WorldWideScience

Sample records for experimental channels

  1. An experimental study of rip channel flow

    DEFF Research Database (Denmark)

    Drønen, Nils Kjetil; Karunarathna, H.; Fredsøe, Jørgen

    2002-01-01

    A laboratory study of the flow over a bar with a single rip channel has been performed. First, the well-known pattern of a bar circulation cell with a strong offshore-directed current out through the rip channel and a weaker onshore-directed return flow over the bar is documented. Then measurements...... of the three-dimensional structure of the flow in the area where the rip channel, the bar and the trough meet and well inside the rip channel are presented. These measurements reveal that 3D effects play an important role, and that a depth-integrated viewpoint may not always be sufficient for predicting...

  2. Experimental studies toward the characterization of Inmetro's circulating water channel

    Science.gov (United States)

    Santos, A. M.; Alho, A. T. P.; Garcia, D. A.; Farias, M. H.; Massari, P. L.; Silva, V. V. S.

    2016-07-01

    Circulating water channels are facilities which can be used for conducting environmental, metrological and engineering studies. The Brazilian National Institute of Metrology-INMETRO has a water channel of innovative design, and the present work deals with the prior experimental investigation of its hydrodynamics performance. By using the optical technique PIV - Particle Image Velocimetry, under certain conditions, the velocity profile behavior in a region inside the channel was analyzed in order to evaluate the scope of applicability of such bench.

  3. Investigation of ferrocement channels using experimental and finite element analysis

    Directory of Open Access Journals (Sweden)

    Hamid Eskandari

    2015-12-01

    Full Text Available It is necessary to design and calculate tensile reinforcement for ferrocement channels with various spans used in different structures such as rural houses and mosques. However, such analysis is challenging due to the application of different types of wire meshes, dissimilar tensile and compressive reinforcement, and mechanical properties of the mortar. The present study provided an experimental sample to assess deflection in a standard ferrocement channel (span: 4.5 m; width: 70 cm. The Abaqus Unified finite element analysis (FEA has been also used to model the ferrocement channel by various system supports and beam spans. The obtained results indicated the acceptable accuracy of FE simulations in the estimation of experimental values. Such models can thus be used as quick, simple, and inexpensive methods to calculate the optimal deflection of ferrocement channels for various spans and sizes of tensile reinforcement.

  4. Changes of sodium channel expression in experimental painful diabetic neuropathy.

    Science.gov (United States)

    Craner, Matthew J; Klein, Joshua P; Renganathan, Muthukrishnan; Black, Joel A; Waxman, Stephen G

    2002-12-01

    Although pain is experienced by many patients with diabetic neuropathy, the pathophysiology of painful diabetic neuropathy is not understood. Substantial evidence indicates that dysregulated sodium channel gene transcription contributes to hyperexcitability of dorsal root ganglion neurons, which may produce neuropathic pain after axonal transection. In this study, we examined sodium channel mRNA and protein expression in dorsal root ganglion neurons in rats with streptozotocin-induced diabetes and tactile allodynia, using in situ hybridization and immunocytochemistry for sodium channels Na(v)1.1, Na(v)1.3, Na(v)1.6, Na(v)1.7, Na(v)1.8, and Na(v)1.9. Our results show that, in rats with experimental diabetes, there is a significant upregulation of mRNA for the Na(v)1.3, Na(v)1.6, and Na(v)1.9 sodium channels and a downregulation of Na(v)1.8 mRNA 1 and 8 weeks after onset of allodynia. Channel protein levels display parallel changes. Our results demonstrate dysregulated expression of the genes for sodium channels Na(v)1.3, Na(v)1.6, Na(v)1.8, and Na(v)1.9 in dorsal root ganglion neurons in experimental diabetes and suggest that misexpression of sodium channels contributes to neuropathic pain associated with diabetic neuropathy.

  5. Two-channel analysis of QUELL experimental results

    CERN Document Server

    Bottura, L; Rosso, C

    2000-01-01

    We have improved the model presently used in the thermo-hydraulic code Gandalf, adapting it to cable-in-conduit conductors with central cooling channel such as those developed for the model coils of ITER. In particular the helium flow in an arbitrary number of parallel channels have now independent velocity and thermodynamic state (pressure and temperature). We demonstrate the capability of the new model by means of comparison to measurements taken during the QUELL experiment in SULTAN. We compare in particular data on heat slug at zero current and field in a broad range of energy inputs, as well as data on quench propagation, to simulation results obtained with the single channel approximation and the newly implemented two-channel model. The latter achieves significantly better agreement with experimental data, in particular in the case of slow heating transients such as in heat slug propagation tests. (10 refs).

  6. Experimental modeling of gravity underflow in submarine channels

    Science.gov (United States)

    Islam, Mohammad Ashraful

    Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. Unlike natural rivers, few attempts have been made to explore the process of channel meandering in the submarine environment. This research focuses on resolving the flow field of submarine channels by conducting experiments in a large laboratory basin. Saline and particulate density flows were studied in a straight channel, a single bend sinuous channel with vertical sidewalls and a multiple-bend sinuous channel with sloping sidewalls. Instantaneous velocities in steady developed currents were measured using 3-component acoustic Doppler velocity probes. Excess fractional density was measured at selected locations by collecting water sample using a siphon rake. Turbulent kinetic energy and Reynolds stress components are derived from the instantaneous velocity data of the straight channel experiments. Structure functions for mean velocity, Reynolds stress and turbulent kinetic energy profiles are derived by fitting normalized data. The normalized Reynolds-averaged velocity shows excellent similarity collapse while the Reynolds-stress and the turbulent kinetic energy profiles display reasonable similarity. Vertical profiles of the turbulent kinetic energy display two peaks separated by a zone of low turbulence; the ratio of the maximum to the depth-averaged turbulent kinetic energy is approximately 1.5. Theoretical profile of turbulent kinetic energy is derived. Comparisons of experimentally and theoretically derived turbulent kinetic energy profiles show reasonable agreement except at the position of velocity maximum where the theoretical profile displays a very small value. Velocity profiles derived from the measurements with confined flow in the single bend channel reveal that channel curvature drives two helical flow cells, one

  7. Squeeze-film damper design with air channels : Experimental verification

    NARCIS (Netherlands)

    Dias, R.A.; Wolffenbuttel, R.F.; Cretu, E.; Rocha, L.A.

    2011-01-01

    The experimental evaluation of damping-improved parallel-plate geometries is reported in this paper. An improved damper geometry with air channels was developed to address contradictory design constraints: large sensing parallel-plate area is desirable for a significant readout capacitance as well

  8. Experimental characterization of entanglement dynamics in noisy channels.

    Science.gov (United States)

    Xu, Jin-Shi; Li, Chuan-Feng; Xu, Xiao-Ye; Shi, Cheng-Hao; Zou, Xu-Bo; Guo, Guang-Can

    2009-12-11

    We experimentally characterize the bipartite entanglement under one-sided open system dynamics and verify the recently formulated entanglement factorization law [Nature Phys. 4, 99 (2008)]. The one-sided open system dynamics is realized by implementing a phase damping and an amplitude decay channel, respectively, acting on one of the qubits, by an all-optical setup. Our results greatly simplify the characterization of entanglement dynamics and will play an important role in the construction of complex quantum networks.

  9. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    Science.gov (United States)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the

  10. Experimental evidence of planar channeling in a periodically bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, E.; Bandiera, L.; Bellucci, V.; Camattari, R.; Germogli, G.; Guidi, V.; Mazzolari, A. [Univ. di Ferrara, Dipartimento di Fisica, Ferrara (Italy); INFN, Sezione di Ferrara (Italy); Berra, A.; Lietti, D.; Prest, M. [Univ. dell' Insubria, Como (Italy); INFN Sezione di Milano Bicocca, Milan (Italy); De Salvador, D. [INFN Laboratori Nazionali di Legnaro, Legnaro (Italy); Univ. di Padova, Dipartimento di Fisica, Padua (Italy); Lanzoni, L. [San Marino Univ. (San Marino). Dept. of Engineering; Tikhomirov, V.V. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Vallazza, E. [INFN, Sezione di Trieste (Italy)

    2014-10-15

    The usage of a crystalline undulator (CU) has been identified as a promising solution for generating powerful and monochromatic γ-rays. A CU was fabricated at Sensors and Semiconductors Lab (SSL) through the grooving method, i.e., by the manufacturing of a series of periodical grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities. (orig.)

