WorldWideScience

Sample records for experimental component characterization

  1. Characterization of the powertrain components for a hybrid quadricycle

    Science.gov (United States)

    De Santis, M.; Agnelli, S.; Silvestri, L.; Di Ilio, G.; Giannini, O.

    2016-06-01

    This paper presents the experimental characterization of a prototyping hybrid electric quadricycle, which is equipped with two independently actuated hub (in-wheel) motors and powered by a 51 V 132 Ah LiFeYPO4 battery pack. Such a vehicle employs two hub motors located in the rear axles in order to independently drive/brake the rear wheels; such architecture allows to implement a torque vectoring system to improve the vehicle dynamics. Due to its actuation flexibility, energy efficiency and performance potentials, this architecture is one of the promising powertrain design for electric quadricycle. Experimental data obtained from measurements on the vehicle powertrain components going from the battery pack to the inverter and to the in-wheel motor were employed to generate the hub motor torque response and power efficiency maps in both driving and regenerative braking modes. Furthermore, the vehicle is equipped with a gasoline internal combustion engine as range extender whose efficiency was also characterized.

  2. Experimental qualification of nuclear components

    Energy Technology Data Exchange (ETDEWEB)

    Alliot, P; Fronte, T; Genty, F [FRAMATOME - Cedex 16, Paris la Defense (France)

    1988-07-01

    In the process of showing the adequacy of the seismic design of French PWR reactor, Fermat has repeatedly used dynamic testing on actual nuclear reactor components both on site and in manufacturing shops. The objective and results of a few representative examples of this on-site experimental verification are presented in this paper: the experimental dynamic analysis of a manipulator crane; the investigation of the seismic behaviour of fuel storage racks equipped with aseismic bearing devices. Difficulties to select satisfactory testing methods are also discussed for the particular case of the electrical cabinets. (author)

  3. Experimental qualification of nuclear components

    International Nuclear Information System (INIS)

    Alliot, P.; Fronte, T.; Genty, F.

    1988-01-01

    In the process of showing the adequacy of the seismic design of French PWR reactor, Fermat has repeatedly used dynamic testing on actual nuclear reactor components both on site and in manufacturing shops. The objective and results of a few representative examples of this on-site experimental verification are presented in this paper: the experimental dynamic analysis of a manipulator crane; the investigation of the seismic behaviour of fuel storage racks equipped with aseismic bearing devices. Difficulties to select satisfactory testing methods are also discussed for the particular case of the electrical cabinets. (author)

  4. Experimental characterization of novel microdiffuser elements

    International Nuclear Information System (INIS)

    Ehrlich, L; Punch, J; Jeffers, N; Stafford, J

    2014-01-01

    Micropumps can play a significant role in thermal management applications, as a component of microfluidic cooling systems. For next-generation high density optical communication systems, in particular, heat flux levels are sufficiently high to require a microfluidic circuit for cooling. Valveless piezoelectrically-actuated micropumps are a particularly promising technology to be deployed for this application. These pumps exploit the asymmetric flow behaviour of microdiffusers to achieve net flow. They feature no rotating or contacting parts, which make them intrinsically reliable in comparison to micropumps with active valves. In this paper, two novel microdiffuser elements are reported and characterized. The micropumps were fabricated using a 3D Printer. Each single diffuser had a length of 1800 pm and a depth of 400 pm. An experimental characterization was conducted in which the flow rate and differential pressure were measured as a function of operating frequency. In comparison with standard diffuser, both elements showed an increase in differential pressure in the range of 40 – 280 %, but only one of the elements exhibited an improved flow rate, of about 85 %.

  5. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner

    2017-01-01

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel ...... in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.......This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel...... photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices...

  6. Mechanical characterization of W-armoured plasma-facing components after thermal fatigue

    International Nuclear Information System (INIS)

    Serret, D; Richou, M; Missirlian, M; Loarer, T

    2011-01-01

    The future fusion device ITER is aimed at demonstrating the scientific and technical feasibility of fusion power. Tens of thousands of W-armoured plasma-facing components (PFCs) will be installed in the vertical targets of the ITER divertor and subjected to a high heat flux. The purpose of this paper is to present the results of mechanical and microstructural characterization of tungsten PFCs after thermal fatigue tests. On each component, Vickers hardness measurements are made. In parallel, the mean grain diameter in the corresponding zone of tungsten material is determined. The empirical Hall-Petch relation was adapted to experimental data. However, due to the plateau effect on recrystallization hardness, this relation does not seem to be relevant once recrystallization is complete: a new approach is proposed for predicting the margin to the tungsten melting onset.

  7. Experimental and computing strategies in advanced material characterization problems

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy gabriella.bolzon@polimi.it (Italy)

    2015-10-28

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities.

  8. Experimental and computing strategies in advanced material characterization problems

    International Nuclear Information System (INIS)

    Bolzon, G.

    2015-01-01

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities

  9. Characterization of an extrapolation chamber for low-energy X-rays: Experimental and Monte Carlo preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Lucio P., E-mail: lpneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Silva, Eric A.B., E-mail: ebrito@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Perini, Ana P., E-mail: aperini@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Maidana, Nora L., E-mail: nmaidana@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Caldas, Linda V.E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN), Comissao Nacional de Energia Nuclear, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2012-07-15

    The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IPEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. - Highlights: Black-Right-Pointing-Pointer A homemade extrapolation chamber was studied experimentally and with Monte Carlo. Black-Right-Pointing-Pointer It was characterized as a secondary dosimetry standard, for low energy X-rays. Black-Right-Pointing-Pointer Several characterization tests were performed and the results were satisfactory. Black-Right-Pointing-Pointer Simulation showed that its components may influence the response up to 11.0%. Black-Right-Pointing-Pointer This chamber may be used as a secondary standard at our laboratory.

  10. Experimental study on hollow structural component by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Mianjun, E-mail: dmjwl@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Wei, Ling, E-mail: 386006087@qq.com [Tongda College, Nanjing University of Posts and Telecommunication, Nanjing 210007 (China); Hong, Jin [PLA University of Science and Technology, Nanjing 210007 (China); Ran, Hong [Southwestern Institute of Physics, Chengdu 610041 (China); Ma, Rui; Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China)

    2014-12-15

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property.

  11. Experimental study on hollow structural component by explosive welding

    International Nuclear Information System (INIS)

    Duan, Mianjun; Wei, Ling; Hong, Jin; Ran, Hong; Ma, Rui; Wang, Yaohua

    2014-01-01

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property

  12. Characterization of experimental cements with endodontic goal

    International Nuclear Information System (INIS)

    Dantas, A.M.X.; Sousa, W.J.B.; Oliveira, E.D.C.; Carrodeguas, R.G.; Fook, M.V. Lia; Universidade Estadual da Paraiba

    2017-01-01

    The present study aimed to characterize experimental endodontic cements using as comparative parameter MTA cement. Two experimental endodontic cements were assessed: one based on 95% tri-strontium aluminate and 5% gypsum (CE1) and another based on 50% Sr_3Al_2O_6 and 50% non-structural white cement (CE2). Experimental cements were manipulated and characterized by scanning electron microscopy (SEM), coupled to EDS mode, X-ray diffractometer (XRD) and Thermogravimetric (TG) analysis. Data analysis demonstrated that the particles of the materials used presented varied shapes and sizes, with similar elements and crystalline behavior. However, CE1 presented increased mass loss. Experimental cements presents similarities to MTA, nevertheless, further studies are encourage to determinate comparative properties with the commercially material. (author)

  13. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  14. Review on characterization methods applied to HTR-fuel element components

    International Nuclear Information System (INIS)

    Koizlik, K.

    1976-02-01

    One of the difficulties which on the whole are of no special scientific interest, but which bear a lot of technical problems for the development and production of HTR fuel elements is the proper characterization of the element and its components. Consequently a lot of work has been done during the past years to develop characterization procedures for the fuel, the fuel kernel, the pyrocarbon for the coatings, the matrix and graphite and their components binder and filler. This paper tries to give a status report on characterization procedures which are applied to HTR fuel in KFA and cooperating institutions. (orig.) [de

  15. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis.

    Science.gov (United States)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya

    2017-09-18

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

  16. Steady state and transient thermal-hydraulic characterization of full-scale ITER divertor plasma facing components

    International Nuclear Information System (INIS)

    Tincani, A.; Malavasi, A.; Ricapito, I.; Riccardi, B.; Di Maio, P.A.; Vella, G.

    2007-01-01

    In the frame of the activities related to ITER divertor R and D, ENEA CR Brasimone was charged by EFDA (European Fusion Design Agreement) to investigate the thermal-hydraulic behaviour of the full-scale divertor plasma facing components, i.e. Inner Vertical Target, Dome Liner and Outer Vertical Target, both in steady state and during draining and drying transient. More in detail, for each PFC, the first phase of the work is the steady state hydraulic characterization which consists of: - measurements of pressure drops at different temperatures; - determination of the velocity distribution in the internal channels; - check the possible insurgence of cavitation. The subsequent phase of the thermal-hydraulic characterization foresees a testing campaign of draining and drying procedure by means of a suitable gas flow. The objective of this experimental procedure is to eliminate in the most efficient way the residual amount of water after gravity discharge. In order to accomplish this experimental campaign a significant modification of CEF1 loop has been designed and realized. This paper presents, first of all, the experimental set-up, the agreed test matrix and the achieved results for both steady state and transient tests. Moreover, the level of the implementation of a predictive hydraulic model, based on RELAP 5 code, as well as its results are described, discussed and compared with the experimental ones. (orig.)

  17. Experimental Facilities for Performance Evaluation of Fast Reactor Components

    International Nuclear Information System (INIS)

    Chandramouli, S.; Kumar, V.A. Suresh; Shanmugavel, M.; Vijayakumar, G.; Vinod, V.; Noushad, I.B.; Babu, B.; Kumar, G. Padma; Nashine, B.K.; Rajan, K.K.

    2013-01-01

    Brief details about various experimental facilities catering to the testing and performance evaluation requirements of fast reactor components have been brought out. These facilities have been found to be immensely useful to continue research and development activities in the areas of component development and testing, sodium technology, thermal hydraulics and sodium instrumentation for the SFR’s. In addition new facilities which have been planned will be of great importance for the developmental activities related to future SFR’s

  18. Calculation and experimental investigation of multi-component ceramic systems

    International Nuclear Information System (INIS)

    Rother, M.

    1994-12-01

    This work shows a way to combine thermodynamic calculations and experiments in order to get useful information on the constitution of metal/non-metal systems. Many data from literature are critically evaluated and used as a basis for experiments and calculations. The following multi-component systems are treated: 1. Multi-component systems of 'ceramic' materials with partially metallic bonding (carbides, nitrides, oxides, borides, carbonitrides, borocarbides, oxinitrides of the 4-8th transition group metals) 2. multi-component systems of non-metallic materials with dominant covalent bonding (SiC, Si 3 N 4 , SiB 6 , BN, Al 4 C 3 , Be 2 C) 3. multi-component systems of non-metallic materials with dominant heteropolar bonding (Al 2 O 3 , TiO 2 , BeO, SiO 2 , ZrO 2 ). The interactions between 1. and 2., 2. and 3., 1. and 3. are also considered. The latest commercially available programmes for the calculation of thermodynamical equilibria and phase diagrams are evaluated and compared considering their facilities and limits. New phase diagrams are presented for many presently unknown multi-component systems; partly known systems are completed on the basis of selected thermodynamic data. The calculations are verified by experimental investigations (metallurgical and powder technology methods). Altogether 690 systems are evaluated, 126 are calculated for the first time and 52 systems are experimentally verified. New data for 60 ternary phases are elaborated by estimating the data limits for the Gibbs energy values. A synthesis of critical evaluation of literature, calculations and experiments leads to new important information about equilibria and reaction behaviour in multi-component systems. This information is necessary to develop new stable and metastable materials. (orig./MM) [de

  19. Performance Demonstration Program Plan for the WIPP Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-02-01

    The Performance Demonstration Program is designed to ensure that compliance with the Quality Assurance Objective, identified in the Quality Assurance Program Plan for the WIPP Experimental-Waste Characterization Program (QAPP), is achieved. This Program Plan is intended for use by the WPO to assess the laboratory support provided for the characterization of WIPP TRU waste by the storage/generator sites. Phase 0 of the Performance Demonstration Program encompasses the analysis of headspace gas samples for inorganic and organic components. The WPO will ensure the implementation of this plan by designating an independent organization to coordinate and provide technical oversight for the program (Program Coordinator). Initial program support, regarding the technical oversight and coordination functions, shall be provided by the USEPA-ORP. This plan identifies the criteria that will be used for the evaluation of laboratory performance, the responsibilities of the Program Coordinator, and the responsibilities of the participating laboratories. 5 tabs

  20. Effectiveness of Bioactive Food Components in Experimental Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Emília Hijová

    2009-01-01

    Full Text Available The aim of the present study was the evaluation of possible protective effects of selected bioactive food components in experimental N,N-dimethylhydrazine (DMH-induced colon carcinogenesis. Wistar albino rats (n = 92 were fed a high fat diet or conventional laboratory diet. Two weeks after the beginning of the trial, DMH injections were given to six groups of rats at the dose of 20 mg/kg b.w. twice weekly. The activity of bacterial enzymes in faeces and serum bile acid concentrations were determined. High fat diet, DMH injections, and their combination significantly increased the activies of β-galactosidase, β-glucuronidase, and α-glucosidase (p p < 0.001, as well as the bile acid concentration compared to the group at the highest risk. The protective effects of selected bioactive food components in experimentally induced colon carcinogenesis allow for their possible use in cancer prevention or treatment.

  1. Experimental characterization of the perceptron laser rangefinder

    Science.gov (United States)

    Kweon, I. S.; Hoffman, Regis; Krotkov, Eric

    1991-01-01

    In this report, we characterize experimentally a scanning laser rangefinder that employs active sensing to acquire three-dimensional images. We present experimental techniques applicable to a wide variety of laser scanners, and document the results of applying them to a device manufactured by Perceptron. Nominally, the sensor acquires data over a 60 deg x 60 deg field of view in 256 x 256 pixel images at 2 Hz. It digitizes both range and reflectance pixels to 12 bits, providing a maximum range of 40 m and a depth resolution of 1 cm. We present methods and results from experiments to measure geometric parameters including the field of view, angular scanning increments, and minimum sensing distance. We characterize qualitatively problems caused by implementation flaws, including internal reflections and range drift over time, and problems caused by inherent limitations of the rangefinding technology, including sensitivity to ambient light and surface material. We characterize statistically the precision and accuracy of the range measurements. We conclude that the performance of the Perceptron scanner does not compare favorably with the nominal performance, that scanner modifications are required, and that further experimentation must be conducted.

  2. Pretest characterization of WIPP experimental waste

    International Nuclear Information System (INIS)

    Johnson, J.; Davis, H.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditions for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper

  3. The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change

    Science.gov (United States)

    Yang, Hongli; Ren, Ruojin; Lockwood, Howard; Williams, Galen; Libertiaux, Vincent; Downs, Crawford; Gardiner, Stuart K.; Burgoyne, Claude F.

    2015-01-01

    Purpose To characterize optic nerve head (ONH) connective tissue change within 21 monkey experimental glaucoma (EG) eyes, so as to identify its principal components. Methods Animals were imaged three to five times at baseline then every 2 weeks following chronic unilateral IOP elevation, and euthanized early through end-stage confocal scanning laser tomographic change. Optic nerve heads were serial-sectioned, three-dimensionally (3D) reconstructed, delineated, and quantified. Overall EG versus control eye differences were assessed by general estimating equations (GEE). Significant, animal-specific, EG eye change was required to exceed the maximum physiologic intereye differences in six healthy animals. Results Overall EG eye change was significant (P connective tissue components of ONH “cupping” in monkey EG which serve as targets for longitudinally staging and phenotyping ONH connective tissue alteration within all forms of monkey and human optic neuropathy. PMID:26641545

  4. Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components

    International Nuclear Information System (INIS)

    Dingreville, Remi Philippe Michel; Hattar, Khalid Mikhiel; Bufford, Daniel Charles

    2015-01-01

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I 3 TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

  5. Experimental study of multi-component separation by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou, M.S.; Liang, X.W.; Chen, W.N.; Yin, Y.T.

    2006-01-01

    Stable isotopes are applied in many areas and most stable isotopes are multi-component, This paper presents experimental results of several stable isotopes separation conducted in Tsinghua University by using ultra-speed gas centrifuges. Xe, WF 6 , TeF 6 , SiHCl 3 , SiF 4 were chosen as the process gases. By adjusting some of the centrifuge's parameters, the suitable centrifuge parameters for different process gas separations were found and the overall unit separation factors γ 0 were obtained by means of single gas centrifuge separation. The experimental results show that with appropriate process gases, stable isotope separation by gas centrifuge was effective. (authors)

  6. Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components

    International Nuclear Information System (INIS)

    Dobre, Tanase; Parvulescu, Oana Cristina; Stoica, Anicuta; Iavorschi, Gustav

    2010-01-01

    The use of cooling systems based on heat pipe principle to control operation temperature of electronic components is very efficient. They have an excellent miniaturizing capacity and this fact creates adaptability for more practical situations. Starting from the observation that these cooling systems are not precisely characterized from the thermal efficiency point of view, the present paper proposes a methodology of data acquisition for their thermal characterization. An experimental set-up and a data processing algorithm are shown to describe the cooling of a heat generating electronic device using heat pipes. A Thermalright SI-97 PC cooling system is employed as a case-study to determine the heat transfer characteristics of a fins cooler.

  7. Experimental dynamic characterizations and modelling of disk vibrations for HDDs.

    Science.gov (United States)

    Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua

    2008-01-01

    Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.

  8. Computational/experimental studies of isolated, single component droplet combustion

    Science.gov (United States)

    Dryer, Frederick L.

    1993-01-01

    Isolated droplet combustion processes have been the subject of extensive experimental and theoretical investigations for nearly 40 years. The gross features of droplet burning are qualitatively embodied by simple theories and are relatively well understood. However, there remain significant aspects of droplet burning, particularly its dynamics, for which additional basic knowledge is needed for thorough interpretations and quantitative explanations of transient phenomena. Spherically-symmetric droplet combustion, which can only be approximated under conditions of both low Reynolds and Grashof numbers, represents the simplest geometrical configuration in which to study the coupled chemical/transport processes inherent within non-premixed flames. The research summarized here, concerns recent results on isolated, single component, droplet combustion under microgravity conditions, a program pursued jointly with F.A. Williams of the University of California, San Diego. The overall program involves developing and applying experimental methods to study the burning of isolated, single component droplets, in various atmospheres, primarily at atmospheric pressure and below, in both drop towers and aboard space-based platforms such as the Space Shuttle or Space Station. Both computational methods and asymptotic methods, the latter pursued mainly at UCSD, are used in developing the experimental test matrix, in analyzing results, and for extending theoretical understanding. Methanol, and the normal alkanes, n-heptane, and n-decane, have been selected as test fuels to study time-dependent droplet burning phenomena. The following sections summarizes the Princeton efforts on this program, describe work in progress, and briefly delineate future research directions.

  9. Fatigue characterization of mechanical components in service

    Directory of Open Access Journals (Sweden)

    G. Fargione

    2013-10-01

    Full Text Available The quickly identify of fatigue limit of a mechanical component with good approximation is currently a significant practical problem not yet resolved in a satisfactory way. Generally, for a mechanical component, the fatigue strength reduction factor (i is difficult to evaluate especially when it is in service.In this paper, the procedures for crack paths individuation and consequently damage evaluation (adopted in laboratory for stressed specimens with planned load histories are applied to mechanical components, already failed during service. The energy parameters, proposed by the authors for the evaluation of the fatigue behavior of the materials [1-5], are defined on specimens derived from a flange bolts. The flange connecting pipes at high temperature and pressure. Due to the loss of the seal, the bolts have been subjected to a hot flow steam addition to the normal stress.The numerical analysis coupled experimental analysis (measurement of surface temperature during static and dynamic tests of specimens taken from damaged tie rods, has helped to determine the causes of failure of the tie rods.The determination of an energy parameter for the evaluation of the damage showed that factors related to the heat release of the material (loaded may also help to understand the causes of failure of mechanical components.

  10. Experimental modal analysis of components of the LHC experiments

    CERN Document Server

    Guinchard, M; Catinaccio, A; Kershaw, K; Onnela, A

    2007-01-01

    Experimental modal analysis of components of the LHC experiments is performed with the purpose of determining their fundamental frequencies, their damping and the mode shapes of light and fragile detector components. This process permits to confirm or replace Finite Element analysis in the case of complex structures (with cables and substructure coupling). It helps solving structural mechanical problems to improve the operational stability and determine the acceleration specifications for transport operations. This paper describes the hardware and software equipment used to perform a modal analysis on particular structures such as a particle detector and the method of curve fitting to extract the results of the measurements. This paper exposes also the main results obtained for the LHC Experiments.

  11. In silico dissection of Type VII Secretion System components across bacteria: New directions towards functional characterization.

    Science.gov (United States)

    Das, Chandrani; Ghosh, Tarini Shankar; Mande, Sharmila S

    2016-03-01

    Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacterium tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information is required to obtain a global view of diverse characteristics and pathogenicity-related aspects of this machinery. The present study suggests that differences in structural components (of T7SS) between Actinobacteria and Firmicutes, observed earlier in a few organisms, is indeed a global trend. A few hitherto uncharacterized T7SS-like clusters have been identified in the pathogenic bacteria Enterococcus faecalis, Saccharomonospora viridis, Streptococcus equi, Streptococcus gordonii and Streptococcus sanguinis. Experimental verification of these clusters can shed lights on their role in bacterial pathogenesis. Similarly, verification of the identified variants of T7SS clusters consisting additional membrane components may help in unraveling new mechanism of protein translocation through T7SS. A database of various components of T7SS has been developed to facilitate easy access and interpretation of T7SS related data.

  12. Thermo-characterization of power systems components: a tool to diagnose their malfunctions

    International Nuclear Information System (INIS)

    Zaleta-Aguilar, Alejandro; Royo, Javier; Rangel, Victor H.; Torres-Reyes, Ernestina

    2004-01-01

    Concepts on thermodynamic characterization of power system components are presented in this paper. The aim of this work is to evaluate and diagnose the actual operating condition for existing power plant components. What is more, a Reference Performance State (RPS) for power system components which uses the parameters defined as the enthalpy change, ω, the entropy change, σ and the Mass Flow Ratio design, MFR is put forward. Design information and simulation will help to determine the RPS for each component operating without any malfunction. The RPS can be used to compare, to evaluate and to diagnose the actual operating condition of the plant components so as to detect its possible malfunction. A simulated example of a 105 MW power plant is presented herein so that thermo-characterization of steam turbines, a condenser, a heat exchanger, and a pump is illustrated. The induced and intrinsic component malfunction effects on the RPS are also presented. Their effects are related to the RPS, thereby opening the possibility to apply methodologies to any internal decay and/or induced malfunctions that could appear in an operating component, in terms of the heat rate impact

  13. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    Science.gov (United States)

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  14. Experimental characterization of the hydro-mechanical behaviour of Meuse/Haute-Marne argilites

    International Nuclear Information System (INIS)

    Escoffier, S.

    2002-04-01

    Within the framework of a feasibility study of underground radioactive waste repository the experimental characterization of the coupled behavior of the host layer is of first importance. This work concerns the experimental characterization in laboratory of the poro-elastic behavior of argillite which constitutes the host layer of the future underground laboratory of ANDRA located at the limit of the Meuse/Haute-Marne. The theoretical approach is the Mechanics of Porous Media defined by Coussy [1991] which has the advantage of providing a formulation of the behavior laws using measurable parameters in laboratory. The difficulties or the feasibility of the characterization tests of these rocks coupled behavior are related to their very low permeability which requires an adaptation of the experimental devices initially used on more permeable rocks. Initially a synthesis on the knowledge of the poro-elastic parameters of Meuse/Haute-Marne argillite is given. Thereafter a first approach of the use of the studies of sensitivity as tools of decision-making aid is proposed. The experimental difficulties encountered by the various experimenters are illustrated by the diversity of the experimental choices, the test duration or by the results disparity. Because of economic, political and ecological stake, the studies of sensitivity could make it possible to direct the experimental efforts by giving indications on the dominating parameters in the coupled behavior of a rock. In the second time after the presentation of the test results of physical characterization 3 types of tests are described: permeability test (pulse test), determination of Biot coefficient under odometric loading and isotropic drained test. The complexity of these tests is related to the attack of the experimental limits. They are presented in detail: theoretical recalls, experimental set up, experimental protocol, unfolding and test results. (author)

  15. Experimental Characterization of Wings for a Hawkmoth-Sized Micro Air Vehicle

    Science.gov (United States)

    2014-03-27

    butterfly where the modeshapes were found to be identical with the Hawkmoth, lending more credence to the assertion that the wing modal ratios...EXPERIMENTAL CHARACTERIZATION OF WINGS FOR A HAWKMOTH-SIZED MICRO AIR VEHICLE THESIS Zachary R. Brown, Lieutenant Commander, USN AFIT-ENY-14-M-10...of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENY-14-M-10 EXPERIMENTAL CHARACTERIZATION OF WINGS FOR A

  16. Enhanced characterization of reservoir hydrocarbon components using electromagnetic data attributes

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Advances in electromagnetic imaging techniques have led to the growing utilization of this technology for reservoir monitoring and exploration. These exploit the strong conductivity contrast between the hydrocarbon and water phases and have been used for mapping water front propagation in hydrocarbon reservoirs and enhancing the characterization of the reservoir formation. The conventional approach for the integration of electromagnetic data is to invert the data for saturation properties and then subsequently use the inverted properties as constraints in the history matching process. The non-uniqueness and measurement errors may however make this electromagnetic inversion problem strongly ill-posed, leading to potentially inaccurate saturation profiles. Another limitation of this approach is the uncertainty of Archie's parameters in relating rock conductivity to water saturation, which may vary in the reservoir and are generally poorly known. We present an Ensemble Kalman Filter framework for efficiently integrating electromagnetic data into the history matching process and for simultaneously estimating the Archie's parameters and the variance of the observation error of the electromagnetic data. We apply the proposed framework to a compositional reservoir model. We aim at assessing the relevance of EM data for estimating the different hydrocarbon components of the reservoir. The experimental results demonstrate that the individual hydrocarbon components are generally well matched, with nitrogen exhibiting the strongest improvement. The estimated observation error standard deviations are also within expected levels (between 5 and 10%), significantly contributing to the robustness of the proposed EM history matching framework. Archie's parameter estimates approximate well the reference profile and assist in the accurate description of the electrical conductivity properties of the reservoir formation, hence leading to estimation accuracy improvements of around 15%.

  17. Enhanced characterization of reservoir hydrocarbon components using electromagnetic data attributes

    KAUST Repository

    Katterbauer, Klemens

    2015-12-23

    Advances in electromagnetic imaging techniques have led to the growing utilization of this technology for reservoir monitoring and exploration. These exploit the strong conductivity contrast between the hydrocarbon and water phases and have been used for mapping water front propagation in hydrocarbon reservoirs and enhancing the characterization of the reservoir formation. The conventional approach for the integration of electromagnetic data is to invert the data for saturation properties and then subsequently use the inverted properties as constraints in the history matching process. The non-uniqueness and measurement errors may however make this electromagnetic inversion problem strongly ill-posed, leading to potentially inaccurate saturation profiles. Another limitation of this approach is the uncertainty of Archie\\'s parameters in relating rock conductivity to water saturation, which may vary in the reservoir and are generally poorly known. We present an Ensemble Kalman Filter framework for efficiently integrating electromagnetic data into the history matching process and for simultaneously estimating the Archie\\'s parameters and the variance of the observation error of the electromagnetic data. We apply the proposed framework to a compositional reservoir model. We aim at assessing the relevance of EM data for estimating the different hydrocarbon components of the reservoir. The experimental results demonstrate that the individual hydrocarbon components are generally well matched, with nitrogen exhibiting the strongest improvement. The estimated observation error standard deviations are also within expected levels (between 5 and 10%), significantly contributing to the robustness of the proposed EM history matching framework. Archie\\'s parameter estimates approximate well the reference profile and assist in the accurate description of the electrical conductivity properties of the reservoir formation, hence leading to estimation accuracy improvements of around

  18. Model-based inversion for the characterization of crack-like defects detected by ultrasound in a cladded component

    International Nuclear Information System (INIS)

    Haiat, G.

    2004-03-01

    This work deals with the inversion of ultrasonic data. The industrial context of the study in the non destructive evaluation of the internal walls of French reactor pressure vessels. Those inspections aim at detecting and characterizing cracks. Ultrasonic data correspond to echographic responses obtained with a transducer acting in pulse echo mode. Cracks are detected by crack tip diffraction effect. The analysis of measured data can become difficult because of the presence of a cladding, which surface is irregular. Moreover, its constituting material differs from the one of the reactor vessel. A model-based inverse method uses simulation of propagation and of diffraction of ultrasound taking into account the irregular properties of the cladding surface, as well as the heterogeneous nature of the component. The method developed was implemented and tested on a set of representative cases. Its performances were evaluated by the analysis of experimental results. The precision obtained in the laboratory on experimental cases treated is conform with industrial expectations motivating this study. (author)

  19. The multi-component model of working memory: explorations in experimental cognitive psychology.

    Science.gov (United States)

    Repovs, G; Baddeley, A

    2006-04-28

    There are a number of ways one can hope to describe and explain cognitive abilities, each of them contributing a unique and valuable perspective. Cognitive psychology tries to develop and test functional accounts of cognitive systems that explain the capacities and properties of cognitive abilities as revealed by empirical data gathered by a range of behavioral experimental paradigms. Much of the research in the cognitive psychology of working memory has been strongly influenced by the multi-component model of working memory [Baddeley AD, Hitch GJ (1974) Working memory. In: Recent advances in learning and motivation, Vol. 8 (Bower GA, ed), pp 47-90. New York: Academic Press; Baddeley AD (1986) Working memory. Oxford, UK: Clarendon Press; Baddeley A. Working memory: Thought and action. Oxford: Oxford University Press, in press]. By expanding the notion of a passive short-term memory to an active system that provides the basis for complex cognitive abilities, the model has opened up numerous questions and new lines of research. In this paper we present the current revision of the multi-component model that encompasses a central executive, two unimodal storage systems: a phonological loop and a visuospatial sketchpad, and a further component, a multimodal store capable of integrating information into unitary episodic representations, termed episodic buffer. We review recent empirical data within experimental cognitive psychology that has shaped the development of the multicomponent model and the understanding of the capacities and properties of working memory. Research based largely on dual-task experimental designs and on neuropsychological evidence has yielded valuable information about the fractionation of working memory into independent stores and processes, the nature of representations in individual stores, the mechanisms of their maintenance and manipulation, the way the components of working memory relate to each other, and the role they play in other

  20. Numerical and Experimental Study of Ti6Al4V Components Manufactured Using Powder Bed Fusion Additive Manufacturing

    Science.gov (United States)

    Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa

    2017-12-01

    Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.

  1. Experimental Characterization and Modeling of PEM Fuel Cells

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk

    fundamental knowledge of the transport and electrochemical processes of PEM fuel cells and to provide methods for obtaining high quality data for PEM fuel cell simulation model validation. In this thesis three different areas of experimental characterization techniques was investigated, they include: Stack...... for obtaining very detailed data of the manifold flow. Moreover, the tools complement each other well, as high quality validation data can be obtained from PIV measurements to verify CFD models. AC Impedance Spectroscopy was used to thoroughly characterize a HTPEM single cell. The measurement method...... was furthermore transferred onto a Labview platform, which signiffcantly improves the exibility and lowers the cost of using this method. This technique is expected to bea very important future tool, used both for material characterization, celldiagnostic, system optimization and as a control input parameter...

  2. Numerical and experimental characterization of a batch bread baking oven

    International Nuclear Information System (INIS)

    Ploteau, J.P.; Nicolas, V.; Glouannec, P.

    2012-01-01

    This study deals with the thermal characterization of an electrical static oven used for bread baking. The heating is provided by natural convection, infrared radiation and conduction with a cement slab. The paper describes a methodology to apprehend the heat flux which is applied to the products during baking. The oven was experimentally investigated and a finite element numerical model is established. The monitoring of temperatures at various points in the installation and of electrical power is carried out. Then, to characterize thermal exchanges around the bread during curing, thermal responses of a cylindrical sample is also measured. The numerical model made it possible to calculate the heat flux exchanges with the product, while separating the contributions of convection and radiation. The comparison of simulated responses with experimental data shows the relevance of the model. - Highlights: ► This study concerns the thermal characterization of an electric static oven used for bread baking. ► An original, experimental and numerical approach of thermal problem is proposed. ► Contributions by radiation and convection are separated. ► The goal is to provide boundary conditions for numerical models of bread baking. ► Results are encouraging to optimize energy consumption in industrial oven.

  3. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations

    International Nuclear Information System (INIS)

    Bobbio, Lourdes D.; Otis, Richard A.; Borgonia, John Paul; Dillon, R. Peter; Shapiro, Andrew A.; Liu, Zi-Kui; Beese, Allison M.

    2017-01-01

    In functionally graded materials (FGMs), the elemental composition, or structure, within a component varies gradually as a function of position, allowing for the gradual transition from one alloy to another, and the local tailoring of properties. One method for fabricating FGMs with varying elemental composition is through layer-by-layer directed energy deposition additive manufacturing. This work combines experimental characterization and computational analysis to investigate a material graded from Ti-6Al-4V to Invar 36 (64 wt% Fe, 36 wt% Ni). The microstructure, composition, phases, and microhardness were determined as a function of position within the FGM. During the fabrication process, detrimental phases associated with the compositional blending of the Ti-6Al-4V and Invar formed, leading to cracking in the final deposited part. Intermetallic phases (FeTi, Fe_2Ti, Ni_3Ti, and NiTi_2) were experimentally identified to occur throughout the gradient region, and were considered as the reason that the FGM cracked during fabrication. CALPHAD (CALculation of PHase Diagrams) thermodynamic calculations were used concurrently to predict phases that would form during the manufacturing process and were compared to the experimental results. The experimental-computational approach described herein for characterizing FGMs can be used to improve the understanding and design of other FGMs.

  4. Assessment of electronic component failure rates on the basis of experimental data

    International Nuclear Information System (INIS)

    Nitsch, R.

    1991-01-01

    Assessment and prediction of failure rates of electronic systems are made using experimental data derived from laboratory-scale tests or from the practice, as for instance from component failure rate statistics or component repair statistics. Some problems and uncertainties encountered in an evaluation of such field data are discussed in the paper. In order to establish a sound basis for comparative assessment of data from various sources, the items of comparison and the procedure in case of doubt have to be defined. The paper explains two standard methods proposed for practical failure rate definition. (orig.) [de

  5. Neutron Characterization of Additively Manufactured Components. Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Payzant, E. Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Additive manufacturing (AM) is a collection of promising manufacturing methods that industry is beginning to explore and adopt. Macroscopically complicated and near net shape components are being built using AM, but how the material behaves in service is a big question for industry. Consequently, AM components/materials need further research into exactly what is made and how it will behave in service. This one and a half day workshop included a series of invited presentations from academia, industry and national laboratories (see Appendix A for the workshop agenda and list of talks). The workshop was welcomed by Alan Tennant, Chief Scientist, Neutron Sciences Directorate, ORNL, and opened remotely by Rob Ivestor, Deputy Director, Advanced Manufacturing Office-DOE, who declared AM adoptees as titans who will be able to create customized 3-D structures with 1 million to 1 billion micro welds with locally tailored microstructures. Further he stated that characterization with neutrons is key to be able to bring critical insight/information into the AM process/property/behavior relationship. Subsequently, the presentations spanned a slice of the current state of the art AM techniques and many of the most relevant characterization techniques using neutrons. After the talks, a panel discussion was held; workshop participants (see Appendix B for a list of attendees) providing questions and the panel answers. The main purpose of the panel discussion was to build consensus regarding the critical research needs in AM that can be addressed with neutrons. These needs were placed into three categories: modes of access for neutrons, new capabilities needed, new AM material issues and neutrons. Recommendations from the workshop were determined based on the panel discussion.

  6. Precision moulding of polymer micro components

    DEFF Research Database (Denmark)

    Tosello, Guido

    2008-01-01

    The present research work contains a study concerning polymer micro components manufacturing by means of the micro injection moulding (µIM) process. The overall process chain was considered and investigated during the project, including part design and simulation, tooling, process analysis, part...... optimization, quality control, multi-material solutions. A series of experimental investigations were carried out on the influence of the main µIM process factors on the polymer melt flow within micro cavities. These investigations were conducted on a conventional injection moulding machine adapted...... to the production of micro polymer components, as well as on a micro injection moulding machine. A new approach based on coordinate optical measurement of flow markers was developed during the project for the characterization of the melt flow. In-line pressure measurements were also performed to characterize...

  7. Data and information needs for WPP testing and component modeling

    International Nuclear Information System (INIS)

    Kuhn, W.L.

    1987-01-01

    The modeling task of the Waste Package Program (WPP) is to develop conceptual models that describe the interactions of waste package components with their environment and the interactions among waste package components. The task includes development and maintenance of a database of experimental data, and statistical analyses to fit model coefficients, test the significance of the fits, and propose experimental designs. The modeling task collaborates with experimentalists to apply physicochemical principles to develop the conceptual models, with emphasis on the subsequent mathematical development. The reason for including the modeling task in the predominantly experimental WPP is to keep the modeling of component behavior closely associated with the experimentation. Whenever possible, waste package degradation processes are described in terms of chemical reactions or transport processes. The integration of equations for assumed or calculated repository conditions predicts variations with time in the repository. Within the context of the waste package program, the composition and rate of arrival of brine to the waste package are environmental variables. These define the environment to be simulated or explored during waste package component and interactions testing. The containment period is characterized by rapid changes in temperature, pressure, oxygen fugacity, and salt porosity. Brine migration is expected to be most rapid during this period. The release period is characterized by modest and slowly changing temperatures, high pressure, low oxygen fugacity, and low porosity. The need is to define the scenario within which waste package degradation calculations are to be made and to quantify the rate of arrival and composition of the brine. Appendix contains 4 vugraphs

  8. Canine C-peptide for characterization of experimental diabetes in dogs

    International Nuclear Information System (INIS)

    Fischer, U.; Besch, W.; Freyse, E.-J.

    1985-01-01

    Radioimmunoassay of canine C-peptide (CCP) was developed for the characterization of endogenous beta cell function in experimentally diabetic dogs. The animals were rendered diabetic by subtotal pancreatectomy and intrasurgical infusion of 2 mg/kg streptozotocin into the superior pancreaticoduodenal artery. After an average duration of diabetes of 5 months the animals showed zero peripheral venous fasting CCP levels with no response to feeding, OGTT/i.v. glucagon loading or i.v. glucose tolerance testing. The data on CCP levels entirely coincided with simultaneously measured plasma IRI levels. In non-diabetic control animals clear-cut CCP increases were observed after all stimuli. The experimental model provided an IDDM-type diabetes without toxic symptoms but with a sufficient exocrine pancreatic function. The comparison showed that plasma IRI analyses would also allow reliable characterization of insulinogenic functions in these animals. (author)

  9. Experimental and computational correlation of fracture parameters KIc, JIc, and GIc for unimodular and bimodular graphite components

    Science.gov (United States)

    Bhushan, Awani; Panda, S. K.

    2018-05-01

    The influence of bimodularity (different stress ∼ strain behaviour in tension and compression) on fracture behaviour of graphite specimens has been studied with fracture toughness (KIc), critical J-integral (JIc) and critical strain energy release rate (GIc) as the characterizing parameter. Bimodularity index (ratio of tensile Young's modulus to compression Young's modulus) of graphite specimens has been obtained from the normalized test data of tensile and compression experimentation. Single edge notch bend (SENB) testing of pre-cracked specimens from the same lot have been carried out as per ASTM standard D7779-11 to determine the peak load and critical fracture parameters KIc, GIc and JIc using digital image correlation technology of crack opening displacements. Weibull weakest link theory has been used to evaluate the mean peak load, Weibull modulus and goodness of fit employing two parameter least square method (LIN2), biased (MLE2-B) and unbiased (MLE2-U) maximum likelihood estimator. The stress dependent elasticity problem of three-dimensional crack progression behaviour for the bimodular graphite components has been solved as an iterative finite element procedure. The crack characterizing parameters critical stress intensity factor and critical strain energy release rate have been estimated with the help of Weibull distribution plot between peak loads versus cumulative probability of failure. Experimental and Computational fracture parameters have been compared qualitatively to describe the significance of bimodularity. The bimodular influence on fracture behaviour of SENB graphite has been reflected on the experimental evaluation of GIc values only, which has been found to be different from the calculated JIc values. Numerical evaluation of bimodular 3D J-integral value is found to be close to the GIc value whereas the unimodular 3D J-value is nearer to the JIc value. The significant difference between the unimodular JIc and bimodular GIc indicates that

  10. Highlighting the Need for Systems-level Experimental Characterization of Plant Metabolic Enzymes

    Directory of Open Access Journals (Sweden)

    Martin Karl Magnus Engqvist

    2016-07-01

    Full Text Available The biology of living organisms is determined by the action and interaction of a large number of individual gene products, each with specific functions. Discovering and annotating the function of gene products is key to our understanding of these organisms. Controlled experiments and bioinformatic predictions both contribute to functional gene annotation. For most species it is difficult to gain an overview of what portion of gene annotations are based on experiments and what portion represent predictions. Here, I survey the current state of experimental knowledge of enzymes and metabolism in Arabidopsis thaliana as well as eleven economically important crops and forestry trees – with a particular focus on reactions involving organic acids in central metabolism. I illustrate the limited availability of experimental data for functional annotation of enzymes in most of these species. Many enzymes involved in metabolism of citrate, malate, fumarate, lactate, and glycolate in crops and forestry trees have not been characterized. Furthermore, enzymes involved in key biosynthetic pathways which shape important traits in crops and forestry trees have not been characterized. I argue for the development of novel high-throughput platforms with which limited functional characterization of gene products can be performed quickly and relatively cheaply. I refer to this approach as systems-level experimental characterization. The data collected from such platforms would form a layer intermediate between bioinformatic gene function predictions and in-depth experimental studies of these functions. Such a data layer would greatly aid in the pursuit of understanding a multiplicity of biological processes in living organisms.

  11. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    International Nuclear Information System (INIS)

    Araki, Masanori

    1993-03-01

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 ± 1 MW/m 2 was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate has been analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads. (J.P.N.) 62 refs

  12. Theoretical and Experimental Study on Vibration Propagation in PMMA Components in Ultrasonic Bonding Process

    Directory of Open Access Journals (Sweden)

    Yibo Sun

    2017-03-01

    Full Text Available Ultrasonic bonding has an increasing application in the micro assembly of polymeric micro-electro mechanical systems (MEMS with high requirements for fusion precision. In the ultrasonic bonding process, the propagation of ultrasonic vibration in polymer components is related to the interfacial fusion, which can be used as a monitoring parameter to control ultrasonic energy. To study the vibration propagation in viscoelastic polymer components, finite element analysis on the bonding of poly methyl methacrylate (PMMA micro connector to substrate for microfluidic system is carried out. Curves of propagated vibration amplitude corresponding to interfacial temperatures are obtained. The ultrasonic vibration propagated in PMMA components are measured through experiments. The theoretical and experimental results are contrasted to analyze the change mechanism of vibration propagation related to temperature. Based on the ultrasonic bonding process controlled by the feedback of vibration propagation, interfacial fusions at different vibration propagation states are obtained through experiments. Interfacial fusion behavior is contrasted to the propagated vibration amplitude in theoretical and experimental studies. The relation between vibration propagation and fusion degree is established with the proper parameter range for the obtained high quality bonding.

  13. Experimental comparison between total calibration factors and components calibration factors of reference dosemeters used in secondary standard laboratory dosemeters

    International Nuclear Information System (INIS)

    Silva, T.A. da.

    1981-06-01

    A quantitative comparison of component calibration factors with the corresponding overall calibration factor was used to evaluate the adopted component calibration procedure in regard to parasitic elements. Judgement of significance is based upon the experimental uncertainty of a well established procedure for determination of the overall calibration factor. The experimental results obtained for different ionization chambers and different electrometers demonstrate that for one type of electrometer the parasitic elements have no influence on its sensitivity considering the experimental uncertainty of the calibration procedures. In this case the adopted procedure for determination of component calibration factors is considered to be equivalent to the procedure of determination of the overall calibration factor and thus might be used as a strong quality control measure in routine calibration. (Author) [pt

  14. Identification and Characterization of Components of the Mitotic Spindle Checkpoint Pathway in Fission Yeast

    National Research Council Canada - National Science Library

    Kadura, Shelia

    2001-01-01

    .... The fission yeast, Schizosaccharomyces pombe, is a useful system for discovering and characterizing components of this regulatory pathway because genetic approaches can be coupled with excellent cytology...

  15. Design and experimental characterization of an EM pump

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Hong, Sang Hee

    1999-01-01

    Generally, an EM (electromagnetic) pump is been employed to circulate electrically conducting liquids by using the Lorentz force. Especially, at the liquid metal reactor (LMR), which uses liquid sodium with high electrical conductivity as a coolant, an EM pump is needed due to its advantages over a mechanical pump, such as no rotating parts, no noise, and simplicity. In this research, an EM pump of a pilot annular linear induction type with a flow rate of 200 l/min was designed by using the electrical equivalent-circuit method. The pump was designed and manufactured by considering material and environmental (high temperature and liquid sodium) requirements. The pump performance was experimentally characterized based on input currents, voltage, power, and frequency. Also, the theoretical prediction was compared with the experimental result

  16. Towards an Intellectual Component of Joint Doctrine: The Philosophy and Practice of Experimental Intelligence

    National Research Council Canada - National Science Library

    Tucker, Craig

    2002-01-01

    .... This paper provides the "blueprint of an idea" for developing an intellectual component that has as its practical purpose the application of the tenets of experimental intelligence, theory, and critical analysis to the complex problems inherent to the use of operational art to achieve strategic objectives.

  17. Characterization of experimental cements with endodontic goal; Caracterizacao de cimentos experimentais com finalidade endodontica

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, A.M.X.; Sousa, W.J.B.; Oliveira, E.D.C.; Carrodeguas, R.G.; Fook, M.V. Lia, E-mail: alana.mxd@hotmail [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Universidade Estadual da Paraiba (UEPB), Campina Grande, PB (Brazil). Departamento de Quimica

    2017-10-01

    The present study aimed to characterize experimental endodontic cements using as comparative parameter MTA cement. Two experimental endodontic cements were assessed: one based on 95% tri-strontium aluminate and 5% gypsum (CE1) and another based on 50% Sr{sub 3}Al{sub 2}O{sub 6} and 50% non-structural white cement (CE2). Experimental cements were manipulated and characterized by scanning electron microscopy (SEM), coupled to EDS mode, X-ray diffractometer (XRD) and Thermogravimetric (TG) analysis. Data analysis demonstrated that the particles of the materials used presented varied shapes and sizes, with similar elements and crystalline behavior. However, CE1 presented increased mass loss. Experimental cements presents similarities to MTA, nevertheless, further studies are encourage to determinate comparative properties with the commercially material. (author)

  18. Startup of Experimental Lithium System

    International Nuclear Information System (INIS)

    McCauley, D.L.

    1980-06-01

    The Experimental Lithium System (ELS) is designed for full-scale testing of targets and other lithium system components for the Fusion Materials Irradiation Test (FMIT) Facility. The system also serves as a test bed for development of lithium purification and characterization equipment, provides experience in operation of large lithium systems, and helps guide FMIT design

  19. Mitigating component performance variation

    Science.gov (United States)

    Gara, Alan G.; Sylvester, Steve S.; Eastep, Jonathan M.; Nagappan, Ramkumar; Cantalupo, Christopher M.

    2018-01-09

    Apparatus and methods may provide for characterizing a plurality of similar components of a distributed computing system based on a maximum safe operation level associated with each component and storing characterization data in a database and allocating non-uniform power to each similar component based at least in part on the characterization data in the database to substantially equalize performance of the components.

  20. Experimental Characterization of Supercavitating Finds Piercing a Ventilated Supercavity

    Science.gov (United States)

    2013-08-05

    01-2011 --31-07-2013 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Experimental Characterization of Supercavitating Finds Piercing a Ventilated...presents the results from water tunnel experiments on supercavitating fins performed at the Garfield Thomas Water Tunnel of the Pennsylvania State...SUBJECT TERMS supercavitation , fins, cavity-piercing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT u a. REPORT I~· ABSTRACT I~· THIS

  1. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  2. Experimental characterization of vertical-axis wind turbine noise.

    Science.gov (United States)

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization.

  3. NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers

    International Nuclear Information System (INIS)

    Samuel, Newton T.; Lee, C.-Y.; Gamble, Lara J.; Fischer, Daniel A.; Castner, David G.

    2006-01-01

    Single stranded DNA oligomers (ssDNA) immobilized onto solid surfaces forms the basis for several biotechnological applications such as DNA microarrays, affinity separations, and biosensors. Surface structure of Surface-bound oligomers is expected to significantly influence their biological activity and interactions with the environment. In this study near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is used to characterize the components of DNA (nucleobases, nucleotides and nucleosides) and the orientation information of surface-bound ssDNA. The K-edges of carbon, nitrogen and oxygen have spectra with features that are characteristic of the different chemical species present in the nucleobases of DNA. The effect of addition of the DNA sugar and phosphate components on the NEXAFS K-edge spectra was also investigated. The polarization-dependent nitrogen K-edge NEXAFS data show significant changes for different orientations of surface bound ssDNA. These results establish NEXAFS as a powerful technique for chemical and structural characterization of surface-bound DNA oligomers

  4. Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization FY 2010 Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert W Youngblood

    2010-09-01

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, is founded on probabilistic characterizations of SSC performance.

