneider 1996) tabulated and provided with the scanner's radiation therapy. (Author)
Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring
Energy Technology Data Exchange (ETDEWEB)
Byrd, John; De Santis, Stefano; Sonnad, Kiran; Caspers, Fritz; Kroyer, Tom; Krasnykh, Anatoly; Pivi, Mauro
2008-06-01
Clouds of low energy electronsin the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energyelectron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solenoid magnets to control the electrons.
Blanch, E.; Altadill, D.
2009-04-01
Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.
Electron density distribution and bonding in ZnSe and PbSe using ...
Indian Academy of Sciences (India)
Unknown
structural refinement using JANA 2000, and then the re- fined structure factors have been utilized for MEM re- finements to elucidate the ... the appropriate methods in which the concept of entropy is introduced to handle the uncertainty properly. The principle of MEM is to obtain an electron density distri- bution, which is ...
Energy Technology Data Exchange (ETDEWEB)
Palomares, J.M., E-mail: f02palij@gmail.co [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Iordanova, E.; Veldhuizen, E.M. van; Baede, L. [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Gamero, A.; Sola, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der, E-mail: j.j.a.m.v.d.Mullen@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)
2010-03-15
The axial profiles of the electron density n{sub e} and electron temperature T{sub e} of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10{sup 18} < n{sub e} < 8 x 10{sup 19} m{sup -3} and 1.1 < T{sub e} < 2.0 eV. Due to several improvements of the setup we could reduce the errors of n{sub e} and T{sub e} down to 8% and 3%, respectively. It is found that n{sub e} decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T{sub e} does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.
International Nuclear Information System (INIS)
Antoniassi, M.; Conceição, A.L.C.; Poletti, M.E.
2012-01-01
Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: ► Electron density of normal and neoplastic breast tissues was measured using Compton scattering. ► Monochromatic synchrotron radiation was used to obtain the Compton scattering data. ► The area of Compton peaks was used to determine the electron densities of samples. ► Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. ► Comparison with previous results showed differences smaller than 4%.
SOLAR NEUTRINO PHYSICS OSCILLATIONS: SENSITIVITY TO THE ELECTRONIC DENSITY IN THE SUN'S CORE
Energy Technology Data Exchange (ETDEWEB)
Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Turck-Chieze, Sylvaine, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: sylvaine.turck-chieze@cea.fr [CEA/IRFU/Service d' Astrophysique, CE Saclay, F-91191 Gif sur Yvette (France)
2013-03-01
Solar neutrinos coming from different nuclear reactions are now detected with high statistics. Consequently, an accurate spectroscopic analysis of the neutrino fluxes arriving on Earth's detectors becomes available, in the context of neutrino oscillations. In this work, we explore the possibility of using this information to infer the radial profile of the electronic density in the solar core. So, we discuss the constraints on the Sun's density and chemical composition that can be determined from solar neutrino observations. This approach constitutes an independent and alternative diagnostic to the helioseismic investigations already done. The direct inversion method, which we propose to obtain the radial solar electronic density profile, is almost independent of the solar model.
International Workshop on Electronic Density Functional Theory : Recent Progress and New Directions
Vignale, Giovanni; Das, Mukunda
1998-01-01
This book is an outcome of the International Workshop on Electronic Density Functional Theory, held at Griffith University in Brisbane, Australia, in July 1996. Density functional theory, standing as it does at the boundary between the disciplines of physics, chemistry, and materials science, is a great mixer. Invited experts from North America, Europe, and Australia mingled with students from several disciplines, rapidly taking up the informal style for which Australia is famous. A list of participants is given at the end of the book. Density functional theory (DFT) is a subtle approach to the very difficult problem of predicting the behavior of many interacting particles. A major application is the study of many-electron systems. This was the workshop theme, embracing inter alia computational chemistry and condensed matter physics. DFT circumvents the more conceptually straightforward (but more computationally intensive) approach in which one solves the many-body Schrodinger equation. It relies instead on r...
Plasma density measurements on COMPASS-C tokamak from electron cyclotron emission cutoffs
International Nuclear Information System (INIS)
Chenna Reddy, D.; Edlington, T.