  11. Experimental study of a single channel alluvial fan

    Science.gov (United States)

    Delorme, Pauline; Devauchelle, Olivier; Barrier, Laurie; Métivier, François

    2016-04-01

    At the outlet of mountain ranges, rivers reach a flat plain and start to depose their sediment load into a conical sedimentary structure called alluvial fan. To decipher these sedimentary records, we need to understand the dynamics of their growth. Most natural fans are built by braided streams. However, to avoid the complexity of braided rivers, we develop a small-scale experiment in which an alluvial fan is formed by a single channel. We use a mixture of water and glycerol to produce a laminar river. The fluid is mixed with corindon sand (~ 300 μm) in a tilted channel and left free to form a fan around its outlet. The sediment and water discharges are constant during an experimental run. We record the fan progradation and the channel morphology with top-view pictures. We also generate an elevation map with an optical method based on the deformation of a moiré pattern. We observe that, to leading order, the fan remains self-affine as it grows, with a constant slope. We compare two recent studies about the formation of one-dimensionnal fan [Guerit et al. 2014] and threshold rivers [Seizilles et al. 2013] to our experimental findings. In particular, we propose a theory witch relates the fan morphology to the control parameters (fluid and sediment discharges, grain size). Our observations accord with the predictions, suggesting that the fan is built near the threshold of sediment motion. At the first order, the fan profile is linear and control by the water discharge. The downstream decrease in sediment discharge add a curvature to this profile. Finally, we intend to expand our interpretation to alluvial fans build by single-thread channels ( Okavango, Bostwana; Taquari and Paraguay, Brasil).

  12. Experimental study on behavior of steel channel strengthened with CFRP

    Directory of Open Access Journals (Sweden)

    Tang Hongyuan

    2017-11-01

    Full Text Available This paper describes the behaviour of axially loaded long and eccentrically loaded short thin-walled steel channels, strengthened with transversely bonded carbon fibre reinforced polymer (CFRP sheets. Seven long members, each 1400 mm long, and seven short members, each 750mmlong, were tested. The main parameters were the number of CFRP plies (one or two and the clear spacing between the CFRP strips (50, 100 or 150 mm. The effect of CFRP sheet layer and clear spacing was studied. All the ultimate load capacity of the reinforced members was improved in different extent. A maximum strength gain of 9.13% was achieved for long members with two CFRP layers and 50 mm spacing of CFRP strips. The experimental results show that the global buckling happens to all the long specimens. For short members, the maximum strength gain of 12.1% was achieved with two CFRP layers and 50 mm spacing of CFRP strips. With the exception of the most heavily reinforced (2 plies at 50 and 100 mm, local buckling was observed prior to global buckling for short members, which was completely opposite of the control specimens. Meanwhile, when the clear spacing of CFRP strips is greater than theweb height of steel channel, the transversely bonded CFRP does not have a significant improvement in buckling load capacity of the short- and long-channel components. While the clear spacing is less than the web height, the more number of CFRP layer, the more enhancement of buckling load capacity.

  13. Multi-channel software defined radio experimental evaluation and analysis

    CSIR Research Space (South Africa)

    Van der Merwe, JR

    2014-09-01

    Full Text Available Multi-channel software-defined radios (SDRs) can be utilised as inexpensive prototyping platforms for transceiver arrays. The application for multi-channel prototyping is discussed and measured results of coherent channels for both receiver...

  14. Environmental testing of an experimental digital safety channel

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.; Tanaka, T.J.; Wilson, T.L. Jr.; Wood, R.T.

    1996-09-01

    This document presents the results of environmental stress tests performed on an experimental digital safety channel (EDSC) assembled at the Oak Ridge National Laboratory (ORNL) as part of the NRC-sponsored Qualification of Advanced Instrumentation and Controls (W) System program. The objective of this study is to investigate failure modes and vulnerabilities of microprocessor-based technologies when subjected to environmental stressors. The study contributes to the technical basis for environmental qualification of safety-related digital I&C systems. The EDSC employs technologies and digital subsystems representative of those proposed for use in advanced light-water reactors (ALWRs) or for retrofits in existing plants. Subsystems include computers, electrical and optical serial communication links, fiber-optic network links, analog-to-digital and digital-to-analog converters, and multiplexers. The EDSC was subjected to selected stressors that are a potential risk to digital equipment in a mild environment. The selected stressors were electromagnetic and radio-frequency interference (EMYRFI), temperature, humidity, and smoke exposure. The stressors were applied over ranges that were considerably higher than what the channel is likely to experience in a normal nuclear power plant environment. Ranges of stress were selected at a sufficiently high level to induce errors so that failure modes that are characteristic of the technologies employed could be identified.

  15. Experimental studies on the flow through soft tubes and channels

    Indian Academy of Sciences (India)

    Keywords. Laminar-turbulent transition; soft tubes/channels; hydrodynamic stability; transition; turbulence; internal flows. Abstract. Experiments conducted in channels/tubes with height/diameter less than 1 mm with soft walls made of polymer gels show that the transition Reynolds number could be significantly lower than ...

  16. Experimental study of natural circulation flow instability in rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-05-15

    Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.

  17. Experimental Investigations of Two-Phase Cooling in Microgap Channel

    Science.gov (United States)

    2011-04-25

    consumption, reduced fluid inventory and more efficient heat transfer enabling tactical deployment of these systems. Active radar systems require...thermal management. The next- generation active radar systems (e.g. X-band radars ) based on GaN-based technology can create high heat fluxes up to 500...intermittent dry out which produces a vapor recoil in the micro/mini-channel. Depending on the compressibility of the inlet zone of the channel, quasi

  18. Statistical modeling of the ultra wide band propagation channel through the analysis of experimental measurements

    Science.gov (United States)

    Pagani, Pascal; Pajusco, Patrice

    2006-09-01

    For the development of future Ultra Wide Band (UWB) communication systems, realistic modeling of the propagation channel is necessary. This article presents an experimental study of the UWB radio channel, based on an extensive sounding campaign covering the indoor office environment. We consider the main characteristics of the UWB channel by studying the propagation loss and wide band parameters, such as the delay spread and the power delay profile decay. From this analysis, we propose a statistical channel model reproducing the UWB channel effects over the frequency bandwidth 3.1-10.6 GHz. To cite this article: P. Pagani, P. Pajusco, C. R. Physique 7 (2006).

  19. Wideband Channel Modeling in Real Atmospheric Environments with Experimental Evaluation

    Science.gov (United States)

    2013-04-01

    received signal will experience ISI and the channel is considered wideband. If either the transmitter or receiver is mobile or the environment is not...are commonly used in spread spectrum communication systems such as Code Division Multiple Access ( CDMA ) systems. Narrowband interference mitigation...Model (APM) for Mobile Radio Applications,” IEEE Trans. Antennas and Propagation, vol. 54, no. 10 (October), pp. 2869–2877. [5] A. Barrios. 1995

  20. IP voice over ATM satellite: experimental results over satellite channels

    Science.gov (United States)

    Saraf, Koroush A.; Butts, Norman P.

    1999-01-01

    IP telephony, a new technology to provide voice communication over traditional data networks, has the potential to revolutionize telephone communication within the modern enterprise. This innovation uses packetization techniques to carry voice conversations over IP networks. This packet switched technology promises new integrated services, and lower cost long-distance communication compared to traditional circuit switched telephone networks. Future satellites will need to carry IP traffic efficiently in order to stay competitive in servicing the global data- networking and global telephony infrastructure. However, the effects of Voice over IP over switched satellite channels have not been investigated in detail. To fully understand the effects of satellite channels on Voice over IP quality; several experiments were conducted at Lockheed Martin Telecommunications' Satellite Integration Lab. The result of those experiments along with suggested improvements for voice communication over satellite are presented in this document. First, a detailed introduction of IP telephony as a suitable technology for voice communication over future satellites is presented. This is followed by procedures for the experiments, along with results and strategies. In conclusion we hope that these capability demonstrations will alleviate any uncertainty regarding the applicability of this technology to satellite networks.

  1. EXPERIMENTAL STUDY ON THE COLLABORATIVE DRAG REDUCTION PERFORMANCE OF A SURFACTANT SOLUTION IN GROOVED CHANNELS

    Directory of Open Access Journals (Sweden)

    Chonghai Huang

    Full Text Available Abstract Turbulence with a relatively larger vortex is obtained in drag-reducing surfactant solution, which provides an excellent condition for the application of small scale grooves. In this work, the coupling drag reduction performance of surfactant solution and grooves was experimentally investigated to explore the complementary possibility between their drag reduction mechanisms. The cationic surfactant cetyltrimethyl ammonium chloride (CTAC mixed with the counterion salt sodium salicylate (NaSal was experimented in smooth or grooved channel, respectively, at the mass concentrations of 50-150 ppm. It was found that the surfactant solutions gave more effective drag reduction in the grooved channel by the interaction between the "restriction effect" and "peak effect" of grooves. Moreover, the critical temperature and critical Reynolds number of the surfactant solution were smaller in the grooved channel, and the friction factor in the grooved channel increased much more rapidly than that in the smooth channel when Re is larger than a critical value.