  5. Experimental and numerical assessment of the improvement of the load-carrying capacities of butterfly-shaped coupling components in composite structures

    International Nuclear Information System (INIS)

    Altan, Gurkan; Topcu, Muzaffer

    2010-01-01

    This study was designed to analyze the load-carrying capacities of composite structures connected face-to-face by a butterfly coupling component experimentally and numerically without adhesive. The results of the experimental studies were supported with numerical analysis. In addition, the butterfly coupling component was developed geometrically with a view to the results of the numerical and experimental studies. The change in the load-carrying capacity of the improved butterfly coupling components was analyzed numerically and experimentally to obtain new results. Half-specimens and butterfly-shaped lock components were cut with a water jet machine. Experiments and analyses were conducted to analyze the effects of coupling geometry parameters, such as the ratio of the butterfly end width to the specimen width (w/b), the ratio of the butterfly middle width to the butterfly end width (x/w), and the ratio of the butterfly half height to the specimen width (y/b). It was intended to determine the damage in the butterfly before any damage to the composite structure and to increase the service-life span of the composite structure with the repair of the butterfly lock. As a result of this study, it was determined that the geometrical fixed ratios (w/b) and (x/w) were 0.4 and 0.2 at 0.4 of (y/b) according to the experimental and numerical studies with basic and modified models

  6. Systematic Characterization of Component Failures for the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Petersen, P.I.

    1999-01-01

    A fusion reactor will be a fairly complex system consisting of many components. All the components are required to work in order to produce a plasma and control it. Some of the components will be large, and for economic reasons there will not be spares for all components. It is therefore important to have a system whereby troubles are communicated, recorded and analyzed. Such a trouble report system has been in place at the DIII-D tokamak facility for many years. The purpose of the system is to easily facilitate communication between the people that discover problems and those that fix the problems. The trouble sheets are logged into a computer database that is used to characterize the kind of problems that the facility experiences, and determine which equipment, software, or human errors are causing significant downtime. The information is also used to evaluate whether sufficient maintenance is done to the equipment and to provide a basis for replacing it. The original system was based on paper forms. About a year ago the system was changed to a web-based system. In the new system a trouble report is filled out using a web browser, and the information is emailed to the repair personnel and managers as soon as the form is submitted through the web. The paper will discuss the problems experienced at the DIII-D facility, and how the information is used to adjust the preventive maintenance schedule

  7. Comparison of experimental techniques for characterization of through-thickness texture variations

    DEFF Research Database (Denmark)

    Mishin, Oleg; Lauridsen, E.M.; Krieger Lassen, N.C.

    1999-01-01

    For the investigation of through-thickness texture gradients, a number of layers in rolled plates and sheets are inspected. Crystallographic textures in different layers can be characterized using several techniques. In the present work, traditional low-energy X-ray diffraction, the electron...... backscattering pattern technique in the scanning electron microscope and a novel technique which involves high energy synchrotron radiation are used for characterization of through-thickness texture variations in commercial purity cold-rolled aluminium. Important experimental aspects of these three techniques...

  8. Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Laboratory (INL), Idaho Falls, ID (United States); O' Brien, James E. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); McKellar, Michael G. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-03-01

    Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performance of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial

  9. Experimental Flight Characterization of a Canard-Controlled, Subsonic Missile

    Science.gov (United States)

    2017-08-01

    Frankfort mount was used to place the gun between stations 5 and 6 in the spark range building. The propelling charge was contained within a plastic ...additive manufacturing housing and used 83 g of M38 propellant with about 2 g of black powder wrapped around an electric match. A shot-start link was...ARL-TR-8086 ● AUG 2017 US Army Research Laboratory Experimental Flight Characterization of a Canard-Controlled, Subsonic Missile

  10. Identification of energy storage rate components. Theoretical and experimental approach

    International Nuclear Information System (INIS)

    Oliferuk, W; Maj, M

    2010-01-01

    The subject of the present paper is decomposition of energy storage rate into terms related to different mode of deformation. The stored energy is the change in internal energy due to plastic deformation after specimen unloading. Hence, this energy describes the state of the cold-worked material. Whereas, the ratio of the stored energy increment to the appropriate increment of plastic work is the measure of energy conversion process. This ratio is called the energy storage rate. Experimental results show that the energy storage rate is dependent on plastic strain. This dependence is influenced by different microscopic deformation mechanisms. It has been shown that the energy storage rate can be presented as a sum of particular components. Each of them is related to the separate internal microscopic mechanism. Two of the components are identified. One of them is the storage rate of statistically stored dislocation energy related to uniform deformation. Another one is connected with non-uniform deformation at the grain level. It is the storage rate of the long range stresses energy and geometrically necessary dislocation energy. The maximum of energy storage rate, that appeared at initial stage of plastic deformation is discussed in terms of internal micro-stresses.

  11. Verifying Digital Components of Physical Systems: Experimental Evaluation of Test Quality

    Science.gov (United States)

    Laputenko, A. V.; López, J. E.; Yevtushenko, N. V.

    2018-03-01

    This paper continues the study of high quality test derivation for verifying digital components which are used in various physical systems; those are sensors, data transfer components, etc. We have used logic circuits b01-b010 of the package of ITC'99 benchmarks (Second Release) for experimental evaluation which as stated before, describe digital components of physical systems designed for various applications. Test sequences are derived for detecting the most known faults of the reference logic circuit using three different approaches to test derivation. Three widely used fault types such as stuck-at-faults, bridges, and faults which slightly modify the behavior of one gate are considered as possible faults of the reference behavior. The most interesting test sequences are short test sequences that can provide appropriate guarantees after testing, and thus, we experimentally study various approaches to the derivation of the so-called complete test suites which detect all fault types. In the first series of experiments, we compare two approaches for deriving complete test suites. In the first approach, a shortest test sequence is derived for testing each fault. In the second approach, a test sequence is pseudo-randomly generated by the use of an appropriate software for logic synthesis and verification (ABC system in our study) and thus, can be longer. However, after deleting sequences detecting the same set of faults, a test suite returned by the second approach is shorter. The latter underlines the fact that in many cases it is useless to spend `time and efforts' for deriving a shortest distinguishing sequence; it is better to use the test minimization afterwards. The performed experiments also show that the use of only randomly generated test sequences is not very efficient since such sequences do not detect all the faults of any type. After reaching the fault coverage around 70%, saturation is observed, and the fault coverage cannot be increased anymore. For

  12. Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy

    Science.gov (United States)

    Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.

    2018-06-01

    The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.

  13. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    Science.gov (United States)

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  14. Fractionation and characterization of saccharides and lignin components in wood prehydrolysis liquor from dissolving pulp production.

    Science.gov (United States)

    Wang, Zhaojiang; Wang, Xiaojun; Jiang, Jungang; Fu, Yingjuan; Qin, Menghua

    2015-08-01

    Saccharides and lignin components in prehydrolysis liquor (PHL) from kraft-based dissolving pulp production was characterized after being fractionated using membrane filtration. The results showed that the membrane filtration provided a method for organics fractionation with considerable recovery rate, but exhibited some disadvantages. Besides the limited ability in purifying oligosaccharides (OS) due to the overlaps of molecular weight distribution with lignin components, the membrane filtration could not improve the homogeneity of OS as indicated by the analysis of chemical compositions and the degree of polymerization (DP), which may be ascribed to the linear conformation of OS. The characterization of lignin components indicated a great potential for polymer industry because of the remarkable content of phenolic hydroxyl groups (PhOH), especially for low molecular weight (LMW) fraction. It was concluded the organics in PHL provided streams of value-added chemicals. However, the practical significance thereof can be realized and maximized only when they are successfully and completely fractionated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Experimental studies on using silicon photodiode as read-out component of CsI(Tl) crystal

    International Nuclear Information System (INIS)

    He Jingtang; Chen Duanbao; Li Zuhao; Mao Yufang; Dong Xiaoli

    1996-01-01

    Experimental studies on using silicon photodiode as the read-out component of CsI(Tl) crystal are reported. The read-out properties of two different types of silicon photodiode produced by Hamamatsu were measured, including relations between energy resolution and bias, shaping time, sensitive area of photodiode and the dimension of the crystal

  16. Experimental and FE Analysis of Exterior Plastic Components of Cars under Static and Dynamic Loading Conditions

    OpenAIRE

    Faghihi, Hassan

    2011-01-01

    This thesis is composed by an experimental part and numerical part, aimed at contributing to a better knowledge of the behavior of plastic parts under different loading conditions. The study is intended to validate a FE model for simulating exterior plastic components of car especially the A-decor and plastic clips in the context of thermal and static load analysis. From the comparison of numerical and experimental results in the terms of thermal and static deformation of the A-decor, it is c...

  17. Analytical and Experimental Characterization of Thick-Section Fiber-Metal Laminates

    Science.gov (United States)

    2013-06-01

    laminate . The model individually models each layer of the laminate and predicts stiffness degradation as metal layers plastically deform and as prepreg ...eliminating four of the possible ECM laminates . Additionally, since at least four individual layers (two aluminum and two prepreg ) are used in FML an...AFRL-AFOSR-UK-TR-2013-0023 Analytical and Experimental Characterization of Thick- Section Fiber-Metal Laminates Dr. Rene

  18. Characterization of fine aggregates in concrete by different experimental approaches

    OpenAIRE

    He, Huan; Courard, Luc; Pirard, Eric; Michel, Frédéric

    2011-01-01

    Being its major component, aggregate can occupy up to three-quarter of the volume of concrete. The structure of aggregate formed in hardened state impacts largely on mechanical and durability properties of concrete. On another hand, physical characteristics of aggregate are primarily assumed to be relevant to granular behavior of aggregate. Therefore, characterization of aggregate is of high relevance to concrete studies. In this study, different types of fine aggregate used in concrete, name...

  19. An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD

    Science.gov (United States)

    Xian, George Z.; Homer, Collin G.; Meyer, Debbie; Granneman, Brian J.

    2013-01-01

    Characterizing and quantifying distributions of shrubland ecosystem components is one of the major challenges for monitoring shrubland vegetation cover change across the United States. A new approach has been developed to quantify shrubland components as fractional products within National Land Cover Database (NLCD). This approach uses remote sensing data and regression tree models to estimate the fractional cover of shrubland ecosystem components. The approach consists of three major steps: field data collection, high resolution estimates of shrubland ecosystem components using WorldView-2 imagery, and coarse resolution estimates of these components across larger areas using Landsat imagery. This research seeks to explore this method to quantify shrubland ecosystem components as continuous fields in regions that contain wide-ranging shrubland ecosystems. Fractional cover of four shrubland ecosystem components, including bare ground, herbaceous, litter, and shrub, as well as shrub heights, were delineated in three ecological regions in Arizona, Florida, and Texas. Results show that estimates for most components have relatively small normalized root mean square errors and significant correlations with validation data in both Arizona and Texas. The distribution patterns of shrub height also show relatively high accuracies in these two areas. The fractional cover estimates of shrubland components, except for litter, are not well represented in the Florida site. The research results suggest that this method provides good potential to effectively characterize shrubland ecosystem conditions over perennial shrubland although it is less effective in transitional shrubland. The fractional cover of shrub components as continuous elements could offer valuable information to quantify biomass and help improve thematic land cover classification in arid and semiarid areas.

  20. [Biochemical characterization of fractionated rat liver chromatin in experimental D-hypovitaminosis and after administration of steroidal drugs].

    Science.gov (United States)

    Levitskiĭ, E L; Kholodova, Iu D; Gubskiĭ, Iu I; Primak, R G; Chabannyĭ, V N; Kindruk, N L; Mozzhukhina, T G; Lenchevskaia, L K; Mironova, V N; Saad, L M

    1993-01-01

    Marked changes in the structural and functional characteristics of liver nuclear chromatin fractions are observed under experimental D-hypovitaminosis, which differ in the degree of transcriptional activity. DNA-polymerase activity and activity of the fraction, enriched with RNA-polymerase I, increases in the active fraction. Free radical LPO reactions are modified in the chromatin fraction with low activity and to the less degree in the active one. Disturbances of chromatine structural properties are caused with the change in the protein and lipid components of chromatin. Administration of ecdysterone preparations (separately and together with vitamin D3) has a partial corrective effect on structural and functional organization of nuclear chromatine. At the action of ecdysterone normalization of LPO reactions modified by pathological changes is observed in the chromatin fraction with low activity and to the less degree in the active one. This kind of influence corrects to the less degree chromatin functional activity and quantitative and qualitative modifications of its protein component. Simultaneous influence of ecdysterone and vitamin D3 leads to the partial normalization of the biochemical indices studied (except for those which characterize LPO reactions) mainly in the active chromatin fraction.

  1. Yield, yield components and dry matter digestibility of alfalfa experimental populations

    Directory of Open Access Journals (Sweden)

    Katić Slobodan

    2010-01-01

    Full Text Available Alfalfa is the most important forage crop grown in the temperate regions. It is cultivated for production of vegetative aerial mass used fresh or as hay, and recently as haylage and silage. In many centres worldwide, efforts are made to breed and create new alfalfa cultivars with both higher yields and of higher nutritional value. The aim of this paper was to determine yield and digestibility of 12 experimental populations of alfalfa, and to compare their results to the yields of well-known domestic alfalfa commercial cultivars. The results show significant differences in yield of green forage and dry matter among alfalfa populations, as well as in yield components, height, proportion of leaves in yield and growth rate (tab. 1, 2 and 3. Differences between in vitro digestible dry matter (% and yields of in vitro digestible dry matter (t ha-1 were also significant (tab. 5 and 6. Yield and quality of experimental populations were at the same level or higher than of control cultivars. Synthetic SINUSA exceeded the control cutivars (NS Mediana ZMS V and Banat VS in yield and quality of dry matter. .

  2. Components and system tests on the RFX toroidal power supply

    International Nuclear Information System (INIS)

    Toigo, V.; Zanotto, L.; Gaio, E.; Perna, M.; Bordignon, P.; Coffetti, A.; Novaro, R.; Bertolotto, P.; Rinaldi, E.; Villa, G.

    2005-01-01

    The paper deals with the component and system tests performed on the new toroidal power supply system of the RFX experiment. The high technological innovation of the system required a deep experimental characterization and validation campaign; special factory tests were performed on prototypes of single components aimed at verifying the most critical design aspects. Consequently an articulated series of tests were performed, based on a step-by-step approach to achieve the desired coordinate operation of the whole system. The test procedures and the most significant results are described in the paper

  3. Experimental alveolitis in rats: microbiological, acute phase response and histometric characterization of delayed alveolar healing.

    Science.gov (United States)

    Rodrigues, Moacyr Tadeu Vicente; Cardoso, Camila Lopes; Carvalho, Paulo Sérgio Perri de; Cestari, Tânia Mary; Feres, Magda; Garlet, Gustavo Pompermaier; Ferreira, Osny

    2011-01-01

    The pathogenesis of alveolitis is not well known and therefore experimental situations that mimic some features of this disease should be developed. In this study, the evolution of the experimentally induced infection in rat sockets is characterized, which leads to clinical signs of suppurative alveolitis with remarkable wound healing disturbs. Non-infected (Group I) and experimentally infected sockets in Rattus novergicus (Group II) were histometrically evaluated regarding the kinetics of alveolar healing. In addition, the characterization of the present bacteria in inoculation material and the serum levels of C-reactive protein (CRP) were performed. The detected species were Capnocytophaga ochracea, Fusobacterium nucleatum ss nucleatum, Prevotella melaninogenica, Streptococcus anginosus, Treponema socranskii and Streptococcus sanguis. All experimentally infected rats developed suppurative alveolitis, showing higher levels of CRP in comparison to those non-infected ones. Furthermore, infected rats presented a significant delayed wound healing as measured by the histometric analysis (higher persistent polymorphonuclear infiltrate and lower density of newly formed bone). These findings indicate that rat sockets with experimentally induced infection produced higher levels of serum CRP, showing the potential of disseminated infection and a disturb in the alveolar repair process in an interesting experimental model for alveolitis studies.

  4. EXPERIMENTAL DETERMINATION OF LONGITUDINAL COMPONENT OF MAGNETIC FLUX IN FERROMAGNETIC WIRE OF SINGLE-CORE POWER CABLE ARMOUR

    Directory of Open Access Journals (Sweden)

    I.A. Kostiukov

    2014-12-01

    Full Text Available A problem of determination of effective longitudinal magnetic permeability of single core power cable armour is defined. A technique for experimental determination of longitudinal component of magnetic flux in armour spiral ferromagnetic wire is proposed.

  5. Separation and characterization of the immunostimulatory components in unpolished rice black vinegar (kurozu).

    Science.gov (United States)

    Hashimoto, Masahito; Obara, Kyoko; Ozono, Mami; Furuyashiki, Maiko; Ikeda, Tsuyoshi; Suda, Yasuo; Fukase, Koichi; Fujimoto, Yukari; Shigehisa, Hiroshi

    2013-12-01

    Unpolished rice black vinegar (kurozu), a traditional Japanese vinegar, is considered to have beneficial health effects. Kurozu is produced via a static fermentation process involving the saccharification of rice by Aspergillus oryzae, alcohol fermentation by Saccharomyces cerevisiae, and the oxidation of ethanol to acetic acid by acetic acid bacteria such as Acetobacter pasteurianus. Since this process requires about 6 months' fermentation and then over a year of aging, most of these organisms die during the production process and so microbial components, which might stimulate the innate immune system, are expected to be present in the vinegar. In this study, we investigated whether microbial components are present in kurozu, and after confirming this we characterized their immunostimulatory activities. Lyophilized kurozu stimulated murine spleen cells to produce tumor necrosis factor (TNF)-α, at least in part, via Toll-like receptor (TLR) 2 and the Nod-like receptors NOD1 and 2. The active components associated with TLR2 activation were concentrated by Triton X-114-water phase partitioning and hydrophobic interaction chromatography on Octyl Sepharose. TLR4-activating components were also enriched by these methods. The concentrated preparation stimulated murine spleen cells to produce TNF-α and interferon (IFN)-γ. These results indicate that long-term fermented kurozu contains immunostimulatory components and that the TLR2 and TLR4-activating immunostimulatory components of kurozu are hydrophobic. These components might be responsible for the beneficial health effects of kurozu. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit.

    Directory of Open Access Journals (Sweden)

    Oscar Julián Arias-Mutis

    Full Text Available Metabolic syndrome (MetS has become one of the main concerns for public health because of its link to cardiovascular disease. Murine models have been used to study the effect of MetS on the cardiovascular system, but they have limitations for studying cardiac electrophysiology. In contrast, the rabbit cardiac electrophysiology is similar to human, but a detailed characterization of the different components of MetS in this animal is still needed. Our objective was to develop and characterize a diet-induced experimental model of MetS that allows the study of cardiovascular remodeling and arrhythmogenesis. Male NZW rabbits were assigned to control (n = 15 or MetS group (n = 16, fed during 28 weeks with high-fat, high-sucrose diet. We measured weight, morphological characteristics, blood pressure, glycaemia, standard plasma biochemistry and the metabolomic profile at weeks 14 and 28. Liver histological changes were evaluated using hematoxylin-eosin staining. A mixed model ANOVA or unpaired t-test were used for statistical analysis (P<0.05. Weight, abdominal contour, body mass index, systolic, diastolic and mean arterial pressure increased in the MetS group at weeks 14 and 28. Glucose, triglycerides, LDL, GOT-AST, GOT/GPT, bilirubin and bile acid increased, whereas HDL decreased in the MetS group at weeks 14 and 28. We found a 40% increase in hepatocyte area and lipid vacuoles infiltration in the liver from MetS rabbits. Metabolomic analysis revealed differences in metabolites related to fatty acids, energetic metabolism and microbiota, compounds linked with cardiovascular disease. Administration of high-fat and high-sucrose diet during 28 weeks induced obesity, glucose intolerance, hypertension, non-alcoholic hepatic steatosis and metabolic alterations, thus reproducing the main clinical manifestations of the metabolic syndrome in humans. This experimental model should provide a valuable tool for studies into the mechanisms of cardiovascular

  7. Characterization of the major nutritional components of Caryocar brasiliense fruit pulp by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda-Vilela, Ana Luisa; Grisolia, Cesar Koppe [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Ciencias Biologicas. Dept. de Genetica e Morfologia; Resck, Ines Sabioni; Mendonca, Marcio Antonio [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Quimica

    2009-07-01

    Pequi (Caryocar brasiliense Camb.), a typical fruit of Brazilian Cerrado, is well known in regional cookery and used in folk medicine to treat various illnesses. Mass spectrometry and chromatographic methods have identified the organic composition of pequi fruit pulp; however, NMR spectroscopy is used for the first time to characterize the nutritional components of organic and aqueous-ethanolic extracts. This spectroscopic technique determined the triacylglycerols in the pequi organic fraction, which is constituted mainly by oleate and palmitate esters, and detected the carbohydrate mixtures as the major components of aqueous and ethanolic fractions, respectively. In this study, presence of phenolic compounds was only evidenced in the ethanolic fraction. (author)

  8. Characterization of the major nutritional components of Caryocar brasiliense fruit pulp by NMR spectroscopy

    International Nuclear Information System (INIS)

    Miranda-Vilela, Ana Luisa; Grisolia, Cesar Koppe; Resck, Ines Sabioni; Mendonca, Marcio Antonio

    2009-01-01

    Pequi (Caryocar brasiliense Camb.), a typical fruit of Brazilian Cerrado, is well known in regional cookery and used in folk medicine to treat various illnesses. Mass spectrometry and chromatographic methods have identified the organic composition of pequi fruit pulp; however, NMR spectroscopy is used for the first time to characterize the nutritional components of organic and aqueous-ethanolic extracts. This spectroscopic technique determined the triacylglycerols in the pequi organic fraction, which is constituted mainly by oleate and palmitate esters, and detected the carbohydrate mixtures as the major components of aqueous and ethanolic fractions, respectively. In this study, presence of phenolic compounds was only evidenced in the ethanolic fraction. (author)

  9. Evaluation of flow-induced vibration prediction techniques for in-reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.; Turula, P.

    1975-05-01

    Selected in-reactor components of a hydraulic and structural dynamic scale model of the U. S. Energy Research and Development Administration experimental Fast Test Reactor have been studied in an effort to develop and evaluate techniques for predicting vibration behavior of elastic structures exposed to a moving fluid. Existing analysis methods are used to compute the natural frequencies and modal shapes of submerged beam and shell type components. Component response is calculated, assuming as fluid forcing mechanisms both vortex shedding and random excitations characterized by the available hydraulic data. The free and force vibration response predictions are compared with extensive model flow and shaker test data. (U.S.)

  10. Simple method based on intensity measurements for characterization of aberrations from micro-optical components.

    Science.gov (United States)

    Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe

    2015-11-01

    We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.

  11. Experimental characterization of Raman overlaps between mode-groups

    DEFF Research Database (Denmark)

    Christensen, Erik Nicolai; Koefoed, Jacob Gade; Friis, Søren Michael Mørk

    2016-01-01

    Mode-division multiplexing has the potential to further increase data transmission capacity through optical fibers. In addition, distributed Raman amplification is a promising candidate for multi-mode signal amplification due to its desirable noise properties and the possibility of mode-equalized......Mode-division multiplexing has the potential to further increase data transmission capacity through optical fibers. In addition, distributed Raman amplification is a promising candidate for multi-mode signal amplification due to its desirable noise properties and the possibility of mode......-equalized gain. In this paper, we present an experimental characterization of the intermodal Raman intensity overlaps of a few-mode fiber using backward-pumped Raman amplification. By varying the input pump power and the degree of higher order mode-excitation for the pump and the signal in a 10km long two......-mode fiber, we are able to characterize all intermodal Raman intensity overlaps. Using these results, we perform a Raman amplification measurement and demonstrate a mode-differential gain of only 0.25dB per 10dB overall gain. This is, to the best of our knowledge, the lowest mode differential gain achieved...

  12. Parameter space of experimental chaotic circuits with high-precision control parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Francisco F. G. de; Rubinger, Rero M. [Instituto de Física e Química, Universidade Federal de Itajubá, Itajubá, MG (Brazil); Sartorelli, José C., E-mail: sartorelli@if.usp.br [Universidade de São Paulo, São Paulo, SP (Brazil); Albuquerque, Holokx A. [Departamento de Física, Universidade do Estado de Santa Catarina, Joinville, SC (Brazil); Baptista, Murilo S. [Institute of Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen (United Kingdom)

    2016-08-15

    We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.

  13. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths

    DEFF Research Database (Denmark)

    Garcia, Cesar; Coello, Victor; Han, Zhanghua

    2012-01-01

    Dielectric-loaded plasmonic waveguide-racetrack resonators (WRTRs) were designed and fabricated for operating at near-infrared wavelengths (750–850 nm) and characterized using leakage-radiation microscopy. The transmission spectra of the WRTRs are found experimentally and compared to the calculat...

  14. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  15. Characterization of chromophoric dissolved organic matter and relationships among PARAFAC components and water quality parameters in Heilongjiang, China.

    Science.gov (United States)

    Cui, Hongyang; Shi, Jianhong; Qiu, Linlin; Zhao, Yue; Wei, Zimin; Wang, Xinglei; Jia, Liming; Li, Jiming

    2016-05-01

    Chromophoric dissolved organic matter (CDOM) is an important optically active substance that can transports nutrients and pollutants from terrestrial to aquatic systems. Additionally, it is used as a measure of water quality. To investigate the source and composition of CDOM, we used chemical and fluorescent analyses to characterize CDOM in Heilongjiang. The composition of CDOM can be investigated by excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). PARAFAC identified four individual components that were attributed to microbial humic-like (C1) and terrestrial humic-like (C2-4) in water samples collected from the Heilongjiang River. The relationships between the maximum fluorescence intensities of the four PARAFAC components and the water quality parameters indicate that the dynamic of the four components is related to nutrients in the Heilongjiang River. The relationships between the fluorescence component C3 and the biochemical oxygen demand (BOD5) indicates that component C3 makes a great contribution to BOD5 and it can be used as a carbon source for microbes in the Heilongjiang River. Furthermore, the relationships between component C3, the particulate organic carbon (POC), and the chemical oxygen demand (CODMn) show that component C3 and POC make great contributions to BOD5 and CODMn. The use of these indexes along with PARAFAC results would be of help to characterize the co-variation between the CDOM and water quality parameters in the Heilongjiang River.

  16. Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it [MR-Lab, Center for Mind/Brain Science, University of Trento, Trento, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2014-09-01

    In this paper, an experimental characterization of the dynamical properties of five autonomous chaotic oscillators, based on bipolar-junction transistors and obtained de-novo through a genetic algorithm in a previous study, is presented. In these circuits, a variable resistor connected in series to the DC voltage source acts as control parameter, for a range of which the largest Lyapunov exponent, correlation dimension, approximate entropy, and amplitude variance asymmetry are calculated, alongside bifurcation diagrams and spectrograms. Numerical simulations are compared to experimental measurements. The oscillators can generate a considerable variety of regular and chaotic sine-like and spike-like signals.

  17. Component behaviour in the 700 C power plant. Numerical and experimental investigations

    International Nuclear Information System (INIS)

    Schmidt, Kay H.

    2013-01-01

    Currently martensitic steels are used in fossil fired power plants with maximum working temperatures up to 625 C. These steels do not show the required creep rupture strength at the target temperature of 700 C. For these high temperatures, new materials like the nickel base alloys have to be qualified for power plants services. Originating from the weld of turbine materials, nickel base alloys show outstanding creep rupture strength. An alloy with good prospects out of the material class of the nickel base alloys is Alloy 617 mod. However, this material is expensive due to its high nickel content. Furthermore, the complex machinability of this material leads to an additional increase in expenses. A complete fabrication of the boiler area using Alloy 617 mod is not economically feasible, which means that the usage of this material has to be limited to the temperature weld of 625 C to 700 C. For the boiler area with temperatures below 625 C the well proven 9 % to 12 % Cr-steels, like T/P92 and VM12/VM12-SHC may be used. In the weld of low temperatures up to 525 C the usage of the 2.5 % Cr-steel T/P24 offers numerous advantages, in particular in the fabrication of membrane walls. This material shows good creep properties up to temperatures of 525 C and, for thin walled components, T24 can be welded without post weld heat treatment by using suitable techniques. For a successful design and fabrication of a 700 C fossil fired power plant, appropriate materials have to be qualified. Here, a special focus is set on the creep properties of these materials. The presented work is a significant contribution to the qualification of these materials. First, the materials Alloy 617 mod, T/P92, VM12/VM12-SHC and T24 are briefly introduced and characterized. After this, the materials are investigated in a detailed creep testing program. This program includes investigations on base material, extracted from tubes, pipes and inductive bends of pipes. In addition, crossweld specimens

  18. Cold in-place recycling characterization framework for single or multiple component binder systems

    Science.gov (United States)

    Cox, Benjamin C.

    Cold in-place recycling (CIR) is a pavement rehabilitation technique which has gained momentum in recent years. This momentum is due partly to its economic and sustainability characteristics, which has led to CIR market expansion. When pavement network deterioration is considered alongside increasing material costs, it is not beyond reason to expect demands on CIR to continue to increase. Historically, single component binder (SCB) systems, those with one stabilization binder (or two if the secondary binder dosage is 1% or less), have dominated the CIR market and could be considered the general state of practice. Common stabilization binders are either bituminous or cementitious. Two example SCB systems would be: 1) 3% portland cement, or 2) 3% asphalt emulsion with 1% hydrated lime. While traditional SCB systems have demonstrated positive economic and sustainability impacts, this dissertation focuses on multiple component binder (MCB) systems (bituminous and cementitious combined) which exhibit the potential to provide better overall economics and performance. Use of MCBs has the potential to alleviate SCB issues to some extent (e.g. cracking with cementitious SCBs, rutting with bituminous SCBs). Furthermore, to fairly represent both binders in an MCB system a universal design method which can accommodate multiple binder types is needed. The main objectives of this dissertation are to develop a universal CIR design framework and, using this framework, characterize multiple SCB and MCB systems. Approximately 1500 CIR specimens were tested herein along with approximately 300 asphalt concrete specimens which serve as a reference data set for CIR characterization. A case study of a high-traffic Mississippi CIR project which included cement SCB and emulsion SCB sections is also presented to support laboratory efforts. Individual components needed to comprise a universal design framework, such as curing protocols, were developed. SCB and MCB characterization indicated

  19. Investigation on bonding defects in ITER first wall beryllium armour components by combining analytical and experimental methods

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Germán, E-mail: german.perez.pichel@gmail.com; Mitteau, Raphaël; Eaton, Russell; Raffray, René

    2015-12-15

    Highlights: • Bonding defects at the ITER first wall beryllium armour are studied. • Experimental and analytical methods are combined. • Models supporting test results interpretation are proposed. • Guidelines for new experimental protocols are suggested. • Contribution to the definition of defects acceptance criteria. - Abstract: The reliability of the plasma facing components (PFCs) is essential for the efficient plasma operation in a fusion machine. This concerns especially the bond between the armour tiles facing the plasma and the heat sink material (copper alloy). The different thermal expansions of the bonded materials cause a stress distribution in the bond, which peaks at the bond edge. Under cyclic heat flux and accounting for the possible presence of bonding defects, this stress could reach a level where the component might be jeopardised. Because of the complexity of describing realistically by analyses and models the stress evolution in the bond, “design by experiments” is the main procedure for defining and qualifying the armour joint. Most of the existing plasma operation know-how on actively cooled PFCs has been obtained with carbon composite armour tiles. In ITER, the tiles of the first wall are made out of beryllium, which means that the know-how is progressively adapted to this specific bimetallic pair. Nonetheless, analyses are still performed for supporting the R&D experimental programme. This paper: explores methods for combining experimental results with finite element and statistical analyses; benchmarks test results; proposes hypothesis and rationales consistent with test results interpretations; suggests guidelines for defining possible further experimental protocols; and contributes to the definition of defects acceptance criteria.

  20. Investigation on bonding defects in ITER first wall beryllium armour components by combining analytical and experimental methods

    International Nuclear Information System (INIS)

    Pérez, Germán; Mitteau, Raphaël; Eaton, Russell; Raffray, René

    2015-01-01

    Highlights: • Bonding defects at the ITER first wall beryllium armour are studied. • Experimental and analytical methods are combined. • Models supporting test results interpretation are proposed. • Guidelines for new experimental protocols are suggested. • Contribution to the definition of defects acceptance criteria. - Abstract: The reliability of the plasma facing components (PFCs) is essential for the efficient plasma operation in a fusion machine. This concerns especially the bond between the armour tiles facing the plasma and the heat sink material (copper alloy). The different thermal expansions of the bonded materials cause a stress distribution in the bond, which peaks at the bond edge. Under cyclic heat flux and accounting for the possible presence of bonding defects, this stress could reach a level where the component might be jeopardised. Because of the complexity of describing realistically by analyses and models the stress evolution in the bond, “design by experiments” is the main procedure for defining and qualifying the armour joint. Most of the existing plasma operation know-how on actively cooled PFCs has been obtained with carbon composite armour tiles. In ITER, the tiles of the first wall are made out of beryllium, which means that the know-how is progressively adapted to this specific bimetallic pair. Nonetheless, analyses are still performed for supporting the R&D experimental programme. This paper: explores methods for combining experimental results with finite element and statistical analyses; benchmarks test results; proposes hypothesis and rationales consistent with test results interpretations; suggests guidelines for defining possible further experimental protocols; and contributes to the definition of defects acceptance criteria.

  1. Component characterization and predictive modeling for green roof substrates optimized to adsorb P and improve runoff quality: A review.

    Science.gov (United States)

    Jennett, Tyson S; Zheng, Youbin

    2018-06-01

    This review is a synthesis of the current knowledge regarding the effects of green roof substrate components and their retentive capacity for nutrients, particularly phosphorus (P). Substrates may behave as either sources or sinks of P depending on the components they are formulated from, and to date, the total P-adsorbing capacity of a substrate has not been quantified as the sum of the contributions of its components. Few direct links have been established among substrate components and their physicochemical characteristics that would affect P-retention. A survey of recent literature presented herein highlights the trends within individual component selection (clays and clay-like material, organics, conventional soil and sands, lightweight inorganics, and industrial wastes and synthetics) for those most common during substrate formulation internationally. Component selection will vary with respect to ease of sourcing component materials, cost of components, nutrient-retention capacity, and environmental sustainability. However, the number of distinct components considered for inclusion in green roof substrates continues to expand, as the desires of growers, material suppliers, researchers and industry stakeholders are incorporated into decision-making. Furthermore, current attempts to characterize the most often used substrate components are also presented whereby runoff quality is correlated to entire substrate performance. With the use of well-described characterization (constant capacitance model) and modeling techniques (the soil assemblage model), it is proposed that substrates optimized for P adsorption may be developed through careful selection of components with prior knowledge of their chemical properties, that may increase retention of P in plant-available forms, thereby reducing green roof fertilizer requirements and P losses in roof runoff. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. THE STUDY OF THE CHARACTERIZATION INDICES OF FABRICS BY PRINCIPAL COMPONENT ANALYSIS METHOD

    OpenAIRE

    HRISTIAN Liliana; OSTAFE Maria Magdalena; BORDEIANU Demetra Lacramioara; APOSTOL Laura Liliana

    2017-01-01

    The paper was pursued to prioritize the worsted fabrics type, for the manufacture of outerwear products by characterization indeces of fabrics, using the mathematical model of Principal Component Analysis (PCA). There are a number of variables with a certain influence on the quality of fabrics, but some of these variables are more important than others, so it is useful to identify those variables to a better understanding the factors which can lead the improving of the fabrics quality. A s...

  3. Characterization of an erbium doped fiber amplifier starting from its experimental parameters

    International Nuclear Information System (INIS)

    Bello J, M.; Kuzin, E.A.; Ibarra E, B.; Tellez G, R.

    2007-01-01

    In this paper we describe a method to characterize the gain of an erbium-doped fiber amplifier (EDFA) through the numerical simulation of the signal beam along the amplifier. The simulation is based on a model constituted by the propagation and rate equations for an erbium-doped fiber. The manipulation of these equations allows us to regroup the parameters present in an EDFA, which we have named the A, B, C, D parameters, and they can be obtained experimentally from an erbium-doped fiber. Experimental results show that the measurement of these parameters allow us to estimate with very good correspondence the amplifier gain. (Author)

  4. Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Benoit Parmentier

    2014-12-01

    Full Text Available Characterizing biophysical changes in land change areas over large regions with short and noisy multivariate time series and multiple temporal parameters remains a challenging task. Most studies focus on detection rather than the characterization, i.e., the manner by which surface state variables are altered by the process of changes. In this study, a procedure is presented to extract and characterize simultaneous temporal changes in MODIS multivariate times series from three surface state variables the Normalized Difference Vegetation Index (NDVI, land surface temperature (LST and albedo (ALB. The analysis involves conducting a seasonal trend analysis (STA to extract three seasonal shape parameters (Amplitude 0, Amplitude 1 and Amplitude 2 and using principal component analysis (PCA to contrast trends in change and no-change areas. We illustrate the method by characterizing trends in burned and unburned pixels in Alaska over the 2001–2009 time period. Findings show consistent and meaningful extraction of temporal patterns related to fire disturbances. The first principal component (PC1 is characterized by a decrease in mean NDVI (Amplitude 0 with a concurrent increase in albedo (the mean and the annual amplitude and an increase in LST annual variability (Amplitude 1. These results provide systematic empirical evidence of surface changes associated with one type of land change, fire disturbances, and suggest that STA with PCA may be used to characterize many other types of land transitions over large landscape areas using multivariate Earth observation time series.

  5. MoCha: Molecular Characterization of Unknown Pathways.

    Science.gov (United States)

    Lobo, Daniel; Hammelman, Jennifer; Levin, Michael

    2016-04-01

    Automated methods for the reverse-engineering of complex regulatory networks are paving the way for the inference of mechanistic comprehensive models directly from experimental data. These novel methods can infer not only the relations and parameters of the known molecules defined in their input datasets, but also unknown components and pathways identified as necessary by the automated algorithms. Identifying the molecular nature of these unknown components is a crucial step for making testable predictions and experimentally validating the models, yet no specific and efficient tools exist to aid in this process. To this end, we present here MoCha (Molecular Characterization), a tool optimized for the search of unknown proteins and their pathways from a given set of known interacting proteins. MoCha uses the comprehensive dataset of protein-protein interactions provided by the STRING database, which currently includes more than a billion interactions from over 2,000 organisms. MoCha is highly optimized, performing typical searches within seconds. We demonstrate the use of MoCha with the characterization of unknown components from reverse-engineered models from the literature. MoCha is useful for working on network models by hand or as a downstream step of a model inference engine workflow and represents a valuable and efficient tool for the characterization of unknown pathways using known data from thousands of organisms. MoCha and its source code are freely available online under the GPLv3 license.

  6. Experimental Characterization and Cohesive Laws for Delamination of Off-Axis GFRP Laminates

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Bak, Brian Lau Verndal

    2015-01-01

    This work experimentally characterizes mixed mode delamination in glass fibre reinforced polymer laminates taking into account the influence of the off-axis angle between the lamina orientation and the crack growth direction on the fracture properties. Thus, providing a cohesive law that enables...... analysis of 3D models in which mixed mode crack growth within laminates having anisotropic fracture properties takes place....

  7. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). This experimental-waste characterization program is only one part of the WIPP Test Phase, both in the short- and long-term, to quantify and evaluate the characteristics and behavior of transuranic (TRU) wastes in the repository environment. Other parts include the bin-scale and alcove tests, drum-scale tests, and laboratory experiments. In simplified terms, the purpose of the Program is to provide chemical, physical, and radiochemical data describing the characteristics of the wastes that will be emplaced in the WIPP, while the remaining WIPP Test Phase is directed at examining the behavior of these wastes in the repository environment. 50 refs., 35 figs., 33 tabs

  8. EXPERIMENTAL LIPOSOMAL VIRAL VACCINE SAFETY

    Directory of Open Access Journals (Sweden)

    Romanova OA

    2016-12-01

    experimental influenza vaccine further modification through acylation antigenic component.Results and discussion. Among the vaccines with the antigenic component modification and addition of adjuvants, the highest production of specific influenza antibodies was observed after administration liposomes №2.2 sample, which was made on the basis of antigen Vaxigrip with negatively charged liposomal formulation, the addition of adjuvants and modification antigenic composition, the second ranked liposomes №2.1, without antigenic modification. The study identified regarding the frequency of local reactions, assessed by visual observations, among experimental animals in injection site after legalized vaccines or newly samples weren`t characterized by the formation of swelling, hardening of tissue hyperemia or painful local reactions throughout the observation time.Experimental mice also haven`t fever for the 5 days after manipulation, which is the main criterion of systemic adverse reactions after they administered vaccine preparations. Also after use of experimental drugs and drug comparison, subjective, wasn`t happened abnormalities in general condition animals, including a decrease in appetite, digestive disorders, changes in activity and more. These observations, however, do not allow to conclude the complete safety newly created experimental vaccine and require additional evaluation tests. As base component for building experimental liposomal vaccine used the fosfatydilholin (FH.FH is a substrate for activation lipid peroxidation. Lecithin liposomes, that are liposomal vaccine structural and functional components, are exposed to a variety number of physical and chemical factors. One of biochemical events, that happen to them, are lipid peroxidation, accompanied by free radicals appearance in the system and, ultimately, causes phospholipid bi-layer membranes degradation by a violation of their permeability and lysis. In this regard, system safety control and liposomal drug

  9. B cells exposed to enterobacterial components suppress development of experimental colitis

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Larsen, Hjalte List; Kristensen, Nanna Ny

    2012-01-01

    ). RESULTS: We demonstrate that splenic B cells exposed to ebx produce large amounts of IL-10 in vitro and express CD1d and CD5 previously known to be associated with regulatory B cells. In SCID mice transplanted with colitogenic CD4(+) CD25(-) T cells, co-transfer of ebx-B cells significantly suppressed...... development of colitis. Suppression was dependent on B cell-derived IL-10, as co-transfer of IL-10 knockout ebx-B cells failed to suppress colitis. Ebx-B cell-mediated suppression of colitis was associated with a decrease in interferon gamma (IFN-¿)-producing T(H) 1 cells and increased frequencies of Foxp3......-expressing T cells. CONCLUSIONS: These data demonstrate that splenic B cells exposed to enterobacterial components acquire immunosuppressive functions by which they can suppress development of experimental T cell-mediated colitis in an IL-10-dependent way. (Inflamm Bowel Dis 2011;)....

  10. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  11. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity de...

  12. Material component to non-linear relation between sediment yield and drainage network development: an flume experimental study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper examines the experimental study on influence ofmaterial component to non linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 81.2 m2, the longitudinal gradient and cross section slope are from 0.0348 to 0.0775 and from 0.0115 to 0.038, respectively. Different model materials with a medium diameter of 0.021 mm, 0.076 mm and 0.066 mm cover three experiments each. An artificial rainfall equipment is a sprinkler-system composed of 7 downward nozzles, distributed by hexagon type and a given rainfall intensity is 35.56 mm/hr.cm2. Three experiments are designed by process-response principle at the beginning the ψ shaped small network is dug in the flume. Running time spans are 720 m, 1440 minutes and 540 minutes for Runs Ⅰ, Ⅳ and Ⅵ, respectively. Three experiments show that the sediment yield processes are characterized by delaying with a vibration. During network development the energy of a drainage system is dissipated by two ways, of which one is increasing the number of channels (rill and gully), and the other one is enlarging the channel length. The fractal dimension of a drainage network is exactly an index of energy dissipation of a drainage morphological system. Change of this index with time is an unsymmetrical concave curve. Comparison of three experiments explains that the vibration and the delaying ratio of sediment yield processes increase with material coarsening, while the number of channel decreases. The length of channel enlarges with material fining. There exists non-linear relationship between fractal dimension and sediment yield with an unsymmetrical hyperbolic curve. The bsolute value of delaying ratio of the curve reduces with time unning and material fining. It is characterized by substitution of situation to time.

  13. Characterization of heat tolerance in wheat cultivars and effects on production components

    Directory of Open Access Journals (Sweden)

    Adérico Júnior Badaró Pimentel

    2015-04-01

    Full Text Available Abstract: There is a need for heat tolerant wheat cultivars adapted to the expansion of cultivation areas in warmer regions due to the high demand of this cereal for human consumption. The objective of this study was to evaluate the effect of high temperatures on grain yield and yield components of wheat and characterize heat tolerant wheat genotypes at different development stages. The genotypes were evaluated in the field with and without heat stress. High temperatures reduced the number of spikelets per spike (21%, number of grains per spike (39%, number of grains per spikelet (23%, 1000-grain weight (27% and grain yield (79%. Cultivars MGS 1 Aliança, Embrapa 42, IAC 24-Tucuruí and IAC 364-Tucuruí III are the most tolerant to heat stress between the stages double ridge and terminal spikelet; MGS 1 Aliança, BRS 264, IAC 24-Tucuruí, IAC 364-Tucuruí III and VI 98053, between meiosis and anthesis; and BRS 254, IAC-24-Tucuruí, IAC-364-Tucuruí III and VI 98053, between anthesis and physiological maturity. High temperatures reduce grain yield and yield components. The number of grains per spike is the most reduced component under heat stress. The genotypes differed in tolerance to heat stress in different developmental stages.

  14. Characterization of Chinese liquor aroma components during aging process and liquor age discrimination using gas chromatography combined with multivariable statistics

    Science.gov (United States)

    Xu, M. L.; Yu, Y.; Ramaswamy, H. S.; Zhu, S. M.

    2017-01-01

    Chinese liquor aroma components were characterized during the aging process using gas chromatography (GC). Principal component and cluster analysis (PCA, CA) were used to discriminate the Chinese liquor age which has a great economic value. Of a total of 21 major aroma components identified and quantified, 13 components which included several acids, alcohols, esters, aldehydes and furans decreased significantly in the first year of aging, maintained the same levels (p > 0.05) for next three years and decreased again (p counterfeit and defective products.

  15. Simulation and Experimental Characterization of Microscopically Accessible Hydrodynamic Microvortices

    Directory of Open Access Journals (Sweden)

    Deirdre R. Meldrum

    2012-06-01

    Full Text Available Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D imaging system can be used to study basic biological processes and to diagnose diseases such as cancer at an early stage. One mechanism that such systems apply to accomplish 3D imaging is rotation of a single cell about a fixed axis. However, many cell rotation mechanisms require intricate and tedious microfabrication, or fail to provide a suitable environment for living cells. To address these and related challenges, we applied numerical simulation methods to design new microfluidic chambers capable of generating fluidic microvortices to rotate suspended cells. We then compared several microfluidic chip designs experimentally in terms of: (1 their ability to rotate biological cells in a stable and precise manner; and (2 their suitability, from a geometric standpoint, for microscopic cell imaging. We selected a design that incorporates a trapezoidal side chamber connected to a main flow channel because it provided well-controlled circulation and met imaging requirements. Micro particle-image velocimetry (micro-PIV was used to provide a detailed characterization of flows in the new design. Simulated and experimental results demonstrate that a trapezoidal side chamber represents a viable option for accomplishing controlled single cell rotation. Further, agreement between experimental and simulated results confirms that numerical simulation is an effective method for chamber design.

  16. Experimental demonstration of a Hadamard gate for coherent state qubits

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Dong, Ruifang; Laghaout, Amine

    2011-01-01

    We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The scheme is based on linear optical components, nonclassical resources, and the joint projective action of a photon counter and a homodyne detector. We experimentally characterize the gate for t...... for the coherent states of the computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere....

  17. Experimental demonstration of a Hadamard gate for coherent state qubits

    Energy Technology Data Exchange (ETDEWEB)

    Tipsmark, Anders; Laghaout, Amine; Andersen, Ulrik L. [Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark); Dong, Ruifang [Quantum Frequency Standards Division, National Time Service Center (NTSC), Chinese Academy of Sciences, 710600 Lintong, Shaanxi (China); Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark); Marek, Petr [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic); Jezek, Miroslav [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic); Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark)

    2011-11-15

    We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The scheme is based on linear optical components, nonclassical resources, and the joint projective action of a photon counter and a homodyne detector. We experimentally characterize the gate for the coherent states of the computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere.

  18. Material characterization and non destructive testing by ultrasounds; modelling, simulation and experimental validation

    International Nuclear Information System (INIS)

    Noroy-Nadal, M.H.

    2002-06-01

    This memory presents the research concerning the characterization of materials and the Non Destructive Testing (N.D.T) by ultrasonics. The different topics include three steps: modeling, computations and experimental validation. The studied materials concern mainly metals. The memory is divided in four parts. The first one concerns the characterization of materials versus temperature. The determination of the shear modulus G(T) is especially studied for a large temperature range, and around the melting point. The second part is devoted to studies by photothermal devices essentially focused on the modeling of the mechanical displacement and the stress field in coated materials. In this particular field of interest, applications concern either the mechanical characterization of the coating, the defect detection in the structure and finally the evaluation of the coating adhesion. The third section is dedicated to microstructural characterization using acoustic microscopy. The evaluation of crystallographic texture is especially approached, for metallic objects obtained by forming. Before concluding and pointing out some perspectives to this work, the last section concerns the introduction of optimization techniques, applied to the material characterization by acoustic microscopy. (author)

  19. Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor *

    Directory of Open Access Journals (Sweden)

    Parma Edward J.

    2016-01-01

    Full Text Available Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity “bucket” environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters.

  20. Experimental characterization of a concentrating photovoltaic system varying the light concentration

    International Nuclear Information System (INIS)

    Renno, C.; Petito, F.; Landi, G.; Neitzert, H.C.