1996-01-01
Electron cyclotron emission (ECE) is a standard diagnostic in present day tokamak devices for temperature measurement. When the plasma density is high enough the emission at some frequencies is cut off. Of these cutoff frequencies, the first frequency to cut off depends on the shape of the density profile. If the density profile can be described by a few parameters, in some circumstances, this first cutoff frequency can be used to obtain two of these parameters. If more than two parameters are needed to describe the density profile, then additional independent measurements are required to find all the parameters. We describe a technique by which it is possible to obtain an analytical relation between the radius at which the first cutoff occurs and the profile parameters. Assuming that the shape of the profile does not change as the average density rises after the first cutoff, one can use the cutoffs at other frequencies to obtain the average density at the time of these cutoffs. The plasma densities obtained with this technique using the data from a 14 channel ECE diagnostic on COMPASS-C tokamak are in good agreement with those measured by a standard 2 mm interferometer. The density measurement using the ECE cutoffs is an independent measurement and requires only a frequency calibration of the ECE diagnostic. copyright 1996 American Institute of Physics
Morita, Kazuki; Yasuoka, Kenji
2018-03-01
Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.
Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes
Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration
2015-11-01
A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.
Electron mobility in supercritical ethane as a function of density and temperature
International Nuclear Information System (INIS)
Nishikawa, M.; Holroyd, R.A.; Sowada, U.
1980-01-01
The electron mobility is reported for ethane as a function of density at various temperatures above T/sub c/. The high pressure cell used permits measurements to 200 atm. Our analysis shows that theory is consistent with the ethane mobility results at low and intermediate densities. At densities less than 1 x 10 21 molecules/cm 3 electrons are scattered by isolated ethane molecules and the Lorentz equation is valid. At intermediate densities, μ/sub e/ correlates with the square of the velocity of sound, indicating that in dense fluids the adiabatic compressibility must be included. The data are consistent with a modified Cohen--Lekner equation, and the minimum in μ/sub e/N observed at densities just below d/sub c/ is qualitatively accounted for by changes in the adiabatic compressibility. Thus the concept of quasilocalization, suggested by others to qualitatively explain such minima, is unnecessary here. At higher densities an additional, unspecified, scattering mechanism becomes important
Büyükyıldız, M.
2017-09-01
The radiological properties of some vitamins such as Retinol, Beta-carotene, Riboflavin, Niacin, Niacinamide, Pantothenic acid, Pyridoxine, Pyridoxamine, Pyridoxal, Biotin, Folic acid, Ascorbic acid, Cholecalciferol, Alpha-tocopherol, Gamma-tocopherol, Phylloquinone have been investigated with respect to total electron interaction and some heavy charged particle interaction as means of effective atomic numbers (Z_{eff}) and electron densities (N_{eff}) for the first time. Calculations were performed for total electron interaction and heavy ions such as H, He and C ion interactions in the energy region 10keV-10MeV by using a logarithmic interpolation method. Variations in Z_{eff}'s and N_{eff}'s of given vitamins have been studied according to the energy of electron or heavy charged particles, and significant variations have been observed for all types of interaction in the given energy region. The maximum values of Z_{eff} have been found in the different energy regions for different interactions remarkably and variations in N_{eff} seem approximately to be the same with variation in Z_{eff} for the given vitamins as expected. Z_{eff} values of some vitamins were plotted together and compared with each other for electron, H, He and C interactions and the ratios of Z_{eff}/ have been changed in the range of 0.25-0.36, 0.20-0.36, 0.22-0.35 and 0.20-0.35 for electron, H, He and C interactions, respectively.
International Nuclear Information System (INIS)
Knudsen, W.C.
1992-01-01
The effect of finite grid radius and thickness on the electron current measured by planar retarding potential analyzers (RPAs) is analyzed numerically. Depending on the plasma environment, the current is significantly reduced below that which is calculated using a theoretical equation derived for an idealized RPA having grids with infinite radius and vanishingly small thickness. A correction factor to the idealized theoretical equation is derived for the Pioneer Venus (PV) orbiter RPA (ORPA) for electron gases consisting of one or more components obeying Maxwell statistics. The error in density and temperature of Maxwellian electron distributions previously derived from ORPA data using the theoretical expression for the idealized ORPA is evaluated by comparing the densities and temperatures derived from a sample of PV ORPA data using the theoretical expression with and without the correction factor
Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers
Energy Technology Data Exchange (ETDEWEB)
Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U
2006-11-21
We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.
Reduction of electron density in a plasma by injection of liquids
Sodha, M. S.; Evans, J. S.