  2. Experimental evidence of independence of nuclear de-channeling length on the particle charge sign

    Energy Technology Data Exchange (ETDEWEB)

    Bagli, E.; Guidi, V.; Mazzolari, A.; Bandiera, L.; Germogli, G.; Sytov, A.I. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra (Italy); INFN Sezione di Ferrara (Italy); De Salvador, D. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); INFN Laboratori Nazionali di Legnaro (Italy); Berra, A.; Prest, M. [Universita dell' Insubria, Como (Italy); INFN Sezione di Milano Bicocca, Milan (Italy); Vallazza, E. [INFN Sezione di Trieste (Italy)

    2017-02-15

    Under coherent interactions, particles undergo correlated collisions with the crystal lattice and their motion result in confinement in the fields of atomic planes, i.e. particle channeling. Other than coherently interacting with the lattice, particles also suffer incoherent interactions with individual nuclei and may leave their bounded motion, i.e., they de-channel. The latter is the main limiting factor for applications of coherent interactions in crystal-assisted particle steering. We experimentally investigated the nature of de-channeling of 120 GeV/c e{sup -} and e{sup +} in a bent silicon crystal at H4-SPS external line at CERN. We found that while channeling efficiency differs significantly for e{sup -} (2 ± 2%) and e{sup +} (54 ± 2%), their nuclear de-channeling length is comparable, (0.6 ± 0.1) mm for e{sup -} and (0.7 ± 0.3) mm for e{sup +}. The experimental proof of the equality of the nuclear de-channeling length for positrons and electrons is interpreted in terms of similar dynamics undergone by the channeled particles in the field of nuclei irrespective of their charge. (orig.)

  3. EXPERIMENTAL INVESTIGATION OF CONVECTIVE HEAT TRANSFER IN A NARROW RECTANGULAR CHANNEL FOR UPWARD AND DOWNWARD FLOWS

    OpenAIRE

    JO, DAESEONG; OMAR S. AL-YAHIA; RAGA'I M. ALTAMIMI; PARK, JONGHARK; CHAE, HEETAEK

    2014-01-01

    Heat transfer characteristics in a narrow rectangular channel are experimentally investigated for upward and downward flows. The experimental data obtained are compared with existing data and predictions by many correlations. Based on the observations, there are differences from others: (1) there are no different heat transfer characteristics between upward and downward flows, (2) most of the existing correlations under-estimate heat transfer characteristics, and (3) existing correlations do ...

  4. Influence of large wood on channel morphology and sediment storage in headwater mountain streams, Fraser Experimental Forest, Colorado

    Science.gov (United States)

    Sandra E. Ryan; Erica L. Bishop; J. Michael Daniels

    2014-01-01

    Large fallen wood can have a significant impact on channel form and process in forested mountain streams. In this study, four small channels on the Fraser Experimental Forest near Fraser, Colorado, USA, were surveyed for channel geometries and large wood loading, including the size, source, and characteristics of individual pieces. The study is part of a larger effort...

  5. Numerical and experimental study on the motion characteristics of single bubble in a complex channel

    Science.gov (United States)

    Sun, Tao; Li, Weizhong; Dong, Bo

    2015-07-01

    This paper is an extended study from previous work. In this study, the focus is paid to the dynamics of bubble rising and deformation in a complex channel, while the previous work is in straight channel. For this purpose, a three-dimensional lattice Boltzmann method (LBM) is employed to simulate the dynamics behaviour of a bubble rising in a complex channel consisting of three half-round throats. To validate the numerical method, a visual experiment was carried out by means of a high-speed digital camera and computer image processing technology. The behaviour of the rising bubble through glycerine solution in a complex channel was recorded. Some physical parameters such as rising velocities, trajectory and shapes of the bubble were calculated and processed based on the experimental data. In the same conditions, the trajectory, shapes and rising velocities of the bubble were simulated during its rising process by the proposed LBM. The numerical results are in good agreement with the experimental results. It demonstrates that LBM used in this work is feasible for simulating two-phase flow in such a complex channel.

  6. Comparison of experimental tests and theory for a rectangular two-channel dielectric wakefield accelerator structure

    Directory of Open Access Journals (Sweden)

    S. V. Shchelkunov

    2012-03-01

    Full Text Available Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at ∼30  GHz, and the structure is configured to exhibit a high transformer ratio (∼12∶1. Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  7. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  8. An experimental investigation of liquid methane convection and boiling in rocket engine cooling channels

    Science.gov (United States)

    Trujillo, Abraham Gerardo

    In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of

  9. Flow structures in submarine channels affected by Coriolis forces: Experimental observations

    Science.gov (United States)

    Cossu, R.; Wells, M. G.

    2011-12-01

    In this talk we will show how Coriolis forces can control the flow dynamics of turbidity currents flowing in sinuous channels at high latitudes. We describe how the internal velocity structure changes with latitude, based on observations from rotating laboratory experiments. When these results are combined with existing conceptual facies and depositional models we can now describe the changes in sedimentation patterns that are observed at different latitudes. The experiments were conducted in a sinuous channel model placed in a tank that was rotated at various rates (reflected by the Coriolis parameters f) ranging from f = 0 (at the equator) to ± 0.5 rad s-1 (at higher latitudes). The dependence of the density interface of gravity currents on rotation is shown in Figure 1a. At the equator the interface slopes up to the outer bend due to the centrifugal forces. In the Northern Hemisphere (NH) the tilt of the interface increases as now the Coriolis forces reinforce the centrifugal acceleration. In contrast, in the Southern Hemisphere (SH) the current ramps up to the inner bend and Coriolis forces dominate over centrifugal forces. Figure 1b shows the corresponding position of the downstream velocity core in the bend apex. At the equator the core is predominantly close to the centerline, whilst in the NH the core is deflected to the inner bend and in the SH the velocity core is shifted to the outer bank. Based upon our experimental results, we hypothesize that Coriolis forces can affect the velocity structure and sedimentation regime. Lateral accretion packages (LAPs) are built only on one side in the channel and finer sediments will be deposited mainly on the levee bank to which the high velocity core is deflected. The Rossby number RoW = U/fW (where U is the mean downstream velocity and W the channel width) can be used to determine the influence of Coriolis forces. In channel systems at high-latitudes (with RoW 1 implying that Coriolis forces are negligible. LAPs

  10. Analytical and experimental study of premixed methane-air flame propagation in narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C.Y.H.; Hui, K.S.; Kong, W.; Wang, J.H. [Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Cheng, P. [School of Mechanical and Power Engineering, Shanghai Jiaotong University, Shanghai 200030 (China)

    2007-04-15

    This study investigates analytically and experimentally the influence of preheat temperature on flame propagation and extinction of premixed methane-air flame in single quartz tubes with inner tube diameters of 3.9, 3, 2 and 1 mm respectively. The effects of preheat temperature, tube diameter, equivalence ratio and mixture flow rate on the flame speed and extinction conditions are determined. The analytical results show that high preheat temperature of the mixture can effectively suppress flame quenching, and the occurrence of stable solution in the slow flame branch extends the flammability limit leading to possible flame propagation in mini channels. Experimental results confirm that the flame speed increases and the flammability limit shifts toward the fuel lean direction either through increasing the preheat temperature or decreasing the mixture flow rate, or both. Decrease of propagating flame speed is observed before the stoichiometric equivalence ratio at high preheat temperatures. The analytical model provides insights into how propagating flame in mini channels can be sustained; however, the model is only good at predicting flame speed near the fuel lean branch. Influence of Cu{sup 2+} ions exchanged zeolite 13X catalyst on flame speed is also addressed. It is noted that the zeolite based catalyst can lower the preheat temperature requirement in order to sustain the flame propagation in narrow channels. (author)

  11. Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine

    Directory of Open Access Journals (Sweden)

    B. Nkakanou

    2011-01-01

    Full Text Available Experimental results for an ultra-wideband (UWB channel parameters in an underground mining environment over a frequency range of 3 GHz to 10 GHz are reported. The measurements were taken both in LOS and NLOS cases in two different size mine galleries. In the NLOS case, results were acquired for different corridor obstruction angles. The results were obtained during an extensive measurement campaign in the UWB frequency, and the measurement procedure allows both the large- and small-scale parameters such as the path loss exponent, coherence bandwidth, and so forth, to be quantified. The capacity of the UWB channel as a function of the physical depth of the mine gallery has also been recorded for comparison purposes.