    2017-01-01

    Highlights: • Experimental characterization of a concentrating photovoltaic system. • Analysis of the point-focus concentrating system performances. • Photovoltaic system parameters as function of the concentration factor. - Abstract: The concentrating photovoltaic system represents one of the most promising solar technologies because it allows a more efficient energy conversion. When a CPV system is designed, the main parameter which has to be considered is the concentration factor that affects both the system energy performances and its configuration. An experimental characterization of a CPV system previously realized at the University of Salerno, is presented in this paper considering several aspects related to the optical configuration, the concentration factor and the solar cell used. In particular, the parameters of an Indium Gallium Phosphide/Gallium Arsenide/Germanium triple-junction solar cell are investigated as function of the concentration factor determined by means of an experimental procedure that uses different optical configurations. The maximum concentration factor reached by the CPV system is 310 suns. The cell parameters dependence on the concentration is reported together with an electroluminescence analysis of the Indium Gallium Phosphide/Gallium Arsenide/Germanium cell. A monitoring of the electrical power provided by the system during its working is also presented corresponding to different direct irradiance values. A mean power of 2.95 W with an average efficiency of 32.8% is obtained referring to a mean irradiance of 930 W/m"2; lower values are obtained when the irradiance is highly fluctuating. The concentrating photovoltaic system electric energy output is estimated considering different concentration levels; the maximal obtained value is 23.5 W h on a sunny day at 310×. Finally, the temperature of the triple-junction solar cell is evaluated for different months in order to evaluate the potential annual thermal energy production

  1. An experimental study of thermal characterization of parabolic trough receivers

    International Nuclear Information System (INIS)

    Lei, Dongqiang; Li, Qiang; Wang, Zhifeng; Li, Jian; Li, Jianbin

    2013-01-01

    Highlights: ► A new test stand of heat loss has been developed at IEECAS. ► A correlation between heat loss and absorber temperature is presented, 270 W/m 400 °C. ► The ratio of end loss in total heat loss increases with decreasing the temperature. ► The emittance test stand using a high vacuum system and vacuum gauge is built. ► Emittance first decreases, then rapidly increases with increasing the temperature. - Abstract: The receiver is a key component of the parabolic trough solar station. The receiver requires the most challenging technology and has a decisive influence on the thermal and economic performance of a power plant. The Institute of Electrical Engineering Chinese Academy Sciences (IEECAS) and Himin Solar Co., Ltd. (HSC) cooperated to develop solar receivers for the first 50 MW parabolic trough project in Inner Mongolia, China. This paper examines overall heat loss, end loss and thermal emittance of the coating of a newly designed receiver in order to evaluate its thermal characterization. A series of heat loss tests are conducted in a newly developed test stand following the steady state equilibrium method. The tests provide a correlation between heat loss and the absorber temperature. This paper presents a new testing method to accurately test the coating emittance. The method uses a receiver with a high vacuum system and a vacuum gauge to maintain continuous exhaust and high vacuum throughout the heat loss testing. A heat loss comparison between the receiver and other existing receivers provides a reference that enabled further optimization. Theoretical and experimental analysis examines the effects of end loss both with and without a heat insulator and a coil heater. The emittance curves of different coatings are acquired and the reasons for initial emittance decrease and then remarkable increase versus temperature are analyzed

  2. Two Component Injection Moulding for Moulded Interconnect Devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    component (2k) injection moulding is one of the most industrially adaptive processes. However, the use of two component injection moulding for MID fabrication, with circuit patterns in sub-millimeter range, is still a big challenge. This book searches for the technical difficulties associated...... with the process and makes attempts to overcome those challenges. In search of suitable polymer materials for MID applications, potential materials are characterized in terms of polymer-polymer bond strength, polymer-polymer interface quality and selective metallization. The experimental results find the factors...... which can effectively control the quality of 2k moulded parts and metallized MIDs. This book presents documented knowledge about MID process chains, 2k moulding and selective metallization which can be valuable source of information for both academic and industrial users....

  3. Characterization of 3-dimensional superconductive thin film components for gravitational experiments in space

    Energy Technology Data Exchange (ETDEWEB)

    Hechler, S.; Nawrodt, R.; Nietzsche, S.; Vodel, W.; Seidel, P. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [ZARM, Univ. Bremen (Germany); Loeffler, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2007-07-01

    Superconducting quantum interference devices (SQUIDs) are used for high precise gravitational experiments. One of the most impressive experiments is the satellite test of the equivalence principle (STEP) of NASA/ESA. The STEP mission aims to prove a possible violation of Einstein's equivalence principle at an extreme level of accuracy of 1 part in 10{sup 18} in space. In this contribution we present an automatically working measurement equipment to characterize 3-dimensional superconducting thin film components like i.e. pick-up coils and test masses for STEP. The characterization is done by measurements of the transition temperature between the normal and the superconducting state using a special built anti-cryostat. Above all the setup was designed for use in normal LHe transport Dewars. The sample chamber has a volume of 150 cm{sup 3} and can be fully temperature controlled over a range from 4.2 K to 300 K with a resolution of better then 100 mK. (orig.)

  4. Characterization of a two-component thermoluminescent albedo dosemeter according to ISO 21909

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.M., E-mail: marcelo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Mauricio, C.L.P., E-mail: claudia@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Pereira, W.W., E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Silva, A.X. da, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao em Engenharia, COPPE/PEN Caixa Postal 68509, CEP 21941-972, Rio de Janeiro, RJ (Brazil)

    2011-05-15

    A two-component thermoluminescent albedo neutron monitoring system was developed at Instituto de Radioprotecao e Dosimetria, Brazil. As there is no Brazilian regulation for neutron individual monitoring service, the system was tested according to the ISO 21909 standard. This standard provides performance and test requirements for determining the acceptability of personal neutron dosemeters to be used for the measurement of personal dose equivalent, H{sub p}(10), in neutron fields with energies ranging from thermal to 20 MeV. Up to 40 dosemeters were used in order to accomplish satisfactorily the requirements of some tests. Despite operational difficulties, this albedo system passed all ISO 21909 performance requirements. The results and problems throughout this characterization are discussed in this paper.

  5. Characterizing speed-independence of high-level designs

    DEFF Research Database (Denmark)

    Kishinevsky, Michael; Staunstrup, Jørgen

    1994-01-01

    This paper characterizes the speed-independence of high-level designs. The characterization is a condition on the design description ensuring that the behavior of the design is independent of the speeds of its components. The behavior of a circuit is modeled as a transition system, that allows data...... types, and internal as well as external non-determinism. This makes it possible to verify the speed-independence of a design without providing an explicit realization of the environment. The verification can be done mechanically. A number of experimental designs have been verified including a speed-independent...

  6. Experimental stress analysis for determination of residual stresses and integrity monitoring of components and systems

    International Nuclear Information System (INIS)

    1993-01-01

    For an analysis of the safety-related significance of residual stresses, mechanical, magnetic as well as ultrasonic and diffraction methods can be applied as testing methods. The results of an interlaboratory test concerning the experimental determination of residual stresses in a railway track are included. Further, questions are analyzed concerning the in-service inspections of components and systems with regard to their operational safety and life. Measurement methods are explained by examples from power plant engineering, nuclear power plant engineering, construction and traffic engineering as well as aeronautics. (DG) [de

  7. Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Laurat, Julien [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Keller, Gaelle [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Oliveira-Huguenin, Jose Augusto [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Fabre, Claude [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Coudreau, Thomas [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Laboratoire Materiaux et Phenomenes Quantiques, Case 7021, Universite Denis Diderot, 2 Place Jussieu, 75251 Paris cedex 05 (France); Serafini, Alessio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Adesso, Gerardo [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy) and CNR-Coherentia, Gruppo di Salerno (Italy) and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (SA) (Italy)

    2005-12-01

    A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO (optical parametric oscillator) with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation.

  8. Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation

    International Nuclear Information System (INIS)

    Laurat, Julien; Keller, Gaelle; Oliveira-Huguenin, Jose Augusto; Fabre, Claude; Coudreau, Thomas; Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO (optical parametric oscillator) with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation

  9. Application of empirical mode decomposition method for characterization of random vibration signals

    Directory of Open Access Journals (Sweden)

    Setyamartana Parman

    2016-07-01

    Full Text Available Characterization of finite measured signals is a great of importance in dynamical modeling and system identification. This paper addresses an approach for characterization of measured random vibration signals where the approach rests on a method called empirical mode decomposition (EMD. The applicability of proposed approach is tested in one numerical and experimental data from a structural system, namely spar platform. The results are three main signal components, comprising: noise embedded in the measured signal as the first component, first intrinsic mode function (IMF called as the wave frequency response (WFR as the second component and second IMF called as the low frequency response (LFR as the third component while the residue is the trend. Band-pass filter (BPF method is taken as benchmark for the results obtained from EMD method.

  10. Development and characterization of two-component albedo based neutron individual monitoring system using thermoluminescent detectors

    International Nuclear Information System (INIS)

    Martins, Marcelo Marques

    2008-01-01

    A TLD-albedo based two-component neutron individual monitoring system was developed and characterized in this work. The monitor consists of a black plastic holder, an incident neutron boron loaded shield, a moderator polyethylene body (to increase its response), two pairs of TLD-600 and TLD-700 (one pair to each component) and an adjustable belt. This monitoring system was calibrated in thermal neutron fields and in 70 keV, 144 keV, 565 keV, 1.2 MeV and 5 MeV monoenergetic neutron fields. In addition, it was calibrated in 252C f(D 2 O), 252 Cf, 241 Am-B, 241 Am-Be and 238 Pu-Be source fields. For the latter, the lower detection levels are, respectively, 0.009 mSv, 0.06 mSv, 0.12 mSv, 0.09 mSv and 0.08 mSv. The participation in an international intercomparison sponsored by IAEA with simulated workplace fields validated the system. The monitoring system was successfully characterized in the ISO 21909 standard and in an IRD - the Brazilian Institute for Radioprotection and Dosimetry - technical regulation draft. Nowadays, the neutron individual system is in use by IRD for whole body individual monitoring of five institutions, which comprehend several activities. (author)

  11. Characterization of the Lateral Distribution of Fluorescent Lipid in Binary-Constituent Lipid Monolayers by Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    István P. Sugár

    2010-01-01

    Full Text Available Lipid lateral organization in binary-constituent monolayers consisting of fluorescent and nonfluorescent lipids has been investigated by acquiring multiple emission spectra during measurement of each force-area isotherm. The emission spectra reflect BODIPY-labeled lipid surface concentration and lateral mixing with different nonfluorescent lipid species. Using principal component analysis (PCA each spectrum could be approximated as the linear combination of only two principal vectors. One point on a plane could be associated with each spectrum, where the coordinates of the point are the coefficients of the linear combination. Points belonging to the same lipid constituents and experimental conditions form a curve on the plane, where each point belongs to a different mole fraction. The location and shape of the curve reflects the lateral organization of the fluorescent lipid mixed with a specific nonfluorescent lipid. The method provides massive data compression that preserves and emphasizes key information pertaining to lipid distribution in different lipid monolayer phases. Collectively, the capacity of PCA for handling large spectral data sets, the nanoscale resolution afforded by the fluorescence signal, and the inherent versatility of monolayers for characterization of lipid lateral interactions enable significantly enhanced resolution of lipid lateral organizational changes induced by different lipid compositions.

  12. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented

  13. Miniaturized Analytical Platforms From Nanoparticle Components: Studies in the Construction, Characterization, and High-Throughput Usage of These Novel Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Pris, Andrew David [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The scientific community has recently experienced an overall effort to reduce the physical size of many experimental components to the nanometer size range. This size is unique as the characteristics of this regime involve aspects of pure physics, biology, and chemistry. One extensively studied example of a nanometer sized experimental component, which acts as a junction between these three principle scientific theologies, is deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). These biopolymers not only contain the biological genetic guide to code for the production of life-sustaining materials, but are also being probed by physicists as a means to create electrical circuits and furthermore as controllable architectural and sensor motifs in the chemical disciplines. Possibly the most common nano-sized component between these sciences are nanoparticles composed of a variety of materials. The cross discipline employment of nanoparticles is evident from the vast amount of literature that has been produced from each of the individual communities within the last decade. Along these cross-discipline lines, this dissertation examines the use of several different types of nanoparticles with a wide array of surface chemistries to understand their adsorption properties and to construct unique miniaturized analytical and immunoassay platforms. This introduction will act as a literature review to provide key information regarding the synthesis and surface chemistries of several types of nanoparticles. This material will set the stage for a discussion of assembling ordered arrays of nanoparticles into functional platforms, architectures, and sensors. The introduction will also include a short explanation of the atomic force microscope that is used throughout the thesis to characterize the nanoparticle-based structures. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 examines the self-assembly of polymeric nanoparticles

  14. Experimental and numerical investigation of heat dissipation from an electronic component in a closed enclosure

    Directory of Open Access Journals (Sweden)

    George Bobin Saji

    2018-01-01

    Full Text Available Intensifying electronic component power dissipation levels, shortening product design cycle times, and greater than before requirement for more compact and reliable electronic systems with greater functionality, has heightened the need for thermal design tools that enable accurate solutions to be generated and quickly assessed. The present numerical study aims at developing a computational tool in OpenFOAM that can predict the heat dissipation rate and temperature profile of any electronic component in operation. A suitable computational domain with defined aspect ratio is chosen. For analyzing, “buoyant Boussinesq Simple Foam“ solver available with OpenFOAM is used. It was modified for adapting to the investigation with specified initial and boundary conditions. The experimental setup was made with the dimensions taken up for numerical study. Thermocouples were calibrated and placed in specified locations. For different heat input, the temperatures are noted down at steady state and compared with results from the numerical study.

  15. Characterizing and Modeling the Cost of Rework in a Library of Reusable Software Components

    Science.gov (United States)

    Basili, Victor R.; Condon, Steven E.; ElEmam, Khaled; Hendrick, Robert B.; Melo, Walcelio

    1997-01-01

    In this paper we characterize and model the cost of rework in a Component Factory (CF) organization. A CF is responsible for developing and packaging reusable software components. Data was collected on corrective maintenance activities for the Generalized Support Software reuse asset library located at the Flight Dynamics Division of NASA's GSFC. We then constructed a predictive model of the cost of rework using the C4.5 system for generating a logical classification model. The predictor variables for the model are measures of internal software product attributes. The model demonstrates good prediction accuracy, and can be used by managers to allocate resources for corrective maintenance activities. Furthermore, we used the model to generate proscriptive coding guidelines to improve programming, practices so that the cost of rework can be reduced in the future. The general approach we have used is applicable to other environments.

  16. Experimental Study of the Cooling of Electrical Components Using Water Film Evaporation

    Directory of Open Access Journals (Sweden)

    S. Harmand

    2012-01-01

    Full Text Available Heat and mass transfer, which occur in the evaporation of a falling film of water, are studied experimentally. This evaporation allows the dissipation of the heat flux produced by twelve resistors, which simulate electrical components on the back side of an aluminium plate. On the front side of the plate, a falling film of water flows by the action of gravity. An inverse heat conduction model, associated with a spatial regularisation, was developed and produces the local heat fluxes on the plate using the measured temperatures. The efficiency of this evaporative process has been studied with respect to several parameters: imposed heat flux, inlet mass flow rate, and geometry. A comparison of the latent and sensible fluxes used to dissipate the imposed heat flux was studied in the case of a plexiglass sheet in front of the falling film at different distances from the aluminium plate.

  17. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    International Nuclear Information System (INIS)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A; Constans, S; Merola, M; Riccardi, B

    2009-01-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  18. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Science.gov (United States)

    Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.

    2009-12-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  19. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A [CEA/IRFM, F-13108, Saint-Paul-lez-Durance (France); Constans, S [AREVA-NP, Le Creusot (France); Merola, M [ITER Organization, Cadarache (France); Riccardi, B [Fusion For Energy, Barcelona (Spain)], E-mail: frederic.escourbiac@cea.fr

    2009-12-15

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  20. Modeling and Experimental Study on Characterization of Micromachined Thermal Gas Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Yan Su

    2010-09-01

    Full Text Available Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.

  1. A 2 MW, 170 GHz coaxial cavity gyrotron - experimental verification of the design of main components

    Energy Technology Data Exchange (ETDEWEB)

    Piosczyk, B [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dammertz, G [Forschungszentrum Karlsruhe, Association EURATOM-FZK, Institut fuer Hochleistungsimpuls- und Mikrowellentechnik (IHM), Postfach 3640, D-76021 Karlsruhe (Germany); Dumbrajs, O [Department of Engineering Physics and Mathematics, Helsinki University of Technology, Association EURATOM-TEKES, FIN-02150 Espoo (Finland)] (and others)

    2005-01-01

    A 2 MW, CW, 170 GHz coaxial cavity gyrotron is under development in cooperation between European Research Institutions (FZK Karlsruhe, CRPP Lausanne, HUT Helsinki) and the European tube industry (TED, Velizy, France). The design of critical components has recently been examined experimentally at FZK Karlsruhe with a short pulse ({approx} few ms) coaxial cavity gyrotron. This gyrotron uses the same cavity and the same quasioptical (q.o.) RF-output system as designed for the industrial prototype and a very similar electron gun.

  2. Experimental and numerical investigation of flow field and heat transfer from electronic components in a rectangular channel with an impinging jet

    Directory of Open Access Journals (Sweden)

    Calisir Tamer

    2015-01-01

    Full Text Available Thermal control of electronic components is a continuously emerging problem as power loads keep increasing. The present study is mainly focused on experimental and numerical investigation of impinging jet cooling of 18 (3 × 6 array flash mounted electronic components under a constant heat flux condition inside a rectangular channel in which air, following impingement, is forced to exit in a single direction along the channel formed by the jet orifice plate and impingement plate. Copper blocks represent heat dissipating electronic components. Inlet flow velocities to the channel were measured by using a Laser Doppler Anemometer (LDA system. Flow field observations were performed using a Particle Image Velocimetry (PIV and thermocouples were used for temperature measurements. Experiments and simulations were conducted for Re = 4000 – 8000 at fixed value of H = 10 × Dh. Flow field results were presented and heat transfer results were interpreted using the flow measurement observations. Numerical results were validated with experimental data and it was observed that the results are in agreement with the experiments.

  3. Experimental and principal component analysis of waste ...

    African Journals Online (AJOL)

    The present study is aimed at determining through principal component analysis the most important variables affecting bacterial degradation in ponds. Data were collected from literature. In addition, samples were also collected from the waste stabilization ponds at the University of Nigeria, Nsukka and analyzed to ...

  4. A New Experimental Polytrauma Model in Rats: Molecular Characterization of the Early Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Sebastian Weckbach

    2012-01-01

    Full Text Available Background. The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. Methods. Male Wistar rats (250 g, 6–10/group were anesthetized and exposed to chest trauma (ChT, closed head injury (CHI, or Tib/Fib fracture including a soft tissue trauma (Fx + STT or to the following combination of injuries: (1 ChT; (2 ChT + Fx + STT; (3 ChT + CHI; (4 CHI; (5 polytrauma (PT = ChT + CHI + Fx + STT. Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of “key” inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL fluid samples. Results. Polytraumatized (PT rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. Conclusion. This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma.

  5. A New Experimental Polytrauma Model in Rats: Molecular Characterization of the Early Inflammatory Response

    Science.gov (United States)

    Weckbach, Sebastian; Perl, Mario; Heiland, Tim; Braumüller, Sonja; Stahel, Philip F.; Flierl, Michael A.; Ignatius, Anita; Gebhard, Florian; Huber-Lang, Markus

    2012-01-01

    Background. The molecular mechanisms of the immune response after polytrauma are highly complex and far from fully understood. In this paper, we characterize a new standardized polytrauma model in rats based on the early molecular inflammatory and apoptotic response. Methods. Male Wistar rats (250 g, 6–10/group) were anesthetized and exposed to chest trauma (ChT), closed head injury (CHI), or Tib/Fib fracture including a soft tissue trauma (Fx + STT) or to the following combination of injuries: (1) ChT; (2) ChT + Fx + STT; (3) ChT + CHI; (4) CHI; (5) polytrauma (PT = ChT + CHI + Fx + STT). Sham-operated rats served as negative controls. The inflammatory response was quantified at 2 hours and 4 hours after trauma by analysis of “key” inflammatory mediators, including selected cytokines and complement components, in serum and bronchoalveolar (BAL) fluid samples. Results. Polytraumatized (PT) rats showed a significant systemic and intrapulmonary release of cytokines, chemokines, and complement anaphylatoxins, compared to rats with isolated injuries or selected combinations of injuries. Conclusion. This new rat model appears to closely mimic the early immunological response of polytrauma observed in humans and may provide a valid basis for evaluation of the complex pathophysiology and future therapeutic immune modulatory approaches in experimental polytrauma. PMID:22481866

  6. Application of the similarity theory to the generalization of experimental results for thermal physic properties of raw cotton and its components

    International Nuclear Information System (INIS)

    Salakhutdinov, M.I.; Mukhiddinov, K.S.; Marupov, R.

    2006-01-01

    In the paper carried out generalization of experimental results on specific isobaric thermal capacity, heat conductivity and thermal diffusivity coefficients of raw cotton of sort 9326-B and its components on the basis of similarity theory

  7. IVIM: modeling, experimental validation and application to animal models

    International Nuclear Information System (INIS)

    Fournet, Gabrielle

    2016-01-01

    This PhD thesis is centered on the study of the IVIM ('Intravoxel Incoherent Motion') MRI sequence. This sequence allows for the study of the blood microvasculature such as the capillaries, arterioles and venules. To be sensitive only to moving groups of spins, diffusion gradients are added before and after the 180 degrees pulse of a spin echo (SE) sequence. The signal component corresponding to spins diffusing in the tissue can be separated from the one related to spins travelling in the blood vessels which is called the IVIM signal. These two components are weighted by f IVIM which represents the volume fraction of blood inside the tissue. The IVIM signal is usually modelled by a mono-exponential (ME) function and characterized by a pseudo-diffusion coefficient, D*. We propose instead a bi-exponential IVIM model consisting of a slow pool, characterized by F slow and D* slow corresponding to the capillaries as in the ME model, and a fast pool, characterized by F fast and D* fast, related to larger vessels such as medium-size arterioles and venules. This model was validated experimentally and more information was retrieved by comparing the experimental signals to a dictionary of simulated IVIM signals. The influence of the pulse sequence, the repetition time and the diffusion encoding time was also studied. Finally, the IVIM sequence was applied to the study of an animal model of Alzheimer's disease. (author) [fr

  8. Current trends in degradation assesment on metallic materials of industrial components

    International Nuclear Information System (INIS)

    Herrera Palma, Victoria

    2007-01-01

    To needs to assess objectively a structural integrity analysis in nuclear and termal power-, oil- and chemical- industry system, represents a large challenge for engineer and researches related to Materials Science, equipment manufactures or users. These systems share many of their problems with regards to aging mechanism of components metallic materials, high replacement costs and increasing requirements on efficiency and safety. This paper makes an attempt to give an overview of the current trends on material damage and residual life assessment for installation of power-, oil- and chemical industry. Some of the currently existing ideas on components inspection, as an activity for damage detection are shown. A summary on mechanism of material damage and experimental techniques for their characterization is also presented. Finally, some analytical methods with wide appliance in materials damage evaluation and residual life assesment of components are described

  9. Portable XRF and principal component analysis for bill characterization in forensic science

    International Nuclear Information System (INIS)

    Appoloni, C.R.; Melquiades, F.L.

    2014-01-01

    Several modern techniques have been applied to prevent counterfeiting of money bills. The objective of this study was to demonstrate the potential of Portable X-ray Fluorescence (PXRF) technique and the multivariate analysis method of Principal Component Analysis (PCA) for classification of bills in order to use it in forensic science. Bills of Dollar, Euro and Real (Brazilian currency) were measured directly at different colored regions, without any previous preparation. Spectra interpretation allowed the identification of Ca, Ti, Fe, Cu, Sr, Y, Zr and Pb. PCA analysis separated the bills in three groups and subgroups among Brazilian currency. In conclusion, the samples were classified according to its origin identifying the elements responsible for differentiation and basic pigment composition. PXRF allied to multivariate discriminate methods is a promising technique for rapid and no destructive identification of false bills in forensic science. - Highlights: • The paper is about a direct method for bills discrimination by EDXRF and principal component analysis. • The bills are analyzed directly, without sample preparation and non destructively. • The results demonstrates that the methodology is feasible and could be applied in forensic science for identification of origin and false banknotes. • The novelty is that portable EDXRF is very fast and efficient for bills characterization

  10. Impact test of components

    International Nuclear Information System (INIS)

    Borsoi, L.; Buland, P.; Labbe, P.

    1987-01-01

    Stops with gaps are currently used to support components and piping: it is simple, low cost, efficient and permits free thermal expansion. In order to keep the nonlinear nature of stops, such design is often modeled by beam elements (for the component) and nonlinear springs (for the stops). This paper deals with the validity and the limits of these models through the comparison of computational and experimental results. The experimental results come from impact laboratory tests on a simplified mockup. (orig.)

  11. Simultaneous characterization of pancreatic stellate cells and other pancreatic components within three-dimensional tissue environment during chronic pancreatitis

    Science.gov (United States)

    Hu, Wenyan; Fu, Ling

    2013-05-01

    Pancreatic stellate cells (PSCs) and other pancreatic components that play a critical role in exocrine pancreatic diseases are generally identified separately by conventional studies, which provide indirect links between these components. Here, nonlinear optical microscopy was evaluated for simultaneous characterization of these components within a three-dimensional (3-D) tissue environment, primarily based on multichannel detection of intrinsic optical emissions and cell morphology. Fresh rat pancreatic tissues harvested at 1 day, 7 days, and 28 days after induction of chronic pancreatitis were imaged, respectively. PSCs, inflammatory cells, blood vessels, and collagen fibers were identified simultaneously. The PSCs at day 1 of chronic pancreatitis showed significant enlargement compared with those in normal pancreas (ppancreatic components coincidently within 3-D pancreatic tissues. It is a prospect for intravital observation of dynamic events under natural physiological conditions, and might help uncover the key mechanisms of exocrine pancreatic diseases, leading to more effective treatments.

  12. Use of the spray chilling method to deliver hydrophobic components: physical characterization of microparticles

    Directory of Open Access Journals (Sweden)

    Izabela Dutra Alvim

    2013-02-01

    Full Text Available Food industry has been developing products to meet the demands of increasing number of consumers who are concerned with their health and who seek food products that satisfy their needs. Therefore, the development of processed foods that contain functional components has become important for this industry. Microencapsulation can be used to reduce the effects of processing on functional components and preserve their bioactivity. The present study investigated the production of lipid microparticles containing phytosterols by spray chilling. The matrices comprised mixtures of stearic acid and hydrogenated vegetable fat, and the ratio of the matrix components to phytosterols was defined by an experimental design using the mean diameters of the microparticles as the response variable. The melting point of the matrices ranged from 44.5 and 53.4 ºC. The process yield was melting point dependent; the particles that exhibited lower melting point had greater losses than those with higher melting point. The microparticles' mean diameters ranged from 13.8 and 32.2 µm and were influenced by the amount of phytosterols and stearic acid. The microparticles exhibited spherical shape and typical polydispersity of atomized products. From a technological and practical (handling, yield, and agglomeration points of view, lipid microparticles with higher melting point proved promising as phytosterol carriers.

  13. Experimental lithium system. Final report

    International Nuclear Information System (INIS)

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m 3 lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion

  14. Experimental comparison of rate-dependent hysteresis models in characterizing and compensating hysteresis of piezoelectric tube actuators

    Energy Technology Data Exchange (ETDEWEB)

    Aljanaideh, Omar, E-mail: omaryanni@gmail.com [Department of Mechanical Engineering, The University of Jordan, Amman 11942 (Jordan); Habineza, Didace; Rakotondrabe, Micky [AS2M department, FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, Univ. de Franche-Comté/CNRS/ENSMM, 25000 Besançon (France); Al Janaideh, Mohammad [Department of Mechanical and Industrial Engineering, The Mechatronics and Microsystems Design Laboratory, University of Toronto (Canada); Department of Mechatronics Engineering, The University of Jordan, Amman 11942 (Jordan)

    2016-04-01

    An experimental study has been carried out to characterize rate-dependent hysteresis of a piezoelectric tube actuator at different excitation frequencies. The experimental measurements were followed by modeling and compensation of the hysteresis nonlinearities of the piezoelectric tube actuator using both the inverse rate-dependent Prandtl–Ishlinskii model (RDPI) and inverse rate-independent Prandtl–Ishlinskii model (RIPI) coupled with a controller. The comparison of hysteresis modeling and compensation of the actuator with both models is presented.

  15. Experimental comparison of rate-dependent hysteresis models in characterizing and compensating hysteresis of piezoelectric tube actuators

    International Nuclear Information System (INIS)

    Aljanaideh, Omar; Habineza, Didace; Rakotondrabe, Micky; Al Janaideh, Mohammad

    2016-01-01

    An experimental study has been carried out to characterize rate-dependent hysteresis of a piezoelectric tube actuator at different excitation frequencies. The experimental measurements were followed by modeling and compensation of the hysteresis nonlinearities of the piezoelectric tube actuator using both the inverse rate-dependent Prandtl–Ishlinskii model (RDPI) and inverse rate-independent Prandtl–Ishlinskii model (RIPI) coupled with a controller. The comparison of hysteresis modeling and compensation of the actuator with both models is presented.

  16. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  17. Experimental Characterization of Ionic Polymer Metal Composite as a Novel Fractional Order Element

    Directory of Open Access Journals (Sweden)

    Riccardo Caponetto

    2013-01-01

    Full Text Available Ionic polymer metal composites (IPMCs are electroactive materials made of ionic polymer thin membranes with platinum metallization on their surfaces. They are interesting materials due to not only their electromechanical applications as transducers but also to their electrochemical features and the relationship between the ionic/solvent current and the potential field. Their electrochemical properties thus suggest the possibility for exploiting them as compact fractional-order elements (FOEs with a view of defining fabrication processes and production strategies that assure the desired performances. In this paper, the experimental electrical characterization of a brand new IPMC setup in a fixed sandwich configuration is proposed. Two IPMC devices with different platinum absorption times (5 h and 20 h are characterized through experimental data: first, a preliminary linearity study is performed for a fixed input voltage amplitude in order to determine the frequency region where IPMC can be approximated as linear; then, a frequency analysis is carried out in order to identify a coherent fractional-order dynamics in the bode diagrams. Such analyses take the first steps towards a simplified model of IPMC as a compact electronic FOE for which the fractional exponent value depends on fabrication parameters as the absorption time.

  18. The experimental autoimmune encephalomyelitis disease course is modulated by nicotine and other cigarette smoke components.

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    Full Text Available Epidemiological studies have reported that cigarette smoking increases the risk of developing multiple sclerosis (MS and accelerates its progression. However, the molecular mechanisms underlying these effects remain unsettled. We have investigated here the effects of the nicotine and the non-nicotine components in cigarette smoke on MS using the experimental autoimmune encephalomyelitis (EAE model, and have explored their underlying mechanism of action. Our results show that nicotine ameliorates the severity of EAE, as shown by reduced demyelination, increased body weight, and attenuated microglial activation. Nicotine administration after the development of EAE symptoms prevented further disease exacerbation, suggesting that it might be useful as an EAE/MS therapeutic. In contrast, the remaining components of cigarette smoke, delivered as cigarette smoke condensate (CSC, accelerated and increased adverse clinical symptoms during the early stages of EAE, and we identify a particular cigarette smoke compound, acrolein, as one of the potential mediators. We also show that the mechanisms underlying the opposing effects of nicotine and CSC on EAE are likely due to distinct effects on microglial viability, activation, and function.

  19. Experimental characterization of the hydro-mechanical behaviour of Meuse/Haute-Marne argilites; Caracterisation experimentale du comportement hydromecanique des argilites de Meuse/Haute-Marne

    Energy Technology Data Exchange (ETDEWEB)

    Escoffier, S

    2002-04-01

    Within the framework of a feasibility study of underground radioactive waste repository the experimental characterization of the coupled behavior of the host layer is of first importance. This work concerns the experimental characterization in laboratory of the poro-elastic behavior of argillite which constitutes the host layer of the future underground laboratory of ANDRA located at the limit of the Meuse/Haute-Marne. The theoretical approach is the Mechanics of Porous Media defined by Coussy [1991] which has the advantage of providing a formulation of the behavior laws using measurable parameters in laboratory. The difficulties or the feasibility of the characterization tests of these rocks coupled behavior are related to their very low permeability which requires an adaptation of the experimental devices initially used on more permeable rocks. Initially a synthesis on the knowledge of the poro-elastic parameters of Meuse/Haute-Marne argillite is given. Thereafter a first approach of the use of the studies of sensitivity as tools of decision-making aid is proposed. The experimental difficulties encountered by the various experimenters are illustrated by the diversity of the experimental choices, the test duration or by the results disparity. Because of economic, political and ecological stake, the studies of sensitivity could make it possible to direct the experimental efforts by giving indications on the dominating parameters in the coupled behavior of a rock. In the second time after the presentation of the test results of physical characterization 3 types of tests are described: permeability test (pulse test), determination of Biot coefficient under odometric loading and isotropic drained test. The complexity of these tests is related to the attack of the experimental limits. They are presented in detail: theoretical recalls, experimental set up, experimental protocol, unfolding and test results. (author)

  20. Nanomechanical characterization of adaptive optics components in microprojectors

    International Nuclear Information System (INIS)

    Palacio, Manuel; Bhushan, Bharat

    2010-01-01

    Compact microprojectors are being developed for information display in mobile electronic devices. A key component of the microprojector is the green laser package, which consists of an adaptive optics component with a drive mechanism. A crucial concern is the mechanical wear of key drive mechanism components, such as the carbon fiber reinforced polymer (CFRP) driving rod, the Zn alloy body and the stainless steel friction plate, after prolonged operation. Since friction and wear are dependent on the mechanical properties, nanoindentation experiments were conducted on these drive mechanism components using a depth-sensing nanoindenter at room and elevated temperatures up to 100 °C. The hardness and elastic modulus of all the materials studied decrease at increasing test temperatures. From plasticity index analysis, a correlation between the tendency for plastic deformation and the mechanical properties was obtained. Nanoscratch studies were also conducted in order to simulate wear, as well as examine the scratch resistance and deformation modes of these materials, where it was found that the CFRP rod exhibited the highest scratch resistance. The CFRP rod undergoes mostly brittle deformation, while the Zn alloy body and friction plate undergo plastic deformation.

  1. Modal Identification in an Automotive Multi-Component System Using HS 3D-DIC

    Directory of Open Access Journals (Sweden)

    Ángel Jesús Molina-Viedma

    2018-02-01

    Full Text Available The modal characterization of automotive lighting systems becomes difficult using sensors due to the light weight of the elements which compose the component as well as the intricate access to allocate them. In experimental modal analysis, high speed 3D digital image correlation (HS 3D-DIC is attracting the attention since it provides full-field contactless measurements of 3D displacements as main advantage over other techniques. Different methodologies have been published that perform modal identification, i.e., natural frequencies, damping ratios, and mode shapes using the full-field information. In this work, experimental modal analysis has been performed in a multi-component automotive lighting system using HS 3D-DIC. Base motion excitation was applied to simulate operating conditions. A recently validated methodology has been employed for modal identification using transmissibility functions, i.e., the transfer functions from base motion tests. Results make it possible to identify local and global behavior of the different elements of injected polymeric and metallic materials.

  2. Modal Identification in an Automotive Multi-Component System Using HS 3D-DIC.

    Science.gov (United States)

    Molina-Viedma, Ángel Jesús; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A

    2018-02-05

    The modal characterization of automotive lighting systems becomes difficult using sensors due to the light weight of the elements which compose the component as well as the intricate access to allocate them. In experimental modal analysis, high speed 3D digital image correlation (HS 3D-DIC) is attracting the attention since it provides full-field contactless measurements of 3D displacements as main advantage over other techniques. Different methodologies have been published that perform modal identification, i.e., natural frequencies, damping ratios, and mode shapes using the full-field information. In this work, experimental modal analysis has been performed in a multi-component automotive lighting system using HS 3D-DIC. Base motion excitation was applied to simulate operating conditions. A recently validated methodology has been employed for modal identification using transmissibility functions, i.e., the transfer functions from base motion tests. Results make it possible to identify local and global behavior of the different elements of injected polymeric and metallic materials.

  3. Modal Identification in an Automotive Multi-Component System Using HS 3D-DIC

    Science.gov (United States)

    López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.

    2018-01-01

    The modal characterization of automotive lighting systems becomes difficult using sensors due to the light weight of the elements which compose the component as well as the intricate access to allocate them. In experimental modal analysis, high speed 3D digital image correlation (HS 3D-DIC) is attracting the attention since it provides full-field contactless measurements of 3D displacements as main advantage over other techniques. Different methodologies have been published that perform modal identification, i.e., natural frequencies, damping ratios, and mode shapes using the full-field information. In this work, experimental modal analysis has been performed in a multi-component automotive lighting system using HS 3D-DIC. Base motion excitation was applied to simulate operating conditions. A recently validated methodology has been employed for modal identification using transmissibility functions, i.e., the transfer functions from base motion tests. Results make it possible to identify local and global behavior of the different elements of injected polymeric and metallic materials. PMID:29401725

  4. Characterization of brominated flame retardants in construction and demolition waste components: HBCD and PBDEs.

    Science.gov (United States)

    Duan, Huabo; Yu, Danfeng; Zuo, Jian; Yang, Bo; Zhang, Yukui; Niu, Yongning

    2016-12-01

    The vast majority of construction material is inert and can be managed as nonhazardous. However, structures may have either been built with some environmentally unfriendly substances such as brominated flame retardants (BFRs), or have absorbed harmful elements such as heavy metals. This study focuses on end-of-life construction materials, i.e. construction and demolition (C&D) waste components. The aim was to characterize the concentration of extremely harmful substances, primarily BFRs, including hexabromocyclododecane (HBCD) and polybrominateddiphenyl ethers (PBDEs). Results revealed extremely high contents of HBCD and PBDEs in typical C&D waste components, particularly polyurethane foam materials. Policies should therefore be developed for the proper management of C&D waste, with priority for POP-containing debris. The first priority is to develop a classification system and procedures to separate out the harmful materials for more extensive processing. Additionally, identification and quantification of the environmental implications associated with dumping-dominated disposal of these wastes are required. Finally, more sustainable materials should be selected for use in the construction industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. THE STUDY OF THE CHARACTERIZATION INDICES OF FABRICS BY PRINCIPAL COMPONENT ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    HRISTIAN Liliana

    2017-05-01

    Full Text Available The paper was pursued to prioritize the worsted fabrics type, for the manufacture of outerwear products by characterization indeces of fabrics, using the mathematical model of Principal Component Analysis (PCA. There are a number of variables with a certain influence on the quality of fabrics, but some of these variables are more important than others, so it is useful to identify those variables to a better understanding the factors which can lead the improving of the fabrics quality. A solution to this problem can be the application of a method of factorial analysis, the so-called Principal Component Analysis, with the final goal of establishing and analyzing those variables which influence in a significant manner the internal structure of combed wool fabrics according to armire type. By applying PCA it is obtained a small number of the linear combinations (principal components from a set of variables, describing the internal structure of the fabrics, which can hold as much information as possible from the original variables. Data analysis is an important initial step in decision making, allowing identification of the causes that lead to a decision- making situations. Thus it is the action of transforming the initial data in order to extract useful information and to facilitate reaching the conclusions. The process of data analysis can be defined as a sequence of steps aimed at formulating hypotheses, collecting primary information and validation, the construction of the mathematical model describing this phenomenon and reaching these conclusions about the behavior of this model.

  6. Integrated model-experimental framework to assess carbon cycle components in disturbed mountainous terrain

    Science.gov (United States)

    Stenzel, J.; Hudiburg, T. W.; Berardi, D.; McNellis, B.; Walsh, E.

    2017-12-01

    In forests vulnerable to drought and fire, there is critical need for in situ carbon and water balance measurements that can be integrated with earth system modeling to predict climate feedbacks. Model development can be improved by measurements that inform a mechanistic understanding of the component fluxes of net carbon uptake (i.e., NPP, autotrophic and heterotrophic respiration) and water use, with specific focus on responses to climate and disturbance. By integrating novel field-based instrumental technology, existing datasets, and state-of-the-art earth system modeling, we are attempting to 1) quantify the spatial and temporal impacts of forest thinning on regional biogeochemical cycling and climate 2) evaluate the impact of forest thinning on forest resilience to drought and disturbance in the Northern Rockies ecoregion. The combined model-experimental framework enables hypothesis testing that would otherwise be impossible because the use of new in situ high temporal resolution field technology allows for research in remote and mountainous terrains that have been excluded from eddy-covariance techniques. Our preliminary work has revealed some underlying difficulties with the new instrumentation that has led to new ideas and modified methods to correctly measure the component fluxes. Our observations of C balance following the thinning operations indicate that the recovery period (source to sink) is longer than hypothesized. Finally, we have incorporated a new plant functional type parameterization for Northern Rocky mixed-conifer into our simulation modeling using regional and site observations.

  7. Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components

    International Nuclear Information System (INIS)

    Gharbi, Salma; Harmand, Souad; Jabrallah, Sadok Ben

    2015-01-01

    The thermal control of electronic components is aimed at ensuring their use in a temperature range compatible with their performances. This paper presents an experimental study of the behavior of phase change materials (PCMs) as the cooling system for electronic devices. Four configurations are used to control the increase in the system temperature: pure PCM, PCM in a silicone matrix, PCM in a graphite matrix and pure PCM in a system of fins. Thermo-physical properties of different PCMs are determined and found to be desirable for application in this study. Solid liquid interface visualization and temperature evolution are employed to understand the mechanism of heat transfer during the different stages. Results indicated that the inclusion of PCM can lower component increase temperature and extends twice the critical time of the heat sink. The use of Graphite matrix filled by PCM showed more improvement on system thermal performance than silicon matrix. Also, for the same fraction of copper, it was found that incorporating long copper fins with suitable spacing into PCM, can enhance heat distribution into PCM leading to longer remain component temperature below the critical limit. This work therefore shows that the combination of PCM and long, well-spaced fins presents an effective means for thermal control of electronic devices. - Highlights: • Study on thermal performance of different PCM based heat sink in electronic cooling. • Examination of heat transfer mechanism into heat sink for different conditions. • Graphite matrix shows more efficiency than silicon. • Inclusion PCM can reduce temperature increasing. • Heat sink with longer well spaced fins can extend longer the critical time

  8. Beam Characterizations at Femtosecond Electron Beam Facility

    CERN Document Server

    Rimjaem, Sakhorn; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Saisut, Jatuporn; Thongbai, Chitrlada; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond electron pulses. Theses short pulses are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed.

  9. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    Science.gov (United States)

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  10. Characterization of the Kootenai River Aquatic Macroinvertebrate Community before and after Experimental Nutrient Addition, 2003-2006. [Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Holderman, Charlie [Kootenai Tribe of Idaho Bonners

    2009-02-19

    The Kootenai River ecosystem has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam, completed in 1972 on the river near Libby Montana. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel, eliminating nutrient production and habitat diversity crucial to the functioning of a large river-floodplain ecosystem. Libby Dam continues to create large changes in the timing, duration, and magnitude of river flows, and greatly reduces sediment and nutrient transport to downstream river reaches. These changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to this artificial loss of nutrients, experimental nutrient addition was initiated in the Kootenay Lake's North Arm in 1992, the South Arm in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes the macroinvertebrate community in the Kootenai River and its response to experimental nutrient addition during 2005 and 2006. This report also provides an initial evaluation of cascading trophic interactions in response to nutrient addition. Macroinvertebrates were sampled at 12 sites along a 325 km section of the Kootenai River, representing an upriver unimpounded reference reach, treatment and control canyon reach sites, and braided and meandering reach sites, all downstream from Libby Dam. Principle component analysis revealed that richness explained the greatest amount of variability in response to nutrient addition as did taxa from Acari, Coleoptera, Ephemeroptera, Plecoptera, and Trichoptera. Analysis of variance revealed that nutrient addition had a

  11. Comprehensive Characterization of Palygorskite from Torrejon el Rubio (Spain) Based on Experimental Techniques and Theoretical DFT Studies

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Timon, V.; Cubero, J. J.; Sanchez-Ledesma, D. M.; Gutierrez-Nebot, L.; Martinez, J. J.; Romero, C.; Labajo, M.; Melon, A.; Barrios, I.

    2013-01-01

    New data about the physico-chemical, microstructural and crystal-chemical properties of the mineral paligorskite from Torrejon el Rubio (Caceres, Spain) were obtained by a combination of experimental techniques (XRD, FRX, FTIR, TG-DSC, SEM and chemical analyses), as well as geometry optimization by means of the Density Functional Theory (DFT). This study demonstrates the applicability of the mixed theoretical-experimental work to characterize and understand the properties of clay minerals used in technological applications and environmental remediation. (Author)

  12. Comprehensive Characterization of Palygorskite from Torrejon el Rubio (Spain) Based on Experimental Techniques and Theoretical DFT Studies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.M.; Timon, V.; Cubero, J. J.; Sanchez-Ledesma, D. M.; Gutierrez-Nebot, L.; Martinez, J. J.; Romero, C.; Labajo, M.; Melon, A.; Barrios, I.

    2013-10-01

    New data about the physico-chemical, microstructural and crystal-chemical properties of the mineral paligorskite from Torrejon el Rubio (Caceres, Spain) were obtained by a combination of experimental techniques (XRD, FRX, FTIR, TG-DSC, SEM and chemical analyses), as well as geometry optimization by means of the Density Functional Theory (DFT). This study demonstrates the applicability of the mixed theoretical-experimental work to characterize and understand the properties of clay minerals used in technological applications and environmental remediation. (Author)

  13. Characterization and optimization of the RA-3 experimental dosimetry for normal sheep lung radio-tolerance study

    International Nuclear Information System (INIS)

    Soto, M.S.; Gonzalez, S.J.; Thorp, Silvia I.; Pozzi, Emiliano; Gadan, M.; Miller, Marcelo; Farias, R.

    2009-01-01

    In the spirit of the novel technique proposed by the University of Pavia group (Italy) to irradiate an isolated organ using BNCT, the Comision Nacional de Energia Atomica (CNEA) in collaboration with the Fundacion Favaloro has initiated a project that aims to investigate the feasibility of BNCT for ex-situ treatment of diffuse metastatic disease in the lungs. The present work was carried out in the framework of the undergoing experimental study of the radio tolerance of normal sheep lung. With the purpose of characterizing and optimizing the resulting experimental dosimetry in normal lung subjected to neutron irradiation in the BNCT facility of the RA-3 reactor (CNEA), we have performed a series of experiments to find the optimum configuration of the container-lung system deriving a dose distribution preferentially uniform throughout the organ. Once the optimal set-up was established, we measured the total gamma dose rate and estimated the irradiation time compatible with the maximum tolerable dose of normal lung resulting from previous studies in rats. This estimation was performed using RBE, CBE and tolerance dose values derived from radiobiological studies with BNCT. In parallel with the experimental characterization, we built two different computational models of the container-lung system to perform Monte Carlo simulation with MCNP and Treatment Planning System NCTPlan. (author)

  14. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  15. Implications of the effective one-component analysis of pair correlations in colloidal fluids with polydispersity

    Science.gov (United States)

    Pond, Mark J.; Errington, Jeffrey R.; Truskett, Thomas M.

    2011-09-01

    Partial pair-correlation functions of colloidal suspensions with continuous polydispersity can be challenging to characterize from optical microscopy or computer simulation data due to inadequate sampling. As a result, it is common to adopt an effective one-component description of the structure that ignores the differences between particle types. Unfortunately, whether this kind of simplified description preserves or averages out information important for understanding the behavior of the fluid depends on the degree of polydispersity and can be difficult to assess, especially when the corresponding multicomponent description of the pair correlations is unavailable for comparison. Here, we present a computer simulation study that examines the implications of adopting an effective one-component structural description of a polydisperse fluid. The square-well model that we investigate mimics key aspects of the experimental behavior of suspended colloids with short-range, polymer-mediated attractions. To characterize the partial pair-correlation functions and thermodynamic excess entropy of this system, we introduce a Monte Carlo sampling strategy appropriate for fluids with a large number of pseudo-components. The data from our simulations at high particle concentrations, as well as exact theoretical results for dilute systems, show how qualitatively different trends between structural order and particle attractions emerge from the multicomponent and effective one-component treatments, even with systems characterized by moderate polydispersity. We examine consequences of these differences for excess-entropy based scalings of shear viscosity, and we discuss how use of the multicomponent treatment reveals similarities between the corresponding dynamic scaling behaviors of attractive colloids and liquid water that the effective one-component analysis does not capture.

  16. Characterization of Passive Spectral Regrowth in Radio Frequency Systems

    Science.gov (United States)

    2013-01-01

    as using RF absorber and Faraday cages around sensi- tive spots. To ensure maximum radiated isolation, each cable or component should be shielded...nonlinear effects of spectral-regrowth-generating phenomena on an RF signal. Detection of low-level passive spectral regrowth close in frequency to a...experimentally and analytically characterize the nonlinear effects of spectral- regrowth-generating phenomena on an RF signal. Detection of low-level passive

  17. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  18. Characterization of selected municipal solid waste components to estimate their biodegradability.

    Science.gov (United States)

    Bayard, R; Benbelkacem, H; Gourdon, R; Buffière, P

    2018-06-15

    Biological treatments of Residual Municipal Solid Waste (RMSW) allow to divert biodegradable materials from landfilling and recover valuable alternative resources. The biodegradability of the waste components needs however to be assessed in order to design the bioprocesses properly. The present study investigated complementary approaches to aerobic and anaerobic biotests for a more rapid evaluation. A representative sample of residual MSW was collected from a Mechanical Biological Treatment (MBT) plant and sorted out into 13 fractions according to the French standard procedure MODECOM™. The different fractions were analyzed for organic matter content, leaching behavior, contents in biochemical constituents (determined by Van Soest's acid detergent fiber method), Biochemical Oxygen Demand (BOD) and Bio-Methane Potential (BMP). Experimental data were statistically treated by Principal Components Analysis (PCA). Cumulative oxygen consumption from BOD tests and cumulative methane production from BMP tests were found to be positively correlated in all waste fractions. No correlation was observed between the results from BOD or BMP bioassays and the contents in cellulose-like, hemicelluloses-like or labile organic compounds. No correlation was observed either with the results from leaching tests (Soluble COD). The contents in lignin-like compounds, evaluated as the non-extracted RES fraction in Van Soest's method, was found however to impact negatively the biodegradability assessed by BOD or BMP tests. Since cellulose, hemicelluloses and lignin are the polymers responsible for the structuration of lignocellulosic complexes, it was concluded that the structural organization of the organic matter in the different waste fractions was more determinant on biodegradability than the respective contents in individual biopolymers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Experimental Characterization of LTE Wireless Links in High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Tomás Domínguez-Bolaño

    2017-01-01

    Full Text Available Multimedia and data-based services experienced a nonstopping growth over the last few years. People are continuously on the move using devices to access multimedia contents or other data-based services. Due to this, railway companies are showing a great interest in deploying broadband mobile wireless networks in high-speed-trains with the aim of supporting both passenger services provisioning as well as automatic train control and signaling. Nowadays, the most widely used technology for communications between trains and the railway infrastructure is GSM for Railways (GSM-R; however, it has limited capabilities to support such advanced services. Due to its success in the mass market, Long Term Evolution (LTE seems to be the best candidate to substitute GSM-R. In this paper, we experimentally characterize the downlink between an LTE Evolved NodeB (eNodeB and a high-speed train in a commercial high-speed line. We consider two links: the one between the eNodeB and the antennas placed outdoors on the train roof, and the direct link between the eNodeB and a receiver inside the train. Such a characterization consists in assessing the path loss, the Signal to Noise Ratio, the K-Factor, the Power Delay Profile, the delay spread, and the Doppler Power Spectral Density.