1974-01-01
In this paper, the authors have investigated the physics of various processes relevant to the reduction of electron density in a plasma by addition of water droplets; two processes have in particular been analyzed in some detail, viz, the electron attachment to charged dielectric droplets and the emission of negative ions by vaporization from these droplets. The results of these analyses have been applied to a study of the kinetics of reduction of electron density and charging of droplets in an initially overionized plasma, after addition of water droplets. A number of simplifying assumptions including uniform size and charge on droplets and negligible change in the radius of the droplet due to evaporation have been made.
Kais, A.; Lo, J.; Thérèse, L.; Guillot, Ph.
2018-01-01
To control the temperature during a plasma treatment, an understanding of the link between the plasma parameters and the fundamental process responsible for the heating is required. In this work, the power supplied by the plasma onto the surface of a glass substrate is measured using the calorimetric method. It has been shown that the powers deposited by ions and electrons, and their recombination at the surface are the main contributions to the heating power. Each contribution is estimated according to the theory commonly used in the literature. Using the corona balance, the Modified Boltzmann Plot (MBP) is employed to determine the electron temperature. A correlation between the power deposited by the plasma and the results of the MBP has been established. This correlation has been used to estimate the electron number density independent of the Langmuir probe in considered conditions.
Divya, P.; Bena Jothy, V.
2018-03-01
Optimized structural parameters of Albendazole and corresponding vibrational assignments have been studied using infrared and Raman spectroscopy combined with quantum-chemical calculations. Results of these spectroscopic studies have been successfully compared against obtained experimental data. Difference between experimental and calculated CH3 group wavenumbers was blue-shifted by 58 cm-1 and 43 cm-1, respectively due to electronic effects. In NBO analysis the increase in energies and the shortening of Csbnd N and Cdbnd O bonds gives clear evidence that the resonance of the benzimidazole ring is increased by the groups. Best binding score of Albendazole was obtained with protein 4NQ6 (-5.58 kcal/mol).
Experimental study of the critical density of heat flux in open channels cooled with helium - II
International Nuclear Information System (INIS)
Pron'ko, V.G.; Gorokhov, V.V.; Saverin, V.N.
1981-01-01
Experimental values of the critical density of a heat flux qsub(cr) in uniformly heated open channels cooled with helium-2 are reported for the first time. The experimental test bench and experimental element are described. Experimental data are obtained in cylindrical channels of 12Kh18N1OT steel with inner diameter d=0.8, 1.8; 2.8 mm and ratio l/d=20.8, 44, 85. The channel orientation has varied from vertical to horizontal position, the immersion depth - from 100, to 600 mm. It has been found that the heat transfer crisis propagation over the whole length of the channel with He-2 occurs practically instantaneously. The qsub(cr) value depends essentially on the bath liquid temperature, angle of inclivnation and relative length (l/d) of the channel with qsub(cr) approximately (l/d)sup(-1.5) being independent of the depth of channel immersion. The obtained values of critical density of a heat flux in channels are papproximately by an order less than those found for a great bulk of He-2. The results presented may be used for designing various types of devices cooled with He-2 and development of heat exchange theory in it [ru
Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.
2017-11-01
A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.
Gowda, Anitha S; Petersen, Jeffrey L; Milsmann, Carsten
2018-02-19
The three- and four-membered redox series [Cr( Me PDP) 2 ] z (z = 1-, 2-, 3-) and [Mo( Me PDP) 2 ] z (z = 0, 1-, 2-, 3-) were synthesized to study the redox properties of the pincer ligand Me PDP 2- (H 2 Me PDP = 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine). The monoanionic complexes were characterized by X-ray crystallography, UV/vis/NIR spectroscopy, and magnetic susceptibility measurements. Experimental and density functional theory (DFT) studies are consistent with closed-shell Me PDP 2- ligands and +III oxidation states (d 3 , S = 3/2) for the central metal ions. Cyclic voltammetry established multiple reversible redox processes for [M( Me PDP) 2 ] 1- (M = Cr, Mo), which were further investigated via chemical oxidation and reduction. For molybdenum, one-electron oxidation yielded Mo( Me PDP) 2 which was characterized by X-ray crystallography, UV/vis/NIR, and magnetic susceptibility measurements. The experimental and computational data indicate metal-centered oxidation to a Mo IV complex (d 2 , S = 1) with two Me PDP 2- ligands. In contrast, one- and two-electron reductions were found to be