  12. MCNPCX calculations of dose rates and spectra in experimental channels of the CTEx irradiating facility

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Renato G.; Rebello, Wilson F.; Vellozo, Sergio O.; Junior, Luis M., E-mail: renatoguedes@ime.eb.br, E-mail: rebello@ime.eb.br, E-mail: vellozo@cbpf.br, E-mail: luisjrmoreira@hotmail.com [Instituto Militar de Engenharia (IME), Janeiro, RJ (Brazil); Vital, Helio C., E-mail: vital@ctex.eb.br [Centro Tecnologico do Exercito (CTEx), Barra de Guaratiba, RJ (Brazil); Rusin, Tiago, E-mail: tiago.rusin@mma.gov.br [Ministerio do Meio Ambiente, Brasilia, DF (Brazil); Silva, Ademir X., E-mail: ademir@con.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    MCNPX simulations have been performed in order to calculate dose rates as well as spectra along the four experimental channels of the gamma irradiating facility at the Technology Center of the Brazilian Army (CTEx). Safety, operational and research requirements have led to the need to determine both the magnitude and spectra of the leaking gamma fluxes. The CTEx experimental facility is cavity type with a moveable set of 28 horizontally positioned rods, filled with Cesium-137 chloride and doubly encased in stainless steel that yields an approximately plane 42 kCi-source that provides a maximum dose rate of about 1.5 kG/h into two irradiating chambers. The channels are intended for irradiation tests outside facility. They would allow larger samples to be exposed to lower gamma dose rates under controlled conditions. Dose rates have been calculated for several positions inside the channels as well as at their exits. In addition, for purposes related to the safety of operators and personnel, the angles submitted by the exiting beams have also been evaluated as they spread when leaving the channels. All calculations have been performed by using a computational model of the CTEx facility that allows its characteristics and operation to be accurately simulated by using the Monte Carlo Method. Virtual dosimeters filled with Fricke (ferrous sulfate) were modeled and positioned throughout 2 vertical channels (top and bottom) and 2 horizontal ones (front and back) in order to map dose rates and gamma spectrum distributions. The calculations revealed exiting collimated beams in the order of tenths of Grays per minute as compared to the maximum 25 Gy / min dose rate in the irradiator chamber. In addition, the beams leaving the two vertical channels were found to exhibit a widespread cone-shaped distribution with aperture angle ranging around 85 deg. The data calculated in this work are intended for use in the design of optimized experiments (better positioning of samples and

  13. Experimental and numerical studies on the mixing at the intersection of millimetric channels

    Energy Technology Data Exchange (ETDEWEB)

    Etcheverry, F; Cachile, M [LIA-Grupo de Medios Porosos, Facultad de Ingenieria, UBA, Buenos Aires (Argentina); Gomba, J M [Instituto de Fisica Arroyo Seco, UNCPBA, Tandil (Argentina); Wolluschek, C, E-mail: mcachil@fi.uba.ar [Mecanica de Fluidos e Ingenieria Termica, Centro tecnologico Cemitec, Noain, Navarra (Spain)

    2011-05-01

    In this work, experimental and numerical results on the effect of diffusion and geometrical dispersion on the mixing of confluent flows are presented. Two channels with an internal diameter D{sub h} = 4 mm intersect with an angle {alpha} = 30,60,90,120,150,180{sup 0}. The experimental setup allows to accurately control the flow rate and assures a constant flow at both inlets. The mixing properties are studied by injecting pure water in one inlet and colored water at the other. The effects of the inlet flow and the intersection angle on the diffusion of ink is analyzed. We observed that the mixing by convection is only important for {alpha} = 180{sup 0}. For other angles, diffusion is the main mechanism for mixing.

  14. Development of two-dimensional wakes within curved channels: Theoretical framework and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Schobeiri, M.T.; John, J.; Pappu, K. [Texas A and M Univ., College Station, TX (United States). Turbomachinery Performance Lab.

    1996-07-01

    The development of a wake flow downstream of a cylindrical rod within a curved channel under zero streamwise pressure gradient is theoretically and experimentally investigated. The measured asymmetric wake quantities such as the mean velocity and turbulent fluctuations in longitudinal and lateral directions as well as the turbulent shear stress are transformed from the probe coordinate system into the curvilinear wake eigen-coordinate system. For the transformed non-dimensionalized velocity defect and the turbulent quantities, affine profiles are observed throughout the flow regime. Based on these observations and using the transformed equations of motion and continuity, a theoretical frame work is established that generally describes the two-dimensional curvilinear wake flow. The theory also describes the straight wake as a special case, for which the curvature radius approaches infinity. The comparison of the theory with the experimental data pertaining to the curvilinear and straight wakes demonstrate the general validity of the theory.

  15. Analysis of flow around impermeable groynes on one side of symmetrical compound channel: An experimental study

    Directory of Open Access Journals (Sweden)

    Hassan Safi Ahmed

    2010-03-01

    Full Text Available This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s. A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water depth by about 75%, 125%, and 175% of its original value in cases of one-side floodplain groyne(s with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width.

  16. Experimental study of an upward sub-cooled forced convection in a rectangular channel

    Science.gov (United States)

    Kouidri, A.; Madani, B.; Roubi, B.; Hamadouche, A.

    2016-07-01

    The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/cm2. The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.

  17. EXPERIMENTAL INVESTIGATION OF CONVECTIVE HEAT TRANSFER IN A NARROW RECTANGULAR CHANNEL FOR UPWARD AND DOWNWARD FLOWS

    Directory of Open Access Journals (Sweden)

    DAESEONG JO

    2014-04-01

    Full Text Available Heat transfer characteristics in a narrow rectangular channel are experimentally investigated for upward and downward flows. The experimental data obtained are compared with existing data and predictions by many correlations. Based on the observations, there are differences from others: (1 there are no different heat transfer characteristics between upward and downward flows, (2 most of the existing correlations under-estimate heat transfer characteristics, and (3 existing correlations do not predict the high heat transfer in the entrance region for a wide range of Re. In addition, there are a few heat transfer correlations applicable to narrow rectangular channels. Therefore, a new set of correlations is proposed with and without consideration of the entrance region. Without consideration of the entrance region, heat transfer characteristics are expressed as a function of Re and Pr for turbulent flows, and as a function of Gz for laminar flows. The correlation proposed for turbulent and laminar flows has errors of ±18.25 and ±13.62%, respectively. With consideration of the entrance region, the heat transfer characteristics are expressed as a function of Re, Pr, and z* for both laminar and turbulent flows. The correlation for turbulent and laminar flows has errors of ±19.5 and ±22.0%, respectively.

  18. Experimental studies of high-accuracy RFID localization with channel impairments

    Science.gov (United States)

    Pauls, Eric; Zhang, Yimin D.

    2015-05-01

    Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.

  19. Experimental demonstration of outdoor 2.2 Tbps super-channel FSO transmission system

    KAUST Repository

    Esmail, Maged Abdullah

    2016-07-26

    Free space optic (FSO) is a wireless technology that promises high speed data rate with low deployment cost. Next generation wireless networks require more bandwidth which is not supported by todays wireless techniques. FSO can be a potential candidate for last mile bottle neck in wireless network and for many other applications. In this paper, we experimentally demonstrate a high speed FSO system using super-channel source and multi-format transmitter. The FSO system was installed outdoor on the building roof over 11.5 m distance and built using off-the-shelf components. We designed a comb source capable of generating multi-subcarriers with flexible spacing. Also we designed a multi-format transmitter capable of generating different complex modulation schemes. For single carrier transmission, we were able to transmit a 23 Gbaud 16-QAM signal over FSO link, achieving 320 Gbps with 6 b/s/Hz spectral efficiency. Then using our super-channel system, 12 equal gain subcarriers are generated and modulated by a DP-16QAM signal with different symbol rates. We achieved maximum symbol rate of 23 Gbaud (i.e. 2.2 Tbps) and spectral efficiency of 7.2 b/s/Hz. © 2016 IEEE.

  20. Experimental study on influence of boundary on location of maximum velocity in open channel flows

    Directory of Open Access Journals (Sweden)

    Jing Yan

    2011-06-01

    Full Text Available The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.

  1. Experimental Investigation of a Synthetic Jet Array in a Laminar Channel Flow

    Directory of Open Access Journals (Sweden)

    Trávníček Z.

    2013-04-01

    Full Text Available The paper deals with an impinging synthetic jet, namely on the case of a synthetic jet array interacting with a laminar channel flow. This arrangement can be useful in many micro-scale applications, such as cooling of micro-electronics. The flow regime in micro-scale is usually laminar with very small Reynolds numbers; therefore synthetic jet array can be used for the profile disturbance and heat transfer enhancement. The paper focuses on the low Reynolds number (in order 102. The working fluid is water and a piezoceramic transducer is used as a moving membrane in the synthetic jet actuator. Experiments are performed with four experimental methods (tin ion visualization, hot wire anemometry in constant temperature mode, laser Doppler vibrometry and particle image velocimetry in three laboratories (at the Eindhoven University of Technology, Netherlands, at the Institute of Thermodynamics CAS, v.v.i. and Technical University of Liberec, both Czech Republic.

  2. Experimental investigation and numerical comparison of the performance of a proton exchange membrane fuel cell at different channel geometry

    Science.gov (United States)

    Khazaee, I.

    2015-08-01

    In this study, the performance of a PEM fuel cell is investigated experimentally and numerically by changing the geometry of the channels. At first an experimental setup is used and three different fuel cells with rectangular, elliptical and triangular serpentine channels are constructed. The active area of each cell is 25 cm2 that its weight is 1,300 g. The material of the gas diffusion layer is carbon clothes, the membrane is nafion 117 and the catalyst layer is a plane with 0.004 g cm-2 platinum. Then a complete three-dimensional model for fuel cell is used to investigate the effect of using this channels geometry on the performance. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. The results show that the predicted polarization curves by using this model are in good agreement with the experimental results. Also the results show that when the geometry of channel is rectangular the performance of the cell is better than the triangular and elliptical channel.