  20. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    Science.gov (United States)

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  1. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Tikalsky, Paul J. [Pennsylvania State Univ., University Park, PA (United States); Bahia, Hussain U. [Univ. of Wisconsin, Madison, WI (United States); Deng, An [Pennsylvania State Univ., University Park, PA (United States); Snyder, Thomas [Univ. of Wisconsin, Madison, WI (United States)

    2004-10-15

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  2. EXPERIMENTAL CHARACTERIZATION OF THE PERFORMANCES ...

    African Journals Online (AJOL)

    This study aims to show the preliminary results of an improved components and characteristics of heat exchanger air and Phase Change Material (PCM)that was designed, dimensioned, manufactured and tested in the laboratory (with melting temperature ranging between 27-29° C), especially for refreshing semi-passive ...

  3. Self-assembly kinetics of microscale components: A parametric evaluation

    Science.gov (United States)

    Carballo, Jose M.

    The goal of the present work is to develop, and evaluate a parametric model of a basic microscale Self-Assembly (SA) interaction that provides scaling predictions of process rates as a function of key process variables. At the microscale, assembly by "grasp and release" is generally challenging. Recent research efforts have proposed adapting nanoscale self-assembly (SA) processes to the microscale. SA offers the potential for reduced equipment cost and increased throughput by harnessing attractive forces (most commonly, capillary) to spontaneously assemble components. However, there are challenges for implementing microscale SA as a commercial process. The existing lack of design tools prevents simple process optimization. Previous efforts have characterized a specific aspect of the SA process. However, the existing microscale SA models do not characterize the inter-component interactions. All existing models have simplified the outcome of SA interactions as an experimentally-derived value specific to a particular configuration, instead of evaluating it outcome as a function of component level parameters (such as speed, geometry, bonding energy and direction). The present study parameterizes the outcome of interactions, and evaluates the effect of key parameters. The present work closes the gap between existing microscale SA models to add a key piece towards a complete design tool for general microscale SA process modeling. First, this work proposes a simple model for defining the probability of assembly of basic SA interactions. A basic SA interaction is defined as the event where a single part arrives on an assembly site. The model describes the probability of assembly as a function of kinetic energy, binding energy, orientation and incidence angle for the component and the assembly site. Secondly, an experimental SA system was designed, and implemented to create individual SA interactions while controlling process parameters independently. SA experiments

  4. Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Dewei Tang

    2017-03-01

    Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.

  5. Characterization of secondary organic aerosol from photo-oxidation of gasoline exhaust and specific sources of major components.

    Science.gov (United States)

    Ma, Pengkun; Zhang, Peng; Shu, Jinian; Yang, Bo; Zhang, Haixu

    2018-01-01

    To further explore the composition and distribution of secondary organic aerosol (SOA) components from the photo-oxidation of light aromatic precursors (toluene, m-xylene, and 1,3,5-trimethylbenzene (1,3,5-TMB)) and idling gasoline exhaust, a vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) was employed. Peaks of the molecular ions of the SOA components with minimum molecular fragmentation were clearly observed from the mass spectra of SOA, through the application of soft ionization methods in VUV-PIMS. The experiments comparing the exhaust-SOA and light aromatic mixture-SOA showed that the observed distributions of almost all the predominant cluster ions in the exhaust-SOA were similar to that of the mixture-SOA. Based on the characterization experiments of SOA formed from individual light aromatic precursors, the SOA components with molecular weights of 98 and 110 amu observed in the exhaust-SOA resulted from the photo-oxidation of toluene and m-xylene; the components with a molecular weight of 124 amu were derived mainly from m-xylene; and the components with molecular weights of 100, 112, 128, 138, and 156 amu were mainly derived from 1,3,5-TMB. These results suggest that C 7 -C 9 light aromatic hydrocarbons are significant SOA precursors and that major SOA components originate from gasoline exhaust. Additionally, some new light aromatic hydrocarbon-SOA components were observed for the first time using VUV-PIMS. The corresponding reaction mechanisms were also proposed in this study to enrich the knowledge base of the formation mechanisms of light aromatic hydrocarbon-SOA compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The biochemical effects of nano tamoxifen and some bioactive components in experimental breast cancer.

    Science.gov (United States)

    Ezzat, Afaf; Abdelhamid, Abdou Osman; El Awady, Mostafa K; Abd El Azeem, Amal S; Mohammed, Dina Mostafa

    2017-11-01

    The effect of nano tamoxifen and some bioactive components such as yeast, isoflavone, and silymarin on the level of resistance and prevention of breast cancer progression in experimental animals is the target of this study. Thirty female Sprague-Dawley rats received a single medication dosage of 7,12-dimethylbenz[a]anthracene (DMBA) intragastrically. After fourteen days of DMBA admission, the procedure protocol started out. Finally, all the experimental results evaluated, tabulated and statistically analyzed. The results demonstrated a highly significant elevation in the 8-OHdG level in group 1 (nano yeast) and 3 (nano silymarin) while the results demonstrated a highly significant reduction in group 2 (nano tamoxifen). The apoptosis results demonstrated a significant elevation in group 3 (nano silymarin) where appeared significant reduction in group 4 (nano isoflavone). ErbB-2 results demonstrated a significant elevation in group 2 (nano tamoxifen) and a significant reduction in each of group 3 (nano silymarin) and 4 (nano isoflavone). The lipid peroxide level demonstrated an extremely significant reduction in group 4 (nano isoflavone). And a significant reduction of total antioxidant was observed in group 3 (nano silymarin) in comparison to injected animals control. This may be considered a new vision and strategy to resist breast cancer disease or prevent progression. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. A new cubic phantom for PET/CT dosimetry: Experimental and Monte Carlo characterization

    International Nuclear Information System (INIS)

    Belinato, Walmir; Silva, Rogerio M.V.; Souza, Divanizia N.; Santos, William S.; Caldas, Linda V.E.; Perini, Ana P.; Neves, Lucio P.

    2015-01-01

    In recent years, positron emission tomography (PET) associated with multidetector computed tomography (MDCT) has become a diagnostic technique widely disseminated to evaluate various malignant tumors and other diseases. However, during PET/CT examinations, the doses of ionizing radiation experienced by the internal organs of patients may be substantial. To study the doses involved in PET/CT procedures, a new cubic phantom of overlapping acrylic plates was developed and characterized. This phantom has a deposit for the placement of the fluorine-18 fluoro-2-deoxy-D-glucose ( 18 F-FDG) solution. There are also small holes near the faces for the insertion of optically stimulated luminescence dosimeters (OSLD). The holes for OSLD are positioned at different distances from the 18 F-FDG deposit. The experimental results were obtained in two PET/CT devices operating with different parameters. Differences in the absorbed doses were observed in OSLD measurements due to the non-orthogonal positioning of the detectors inside the phantom. This phantom was also evaluated using Monte Carlo simulations, with the MCNPX code. The phantom and the geometrical characteristics of the equipment were carefully modeled in the MCNPX code, in order to develop a new methodology form comparison of experimental and simulated results, as well as to allow the characterization of PET/CT equipments in Monte Carlo simulations. All results showed good agreement, proving that this new phantom may be applied for these experiments. (authors)

  8. A new cubic phantom for PET/CT dosimetry: Experimental and Monte Carlo characterization

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil); Silva, Rogerio M.V.; Souza, Divanizia N. [Departamento de Fisica, Universidade Federal de Sergipe-UFS, Sao Cristovao, Sergipe (Brazil); Santos, William S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo SP (Brazil); Perini, Ana P.; Neves, Lucio P. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo SP (Brazil); Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil)

    2015-07-01

    In recent years, positron emission tomography (PET) associated with multidetector computed tomography (MDCT) has become a diagnostic technique widely disseminated to evaluate various malignant tumors and other diseases. However, during PET/CT examinations, the doses of ionizing radiation experienced by the internal organs of patients may be substantial. To study the doses involved in PET/CT procedures, a new cubic phantom of overlapping acrylic plates was developed and characterized. This phantom has a deposit for the placement of the fluorine-18 fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) solution. There are also small holes near the faces for the insertion of optically stimulated luminescence dosimeters (OSLD). The holes for OSLD are positioned at different distances from the {sup 18}F-FDG deposit. The experimental results were obtained in two PET/CT devices operating with different parameters. Differences in the absorbed doses were observed in OSLD measurements due to the non-orthogonal positioning of the detectors inside the phantom. This phantom was also evaluated using Monte Carlo simulations, with the MCNPX code. The phantom and the geometrical characteristics of the equipment were carefully modeled in the MCNPX code, in order to develop a new methodology form comparison of experimental and simulated results, as well as to allow the characterization of PET/CT equipments in Monte Carlo simulations. All results showed good agreement, proving that this new phantom may be applied for these experiments. (authors)

  9. Characterization of aluminum/steel components from recycled swarf using the powder metallurgy as technique

    International Nuclear Information System (INIS)

    Souza, V.E.S.; Masieiro, F.R.S.; Lourenco, J.M.; Felipe, R.C.T.S.

    2009-01-01

    Full text: The powder metallurgy process consists to produce metallic or ceramic components through pressure in a powder mass. These components will be submitted to a sintering temperature in order to consolidate them and then improve their mechanical proprieties. The industry is responsible for the swarf generation from different manufacture process. This paper has main goal the reutilization of aluminum and steel swarf using the powder metallurgy as technique. The methodology used in this work consists to compact Al 6060 plus steel SAE 1045 as reinforce material at 250MPa, 400MPa and 600MPa. The composition about these compacted will be 30%, 40%, 50% of steel into aluminum matrix. In this way will be analyze the hardness as function of the compressibility and quantity of steel. The samples will be processed at 500°C during 45 minutes using a resistive furnace in a hydrogen atmosphere. Micrographs of the sintered samples will be obtained by using a Scanning Electron Microscope and Optic Microscope. X-rays diffraction will be also used to characterize the phases found to due diffusivity between the steel and aluminum. (author)

  10. Purpose of the Materials Characterization Center

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1984-09-01

    The Materials Characterization Center (MCC) at the Pacific Northwest Laboratory is the experimental arm of the Materials Characterization Organization (MCO), which was established by the US Department of Energy (DOE) in FY 1980 to ensure high quality characterization and qualification of waste package materials essential to the reliable performance of DOE nuclear waste management programs. MCC is responsible for publishing key test methods and data in the Nuclear Waste Materials Handbook (DOE/TIC-11400). It sponsors a continuing series of workshops that address materials characterization test method issues. It supplies well-characterized reference and testing materials for use by the DOE nuclear waste management programs. It develops generic test methods and supports the repository waste package projects in developing selected site-specific test methods and performing confirmatory testing of these methods. When these test methods are approved by the MRB they constitute the formal tests to be used by laboratories to test and qualify materials, evaluate waste package components, and assure compliance with standards and/or specifications for the final product

  11. Experimental Characterization of the Energy Absorption of Functionally Graded Foam Filled Tubes Under Axial Crushing Loads

    Science.gov (United States)

    Ebrahimi, Saeed; Vahdatazad, Nader; Liaghat, Gholamhossein

    2018-03-01

    This paper deals with the energy absorption characterization of functionally graded foam (FGF) filled tubes under axial crushing loads by experimental method. The FGF tubes are filled axially by gradient layers of polyurethane foams with different densities. The mechanical properties of the polyurethane foams are firstly obtained from axial compressive tests. Then, the quasi-static compressive tests are carried out for empty tubes, uniform foam filled tubes and FGF filled tubes. Before to present the experimental test results, a nonlinear FEM simulation of the FGF filled tube is carried out in ABAQUS software to gain more insight into the crush deformation patterns, as well as the energy absorption capability of the FGF filled tube. A good agreement between the experimental and simulation results is observed. Finally, the results of experimental test show that an FGF filled tube has excellent energy absorption capacity compared to the ordinary uniform foam-filled tube with the same weight.

  12. Experimental characterization of electrochemically polymerized polycarbazole film and study of its behavior with different metals contacts

    Science.gov (United States)

    Srivastava, Aditi; Chakrabarti, P.

    2017-12-01

    In this paper, we present the method of fabrication, experimental characterization, and comparison of electrical parameters of semiconducting polycarbazole film with different rectifying metals contacts. Electrochemical polymerization and deposition of organic semiconductor, i.e., polycarbazole on ITO-coated glass substrate, were performed using an electrochemical workstation. Experimental characterization of the prepared polymer film was done in respect of morphology, absorption, bandgap, and thickness. The stability and electro-activity of polycarbazole film were verified by the cyclic voltammetric method. Study of the behavior of prepared polycarbazole film with the different metals contacts such as Aluminum, Copper, Tungsten, and Tin has been done using semiconductor device analyzer. Various electrical parameters such as barrier height, ideality factor, and reverse saturation current have been extracted with different metal contacts, and the values were compared and contrasted. The nature of I- V characteristic of polycarbazole film in non-contact mode has also been analyzed using scanning tunneling microscope. The rectifying I- V characteristics obtained with different metals contacts have also been validated by the simulation on Deckbuild platform of the of ATLAS® software tool from Silvaco Inc.

  13. Ratio of ellipticities between 192 and 208 nm (R1 ): An effective electronic circular dichroism parameter for characterization of the helical components of proteins and peptides.

    Science.gov (United States)

    Banerjee, Raja; Sheet, Tridip

    2017-11-01

    Circular dichroism (CD) spectroscopy represents an important tool for characterization of the peptide and protein secondary structures that mainly arise from the conformational disposition of the peptide backbone in solution. In 1991 Manning and Woody proposed that, in addition to the signal intensity, the ratio between [θ]nπ* and [θ]ππ*ǁ ((R 2 ) ≅ [θ] 222 /[θ] 208 ), along with [θ]ππ*⊥ and [θ]ππ*ǁ ((R 1 ) ≅ [θ] 192 /[θ] 208 ), may be utilized towards identifying the peptide/protein conformation (especially 3 10 - and α-helices). However, till date the use of the ratiometric ellipticity component for helical structure analysis of peptides and proteins has not been reported. We studied a series of temperature dependent CD spectra of a thermally stable, model helical peptide and its related analogs in water as a function of added 2,2,2-trifluoroethanol (TFE) in order to explore their landscape of helicity. For the first time, we have experimentally shown here that the R 1 parameter can characterize better the individual helices, while the other parameter R 2 and the signal intensity do not always converge. We emphasize the use of the R 1 ratio of ellipticities for helical characterization because of the common origin of these two bands (exciton splitting of the amide π→ π* transition in a helical polypeptide). This approach may become worthwhile and timely with the increasing accessibility of CD synchrotron sources. © 2017 Wiley Periodicals, Inc.

  14. [The effect of qualitatively different fatty components of the diet on mitochondrial membranes in animals with experimental anthracosis].

    Science.gov (United States)

    Pichkhadze, G M; Daĭker, V R

    1989-01-01

    The diets with qualitatively different content of fat were found to produce structural and functional alternations in liver mitochondria of rats with experimental anthracosis. It was established in particular that the increase of the vegetable oil quota in the diet of rats affected the structure and function of mitochondria whereas the diet whose fat component included butter, lard, sunflower oil, and margarine at a ratio of 1:1, 5:1:0.5 reduced the untoward effect of coal dust and exercise on the mitochondrial membranes.

  15. Development of acidic processes for decontaminating LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Hill, E F [Rockwell International, Atomics International Division, Canoga Park (United States); Colburn, R P; Lutton, J M; Maffei, H P [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    The objective of the DOE decontamination program is to develop a well characterized chemical decontamination process for application to LMFBR primary system components that subsequently permits contact maintenance and allows requalification of the components for reuse in reactors. The paper describes the subtasks of deposit characterization, development of requalification and process acceptance criteria, development of process evaluation techniques and studies which led to a new acidic process for decontaminating 304 stainless steel hot leg components.

  16. Development of acidic processes for decontaminating LMFBR components

    International Nuclear Information System (INIS)

    Hill, E.F.; Colburn, R.P.; Lutton, J.M.; Maffei, H.P.

    1978-01-01

    The objective of the DOE decontamination program is to develop a well characterized chemical decontamination process for application to LMFBR primary system components that subsequently permits contact maintenance and allows requalification of the components for reuse in reactors. The paper describes the subtasks of deposit characterization, development of requalification and process acceptance criteria, development of process evaluation techniques and studies which led to a new acidic process for decontaminating 304 stainless steel hot leg components

  17. Through-the-wall high-resolution imaging of a human and experimental characterization of the transmission of wall materials

    Science.gov (United States)

    Nilsson, S.; Jänis, A.; Gustafsson, M.; Kjellgren, J.; Sume, Ain

    2008-10-01

    This paper describes the research efforts made at the Swedish Defence Research Agency (FOI) concerning through-the-wall imaging radar, as well as fundamental characterization of various wall materials. These activities are a part of two FOI-projects concerning security sensors in the aspects of Military Operations in Urban Terrain (MOUT) and Homeland Defence. Through-the-wall high resolution imaging of a human between 28-40 GHz has been performed at FOI. The UWB radar that was used is normally a member of the instrumentation of the FOI outdoor RCS test range Lilla Gåra. The armed test person was standing behind different kinds of walls. The radar images were generated by stepping the turntable in azimuth and elevation. The angular resolution in the near-field was improved by refocusing the parabolic antennas, which in combination with the large bandwidth (12 GHz) gave extremely high resolution radar images. A 3D visualization of the person even exposed the handgun tucked into one hip pocket. A qualitative comparison between the experimental results and simulation results (physical optics-based method) will also be presented. The second part of this paper describes results from activities at FOI concerning material characterization in the 2-110 GHz region. The transmission of building, packing and clothing materials has been experimentally determined. The wide-band measurements in free space were carried out with a scalar network analyzer. In this paper results from these characterizations will be presented. Furthermore, an experimental investigation will be reported of how the transmission properties for some moisted materials change as a function of water content and frequency. We will also show experimental results of how the transmission properties of a pine panel are affected when the surface is coated with a thin surface layer of water.

  18. Experimental technique of neutron reflection

    International Nuclear Information System (INIS)

    Chen Bo; Huang Chaoqiang; Li Xinxi

    2006-12-01

    It is presented that the classifications, structures and components of neutron reflectometer (NR), as well s functions and parameters of each components, detailed characters of NR facility 'PRN-2M'. Based on the practical experiments, the basic experimental techniques, the measurement and the related experimental settings are described, including the choice of experimental conditions, adjustments of polarized neutron beam line, basic experimental technique and approach of measurement. The above can be an instruction for NR experiments and a reference for NR construction. (authors)

  19. Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components

    Science.gov (United States)

    Nazarenko, Lidiya; Khoroshun, Leonid; Müller, Wolfgang H.; Wille, Ralf

    2009-02-01

    In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.

  20. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Pauul J. Tikalsky

    2004-10-31

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  1. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  2. Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components

    Science.gov (United States)

    Iebba, Maurizio; Astarita, Antonello; Mistretta, Daniela; Colonna, Ivano; Liberini, Mariacira; Scherillo, Fabio; Pirozzi, Carmine; Borrelli, Rosario; Franchitti, Stefania; Squillace, Antonino

    2017-08-01

    This paper aims to study the genesis of defects in titanium components made through two different additive manufacturing technologies: selective laser melting and electron beam melting. In particular, we focussed on the influence of the powders used on the formation of porosities and cavities in the manufactured components. A detailed experimental campaign was carried out to characterize the components made through the two additive manufacturing techniques aforementioned and the powders used in the process. It was found that some defects of the final components can be attributed to internal porosities of the powders used in the manufacturing process. These internal porosities are a consequence of the gas atomization process used for the production of the powders themselves. Therefore, the importance of using tailored powders, free from porosities, in order to manufacture components with high mechanical properties is highlighted.

  3. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  4. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  5. Molecular characterization and function of tenomodulin, a marker of tendons and ligaments that integrate musculoskeletal components

    Directory of Open Access Journals (Sweden)

    Chisa Shukunami, DDS, PhD

    2016-11-01

    Full Text Available Tendons and ligaments are dense fibrous bands of connective tissue that integrate musculoskeletal components in vertebrates. Tendons connect skeletal muscles to the bone and function as mechanical force transmitters, whereas ligaments bind adjacent bones together to stabilize joints and restrict unwanted joint movement. Fibroblasts residing in tendons and ligaments are called tenocytes and ligamentocytes, respectively. Tenomodulin (Tnmd is a type II transmembrane glycoprotein that is expressed at high levels in tenocytes and ligamentocytes, and is also present in periodontal ligament cells and tendon stem/progenitor cells. Tnmd is related to chondromodulin-1 (Chm1, a cartilage-derived angiogenesis inhibitor, and both Tnmd and Chm1 are expressed in the CD31− avascular mesenchyme. The conserved C-terminal hydrophobic domain of these proteins, which is characterized by the eight Cys residues to form four disulfide bonds, may have an anti-angiogenic function. This review highlights the molecular characterization and function of Tnmd, a specific marker of tendons and ligaments.

  6. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    International Nuclear Information System (INIS)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P.; Courtney, J.C.; Duff, M.J.

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m 3 (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein

  7. Multi-component acoustic characterization of porous media

    NARCIS (Netherlands)

    Van Dalen, K.N.

    2011-01-01

    The characterization of porous materials (e.g., sandstone) is very important for geotechnical and reservoir engineers. For this purpose, often use is made of acoustic waves that are sent through the medium. The desired material parameters can then be estimated from the measured signals. However,

  8. Characterization and Control of Unsteady Aerodynamics on Wind Turbine Aerofoils

    International Nuclear Information System (INIS)

    Naughton, J; Strike, J; Hind, M; Babbitt, A; Magstadt, A; Nikoueeyan, P; Davidson, P; Shareman, J

    2014-01-01

    An experimental capability developed for testing two-dimensional aerofoils while dynamically pitching is discussed. Key to the approach are a dynamic pitch system, the rapid prototyping of aerofoils, inexpensive time-resolved pressure measurements, the ability to capture flow-field structure, and the ability to add compliance to the system. In addition to describing the system components, examples of typical results for characterization and control studies are given. Use of the data is also demonstrated through comparison of the results from a simulation with those from an experiment under the same conditions. Future uses of this experimental capability are also discussed

  9. Myocardial imaging with thallium-201: an experimental model for analysis of the true myocardial and background image components

    International Nuclear Information System (INIS)

    Narahara, K.A.; Hamilton, G.W.; Williams, D.L.; Gould, K.L.

    1977-01-01

    The true myocardial and background components of a resting thallium-201 myocardial image were determined in an experimental dog model. True background was determined by imaging after the heart had been removed and replaced with a water-filled balloon of equal size and shape. In all studies, the background estimated from the region surrounding the heart exceeded true background activity. Furthermore, the relationship between true myocardial background and that estimated from the pericardiac region was inconsistent. Background estimates based on the activity surrounding the heart were not accurate predictors of true background activity

  10. Experimental Study of Nuclear Security System Components for Achieving the Intrusion Process via Sensor's Network System

    International Nuclear Information System (INIS)

    EL-Kafas, A.A.

    2011-01-01

    Cluster sensors are one of nuclear security system components which are used to detect any intrusion process of the nuclear sites. In this work, an experimental measuring test for sensor performance and procedures are presented. Sensor performance testing performed to determine whether a particular sensor will be acceptable in a proposed design. We have access to a sensors test field in which the sensor of interest is already properly installed and the parameters have been set to optimal levels by preliminary testing. The glass-breakage (G.B) and open door (O.D) sensors construction, operation and design for the investigated nuclear site are explained. Intrusion tests were carried out inside the field areas of the sensors to evaluate the sensor performance during the intrusion process. Experimental trials were performed for achieving the intrusion process via sensor network system. The performance and intrusion senses of cluster sensors inside the internal zones was recorded and evaluated. The obtained results explained that the tested and experimented G.B sensors have a probability of detection P (D) value 65% founded, and 80% P (D) of Open-door sensor

  11. Characterization of spent fuel disassembly hardware and nonfuel bearing components and their relationship to 10 CFR 61

    International Nuclear Information System (INIS)

    Luksic, A.T.

    1987-02-01

    There are a variety of wastes that will be disposed of by the federal waste management system under the Nuclear Waste Policy Act of 1982. The primary waste form is spent nuclear fuel. Currently, this is in the form of fuel assemblies. If the fuel pins are removed from the fuel assembly, as in consolidation, then the fuel pins and the structural portion of the fuel assembly must be considered as separate waste streams. The structural hardware consists of end fittings, grid spacers, water rods (BWR 8 x 8 only), control rod guide tubes (PWR only) and various nuts, washers, springs, etc. These are referred to as spent fuel disassembly (SFD) hardware. There will also be a number of other components which are defined in Appendix E of 10 CFR 961, the standard utility contract. These are referred to as nonfuel-bearing (NFB) components, and include fuel channels (BWR), control rods, fission chambers, neutron sources, thimble plugs, and other components. This paper characterizes spent fuel disassembly (SFD) hardware, and nonfuel-bearing (NFB) components for the most abundant fuel types. The descriptions and figures given are representative for the items described. Many subvariants exist due to design evaluation, which are not covered. This paper also discusses the relationship of these wastes to 10 CFR 61 waste classification

  12. Principal component analysis in an experimental cold flow model of a fluid catalytic cracking unit by gammametry

    International Nuclear Information System (INIS)

    Araujo, Janeo Severino C. de; Dantas, Carlos Costa; Santos, Valdemir A. dos; Souza, Jose Edson G. de; Luna-Finkler, Christine L.

    2009-01-01

    The fluid dynamic behavior of riser of a cold flow model of a Fluid Catalytic Cracking Unit (FCCU) was investigated. The experimental data were obtained by the nuclear technique of gamma transmission. A gamma source was placed diametrically opposite to a detector in any straight section of the riser. The gas-solid flow through riser was monitored with a source of Americium-241 what allowed obtaining information of the axial solid concentration without flow disturbance and also identifying the dependence of this concentration profile with several independent variables. The MatLab R and Statistica R software were used. Statistica tool employed was the Principal Components Analysis (PCA), that consisted of the job of the data organization, through two-dimensional head offices to allow extract relevant information about the importance of the independent variables on axial solid concentration in a cold flow riser. The variables investigated were mass flow rate of solid, mass flow rate of gas, pressure in the riser base and the relative height in the riser. The first two components reached about 98 % of accumulated percentage of explained variance. (author)

  13. Experimental and numerical characterization of scalable cellulose nano-fiber composite

    Science.gov (United States)

    Barari, Bamdad

    Fiber-reinforced polymer composites have been used in recent years as an alternative to the conventional materials because of their low weight, high mechanical properties and low processing temperatures. Most polymer composites are traditionally made using reinforcing fibers such as carbon or glass fibers. However, there has been recent interest in making these reinforcing fibers from natural resources. The plant-derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties at the nano-scale that are much superior to the mechanical properties of the traditional natural fibers (such as jute, hemp, kenaf, etc) used in the natural-fiber based polymer composites. Because CNF is bio-based and biodegradable, it is an attractive 'green' alternative for use in automotive, aerospace, and other engineering applications. However, efforts to produce CNF based nano-composites, with successful scaling-up of the remarkable nanoscale properties of CNF, have not met with much success and form an active area of research. The main goals of this research are to characterize the scalable CNF based nano composites using experimental methods and to develop effective models for flow of polymeric resin in the CNF-based porous media used during the proposed manufacture of CNF nano-composites. In the CNF composite characterization section, scalable isotropic and anisotropic CNF composites were made from a porous CNF preforms created using a freeze drying process. Formation of the fibers during freeze-drying process can change the micro skeleton of the final preform structure as non-aligned or isotropic and aligned or anisotropic CNF. Liquid Composite Molding (LCM) processes form a set of liquid molding technologies that are used quite commonly for making the conventional polymer composites. An improvised vacuum-driven LCM process was used to make the CNF-based nanocomposites from CNF preforms using a 'green' epoxy resin with high bio-content. Under the topic of

  14. Characterization of aircraft deicer and anti-icer components and toxicity in airport snowbanks and snowmelt runoff

    Science.gov (United States)

    Corsi, S.R.; Geis, S.W.; Loyo-Rosales, J. E.; Rice, C.P.; Sheesley, R.J.; Failey, G.G.; Cancilla, Devon A.

    2006-01-01

    Snowbank samples were collected from snowbanks within a medium-sized airport for four years to characterize aircraft deicer and anti-icer (ADAF) components and toxicity. Concentrations of ADAF components varied with median glycol concentrations from individual sampling periods ranging from 65 to 5940 mg/L. Glycol content in snowbanks ranged from 0.17 to 11.4% of that applied to aircraft. Glycol, a freezing point depressant, was selectively removed during melt periods before snow and ice resulting in lower glycol concentrations after melt periods. Concentrations of ADAF components in airport runoff were similar during periods of snowmelt as compared to active ADAF application periods; however, due to the long duration of snowmelt events, greater masses of glycol were transported during snowmelt events. Alkylphenol ethoxylates (APEO), selected APEO degradation products, and 4- and 5-methyl-1H-benzotriazole were detected in snowbank samples and airport snowmelt. Concentrations of APEO parent products were greater in snowbank samples than in runoff samples. Relative abundance of APEO degradation products increased in the downstream direction from the snowbank to the outfalls and the receiving stream with respect to APEO parent compounds and glycol. Toxicity in Microtox assays remained in snowbanks after most glycol had been removed during melt periods. Increased toxicity in airport snowbanks as compared to other urban snowbanks was not explained by additional combustion or fuel contribution in airport snow. Organic markers suggest ADAF additives as a possible explanation for this increased toxicity. Results indicate that glycol cannot be used as a surrogate for fate and transport of other ADAF components. ?? 2006 American Chemical Society.

  15. Experimental characterization of the water transport properties of PEM fuel cells diffusion media

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Sole, Joshua D.; Hernandez-Guerrero, Abel; Ellis, Michael W.

    2012-11-01

    A full experimental characterization of the liquid water transport properties of Toray TGP-090 paper is carried out in this work. Porosity, capillary pressure curves (capillary pressure-saturation relationships), absolute permeability, and relative permeability are obtained via experimental procedures. Porosity was determined using two methods, both aimed to obtain the solid volume of the network of fibers comprising the carbon paper. Capillary pressure curves were obtained using a gas displacement porosimeter where liquid water is injected using a syringe pump and the capillary pressure is recorded using a differential pressure transducer. Absolute and relative permeability were also measured with an apparatus designed at Virginia Tech. Absolute permeability was calculated at different flow rates using nitrogen. On the other hand, relative permeability was a more complicated task to carry out giving the complexity (two-phase flow condition) of this property. All of the water transport properties of Toray TGP-090 were studied under the effects of wet-proofing (PTFE treatment) and compression. Some observations were that wet-proofing reduces the porosity of the raw material, increases the hydrophobicity (Pc-S curves), and reduces the permeability of the material. Similar effects were observed for compression, where compressed material exhibited trends similar to those of wet-proofing effects. The results presented here will allow a more accurate modeling of PEMFCs, providing an experimentally verified alternative to the assumptions frequently employed.

  16. Component effects in mixture experiments

    International Nuclear Information System (INIS)

    Piepel, G.F.

    1980-01-01

    In a mixture experiment, the response to a mixture of q components is a function of the proportions x 1 , x 2 , ..., x/sub q/ of components in the mixture. Experimental regions for mixture experiments are often defined by constraints on the proportions of the components forming the mixture. The usual (orthogonal direction) definition of a factor effect does not apply because of the dependence imposed by the mixture restriction, /sup q/Σ/sub i=1/ x/sub i/ = 1. A direction within the experimental region in which to compute a mixture component effect is presented and compared to previously suggested directions. This new direction has none of the inadequacies or errors of previous suggestions while having a more meaningful interpretation. The distinction between partial and total effects is made. The uses of partial and total effects (computed using the new direction) in modification and interpretation of mixture response prediction equations are considered. The suggestions of the paper are illustrated in an example from a glass development study in a waste vitrification program. 5 figures, 3 tables

  17. Experimental characterization of solid particle transport by slug flow using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Goharzadeh, A; Rodgers, P

    2009-01-01

    This paper presents an experimental study of gas-liquid slug flow on solid particle transport inside a horizontal pipe with two types of experiments conducted. The influence of slug length on solid particle transportation is characterized using high speed photography. Using combined Particle Image Velocimetry (PIV) with Refractive Index Matching (RIM) and fluorescent tracers (two-phase oil-air loop) the velocity distribution inside the slug body is measured. Combining these experimental analyses, an insight is provided into the physical mechanism of solid particle transportation due to slug flow. It was observed that the slug body significantly influences solid particle mobility. The physical mechanism of solid particle transportation was found to be discontinuous. The inactive region (in terms of solid particle transport) upstream of the slug nose was quantified as a function of gas-liquid composition and solid particle size. Measured velocity distributions showed a significant drop in velocity magnitude immediately upstream of the slug nose and therefore the critical velocity for solid particle lifting is reached further upstream.

  18. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. [Argonne National Lab., Idaho Falls, ID (United States); Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States); Duff, M.J. [Consolidated Technical Services, Inc., Walkersville, MD (United States)

    1992-02-01

    Argonne National Laboratory is participating in the Department of Energy`s Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  19. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. (Argonne National Lab., Idaho Falls, ID (United States)); Courtney, J.C. (Louisiana State Univ., Baton Rouge, LA (United States)); Duff, M.J. (Consolidated Technical Services, Inc., Walkersville, MD (United States))

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  20. HPLC characterization of clinically used sup(99m)Tc bone agents. Relative tissue distribution of fractionated components in mice

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Meinken, G.E.; Richards, P.; Ford, L.A.; Benson, W.R.

    1982-01-01

    A study was undertaken to separate and characterize the components of clinically used (kit produced) 99m-Tc-Sn-MDP and 99m-Tc-Sn-EHDP preparations by high performance liquid chromatography (HPLC) using radioactivity detection mode. Tissue distribution studies of the HPLC fractionated species were carried out in mice in order to define the in vivo behavior of the individual components. Effect of many variables such as time, oxygen, pH, temperature, etc. on the above two systems was also studied in relation to the composition as determined by HPLC and changes, if any, in the biological behavior. The results demonstrate the unique capabilities of reverse phase HPLC for rapid and high resolution analysis of complex 99mTc radiopharmaceutical mixtures

  1. RCC-MRx: Design and construction rules for mechanical components in high-temperature structures, experimental reactors and fusion reactors

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-MRx code was developed for sodium-cooled fast reactors (SFR), research reactors (RR) and fusion reactors (FR-ITER). It provides the rules for designing and building mechanical components involved in areas subject to significant creep and/or significant irradiation. In particular, it incorporates an extensive range of materials (aluminum and zirconium alloys in response to the need for transparency to neutrons), sizing rules for thin shells and box structures, and new modern welding processes: electron beam, laser beam, diffusion and brazing. The RCC-MR code was used to design and build the prototype Fast Breeder Reactor (PFBR) developed by IGCAR in India and the ITER Vacuum Vessel. The RCC-Mx code is being used in the current construction of the RJH experimental reactor (Jules Horowitz reactor). The RCC-MRx code is serving as a reference for the design of the ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration), for the design of the primary circuit in MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) and the design of the target station of the ESS project (European Spallation Source). Contents of the 2015 edition of the RCC-MRx code: Section I General provisions; Section II Additional requirements and special provisions; Section III Rules for nuclear installation mechanical components: Volume I: Design and construction rules: Volume A (RA): General provisions and entrance keys, Volume B (RB): Class 1 components and supports, Volume C (RC): Class 2 components and supports, Volume D (RD): Class 3 components and supports, Volume K (RK): Examination, handling or drive mechanisms, Volume L (RL): Irradiation devices, Volume Z (Ai): Technical appendices; Volume II: Materials; Volume III: Examinations methods; Volume IV: Welding; Volume V: Manufacturing operations; Volume VI: Probationary phase rules

  2. Abstracts of International Conference on Experimental and Computing Methods in High Resolution Diffraction Applied for Structure Characterization of Modern Materials - HREDAMM

    International Nuclear Information System (INIS)

    2004-01-01

    The conference addressed all aspects of high resolution diffraction. The topics of meeting include advanced experimental diffraction methods and computer data analysis for characterization of modern materials as well as the progress and new achievements in high resolution diffraction (X-ray, electrons, neutrons). Application of these methods for characterization of modern materials are widely presented among the invited, oral and poster contributions

  3. Experimental characterization of meteoric material exposed to a high enthalpy flow in the Plasmatron

    Science.gov (United States)

    Zavalan, Luiza; Bariselli, Federico; Barros Dias, Bruno; Helber, Bernd; Magin, Thierry

    2017-04-01

    Meteoroids, disintegrated during their entry in the atmosphere, contribute massively to the input of cosmic metals to Earth. Yet, this phenomenon is not well understood. Experimental studies on meteor material degradation in high enthalpy facilities are scarce and often do not provide quantitative data which are necessary for the validation of the simulation tools. In this work, we tried to duplicate typical meteor flight conditions in a ground testing facility to analyze the thermo-chemical degradation mechanisms by reproducing the stagnation point region conditions. The VKI Plasmatron is one of the most powerful induction-coupled plasma wind-tunnels in the world. It represents an important tool for the characterization of ceramic and ablative materials employed in the fabrication of Thermal Protection Systems (TPS) of spacecraft. The testing methodology and measurement techniques used for TPS characterization were adapted for the investigation of evaporation and melting in samples of basalt (meteorite surrogate) and ordinary chondrite. The materials were exposed to stagnation point heat fluxes of 1 MW/m2 and 3 MW/m2. During the test, numerous local pockets were formed at the surface of the samples by the emergence of gas bubbles. Images recorded through a digital 14bit CCD camera system clearly revealed the frothing of the surface for both tested materials. This process appeared to be more heterogeneous for the basaltic samples than for the ordinary chondritic material. Surface temperature measurements obtained via a two-color pyrometer showed a maximum surface temperature in the range between 2160 and 2490 Kelvins. Some of the basaltic samples fractured during the tests. This is probably due to the strong thermal gradients experienced by the material in these harsh conditions. Therefore, the surface temperature measurements suffered sudden drops in correspondence with the fracturing time. Emission spectra of air and ablated species were collected with resolution

  4. Nonlinear light scattering in a two component medium: optical limiting application

    International Nuclear Information System (INIS)

    Joudrier, Valerie

    1998-01-01

    Scattering is a fundamental manifestation of the interaction between matter and radiation, resulting from inhomogeneities in the refractive index, which decrease transmission. This phenomenon is then especially attractive for sensor protection from laser light by optical limiting. One of the methods to induce scattering at high incident energy is to make use of the Kerr effect where the index of refraction is intensity dependent. Thus, the idea is to use a two component medium with a good index matching between the two components at low intensity, resulting in the medium transparency, and to modify it, at high intensity, due to the non linearity of one component making the medium highly scattering. Some of the experimental and theoretical investigations concerning a new material (here, a cell containing some liquid with small silica particles as inclusion in it) are presented in the visible domain (I=532 nm), for the nanosecond protection regime, beginning, with the chemical synthesis of the sample. The experimental results concerning the optical limiting process are presented, showing that nonlinear scattering is clearly the dominant mechanism in confrontation with other potential nonlinear effects. Several complementary experiments are then performed to complete the nonlinear scattering characterization, involving the measurement of the angular distribution of scattered energy and the integrating sphere measurement. Further information are also gained by studying the time response of the nonlinearities with a dual-beam (pulsed-pump, cw probe) technique. The previous experimental data is also analyzed with some simple theoretical models to evaluate the nonlinearity of the material from optical limiting, the angular scattering and the total scattering energy measurements. The good match between all the analytical results permits to delineate the physical mechanisms responsible for the nonlinear scattering effect and to direct the final conclusion. (author) [fr

  5. Experimental Characterization Of The Interaction Between Carbon Fiber Composite Prepregs During The Preforming Process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weizhao; Zhang, Zixuan; Lu, Jie; Wang, Q Jane; Su, Xuming; Zeng, Danielle; Mirdamadi, Mansour; Cao, Jian

    2016-04-06

    Carbon fiber composites have received growing attention because of their high performance. One economic method to manufacturing the composite parts is the sequence of forming followed by the compression molding process. In this sequence, the preforming procedure forms the prepreg, which is the composite with the uncured resin, to the product geometry while the molding process cures the resin. Slip between different prepreg layers is observed in the preforming step and this paper reports a method to characterize the properties of the interaction between different prepreg layers, which is critical to predictive modeling and design optimization. An experimental setup was established to evaluate the interactions at various industrial production conditions. The experimental results were analyzed for an in-depth understanding about how the temperature, the relative sliding speed, and the fiber orientation affect the tangential interaction between two prepreg layers. The interaction factors measured from these experiments will be implemented in the computational preforming program.

  6. Markov transition probability-based network from time series for characterizing experimental two-phase flow

    International Nuclear Information System (INIS)

    Gao Zhong-Ke; Hu Li-Dan; Jin Ning-De

    2013-01-01

    We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas—liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas—liquid flow patterns. (general)

  7. Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions.

    Science.gov (United States)

    Ruiz, J; Kaiser, A S; Lucas, M

    2017-11-01

    Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks. Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM 10 , emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations. Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Development of a near-net-shape casting technology for the U-6Nb alloy. Part 1: Materials characterization, experiment design, and model construction

    International Nuclear Information System (INIS)

    Taylor, M.J.; Keeney, J.A.; Wendel, M.W.; Demint, A.L.

    1997-01-01

    The Oak Ridge Y-12 Plant (Y-12) is conducting highly coupled experimental and numerical studies to develop the technology needed to produce near-net-shape (NNS)-cast uranium-6 wt% niobium (U-6Nb) components which have a controlled carbon content. Current activities are focused on defining mechanical and metallurgical properties of cast material; experimental studies to define NNS casting, carbide particle flotation, and immersion-quench physics; and developing the numerical models needed to support the optimized design of NNS components. This paper summarizes the material characterization, experiment design, and model development activities

  9. Characterization of natural ventilation in wastewater collection systems.

    Science.gov (United States)

    Ward, Matthew; Corsi, Richard; Morton, Robert; Knapp, Tom; Apgar, Dirk; Quigley, Chris; Easter, Chris; Witherspoon, Jay; Pramanik, Amit; Parker, Wayne

    2011-03-01

    The purpose of the study was to characterize natural ventilation in full-scale gravity collection system components while measuring other parameters related to ventilation. Experiments were completed at four different locations in the wastewater collection systems of Los Angeles County Sanitation Districts, Los Angeles, California, and the King County Wastewater Treatment District, Seattle, Washington. The subject components were concrete gravity pipes ranging in diameter from 0.8 to 2.4 m (33 to 96 in.). Air velocity was measured in each pipe using a carbon-monoxide pulse tracer method. Air velocity was measured entering or exiting the components at vents using a standpipe and hotwire anemometer arrangement. Ambient wind speed, temperature, and relative humidity; headspace temperature and relative humidity; and wastewater flow and temperature were measured. The field experiments resulted in a large database of measured ventilation and related parameters characterizing ventilation in full-scale gravity sewers. Measured ventilation rates ranged from 23 to 840 L/s. The experimental data was used to evaluate existing ventilation models. Three models that were based upon empirical extrapolation, computational fluid dynamics, and thermodynamics, respectively, were evaluated based on predictive accuracy compared to the measured data. Strengths and weaknesses in each model were found and these observations were used to propose a concept for an improved ventilation model.

  10. Stability and spring constant investigation for micromachined inductive suspensions: theoretical analysis vs. experimental results

    International Nuclear Information System (INIS)

    Poletkin, K; Lu, Z; Wallrabe, U; Badilita, V; Den Hartogh, B

    2014-01-01

    We present a linear analytical model coupled with experimental analysis to discuss stability of a levitated proof mass (PM) in a micromachined inductive suspension (MIS), which has been previously introduced and characterized. The model is a function of the MIS geometry, describes the dynamics of a levitated disk-shaped PM near the equilibrium point, and predicts conditions for stable levitation. The experimental setup directly measures the lateral component of the Lorentz force, which has a stabilization role in the MIS structure, as well as the vertical levitation force. The experimental setup is further used to derive mechanical parameters such as stiffness values relative to lateral, vertical and angular displacements, proven to be in excellent agreement with the values predicted by the analytical model

  11. [Theoretical modeling and experimental research on direct compaction characteristics of multi-component pharmaceutical powders based on the Kawakita equation].

    Science.gov (United States)

    Si, Guo-Ning; Chen, Lan; Li, Bao-Guo

    2014-04-01

    Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.

  12. Removal of radioactive sodium from experimental breeder reactor-II components and conversion to a disposable solid waste: alcohol recovery

    International Nuclear Information System (INIS)

    Krusl, J.R.; Washburn, R.A.

    1985-01-01

    Radioactive sodium is removed from Experimental Breeder Reactor-II components by immersing the components in denatured alcohol until the sodium has reacted with the alcohol. The resulting radioactive sodium-alcohol solution must be processed to separate and convert the sodium to a solid waste for disposal. A process was developed and is described that converts radioactive sodium dissolved in alcohol to a dry powdered carbonate waste product and recovers the alcohol for reuse. The sodium-alcohol waste solution, after adjustment for proper sodium and water content, is fed to a wiped-film evaporator operated at 190 0 C and maintained with a CO 2 atmosphere that converts the dissolved sodium to anhydrous Na 2 CO 3 . The end product, about85 to 90 wt% Na 2 CO 3 , is directed into a 208-l (55-gal) drum for disposal. Alcohol distilled during the process is condensed, collected, and dried for immediate reuse. The composition of the alcohol is not altered in the process

  13. Study of adolescents’ multifactorial self-image components based on their own self-characterizations

    Directory of Open Access Journals (Sweden)

    Horvath, Zsofia Iren

    2012-12-01

    Full Text Available The most important questions of human existence and development – Who am I? What am I like? – concerned every thinking human in all cultural-historical ages. These questions remain timely even in our rapidly changing postmodern society.The goal of our research is the examination of adolescents’ self-characterization, the outlining of the self-image components age characteristics, the establishment of differences resulting from their environment. Our examination is part of the 2005/2006 school year evaluation (Pletl, 2011 regarding Transylvanian students’ composition skills. In the present research we have analyzed a total of 1602 self-characterization of Transylvanian Hungarian students. Results show that fifth grade students have dichotomous thinking that becomes more sophisticated by the time they get into the eighth grade. Eighth grade students referred significantly more often to the categories Emotions, Satisfaction, Social attitudes, School achievement, Special interests and mentioned more personality traits. In the comparison by location, more similarities and fewer differences were outlined. However, urban students referred significantly more often to emotions and satisfaction, while rural students mentioned more frequently characteristics like good-hearted and diligent. The study also outlined two major deficiencies. No significant difference was found between the two grades in naming abilities, and referring to Science and Language. We strongly believe that school should be more than simply a place for traditional teaching; effective education and personal development should spread to new areas like the development of self-reflective thinking, the shaping of personal competence and the operation of Career and Vocational Counseling.

  14. Research with neutron and synchrotron radiation on aerospace and automotive materials and components

    Energy Technology Data Exchange (ETDEWEB)

    Kaysser, Wolfgang; Abetz, Volker; Huber, Norbert; Kainer, Karl Ulrich; Pyczak, Florian; Schreyer, Andreas; Staron, Peter [Helmholtz-Zentrum Geesthacht Zentrum fuer Material und Kuestenforschung, Geesthacht (Germany); Esslinger, Joerg [MTU Aero Engines GmbH, Muenchen (Germany); Klassen, Thomas [Helmholtz-Zentrum Geesthacht Zentrum fuer Material und Kuestenforschung, Geesthacht (Germany); Helmut Schmidt Universitaet, Hamburg (Germany)

    2011-08-15

    Characterization with neutrons and synchrotron radiation has yielded essential contributions to the research and development of automotive and aerospace materials, processing methods, and components. This review mainly emphasises developments related to commercial passenger airplanes and light-duty cars. Improved and partly new materials for the reduction of airframe weight and joining by laser-beam welding and friction stir welding are ongoing areas of assessment. Chemical reactions, microstructure development, and residual stresses are frequently measured. Polymers and polymer matrix composites often require special experimental techniques. The thrust-to-weight ratio of aero-engines is increasing due to the improved design of components and the use of innovative materials. Investigations on superalloys, {gamma}-TiAl, and thermal barrier coatings are described in some detail. A discussion of the use of neutron and synchrotron diffraction in automotive applications covers the analysis of surface effects with respect to lubricants and wear, as well as the investigation of microstructure development, deformation, and fatigue behavior of materials, welds and components. Special steels, Al and Mg alloys are discussed and residual stresses in automotive components such as gears or crankshafts are described. Applications of characterization methods on membranes for polymeric membrane fuel cells and on nanocrystalline metal hydrides for hydrogen storage are shown. The degradation of railway tracks after long-term use is taken as an example for the application of synchrotron methods to transport systems beyond the commercial aircraft and light duty passenger car. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Experimentation with PEC channel prototype

    International Nuclear Information System (INIS)

    Caponetti, R.; Iacovelli, M.

    1984-01-01

    Experimentation on prototypes of PEC components is presently being carried out at Casaccia CRE. This report shows the results of the first cycle of experimentation of the central channel, concerning the aspects of sodium removal after experimentation

  16. Beamline standard component designs for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

    1994-01-01

    The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings

  17. The role of GABA in Na, K-pump activity modulation in nerve cells after irradiation and experimental modification of membrane lipid component

    International Nuclear Information System (INIS)

    Anan'eva, T.V.