ligand centered resulting in the formation of Me PDP •3- radicals, in which the unpaired electron is predominantly located on the central pyridine ring of the ligand. The presence of ligand radicals was established experimentally by observation of ligand-to-ligand intervalence charge transfer (LLIVCT) bands in the UV/vis/NIR spectra of the dianionic and trianionic complexes and further supported by broken-symmetry DFT calculations. X-ray crystallographic analyses of the one-electron-reduced species [M( Me PDP) 2 ] 2- (S = 1, M = Cr, Mo) established structural indicators for pincer reduction and showed localization of the radical on one of the two pincer ligands. The two-electron-reduced, trianionic complexes (S = 1/2) were characterized by UV/vis/NIR spectroscopy, magnetic susceptibility measurements, and EPR spectroscopy. The electronic structures of the reduced
THE ELECTRON DENSITY IN EXPLOSIVE TRANSITION REGION EVENTS OBSERVED BY IRIS
Energy Technology Data Exchange (ETDEWEB)
Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)
2016-11-20
We discuss the intensity ratio of the O iv line at 1401.16 Å to the Si iv line at 1402.77 Å in Interface Region Imaging Spectrograph ( IRIS ) spectra. This intensity ratio is important if it can be used to measure high electron densities that cannot be measured using line intensity ratios of two different O iv lines from the multiplet within the IRIS wavelength range. Our discussion is in terms of considerably earlier observations made from the Skylab manned space station and other spectrometers on orbiting spacecraft. The earlier data on the O iv and Si iv ratio and other intersystem line ratios not available to IRIS are complementary to IRIS data. In this paper, we adopt a simple interpretation based on electron density. We adopt a set of assumptions and calculate the electron density as a function of velocity in the Si iv line profiles of two explosive events. At zero velocity the densities are about 2–3 × 10{sup 11} cm{sup -3}, and near 200 km s{sup -1} outflow speed the densities are about 10{sup 12} cm{sup -3}. The densities increase with outflow speed up to about 150 km s{sup -1} after which they level off. Because of the difference in the temperature of formation of the two lines and other possible effects such as non-ionization equilibrium, these density measurements do not have the precision that would be available if there were some additional lines near the formation temperature of O iv.
Principal and experimental study of source of polarized electrons
International Nuclear Information System (INIS)
Shang Rencheng; Gao Junfang; Xiao Yuan; Pang Wenning; Deng Jingkang
1999-01-01
The getting of polarized electrons was briefly introduced, that is the source of polarized electrons. The measurement of polarization in future, the application of polarized electrons in atomic and molecular physics, condensed physics, biological physics, nuclear and particle physics were discussed
ELECTRONIC SYSTEM FOR EXPERIMENTATION IN AC ELECTROGRAVIMETRY II: IMPLEMENTED DESIGN
Directory of Open Access Journals (Sweden)
Robinson Torres
2007-06-01
Full Text Available A detailed description of the electronic system designed to improve the measurements in an experimental AC electrogravimetry setup is presented. This system is committed to acquire appropriated data for determining the Electrogravimetric Transfer Function (EGTF and provide information regarding the mass transfer in an electrochemical cell in the AC Electrogravimetry Technique, but maintaining a good trade-off between the locking frequency bandwidth and the resolution in the frequency tracking, that is, enlarging the bandwidth of the system to follow signals with frequency as higher as 1 kHz, but maintaining an accurate and continuous tracking of this signal. The enlarged bandwidth allows the study of fast kinetic process in electrochemical applications and the continuous tracking let to achieve a precise measurement with good resolution rather than average frequency records obtained by conventional frequency meters. The system is based on an Analogue-Digital Phase Locked Loop (A-D PLL.En este artículo se presenta una descripción detallada del sistema electrónico diseñado para mejorar las medidas en un sistema experimental de electrogravimetría AC. El sistema diseñado se encarga de adquirir los datos adecuados para determinar la función de transferencia electrogravimétrica (EGTF y proveer información relacionada con la transferencia de masa en una celda electroquímica en la técnica de electrogravimetría AC, pero manteniendo un buen compromiso entre el ancho de banda de enganche y la resolución en el seguimiento de la frecuencia, es decir, el sistema incrementa el ancho de banda para permitir el seguimiento de señales con frecuencias hasta de 1 kHz, pero conservando un exacto y continuo seguimiento de esta señal. El aumento del ancho de banda permite el estudio de procesos con una cinética rápida en aplicaciones electroquímicas y el seguimiento continuo de la señal permite la obtención de medidas precisas con buena resoluci