  3. Experimental study on the effects of fixed boundaries in channelized free surface dry granular flows

    Science.gov (United States)

    Sarno, Luca; Carleo, Luigi; Nicolina Papa, Maria

    2017-04-01

    The dynamics of granular mixtures, involved in geophysical flows like avalanches and debris flows, is far from being completely understood. Several features of their motion, such as rheological stratification, non-local and boundary effects, still represent open problems. Experimental investigations at laboratory scale are an important tool that can provide insights about the dynamics of gravity driven granular flows. The measuring techniques should be non-invasive in order to measure undisturbed flows. In this work we present an experimental campaign devoted to the measurement of the velocity profiles of free surface steady granular flows in an open channel. To achieve this goal the flows were recorded by two cameras and velocity profiles were obtained by image analysis. The employed granular medium consists of acetal-polymeric beads with a mean diameter of 3mm and an estimated internal friction angle of 27°. All the experiments have been performed in a 2m-long plexiglas flume with a rectangular cross-section and a slope angle of 30°. The upper part of the channel was used as a reservoir where the material was loaded before each run and then let flow down through an adjustable gate. Several mass flow rates were investigated. Three different basal surfaces were employed so as to observe slip and non-slip boundary conditions: a smooth Bakelite surface, a roughened surface, obtained by gluing a layer of grains on the bed surface and a sandpaper surface with characteristic length of the roughness equal to 425 µm. The flume is equipped with two high-speed cameras, one placed aside the channel and the other one perpendicular to the channel bed, as to get both side-wall and free surface velocity profiles. The particle image velocimetry open-source code, PIVlab, is employed for estimating the flow velocities. All the free surface velocity profiles show an approximately parabolic shape with a maximum at the cross-section midpoint and a minimum at the side-walls, due to

  4. Propagation of a channelized debris-flow: experimental investigation and parameters identification for numerical modelling

    Science.gov (United States)

    Termini, Donatella

    2013-04-01

    Recent catastrophic events due to intense rainfalls have mobilized large amount of sediments causing extensive damages in vast areas. These events have highlighted how debris-flows runout estimations are of crucial importance to delineate the potentially hazardous areas and to make reliable assessment of the level of risk of the territory. Especially in recent years, several researches have been conducted in order to define predicitive models. But, existing runout estimation methods need input parameters that can be difficult to estimate. Recent experimental researches have also allowed the assessment of the physics of the debris flows. But, the major part of the experimental studies analyze the basic kinematic conditions which determine the phenomenon evolution. Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials (DICAM) - University of Palermo (Italy). The experiments, carried out in a laboratory flume appositely constructed, were planned in order to evaluate the influence of different geometrical parameters (such as the slope and the geometrical characteristics of the confluences to the main channel) on the propagation phenomenon of the debris flow and its deposition. Thus, the aim of the present work is to give a contribution to defining input parameters in runout estimation by numerical modeling. The propagation phenomenon is analyzed for different concentrations of solid materials. Particular attention is devoted to the identification of the stopping distance of the debris flow and of the involved parameters (volume, angle of depositions, type of material) in the empirical predictive equations available in literature (Rickenmanm, 1999; Bethurst et al. 1997). Bethurst J.C., Burton A., Ward T.J. 1997. Debris flow run-out and landslide sediment delivery model tests. Journal of hydraulic Engineering, ASCE, 123(5), 419-429 Rickenmann D. 1999. Empirical relationships

  5. Experimental analysis of turbulence characteristics and flow conveyance effects in a vegetated channel

    Science.gov (United States)

    Termini, D.

    2009-04-01

    Natural rivers are characterized by a strong hydraulic and geomorphic complexity. Many studies conducted in this field (Malthus and Mumby, 2003; Muhar, 1996) show that the accurate estimation both of the river morphological changes and of local hydraulic characteristics of flow (i.e. the local flow velocities and water depths) is necessary for the restoration and protection of biodiversity. Vegetation is a key factor to analyze the interrelated system of flow, sediment transport, and morphodynamic in rivers (Tsujimoto, 1999; Maione et al., 2000). On one hand, some kind of species of vegetation affect the habitat conditions, being crucial to the maintenance of biodiversity (Larkum et al, 2004); on the other hand, effects of vegetation on flow velocity are significant and are of crucial importance for stabilizing sediments and reducing erosion along the channel. In particular, it has been generally agreed that vegetation increases flow resistance and modifies sediment transport and deposition (Tsujimoto et al., 1996; Yen 2002). The analysis of the hydrodynamic conditions in vegetated channels is complex because vegetation is flexible in varying degrees and it oscillates in the flow changing position. Furthermore, because of temporal changing of roughness due to natural vegetative growth, the response of vegetation to the flow can change in time. In this paper the flow over real flexible vegetation is experimentally studied. A 2D-ADV (Acoustic Doppler Velocimeter) is used to measure the local flow velocities, for different vegetation concentrations and varying the discharge and the flume slope. The influence of both vegetation concentration and depth/vegetation height ratio on the measured velocity profiles is analyzed. The comparison between the velocity distribution and the turbulence intensity distribution is also presented. The spectral analysis is operated in order to verify the formation of turbulence structures inside the vegetated layer and the flow conveyance

  6. Study on critical heat flux in narrow rectangular channel with repeated-rib roughness. 1. Experimental facility and preliminary experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hidetaka; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-10-01

    In the design of a spallation target system, the water cooling system, for example a proton beam window and a safety hull, is used with narrow channels, in order to remove high heat flux and prevent lowering of system performance by absorption of neutron. And in narrow channel, heat transfer enhancement using 2-D rib is considered for reduction the cost of cooling component and decrease inventory of water in the cooling system, that is, decrease of the amount of irradiated water. But few studies on CHF with rib have been carried out. Experimental and analytical studies with rib-roughened test section, in 10:1 ratio of pitch to height, are being carried out in order to clarify the CHF in rib-roughened channel. This paper presents the review of previous researches on heat transfer in channel with rib roughness, overview of the test facility and the preliminary experimental and analytical results. As a result, wall friction factors were about 3 times as large as that of smooth channel, and heat transfer coefficients are about 2 times as large as that of smooth channel. The obtained CHF was as same as previous mechanistic model by Sudo. (author)

  7. Experimental Investigation on the Effects of the Fixed Boundaries in Channelized Dry Granular Flows

    Science.gov (United States)

    Sarno, L.; Carleo, L.; Papa, M. N.; Villani, P.

    2018-01-01

    The dynamics of granular mixtures, involved in several geophysical phenomena like rock avalanches and debris flows, is far from being completely understood. Several features of their motion, such as non-local and boundary effects, still represent open problems. An extensive experimental study on free-surface channelized granular flows is here presented, where the effects of the fixed boundaries are systematically investigated. The entire experimental data set is obtained by using a homogenous acetal-polymeric granular material and three different basal surfaces, allowing different kinematic boundary conditions. Velocity profiles at both the sidewall and the free surface are obtained by using high-speed cameras and the open-source particle image velocimetry code, PIVlab. Significantly, different sidewall velocity profiles are observed by varying the basal roughness and the flow depth. Owing to sidewall friction and non-local effects, such profiles exhibit a clear rheological stratification for high enough flow depths and they can be well described by recurring to composite functions, variously formed of linear, Bagnold and exponential scalings. Moreover, it has been discovered that transitions from one velocity profile to another are also possible on the same basal surface by merely varying the flow depth. This shape transition is due partly to the sidewall resistances, the basal boundary condition and, in particular, the occurrence/inhibition of basal grain rolling. In most of the experiments, the normal-to-bed velocity profiles and the velocity measurements at the free surface strongly suggest the occurrence of a secondary circulating flow, made possible by a chiefly collisional regime beneath the free surface.

  8. Experimental investigation on flow and scour characteristics around tandem piers in sandy channel with downward seepage

    Science.gov (United States)

    Chavan, Rutuja; Kumar, Bimlesh

    2017-09-01

    Experimental investigations have been carried out to study morpho-hydraulic characteristics such as scour geometry and turbulent flow properties around tandem piers in alluvial channels. Experiments were carried out in a plane sand bed with two circular piers of same diameter arranged in tandem manner under no seepage, 10% seepage and 20% seepage conditions. Downward seepage minimizes the scour depth around piers and restrains the development of scour depth with time. Strong reversal flow is found near the bed at upstream of piers and near free surface at downstream of piers where velocity and Reynolds shear stress are found to be negative which reduce in magnitude with downward seepage. The flow is more critical within the gap between two piers where velocity is lesser near free surface and gradually increasing towards bed. Quadrant analysis shows that contribution of each event to the total Reynolds shear stress increases with downward seepage. Sedimentation effect prevails within the scour hole whereas outside the scour hole erosive forces become more dominant. Reduced reversal flow at upstream of pier because of downward seepage results in decreasing higher order moments and turbulent kinetic energy. At downstream of piers, secondary currents are dominant due to wake vortices. Strouhal number decreases in case of seepage runs than no seepage condition.