    1998-01-01

    Effects of γ-aminobutyric acid (GABA) on the activity of Na, K-pump of nervous cells in case of total exposure of rats-males to X-radiation are studied as well as of experimental modification of membrane lipid component. It is shown that acute lethal (12 Gy, 600 mGy/min), single long-term (0.25 Gy, 1.75 mGy/min) and chronic (0.01 Gy/d, 1.75 mGy/min) exposure results in considerable alterations in Na, K-pump function in cerebral cortex section of rats. Experimental damage of cell membranes with the help of phospholipase or arachidonic acid leads to the same effect. GABA presence decreases the above effect [ru

  18. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  19. Sensitization to epithelial antigens in chronic mucosal inflammatory disease. Characterization of human intestinal mucosa-derived mononuclear cells reactive with purified epithelial cell-associated components in vitro.

    OpenAIRE

    Roche, J K; Fiocchi, C; Youngman, K

    1985-01-01

    To explore the auto-reactive potential of cells infiltrating the gut mucosa in idiopathic chronic inflammatory bowel disease, intestinal lamina propria mononuclear cells (LPMC) were isolated, characterized morphologically and phenotypically, and evaluated for antigen-specific reactivity. The last was assessed by quantitating LPMC cytotoxic capabilities against purified, aqueous-soluble, organ-specific epithelial cell-associated components (ECAC) characterized previously. Enzyme-isolated infla...

  20. An innovative magnetorheological damper for automotive suspension: from design to experimental characterization

    Science.gov (United States)

    Sassi, Sadok; Cherif, Khaled; Mezghani, Lotfi; Thomas, Marc; Kotrane, Asma

    2005-08-01

    The development of a powerful new magnetorheological fluid (MRF), together with recent progress in the understanding of the behavior of such fluids, has convinced researchers and engineers that MRF dampers are among the most promising devices for semi-active automotive suspension vibration control, because of their large force capacity and their inherent ability to provide a simple, fast and robust interface between electronic controls and mechanical components. In this paper, theoretical and experimental studies are performed for the design, development and testing of a completely new MRF damper model that can be used for the semi-active control of automotive suspensions. The MR damper technology presented in this paper is based on a completely new approach where, in contrast to in the conventional solutions where the coil axis is usually superposed on the damper axis and where the inner cylindrical housing is part of the magnetic circuit, the coils are wound in a direction perpendicular to the damper axis. The paper investigates approaches to optimizing the dynamic response and provides experimental verification. Both experimental and theoretical results have shown that, if this particular model is filled with an 'MRF 336AG' MR fluid, it can provide large controllable damping forces that require only a small amount of energy. For a magnetizing system with four coils, the damping coefficient could be increased by up to three times for an excitation current of only 2 A. Such current could be reduced to less than 1 A if the magnetizing system used eight small cores. In this case, the magnetic field will be more powerful and more regularly distributed. In the presence of harmonic excitation, such a design will allow the optimum compromise between comfort and stability to be reached over different intervals of the excitation frequencies.

  1. Dynamic Modal Analysis of Vertical Machining Centre Components

    OpenAIRE

    Anayet U. Patwari; Waleed F. Faris; A. K. M. Nurul Amin; S. K. Loh

    2009-01-01

    The paper presents a systematic procedure and details of the use of experimental and analytical modal analysis technique for structural dynamic evaluation processes of a vertical machining centre. The main results deal with assessment of the mode shape of the different components of the vertical machining centre. The simplified experimental modal analysis of different components of milling machine was carried out. This model of the different machine tool's structure is made by design software...

  2. Characterization of starch and other components from African crops and quality evaluation of derived products

    International Nuclear Information System (INIS)

    Quattrucci, E.; Acquistucci, R.; Carcea, M.; Cubadda, R.

    1997-01-01

    Research was carried out on African staple foods on characterization of components of cereals and tubers, and quality evaluation of foods manufactured from composite flours. Cereal starch, alimentary fiber and minerals from cassava were investigated. Starch was isolated under conditions of minimum damage from seeds of three sorghum and two fonio cultivars, and its physico-chemical properties were compared with commercial wheat starch. Fiber, ash and mineral content of samples of genetically improved varieties of cassava from Ghana were determined to understand the role of factors that influence texture of cooked products. Bread and pasta were produced from either triticale alone or in combination with different amounts of cassava flour, and by varying the amount of wheat flour. The organoleptic quality of the raw materials and final products were determined. (author). 15 refs, 10 tabs

  3. Characterization of starch and other components from African crops and quality evaluation of derived products

    Energy Technology Data Exchange (ETDEWEB)

    Quattrucci, E; Acquistucci, R; Carcea, M [National Insti. of Nutrion, Rome (Italy); Cubadda, R [University of Molise, Campobasso (Italy)

    1997-07-01

    Research was carried out on African staple foods on characterization of components of cereals and tubers, and quality evaluation of foods manufactured from composite flours. Cereal starch, alimentary fiber and minerals from cassava were investigated. Starch was isolated under conditions of minimum damage from seeds of three sorghum and two fonio cultivars, and its physico-chemical properties were compared with commercial wheat starch. Fiber, ash and mineral content of samples of genetically improved varieties of cassava from Ghana were determined to understand the role of factors that influence texture of cooked products. Bread and pasta were produced from either triticale alone or in combination with different amounts of cassava flour, and by varying the amount of wheat flour. The organoleptic quality of the raw materials and final products were determined. (author). 15 refs, 10 tabs.

  4. Application of the principal component analysis (PCA) to HVSR data aimed at the seismic characterization of earthquake prone areas

    Science.gov (United States)

    Paolucci, Enrico; Lunedei, Enrico; Albarello, Dario

    2017-10-01

    In this work, we propose a procedure based on principal component analysis on data sets consisting of many horizontal to vertical spectral ratio (HVSR or H/V) curves obtained by single-station ambient vibration acquisitions. This kind of analysis aimed at the seismic characterization of the investigated area by identifying sites characterized by similar HVSR curves. It also allows to extract the typical HVSR patterns of the explored area and to establish their relative importance, providing an estimate of the level of heterogeneity under the seismic point of view. In this way, an automatic explorative seismic characterization of the area becomes possible by only considering ambient vibration data. This also implies that the relevant outcomes can be safely compared with other available information (geological data, borehole measurements, etc.) without any conceptual trade-off. The whole algorithm is remarkably fast: on a common personal computer, the processing time takes few seconds for a data set including 100-200 HVSR measurements. The procedure has been tested in three study areas in the Central-Northern Italy characterized by different geological settings. Outcomes demonstrate that this technique is effective and well correlates with most significant seismostratigraphical heterogeneities present in each of the study areas.

  5. Novel experimental methodology for the characterization of thermodynamic performance of advanced working pairs for adsorptive heat transformers

    International Nuclear Information System (INIS)

    Frazzica, Andrea; Sapienza, Alessio; Freni, Angelo

    2014-01-01

    This paper presents a novel experimental protocol for the evaluation of the thermodynamic performance of working pairs for application in adsorption heat pumps and chillers. The proposed approach is based on the experimental measurements of the main thermo-physical parameters of adsorbent pairs, by means of a DSC/TG apparatus modified to work under saturated vapour conditions, able to measure the ads-/desorption isobars and heat flux as well as the adsorbent specific heat under real boundary conditions. Such kind of activity allows to characterize the thermodynamic performance of an adsorbent pair allowing the estimation of the thermal Coefficient Of Performance (COP) both for heating and cooling applications, only relying on experimental values. The experimental uncertainty of the method has been estimated to be around 2%, for the COP evaluation. In order to validate the proposed procedure, a first test campaign has been carried out on the commercial adsorbent material, AQSOA-Z02, produced by MPI (Mitsubishi Plastics Inc.), while water was used as refrigerant. The proposed experimental methodology will be applied on several other adsorbent materials, either already on the market or still under investigation, in order to get an easy and reliable method to compare thermodynamic performance of adsorptive working pairs

  6. BUSINESS PROCESS MANAGEMENT SYSTEMS TECHNOLOGY COMPONENTS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Andrea Giovanni Spelta

    2007-05-01

    Full Text Available The information technology that supports the implementation of the business process management appproach is called Business Process Management System (BPMS. The main components of the BPMS solution framework are process definition repository, process instances repository, transaction manager, conectors framework, process engine and middleware. In this paper we define and characterize the role and importance of the components of BPMS's framework. The research method adopted was the case study, through the analysis of the implementation of the BPMS solution in an insurance company called Chubb do Brasil. In the case study, the process "Manage Coinsured Events"" is described and characterized, as well as the components of the BPMS solution adopted and implemented by Chubb do Brasil for managing this process.

  7. X-Ray Characterization of Non-Equilibrium Solid Solutions

    International Nuclear Information System (INIS)

    Brown, A.; Rosdahl, Oe.

    1975-01-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kα 2 radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  8. Self-sensing and thermal energy experimental characterization of multifunctional cement-matrix composites with carbon nano-inclusions

    Science.gov (United States)

    D'Alessandro, A.; Pisello, A. L.; Sambuco, Sara; Ubertini, F.; Asdrubali, F.; Materazzi, A. L.; Cotana, F.

    2016-04-01

    The recent progress of Nanotechnology allowed the development of new smart materials in several fields of engineering. In particular, innovative construction materials with multifunctional enhanced properties can be produced. The paper presents an experimental characterization on cement-matrix pastes doped with Carbon Nanotubes, Carbon Nano-fibers, Carbon Black and Graphene Nano-platelets. Both electro-mechanical and thermo-physical investigations have been carried out. The conductive nano-inclusions provide the cementitious matrix with piezo-resistive properties allowing the detection of external strain and stress changes. Thereby, traditional building materials, such as concrete and cementitious materials in general, would be capable of self-monitoring the state of deformation they are subject to, giving rise to diffuse sensing systems of structural integrity. Besides supplying self-sensing abilities, carbon nano-fillers may change mechanical, physical and thermal properties of cementitious composites. The experimental tests of the research have been mainly concentrated on the thermal conductivity and the optical properties of the different nano-modified materials, in order to make a critical comparison between them. The aim of the work is the characterization of an innovative multifunctional composite capable of combining self-monitoring properties with proper mechanical and thermal-energy efficiency characteristics. The potential applications of these nano-modified materials cover a wide range of possibilities, such as structural elements, floors, geothermal piles, radiant systems and more.

  9. Characterization of Ground Displacement Sources from Variational Bayesian Independent Component Analysis of Space Geodetic Time Series

    Science.gov (United States)

    Gualandi, Adriano; Serpelloni, Enrico; Elina Belardinelli, Maria; Bonafede, Maurizio; Pezzo, Giuseppe; Tolomei, Cristiano

    2015-04-01

    A critical point in the analysis of ground displacement time series, as those measured by modern space geodetic techniques (primarly continuous GPS/GNSS and InSAR) is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies, since PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem. The recovering and separation of the different sources that generate the observed ground deformation is a fundamental task in order to provide a physical meaning to the possible different sources. PCA fails in the BSS problem since it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the displacement time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient deformation signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources

  10. Experimental study of mixed ferromagnetic spin glass systems

    International Nuclear Information System (INIS)

    Mirebeau, I.

    1987-01-01

    The mixed ferromagnetic spin glass systems are characterized by a distribution of positive and negative exchange interactions whose maximum occurs at a positive value. We have undertaken an experimental study of amorphous (Fe 1-x Mn x ) .75 PBA1, polycrystalline and monocrystalline Ni 1-x Mn x and Au 1-x Fe x alloys. By Moessbauer effect, magnetization and neutron scattering, we show that below a ''canting'' temperature T K , spin components transverse to the mean magnetization become frozen. Small angle neutron scattering studies with an applied field show a magnetic ''structure'' i.e. the intensity exhibits a maximum at a finite q value for temperatures below T K . This structure has been studied as a function of temperature, applied field and concentration using both small angle neutron scattering and 3 axis spectrometry where we separate the elastic from the inelastic components. Possible interpretations of this new structure will be given [fr

  11. An approach for characterization and lumping of plus fractions of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, I.; Hamouda, A.A. [Stavanger Univ., Stavanger (Norway)

    2008-10-15

    The constituents of hydrocarbons can be classified as either well-defined components or undefined petroleum fractions. This paper presented a newly developed method for characterizing plus fractions of heavy oil, which is particularly important for fluids with high molecular weight and high density. Characterization of plus fractions typically consists of 3 parts, notably splitting the fraction into a certain number of components groups called single carbon number (SCN); estimating the physico-chemical properties of the SCN; and lumping the generated SCN. SCN groups contain hundreds of isomers/components with the same number of carbon atoms. A unique molecular weight cannot be assigned for each SCN group because of the uncertainty of the isomers/components present. Therefore, this work focused on finding a new approach to characterize the undetermined fraction by first splitting the carbon number fraction into a representative number of SCN and then calculating their mole fraction and molecular weight. The method was based on the relationships between three parameter gamma distribution (TPG), experimental mole fraction, molecular weight and SCN data obtained from literature and industry. The method was applied to 5 different heavy oil sample fluids which all showed a left skewed distribution of the mole fraction as a function of carbon number. The predicted molecular weight was found to be close to the generalized molecular weight associated with carbon number, but it differed from one sample to another. 19 refs., 11 tabs., 15 figs.

  12. Characterization and Discrimination of Gram-Positive Bacteria Using Raman Spectroscopy with the Aid of Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Alia Colniță

    2017-09-01

    Full Text Available Raman scattering and its particular effect, surface-enhanced Raman scattering (SERS, are whole-organism fingerprinting spectroscopic techniques that gain more and more popularity in bacterial detection. In this work, two relevant Gram-positive bacteria species, Lactobacillus casei (L. casei and Listeria monocytogenes (L. monocytogenes were characterized based on their Raman and SERS spectral fingerprints. The SERS spectra were used to identify the biochemical structures of the bacterial cell wall. Two synthesis methods of the SERS-active nanomaterials were used and the recorded spectra were analyzed. L. casei and L. monocytogenes were successfully discriminated by applying Principal Component Analysis (PCA to their specific spectral data.

  13. The state of head injury biomechanics: past, present, and future part 2: physical experimentation.

    Science.gov (United States)

    Goldsmith, Werner; Monson, Kenneth L

    2005-01-01

    This presentation is the continuation of the article published in Critical Reviews of Biomedical Engineering, 29(5-6), 2001. That issue contained topics dealing with components and geometry of the human head, classification of head injuries, some early experimental studies, and tolerance considerations. It then dealt with head motion and load characterization, investigations during the period from 1939 to 1966, injury causation and early modeling efforts, the 1966 Head Injury Conference and its sequels, mechanical properties of solid tissues, fluid characterization, and early investigation of the mechanical properties of cranial materials. It continued with a description of the systematic investigations of solid cranial components and structural properties since 1966, fetal cranial properties, analytical head modeling, and numerical solutions of head injury. The paper concluded with experimental dynamic loading of human living and cadaver heads, dynamic loading of surrogate heads, and head injury mechanics. This portion of the paper describes physical head injury experimentation involving animals, primarily primates, human cadavers, volunteers, and inanimate physical models. In order to address the entire domain of head injury biomechanics in the two-part survey, it was intended that this information be supplemented by discussions of head injury tolerance and criteria, automotive and sports safety considerations, and the design of protective equipment, but Professor Goldsmith passed away before these sections could be completed. It is nevertheless anticipated that this attenuated installment will provide, in conjunction with the first part of the survey, a valuable resource for students and practitioners of head injury biomechanics.

  14. Experimental study of canvas characterization for paintings

    Science.gov (United States)

    Cornelis, Bruno; Dooms, Ann; Munteanu, Adrian; Cornelis, Jan; Schelkens, Peter

    2010-02-01

    The work described here fits in the context of a larger project on the objective and relevant characterization of paintings and painting canvas through the analysis of multimodal digital images. We captured, amongst others, X-ray images of different canvas types, characterized by a variety of textures and weave patterns (fine and rougher texture; single thread and multiple threads per weave), including raw canvas as well as canvas processed with different primers. In this paper, we study how to characterize the canvas by extracting global features such as average thread width, average distance between successive threads (i.e. thread density) and the spatial distribution of primers. These features are then used to construct a generic model of the canvas structure. Secondly, we investigate whether we can identify different pieces of canvas coming from the same bolt. This is an important element for dating, authentication and identification of restorations. Both the global characteristics mentioned earlier and some local properties (such as deviations from the average pattern model) are used to compare the "fingerprint" of different pieces of cloth coming from the same or different bolts.

  15. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    Science.gov (United States)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  16. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu; Yanfeng, Li; Chunxiu, Tian; Jiaguang, Han; Quan, Xu; Xueqian, Zhang; Xixiang, Zhang; Ying, Zhang; Weili, Zhang

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  17. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  18. International ENEA/ISMES/ENS specialist meeting on 'On-site experimental verification of the seismic behaviour of nuclear reactor structures and components'. Proceedings

    International Nuclear Information System (INIS)

    1988-01-01

    The seismic verification of nuclear plants is a subject of increasing interest in all the industrial countries, with respect to both the safety aspects and the impact of the seismic event on the design and the costs of a nuclear reactor. This topic is especially of great interest for a country like Italy, whose territory is unfortunately characterized by non - negligible seismicity: we remember, not too many years ago, the catastrophic earthquakes of Frioul and Irpinia, that caused thousands of dead people. The meeting aimed at establishing the state-of-the-art on on-site testing of nuclear reactors structures and components, with particular attention to experiences and research programmes concerning: methodologies of on-site tests and interpretation of the experimental data; seismic monitoring systems, recorded data, their use and interpretation; calibration and validation of numerical analyses. Six technical sessions were held, during which 23 high papers were presented and discussed, and six panel discussions were held (the importance of discussion was emphasized in the meeting). The technical contributions consisted of: an introduction paper, summarizing the seismic studies performed in Italy for PEC reactor and explaining the reasons why on-site tests had been performed on this reactor; 6 invited lectures, one for each of the countries that are more deeply involved in seismic analysis, providing the state-of-the-art on the topics of interest for the meeting; 16 contributed papers dealing with more specific technical items, related to the various countries and international organizations

  19. International ENEA/ISMES/ENS specialist meeting on 'On-site experimental verification of the seismic behaviour of nuclear reactor structures and components'. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The seismic verification of nuclear plants is a subject of increasing interest in all the industrial countries, with respect to both the safety aspects and the impact of the seismic event on the design and the costs of a nuclear reactor. This topic is especially of great interest for a country like Italy, whose territory is unfortunately characterized by non - negligible seismicity: we remember, not too many years ago, the catastrophic earthquakes of Frioul and Irpinia, that caused thousands of dead people. The meeting aimed at establishing the state-of-the-art on on-site testing of nuclear reactors structures and components, with particular attention to experiences and research programmes concerning: methodologies of on-site tests and interpretation of the experimental data; seismic monitoring systems, recorded data, their use and interpretation; calibration and validation of numerical analyses. Six technical sessions were held, during which 23 high papers were presented and discussed, and six panel discussions were held (the importance of discussion was emphasized in the meeting). The technical contributions consisted of: an introduction paper, summarizing the seismic studies performed in Italy for PEC reactor and explaining the reasons why on-site tests had been performed on this reactor; 6 invited lectures, one for each of the countries that are more deeply involved in seismic analysis, providing the state-of-the-art on the topics of interest for the meeting; 16 contributed papers dealing with more specific technical items, related to the various countries and international organizations.

  20. Fatigue crack propagation: Probabilistic models and experimental evidence

    International Nuclear Information System (INIS)

    Lucia, A.C.; Jovanovic, A.

    1987-01-01

    The central aim of the LWR Primary Circuit Component Life Prediction Project, going on at JRC-Ispra, is to develop and check a 'procedure' (encompassing monitoring and inspection, data collection and analysis, prediction) allowing the quantitatives estimation of the accumulation of structural damage and of the residual lifetime. The ongoing activity matches theoretical development and experimentation, the latter being at present essentially based on a test-rig for room-temperature fatigue cycling of 1:5 scaled models of pressure vessels. During Phase I of fatigue testing of vessel R2, different pieces of information coming from material characterization, non-destructive inspection, continuous monitoring, stress analysis, have been merged and used to infere the future behaviour of the structure. The prediction of residual lifetime (cycles to failure), based on the outcomes of the ultrasonic continuous monitoring and made by means of the COVASTOL code, was in quite good agreement with experimental evidence. (orig./HP)

  1. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  2. Development of standard components for remote handling

    International Nuclear Information System (INIS)

    Taguchi, Kou; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira

    1998-01-01

    The core of Fusion Experimental Reactor consists of various components such as superconducting magnets and forced-cooled in-vessel components, which are remotely maintained due to intense of gamma radiation. Mechanical connectors such as cooling pipe connections, insulation joints and electrical connectors are commonly used for maintenance of these components and have to be standardized in terms of remote handling. This paper describes these mechanical connectors developed as the standard component compatible with remote handling and tolerable for radiation. (author)

  3. Development of standard components for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Kou; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The core of Fusion Experimental Reactor consists of various components such as superconducting magnets and forced-cooled in-vessel components, which are remotely maintained due to intense of gamma radiation. Mechanical connectors such as cooling pipe connections, insulation joints and electrical connectors are commonly used for maintenance of these components and have to be standardized in terms of remote handling. This paper describes these mechanical connectors developed as the standard component compatible with remote handling and tolerable for radiation. (author)

  4. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  5. Effects assessment of 10 functioning years on the main components of the molten salt PCS experimental facility of ENEA

    Science.gov (United States)

    Gaggioli, Walter; Di Ascenzi, Primo; Rinaldi, Luca; Tarquini, Pietro; Fabrizi, Fabrizio

    2016-05-01

    In the frame of the Solar Thermodynamic Laboratory, ENEA has improved CSP Parabolic Trough technologies by adopting new advanced solutions for linear tube receivers and by implementing a binary mixture of molten salt (60% NaNO3 and 40% KNO3) [1] as both heat transfer fluid and heat storage medium in solar field and in storage tanks, thus allowing the solar plants to operate at high temperatures up to 550°C. Further improvements have regarded parabolic mirror collectors, piping and process instrumentation. All the innovative components developed by ENEA, together with other standard parts of the plant, have been tested and qualified under actual solar operating conditions on the PCS experimental facility at the ENEA Casaccia Research Center in Rome (Italy). The PCS (Prova Collettori Solari, i.e. Test of Solar Collectors) facility is the main testing loop built by ENEA and it is unique in the world for what concerns the high operating temperature and the fluid used (mixture of molten salt). It consists in one line of parabolic trough collectors (test section of 100 m long life-size solar collectors) using, as heat transfer fluid, the aforesaid binary mixture of molten salt up to 10 bar, at high temperature in the range 270° and 550°C and a flow rate up to 6.5 kg/s. It has been working since early 2004 [2] till now; it consists in a unique closed loop, and it is totally instrumented. In this paper the effects of over ten years qualification tests on the pressurized tank will be presented, together with the characterization of the thermal losses of the piping of the molten salt circuit, and some observations performed on the PCS facility during its first ten years of operation.

  6. A complete dosimetry experimental program in support to the core characterization and to the power calibration of the CABRI reactor. A complete dosimetry experimental program in support of the core characterization and of the power calibration of the CABRI reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodiac, F.; Hudelot, JP.; Lecerf, J.; Garnier, Y.; Ritter, G. [CEA, DEN, CAD/DER/SRES/LPRE, Cadarache, F-13108 Saint-Paul-lez-Durance, (France); Gueton, O.; Colombier, AC. [CEA, DEN, CAD/DER/SPRC/LPN, Cadarache, F-13108 Saint-Paul-lez-Durance, (France); Domergue, C. [CEA, DEN, CAD/DER/SPEx/LDCI, Cadarache, F-13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    CABRI is an experimental pulse reactor operated by CEA at the Cadarache research center. Since 1978 the experimental programs have aimed at studying the fuel behavior under Reactivity Initiated Accident (RIA) conditions. Since 2003, it has been refurbished in order to be able to provide RIA and LOCA (Loss Of Coolant Accident) experiments in prototypical PWR conditions (155 bar, 300 deg. C). This project is part of a broader scope including an overall facility refurbishment and a safety review. The global modification is conducted by the CEA project team. It is funded by IRSN, which is conducting the CIP experimental program, in the framework of the OECD/NEA project CIP. It is financed in the framework of an international collaboration. During the reactor restart, commissioning tests are realized for all equipment, systems and circuits of the reactor. In particular neutronics and power commissioning tests will be performed respectively in 2015 and 2016. This paper focuses on the design of a complete and original dosimetry program that was built in support to the CABRI core characterization and to the power calibration. Each one of the above experimental goals will be fully described, as well as the target uncertainties and the forecasted experimental techniques and data treatment. (authors)

  7. A new experimental setup to characterize the dynamic mechanical behaviour of ballistic yarns

    International Nuclear Information System (INIS)

    Chevalier, C; Kerisit, C; Faderl, N; Klavzar, A; Boussu, F; Coutellier, D

    2016-01-01

    Fabrics have been widely used as part of ballistic protections since the 1970s and the development of new ballistic solutions made from fabrics need numerical simulations, in order to predict the performance of the ballistic protection. The performances and the induced mechanisms in ballistic fabrics during an impact depend on the weaving parameters and also on the inner parameters of the yarns used inside these structures. Thus, knowing the dynamic behaviour of yarn is essential to determine the ballistic behaviour of fabrics during an impact. Two major experimental devices exist and are used to test ballistic yarns in a dynamic uniaxial tension. The first one corresponds to the Split Hopkinson Tensile Bars device, which is commonly used to characterize the mechanical properties of materials in uniaxial tension and under high loading. The second one is the transversal impact device. The real conditions of ballistic impact can be realized with this device. Then, this paper deals with a new experimental setup developed in our laboratory and called the ‘tensile impact test for yarn’ (TITY) device. With this device, specific absorbed energy measurements of para-aramid yarns (336 Tex, Twaron ™ , 1000 filaments) have been carried out and revealed that static and dynamic properties of para-aramid are different. (paper)

  8. Construction and characterization of valve for fast gas injection

    International Nuclear Information System (INIS)

    Ueda, M.; Rossi, J.O.; Aso, Y.; Mangueira, L.S.; Pereira, C.A.

    1989-01-01

    An electromagnetic valve for fast gas injection was built and characterized. This type of gas injection valve has been routinely applied to various plasma experiments: in magnetic confinement devices as TOKAMAK, RFP and Compact Toroids as well as intense ion beam and neutral particle generators. The valve is capable of injecting gas pulses with up to 80 m Torr peak pressure, rising time < 400 μs and duration time of 40 ms, in the present experimental set-up. It is easy to build and its components can be totally acquired in the country. (author)

  9. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Directory of Open Access Journals (Sweden)

    Roman Beloborodov

    2017-01-01

    Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.

  10. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System.

    Science.gov (United States)

    Chavez-Burbano, Patricia; Guerra, Victor; Rabadan, Jose; Rodríguez-Esparragón, Dionisio; Perez-Jimenez, Rafael

    2017-07-04

    Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios.

  11. Intermediate Experimental Vehicle, ESA Program IXV ATDB Tool and Aerothermodynamic Characterization

    Science.gov (United States)

    Mareschi, Vincenzo; Ferrarella, Daniela; Zaccagnino, Elio; Tribot, Jean-Pierre; Vallee, Jean-Jacques; Haya-Ramos, Rodrigo; Rufolo, Giuseppe; Mancuso, Salvatore

    2011-05-01

    In the complex domain of the space technologies and among the different applications available in Europe, a great interest has been placed since several years in the development of re-entry technologies. Among the different achievements obtained in that field it is to be recalled the experience of the Atmospheric Re-entry Vehicle flight in 1998 and a certain number of important investments per-formed at Agency and national levels like Hermes, MSTP, Festip, X-38, FLPP, TRP, GSTP, HSTS, AREV, Pre-X. IXV (Intermediate eXperimental V ehicle) builds on these past experiences and studies and it is conceived to be the next technological step forward with respect to ARD With respect to previous European ballistic or quasi- ballistic demonstrators, IXV will have an increased in- flight manoeuvrability and the planned mission will allow verifying the performances of the required technologies against a wider re-entry corridor. This will imply from the pure technological aspect to increase the level of engagement on critical technologies and disciplines like aerodynamics/aerothermodynamics, guidance, navigation, control, thermal protection materials and in flight measurements. In order to support the TPS design and the other sub- systems, an AeroThermodynamicDataBase Tool has been developed by Dassault Aviation and integrated by Thales Alenia Space with the Functional Engineering Simulator (used for GNC performances evaluation) in order to characterize the aerothermodynamic behaviour of the vehicle. This paper will describe: - The methodology used to develop the ATDB tool, based on the processing of CFD computations and WTT campaigns results. - The utilization of the ATDB tool, by means of its integration into the System process. - The methodology used for the aerothermal characterization of IXV.

  12. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). DOE plans to conduct experiments in the WIPP during a Test Phase of approximately 5 years. These experiments will be conducted to reduce the uncertainties associated with the prediction of several processes (e.g., gas generation) that may influence repository performance. The results of the experiments will be used to assess the ability of the WIPP to meet regulatory requirements for the long-term protection of human health and the environment from the disposal of TRU wastes. 37 refs., 25 figs., 18 tabs

  13. Site characterization and validation - Head variations during the entire experimental period

    International Nuclear Information System (INIS)

    Haigh, D.; Brightman, M.; Black, J.; Parry, S.

    1992-01-01

    The site characterization and validation project lasted for five years from 1986 to 1991. It consisted of a number of experiments within the region known as the SCV site. During this period of experimentation a monitoring system was established within the mine for the purpose of measuring the variation of head at a number of locations within and around the site. The system installed was based around a set of equipment known as a Piezomac TM system. In this system there is one central pressure transducer and each borehole interval is connected to it in turn. It can measure up to 55 separate points during each measurement 'cycle'. Monitoring points were either complete boreholes or sections of boreholes isolated by packers. In order to produce reasonable file size, data sets were screened. The results show that the SCV site was always responding to some form of hydrogeological disturbance. Many key tests were performed against changing background trends. This was particularly so of the simulated drift experiment and the large scale crosshole tests. However, some estimates of long term equilibrium heads before and after excavation of the validation drift have been made. Contoured plots of heads before and after show significant reduction of steady state heads as a result of drift excavation. Furthermore contouring the estimated long term drawdowns responding to the simulated drift experiment shows the specific influence of the H zone and the A/B zone. Overall the results of the monitoring show that the mine was a very active hydrogeological environment during the experimentation. Additionally it was often very difficult to clearly identify the causes of such disturbances. (au)

  14. CFD simulation of a burner for syngas characterization and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Desideri, Umberto [University of Perugia (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, umberto.desideri@unipg.it; D' Amico, Michele [University of Perugia (Italy). Dept. of Energetic Engineering], E-mail: damico@crbnet.it

    2009-07-01

    Biomass and waste are distributed and renewable energy sources that may contribute effectively to sustainability if used on a small and micro scale. This requires the transformation through efficient technologies (gasification, pyrolysis and anaerobic digestion) into a suitable gaseous fuel to use in small internal combustion engines and gas turbines. The characterization of biomass derived syngas during combustion is therefore a key issue to improve the performance of small scale integrated plants because synthesis gas show significant differences with respect to Natural Gas (mixture of gases, low calorific value, hydrogen content, tar and particulate content) that may turn into ignition problems, combustion instabilities, difficulties in emission control and fouling. To this aim a burner for syngas combustion and LHV measurement through mass and energy balance was realized and connected to the rotary-kiln laboratory scale pyrolyzer at the Department of Industrial Engineering of the University of Perugia. A computational fluid dynamics (CFD) simulation of the burner was carried out considering the combustion of propane to investigate temperature and pressure distribution, heat transmission and distribution of the combustion products and by products. The simulation was carried out using the CFD program Star-CD. Before the simulation a geometrical model of the burner was built and the volume of model was subdivided in cells. A sensibility analysis of cells was carried out to estimate the approximation degree of the model. Experimental data about combustion emission were carried out with the propane combustion in the burner, the comparison between numerical results and experimental data was studied to validate the simulation for future works involved with the combustion of treated or raw (syngas with tar) syngas obtained from pyrolysis process. (author)

  15. Experimental characterization and modelling of UO2 mechanical behaviour at high temperatures and high strain rates

    International Nuclear Information System (INIS)

    Salvo, Maxime

    2014-01-01

    The aim of this work is to characterize and model the mechanical behavior of uranium dioxide (UO 2 ) during a Reactivity Initiated Accident (RIA). The fuel loading during a RIA is characterized by high strain rates (up to 1/s) and high temperatures (1000 C - 2500 C). Two types of UO 2 pellets (commercial and high density) were therefore tested in compression with prescribed displacement rates (0.1 to 100 mm/min corresponding to strain rates of 10 -4 - 10 -1 /s) and temperatures (1100 C - 1350 C - 1550 C et 1700 C). Experimental results (geometry, yield stress and microstructure) allowed us to define a hyperbolic sine creep law and a Drucker-Prager criterion with associated plasticity, in order to model grain boundaries fragmentation at the macroscopic scale. Finite Element Simulations of these tests and of more than 200 creep tests were used to assess the model response to a wide range of temperatures (1100 C - 1700 C) and strain rates (10 -9 /s - 10 -1 /s). Finally, a constitutive law called L3F was developed for UO 2 by adding to the previous model irradiation creep and tensile macroscopic cracking. The L3F law was then introduced in the 1.5D scheme of the fuel performance code ALCYONE-RIA to simulate the REP-Na tests performed in the experimental reactor CABRI. Simulation results are in good agreement with post tests examinations. (author) [fr

  16. Final Technical Report: Characterizing Emerging Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).

  17. Fluoride characterization by principal component analysis in the hydrochemical facies of Serra Geral Aquifer System in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Arthur Nanni

    2008-12-01

    Full Text Available Principal component analysis is applied to 309 groundwater chemical data information from wells in the Serra Geral Aquifer System. Correlations among seven hydrochemical parameters are statistically examined. A four-component model is suggested and explains 81% of total variance. Component 1 represents calcium-magnesium bicarbonated groundwaters with long time of residence. Component 2 represents sulfated and chlorinated calcium and sodium groundwaters; Component 3 represents sodium bicarbonated groundwaters; and Component 4 is characterized by sodium sulfated with high fluoride facies. The components' spatial distribution shows high fluoride concentration along analyzed tectonic fault system and aligned on northeast direction in other areas, suggesting other hydrogeological fault systems. High fluoride concentration increases according to groundwater pumping depth. The Principal Component Analysis reveals features of the groundwater mixture and individualizes water facies. In this scenery, it can be determined hydrogeological blocks associated with tectonic fault system here introduced.A Análise de Componentes Principais foi aplicada em 309 dados químicos de águas subterrâneas de poços do Sistema Aqüífero Serra Geral. Correlações entre sete parâmetros hidroquímicos foram examinadas através da estatística. O modelo de quatro componentes foi utilizado por explicar 81% da variância total. A Componente 1 é representada por águas cálcio-magnesianas com longo tempo de residência, a Componente 2 representa águas bicarbonatadas sulfatadas e cloretadas, a Componente 3 representa águas bicarbonatadas sódicas e a Componente 4 é caracterizada por águas de fácies sódica e sulfatada com alto fluoreto. A distribuição espacial das componentes mostra águas com concentrações anômalas ao longo dos sistemas tectônicos de falhas, analisados e alinhados a NE em algumas áreas, sugerindo outros sistemas de falhas hidrogeológicos. As

  18. Experimental characterization and Monte Carlo simulation of Si(Li) detector efficiency by radioactive sources and PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Mesradi, M. [Institut Pluridisciplinaire Hubert-Curien, UMR 7178 CNRS/IN2P3 et Universite Louis Pasteur, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France); Elanique, A. [Departement de Physique, FS/BP 8106, Universite Ibn Zohr, Agadir, Maroc (Morocco); Nourreddine, A. [Institut Pluridisciplinaire Hubert-Curien, UMR 7178 CNRS/IN2P3 et Universite Louis Pasteur, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France)], E-mail: abdelmjid.nourreddine@ires.in2p3.fr; Pape, A.; Raiser, D.; Sellam, A. [Institut Pluridisciplinaire Hubert-Curien, UMR 7178 CNRS/IN2P3 et Universite Louis Pasteur, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France)

    2008-06-15

    This work relates to the study and characterization of the response function of an X-ray spectrometry system. The intrinsic efficiency of a Si(Li) detector has been simulated with the Monte Carlo codes MCNP and GEANT4 in the photon energy range of 2.6-59.5 keV. After finding it necessary to take a radiograph of the detector inside its cryostat to learn the correct dimensions, agreement within 10% between the simulations and experimental measurements with several point-like sources and PIXE results was obtained.

  19. Use of EPICS and Python technology for the development of a computational toolkit for high heat flux testing of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, Ritesh, E-mail: ritesh@ipr.res.in; Swamy, Rajamannar, E-mail: rajamannar@ipr.res.in; Khirwadkar, Samir, E-mail: sameer@ipr.res.in

    2016-11-15

    Highlights: • An integrated approach to software development for computational processing and experimental control. • Use of open source, cross platform, robust and advanced tools for computational code development. • Prediction of optimized process parameters for critical heat flux model. • Virtual experimentation for high heat flux testing of plasma facing components. - Abstract: The high heat flux testing and characterization of the divertor and first wall components are a challenging engineering problem of a tokamak. These components are subject to steady state and transient heat load of high magnitude. Therefore, the accurate prediction and control of the cooling parameters is crucial to prevent burnout. The prediction of the cooling parameters is based on the numerical solution of the critical heat flux (CHF) model. In a test facility for high heat flux testing of plasma facing components (PFC), the integration of computations and experimental control is an essential requirement. Experimental physics and industrial control system (EPICS) provides powerful tools for steering controls, data simulation, hardware interfacing and wider usability. Python provides an open source alternative for numerical computations and scripting. We have integrated these two open source technologies to develop a graphical software for a typical high heat flux experiment. The implementation uses EPICS based tools namely IOC (I/O controller) server, control system studio (CSS) and Python based tools namely Numpy, Scipy, Matplotlib and NOSE. EPICS and Python are integrated using PyEpics library. This toolkit is currently under operation at high heat flux test facility at Institute for Plasma Research (IPR) and is also useful for the experimental labs working in the similar research areas. The paper reports the software architectural design, implementation tools and rationale for their selection, test and validation.

  20. Use of EPICS and Python technology for the development of a computational toolkit for high heat flux testing of plasma facing components

    International Nuclear Information System (INIS)

    Sugandhi, Ritesh; Swamy, Rajamannar; Khirwadkar, Samir

    2016-01-01

    Highlights: • An integrated approach to software development for computational processing and experimental control. • Use of open source, cross platform, robust and advanced tools for computational code development. • Prediction of optimized process parameters for critical heat flux model. • Virtual experimentation for high heat flux testing of plasma facing components. - Abstract: The high heat flux testing and characterization of the divertor and first wall components are a challenging engineering problem of a tokamak. These components are subject to steady state and transient heat load of high magnitude. Therefore, the accurate prediction and control of the cooling parameters is crucial to prevent burnout. The prediction of the cooling parameters is based on the numerical solution of the critical heat flux (CHF) model. In a test facility for high heat flux testing of plasma facing components (PFC), the integration of computations and experimental control is an essential requirement. Experimental physics and industrial control system (EPICS) provides powerful tools for steering controls, data simulation, hardware interfacing and wider usability. Python provides an open source alternative for numerical computations and scripting. We have integrated these two open source technologies to develop a graphical software for a typical high heat flux experiment. The implementation uses EPICS based tools namely IOC (I/O controller) server, control system studio (CSS) and Python based tools namely Numpy, Scipy, Matplotlib and NOSE. EPICS and Python are integrated using PyEpics library. This toolkit is currently under operation at high heat flux test facility at Institute for Plasma Research (IPR) and is also useful for the experimental labs working in the similar research areas. The paper reports the software architectural design, implementation tools and rationale for their selection, test and validation.

  1. Characterization of thermally sprayed coatings for high-temperature wear-protection applications

    International Nuclear Information System (INIS)

    Li, C.C.

    1980-03-01

    Under normal high-temperature gas-cooled reactor (HTGR) operating conditions, faying surfaces of metallic components under high contact pressure are prone to friction, wear, and self-welding damage. Component design calls for coatings for the protection of the mating surfaces. Anticipated operating temperatures up to 850 to 950 0 C (1562 to 1742 0 F) and a 40-y design life require coatings with excellent thermal stability and adequate wear and spallation resistance, and they must be compatible with the HTGR coolant helium environment. Plasma and detonation-gun (D-gun) deposited chromium carbide-base and stabilized zirconia coatings are under consideration for wear protection of reactor components such as the thermal barrier, heat exchangers, control rods, and turbomachinery. Programs are under way to address the structural integrity, helium compatibility, and tribological behavior of relevant sprayed coatings. In this paper, the need for protection of critical metallic components and the criteria for selection of coatings are discussed. The technical background to coating development and the experience with the steam cycle HTGR (HTGR-SC) are commented upon. Coating characterization techniques employed at General Atomic Company (GA) are presented, and the progress of the experimental programs is briefly reviewed. In characterizing the coatings for HTGR applications, it is concluded that a systems approach to establish correlation between coating process parameters and coating microstructural and tribological properties for design consideration is required

  2. Tools for characterizing biomembranes : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Stevens, Mark; Holland, Gregory P.; McIntyre, Sarah K.

    2007-10-01

    A suite of experimental nuclear magnetic resonance (NMR) spectroscopy tools were developed to investigate lipid structure and dynamics in model membrane systems. By utilizing both multinuclear and multidimensional NMR experiments a range of different intra- and inter-molecular contacts were probed within the membranes. Examples on pure single component lipid membranes and on the canonical raft forming mixture of DOPC/SM/Chol are presented. A unique gel phase pretransition in SM was also identified and characterized using these NMR techniques. In addition molecular dynamics into the hydrogen bonding network unique to sphingomyelin containing membranes were evaluated as a function of temperature, and are discussed.

  3. Experimental investigation of thermal emittance components of copper photocathode

    Directory of Open Access Journals (Sweden)

    H. J. Qian

    2012-04-01

    Full Text Available With progress of photoinjector technology, thermal emittance has become the primary limitation of electron beam brightness. Extensive efforts have been devoted to study thermal emittance, but experiment results differ between research groups and few can be well interpreted. Besides the ambiguity of photoemission mechanism, variations of cathode surface conditions during cathode preparation, such as work function, field enhancement factor, and surface roughness, will cause thermal emittance differences. In this paper, we report an experimental study of electric field dependence of copper cathode quantum efficiency (QE and thermal emittance in a radio frequency (rf gun, through which in situ cathode surface parameters and thermal emittance contributions from photon energy, Schottky effect, and surface roughness are extracted. It is found the QE of a copper cathode illuminated by a 266 nm UV laser increased substantially to 1.5×10^{-4} after cathode cleaning during rf conditioning, and a copper work function of 4.16 eV, which is much lower than nominal value (4.65 eV, was measured. Experimental results also show a thermal emittance growth as much as 0.92  mm mrad/mm at 50  MV/m due to the cathode surface roughness effect, which is consistent with cathode surface morphology measurements.

  4. Characterization of the neutron flow for the implementation of an experimental analysis installation for rapid gamma activation in the Argentine Research Reactor RA-6

    International Nuclear Information System (INIS)

    Henriquez, C.; Gennuso, G.

    2000-01-01

    This is the final work to obtain a Diploma on Specialization in Application of Nuclear Technological Energy, carried out at the Research Reactor RA-6, from March to December 1999. Different work has been realized on the Tangential Tube N of the 500 KW Argentine RA-6 research reactor, in order to add a new technique to the present existing analytical methods. This Prompt Gamma Neutron Activation Analysis technique (PGNAA) requires a beam of collimated thermal neutrons, a lowest possible gamma radiation, and a thermal component of the biggest possible cadmium rate. It also must have a high resolution detection system for the measurement of the gamma radiation emitted after the capture of the neutron produced in the study sample. Continuing with the facility's technical requirements, a collimator was installed inside the N passing tube, in order to concentrate the neutrons coming from the nuclear core and also to compensate possible losses during the path. This collimator is 440mm long and 200 mm in diameter and consists of lead and steel cylinders with different size holes on the inside, so that it can deliver a 50 mm diameter beam of thermal collimated neutrons. Two 100 mm thick bismuth filters are inside the passing tube, to reduce the gamma component inside de beam, coming from the reactor core. This work aims to the characterization of the thermal and epithermal component of the neutron beam in the collimator and at the exit of it , and also to prove experimentally that the collimator achieves the technical specifications for which it was designed and built, specifically by verifying its functioning (degree of convergence of the beam obtained). On the other hand, it is necessary to learn about the PGNAA technique in order to define the technical requirements for its adequate operation. (author)

  5. Children's Understanding of Experimental Contrast and Experimental Control: An Inventory for Primary School

    Science.gov (United States)

    Osterhaus, Christopher; Koerber, Susanne; Sodian, Beate

    2015-01-01

    Experimentation skills are a central component of scientific thinking, and many studies have investigated whether and when primary-school children develop adequate experimentation strategies. However, the answers to these questions vary substantially depending on the type of task that is used: while discovery tasks, which require children to…

  6. A wideband fractal-inspired piezoelectric energy converter: design, simulation and experimental characterization

    International Nuclear Information System (INIS)

    Castagnetti, Davide

    2013-01-01

    In order to develop self-powered wireless sensor nodes, many energy harvesting devices that are able to convert available ambient energy into electrical energy have been proposed in the literature. A promising technique, in terms of simplicity and high conversion efficiency, is the harvesting of ambient kinetic energy through piezoelectric materials. The aim of this work is to design and investigate the modal response and power output of a fractal-inspired, multi-frequency, piezoelectric energy converter. The converter is a square, thin sheet structure, characterized by a fractal geometry obtained through a pattern of cuts in the plate. There are two steps involved. First, a computational analysis of the converter is performed. Second, a physical prototype of the converter is built and its eigenfrequencies and power generation under different resistive loads are experimentally examined in the range from 0 to 120 Hz. The converter exhibits three eigenfrequencies and a good power output, particularly at the first eigenfrequency. (paper)

  7. Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications

    Science.gov (United States)

    Khalifa, H. E.; Deck, C. P.; Gutierrez, O.; Jacobsen, G. M.; Back, C. A.

    2015-02-01

    The use of silicon carbide (SiC) composites as structural materials in nuclear applications necessitates the development of a viable joining method. One critical application for nuclear-grade joining is the sealing of fuel within a cylindrical cladding. This paper demonstrates cylindrical joint feasibility using a low activation nuclear-grade joint material comprised entirely of β-SiC. While many papers have considered joining material, this paper takes into consideration the joint geometry and component form factor, as well as the material performance. Work focused specifically on characterizing the strength and permeability performance of joints between cylindrical SiC-SiC composites and monolithic SiC endplugs. The effects of environment and neutron irradiation were not evaluated in this study. Joint test specimens of different geometries were evaluated in their as-fabricated state, as well as after being subjected to thermal cycling and partial mechanical loading. A butted scarf geometry supplied the best combination of high strength and low permeability. A leak rate performance of 2 × 10-9 mbar l s-1 was maintained after thermal cycling and partial mechanical loading and sustained applied force of 3.4 kN, or an apparent strength of 77 MPa. This work shows that a cylindrical SiC-SiC composite tube sealed with a butted scarf endplug provides out-of-pile strength and permeability performance that meets light water reactor design requirements.

  8. Experimental demonstration of spinor slow light

    Science.gov (United States)

    Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.

    2016-03-01

    Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.

  9. Model-based inversion for the characterization of crack-like defects detected by ultrasound in a cladded component; Etude d'une methode d'inversion basee sur la simulation pour la caracterisation de fissures detectees par ultrasons dans un composant revetu

    Energy Technology Data Exchange (ETDEWEB)

    Haiat, G

    2004-03-01

    This work deals with the inversion of ultrasonic data. The industrial context of the study in the non destructive evaluation of the internal walls of French reactor pressure vessels. Those inspections aim at detecting and characterizing cracks. Ultrasonic data correspond to echographic responses obtained with a transducer acting in pulse echo mode. Cracks are detected by crack tip diffraction effect. The analysis of measured data can become difficult because of the presence of a cladding, which surface is irregular. Moreover, its constituting material differs from the one of the reactor vessel. A model-based inverse method uses simulation of propagation and of diffraction of ultrasound taking into account the irregular properties of the cladding surface, as well as the heterogeneous nature of the component. The method developed was implemented and tested on a set of representative cases. Its performances were evaluated by the analysis of experimental results. The precision obtained in the laboratory on experimental cases treated is conform with industrial expectations motivating this study. (author)

  10. Predictions of flavonoid solubility in ionic liquids by COSMO-RS: experimental verification, structural elucidation, and solvation characterization

    DEFF Research Database (Denmark)

    Guo, Zheng; Lue, Bena-Marie; Thomsen, Kaj

    2007-01-01

    Predictions of the solubility of flavonoids in a large variety of ionic liquids (ILs) with over 1800 available structures were examined based on COSMO-RS computation. The results show that the solubilities of flavonoids are strongly anion-dependent. Experimental measurement of the solubilities...... of esculin and rutin in 12 ILs with varying anions and cations show that predicted and experimental results generally have a good agreement. Based on the sound physical basis of COSMO-RS, the solubility changes of flavonoids were quantitatively associated with solvation interactions and structural...... characteristics of ILs. COSMO-RS derived parameters, i.e. misfit, H-bonding and van der Waals interaction energy, are shown to be capable of characterizing the complicated multiple interactions in the IL system effectively. H-bonding interaction is the most dominant interaction for ILs (followed by misfit and van...