  9. An experimental study of heat transfer enhancement in an air channel with broken multi type V-baffles

    Science.gov (United States)

    Kumar, Anil; Kumar, Raj; Maithani, Rajesh; Chauhan, Ranchan; Kumar, Sushil; Nadda, Rahul

    2017-12-01

    This work aims at studying the effect of broken multi type V-baffles on heat transfer, pressure drop, and thermal hydraulic performance characteristics in an air channel is experimentally investigated. The air channel had aspect ratio of 10.0 and the Reynolds number (Re) based upon the mass flow rate of air ( m a ) at entrance of the channel varied from 3000 to 8000. The discrete baffle distance ( D d / L v ) varied from 0.27 to 0.77, relative baffle gap width ( G w / H B ) varied from 0.50 to 1.5, relative baffle height ( H B / H D ) varied from 0.25 to 1.0, relative baffle pitch ( P B / H B ) varied from 8.0 to 12, relative baffle width ( W D / H D ) varied from 1.0 to 6.0, and flow attack angle ( α a )varied from 30° to 70°. It has been found that performance of broken multi type V-baffles air channel is better than the performance of smooth surface air channel for the range of geometrical parameters investigated. Experimental results observed that maximum enhancement in overall thermal performance have been found at Dd/Lv value of 0.67, Gw/HB value of 1.0, HB/HD value of 0.50, P B / H B value of 10, and αavalue of 60°.

  10. An experimental investigation of the cooling channel geometry effects on the internal forced convection of liquid methane

    Science.gov (United States)

    Trejo, Adrian

    Rocket engine fuel alternatives have been an area of discussion for use in high performance engines and deep spaceflight missions. In particular, LCH4 has showed promise as an alternative option in regeneratively cooled rocket engines due to its non-toxic nature, similar storage temperatures to liquid oxygen, and its potential as an in situ resource. However, data pertaining to the heat transfer characteristics of LCH4 is limited. For this reason, a High Heat Transfer Test Facility (HHTTF) at the University of Texas at El Paso's (UTEP) Center for Space Exploration Technology and Research has been developed for the purpose of flowing LCH4 through several heated tube geometry designs subjected to a constant heat flux. In addition, a Methane Condensing Unit (MCU) is integrated to the system setup to supply LCH4 to the test facility. Through the use of temperature and pressure measurements, this experiment will serve not only to study the heat transfer characteristics of LCH4; it serves as a method of simulating the cooling channels of a regeneratively cooled rocket engine at a subscale level. The cross sections for the cooling channels investigated are a 1.8 mm x 1.8 mm square channel, 1.8 mm x 4.1 mm rectangular channel, 3.2 mm and 6.34 mm inside diameter channel, and a 1.8 mm x 14.2 mm high aspect ratio cooling channel (HARCC). The test facility is currently designed for test pressures between 1.03 MPa to 2.06 MPa and heat fluxes up to 5 MW/m2. Results show that at the given test pressures, the Reynolds number reaches up to 140,000 for smaller cooling channels (3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangle) while larger cooling channel geometries (6.35 mm diameter and HARCC) reached Reynolds number around 70,000. Nusselt numbers reached as high as 320 and 265 for a 3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangular channel respectively. For cooling channel geometries with 6.35 mm diameter and HARCC geometry, Nusselt numbers reached 136 (excluding an outlier

  11. Effect of flow field on open channel flow properties using numerical investigation and experimental comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, I. [Department of Mechanical Engineering, Torbat-e-jam branch, Islamic Azad University, Torbat-e-jam (Iran, Islamic Republic of); Mohammadiun, M. [Department of Mechanical Engineering, Shahrood branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)

    2012-07-01

    In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM) with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF) method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.

  12. Two-channel microfluidic CARS: experimental quantification of pure vibrational contrast in CARS images

    Science.gov (United States)

    Bergner, G.; Henkel, T.; Akimov, D.; Dietzek, B.; Schlücker, S.; Bartelt, H.; Popp, J.

    2011-07-01

    The combination of linear and nonlinear Raman microspectroscopy has been established to be a powerful tool for biomedical diagnostics. In this contribution we discuss our recent approaches towards CARS (coherent anti-Stokes Raman scattering) based quantification of analytes, which is generally complicated by the CARS-signal strength dependence on the square of the molecular concentration and on the interplay between a molecular-specific vibrational signal and a nonresonant contribution in the signal generation. Due to these complications the quantification of analytes presents a major challenge in CARS microscopy. Here we discuss two recently developed approaches, i.e. on the one hand a simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy, which allows for recording CARS images with 30 cm-1 excitation bandwidth for probing Raman bands between 500 and 900 cm-1 with minimal requirements for alignment. This experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broad-band light source and an acoustooptical programmable dispersive filter (AOPDF) as tunable wavelength filter. On the other hand, we discuss how the introduction of carbon-deuterium (C-D) bonds into drug compounds constitutes a non-invasive labeling approach that allows for higher intrinsic CARS contrast to be obtained. The quantitative detection of C-deuterated drugs by Raman microspectroscopy and CARS microscopy is examined. Concentration-dependent studies on drugs with aliphatic and aromatic C-D moieties were performed in a two-channel microfluidic chip, using the corresponding non-deuterated (C-H) isotopomers as an internal reference.

  13. Efficacy of Methylene Blue in an Experimental Model of Calcium Channel Blocker Induced Shock

    Science.gov (United States)

    Jang, David H.; Donovan, Sean; Nelson, Lewis S.; Bania, Theodore C.; Hoffman, Robert S.; Chu, Jason

    2014-01-01

    BACKGROUND Calcium channel blocker poisonings account for a substantial number of reported deaths from cardiovascular drugs. While supportive care is the mainstay of treatment, experimental therapies such as high dose insulin-euglycemia and lipid emulsion have been studied in animal models and used in humans. In the most severe cases even aggressive care is inadequate and deaths occur. In both experimental models and clinical cases of vasodilatory shock, methylene blue improves hemodynamic measures. Methylene blue acts as both a nitric oxide scavenger and inhibits guanylate cyclase that is responsible for the production of cGMP. Excessive cGMP production is associated with refractory vasodilatory shock in sepsis and anaphylaxis. The aim of this study was to determine the efficacy of methylene blue in an animal model of amlodipine-induced shock. METHODS Sprague-Dawley rats were anesthetized, ventilated and instrumented for continuous blood pressure and heart rate monitoring. The dose of amlodipine that produced death within 60 minutes was 17 mg/kg/hour (LD50). Rats were divided into 2 groups: amlodipine followed by methylene blue or amlodipine followed by normal saline (NS) with 15 rats in each group. Rats received methylene blue at 2 mg/kg over 5 mins or an equivalent amount of NS in three intervals from the start of the protocol: Minute 5, 30, and 60. The animals were observed for a total of 2 hours after the start of the protocol. Mortality risk and survival time were analyzed using Fisher’s exact test and Kaplan Meier survival analysis with the log rank test. RESULTS Overall, 1/15 (7%) rats in the saline-treated group survived to 120 minutes compared with 5/15 (33%) rats in the methylene blue-treated group (difference −26%, 95% CI –54%, 0.3%). The median survival time for the NS group was 42 min (95% CI, 28.1,55.9) and the methylene blue group was 109 min (95% CI, 93.9,124.1). Heart rate and MAP differences between groups were analyzed until 60 minutes

  14. Experimental demonstration of OFDM/OQAM transmission with DFT-based channel estimation for visible laser light communications

    Science.gov (United States)

    He, Jing; Shi, Jin; Deng, Rui; Chen, Lin

    2017-08-01

    Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.

  15. Experimental Research into the Two-Level Cylindrical Cyclone with a Different Number of Channels

    Directory of Open Access Journals (Sweden)

    Egidijus Baliukas

    2014-10-01

    Full Text Available The multichannel two-level cyclone has been designed for separating solid particles from airflow and built at the Laboratory of Environmental Protection Technologies of Vilnius Gediminas Technical University. The conducted research is aimed at determining air flow distribution at two levels and channels of the multichannel cyclone. The multifunctional meter Testo-400 and the dynamic Pitot tube have been used form easuring air flow rates in the channels. The obtained results show that the equal volume of air gets into two levels installed inside the cyclone, and rates are distributed equally in the channels of these levels. The maximum air flow rate is recorded in the first channel and occurs when half-rings are set in such positions so that 75% of air flow returns to the previous channel. The biggest aerodynamic resistance is 1660 Pa and has been recorded in the cyclone having eight channels under air flow distribution ratio 75/25. The highest air purification efficiency has been observed in the two-level six-channel cyclone under air flow distribution ratio 75/25. The effectiveness of separating granite particles is 92.1% and that of wood particles – 91.1 when the particles are up to 20 μm in diameter.

  16. Experimentation of Eigenvector Dynamics in a Multiple Input Multiple Output Channel in the 5GHz Band

    DEFF Research Database (Denmark)

    Brown, Tim; Eggers, Patrick Claus F.; Katz, Marcos

    2005-01-01

    Much research has been carried out on the production of both physical and non physical Multiple Input Multiple Output channel models with regard to increased channel capacity as well as analysis of eigenvalues through the use of singular value decomposition. Little attention has been paid...... to the analysis of vector dynamics in terms of how the state of eigenvectors will change as a mobile is moving through a changing physical environment. This is important in terms of being able to track the orthogonal eigenmodes at system level, while also relieving the burden of tracking of the full channel...

  17. Theoretical and experimental study of development of two-dimensional steady and unsteady wakes within curved channels

    Energy Technology Data Exchange (ETDEWEB)

    Schobeiri, M.T.; Pappu, K.; John, J. [Texas A and M Univ., College Station, TX (United States) Turbomachinery Performance Lab.

    1995-12-01

    Development of steady and periodic unsteady wake flows downstream of stationary and rotating cylindrical rods within a curved channel under zero longitudinal pressure gradient is theoretically and experimentally investigated. Wake quantities such as the mean velocity and turbulent fluctuations in longitudinal and lateral directions, as well as the turbulent shear stress, are measured. For the nondimensionalized velocity defect, affine profiles are observed throughout the flow regime. Based on these observations and using the transformed equations of motion and continuity, a theoretical frame work is established that generally describes the two-dimensional curvilinear wake flow. To confirm the theory, development of steady and periodic unsteady wakes in the above curved channel are experimentally investigated. The detailed comparison between the measurement and the theory indicates that the complex steady and unsteady wake flows are very well predicted.

  18. Mitochondria-Rich Cells as Experimental Model in Studies of Epithelial Chloride Channels

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Amstrup, Jan; Møbjerg, Nadja

    2002-01-01

    in detail. (i) One type of channel is gated by voltage and external chloride concentration. This intriguing type of regulation leads to opening of channels only if [Cl-]o is in the millimolar range and if the electrical potential is of a polarity that secures an inwardly directed net flux of this ion......The mitochondria-rich (mr) cell of amphibian skin epithelium is differentiated as a highly specialised pathway for passive transepithelial transport of chloride. The apical membrane of mr cells expresses several types of Cl- channels, of which the function of only two types has been studied......-actin localised in the submembrane domain in the neck region of the flask-shaped mr cell. (ii) The other identified Cl- pathway of mr cells is mediated by small-conductance apical CFTR chloride channels as concluded from its activation via ß-adrenergic receptors, ion selectivity, genistein stimulation...

  19. High energy channelling and the experimental search for the internal clock predicted by Louis de Broglie

    Energy Technology Data Exchange (ETDEWEB)

    Remillieux, J.; Artru, X.; Bajard, M.; Chehab, R.; Chevallier, M. [IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, UMR 5822, Villeurbanne (France); Curceanu, C. [LNF, INFN, Laboratori Nationali di Frascati (Italy); Dabagov, S. [LNF, INFN, Laboratori Nationali di Frascati (Italy); RAS P.N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Dauvergne, D.; Guérin, H.; Gouanère, M.; Kirsch, R.; Krimmer, J.; Poizat, J.-C.; Ray, C. [IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, UMR 5822, Villeurbanne (France); Takabayashi, Y. [SAGA Light Source, Tosu, Saga (Japan); Testa, E. [IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, UMR 5822, Villeurbanne (France)

    2015-07-15

    This paper gives a short review of the past and recent activities of the Atomic Collisions in Solids Lyon-group, in collaboration with other groups, in the field of high energy channelling. The ion-channelling programme was performed at GANIL-Caen and at GSI-Darmstadt. The electron-channelling programme started at ALS-Saclay for relativistic incident energies and was then extended to SPS-CERN for ultra-relativistic energies. The last part of this paper presents the electron-channelling experiments performed originally at ALS-Saclay, then at BTF-Frascati and more recently at LS-Saga, in order to observe the electron “internal clock” predicted in 1924 by L. de Broglie.

  20. Fast- or slow-inactivated state preference of Na+ channel inhibitors: a simulation and experimental study.

    Directory of Open Access Journals (Sweden)

    Robert Karoly

    2010-06-01

    Full Text Available Sodium channels are one of the most intensively studied drug targets. Sodium channel inhibitors (e.g., local anesthetics, anticonvulsants, antiarrhythmics and analgesics exert their effect by stabilizing an inactivated conformation of the channels. Besides the fast-inactivated conformation, sodium channels have several distinct slow-inactivated conformational states. Stabilization of a slow-inactivated state has been proposed to be advantageous for certain therapeutic applications. Special voltage protocols are used to evoke slow inactivation of sodium channels. It is assumed that efficacy of a drug in these protocols indicates slow-inactivated state preference. We tested this assumption in simulations using four prototypical drug inhibitory mechanisms (fast or slow-inactivated state preference, with either fast or slow binding kinetics and a kinetic model for sodium channels. Unexpectedly, we found that efficacy in these protocols (e.g., a shift of the "steady-state slow inactivation curve", was not a reliable indicator of slow-inactivated state preference. Slowly associating fast-inactivated state-preferring drugs were indistinguishable from slow-inactivated state-preferring drugs. On the other hand, fast- and slow-inactivated state-preferring drugs tended to preferentially affect onset and recovery, respectively. The robustness of these observations was verified: i by performing a Monte Carlo study on the effects of randomly modifying model parameters, ii by testing the same drugs in a fundamentally different model and iii by an analysis of the effect of systematically changing drug-specific parameters. In patch clamp electrophysiology experiments we tested five sodium channel inhibitor drugs on native sodium channels of cultured hippocampal neurons. For lidocaine, phenytoin and carbamazepine our data indicate a preference for the fast-inactivated state, while the results for fluoxetine and desipramine are inconclusive. We suggest that

  1. Experimental and Computational Studies of Temperature Gradient Driven Molecular Transport in Gas Flows through Nano/Micro-Scale Channels

    OpenAIRE

    Han, Yen-Lin; Alexeenko, Alina A; Young, Marcus; Muntz, Eric Phillip

    2007-01-01

    Studies at the University of Southern California have shown that an unconventional solid-state device, the Knudsen Compressor, can be operated as a micro-scale pump or compressor. The critical components of Knudsen Compressors are gas transport membranes, which can be formed from porous materials or densely packed parallel arrays of channels. An applied temperature gradient across a transport membrane creates a thermal creep pumping action. Experimental and computational techniques that have ...

  2. Experimental and numerical investigation of the flow field in the gradual transition of rectangular to trapezoidal open channels

    Directory of Open Access Journals (Sweden)

    Adel Asnaashari

    2016-01-01

    Full Text Available Transitions are structures that can change geometry and flow velocity through varying the cross-sections of their channels. Under subcritical flow and steady flow conditions, it is necessary to reduce the flow velocity gradually due to increasing water pressure and adverse pressure gradients. Due to the separation of flow and subsequent eddy formation, a significant energy loss is incurred along the transition. This study presents the results of experimental investigations of the subcritical flow along the expansive transition of rectangular to trapezoidal channels. A numerical simulation was developed using a finite volume of fluid (VOF method with a Reynolds stress turbulence model. Water surface profiles and velocity distributions of flow through the transition were measured experimentally and compared with the numerical results. A good agreement between the experimental and numerical model results showed that the Reynolds model and VOF method are capable of simulating the hydraulic flow in open channel transitions. Also, the efficiency of the transition and coefficient of energy head loss were calculated. The results show that with an increasing upstream Froude number, the efficiency of the transition and coefficient of energy head loss decrease and increase, respectively. The results also show the ability of numerical simulation to simulate the flow separation zones and secondary current along the transition for different inlet discharges.