  11. Using Principal Component Analysis to Improve Fallout Characterization

    Science.gov (United States)

    2017-03-23

    Overview Current high fidelity methods of post-detonation forensic are time consuming. The ability to focus these methods on areas of highest...time intensive forensic methods [6]. This research will build upon that success by increasing the available data and improving the correlation between...provides a rapid method of characterization for each sample. Each sample was scanned using a uniform grid as shown in Figure 14. This grid provides

  12. X-Ray Characterization of Non-Equilibrium Solid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A; Rosdahl, Oe

    1975-07-01

    The Rudman approach to composition line broadening in X-ray diffraction patterns, originally designed for the study of diffusion in alloys, is seen to provide a basis for characterizing inhomogeneous solid solutions. Limitations, imposed on this treatment when the cell dimensions of the primary components differ by less than 0.1 A, are attributable to experimental effects such as instrument broadening. These limitations can be overcome by a rigorous numerical treatment of the measured data. Thus, separate elimination of the Kalpha{sub 2} radiation component followed by iterative deconvolution are advocated for the recovery of the intrinsic broadening. This course of action is made possible chiefly through the availability of large, fast memory computers and primary data recorded in the form of a step scan on punched paper tape. The characteristics of inhomogeneous solid solutions made available by the above treatment are the identity of closely similar, solid solution phases, the frequency distribution curve for a chosen component, and the degree of homogeneity of the X-ray sample

  13. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-01-01

    Conceptual Design of Fusion Experimental Reactor (FER) of which the objective will be to realize self-ignition with D-T reaction is reported. Mechanical Configurations of FER are characterized with a noncircular plasma and a double-null divertor. The primary aim of design studies is to demonstrate fissibility of reactor structures as compact and simple as possible with removable torus sectors. The structures of each component such as a first-wall, blanket, shielding, divertor, magnet and so on have been designed. It is also discussed about essential reactor plant system requirements. In addition to the above, a brief concept of a steady-state reactor based on RF current drive is also discussed. The main aim, in this time, is to examine physical studies of a possible RF steady-state reactor. (author)

  14. Synthesis and Characterization of Two Component Alloy Nanoparticles

    Science.gov (United States)

    Tabatabaei, Salomeh

    Alloying is an old trick used to produce new materials by synergistically combining at least two components. New developments in nanoscience have enabled new degrees of freedom, such as size, solubility and concentration of the alloying element to be utilized in the design of the physical properties of alloy nanoparticles (ANPs). ANPs as multi-functional materials have applications in catalysis, biomedical technologies and electronics. Phase diagrams of ANPs are very little known and may not represent that of bulk picture, furthermore, ANPs with different crystallite orientation and compositions could remain far from equilibrium. Here, we studied the synthesis and stability of Au-Sn and Ag-Ni ANPs with chemical reduction method at room temperature. Due to the large difference in the redox potentials of Au and Sn, co-reduction is not a reproducible method. However, two step successive reductions was found to be more reliable to generate Au-Sn ANPs which consists of forming clusters in the first step (either without capping agent or with weakly coordinated surfactant molecules) and then undergoing a second reduction step in the presence of another metal salt. Our observation also showed that capping agents (Cetrimonium bromide or (CTAB)) and Polyacrylic acid (PAA)) play a key role in the alloying process and shorter length capping agent (PAA) may facilitate the diffusion of individual components and thus enabling better alloying. Different molar ratios of Sn and Au precursors were used to study the effect of alloying elements on the melting point and the crystalline structures and melting points were determined by various microscopy and spectroscopy techniques and differential scanning calorimetry (DSC). A significant depression (up to150°C) in the melting transition was observed for the Au-Sn ANPs compared to the bulk eutectic point (Tm 280°C) due to the size and shape effect. Au-Sn ANPs offer a unique set of advantages as lead-free solder material which can

  15. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System

    Science.gov (United States)

    Chavez-Burbano, Patricia; Rabadan, Jose; Perez-Jimenez, Rafael

    2017-01-01

    Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios. PMID:28677613

  16. Principal components of phenolics to characterize red Vinho Verde grapes: anthocyanins or non-coloured compounds?

    Science.gov (United States)

    Dopico-García, M S; Fique, A; Guerra, L; Afonso, J M; Pereira, O; Valentão, P; Andrade, P B; Seabra, R M

    2008-06-15

    Phenolic profile of 10 different varieties of red "Vinho Verde" grapes (Azal Tinto, Borraçal, Brancelho, Doçal, Espadeiro, Padeiro de Basto, Pedral, Rabo de ovelha, Verdelho and Vinhão), from Minho (Portugal) were studied. Nine Flavonols, four phenolic acids, three flavan-3-ols, one stilben and eight anthocyanins were determined. Malvidin-3-O-glucoside was the most abundant anthocyanin while the main non-coloured compound was much more heterogeneous: catechin, epicatechin, myricetin-3-O-glucoside, quercetin-3-O-glucoside or syringetin-3-O-glucoside. Anthocyanin contents ranged from 42 to 97%. Principal component analysis (PCA) was applied to analyse the date and study the relations between the samples and their phenolic profiles. Anthocyanin profile proved to be a good marker to characterize the varieties even considering different origin and harvest. "Vinhão" grapes showed anthocyanins levels until twenty four times higher than the rest of the samples, with 97% of these compounds.

  17. Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao; Whitley, Karen S

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part I of this work presents the thermomechanical characterization of the material behavior of a shape memory polymer. In this experimental investigation, the vision image correlation system, a visual–photographic apparatus, was used to measure displacements in the gauge area. A series of tensile tests, which included nominal values of the extension of 10%, 25%, 50%, and 100%, were performed on SMP specimens. The effects on the free recovery behavior of increasing the value of the applied deformation and temperature rate were considered. The stress–extension relationship was observed to be nonlinear for increasing values of the extension, and the shape recovery was observed to occur at higher temperatures upon increasing the temperature rate. The experimental results, aided by the advanced experimental apparatus, present components of the material behavior which are critical for the development and calibration of models to describe the response of SMPs

  18. Characterization of shrubland ecosystem components as continuous fields in the northwest United States

    Science.gov (United States)

    Xian, George Z.; Homer, Collin G.; Rigge, Matthew B.; Shi, Hua; Meyer, Debbie

    2015-01-01

    Accurate and consistent estimates of shrubland ecosystem components are crucial to a better understanding of ecosystem conditions in arid and semiarid lands. An innovative approach was developed by integrating multiple sources of information to quantify shrubland components as continuous field products within the National Land Cover Database (NLCD). The approach consists of several procedures including field sample collections, high-resolution mapping of shrubland components using WorldView-2 imagery and regression tree models, Landsat 8 radiometric balancing and phenological mosaicking, medium resolution estimates of shrubland components following different climate zones using Landsat 8 phenological mosaics and regression tree models, and product validation. Fractional covers of nine shrubland components were estimated: annual herbaceous, bare ground, big sagebrush, herbaceous, litter, sagebrush, shrub, sagebrush height, and shrub height. Our study area included the footprint of six Landsat 8 scenes in the northwestern United States. Results show that most components have relatively significant correlations with validation data, have small normalized root mean square errors, and correspond well with expected ecological gradients. While some uncertainties remain with height estimates, the model formulated in this study provides a cross-validated, unbiased, and cost effective approach to quantify shrubland components at a regional scale and advances knowledge of horizontal and vertical variability of these components.

  19. Structural integrity assessment of piping components

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Chattopadhyay, J.

    2008-01-01

    Integrity assessment of piping components is very essential for safe and reliable operation of power plants. Over the last several decades, considerable work has been done throughout the world to develop a methodology for integrity assessment of pipes and elbows, appropriate for the material involved. However, there is scope of further development/improvement of issues, particularly for pipe bends, that are important for accurate integrity assessment of piping. Considering this aspect, a comprehensive Component Integrity Test Program was initiated in 1998 at Bhabha Atomic Research Centre (BARC), India. In this program, both theoretical and experimental investigations were undertaken to address various issues related to the integrity assessment of pipes and elbows. Under the experimental investigations, fracture mechanics tests have been conducted on pipes and elbows of 200-400 mm nominal bore (NB) diameter with various crack configurations and sizes under different loading conditions. Tests on small tensile and three point bend specimens, machined from the tested pipes, have also been done to evaluate the actual stress-strain and fracture resistance properties of pipe/elbow material. The load-deflection curve and crack initiation loads predicted by non-linear finite element analysis matched well with the experimental results. The theoretical collapse moments of throughwall circumferentially cracked elbows, predicted by the recently developed equations, are found to be closer to the test data compared to the other existing equations. The role of stress triaxialities ahead of crack tip is also shown in the transferability of J-Resistance curve from specimen to component. The cyclic loading and system compliance effect on the load carrying capacity of piping components are investigated and new recommendations are made. (author)

  20. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  1. Methods and design of a 10-week multi-component family meals intervention: a two group quasi-experimental effectiveness trial

    Directory of Open Access Journals (Sweden)

    Catherine Rogers

    2017-01-01

    Full Text Available Abstract Background Given the ongoing childhood obesity public health crisis and potential protective effect of family meals, there is need for additional family meals research, specifically experimental studies with expanded health outcomes that focus on the at-risk populations in highest need of intervention. Future research, specifically intervention work, would also benefit from an expansion of the target age range to include younger children, who are laying the foundation of their eating patterns and capable of participating in family meal preparations. The purpose of this paper is to address this research gap by presenting the objectives and research methods of a 10-week multi-component family meals intervention study aimed at eliciting positive changes in child diet and weight status. Methods This will be a group quasi-experimental trial with staggered cohort design. Data will be collected via direct measure and questionnaires at baseline, intervention completion (or waiting period for controls, and 10-weeks post-intervention. Setting will be faith-based community center. Participants will be 60 underserved families with at least 1, 4–10 year old child will be recruited and enrolled in the intervention (n = 30 or waitlist control group (n = 30. The intervention (Simple Suppers is a 10-week family meals program designed for underserved families from racial/ethnic diverse backgrounds. The 10, 90-min program lessons will be delivered weekly over the dinner hour. Session components include: a interactive group discussion of strategies to overcome family meal barriers, plus weekly goal setting for caregivers; b engagement in age-appropriate food preparation activities for children; and c group family meal for caregivers and children. Main outcome measures are change in: child diet quality; child standardized body mass index; and frequency of family meals. Regression models will be used to compare response variables results of

  2. Prediction for disruption erosion of ITER plasma facing components; a comparison of experimental and numerical results

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Akiba, M.; Seki, M.; Hassanein, A.; Tanchuk, V.

    1991-01-01

    An evaluation is given for the prediction for disruption erosion in the International Thermonuclear Engineering Reactor (ITER). At first, a description is given of the relation between plasma operating paramters and system dimensions to the predictions of loading parameters of Plasma Facing Components (PFC) in off-normal events. Numerical results from ITER parties on the prediction of disruption erosion are compared for a few typical cases and discussed. Apart from some differences in the codes, the observed discrepancies can be ascribed to different input data of material properties and boundary conditions. Some physical models for vapour shielding and their effects on numerical results are mentioned. Experimental results from ITER parties, obtained with electron and laser beams, are also compared. Erosion rates for the candidate ITER PFC materials are shown to depend very strongly on the energy deposition parameters, which are based on plasma physics considerations, and on the assumed material loss mechanisms. Lifetimes estimates for divertor plate and first wall armour are given for carbon, tungsten and beryllium, based on the erosion in the thermal quench phase. (orig.)

  3. Experimental Viscoelastic Characterization of Corn Cob Composited ...

    African Journals Online (AJOL)

    The nature of viscoelasticity in biomateria1s and the techniques for characterizing their rheological properties were reviewed. Relaxation tests were performed with cylindrical samples of corn cob composites which were initially subjected to radial compression. It was found that a Maxwell model composed of two simple ...

  4. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1

    OpenAIRE

    Alonso, Hernan; Roujeinikova, Anna

    2012-01-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the no...

  5. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  6. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  7. Sodium removal from Hallam Reactor components

    International Nuclear Information System (INIS)

    Huntsman, L.K.; Meservey, R.H.

    1979-08-01

    This report discussed the removal of sodium from major components of the Hallam Nuclear Power Facility. This facility contained the experimental ractor used to test the feasibility of sodium coolant. The Idaho Operations Office of the Department of Energy assigned EG and G Idaho, Inc., the task of carrying out this decontamination and decommissioning program at the Idaho National Engineering Laboratory (INEL). Since their shipment to the INEL from Lincoln, Nebraska in 1968, the Hallam Reactor components had been stored in inert nitrogen to prevent the sodium in the components from reacting with moisture in the air. The procedure used to react the sodium in the components and to decontaminate them is discussed. Problems and unusual occurrences in the decontamination and decommissioning process are also reported

  8. Nondestructive Characterization of Aged Components

    Energy Technology Data Exchange (ETDEWEB)

    Panetta, Paul D.; Toloczko, Mychailo B.; Garner, Francis A.; Balachov, Iouri I.

    2003-10-21

    It is known that high energy radiation can have numerous effects on materials. In metals and alloys, the effects include, but may not be limited to, mechanical property changes, physical property changes, compositional changes, phase changes, and dimensional changes. Metals and alloys which undergo high energy self-irradiation are also susceptible to these changes. One of the greatest concerns with irradiation of materials is the phenomenon of void swelling which has been observed in a wide variety of metals and alloys. Irradiation causes the formation of a high concentration point defects and microclusters of vacancies and interstitials. With the assistance of an inert atom such as helium, the vacancy-type defects can coalesce to form a stable bubble. This bubble will continue to grow through the net absorption of more vacancy-type defects and helium atoms, and upon reaching a certain critical size, the bubble will begin to grow at an accelerated rate without the assistance of inert atom absorption. The bubble is then said to be an unstably growing void. Depending on the alloy system and environment, swelling values can reach in excess of 50% !V/Vo where Vo is the initial volume of the material. Along with dimensional changes resulting from the formation of bubbles and voids comes changes in the macroscopically observed speed of sound, moduli, electrical resistivity, yield strength, and other properties. These effects can be detrimental to the designed operation of the aged components. In situations where irradiation has sufficient time to cause degradation to materials used in critical applications such as nuclear reactor core structural materials, it is advisable to regularly survey the material properties. It is common practice to use surveillance specimens, but this is not always possible. When surveillance materials are not available, other means for surveying the material properties must be utilized. Sometimes it is possible to core out a small sample which

  9. Evanescently Coupled Rectangular Microresonators in Silicon-on-Insulator with High Q-Values: Experimental Characterization

    Directory of Open Access Journals (Sweden)

    Manuel Mendez-Astudillo

    2017-04-01

    Full Text Available We report on evanescently coupled rectangular microresonators with dimensions up to 20 × 10 μm2 in silicon-on-insulator in an add-drop filter configuration. The influence of the geometrical parameters of the device was experimentally characterized and a high Q value of 13,000 was demonstrated as well as the multimode optical resonance characteristics in the drop port. We also show a 95% energy transfer between ports when the device is operated in TM-polarization and determine the full symmetry of the device by using an eight-port configuration, allowing the drop waveguide to be placed on any of its sides, providing a way to filter and route optical signals. We used the FDTD method to analyze the device and e-beam lithography and dry etching techniques for fabrication.

  10. Light scattering by particles in water theoretical and experimental foundations

    CERN Document Server

    Jonasz, Miroslaw

    2007-01-01

    Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data o...

  11. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity.

    Directory of Open Access Journals (Sweden)

    Roemer van der Meij

    Full Text Available Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials. Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance.

  12. Finite element modelling and experimental characterization of an electro-thermally actuated silicon-polymer micro gripper

    International Nuclear Information System (INIS)

    Krecinic, F; Duc, T Chu; Sarro, P M; Lau, G K

    2008-01-01

    This paper presents simulation and experimental characterization of an electro-thermally actuated micro gripper. This micro actuator can conceptually be seen as a bi-morph structure of SU-8 and silicon, actuated by thermal expansion of the polymer. The polymer micro gripper with an embedded comb-like silicon skeleton is designed to reduce unwanted out-of-plane bending of the actuator, while offering a large gripper stroke. The temperature and displacement field of the micro gripper structure is determined using a two-dimensional finite element analysis. This analysis is compared to experimental data from steady-state and transient measurements of the integrated heater resistance, which depends on the average temperature of the actuator. The stability of the polymer actuator is evaluated by recording the transient behaviour of the actual jaw displacements. The maximum single jaw displacement of this micro gripper design is 34 µm at a driving voltage of 4 V and an average actuator temperature of 170 °C. The transient thermal response is modelled by a first-order system with a characteristic time constant of 11.1 ms. The simulated force capability of the device is 0.57 mN per µm jaw displacement

  13. Characterization of the Volatile Substances and Aroma Components from Traditional Soypaste

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2010-05-01

    Full Text Available In this study, the flavor substances of soypaste were extracted by a simultaneous distillation method and identified by GC-MS. The characteristic aroma components of soypaste were determined by the GC-O technique and the FD value of the characteristic aroma components was determined by AEDA method. It could be inferred that the aroma of the soypaste should be attributed to the presence of heterocyclic compounds and organic acids, with the heterocyclic compounds playing a prominent role.

  14. Characterization and modeling of crosstalk and afterpulsing in Hamamatsu silicon photomultipliers

    International Nuclear Information System (INIS)

    Rosado, J.; Hidalgo, S.

    2015-01-01

    The crosstalk and afterpulsing in Hamamatsu silicon photomultipliers, called Multi-Pixel Photon Counters (MPPCs), have been studied in depth. Several components of the correlated noise have been identified according to their different possible causes and their effects on the signal. In particular, we have distinguished between prompt and delayed crosstalk as well as between trap-assisted and hole-induced afterpulsing. The prompt crosstalk has been characterized through the pulse amplitude spectrum measured at dark conditions. The newest MPPC series, which incorporate isolating trenches between pixels, exhibit a very low prompt crosstalk, but a small component remains likely due to secondary photons reflected on the top surface of the device and photon-generated minority carriers diffusing in the silicon substrate.We present a meticulous procedure to characterize the afterpulsing and delayed crosstalk through the amplitude and delay time distributions of secondary pulses. Our results indicate that both noise components are due to minority carriers diffusing in the substrate and that this effect is drastically reduced in the new MPPC series as a consequence of an increase of one order of magnitude in the doping density of the substrate.Finally, we have developed a Monte Carlo simulation to study the different components of the afterpulsing and crosstalk. The simulation results support our interpretation of the experimental data. They also demonstrate that trenches longer than those employed in the Hamamatsu MPPCs would reduce the crosstalk to a much greater extent

  15. Advanced Electrical Materials and Components Development: An Update

    Science.gov (United States)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  16. New methods for the characterization of pyrocarbon; The two component model of pyrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Luhleich, H.; Sutterlin, L.; Hoven, H.; Nickel, H.

    1972-04-19

    In the first part, new experiments to clarify the origin of different pyrocarbon components are described. Three new methods (plasma-oxidation, wet-oxidation, ultrasonic method) are presented to expose the carbon black like component in the pyrocarbon deposited in fluidized beds. In the second part, a two component model of pyrocarbon is proposed and illustrated by examples.

  17. LLUSTRATION OF AMINO ACIDS REACTIONS AND PROTEINS CHARACTERIZATION FOR EXPERIMENTAL BIOCHEMISTRY CLASSES

    Directory of Open Access Journals (Sweden)

    I. Parreira

    2008-05-01

    Full Text Available New teaching methodologies have been developed to facilitate the learning of biochemistry concepts. A new  approach to Biochemistry  teaching  has become more frequent,  one that does not  require reagents but use photos, videos, softwares etc. Experimental Biochemistry classes, i.e. covering characterization of amino acids and proteins,  might be more productive with the use of complementary didactic material.  Furthermore,  if experiments cannot be implemented, classes may  be well illustrated with complementary didactic material covering from the simplest to the most  complex experiments.  In order to  aid Biochemistry classes without practical experiments, some tests and reactions were documented in our laboratory through digital photos, for  instance: (1 the biuret reaction wherein the blue reagent turns violet in the presence of proteins and changes to pink when combined with short-chain polypeptides; (2 the ninhydrin test used in amino acid analysis of proteins: most of the amino acids are hydrolyzed and react with ninhydrin; when reacting with these free amines, a deep blue or purple color appears; (3 methods for detecting proteins wherein spectrophotometry is used, that deals with the relationship between absorbance, concentration and path length, which constitute the Beer-Lambert Law. A didactic material constituted by texts, schemes and illustrated by photos has been created for each class topic. This material can be used either as a teacher script or in a presentation form to illustrate classes without experimental activities. Financial Support: Pro-Reitoria Graduação-USP, CNPq.

  18. Experimental characterization of the hysteretic and rate-dependent electromechanical behavior of dielectric electro-active polymer actuators

    International Nuclear Information System (INIS)

    York, A; Seelecke, S; Dunn, J

    2010-01-01

    Dielectric electro-active polymers (DEAPs) can achieve substantial deformation (>300% strain) while sustaining, compared to their ionic counterparts, large forces. This makes them attractive for various actuation and sensing applications such as in light weight and energy efficient valve and pumping systems. Many applications operate DEAP actuators at higher frequencies where rate-dependent effects influence their performance. This motivates the seeking of dynamic characterization of these actuators beyond the quasi-static regime. This paper provides a systematic experimental investigation of the quasi-static and dynamic electromechanical properties of a DEAP actuator. In order to completely characterize the fully coupled behavior, force versus displacement measurements at various constant voltages and force versus voltage measurements at various fixed displacements are conducted. The experiments are conducted with a particular focus on the hysteretic and rate-dependent material behavior. These experiments provide insight into the electrical dynamics and viscoelastic relaxation inherent in DEAP actuators. This study is intended to provide information, including high frequency performance analysis, useful to anyone designing dynamic actuator systems using DEAPs

  19. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering.

    Science.gov (United States)

    Barucca, G; Santecchia, E; Majni, G; Girardin, E; Bassoli, E; Denti, L; Gatto, A; Iuliano, L; Moskalewicz, T; Mengucci, P

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co-Cr-Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Experimental design of a waste glass study

    International Nuclear Information System (INIS)

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150 degrees C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases

  1. Component-Based Cartoon Face Generation

    Directory of Open Access Journals (Sweden)

    Saman Sepehri Nejad

    2016-11-01

    Full Text Available In this paper, we present a cartoon face generation method that stands on a component-based facial feature extraction approach. Given a frontal face image as an input, our proposed system has the following stages. First, face features are extracted using an extended Active Shape Model. Outlines of the components are locally modified using edge detection, template matching and Hermit interpolation. This modification enhances the diversity of output and accuracy of the component matching required for cartoon generation. Second, to bring cartoon-specific features such as shadows, highlights and, especially, stylish drawing, an array of various face photographs and corresponding hand-drawn cartoon faces are collected. These cartoon templates are automatically decomposed into cartoon components using our proposed method for parameterizing cartoon samples, which is fast and simple. Then, using shape matching methods, the appropriate cartoon component is selected and deformed to fit the input face. Finally, a cartoon face is rendered in a vector format using the rendering rules of the selected template. Experimental results demonstrate effectiveness of our approach in generating life-like cartoon faces.

  2. Experimental characterization of GIT-8 plasma opening switch

    International Nuclear Information System (INIS)

    Chuvatin, A.; Rouille, C.; Etlicher, B.; Kim, A.; Loginov, S.; Kokshenev, V.; Kovalchuk, B.

    1996-01-01

    High-current Plasma Opening Switch was experimentally studied on the GIT-8 inductive generator. Cordial laser interferometry allowed investigating the line-integrated POS plasma density dynamics during the switch operation. Recording of the axially distributed Bremsstrahlung radiation from the plasma region was used to determine the axial position where the opening started. The monitoring of fast plasma density oscillations with a characteristic frequency of ω ≅ 5 x 10 7 - 10 8 rad/s prior and during the opening is a new experimental achievement. A special study confirmed that such oscillations appear due to a plasma process. The oscillation frequency depended on the mean electron density as ω ∼ n e -0.5 . (author). 5 figs., 7 refs

  3. Negative refraction angular characterization in one-dimensional photonic crystals.

    Directory of Open Access Journals (Sweden)

    Jesus Eduardo Lugo

    2011-04-01

    Full Text Available Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs.By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone.Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  4. Negative refraction angular characterization in one-dimensional photonic crystals.

    Science.gov (United States)

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  5. Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions

    International Nuclear Information System (INIS)

    You Mingyi; Li Hongguang; Meng Guang

    2011-01-01

    This paper develops two component-level control-limit preventive maintenance (PM) policies for systems subject to the joint effect of partial recovery PM acts (imperfect PM acts) and variable operational conditions, and investigates the properties of the proposed policies. The extended proportional hazards model (EPHM) is used to model the system failure likelihood influenced by both factors. Several numerical experiments are conducted for policy property analysis, using real lifetime and operational condition data and typical characterization of imperfect PM acts and maintenance durations. The experimental results demonstrate the necessity of considering both factors when they do exist, characterize the joint effect of the two factors on the performance of an optimized PM policy, and explore the influence of the loading sequence of time-varying operational conditions on the performance of an optimized PM policy. The proposed policies extend the applicability of PM optimization techniques.

  6. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    International Nuclear Information System (INIS)

    Guzina, Bojan; Kunerth, Dennis

    2014-01-01

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  7. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guzina, Bojan [Univ. of Minnesota, Minneapolis, MN (United States); Kunerth, Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses

  8. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  9. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.

    2011-01-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  10. Characterization of coal fly ash components by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ctvrtnickova, Tereza; Mateo, Mari-Paz; Yanez, Armando; Nicolas, Gines

    2009-01-01

    The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO...) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003). In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis 'on tape' was performed in order to establish the experimental conditions for the future 'online analysis'.

  11. Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2009-06-01

    Full Text Available A characterization of the ultra-fine aerosol particle counter COPAS (COndensation PArticle counting System for operation on board the Russian high altitude research aircraft M-55 Geophysika is presented. The COPAS instrument consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs operated with the chlorofluorocarbon FC-43. It operates at pressures between 400 and 50 hPa for aerosol detection in the particle diameter (dp range from 6 nm up to 1 μm. The aerosol inlet, designed for the M-55, is characterized with respect to aspiration, transmission, and transport losses. The experimental characterization of counting efficiencies of three CPCs yields dp50 (50% detection particle diameter of 6 nm, 11 nm, and 15 nm at temperature differences (ΔT between saturator and condenser of 17°C, 30°C, and 33°C, respectively. Non-volatile particles are quantified with a fourth CPC, with dp50=11 nm. It includes an aerosol heating line (250°C to evaporate H2SO4-H2O particles of 11 nm<dp<200 nm at pressures between 70 and 300 hPa. An instrumental in-flight inter-comparison of the different COPAS CPCs yields correlation coefficients of 0.996 and 0.985. The particle emission index for the M-55 in the range of 1.4–8.4×1016 kg−1 fuel burned has been estimated based on measurements of the Geophysika's own exhaust.

  12. APS beamline standard components handbook

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1992-01-01

    It is clear that most Advanced Photon Source (APS) Collaborative Access Team (CAT) members would like to concentrate on designing specialized equipment related to their scientific programs rather than on routine or standard beamline components. Thus, an effort is in progress at the APS to identify standard and modular components of APS beamlines. Identifying standard components is a nontrivial task because these components should support diverse beamline objectives. To assist with this effort, the APS has obtained advice and help from a Beamline Standardization and Modularization Committee consisting of experts in beamline design, construction, and operation. The staff of the Experimental Facilities Division identified various components thought to be standard items for beamlines, regardless of the specific scientific objective of a particular beamline. A generic beamline layout formed the basis for this identification. This layout is based on a double-crystal monochromator as the first optical element, with the possibility of other elements to follow. Pre-engineering designs were then made of the identified standard components. The Beamline Standardization and Modularization Committee has reviewed these designs and provided very useful input regarding the specifications of these components. We realize that there will be other configurations that may require special or modified components. This Handbook in its current version (1.1) contains descriptions, specifications, and pre-engineering design drawings of these standard components. In the future, the APS plans to add engineering drawings of identified standard beamline components. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction

  13. Construction of a 21-Component Layered Mixture Experiment Design

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Jones, Bradley

    2004-01-01

    This paper describes the solution to a unique and challenging mixture experiment design problem involving: (1) 19 and 21 components for two different parts of the design, (2) many single-component and multi-component constraints, (3) augmentation of existing data, (4) a layered design developed in stages, and (5) a no-candidate-point optimal design approach. The problem involved studying the liquidus temperature of spinel crystals as a function of nuclear waste glass composition. The statistical objective was to develop an experimental design by augmenting existing glasses with new nonradioactive and radioactive glasses chosen to cover the designated nonradioactive and radioactive experimental regions. The existing 144 glasses were expressed as 19-component nonradioactive compositions and then augmented with 40 new nonradioactive glasses. These included 8 glasses on the outer layer of the region, 27 glasses on an inner layer, 2 replicate glasses at the centroid, and one replicate each of three existing glasses. Then, the 144 + 40 = 184 glasses were expressed as 21-component radioactive compositions and augmented with 5 radioactive glasses. A D-optimal design algorithm was used to select the new outer layer, inner layer, and radioactive glasses. Several statistical software packages can generate D-optimal experimental designs, but nearly all require a set of candidate points (e.g., vertices) from which to select design points. The large number of components (19 or 21) and many constraints made it impossible to generate the huge number of vertices and other typical candidate points. JMP(R) was used to select design points without candidate points. JMP uses a coordinate-exchange algorithm modified for mixture experiments, which is discussed in the paper

  14. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    Science.gov (United States)

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2018-01-01

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Characterization of molecule and particle transport through nanoscale conduits

    Science.gov (United States)

    Alibakhshi, Mohammad Amin

    Nanofluidic devices have been of great interest due to their applications in variety of fields, including energy conversion and storage, water desalination, biological and chemical separations, and lab-on-a-chip devices. Although these applications cross the boundaries of many different disciplines, they all share the demand for understanding transport in nanoscale conduits. In this thesis, different elusive aspects of molecule and particle transport through nanofluidic conduits are investigated, including liquid and ion transport in nanochannels, diffusion- and reaction-governed enzyme transport in nanofluidic channels, and finally translocation of nanobeads through nanopores. Liquid or solvent transport through nanoconfinements is an essential yet barely characterized component of any nanofluidic systems. In the first chapter, water transport through single hydrophilic nanochannels with heights down to 7 nm is experimentally investigated using a new measurement technique. This technique has been developed based on the capillary flow and a novel hybrid nanochannel design and is capable of characterizing flow in both single nanoconduits as well as nanoporous media. The presence of a 0.7 nm thick hydration layer on hydrophilic surfaces and its effect on increasing the hydraulic resistance of the nanochannels is verified. Next, ion transport in a new class of nanofluidic rectifiers is theoretically and experimentally investigated. These so called nanofluidic diodes are nanochannels with asymmetric geometries which preferentially allow ion transport in one direction. A nondimensional number as a function of electrolyte concentration, nanochannel dimensions, and surface charge is derived that summarizes the rectification behavior of this system. In the fourth chapter, diffusion- and reaction-governed enzyme transport in nanofluidic channels is studied and the theoretical background necessary for understanding enzymatic activity in nanofluidic channels is presented. A

  16. Thermodynamic characterization of salt components for the Molten Salt Reactor Fuel - 15573

    International Nuclear Information System (INIS)

    Capelli, E.; Konings, R.J.M.; Benes, A.

    2015-01-01

    Molten fluoride salts are considered as primary candidates for nuclear fuel in the Molten Salt Reactor (MSR), one of the 6 generation IV nuclear reactor designs. In order to determine the safety limits and to access the properties of the potential fuel mixtures, thermodynamic studies are very important. This study is a combination of experimental work and thermodynamic modelling and focusses on the fluoride systems with alkaline and alkaline earth fluorides as matrix and ThF 4 , UF 4 and PuF 3 as fertile and fissile materials. The purification of the single components was considered as essential first step for the study of more complex systems and ternary phase diagrams were described using Differential Scanning Calorimetry (DSC) and drop calorimetry, which are used to measure phase transitions, enthalpy of mixing and heat capacity. In addition to the calorimetric techniques, Knudsen Effusion Mass Spectrometry (KEMS) and X-ray Diffraction (XRD) were used to collect data on vapour pressure and crystal structure of fluorides. The results are then coupled with thermodynamic modelling using the Calphad method for the assessment of the phase diagrams. A thermodynamic database describing the most important systems for MSR application has been developed and it has been used to optimize the fuel composition in view of the relevant properties such as melting temperature. A reliable database of thermodynamic properties of fluoride salts has been generated. It includes the key systems for the MSR fuel and it is very useful to predict the properties of the fuel

  17. Experimental investigation and characterization of micro resistance welding with an electro-thermal actuator

    International Nuclear Information System (INIS)

    Chang, Chun-Wei; Yeh, Cheng-Chi; Hsu Wensyang

    2009-01-01

    Resistance welding is a common scheme of assembly on the macro scale by pressing together two workpieces with current passing through them to generate joule heating at the contact region due to high contact resistance. However, micro assembly by resistance welding is seldom reported. Here, resistance welding with an electro-thermal microactuator to assemble micro Ni structures is experimentally investigated and characterized. The bent-beam electro-thermal microactuator is designed to provide the necessary displacements and pressing forces. The two-mask metal-based surface micromachining process is adopted to fabricate the micro Ni structures. The calibrated initial contact resistance is shown to decrease with increasing contact pressure. Furthermore, stronger welding strength is achieved at a smaller initial contact resistance, which indicates that a larger clamping force would enhance the welding strength as large as 3.09 MPa (74.4 µN) at a contact resistance of 2.7 Ω here. The input welding energy is also found to be a critical factor. In our tests, when welding energy is below the threshold limit of 0.05 J, the welding trials all fail. For the energy between 0.05 J and 1 J, there is a transition from a lower yield of 33.3% to a higher yield of 58.3%. At high welding energy, between 1 and 10 J, 100% yield is achieved. With the demonstration and characterization of micro resistance welding by the electro-thermal microactuator, the scheme proposed here would be helpful in the automation of micro assembly

  18. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m.

    Science.gov (United States)

    Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P J; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe; Djordjevic, Ivan B; Neifeld, Mark A; Willner, Alan E

    2016-02-01

    We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120 m on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s quadrature-phase-shift-keyed channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, intermodal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 s. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit error rates are below the forward error correction threshold of 3.8×10(-3) for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases.

  19. Experimental study of advanced continuous acoustic-emission monitoring of BWR components. Final report

    International Nuclear Information System (INIS)

    McElroy, J.W.

    1982-01-01

    This report presents the results of a four year research program on the utilization of acoustic emission techniques on light water reactor component applications. Two techniques of the acoustic emission technology were applied to specific problems occurring within the light water reactor system. Crack detection AE monitoring was applied to thermal cycle fatigue cracking problems and stress corrosion cracking problems. Leak detection AE monitoring was applied to valve leakage in the main steam safety relief valves and incontainment packing gland valves. The report provides AE data showing how AE crack detection can be used as an on-line diagnostic monitoring tool. By having an active monitor on light water reactor components, the inservice inspection of the components is being performed during operation rather than refueling periods, thereby reducing critical path time during outages. The resultant benefit is increased plant availability and a reduction in accumulated radiation exposure

  20. Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes

    Science.gov (United States)

    Fonseca Flores, Luis Diego

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.

  1. Production and partial characterization of lipases from a newly isolated Penicillium sp. using experimental design.

    Science.gov (United States)

    Wolski, E; Rigo, E; Di Luccio, M; Oliveira, J V; de Oliveira, D; Treichel, H

    2009-07-01

    The objective of this work was to investigate the lipase production by a newly isolated Penicillium sp., using experimental design technique, in submerged fermentation using a medium based on peptone, yeast extract, NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained. Lipase activity values of 9.5 U ml(-1) in 96 h of fermentation was obtained at the maximized operational conditions of peptone, yeast extract, NaCl and olive oil concentrations (g l(-1)) of 20.0, 5.0, 5.0 and of 10.0 respectively. The partial characterization of crude enzymatic extract obtained by submerged fermentation showed optimum activity at pH range from 4.9 to 5.5 and temperature from 37 degrees C to 42 degrees C. The crude extract maintained its initial activity at freezing temperatures up to 100 days. A newly isolated strain of Penicillium sp. used in this work yielded good lipase activities compared to the literature. The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. New lipase producers are relevant to finding enzymes with different catalytic properties of commercial interest could be obtained, without using genetically modified organisms (GMO).

  2. Detection and Characterization of Ground Displacement Sources from Variational Bayesian Independent Component Analysis of GPS Time Series

    Science.gov (United States)

    Gualandi, A.; Serpelloni, E.; Belardinelli, M. E.

    2014-12-01

    A critical point in the analysis of ground displacements time series is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies. Indeed, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here we present the application of the vbICA technique to GPS position time series. First, we use vbICA on synthetic data that simulate a seismic cycle

  3. Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.

    Science.gov (United States)

    Alonso, Hernan; Roujeinikova, Anna

    2012-11-01

    The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.

  4. Ionitriding of Weapon Components

    Science.gov (United States)

    1974-01-01

    and documented tho production sequences required for the case- hardening of AISI 4140 and Nitralloy 13514 steels. Determination of processina...depths were established experimentally for Nitralloy 135M and for AISI 4140 steels. These steels are commonly used for the manufacture of nitrlded...weapons components. A temperature of 050F, upper limit for lonitrlding, was selected for the Nitralloy 135M to keep treatment times short. Since AISI 4140

  5. Experimental phase behavior study of a five-component model gas condensate

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Straver, E.J.M.; Florusse, L.J.; Peters, C.J.

    2014-01-01

    In this work, the bubble points and dew points of a multicomponent mixture of methane, butane, heptane, decane and tetradecane as a model mixture representative of a gas condensate, have been measured experimentally. Ten samples with approximately the same composition were prepared and their

  6. Separation of electron ion ring components (computational simulation and experimental results)

    International Nuclear Information System (INIS)

    Aleksandrov, V.S.; Dolbilov, G.V.; Kazarinov, N.Yu.; Mironov, V.I.; Novikov, V.G.; Perel'shtejn, Eh.A.; Sarantsev, V.P.; Shevtsov, V.F.

    1978-01-01

    The problems of the available polarization value of electron-ion rings in the regime of acceleration and separation of its components at the final stage of acceleration are studied. The results of computational simulation by use of the macroparticle method and experiments on the ring acceleration and separation are given. The comparison of calculation results with experiment is presented

  7. An experimental method of characterization of deformable porous media

    Directory of Open Access Journals (Sweden)

    Sommier Alain

    2012-04-01

    Full Text Available A porous medium saturated with liquid and placed within a medium that undergoes a change in pressure reacts by shrinking. If the space contains the same liquid as the pores of the sample, then after a certain lapse of time the sample dilates. By measuring this dilation kinetic the specimen’s permeability can be approximated. This experimental method is called Dynamic Pressurisation. We set up an experimental apparatus to measure the permeability and the different agarose gel compressibility moduli. The liquid contained inside the gel pores is water. We have realized experiments in water and others in oil. In Scherer’s method the flow is considered only in the radial direction. To find the real permeability value we have built a numerical model considering that both the liquid and the solid are compressible. The simulations were compared to the experimental results and have allowed finding the real value of the permeability by considering the flow in both radial and axial directions.

  8. Interfacial characterization of flexible hybrid electronics

    Science.gov (United States)

    Najafian, Sara; Amirkhizi, Alireza V.; Stapleton, Scott

    2018-03-01

    Flexible Hybrid Electronics (FHEs) are the new generation of electronics combining flexible plastic film substrates with electronic devices. Besides the electrical features, design improvements of FHEs depend on the prediction of their mechanical and failure behavior. Debonding of electronic components from the flexible substrate is one of the most common and critical failures of these devices, therefore, the experimental determination of material and interface properties is of great importance in the prediction of failure mechanisms. Traditional interface characterization involves isolated shear and normal mode tests such as the double cantilever beam (DCB) and end notch flexure (ENF) tests. However, due to the thin, flexible nature of the materials and manufacturing restrictions, tests mirroring traditional interface characterization experiments may not always be possible. The ideal goal of this research is to design experiments such that each mode of fracture is isolated. However, due to the complex nonlinear nature of the response and small geometries of FHEs, design of the proper tests to characterize the interface properties can be significantly time and cost consuming. Hence numerical modeling has been implemented to design these novel characterization experiments. This research involves loading case and specimen geometry parametric studies using numerical modeling to design future experiments where either shear or normal fracture modes are dominant. These virtual experiments will provide a foundation for designing similar tests for many different types of flexible electronics and predicting the failure mechanism independent of the specific FHE materials.

  9. Thermal performance of an innovative roof component

    Energy Technology Data Exchange (ETDEWEB)

    Dimoudi, A. [Department of Environmental Engineering, Democritus University of Thrace, Vassilisis Sofias 12, 67 100 Xanthi (Greece); Lykoudis, S. [Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and B. Pavlou, 152 36 Penteli (Greece); Androutsopoulos, A. [Buildings Department, Division of Energy Efficiency, Centre for Renewable Energy Sources (CRES), 19th km Marathonos Aven., 190 09 Pikermi (Greece)

    2006-11-15

    In this paper, the thermal performance of a ventilated roof component is investigated during the winter period. The ventilated roof component consists of a conventional roof structure - reinforced concrete with a layer of thermal insulation - an air gap that allows the movement of the ambient air and an external layer made of a prefabricated concrete slab. The experimental results of the ventilated roof component during the winter period are presented and its thermal performance is analysed. The effect of key construction parameters like the height of the air gap and the use of a radiant barrier in the air gap is also investigated. Analysis of the results showed that the performance of a ventilated roof component is comparable to a conventional structure during winter. The ventilated component is shown to be in compliance with Greek regulatory requirements in terms of U-value. (author)

  10. Component behaviour in the 700 C power plant. Numerical and experimental investigations; Komponentenverhalten im 700 C-Kraftwerk. Numerische und experimentelle Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Kay H.

    2013-07-19

    Currently martensitic steels are used in fossil fired power plants with maximum working temperatures up to 625 C. These steels do not show the required creep rupture strength at the target temperature of 700 C. For these high temperatures, new materials like the nickel base alloys have to be qualified for power plants services. Originating from the weld of turbine materials, nickel base alloys show outstanding creep rupture strength. An alloy with good prospects out of the material class of the nickel base alloys is Alloy 617 mod. However, this material is expensive due to its high nickel content. Furthermore, the complex machinability of this material leads to an additional increase in expenses. A complete fabrication of the boiler area using Alloy 617 mod is not economically feasible, which means that the usage of this material has to be limited to the temperature weld of 625 C to 700 C. For the boiler area with temperatures below 625 C the well proven 9 % to 12 % Cr-steels, like T/P92 and VM12/VM12-SHC may be used. In the weld of low temperatures up to 525 C the usage of the 2.5 % Cr-steel T/P24 offers numerous advantages, in particular in the fabrication of membrane walls. This material shows good creep properties up to temperatures of 525 C and, for thin walled components, T24 can be welded without post weld heat treatment by using suitable techniques. For a successful design and fabrication of a 700 C fossil fired power plant, appropriate materials have to be qualified. Here, a special focus is set on the creep properties of these materials. The presented work is a significant contribution to the qualification of these materials. First, the materials Alloy 617 mod, T/P92, VM12/VM12-SHC and T24 are briefly introduced and characterized. After this, the materials are investigated in a detailed creep testing program. This program includes investigations on base material, extracted from tubes, pipes and inductive bends of pipes. In addition, crossweld specimens

  11. Experimental characterization of a new multicasting node architecture based on space splitters and wavelength converters

    Science.gov (United States)

    He, Hao; Su, Yikai; Hu, Peigang; Hu, Weisheng

    2005-11-01

    IPTV-based broadband services such as interactive multimedia and video conferencing are considered as promising revenue-adding services, and multicast is proven to be a good supplier to support these applications for its reduced consumption of network bandwidth. Generally there are two approaches to implement optical layer multicast. One is space-domain multicast using space-splitter which is low cost but has wavelength continuity constraint, the other is frequency-domain multicast using wavelength converter which resolves the wavelength continuity but with high costs. A new multicasting node which adopts both space-domain multicast and frequency-domain multicast is recently discussed. In this paper we present an experimental demonstration of the new multicasting node architecture based on space splitters and wavelength converters, measurements to characterize such a node are provided.

  12. Application of PHADEC method for the decontamination of radioactive steam piping components of Caorso plant

    International Nuclear Information System (INIS)

    Lo Frano, R.; Aquaro, D.; Fontani, E.; Pilo, F.

    2014-01-01

    Highlights: • Application of PHADEC chemical off-line methodology. • Decontamination of radioactive steam piping components of Caorso turbine building. • Experimental characterization of metallic components, e.g., by SEM analysis. • Measure of the efficiency of treatment by means of the reduction of activity and vs. the treatment time. • Minimization of secondary waste produced during decontamination activity of Caorso BWR plant. - Abstract: The dismantling of nuclear plants is a complex activity that originates often a large quantity of radioactive contaminated residue. In this paper the attention was focused on the PHADEC (PHosphoric Acid DEContamination) plant adopted for the clearance of Caorso NPP (in Italy) metallic systems and components contaminated by Co60 (produced by the neutron capture in the iron materials), like the main steam lines, moisture separator of the turbine buildings, etc. The PHADEC plant consists in a chemical off line treatment: the crud, deposited along the steam piping during life plant as an example, is removed by means of acid attacks in ponds coupled to a high pressure water washing. Due to the fact that the removed contaminated layers, essentially, iron oxides of various chemical composition, depend on components geometry, type of contamination and time of treatment in the PHADEC plant, it becomes of meaningful importance to suggest a procedure capable to improve the control of the PHADEC process parameters. This study aimed thus at the prediction and optimization of the mentioned treatment time in order to improve the efficiency of the plant itself and to achieve, in turn, the minimization of produced wastes. To the purpose an experimental campaign was carried out by analysing several samples, i.e., taken along the main steam piping line. Smear tests as well as metallographic analyses were carried out in order to determine respectively the radioactivity distribution and the crud composition on the inner surface of the

  13. Oil classification using X-ray scattering and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Danielle S.; Souza, Amanda S.; Lopes, Ricardo T., E-mail: dani.almeida84@gmail.com, E-mail: ricardo@lin.ufrj.br, E-mail: amandass@bioqmed.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Oliveira, Davi F.; Anjos, Marcelino J., E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica Armando Dias Tavares

    2015-07-01

    X-ray scattering techniques have been considered promising for the classification and characterization of many types of samples. This study employed this technique combined with chemical analysis and multivariate analysis to characterize 54 vegetable oil samples (being 25 olive oils)with different properties obtained in commercial establishments in Rio de Janeiro city. The samples were chemically analyzed using the following indexes: iodine, acidity, saponification and peroxide. In order to obtain the X-ray scattering spectrum, an X-ray tube with a silver anode operating at 40kV and 50 μA was used. The results showed that oils cab ne divided in tow large groups: olive oils and non-olive oils. Additionally, in a multivariate analysis (Principal Component Analysis - PCA), two components were obtained and accounted for more than 80% of the variance. One component was associated with chemical parameters and the other with scattering profiles of each sample. Results showed that use of X-ray scattering spectra combined with chemical analysis and PCA can be a fast, cheap and efficient method for vegetable oil characterization. (author)

  14. Oil classification using X-ray scattering and principal component analysis

    International Nuclear Information System (INIS)

    Almeida, Danielle S.; Souza, Amanda S.; Lopes, Ricardo T.; Oliveira, Davi F.; Anjos, Marcelino J.

    2015-01-01

    X-ray scattering techniques have been considered promising for the classification and characterization of many types of samples. This study employed this technique combined with chemical analysis and multivariate analysis to characterize 54 vegetable oil samples (being 25 olive oils)with different properties obtained in commercial establishments in Rio de Janeiro city. The samples were chemically analyzed using the following indexes: iodine, acidity, saponification and peroxide. In order to obtain the X-ray scattering spectrum, an X-ray tube with a silver anode operating at 40kV and 50 μA was used. The results showed that oils cab ne divided in tow large groups: olive oils and non-olive oils. Additionally, in a multivariate analysis (Principal Component Analysis - PCA), two components were obtained and accounted for more than 80% of the variance. One component was associated with chemical parameters and the other with scattering profiles of each sample. Results showed that use of X-ray scattering spectra combined with chemical analysis and PCA can be a fast, cheap and efficient method for vegetable oil characterization. (author)

  15. Harmony of computational quantum chemistry and experimental chemistry: Comprehensive DFT studies, microsynthesis, and characterization of mustard gas polysulfide analogues

    Science.gov (United States)

    Saeidian, Hamid; Faraz, Sajjad Mousavi; Mirjafary, Zohreh; Babri, Mehran

    2018-05-01

    After microsynthesis, structures of mustard gas polysulfide analogues were characterized using electron impact (EI) mass spectrometry. General EI fragmentation pathways for such compounds are proposed. The structure of sulfur mustard (HD) and its two other polysulfide analogues have been examined through B3LYP/6-311++G(2d, 2p) calculations. Geometrical analysis of HD shows that the calculated bond distances are satisfactorily comparable with experimental results. Calculated NMR chemical shifts for HD also were compared with experimental data, indicating good agreement both for 1H and 13C atoms. The vibrational frequencies of HD and polysulfide analogues have been precisely assigned. At the end, based on visual inspection of lowest unoccupied molecular orbitals and the relative difference in the total energies of their episulfonium ions, relative reactivity of HD and its polysulfide analogues were investigated.

  16. Experimental and numerical analysis of a small-scale turbojet engine

    International Nuclear Information System (INIS)

    Badami, M.; Nuccio, P.; Signoretto, A.

    2013-01-01

    Highlights: • A theoretical and experimental activity was performed on a small scale turbojet. • The small turbojet shows the typical CO, UHC and NO x trends of aero-engines emissions. • The comparison between the CFD and experimental results show a quite good agreement. • The CFD analysis permitted to interpret some unexpected behaviour of thermodynamic parameters. • This essential knowledge of the research will be applied in a subsequent research on the use of alternative fuels. - Abstract: Since experimental activities on real aeronautical turbines can be very complex and expensive, the use of parts of real engines or small-size turbojets can be very useful for research activities. The present paper describes the results of an experimental and numerical activity that was conducted on a research turbojet engine, with a nominal thrust of 80 N at 80,000 rpm. The aim of the research was to obtain detailed information on the thermodynamic cycle and performance of the engine in order to use it in subsequent activities on the benefits of using alternative fuels in gas turbine engines. A specific characterization of each component of the engine has been performed by means of thermodynamics and CFD analyses and several measured parameters have been critically analyzed and compared with theoretical ones, with the purpose of increasing the knowledge of these kinds of small turbo-engines

  17. Experimental validation of a method characterizing bow tie filters in CT scanners using a real-time dose probe

    International Nuclear Information System (INIS)

    McKenney, Sarah E.; Nosratieh, Anita; Gelskey, Dale; Yang Kai; Huang Shinying; Chen Lin; Boone, John M.

    2011-01-01

    Purpose: Beam-shaping or ''bow tie'' (BT) filters are used to spatially modulate the x-ray beam in a CT scanner, but the conventional method of step-and-shoot measurement to characterize a beam's profile is tedious and time-consuming. The theory for characterization of bow tie relative attenuation (COBRA) method, which relies on a real-time dosimeter to address the issues of conventional measurement techniques, was previously demonstrated using computer simulations. In this study, the feasibility of the COBRA theory is further validated experimentally through the employment of a prototype real-time radiation meter and a known BT filter. Methods: The COBRA method consisted of four basic steps: (1) The probe was placed at the edge of a scanner's field of view; (2) a real-time signal train was collected as the scanner's gantry rotated with the x-ray beam on; (3) the signal train, without a BT filter, was modeled using peak values measured in the signal train of step 2; and (4) the relative attenuation of the BT filter was estimated from filtered and unfiltered data sets. The prototype probe was first verified to have an isotropic and linear response to incident x-rays. The COBRA method was then tested on a dedicated breast CT scanner with a custom-designed BT filter and compared to the conventional step-and-shoot characterization of the BT filter. Using basis decomposition of dual energy signal data, the thickness of the filter was estimated and compared to the BT filter's manufacturing specifications. The COBRA method was also demonstrated with a clinical whole body CT scanner using the body BT filter. The relative attenuation was calculated at four discrete x-ray tube potentials and used to estimate the thickness of the BT filter. Results: The prototype probe was found to have a linear and isotropic response to x-rays. The relative attenuation produced from the COBRA method fell within the error of the relative attenuation measured with the step-and-shoot method

  18. Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector

    International Nuclear Information System (INIS)

    Benajes, Jesús; Payri, Raúl; Bardi, Michele; Martí-Aldaraví, Pedro

    2013-01-01

    In this work, lift-off length and ignition delay have been measured via chemiluminescence techniques in a wide range of conditions for a single-hole injector from the Engine Combustion Network (ECN) dataset and using a single component fuel (n-dodecane). In addition, Schlieren technique was used to characterize the ignition event using a new developed post-processing methodology capable of characterizing the “disappearance” phenomenon linked to the start of cool flames. Experiments have been carried out in a novel constant-pressure flow facility able of reproducing engine-like thermodynamic conditions. Results show that oxygen concentration seems to have a negligible impact on the start of cool flames. Empirical correlations have been obtained for the three measured parameters and they manifest similar trends of other previously published correlations for lift-off length and second stage ignition. These correlations also underline that the effect of oxygen concentration and ambient density is caught differently by chemiluminescence and Schlieren techniques, even though the absolute value of the measurements remains close. -- Highlights: • Ignition delay and LOL of an ECN injector are measured using the ECN standard diagnostics. • A novel processing is developed for Schlieren images to determine first and second stage ignition. • A sweep of injection pressure, density, temperature and oxygen concentration is performed. • A statistical analysis is done to provide an analytical description of the results

  19. [Effect of components and some protocols of anti-ulcer therapy on content and activity of monooxigenase system enzymes of the stomach mucosa in experimental stomach ulcer].

    Science.gov (United States)

    Iakubov, A V; Pattakhova, M Kh

    2009-01-01

    The influence of components and some schemata of antiulcerous therapy on content and activity of monooxigenase system's enzymes in mucous membrane of stomach are studied on the model of experimental stomach ulcer in rats. It is established, that among components of antiulcerous therapy such as omeprazole, clarithromycin and metronidazole inhibit content and activity of MOS enzymes. Tinidazol, amoxicillin and azithromycin do not affect the function of MOS. Rifampicin and pantoprazole induce enzyme system of monooxigenase. In triple therapy with omeprazole, clarithromycin and metronidazole the inhibit effect of preparations to system of MOS is exponentiated and it leads to suppression of mucous cytoprotaction of gastro duodenal zone. Triple therapy of ulcerous disease with pantoprazole, rifampicin and azithromycin is effective planning to stimulate defense mechanisms of the organism.

  20. Evaluating the Cooperative Component in Cooperative Learning: A Quasi-Experimental Study

    Science.gov (United States)

    Emerson, Tisha L. N.; English, Linda K.; McGoldrick, KimMarie

    2015-01-01

    In this study, the authors employed a quasi-experimental research design to examine the efficacy of a cooperative learning pedagogy (i.e., think-pair-share exercises) integrated into sections of microeconomic principles. Materials, exercises, and assessment instruments for all study sections are identical except for the nature of the…

  1. Characterization of the multi-component driving land subsidence using Persistent Scatterer Interferometry technique: the Ravenna case of study (Italy)

    Science.gov (United States)

    Bonì, Roberta; Fiaschi, Simone; Calcaterra, Domenico; Di Martire, Diego; Ibrahim, Ahmed; Meisina, Claudia; Perini, Luisa; Ramondini, Massimo; Tessitore, Serena; Floris, Mario

    2015-04-01

    Land subsidence represents a kind of hazard, which affects an increasing number of worldwide regions, densely populated, causing damage to the environment and infrastructures. Settlements can be related to multiple processes both natural and anthropic (i.e. vadose zone processes, soil consolidation, aquifer compaction, solid and fluid extraction and load-induced compaction) which take place at different spatio-temporal scale. Over the last decades, advanced subsidence studies exploited Synthetic-Aperture Radar (SAR) data, a recent remote sensing tool, to investigate land subsidence phenomena around the world. In particular, Persistent Scatterer Interferometry (PSI) technique, allowing a quantitative estimation at high resolution of the surface deformations, has already been successfully applied to monitor the phenomenon evolution; PSI measurements represent the cumulative displacement, deriving from the contribution of natural and anthropic components, both superficial and deep. The overlapping of several causative factors makes more difficult to accurately interpret the resulting deformations; therefore, it is essential to implement a suitable methodology to distinguish the shallow and deep components of motion. The aim of our research is to introduce a PSI-based approach not only to monitoring but also to understand the land subsidence mechanism, in order to disentangle the natural and anthropic components of motion. The methodology consists of three main phases: 1) Post-processing elaborations (i.e. interpolation of the cumulated displacements and isokinetics map implementation); 2) Characterization of the subsidence areas (i.e. subsidence pattern recognition by means of automatic time series classification); 3) Mechanisms recognition (i.e. identification of the predisposing and triggering factors and comparison with lito-technical model of subsoil, and with earth measurements). In this work, the methodology has been applied to the Ravenna area, Italy, using

  2. Experimental Validation of a Permeability Model for Enrichment Membranes

    International Nuclear Information System (INIS)

    Orellano, Pablo; Brasnarof, Daniel; Florido Pablo

    2003-01-01

    An experimental loop with a real scale diffuser, in a single enrichment-stage configuration, was operated with air at different process conditions, in order to characterize the membrane permeability.Using these experimental data, an analytical geometric-and-morphologic-based model was validated.It is conclude that a new set of independent measurements, i.e. enrichment, is necessary in order to fully characterize diffusers, because of its internal parameters are not univocally determinated with permeability experimental data only

  3. Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands.

    Science.gov (United States)

    Myamoto, Daniela Tiemi; Pidde-Queiroz, Giselle; Gonçalves-de-Andrade, Rute Maria; Pedroso, Aurélio; van den Berg, Carmen W; Tambourgi, Denise V

    2016-01-01

    The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.

  4. Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands.

    Directory of Open Access Journals (Sweden)

    Daniela Tiemi Myamoto

    Full Text Available The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB, the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP, a von Willebrand Factor domain (vWFA, and a serine protease domain (SP. The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43% and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3 from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.

  5. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    Science.gov (United States)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.

    2017-08-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  6. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    International Nuclear Information System (INIS)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Senesi, R.; Burca, G.; Kockelmann, W.; Minniti, T.

    2017-01-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ  spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  7. Experimental Object-Oriented Modelling

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    through, e.g., technical prototyping and active user involvement. We introduce and examine “experimental object-oriented modelling” as the intersection of these practices. The contributions of this thesis are expected to be within three perspectives on models and modelling in experimental system...... development: Grounding We develop an empirically based conceptualization of modelling and use of models in system development projects characterized by a high degree of uncertainty in requirements and point to implications for tools and techniques for modelling in such a setting. Techniques We introduce......This thesis examines object-oriented modelling in experimental system development. Object-oriented modelling aims at representing concepts and phenomena of a problem domain in terms of classes and objects. Experimental system development seeks active experimentation in a system development project...

  8. Defense Strategies for Asymmetric Networked Systems with Discrete Components

    Directory of Open Access Journals (Sweden)

    Nageswara S. V. Rao

    2018-05-01

    Full Text Available We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  9. Defense Strategies for Asymmetric Networked Systems with Discrete Components.

    Science.gov (United States)

    Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun

    2018-05-03

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  10. Experimental procedure for the characterization of cyclic behavior from very thin plate specimens

    International Nuclear Information System (INIS)

    Maury, A.; Moulin, D.

    1983-01-01

    Many investigators, including those involved in the INTERNATIONAL BENCHMARK PROJECT ON SIMPLIFIED METHODS FOR ELEVATED TEMPERATURE DESIGN AND ANALYSIS - PROBLEM II, have tried to reproduce experimentally observed behavior by inelastic calculations. Unfortunately, the material characteristics used in the computer code were established from monotonic tensile tests performed with specimens extracted from the plate product itself (1.45 mm thick) employed to construct the ratchetting specimen. It now appears that the cyclic behavior of the material is much more relevant to the phenomenon observed. Hence the need to make this kind of characterization. Nevertheless, the practical problem is to produce cyclic stresses, i.e. tensile and compressive stresses, with very thin specimens. The main difficulty is to prevent the buckling effect. A new special device set up for this particular purpose is described here. The solution adopted was to create uniformly distributed alternative pure bending stresses in the thin plate specimen. Bending moments were produced by two end-grips fixed to the specimen, and these grips were mounted on a conventional test-machine which was displacement-controlled. To reduce tensile and compressive membrane stresses inside the specimen, the grips had two parallel axles of rotation. The forces produced by the machine and the displacements of a number of points of the specimen were continuously recorded during the test, so that cyclically stabilized, bending moments could be evaluated easily for each curvature variation imposed. The very first cyclic experimental data obtained, at room temperature, for the material of the sodium test specimen, a 316 type stainless steel, are presented. It may be noted that the simple specimens were very easy to prepare and hence inexpensive. (orig.)

  11. Additive Manufacturing and Characterization of Ultem Polymers and Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.

    2015-01-01

    The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides - Ultem 9085 and experimental Ultem 1000 mixed with 10 percent chopped carbon fiber. A property comparison between FDM-printed and injection-molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31 percent. Coupons of Ultem 9085 and experimental Ultem 1000 composites were tested at room temperature and 400 degrees Fahrenheit to evaluate their corresponding mechanical properties.

  12. Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating.

    Science.gov (United States)

    Fatisson, Julien; Quevedo, Ivan R; Wilkinson, Kevin J; Tufenkji, Nathalie

    2012-03-01

    The use of engineered nanoparticles (ENPs) in commercial products has increased substantially over the last few years. Some research has been conducted in order to determine whether or not such materials are cytotoxic, but questions remain regarding the role that physiological media and sera constituents play in ENP aggregation or stabilization. In this study, several characterization methods were used to evaluate the particle size and surface potential of 6 ENPs suspended in a number of culture media and in the presence of different culture media constituents. Dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) were employed for size determinations. Results were interpreted on the basis of ENP surface potentials evaluated from particle electrophoretic mobilities (EPM). Measurements made after 24h of incubation at 37°C showed that the cell culture medium constituents had only moderate impact on the physicochemical properties of the ENP, although incubation in bovine serum albumin destabilized the colloidal system. In contrast, most of the serum proteins increased colloidal stabilization. Moreover, the type of ENP surface modification played a significant role in ENP behavior whereby the complexity of interactions between the ENPs and the medium components generally decreased with increasing complexity of the particle surface. This investigation emphasizes the importance of ENP characterization under conditions that are representative of cell culture media or physiological conditions for improved assessments of nanoparticle cytotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Experimental investigation of modal interactions in a beam-mass structure using bispectrum

    International Nuclear Information System (INIS)

    Khan, K.A.

    2001-01-01

    Observations and results pertaining to experiments with a beam-mass structure are presented. The experiments were conducted with the objective of understanding and characterizing the nonlinear interactions that occur during the motions of the structure, through the use of third-order spectra (bispectrum and bicoherence spectrum). The structure, tuned for two-to-one internal (autoparametric) resonance between its first two modes. was harmonically excited. The effect of misalignment between the components of the structure on bispectrum was also contemplated. The experimental results are provided in the form of frequency spectra, phase portraits, frequency-response curves, bispectra, and bicoherence spectra. Experimental observations of transitions from periodic to modulated motions are also presented. The potential of bispectral estimates for detecting the quadratic phase coupling among the participating modes during bifurcations and modulated motions is also contemplated. The current study is also relevant to other parametrically resonant structures like ships, rings, shells, and arches, etc. (author)

  14. Through-transmission laser welding of glass fibre composite: Experimental light scattering identification

    Science.gov (United States)

    Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam

    2018-05-01

    The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.

  15. Methods and design of a 10-week multi-component family meals intervention: a two group quasi-experimental effectiveness trial.

    Science.gov (United States)

    Rogers, Catherine; Anderson, Sarah E; Dollahite, Jamie S; Hill, Tisa F; Holloman, Chris; Miller, Carla K; Pratt, Keeley J; Gunther, Carolyn

    2017-01-09

    Given the ongoing childhood obesity public health crisis and potential protective effect of family meals, there is need for additional family meals research, specifically experimental studies with expanded health outcomes that focus on the at-risk populations in highest need of intervention. Future research, specifically intervention work, would also benefit from an expansion of the target age range to include younger children, who are laying the foundation of their eating patterns and capable of participating in family meal preparations. The purpose of this paper is to address this research gap by presenting the objectives and research methods of a 10-week multi-component family meals intervention study aimed at eliciting positive changes in child diet and weight status. This will be a group quasi-experimental trial with staggered cohort design. Data will be collected via direct measure and questionnaires at baseline, intervention completion (or waiting period for controls), and 10-weeks post-intervention. Setting will be faith-based community center. Participants will be 60 underserved families with at least 1, 4-10 year old child will be recruited and enrolled in the intervention (n = 30) or waitlist control group (n = 30). The intervention (Simple Suppers) is a 10-week family meals program designed for underserved families from racial/ethnic diverse backgrounds. The 10, 90-min program lessons will be delivered weekly over the dinner hour. Session components include: a) interactive group discussion of strategies to overcome family meal barriers, plus weekly goal setting for caregivers; b) engagement in age-appropriate food preparation activities for children; and c) group family meal for caregivers and children. Main outcome measures are change in: child diet quality; child standardized body mass index; and frequency of family meals. Regression models will be used to compare response variables results of intervention to control group, controlling for

  16. Beryllium application in ITER plasma facing components

    International Nuclear Information System (INIS)

    Raffray, A.R.; Federici, G.; Barabash, V.; Cardella, A.; Jakeman, R.; Ioki, K.; Janeschitz, G.; Parker, R.; Tivey, R.; Pacher, H.D.; Wu, C.H.; Bartels, H.W.

    1997-01-01

    Beryllium is a candidate armour material for the in-vessel components of the International Thermonuclear Experimental Reactor (ITER), namely the primary first wall, the limiter, the baffle and the divertor. However, a number of issues arising from the performance requirements of the ITER plasma facing components (PFCs) must be addressed to better assess the attractiveness of Be as armour for these different components. These issues include heat loading limits arising from temperature and stress constraints under steady state conditions, armour lifetime including the effects of sputtering erosion as well as vaporisation and loss of melt during disruption events, tritium retention and permeation, and chemical hazards, in particular with respect to potential Be/steam reaction. Other issues such as fabrication and the possibility of in-situ repair are not performance-dependent but have an important impact on the overall assessment of Be as PFC armour. This paper describes the present view on Be application for ITER PFCs. The key issues are discussed including an assessment of the current level of understanding based on analysis and experimental data; and on-going activities as part of the ITER EDA R and D program are highlighted. (orig.)

  17. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials.

    Science.gov (United States)

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti; Shen, Yajing; Lu, Yang

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  18. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials

    Directory of Open Access Journals (Sweden)

    Chenchen Jiang

    2017-01-01

    Full Text Available In the past decades, in situ scanning electron microscopy (SEM has become a powerful technique for the experimental study of low-dimensional (1D/2D nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  19. New solar components studied in an experimental solar house in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Trimboli, A [IBESA (ES); Cusido, J A; Puigdomenech, J [Escola Tecnica Superior d' Arquitectura del Valles, Barcelona (ES)

    1990-09-01

    A prototype experimental solar building has been built in the School of Architecture of Valles, Spain. Its final design takes advantage of beneficial climatic effects in order to maintain indoor thermal comfort and to lower auxiliary energy usage. The building has 100 sq m of usable surface, 55 sq m of which are habitable. The remaining area is a greenhouse which is intended for experimental hydroponic cultivation. One of the main features is a thermal regulation system named the ''thermal shield''. This device, placed on the South facade of the building, is composed of a series of plastic translucent layers. Fan-forced air passes through the outer layer and circulates through the special recticular structure of the building to provide daytime heating. A heat absorbing fluid circulating through the innermost layer transfers heat via an exchanger to a storage tank of eutectic salts. The diurnal stored energy can be retrieved to heat the house at night. The thermal shield, which is computer controlled, can also be used to reduce solar gains in summer. (author).

  20. ITER plasma facing components

    International Nuclear Information System (INIS)

    Kuroda, T.; Vieider, G.; Akiba, M.

    1991-01-01

    This document summarizes results of the Conceptual Design Activities (1988-1990) for the International Thermonuclear Experimental Reactor (ITER) project, namely those that pertain to the plasma facing components of the reactor vessel, of which the main components are the first wall and the divertor plates. After an introduction and an executive summary, the principal functions of the plasma-facing components are delineated, i.e., (i) define the low-impurity region within which the plasma is produced, (ii) absorb the electromagnetic radiation and charged-particle flux from the plasma, and (iii) protect the blanket/shield components from the plasma. A list of critical design issues for the divertor plates and the first wall is given, followed by discussions of the divertor plate design (including the issues of material selection, erosion lifetime, design concepts, thermal and mechanical analysis, operating limits and overall lifetime, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, and advanced divertor concepts) and the first wall design (armor material and design, erosion lifetime, overall design concepts, thermal and mechanical analysis, lifetime and operating limits, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, an alternative first wall design, and the limiters used instead of the divertor plates during start-up). Refs, figs and tabs

  1. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    Science.gov (United States)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; hide

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  2. Isolation and characterization of total volatile components from leaves of citrus limon linn.

    Directory of Open Access Journals (Sweden)

    Kadambari Tomer

    2010-01-01

    Full Text Available The isolation of the essential oil of whole fresh leaves of Citrus lemon by steam distillation is described. The chemical composition of the oil was investigated by means of Gas-Liquid Chromatography (GLC, Column Chromatography (CC and coupled Gas Chromatography-Mass Spectrometry (GC-MS. The 27 most important volatile components were identified. The volatile components were identified by comparing their retention times of GC chromatograph with those of literature. Further identification was done by GC- MS. The components of the oil, percentage of each constituent, their RI values and their Eight Peak Index were also summarized and reviewed with standard available literature.

  3. SoilEffects - start characterization of the experimental soil

    DEFF Research Database (Denmark)

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun

    -14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on Tingvoll research farm in 2011. A biogas plant was built at this farm in 2010, to digest the manure...... in spring, no legumes are grown, and aboveground plant material is removed at harvest. This practice is intended to stress the maintenance of soil organic matter in the arable system, to possibly reveal clearer effects of the experimental treatments. Within each cropping system, five experimental treatments...... by ignition loss was 11.3 % in the grass and 6.6 % in the arable system. Analyzed by total-C measurements, the corresponding SOM values were 11.03 % and 5.97 %. In Norwegian soil, SOM values between 3 and 6 % are regarded as high humus contents (“moldrik”), whereas values between 6 and 12 % are regarded...

  4. 2012 Annual Conference on Experimental and Applied Mechanics

    CERN Document Server

    Crone, Wendy; Jin, Helena; Sciammarella, Cesar; Furlong, Cosme; Furlong, Cosme; Chalivendra, Vijay; Song, Bo; Casem, Daniel; Antoun, Bonnie; Qi, H; Hall, Richard; Tandon, GP; Lu, Hongbing; Lu, Charles; Yoshida, Sanichiro; Shaw, Gordon; Prorok, Barton; Barthelat, François; Korach, Chad; Grande-Allen, K; Lipke, Elizabeth; Lykofatitits, George; Zavattieri, Pablo; Starman, LaVern; Patterson, Eann; Backman, David; Cloud, Gary; Vol.1 Dynamic Behavior of Materials; Vol.2 Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; Vol.3 Imaging Methods for Novel Materials and Challenging Applications; Vol.4 Experimental and Applied Mechanics; Vol.5 Mechanics of Biological Systems and Materials; Vol.6 MEMS and Nanotechnology; Vol.7 Composite Materials and Joining Technologies for Composites

    2013-01-01

    Experimental and Applied Mechanics, Volume 4: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, the fourth volume of seven from the Conference, brings together 54 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental and Applied Mechanics, including papers on:  Fracture & Fatigue Microscale & Microstructural Effects in Fatigue & Fracture Material Applications Composite Characterization Using Digital Image Correlation Techniques Multi-Scale Simulation and Testing of Composites Residual Stress Inverse Problems/Hybrid Methods Nano-Composites Microstructure Material Characterization Modeling and Uncertainty Quantification Impact Behavior of Composites.

  5. Experimental and numerical characterization of wind-induced pressure coefficients on nuclear buildings and chimney exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Laurent, E-mail: laurent.ricciardi@irsn.fr; Gélain, Thomas; Soares, Sandrine

    2015-10-15

    Highlights: • Experiments on scale models of nuclear buildings and chimney exhausts were performed. • Pressure coefficient fields on buildings are shown for various wind directions. • Evolution of pressure coefficient vs U/W ratio is given for various chimney exhausts. • RANS simulations using SST k–ω turbulence model were performed on most studied cases. • A good agreement is overall observed, with Root Mean Square Deviation lower than 0.15. - Abstract: Wind creates pressure effects on different surfaces of buildings according to their exposure to the wind, in particular at external communications. In nuclear facilities, these effects can change contamination transfers inside the building and can even lead to contamination release into the environment, especially in damaged (ventilation stopped) or accidental situations. The diversity of geometries of facilities requires the use of a validated code for predicting pressure coefficients, which characterize the wind effect on the building walls and the interaction between the wind and chimney exhaust. The first aim of a research program launched by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), was therefore to acquire experimental data of the mean pressure coefficients for different geometries of buildings and chimneys through wind tunnel tests and then to validate a CFD code (ANSYS CFX) from these experimental results. The simulations were performed using a steady RANS approach and a two-equation SST k–ω turbulence model. After a mesh sensitivity study for one configuration of building and chimney, a comparison was carried out between the numerical and experimental values for other studied configurations. This comparison was generally satisfactory, averaged over all measurement points, with values of Root Mean Square Deviations lower than 0.15 for most cases.

  6. Overview of ion source characterization diagnostics in INTF

    Science.gov (United States)

    Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  7. Gamma dose effects valuation on micro computing components

    International Nuclear Information System (INIS)

    Joffre, F.

    1995-01-01

    Robotics in hostile environment raises the problem of micro computing components resistance with gamma radiation cumulated dose. The current aim is to reach a dose of 3000 grays with industrial components. A methodology and an instrumentation adapted to test this type of components have been developed. The aim of this work is to present the advantages and disadvantages bound to the use of industrial components in the presence of gamma radiation. After an analysis of the criteria allowing to justify the technological choices, the different steps which characterize the selection and the assessment methodology used are explained. The irradiation and measures means now operational are mentioned. Moreover, the supply aspects of the chosen components for the design of an industrialized system is taken into account. These selection and assessment components contribute to the development and design of computers for civil nuclear robotics. (O.M.)

  8. Anisotropic magnetoresistance components in (Ga,Mn)As.

    Science.gov (United States)

    Rushforth, A W; Výborný, K; King, C S; Edmonds, K W; Campion, R P; Foxon, C T; Wunderlich, J; Irvine, A C; Vasek, P; Novák, V; Olejník, K; Sinova, Jairo; Jungwirth, T; Gallagher, B L

    2007-10-05

    We explore the basic physical origins of the noncrystalline and crystalline components of the anisotropic magnetoresistance (AMR) in (Ga,Mn)As. The sign of the noncrystalline AMR is found to be determined by the form of spin-orbit coupling in the host band and by the relative strengths of the nonmagnetic and magnetic contributions to the Mn impurity potential. We develop experimental methods yielding directly the noncrystalline and crystalline AMR components which are then analyzed independently. We report the observation of an AMR dominated by a large uniaxial crystalline component and show that AMR can be modified by local strain relaxation. Generic implications of our findings for other dilute moment systems are discussed.

  9. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  10. Experimental Hydro-Mechanical Characterization of Full Load Pressure Surge in Francis Turbines

    Science.gov (United States)

    Müller, A.; Favrel, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2017-04-01

    Full load pressure surge limits the operating range of hydro-electric generating units by causing significant power output swings and by compromising the safety of the plant. It appears during the off-design operation of hydraulic machines, which is increasingly required to regulate the broad integration of volatile renewable energy sources into the existing power network. The underlying causes and governing physical mechanisms of this instability were investigated in the frame of a large European research project and this paper documents the main findings from two experimental campaigns on a reduced scale model of a Francis turbine. The multi-phase flow in the draft tube is characterized by Particle Image Velocimetry, Laser Doppler Velocimetry and high-speed visualizations, along with synchronized measurements of the relevant hydro-mechanical quantities. The final result is a comprehensive overview of how the unsteady draft tube flow and the mechanical torque on the runner shaft behave during one mean period of the pressure oscillation, thus defining the unstable fluid-structure interaction responsible for the power swings. A discussion of the root cause is initiated, based on the state of the art. Finally, the latest results will enable a validation of recent RANS flow simulations used for determining the key parameters of hydro-acoustic stability models.

  11. Experimental investigation of the factors influencing the polymer-polymer bond strength during two component injection moulding

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2007-01-01

    Two component injection moulding is a commercially important manufacturing process and a key technology for Moulded Interconnect Devices (MIDs). Many fascinating applications of two component or multi component polymer parts are restricted due to the weak interfacial adhesion of the polymers...... effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength after moulding are also investigated. The material selections and environmental conditions were chosen based on the suitability of MID production, but the results and discussion presented....... A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi component polymer processing. This paper investigates the effects of the process and material parameters on the bond strength of two component polymer parts and identifies the factors which can...

  12. Experimental investigation of the factors influencing the polymer-polymer bond strength during two-component injection moulding

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Bondo, Martin

    2010-01-01

    Two-component injection moulding is a commercially important manufacturing process and a key technology for combining different material properties in a single plastic product. It is also one of most industrially adaptive process chain for manufacturing so-called moulded interconnect devices (MIDs......). Many fascinating applications of two-component or multi-component polymer parts are restricted due to the weak interfacial adhesion of the polymers. A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi-component polymer processing. This paper...... investigates the effects of the process conditions and geometrical factors on the bond strength of two-component polymer parts and identifies the factors which can effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength are also investigated...

  13. Experimental modeling of eddy current inspection capabilities

    International Nuclear Information System (INIS)

    Junker, W.R.; Clark, W.G.

    1984-01-01

    This chapter examines the experimental modeling of eddy current inspection capabilities based upon the use of liquid mercury samples designed to represent metal components containing discontinuities. A brief summary of past work with mercury modeling and a detailed discussion of recent experiments designed to further evaluate the technique are presented. The main disadvantages of the mercury modeling concept are that mercury is toxic and must be handled carefully, liquid mercury can only be used to represent nonferromagnetic materials, and wetting and meniscus problems can distort the effective size of artificial discontinuities. Artificial discontinuities placed in a liquid mercury sample can be used to represent discontinuities in solid metallic structures. Discontinuity size and type cannot be characterized from phase angle and signal amplitude data developed with a surface scanning, pancake-type eddy current probe. It is concluded that the mercury model approach can greatly enhance the overall understanding and applicability of eddy current inspection techniques

  14. Acoustic Characterization and Prediction of Representative, Small-Scale Rotary-Wing Unmanned Aircraft System Components

    Science.gov (United States)

    Zawodny, Nikolas S.; Boyd, D. Douglas, Jr.; Burley, Casey L.

    2016-01-01

    In this study, hover performance and acoustic measurements are taken on two different isolated rotors representative of small-scale rotary-wing unmanned aircraft systems (UAS) for a range of rotation rates. Each rotor system consists of two fixed-pitch blades powered by a brushless motor. For nearly the same thrust condition, significant differences in overall sound pressure level (OASPL), up to 8 dB, and directivity were observed between the two rotor systems. Differences are shown to be in part attributed to different rotor tip speeds, along with increased broadband and motor noise levels. In addition to acoustic measurements, aeroacoustic predictions were implemented in order to better understand the noise content of the rotor systems. Numerical aerodynamic predictions were computed using the unsteady Reynoldsaveraged Navier Stokes code OVERFLOW2 on one of the isolated rotors, while analytical predictions were computed using the Propeller Analysis System of the Aircraft NOise Prediction Program (ANOPP-PAS) on the two rotor configurations. Preliminary semi-empirical frequency domain broadband noise predictions were also carried out based on airfoil self-noise theory in a rotational reference frame. The prediction techniques further supported trends identified in the experimental data analysis. The brushless motors were observed to be important noise contributors and warrant further investigation. It is believed that UAS acoustic prediction capabilities must consider both rotor and motor components as part of a combined noise-generating system.

  15. How Many Separable Sources? Model Selection In Independent Components Analysis

    DEFF Research Database (Denmark)

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though....../Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from...... might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian....

  16. Experimental characterization of a 400  Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m

    OpenAIRE

    Ren, Yongxiong; Wang, Zhe; Liao, Peicheng; Li, Long; Xie, Guodong; Huang, Hao; Zhao, Zhe; Yan, Yan; Ahmed, Nisar; Willner, Asher; Lavery, Martin P.J.; Ashrafi, Nima; Ashrafi, Solyman; Bock, Robert; Tur, Moshe

    2016-01-01

    We experimentally demonstrate and characterize the\\ud performance of a 400-Gbit/s orbital angular momentum\\ud (OAM) multiplexed free-space optical link over 120-\\ud meters on the roof of a building. Four OAM beams, each\\ud carrying a 100-Gbit/s QPSK channel are multiplexed and\\ud transmitted. We investigate the influence of channel\\ud impairments on the received power, inter-modal\\ud crosstalk among channels, and system power penalties.\\ud Without laser tracking and compensation systems, the\\...

  17. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    Science.gov (United States)

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  18. Surface roughness characterization of cast components using 3D optical methods

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    scanning probe image processor (SPIP) software and the results of the surface roughness parameters obtained were subjected to statistical analyses. The bearing area ratio was introduced and applied to the surface roughness analysis. From the results, the surface quality of the standard comparators...... is successfully characterised and it was established that the areal parameters are more informative for sand cast components. The roughness values of the standard visual comparators can serve as a control for the cast components and for order specifications in the foundry industry. A series of iron castings were...... made in green sand moulds and the surface roughness parameter (Sa) values were compared with those of the standards. Sa parameter suffices for the evaluation of casting surface texture. The S series comparators showed a better description of the surface of castings after shot blasting than the A series...

  19. A new methodology capable of characterizing most volatile and less volatile minor edible oils components in a single chromatographic run without solvents or reagents. Detection of new components.

    Science.gov (United States)

    Alberdi-Cedeño, Jon; Ibargoitia, María L; Cristillo, Giovanna; Sopelana, Patricia; Guillén, María D

    2017-04-15

    The possibilities offered by a new methodology to determine minor components in edible oils are described. This is based on immersion of a solid-phase microextraction fiber of PDMS/DVB into the oil matrix, followed by Gas Chromatography/Mass Spectrometry. It enables characterization and differentiation of edible oils in a simple way, without either solvents or sample modification. This methodology allows simultaneous identification and quantification of sterols, tocols, hydrocarbons of different natures, fatty acids, esters, monoglycerides, fatty amides, aldehydes, ketones, alcohols, epoxides, furans, pyrans and terpenic oxygenated derivatives. The broad information provided by this methodology is useful for different areas of interest such as nutritional value, oxidative stability, technological performance, quality, processing, safety and even the prevention of fraudulent practices. Furthermore, for the first time, certain fatty amides, gamma- and delta-lactones of high molecular weight, and other aromatic compounds such as some esters derived from cinnamic acid have been detected in edible oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  1. Lab-on-chip components for molecular detection

    Science.gov (United States)

    Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    We successfully fabricated Lab on chip components and integrated for possible use in biomedical application. The sensor was fabricated by using conventional photolithography method integrated with PDMS micro channels for smooth delivery of sample to the sensing domain. The sensor was silanized and aminated with 3-Aminopropyl triethoxysilane (APTES) to functionalize the surface with biomolecules and create molecular binding chemistry. The resulting Si-O-Si- components were functionalized with oligonucleotides probe of HPV, which interacted with the single stranded HPV DNA target to create a field across on the device. The fabrication, immobilization and hybridization processes were characterized with current voltage (I-V) characterization (KEITHLEY, 6487). The sensor show selectivity for the HPV DNA target in a linear range from concentration 0.1 nM to 1 µM. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis.

  2. Coating power RF components with TiN

    International Nuclear Information System (INIS)

    Kuchnir, M.; Hahn, E.

    1995-03-01

    A facility for coating RF power components with thin films of Ti and/or TiN has been in operation for some time at Fermilab supporting the Accelerator Division RF development work and the TESLA program. It has been experimentally verified that such coatings improve the performance of these components as far as withstanding higher electric fields. This is attributed to a reduction in the secondary electron emission coefficient of the surfaces when coated with a thin film containing titanium. The purpose of this Technical Memorandum is to describe the facility and the procedure used

  3. Vibrational Stability of NLC Linac and Final Focus Components

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, Frederic

    2002-09-25

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structure and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. Design to properly decouple the structure vibrations from the linac quadrupoles is being pursued.

  4. Experimental characterization of the neutron spectra generated by a high-energy clinical LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Amgarou, K., E-mail: khalil.amgarou@uab.e [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France); Lacoste, V.; Martin, A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Metrologie et de Dosimetrie des Neutrons, F-13115 Saint Paul-Lez-Durance (France)

    2011-02-11

    The production of unwanted neutrons by electron linear accelerators (LINACs) has attracted a special attention since the early 50s. The renewed interest in this topic during the last years is due mainly to the increased use of such machines in radiotherapy. Specially, in most of developing countries where many old teletherapy irradiators, based on {sup 60}Co and {sup 137}Cs radioactive sources, are being replaced with new LINAC units. The main objective of this work is to report the results of an experimental characterization of the neutron spectra generated by a high-energy clinical LINAC. Measurements were carried out, considering four irradiation configurations, by means of our recently developed passive Bonner sphere spectrometer (BSS) using pure gold activation foils as central detectors. This system offers the possibility to measure neutrons over a wide energy range (from thermal up to a few MeV) at pulsed, intense and complex mixed n-{gamma} fields. A two-step unfolding method that combines the NUBAY and MAXED codes was applied to derive the final neutron spectra as well as their associated integral quantities (in terms of total neutron fluence and ambient dose equivalent rates) and fluence-averaged energies.

  5. PCA: Principal Component Analysis for spectra modeling

    Science.gov (United States)

    Hurley, Peter D.; Oliver, Seb; Farrah, Duncan; Wang, Lingyu; Efstathiou, Andreas

    2012-07-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

  6. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  7. Assuring the reliability of structural components - experimental data and non-destructive examination requirements

    International Nuclear Information System (INIS)

    Lucia, A.C.

    1984-01-01

    The probability of failure of a structural component can be estimated by either statistical methods or a probabilistic structural reliability approach (where the failure is seen as a level crossing of a damage stochastic process which develops in space and in time). The probabilistic approach has the advantage that it makes available not only an absolute value of the failure probability but also a lot of additional information. The disadvantage of the probabilistic approach is its complexity. It is discussed for the following situations: reliability of a structural component, material properties, data for fatigue crack growth evaluation, a bench mark exercise on reactor pressure vessel failure probability computation, and non-destructive examination for assuring a given level of structural reliability. (U.K.)

  8. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  9. Analytical and experimental studies of leak location and environment characterization for the international space station

    Energy Technology Data Exchange (ETDEWEB)

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin [Stinger Ghaffarian Technologies, Inc, 7701 Greenbelt Rd, Greenbelt, MD 20770 (United States); Abel, Joshua; Hawk, Doug [Alliant Techsystems, Inc, 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States); Autrey, David; Glenn, Jodie [Lockheed Martin, 1300 Hercules, Houston, TX 77058 (United States); Bond, Tim; Buffington, Jesse [NASA Johnson Space Flight Center, 2101 NASA Pkwy, Houston, TX 77058 (United States); Cheng, Edward; Ma, Jonathan; Rossetti, Dino [Conceptual Analytics, 8209 Woburn Abbey Rd, Glenn Dale, MD 20769 (United States); DeLatte, Danielle [ASRC Federal Space and Defense, 7000 Muirkirk Meadows Drive, Suite 100, Beltsville, MD 20705 (United States); Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States); Tull, Kimathi [Jackson and Tull, 7375 Executive Pl, Lanham, MD 20706 (United States); Warren, Eric [Wyle STE Group, 1290 Hercules Ave, Houston, TX 77058-2769 (United States)

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  10. Analytical and experimental studies of leak location and environment characterization for the international space station

    International Nuclear Information System (INIS)

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin; Abel, Joshua; Hawk, Doug; Autrey, David; Glenn, Jodie; Bond, Tim; Buffington, Jesse; Cheng, Edward; Ma, Jonathan; Rossetti, Dino; DeLatte, Danielle; Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH 3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb m/ /yr. to about 1 lb m /day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit

  11. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    Science.gov (United States)

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  12. Fracture in quasi-brittle materials: experimental and numerical approach for the determination of an incremental model with generalized variables

    International Nuclear Information System (INIS)

    Morice, Erwan

    2014-01-01

    Fracture in quasi-brittle materials, such as ceramics or concrete, can be represented schematically by series of events of nucleation and coalescence of micro-cracks. Modeling this process is an important challenge for the reliability and life prediction of concrete structures, in particular the prediction of the permeability of damaged structures. A multi-scale approach is proposed. The global behavior is modeled within the fracture mechanics framework and the local behavior is modeled by the discrete element method. An approach was developed to condense the non linear behavior of the mortar. A model reduction technic is used to extract the relevant information from the discrete elements method. To do so, the velocity field is partitioned into mode I, II, linear and non-linear components, each component being characterized by an intensity factor and a fixed spatial distribution. The response of the material is hence condensed in the evolution of the intensity factors, used as non-local variables. A model was also proposed to predict the behavior of the crack for proportional and non-proportional mixed mode I+II loadings. An experimental campaign was finally conducted to characterize the fatigue and fracture behavior of mortar. The results show that fatigue crack growth can be of significant importance. The experimental velocity field determined, in the crack tip region, by DIC, were analyzed using the same technic as that used for analyzing the fields obtained by the discrete element method showing consistent results. (author)

  13. Water-cooled beam line components at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1981-01-01

    The beam line components that comprise the main experimental beam at the Clinton P. Anderson Meson Physics Facility (LAMPF) have been operating since February 1976. This paper will define the functions of the primary water-cooled elements, their design evolution, and our operating experience to the present time

  14. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Science.gov (United States)

    Saper, L.; Stolper, E.

    2017-12-01

    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  15. Biaxial experimental and analytical characterization of a dielectric elastomer

    Science.gov (United States)

    Helal, Alexander; Doumit, Marc; Shaheen, Robert

    2018-01-01

    Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple applications especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elastomers' transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates ranging between 0.025 and 0.300 s-1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship was derived from a Kelvin-Voigt rheological model and the general Hooke's law for transversely isotropic materials. The model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model's ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with good agreement. The model's ability to predict variations in mechanical behaviour due to changes in kinematic variables is then illustrated for different conditions.

  16. Comparisons of PRD [power-reactivity-decrements] components for various EBR-II configurations

    International Nuclear Information System (INIS)

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    Comparison of detailed calculations of contributions by region and component of the power-reactivity-decrements (PRD) for four differing loading configurations of the Experimental Breeder Reactor-II (EBR-II) are given. The linear components and Doppler components are calculated. The non-linear (primarily subassembly bowing) components are deduced by differences relative to measured total PRD values. Variations in linear components range from about 10% to as much as about 100% depending upon the component. The deduced non-linear components differ both in magnitude and sign as functions of reactor power. Effects of differing assumptions of the nature of the fuel-to-clad interactions upon the PRD components are also calculated

  17. Independent component analysis based filtering for penumbral imaging

    International Nuclear Information System (INIS)

    Chen Yenwei; Han Xianhua; Nozaki, Shinya

    2004-01-01

    We propose a filtering based on independent component analysis (ICA) for Poisson noise reduction. In the proposed filtering, the image is first transformed to ICA domain and then the noise components are removed by a soft thresholding (shrinkage). The proposed filter, which is used as a preprocessing of the reconstruction, has been successfully applied to penumbral imaging. Both simulation results and experimental results show that the reconstructed image is dramatically improved in comparison to that without the noise-removing filters

  18. Environmental risk assessment of biocidal products: identification of relevant components and reliability of a component-based mixture assessment.

    Science.gov (United States)

    Coors, Anja; Vollmar, Pia; Heim, Jennifer; Sacher, Frank; Kehrer, Anja

    2018-01-01

    Biocidal products are mixtures of one or more active substances (a.s.) and a broad range of formulation additives. There is regulatory guidance currently under development that will specify how the combined effects of the a.s. and any relevant formulation additives shall be considered in the environmental risk assessment of biocidal products. The default option is a component-based approach (CBA) by which the toxicity of the product is predicted from the toxicity of 'relevant' components using concentration addition. Hence, unequivocal and practicable criteria are required for identifying the 'relevant' components to ensure protectiveness of the CBA, while avoiding unnecessary workload resulting from including by default components that do not significantly contribute to the product toxicity. The present study evaluated a set of different criteria for identifying 'relevant' components using confidential information on the composition of 21 wood preservative products. Theoretical approaches were complemented by experimentally testing the aquatic toxicity of seven selected products. For three of the seven tested products, the toxicity was underestimated for the most sensitive endpoint (green algae) by more than factor 2 if only the a.s. were considered in the CBA. This illustrated the necessity of including at least some additives along with the a.s. Considering additives that were deemed 'relevant' by the tentatively established criteria reduced the underestimation of toxicity for two of the three products. A lack of data for one specific additive was identified as the most likely reason for the remaining toxicity underestimation of the third product. In three other products, toxicity was overestimated by more than factor 2, while prediction and observation fitted well for the seventh product. Considering all additives in the prediction increased only the degree of overestimation. Supported by theoretical calculations and experimental verifications, the present

  19. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component

    Science.gov (United States)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.

    2015-12-01

    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.

  20. Characterization of the multiple components of Acanthopanax Senticosus stem by ultra high performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Sun, Hui; Liu, Jianhua; Zhang, Aihua; Zhang, Ying; Meng, Xiangcai; Han, Ying; Zhang, Yingzhi; Wang, Xijun

    2016-02-01

    Acanthopanax Senticosus Harms. has been used widely in traditional Chinese medicine for the treatment of chronic bronchitis, neurasthenia, hypertension and ischemic heart disease. However, the in vivo constituents of the stem of Acanthopanax Senticosus remain unknown. In this paper, ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry and the MarkerLynx(TM) software combined with multiple data processing approach were used to study the constituents in vitro and in vivo. The aqueous extract from the Acanthopanax Senticosus stem and the compositions in rat serum after intragastric administration were completely analyzed. Consequently, 115 compounds in the aqueous extract from Acanthopanax Senticosus stem and 41 compounds absorbed into blood were characterized. Of the 115 compounds in vitro, 54 were reported for first time, including sinapyl alcohol, sinapyl alcohol diglucoside, and 1-O-sinapoyl-β-D-glucose. In the 41 compounds in vivo, 7 were prototype components and 34 were metabolites which were from 21 components of aqueous extract from Acanthopanax Senticosus stem, and the metabolic pathways of the metabolites were elucidated for first time. The results narrowed the range of screening the active components and provided a basis for the study of action mechanism and pharmacology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Mokhtari, H.; Jobelin, I. [CEA Marcoule, Nucl Energy Div, RadioChem and Proc Dept, Actinides Chem and Convers Lab, F-30207 Bagnols Sur Ceze (France); Ramiere, I. [Fuel Simulat Lab, Fuel Study Dept, F-13108 St Paul Les Durance (France)

    2010-07-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  2. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    International Nuclear Information System (INIS)

    Picart, S.; Mokhtari, H.; Jobelin, I.; Ramiere, I.

    2010-01-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  3. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering

    International Nuclear Information System (INIS)

    Barucca, G.; Santecchia, E.; Majni, G.; Girardin, E.; Bassoli, E.; Denti, L.; Gatto, A.; Iuliano, L.; Moskalewicz, T.; Mengucci, P.

    2015-01-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co–Cr–Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111} γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. - Highlights: • Samples of a Co–Cr–Mo biomedical alloy were produced by direct metal laser sintering. • Hardness values unexpectedly high were attributed to a peculiar microstructure. • Fine lamellae of the ε-phase alternated to the γ-phase were observed for the first time. • A nucleation and growth model for the observed microstructure is proposed

  4. Structural characterization of the gallery forest of the Guisa Agroforestry Experimental Station

    Directory of Open Access Journals (Sweden)

    José Luis Rodríguez Sosa

    2018-01-01

    Full Text Available The work was carried out in the gallery forest of the Cupaynicú stream, belonging to the Guisa Agroforestry Experimental Station, with the objective of characterizing its structure. Eight parcels of 500 m2 were randomly raised, in them the species were identified, their height and diameter were measured. The flora was analyzed through the origin of the species and the frequency histogram. The structure of the forest was analyzed through the diametric structure and the Value Index of Ecological Importance, the vertical structure was described taking into consideration the forest strata as well as the preparation of the canopy diagram. A descriptive analysis of the parameters diameter, height and basal area was made to study the parametric structure. The richness of the riparian forest was evidenced by the registry of 25 families, 40 genera and 43 species, as well as the predominance of the Meliaceae family followed by Lauraceae, Mimosaceae and Sapindaceae, which reflects the high timber value, melliferous and ecological of the same. The species Roystonea regia, Sterculiaapetala, Dendropanaxarboreus, Andirainermis and Mangifera indica, determine the physiognomy of the gallery Forest. The trees reach 33 cm in diameter and 18.27 m in height on average, although the presence of trees with 30 m is the most frequent, which denotes the irregular structure of the forest.

  5. A further component analysis for illicit drugs mixtures with THz-TDS

    Science.gov (United States)

    Xiong, Wei; Shen, Jingling; He, Ting; Pan, Rui

    2009-07-01

    A new method for quantitative analysis of mixtures of illicit drugs with THz time domain spectroscopy was proposed and verified experimentally. In traditional method we need fingerprints of all the pure chemical components. In practical as only the objective components in a mixture and their absorption features are known, it is necessary and important to present a more practical technique for the detection and identification. Our new method of quantitatively inspect of the mixtures of illicit drugs is developed by using derivative spectrum. In this method, the ratio of objective components in a mixture can be obtained on the assumption that all objective components in the mixture and their absorption features are known but the unknown components are not needed. Then methamphetamine and flour, a illicit drug and a common adulterant, were selected for our experiment. The experimental result verified the effectiveness of the method, which suggested that it could be an effective method for quantitative identification of illicit drugs. This THz spectroscopy technique is great significant in the real-world applications of illicit drugs quantitative analysis. It could be an effective method in the field of security and pharmaceuticals inspection.

  6. Thermal-hydraulic limitations on water-cooled fusion reactor components

    International Nuclear Information System (INIS)

    Cha, Y.S.; Misra, B.

    1986-01-01

    An assessment of the cooling requirements for fusion reactor components, such as the first wall and limiter/divertor, was carried out using pressurized water as the coolant. In order to establish the coolant operating conditions, a survey of the literature on departure from nucleate boiling, critical heat flux, asymmetrical heating and heat transfer augmentation techniques was carried out. The experimental data and the empirical correlations indicate that thermal protection for the fusion reactor components based on conventional design concepts can be provided with an adequate margin of safety without resorting to either high coolant velocities, excessive coolant pressures, or heat transfer augmentation techniques. If, however, the future designs require unconventional shapes or heat transfer enhancement techniques, experimental verification would be necessary since no data on heat transfer augmentation techniques exist for complex geometries, especially under asymmetrically heated conditions. Since the data presented herein are concerned primarily with thermal protection of the reactor components, the final design should consider other factors such as thermal stresses, temperature limits, and fatigue

  7. Evaluation of a Mathematical Model for Single Component Adsorption Equilibria with Reference to the Prediction of Multicomponent Adsorption Equilibria

    DEFF Research Database (Denmark)

    Krøll, Annette Elisabeth; Marcussen, Lis

    1997-01-01

    An equilibrium equation for pure component adsorption is compared to experiments and to the vacancy solution theory. The investigated equilibrium equation is a special case of a model for prediction of multicomponent adsorption equilibria.The vacancy solution theory for multicomponent systems...... requires binary experimental data for determining the interaction parameters of the Wilson equation; thus a large number of experiments are needed. The multicomponent equilibria model which is investigated for single component systems in this work is based on pure component data only. This means...... that the requirement for experimental data is reduced significantly.The two adsorption models are compared, using experimental pure gas adsorption data found in literature. The results obtained by the models are in close agreement for pure component equilibria and they give a good description of the experimental data...

  8. Laser beam soldering of micro-optical components

    Science.gov (United States)

    Eberhardt, R.

    2003-05-01

    MOTIVATION Ongoing miniaturisation and higher requirements within optical assemblies and the processing of temperature sensitive components demands for innovative selective joining techniques. So far adhesive bonding has primarily been used to assemble and adjust hybrid micro optical systems. However, the properties of the organic polymers used for the adhesives limit the application of these systems. In fields of telecommunication and lithography, an enhancement of existing joining techniques is necessary to improve properties like humidity resistance, laserstability, UV-stability, thermal cycle reliability and life time reliability. Against this background laser beam soldering of optical components is a reasonable joining technology alternative. Properties like: - time and area restricted energy input - energy input can be controlled by the process temperature - direct and indirect heating of the components is possible - no mechanical contact between joining tool and components give good conditions to meet the requirements on a joining technology for sensitive optical components. Additionally to the laser soldering head, for the assembly of optical components it is necessary to include positioning units to adjust the position of the components with high accuracy before joining. Furthermore, suitable measurement methods to characterize the soldered assemblies (for instance in terms of position tolerances) need to be developed.

  9. Experimental investigation of steep-front short duration (SFSD) surge effects on power systems components

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.B. (Mississippi State Univ., MS (United States). Dept. of Electrical and Computer Engineering)

    1992-05-01

    Results are reported from experiments in which steep-front, short- duration (SFSD) voltage impulses were imposed on various electrical distribution components. These pulses were generated by switching a section of charged, high voltage coaxial cable across the component under study. Components included underground distribution cable, terminators, insulators and arresters. SFSD voltage needed to flashover 15 kV polyethylene cable with a single pulse is approximately 625 kV peak. Strength of polyethylene cable decreases with increasing number of SFSD pulses, indicating cumulative degradation of the polymer. For 15 kV and 25 kV cable terminators, the SFSD CFO was over twice the rated standard lightning BIL for the same units. Similarly, porcelain suspension insulators required more than a doubling of voltage to decrease time to flashover from 1 microsecond to .1 microsecond. Arresters were found to respond rapidly to steep-front current pulses, but the arrester material itself was found to result in a higher discharge voltage for SFSD pulses. Arresters also showed a delay in turn-on of current following the arrival of a steep-front voltage surge.

  10. Experimental and numerical simulation of the behaviour of building components under alternating thermal stresses

    International Nuclear Information System (INIS)

    Stegmeyer, R.

    1985-01-01

    This publication is intended to clear up to what extent the results from laboratory experiments on components thermally stressed on several axes can be transferred. The turbine shaft was used for this purpose and was geometrically simulated on a reduced scale by means of a test body (model). The deviations of shape due to the design, such as shaft shoulders, grooves etc. were simulated by notches and the position of the expected crack was defined in this way. A 1% Cr steel was selected as the material, for which many results of experiments on laboratory samples were available. The turbine shaft steel 28 CrMoNiV 4 9 was used. With a specially designed experimental rig, it was possible to expose the model to a changing temperature stress, as it occurs during starting and shutdown of turbines. Different notch radii made it possible to vary the strains at the bottom of the notches due to temperature gradients. After developing special travel transducers, the strain behaviour of the sample could be determined relative to the temperature. The crack characteristics obtained were compared with the characteristics of single axis experiments at constant temperature. Fractographic examination of fatigue cracks made it possible to determine the growth of cracks per load change from the existing vibration strip (da/dN). The stress intensity factor was derived from a modified theoretical expression and the characteristic designed from it was compared with crack growth measurements on CT samples. Accompanying numerical and empirical processes (according to Neuber) were examined by direct comparison of the measured strains with the calculated or estimated strains. Finally, regulations such as the ASME code and TRD 301 were applied to the model experiments and evaluated. (orig.) [de

  11. Fabrication and characterization of a metal-packaged regenerated fiber Bragg grating strain sensor for structural integrity monitoring of high-temperature components

    International Nuclear Information System (INIS)

    Tu, Yun; Tu, Shan-Tung

    2014-01-01

    Assessment of the structural integrity of components operating at high temperatures requires the development of novel sensors to measure strain. A metal-packaged regenerated fiber Bragg grating (RFBG) sensor is developed for measurement of strain using titanium–silver magnetron sputtering and nickel electroplating. The strain response of the sensor mounted onto a flat tensile specimen by spot welding is evaluated by uniaxial tensile tests at constant temperatures ranging from room temperature to 400 °C. Similar tests are performed on a bare RFBG sensor for comparison. The metal-packaged RFBG strain sensor exhibits higher strain sensitivity than that of the bare RFBG sensor, as well as good linearity, stability and repeatability of strain measurements. A three-dimensional finite element model of the sensor is established to predict the strain sensitivity based on the sensing principle of the fiber Bragg grating. Comparisons of the experimental results with the numerical predictions for the strain sensitivity show a satisfactory agreement. These results demonstrate that the metal-packaged RFBG strain sensors can be successfully fabricated by combining magnetron sputtering with electroplating, and provide great promise for structural integrity monitoring of high-temperature components. (paper)

  12. High frequency electromagnetic characterization of NEG properties for the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Zannini, C

    2014-01-01

    Coating materials will be used in the CLIC damping rings (DR) to suppress two-stream effects. In particular, NEG coating is necessary to suppress fast beam ion instabilities in the electron damping ring (EDR). The electromagnetic (EM) characterization of the material properties up to high frequencies is required for the impedance modeling of the CLIC DR components. The EM properties for frequencies of few GHz are determined with the waveguide method, based on a combination of experimental measurements of the complex transmission coefficient S21 and CST 3D EM simulations. The results obtained from a NEG-coated copper (Cu) waveguide are presented in this paper.

  13. Experimental and computer thermodynamics evaluations of an Al-Si-Coating on a quenchable steel

    International Nuclear Information System (INIS)

    Trindade, Vicente Braz

    2017-01-01

    High-strength steels are commonly used in the automobile industry in order to reduce the weight of the vehicles. However, a technical difficulty appears due to the need of hot stamping of the components, which leads to oxidation. Therefore, the application of a coating on the substrate to avoid high-temperature oxidation is used. In this work, experimental analysis and computer thermodynamic calculation were used to describe the phase transformations within an Al-Si coating on a quenchable high strength steel. The Al-Si coating was deposited by hot dipping and its characterization was done using SEM and XRD techniques. Computer thermodynamics calculations were done using the commercial software FactSage using the Calphad methodology. It demonstrated a good relationship between the experimental results and the computer calculations of phase stabilities for the as-deposited condition and after diffusion experiment at 920 deg C for 7 minutes, which simulates the thermal cycle of hot stamping of the quenchable steel used. (author)

  14. Experimental and computer thermodynamics evaluations of an Al-Si-Coating on a quenchable steel

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Vicente Braz, E-mail: vicentebraz@yahoo.com.b [Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG (Brazil). Escola de Minas. Departamento de Engenharia Metalurgica e de Materiais; Christ, Hans-Juergen, E-mail: christ@ifwt.mb.uni-siegen.de [University of Siegen (Germany)

    2017-01-15

    High-strength steels are commonly used in the automobile industry in order to reduce the weight of the vehicles. However, a technical difficulty appears due to the need of hot stamping of the components, which leads to oxidation. Therefore, the application of a coating on the substrate to avoid high-temperature oxidation is used. In this work, experimental analysis and computer thermodynamic calculation were used to describe the phase transformations within an Al-Si coating on a quenchable high strength steel. The Al-Si coating was deposited by hot dipping and its characterization was done using SEM and XRD techniques. Computer thermodynamics calculations were done using the commercial software FactSage using the Calphad methodology. It demonstrated a good relationship between the experimental results and the computer calculations of phase stabilities for the as-deposited condition and after diffusion experiment at 920 deg C for 7 minutes, which simulates the thermal cycle of hot stamping of the quenchable steel used. (author)

  15. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    Science.gov (United States)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have

  16. Characterization of fine particle components in Mexico City

    International Nuclear Information System (INIS)

    Saitoh, K.; Sera, K.; Perales, J.G.; Garcia, F.A.; Suzuki, H.

    1999-01-01

    Particulate matter (PM-3.9 and PM-15.8) samples were collected in the three zones at the Northeast, Southwest and Southeast suburbs of Mexico City, from July to August 1998, for one week for each sampling site. The concentrations of several elements in the PM-3.9 and PM-15.8 samples were determined by Particle Induced X-ray Emission (PIXE). In the PM-3.9 samples, 21 elements were determined for each zone, and Na, Mg, Al, Si, S, K, Ca, Ti, Fe, Cu, Zn and Pb are found to be the major elemental components. On the other hand, 22 elements including P were determined on the PM-15.8 samples, and the dominant elements were the same as in the PM-3.9. Factor analysis is applied to the 28 variables (14 elements for each PM-3.9 and PM-15.8 groups) and for 21 samples (seven days for three zones) in order to identify possible sources of the particles. The result of factor analysis allows to identify five major sources, being soil the major contributor. (author)

  17. Characterization of fine particle components in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, K. [Akita Prefectural Institute of Environmental Science, Yabase-Shimoyabase, Akita (Japan); Sera, K. [Iwate Medical Univ., Cyclotron Research Center, Takizawa, Iwate (Japan); Perales, J.G.; Garcia, F.A. [Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA), Av. Michoacan y la Purisima Col. Vicentina C.P. 09340 Mexico (Mexico); Suzuki, H. [Environmental Data Analysis Laboratory, System Design, Inc., Shinagawa, Tokyo (Japan)

    1999-07-01

    Particulate matter (PM-3.9 and PM-15.8) samples were collected in the three zones at the Northeast, Southwest and Southeast suburbs of Mexico City, from July to August 1998, for one week for each sampling site. The concentrations of several elements in the PM-3.9 and PM-15.8 samples were determined by Particle Induced X-ray Emission (PIXE). In the PM-3.9 samples, 21 elements were determined for each zone, and Na, Mg, Al, Si, S, K, Ca, Ti, Fe, Cu, Zn and Pb are found to be the major elemental components. On the other hand, 22 elements including P were determined on the PM-15.8 samples, and the dominant elements were the same as in the PM-3.9. Factor analysis is applied to the 28 variables (14 elements for each PM-3.9 and PM-15.8 groups) and for 21 samples (seven days for three zones) in order to identify possible sources of the particles. The result of factor analysis allows to identify five major sources, being soil the major contributor. (author)

  18. Imaging experimental infective endocarditis with indium-111-labeled blood cellular components

    International Nuclear Information System (INIS)

    Riba, A.L.; Thakur, M.L.; Gottschalk, A.; Andriole, V.T.; Zaret, B.L.

    1979-01-01

    The capability of radionuclide imaging to detect experimental aortic valve infective endocarditis was assessed with indium-111 ( 111 In)-labeled blood cells. Sequential cardiac imaging and tissue distribution studies were obtained in 17 rabbits with infective endocarditis after administration of 111 In-platelets and in five after 111 In-polymorphonuclear leukocytes. Forty-eight to 72 hours after platelet administration, in vivo imaging demonstrated abnormal 111 In uptake in all animals in the region of the aortic valve in an anatomically distinct pattern. Images of the excised heart showed discrete cardiac uptake conforming to the in vivo image and gross pathological examination. 111 In-platelet uptake in vegetations from the 17 animals averaged 240 +- 41 times greater than that in normal myocardium and 99 +- 15 times greater uptake in blood. In contrast, 111 In-leukocyte cardiac imaging showed no abnormal aortic valve uptake 24 hours after tracer administration and the lesion myocardium activity ratio was only 5 +- 2 (3 +- 1 for lesion/blood activity). Four normal rabbits demonstrated neither positive 111 In-platelet scintigraphs nor abnormal cardiac tissue uptake. Likewise, noncellular 111 In was not concentrated to any significant extent in three animals with infective endocarditis. This study demonstrates that 111 In-platelet, but not leukocyte cardiac imaging, is a sensitive technique for detecting experimental infective endocarditis. The imaging data conform to the cellular pathology of the infective endocarditis vegetation

  19. Experimental oligopolies modeling: A dynamic approach based on heterogeneous behaviors

    Science.gov (United States)

    Cerboni Baiardi, Lorenzo; Naimzada, Ahmad K.

    2018-05-01

    In the rank of behavioral rules, imitation-based heuristics has received special attention in economics (see [14] and [12]). In particular, imitative behavior is considered in order to understand the evidences arising in experimental oligopolies which reveal that the Cournot-Nash equilibrium does not emerge as unique outcome and show that an important component of the production at the competitive level is observed (see e.g.[1,3,9] or [7,10]). By considering the pioneering groundbreaking approach of [2], we build a dynamical model of linear oligopolies where heterogeneous decision mechanisms of players are made explicit. In particular, we consider two different types of quantity setting players characterized by different decision mechanisms that coexist and operate simultaneously: agents that adaptively adjust their choices towards the direction that increases their profit are embedded with imitator agents. The latter ones use a particular form of proportional imitation rule that considers the awareness about the presence of strategic interactions. It is noteworthy that the Cournot-Nash outcome is a stationary state of our models. Our thesis is that the chaotic dynamics arousing from a dynamical model, where heterogeneous players are considered, are capable to qualitatively reproduce the outcomes of experimental oligopolies.

  20. Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan [School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Ho, Hingman; Han, Quanbin [School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong (China); Fan, Xiaohui [College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Zuo, Zhong, E-mail: joanzuo@cuhk.edu.hk [School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)

    2015-01-01

    Highlights: • Novel stepwise component detection algorithm (SCDA) for LC–MS datasets. • New isotopic distribution and adduct-ion models for mass spectra. • Automatic component classification based on adduct-ion and isotopic distributions. - Abstract: Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography–mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components’ features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA.

  1. Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan; Ho, Hingman; Han, Quanbin; Fan, Xiaohui; Zuo, Zhong

    2015-01-01

    Highlights: • Novel stepwise component detection algorithm (SCDA) for LC–MS datasets. • New isotopic distribution and adduct-ion models for mass spectra. • Automatic component classification based on adduct-ion and isotopic distributions. - Abstract: Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography–mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components’ features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA

  2. Specification of optical components using Wigner distribution function

    International Nuclear Information System (INIS)

    Xu Jiancheng; Li Haibo; Xu Qiao; Chai Liqun; Fan Changjiang

    2010-01-01

    In order to characterize and specify small-scale local wavefront deformation of optical component, a method based on Wigner distribution function has been proposed, which can describe wavefront deformation in spatial and spatial frequency domain. The relationship between Wigner distribution function and power spectral density is analyzed and thus the specification of small-scale local wavefront deformation is obtained by Wigner distribution function. Simulation and experiment demonstrate the effectiveness of the proposed method. The proposed method can not only identify whether the optical component meets the requirement of inertial confinement fusion (ICF), but also determine t he location where small-scale wavefront deformation is unqualified. Thus it provides an effective guide to the revision of unqualified optical components. (authors)

  3. Nuclear Plant Aging Research (NPAR) program plan: Components, systems, and structures

    International Nuclear Information System (INIS)

    1987-09-01

    The nuclear plant aging research described in this plan is intended to resolve issues related to the aging and service wear of equipment and systems and major components at commercial reactor facilities and their possible impact on plant safety. Emphasis has been placed on identification and characterization of the mechanisms of material and component degradation during service and evaluation of methods of inspection, surveillance, condition monitoring, and maintenance as means of mitigating such effects. Specifically, the goals of the program are as follows: (1) to identify and characterize aging and service wear effects which, if unchecked, could cause degradation of equipment, a systems, and major components and thereby impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring, or of evaluating residual life of equipment, systems, and major components, which will ensure timely detection of significant aging effects prior to loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  4. Light scattering techniques for the characterization of optical components

    Science.gov (United States)

    Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.

    2017-11-01

    The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.

  5. Comprehensive Proteoform Characterization of Plasma Complement Component C8αβγ by Hybrid Mass Spectrometry Approaches

    Science.gov (United States)

    Franc, Vojtech; Zhu, Jing; Heck, Albert J. R.

    2018-03-01

    The human complement hetero-trimeric C8αβγ (C8) protein assembly ( 150 kDa) is an important component of the membrane attack complex (MAC). C8 initiates membrane penetration and coordinates MAC pore formation. Here, we charted in detail the structural micro-heterogeneity within C8, purified from human plasma, combining high-resolution native mass spectrometry and (glyco)peptide-centric proteomics. The intact C8 proteoform profile revealed at least 20 co-occurring MS signals. Additionally, we employed ion exchange chromatography to separate purified C8 into four distinct fractions. Their native MS analysis revealed even more detailed structural micro-heterogeneity on C8. Subsequent peptide-centric analysis, by proteolytic digestion of C8 and LC-MS/MS, provided site-specific quantitative profiles of different types of C8 glycosylation. Combining all this data provides a detailed specification of co-occurring C8 proteoforms, including experimental evidence on N-glycosylation, C-mannosylation, and O-glycosylation. In addition to the known N-glycosylation sites, two more N-glycosylation sites were detected on C8. Additionally, we elucidated the stoichiometry of all C-mannosylation sites in all the thrombospondin-like (TSP) domains of C8α and C8β. Lastly, our data contain the first experimental evidence of O-linked glycans located on C8γ. Albeit low abundant, these O-glycans are the first PTMs ever detected on this subunit. By placing the observed PTMs in structural models of free C8 and C8 embedded in the MAC, it may be speculated that some of the newly identified modifications may play a role in the MAC formation. [Figure not available: see fulltext.

  6. Comparison of Tritium Component Failure Rate Data

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2004-01-01

    Published failure rate values from the US Tritium Systems Test Assembly, the Japanese Tritium Process Laboratory, the German Tritium Laboratory Karlsruhe, and the Joint European Torus Active Gas Handling System have been compared. This comparison is on a limited set of components, but there is a good variety of data sets in the comparison. The data compared reasonably well. The most reasonable failure rate values are recommended for use on next generation tritium handling system components, such as those in the tritium plant systems for the International Thermonuclear Experimental Reactor and the tritium fuel systems of inertial fusion facilities, such as the US National Ignition Facility. These data and the comparison results are also shared with the International Energy Agency cooperative task on fusion component failure rate data

  7. Set membership experimental design for biological systems

    Directory of Open Access Journals (Sweden)

    Marvel Skylar W

    2012-03-01

    Full Text Available Abstract Background Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. Results In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. Conclusions The practicability of our approach is illustrated with a case study. This

  8. Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control

    Science.gov (United States)

    Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.

    2004-01-01

    NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.

  9. Development of damage functions for high-rise building components

    International Nuclear Information System (INIS)

    Kustu, O.; Miller, D.D.; Brokken, S.T.

    1982-10-01

    The component approach for predicting the effects that ground motion from underground nuclear explosions will have on structures involves predicting the damage to each structural and nonstructural component of a building on the basis of the expected local deformation that most affects the damage to the component. This study was conducted to provide the basic data necessary to evaluate the component approach. Available published laboratory test data for various high-rise building components were collected. These data were analyzed statistically to determine damage threshold values and their variabilities, which in turn were used to derive component damage functions. The portion of construction costs attributable to various building components was determined statistically. This information was needed because component damage functions define damage as a percentage of the replacement values of the component, and, in order to calculate the overall building damage factor, the relative cost of each component must be estimated. The feasibility of the component approach to damage prediction is demonstrated. It is recommended that further experimental research directed towards developing an adequate data base of component damage thresholds for all significant building components should be encouraged. Parallel to this effort, detailed damage data from specific buildings damaged in earthquakes should be collected to verify the theoretical procedure

  10. Development and experimental evaluation of an optical sensor for aerosol particle characterization

    Energy Technology Data Exchange (ETDEWEB)

    Somesfalean, G.

    1998-03-01

    A sensor for individual aerosol particle characterization, based on a single-mode semiconductor laser coupled to an external cavity is presented. The light emitting semiconductor laser acts as a sensitive optical detector itself, and the whole system has the advantage of using conventional optical components and providing a compact set-up. Aerosol particles moving through the sensing volume, which is located in the external cavity of a semiconductor laser, scatter and absorb light. Thereby they act as small disturbances on the electromagnetic field inside the dynamic multi-cavity laser system. From the temporal variation of the output light intensity, information about the number, velocity, size, and refractive index of the aerosol particles can be derived. The diffracted light in the near-forward scattering direction is collected and Fourier-transformed by a lens, and subsequently imaged on a CCD camera. The recorded Fraunhofer diffraction pattern provides information about the projected area of the scattering particle, and can thus be used to determine the size and the shape of aerosol particles. The sensor has been tested on fibers which are of interest in the field of working environment monitoring. The recorded output intensity variation has been analysed, and the relationship between the shape and the size of each fibre, and the resulting scattering profiles has been investigated. A simple one-dimensional model for the optical feedback variation due to the light-particle interaction in the external cavity is also discussed 34 refs, 26 figs, 6 tabs

  11. Experimental characterization of graphene by electrostatic resonance frequency tuning

    NARCIS (Netherlands)

    Sajadi, B.; Alijani, F.; Davidovikj, D.; Goosen, J.F.L.; Steeneken, P.G.; van Keulen, A.

    2017-01-01

    In the last decade, graphene membranes have drawn tremendous attention due to their potential application in Nano-Electro-Mechanical Systems. In this paper, we show that the frequency response curves of graphene resonators are powerful tools for their dynamic characterization and for extracting

  12. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    International Nuclear Information System (INIS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2011-01-01

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable. - Highlights: → We identified the radical components in irradiated black pepper skin and core. → The ESR spectra near g=2.005 with 3-7 lines were emerged after irradiation. → Spectra simulated basing on the content and the stability of radical from the plant constituents. → Cellulose radical component in black pepper skin was highly stable. → Single signal near g=2.005 was the most stable in black pepper core.

  13. HTR-E project. High-temperature components and systems

    International Nuclear Information System (INIS)

    Breuil, E.; Exner, R.

    2002-01-01

    The HTR-E European project (four years project) is proposed for the 5th Framework Programme and concerns the technical developments needed for the innovative components of a modern HTR with a direct cycle. These components have been selected with reference to the present projects (GT-MHR, PBMR): (1) the helium turbine, the recuperator heat exchanger, the electro-magnetic bearings and the helium rotating seal; (2) the tribology. Sliding innovative components in helium environment are particularly concerned. (3) the helium purification system. Recommendations on impurities contents have to be provided in accordance with the materials proposed for the innovative components. The main outcomes expected from the HTR-E project are the design recommendations and identification of further R and D needs for these components. This will be based: (1) on experience feedback from European past helium test loops and reactors; (2) on design studies, thermal-hydraulic and structural analyses; (3) and on experimental tests

  14. Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging

    International Nuclear Information System (INIS)

    Critto, Andrea; Carlon, Claudio; Marcomini, Antonio

    2003-01-01

    Information on soil and groundwater contamination was used to develop a site conceptual model and to identify exposure scenarios. - The characterization of a hydrologically complex contaminated site bordering the lagoon of Venice (Italy) was undertaken by investigating soils and groundwaters affected by the chemical contaminants originated by the wastes dumped into an illegal landfill. Statistical tools such as principal components analysis and geostatistical techniques were applied to obtain the spatial distribution of chemical contaminants. Dissolved organic carbon (DOC), SO 4 2- and Cl - were used to trace the migration of the contaminants from the top soil to the underlying groundwaters. The chemical and hydrogeological available information was assembled to obtain the schematic of the conceptual model of the contaminated site capable to support the formulation of major exposure scenarios, which are also provided

  15. Experimental Investigation of White Layer formation in Hard Turning

    Science.gov (United States)

    Umbrello, D.; Rotella, G.; Crea, F.

    2011-05-01

    Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.

  16. Development of radiation hard components for remote maintenance

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Obara, Kenjiro; Kakudate, Satoshi; Tominaga, Ryuichiro; Akada, Tamio; Morita, Hirosuke.

    1997-01-01

    In International Thermonuclear Experimental Reactor (ITER), in-vessel remote-handling is inevitably required to assemble and maintain activated in-vessel components due to D-T operation. The components of the in-vessel remote-handling system must have sufficient radiation hardness to allow for operation under an intense gamma-ray radiation of over 30 kGy/h for periods up to more than 1,000 hours. To this end, extensive irradiation tests and quality improvements including the optimization of material composition have been conducted through the ITER R and D program in order to develop radiation hard components which satisfy radiation doses from 10 MGy to 100 MGy at the dose rate of 10 kGy/h. This paper outlines the latest status of the radiation hard component development that has been conducted as the Japan Home Team's contribution to ITER. The remote-handling components tested are categorized into either robotics, viewing systems or common components. The irradiation tests include commercial base products for screening both modified and newly developed products to improve their radiation hardness. (author)

  17. Characterization of the Kootenai River Algae Community and Primary Productivity Before and After Experimental Nutrient Addition, 2004–2007 [Chapter 2, Kootenai River Algal Community Characterization, 2009 KTOI REPORT].

    Energy Technology Data Exchange (ETDEWEB)

    Holderman, Charlie [Kootenai Tribe of Idaho; Bonners Ferry, ID; Anders, Paul [Cramer Fish Sciences; Moscow, ID; Shafii, Bahman [Statistical Consulting Services; Clarkston, WA

    2009-07-01

    , and a meandering reach. The study design included 14 sampling sites: an upstream, unimpounded reference site (KR-14), four control (non-fertilized) canyon sites downstream from Libby Dam, but upstream from nutrient addition (KR-10 through KR-13), two treatment sites referred to collectively as the nutrient addition zone (KR-9 and KR-9.1, located at and 5 km downstream from the nutrient addition site), two braided reach sites (KR-6 and KR-7), and four meander reach sites (KR-1 through KR-4). A series of qualitative evaluations and quantitative analyses were used to assess baseline conditions and effects of experimental nutrient addition treatments on chlorophyll, primary productivity, and taxonomic composition and metric arrays for the diatom and green algae communities. Insufficient density in the samples precluded analyses of bluegreen algae taxa and metrics for pre- and post-nutrient addition periods. Chlorophyll a concentration (mg/m{sup 2}), chlorophyll accrual rate (mg/m{sup 2}/30d), total chlorophyll concentration (chlorophyll a and b) (mg/m{sup 2}), and total chlorophyll accrual rate (mg/m{sup 2}/30d) were calculated. Algal taxa were identified and grouped by taxonomic order as Cyanophyta (blue-greens), Chlorophyta (greens), Bacillariophyta (diatoms), Chrysophyta (goldens), and dominant species from each sample site were identified. Algal densities (number/ml) in periphyton samples were calculated for each sample site and sampling date. Principal Component Analysis (PCA) was performed to reduce the dimension of diatom and algae data and to determine which taxonomic groups and metrics were contributing significantly to the observed variation. PCA analyses were tabulated to indicate eigenvalues, proportion, and cumulative percent variation, as well as eigenvectors (loadings) for each of the components. Biplot graphic displays of PCA axes were also generated to characterize the pattern and structure of the underlying variation. Taxonomic data and a series of

  18. Identification and characterization of historical pigments with x-ray diffraction analysis (XRD), x-ray fluorescence analysis (XRA) and Fourier transformed infrared spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Hochleitner, B.

    2002-11-01

    This thesis presents a systematic characterization of historical inorganic pigments with respect to their crystallographic structure, main components, and trade elements, utilizing three complementary methods. The results are compiled in a computer-database containing the experimentally obtained information. The specimens examined in this study originate from a collection of 19th and 20th century pigments, dyes and binders with a wide variety of colors and materials at the Institute of Natural Sciences and Technologies in Art of the Academy of Fine Arts in Vienna. Approximately 400 different inorganic pigments were analysed for this first study of its kind by combining the experimental techniques explained in the next paragraph. For analyzing the inorganic pigments three different methods were applied: x-ray diffraction (XRD), x-ray fluorescence (XRF) and fourier-transformed infrared spectroscopy (FTIR) proved to be suitable techniques to identify and characterize the composition of the materials. The experimental work was focused on x-ray diffraction to detect the main components and to perform phase analysis for the identification of the crystallographic structure. To facilitate the analysis of the diffractograms and investigate differences in the elemental composition, XRF-measurements were carried out and complemented by FTIR-spectroscopy. The latter technique supports the identification of organic components of the samples and both ease phase analysis. In some cases, the obtained results show remarkable differences in composition for pigments having the same trade name. These differences consist either with respect to the identified elements or added components, such as pure white pigments. However, in most cases the chemical structure of the phase determining the color of the relevant pigment group was similar. Knowledge of the composition of the originally used pigments is of great importance for the restoration and conservation of art objects. In order to

  19. Regulation of virulence by a two-component system in group B streptococcus.

    Science.gov (United States)

    Jiang, Sheng-Mei; Cieslewicz, Michael J; Kasper, Dennis L; Wessels, Michael R

    2005-02-01

    Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.

  20. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.; Crum, Jarrod V.

    2015-01-01

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3 , has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental

  1. Genomic characterization of H14 subtype influenza A viruses in New World waterfowl and experimental infectivity in mallards Anas platyrhynchos

    Science.gov (United States)

    Ramey, Andy M.; Poulson, Rebecca L.; Gonzalez-Reiche, Ana S.; Perez, Daniel R.; Stalknecht, David E.; Brown, Justin D.

    2014-01-01

    Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs) in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos) to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments). In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5) or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI); however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13-1028/2013(H14N5) in

  2. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Sperduti, A. [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); ENEA C.R. Frascati, via E. Fermi n. 45, 00044 Frascati, Roma (Italy); Pietropaolo, A.; Pillon, M. [ENEA C.R. Frascati, via E. Fermi n. 45, 00044 Frascati, Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN–Milano, Via Celoria 16, 20133 Milano (Italy); Gómez-Ros, J.M. [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2017-01-21

    A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a {sup 241}Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm{sup −2} s{sup −1} to 1000 cm{sup −2} s{sup −1} can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

  3. Photonic Beamformer Model Based on Analog Fiber-Optic Links’ Components

    International Nuclear Information System (INIS)

    Volkov, V A; Gordeev, D A; Ivanov, S I; Lavrov, A P; Saenko, I I

    2016-01-01

    The model of photonic beamformer for wideband microwave phased array antenna is investigated. The main features of the photonic beamformer model based on true-time-delay technique, DWDM technology and fiber chromatic dispersion are briefly analyzed. The performance characteristics of the key components of photonic beamformer for phased array antenna in the receive mode are examined. The beamformer model composed of the components available on the market of fiber-optic analog communication links is designed and tentatively investigated. Experimental demonstration of the designed model beamforming features includes actual measurement of 5-element microwave linear array antenna far-field patterns in 6-16 GHz frequency range for antenna pattern steering up to 40°. The results of experimental testing show good accordance with the calculation estimates. (paper)

  4. Effect of cooling water on stability of NLC linac components

    Energy Technology Data Exchange (ETDEWEB)

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  5. Effect of Cooling Water on Stability of NLC Linac Components

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, Frederic

    2002-11-01

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  6. Technical report of electronics shop characteristics of high speed electronics component, (1)

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiino, Kazuo.

    1975-01-01

    We must develop electronics circuits for high speed signals. The electronics components of the circuits make use of the special components. This report treats a pulse response of the electronics components (i.e. coaxial cable, connector, resistor, capacitor, diode, transistor) for high speed electronics. The results of this report was already applied constructions of high speed electronics circuits and experimental equipments of the High Energy Physics Division. (auth.)

  7. New modeling and experimental approaches for characterization of two-phase flow interfacial structure

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Sun, Xiaodong

    2004-01-01

    This paper presents new experimental and modeling approaches in characterizing interfacial structures in gas-liquid two-phase flow. For the experiments, two objective approaches are developed to identify flow regimes and to obtain local interfacial structure data. First, a global measurement technique using a non-intrusive ring-type impedance void-meter and a self-organizing neural network is presented to identify the one-dimensional'' flow regimes. In the application of this measurement technique, two methods are discussed, namely, one based on the probability density function of the impedance probe measurement (PDF input method) and the other based on the sorted impedance signals, which is essentially the cumulative probability distribution function of the impedance signals (instantaneous direct signal input method). In the latter method, the identification can be made close to instantaneously since the required signals can be acquired over a very short time period. In addition, a double-sensor conductivity probe can also be used to obtain ''local'' flow regimes by using the instantaneous direct signal input method with the bubble chord length information. Furthermore, a newly designed conductivity probe with multiple double-sensor heads is proposed to obtain ''two-dimensional'' flow regimes across the flow channel. Secondly, a state-of-the-art four-sensor conductivity probe technique has been developed to obtain detailed local interfacial structure information. The four-sensor conductivity probe accommodates the double-sensor probe capability and can be applied in a wide range of flow regimes spanning from bubbly to churn-turbulent flows. The signal processing scheme is developed such that it categorizes the acquired parameters into two groups based on bubble cord length information. Furthermore, for the modeling of the interfacial structure characterization, the interfacial area transport equation proposed earlier has been studied to provide a dynamic and

  8. Experimental characterization and modeling of an ethanol steam reformer

    DEFF Research Database (Denmark)

    Mandø, Matthias; Bovo, Mirko; Nielsen, Mads Pagh

    2006-01-01

    This work describes the characterization of an ethanol reforming system for a high temperature PEM fuel cell system. High temperature PEM fuel cells are well suited for operation on reformate gas due to the superior CO tolerance compared with low temperature PEM. Steam reforming of liquid biofuels...

  9. Irradiation effects on plasma diagnostic components

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Iida, Toshiyuki; Ikeda, Yujiro

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m 2 and 1 MWa/m 2 , respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  10. Irradiation effects on plasma diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Takeo [ed.] [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Iida, Toshiyuki; Ikeda, Yujiro [and others

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m{sup 2} and 1 MWa/m{sup 2}, respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  11. Experimental characterization of cooled EGR in a gasoline direct injection engine for reducing fuel consumption and nitrogen oxide emission

    Science.gov (United States)

    Park, Sang-Ki; Lee, Jungkoo; Kim, Kyungcheol; Park, Seongho; Kim, Hyung-Man

    2015-11-01

    The emphasis on increasing fuel economy and reducing emissions is increasing. Attention has turned to how the performance of a gasoline direct injection (GDI) engine can be improved to achieve lower fuel consumption and NOx emission. Therefore, positive effects can reduce fuel consumption and NOx emission as well as knock suppression. The cooled exhaust gas recirculation (EGR) ranges within the characteristic map are characterized from the experimental results at various speeds and brake mean effective pressures in a GDI engine. The results show that the application of cooled EGR system brought in 3.63 % reduction as for the fuel consumption and 4.34 % as for NOx emission.

  12. Engineering solutions for components facing the plasma in experimental power reactors

    International Nuclear Information System (INIS)

    Casini, G.; Farfaletti-Casali, F.

    1985-01-01

    A review of the engineering problems related to the structures in front of the plasma of experimental Tokamak-type reactors is made. Attention is focused on the so-named ''first wall'', i.e. the wall side of the blanket segments facing the plasma, and on the collector plates of the impurity control system, in particular for the case of the single-null poloidal divertor. Even if the uncertainties related to the plasma-wall interaction are stil relevant, some engineering solutions which look manageable are identified and described. (orig.)

  13. Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density.

    Science.gov (United States)

    Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K

    2010-12-01

    Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.

  14. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gabbasov, Raul, E-mail: gabbasov-raul@yandex.ru [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Polikarpov, Michael; Cherepanov, Valery [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Chuev, Michael; Mischenko, Iliya; Lomov, Andrey [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Wang, Andrew [Ocean NanoTech. Springdale, AR (United States); Panchenko, Vladislav [National Research Center “Kurchatov Institute”, Moscow (Russian Federation)

    2015-04-15

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5–25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results. - Highlights: • KV parameter, obtained from Mössbauer spectra can be used for nanoparticle size characterization. • Mössbauer spectra of 10–25 nm nanoparticles can be effectively described by ferromagnetic model. • Surface impurities can cause incorrect nanoparticle size determination.

  15. Physical and chemical characterization of borosilicate glasses containing Hanford high-level wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Palmer, R.A.

    1980-10-01

    Scouting studies are being performed to develop and evaluate silicate glass forms for immobilization of Hanford high-level wastes. Detailed knowledge of the physical and chemical properties of these glasses is required to assess their suitability for long-term storage or disposal. Some key properties to be considered in selecting a glass waste form include leach resistance, resistance to radiation, microstructure (includes devitrification behavior or crystallinity), homogeneity, viscosity, electrical resistivity, mechanical ruggedness, thermal expansion, thermal conductivity, density, softening point, annealing point, strain point, glass transformation temperature, and refractive index. Other properties that are important during processing of the glass include volatilization of glass and waste components, and corrosivity of the glass on melter components. Experimental procedures used to characterize silicate waste glass forms and typical properties of selected glass compositions containing simulated Hanford sludge and residual liquid wastes are presented. A discussion of the significance and use of each measured property is also presented

  16. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G., E-mail: g.barucca@univpm.it [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Santecchia, E.; Majni, G. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Girardin, E. [DISCO, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Bassoli, E.; Denti, L.; Gatto, A. [DIMeC, University of Modena and Reggio Emilia, via Vignolese 905/B, Modena 41125 (Italy); Iuliano, L. [DISPEA, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Moskalewicz, T. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Mengucci, P. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy)

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co–Cr–Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}{sub γ} planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. - Highlights: • Samples of a Co–Cr–Mo biomedical alloy were produced by direct metal laser sintering. • Hardness values unexpectedly high were attributed to a peculiar microstructure. • Fine lamellae of the ε-phase alternated to the γ-phase were observed for the first time. • A nucleation and growth model for the observed microstructure is proposed.

  17. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  18. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D E; Hopkins, A R; Paladino, J D; Whitefield, P D [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H V [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1998-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  19. Problems of stress analysis of fuelling machine head components

    International Nuclear Information System (INIS)

    Mathur, D.D.

    1975-01-01

    The problem of stress analysis of fuelling machine head components are discussed. To fulfil the functional requirements, the components are required to have certain shapes where stress problems cannot be matched to a catalogue of pre-determined solutions. The areas where complex systems of loading due to hydrostatic pressure, weight, moments and temperature gradients coupled with the intricate shapes of the components make it difficult to arrive at satisfactory solutions. Particularly, the analysis requirements of the magazine housing, end cover, gravloc clamps and centre support are highlighted. An experimental stress analysis programme together with a theoretical finite element analysis is perhaps the answer. (author)

  20. Characterization of a dc SQUID based accelerometer circuit for a superconducting gravity gradiometer

    International Nuclear Information System (INIS)

    Scharnweber, R.; Lumley, J.M.

    1999-01-01

    A demonstrator set-up to test superconducting components has been designed and fabricated in order to characterize their functionality for use in a superconducting gravity gradiometer. The displacement of a freely oscillating levitated niobium proof mass in this acceleration transducer is measured inductively and read out by a direct current superconducting quantum interference device. It has been confirmed experimentally that the oscillation frequency depends on the current of the levitation magnet that is operated in persistent-current mode. The results allow us to establish testing and operational procedures that can be used in a more complex multichannel system to confirm functionality and to adjust the levitated proof mass. (author)

  1. Characterization of a dc SQUID based accelerometer circuit for a superconducting gravity gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    Scharnweber, R.; Lumley, J.M. [Oxford Instruments, Scientific Research Division, Research Instruments (Cambridge), Newton House, Cambridge Business Park, Cowley Road, Cambridge CB4 4WZ (United Kingdom)

    1999-11-01

    A demonstrator set-up to test superconducting components has been designed and fabricated in order to characterize their functionality for use in a superconducting gravity gradiometer. The displacement of a freely oscillating levitated niobium proof mass in this acceleration transducer is measured inductively and read out by a direct current superconducting quantum interference device. It has been confirmed experimentally that the oscillation frequency depends on the current of the levitation magnet that is operated in persistent-current mode. The results allow us to establish testing and operational procedures that can be used in a more complex multichannel system to confirm functionality and to adjust the levitated proof mass. (author)

  2. The components of working memory updating: an experimental decomposition and individual differences

    OpenAIRE

    Ecker, U K H; Lewandowsky, S; Oberauer, Klaus; Chee, A E H

    2010-01-01

    Working memory updating (WMU) has been identified as a cognitive function of prime importance for everyday tasks and has also been found to be a significant predictor of higher mental abilities. Yet, little is known about the constituent processes of WMU. We suggest that operations required in a typical WMU task can be decomposed into 3 major component processes: retrieval, transformation, and substitution. We report a large-scale experiment that instantiated all possible combinat...

  3. Experimental studies on the nonlinear dynamics of ferroelectric thin films and layered ferroelectricum/semiconductor structures in oscillating systems

    International Nuclear Information System (INIS)

    Barz, Kay

    2010-01-01

    In this work experimental techniques for characterization of ferroelectric nm-thin films and ferroelectric/semiconductor structures by means of nonlinear phenomena are discussed. The thin film sample is applied in a series resonant circuit. By recording time series data and amplitude-frequency-characteristics (resonance frequency shift), the nonlinear behavior can be analyzed with respect to the theoretical aspects of these effects in the framework of nonlinear dynamics. The evolving ferroelectric hysteresis is represented by the amplitude-frequency-characteristic in a very detailed form. Interpretations are presented on how transient alterations like fatigue or retention loss, affect the amplitude-frequency-characteristics. Time series analysis allows to separate the specific influence of the nonlinear components and their corresponding time constants. The work closes with suggestions for a systematic application of the presented techniques for an extended characterization of ferroelectric thin films. (orig.)

  4. Component failures that lead to reactor scrams

    International Nuclear Information System (INIS)

    Burns, E.T.; Wilson, R.J.; Lim, E.Y.

    1980-04-01

    This report summarizes the operating experience scram data compiled from 35 operating US light water reactors (LWRs) to identify the principal components/systems related to reactor scrams. The data base utilized to identify the scram causes is developed from a EPRI-utility sponsored survey conducted by SAI coupled with recent data from the USNRC Gray Books. The reactor population considered in this evaluation is limited to 23 PWRs and 12 BWRs because of the limited scope of the program. The population includes all the US NSSS vendors. It is judged that this population accurately characterizes the component-related scrams in LWRs over the first 10 years of plant operation

  5. Unitized Stiffened Composite Textile Panels: Manufacturing, Characterization, Experiments, and Analysis

    Science.gov (United States)

    Kosztowny, Cyrus Joseph Robert

    Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and

  6. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development.

    Science.gov (United States)

    Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana

    2016-01-01

    This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.

  7. DIII-D dust particulate characterization (June 1998 Vent)

    International Nuclear Information System (INIS)

    Carmack, W.J.

    1999-01-01

    Dust is a key component of fusion power device accident source term. Understanding the amount of dust expected in fusion power devices and its physical and chemical characteristics is needed to verify assumptions currently used in safety analyses. An important part of this safety research and development work is to characterize dust from existing experimental tokamaks. In this report, the authors present the collection, data analysis methods used, and the characterization of dust particulate collected from various locations inside the General Atomics DIII-D vacuum vessel following the June 1998 vent. The collected particulate was analyzed at the Idaho National Engineering and Environmental Laboratory (INEEL). Two methods were used to collect particulate with the goal of preserving the particle size distribution and physical characteristics of the particulate. Choice of collection technique is important because the sampling method used can bias the particle size distribution collected. Vacuum collection on substrates and adhesion removal with metallurgical replicating tape were chosen as non-intrusive sampling methods. Seventeen samples were collected including plasma facing surfaces in lower, upper, and horizontal locations, surfaces behind floor tiles, surfaces behind divert or tiles, and surfaces behind ceiling tiles. The results of the analysis are presented

  8. Characterization of the triple-component linoleic acid isomerase in Lactobacillus plantarum ZS2058 by genetic manipulation.

    Science.gov (United States)

    Yang, B; Qi, H; Gu, Z; Zhang, H; Chen, W; Chen, H; Chen, Y Q

    2017-11-01

    To assess the mechanism for conjugated linoleic acid (CLA) production in Lactobacillus plantarum ZS2058. CLA has attracted great interests for decades due to its health-associated benefits including anticancer, anti-atherogenic, anti-obesity and modulation of the immune system. A number of microbial CLA producers were widely reported including lactic acid bacteria. Lactobacillus plantarum ZS2058, an isolate from Chinese traditional fermented food, could convert LA to CLA with various intermediates. To characterize the genetic determinants for generating CLA, a cre-lox-based system was utilized to delete the genes encoding myosin cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC) in Lact. plantarum ZS2058, respectively. Neither intermediate was detected in the corresponding gene deletion mutant. Meanwhile all those mutants could recover the ability to convert linoleic acid to CLA when the corresponding gene was completed. The results indicated that CLA production was a multiple-step reaction catalysed by triple-component linoleate isomerase system encoded by mcra, dh and dc. Multicomponent linoleic acid isomerase provided important results for illustration unique mechanism for CLA production in Lact. plantarum ZS2058. Lactobacilli with CLA production ability offer novel opportunities for functional food development. © 2017 The Society for Applied Microbiology.

  9. NDE of stresses in thick-walled components by ultrasonic methods

    International Nuclear Information System (INIS)

    Goebbels, K.; Pitsch, H.; Schneider, E.; Nowack, H.

    1985-01-01

    The possibilty of measuring stresses - especially residual stresses - by ultrasonic methods has been presented at the 4th and 5th International Conference on NDE in Nuclear Industry. This contribution now presents results of several applications to thick walled components such as turbines and generators for power plants. The measurement technique using linearly polarized shear waves allows one to characterize the homogeneitry of the residual stress situation along and around cylindrically shaped components. Some important results show that the stress distribution integrated over the cross section of the component has not followed in any case the simple relations derived by stress analysts. Conclusions referring to the stress situation inside the components are discussed

  10. Commercialized VCSEL components fabricated at TrueLight Corporation

    Science.gov (United States)

    Pan, Jin-Shan; Lin, Yung-Sen; Li, Chao-Fang A.; Chang, C. H.; Wu, Jack; Lee, Bor-Lin; Chuang, Y. H.; Tu, S. L.; Wu, Calvin; Huang, Kai-Feng

    2001-05-01

    TrueLight Corporation was found in 1997 and it is the pioneer of VCSEL components supplier in Taiwan. We specialize in the production and distribution of VCSEL (Vertical Cavity Surface Emitting Laser) and other high-speed PIN-detector devices and components. Our core technology is developed to meet blooming demand of fiber optic transmission. Our intention is to diverse the device application into data communication, telecommunication and industrial markets. One mission is to provide the high performance, highly reliable and low-cost VCSEL components for data communication and sensing applications. For the past three years, TrueLight Corporation has entered successfully into the Gigabit Ethernet and the Fiber Channel data communication area. In this paper, we will focus on the fabrication of VCSEL components. We will present you the evolution of implanted and oxide-confined VCSEL process, device characterization, also performance in Gigabit data communication and the most important reliability issue

  11. Modeling and experimental study of heat transfer in innovate building components for industrial production; Modelisation et etude experimentale des echanges de chaleur dans des composants innovants de batiment industriels

    Energy Technology Data Exchange (ETDEWEB)

    Lacena-Neildez, A.

    2000-05-15

    The main objective of the thesis is the study of a new roof thermal behaviour with the thermal transfer by radiation and convection in order to propose an alternative to the mechanical air-conditioning in the overseas islands, and to determine the way of improving the energy performance. Two fundamental results were obtained. First, the coating has a great importance in relation with the radiative properties. Secondly, air channel geometries can complete insufficient coatings in their cooling purpose. In this thesis, both experimental and modelling analyses were carried out. A solar simulator was used for the experiment to carry out a comparative study of prototypes. A performance indicator was defined; it is the eliminated flux, because the temperature is not sufficient to describe the heat exchange. At the same time, the radiative properties of coatings were measured and a characterisation of paints allows to start a new research of innovative infrared reflective paints. A mono-dimensional model was developed describing thermal exchanges in an air channel component. A sensibility study was carried out which allows to determine the main parameters. The experimental study validated the model in rear flux, more realistic than stagnation. Finally, the feasibility of this new steel component was concluded by a technical-economical study. (author)

  12. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions

    Science.gov (United States)

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-01

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, 13C and 1H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  13. High-G Thermal Characterization Centrifuge

    Data.gov (United States)

    Federal Laboratory Consortium — High-G testing of thermal components enables improved understanding of operating behavior under military-relevant environments. The High-G Thermal Characterization...

  14. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  15. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  16. ISOLATION AND CHARACTERIZATION OF TOTAL VOLATILE COMPONENTS FROM LEAVES OF CITRUS LIMON LINN.

    Directory of Open Access Journals (Sweden)

    Vijendra Singh

    2010-03-01

    Full Text Available The isolation of the essential oil of whole fresh leaves of Citrus lemon by steamdistillation is described. The chemical composition of the oil was investigated by meansof Gas-Liquid Chromatography (GLC, Column Chromatography (CC and coupled GasChromatography-Mass Spectrometry (GC-MS. The 27 most important volatilecomponents were identified. The volatile components were identified by comparing theirretention times of GC chromatograph with those of literature. Further identification wasdone by GC- MS. The components of the oil, percentage of each constituent, their RIvalues and their Eight Peak Index were also summarized and reviewed with standardavailable literature.

  17. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    Energy Technology Data Exchange (ETDEWEB)

    Xue, M.H.; Su, M.X.; Dong, L.L.; Shang, Z.T.; Cai, X.S. [Shanghai University of Science & Technology, Shanghai (China)

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluated on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.

  18. Experimental characterization of a solar cooker with thermal energy storage based on solar salt

    Science.gov (United States)

    Coccia, G.; Di Nicola, G.; Tomassetti, S.; Gabrielli, G.; Chieruzzi, M.; Pierantozzi, M.

    2017-11-01

    High temperature solar cooking allows to cook food fast and with good efficiency. An unavoidable drawback of this technology is that it requires nearly clear-sky conditions. In addition, evening cooking is difficult to be accomplished, particularly on the winter season during which solar radiation availability is limited to a few hours in the afternoon in most of countries. These restrictions could be overcome using a cooker thermal storage unit (TSU). In this work, a TSU based on solar salt was studied. The unit consists of two metal concentric cylindrical vessels, connected together to form a double-walled vessel. The volume between walls was filled with a certain amount of nitrate based phase change material (solar salt). In order to characterize the TSU, a test bench used to assess solar cooker performance was adopted. Experimental load tests with the TSU were carried out to evaluate the cooker performance. The obtained preliminary results show that the adoption of the solar salt TSU seems to allow both the opportunity of evening cooking and the possibility to better stabilize the cooker temperature when sky conditions are variable.

  19. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  20. Context sensitivity and ambiguity in component-based systems design

    Energy Technology Data Exchange (ETDEWEB)

    Bespalko, S.J.; Sindt, A.

    1997-10-01

    Designers of components-based, real-time systems need to guarantee to correctness of soft-ware and its output. Complexity of a system, and thus the propensity for error, is best characterized by the number of states a component can encounter. In many cases, large numbers of states arise where the processing is highly dependent on context. In these cases, states are often missed, leading to errors. The following are proposals for compactly specifying system states which allow the factoring of complex components into a control module and a semantic processing module. Further, the need for methods that allow for the explicit representation of ambiguity and uncertainty in the design of components is discussed. Presented herein are examples of real-world problems which are highly context-sensitive or are inherently ambiguous.