  3. An experimental investigation on liquid methane heat transfer enhancement through the use of longitudinal fins in cooling channels

    Science.gov (United States)

    Galvan, Manuel de Jesus

    In the past years, hydrocarbon fuels have been the focus of attention as the interest in developing reusable, high-performing liquid rocket engines has grown. Liquid methane (LCH4) has been of particular interest because of the cost, handling, and storage advantages that it presents when compared to currently used propellants. Deep space exploration requires thrusters that can operate reliably during long-duration missions. One of the challenges in the development of a reliable engine has been providing adequate combustion chamber cooling to prevent engine failure. Regenerative (regen) cooling has presented itself as an appealing option because it provides improved cooling and engine efficiency over other types of cooling, such as film or dump cooling. Due to limited availability of experimental sub-critical liquid methane cooling data for pressure-fed regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through smooth sub-scale cooling channels. In addition to investigating smooth channels, the cSETR has conducted experiments to investigate the effects of internal longitudinal fins on the heat transfer of methane. To conduct the experiments, the cSETR developed a conduction-based thermal concentrator known as the High Heat Flux Test Facility (HHFTF) in which the channels are heated. In this study, a smooth channel and three channels with longitudinal fins all with cross sectional geometries of 3.2 mm x 3.2 mm were tested. The Nusselt numbers ranged from 70 and 510, and Reynolds numbers were between 50,000 and 128,000. Sub-cooled film-boiling phenomena were discovered in the data pertaining to the smooth and two finned channels. Sub-cooled film-boiling was not

  4. Experimental and numerical investigations on the direct contact condensation phenomenon in horizontal flow channels and its implications in nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Sabin Cristian [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Laurinavicius, Darius [Lithuanian Energy Institute, Kaunas (Lithuania)

    2016-11-15

    The complex direct contact condensation phenomenon is investigated in horizontal flow channels both experimentally and numerically with special emphasis on its implications on safety assessment studies. Under certain conditions direct contact condensation can act as the driving force for the water hammer phenomenon with potentially local devastating results, thus posing a threat to the integrity of the affected NPP components. New experimental results of in-depth analysis of the direct contact condensation phenomena obtained in Kaunas at the Lithuanian Energy Institute will be presented. The German system code ATHLET employing for the calculation of the heat transfer coefficient a mechanistic model accounting for two different eddy length scales, combined with the interfacial area transport equation will be assessed against condensation induced water hammer experimental data from the integral thermal-hydraulic experimental facility PMK-2, located at the KFKI Atomic Energy Research Institute in Budapest Hungary.

  5. Efficacy of methylene blue in an experimental model of calcium channel blocker-induced shock.

    Science.gov (United States)

    Jang, David H; Donovan, Sean; Nelson, Lewis S; Bania, Theodore C; Hoffman, Robert S; Chu, Jason

    2015-04-01

    Calcium channel blocker poisonings account for a substantial number of reported deaths from cardiovascular drugs. Although supportive care is the mainstay of treatment, experimental therapies such as high-dose insulin-euglycemia and lipid emulsion have been studied in animal models and used in humans. In the most severe cases, even aggressive care is inadequate and deaths occur. In both experimental models and clinical cases of vasodilatory shock, methylene blue improves hemodynamic measures. It acts as a nitric oxide scavenger and inhibits guanylate cyclase that is responsible for the production of cyclic guanosine monophosphate (cGMP). Excessive cGMP production is associated with refractory vasodilatory shock in sepsis and anaphylaxis. The aim of this study is to determine the efficacy of methylene blue in an animal model of amlodipine-induced shock. Sprague-Dawley rats were anesthetized, ventilated, and instrumented for continuous blood pressure and pulse rate monitoring. The dose of amlodipine that produced death within 60 minutes was 17 mg/kg per hour (LD50). Rats were divided into 2 groups: amlodipine followed by methylene blue or amlodipine followed by normal saline solution, with 15 rats in each group. Rats received methylene blue at 2 mg/kg during 5 minutes or an equivalent amount of normal saline solution in 3 intervals from the start of the protocol: minutes 5, 30, and 60. The animals were observed for a total of 2 hours after the start of the protocol. Mortality risk and survival time were analyzed with Fisher's exact test and Kaplan-Meier survival analysis with the log rank test. Overall, 1 of 15 rats (7%) in the saline solution-treated group survived to 120 minutes compared with 5 of 15 (33%) in the methylene blue-treated group (difference -26%; 95% confidence interval [CI] -54% to 0.3%). The median survival time for the normal saline solution group was 42 minutes (95% CI 28.1 to 55.9 minutes); for the methylene blue group, 109 minutes (95% CI 93.9 to

  6. Experimental Study on Improvement of Performance by Wave Form Cathode Channels in a PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Sun-Joon Byun

    2018-02-01

    Full Text Available We propose a wave-like design on the surface of cathode channels (wave form cathode channels to improve oxidant delivery to gas diffusion layers (GDLs. We performed experiments using proton-exchange membrane fuel cells (PEMFCs combined with wave form surface design on cathodes. We varied the factors of the distance between wave-bumps (the adhesive distance, AD, and the size of the wave-bumps (the expansion ratio, ER. The ADs are three, four, and five times the size of the half-circle bump’s radius, and the ERs are two-thirds, one-half, and one-third of the channel’s height. We evaluated the performances of the fuel cells, and compared the current-voltage (I-V relations. For comparison, we prepared PEMFCs with conventional flat-surfaced oxygen channels. Our aim in this work is to identify fuel cell operation by modifying the surface design of channels, and ultimately to find the optimal design of cathode channels that will maximize fuel cell performance.

  7. Experimental Investigation and Flow Process Computer Simulation of the Single Mini Channel Condenser for Vapor Compression Refrigeration System

    Science.gov (United States)

    Pabilona, L. L.; Villanueva, E. P.

    2015-09-01

    This study is a computer simulation of the temperature profiles and experimental investigation of three 100 mm x 50 mm x 18 mm single mini channel condensers with hydraulic diameters of 3 mm, 2 mm, and 1mm. The mini channels which were made of copper were designed, fabricated and tested. Each unit was connected in a vapor compression cycle with R-134a as the refrigerant. The average refrigerant mass flow rates were varied from 1.296 - 69.471 g/s, and the average inlet and outlet condenser pressure variations were 102.5 - 121.8 kPa and 101.74 -121.23 kPa, respectively. Each condenser was placed inside a mini wind tunnel system where forced draft air was introduced to initiate convective heat transfer. Each condenser was tested and data were gathered every five minute interval for one hour using a Lab View Software. Computer simulations on the flow process were conducted using Solid Works software. The experimental results presented the inlet and outlet condenser pressures, and pressure drops. The experimental heat transfer coefficients were calculated at different mass fluxes during condensation. The values ranged from 3900 to 5200 W/m2-°K for the 3 mm, 2600 to 9000 W/m2-°K for the 2 mm, and 13 to 98 W/m2-°K for the 1 mm. The heat transfer coefficients calculated from experiments were then compared with the computed values using the correlations developed by Dittus-Boelter and Lee-Son. The results showed increasing deviation as the diameter decreased. The discrepancies could be attributed to the appropriateness of the Dittus-Boelter and Lee-Son correlations in small diameter channels, complexities in the flow process which involved two phase flow heat transfer in very small tubes, and the difficulties in attaining very accurate measurements in small channels.

  8. Analytic and Experimental Investigation of Beamforming Algorithms for MM-Wave Channel Characterization

    DEFF Research Database (Denmark)

    Zhang, Fengchun; Fan, Wei; Pedersen, Gert F.

    2017-01-01

    Beamforming algorithms are expected to be extensively utilized in mm-wave systems to improve system performance. In this paper, we discuss three different beamforming algorithms based on uniform circular arrays (UCAs), i.e. classicial beamfomer, coventional frequency invariant beamformer. Numeric...... simulation results and channel sounding measurement results at mm-wave are provided to demonstrate and compare the performance of the different beamformers in channel parameter estimation applications.......Beamforming algorithms are expected to be extensively utilized in mm-wave systems to improve system performance. In this paper, we discuss three different beamforming algorithms based on uniform circular arrays (UCAs), i.e. classicial beamfomer, coventional frequency invariant beamformer. Numerical...

  9. Experimental demonstration of robust entanglement distribution over reciprocal noisy channels assisted by a counter-propagating classical reference light.

    Science.gov (United States)

    Ikuta, Rikizo; Nozaki, Shota; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2017-07-06

    Embedding a quantum state in a decoherence-free subspace (DFS) formed by multiple photons is one of the promising methods for robust entanglement distribution of photonic states over collective noisy channels. In practice, however, such a scheme suffers from a low efficiency proportional to transmittance of the channel to the power of the number of photons forming the DFS. The use of a counter-propagating coherent pulse can improve the efficiency to scale linearly in the channel transmission, but it achieves only protection against phase noises. Recently, it was theoretically proposed [Phys. Rev. A 87, 052325(2013)] that the protection against bit-flip noises can also be achieved if the channel has a reciprocal property. Here we experimentally demonstrate the proposed scheme to distribute polarization-entangled photon pairs against a general collective noise including the bit flip noise and the phase noise. We observed an efficient sharing rate scaling while keeping a high quality of the distributed entangled state. Furthermore, we show that the method is applicable not only to the entanglement distribution but also to the transmission of arbitrary polarization states of a single photon.

  10. Experimental and Computational Studies of Turbulent Mass Transfer in a Mixing Channel

    DEFF Research Database (Denmark)

    Hjertager, Lene Kristin; Hjertager, Bjørn H.; Solberg, Tron

    2008-01-01

    Experiments are carried out for passive mixing in order to obtain local mean and turbulent velocities and concentrations. The mixing takes place in a square channel with two inlets separated by a block. A combined PIV/PLIF technique is used to obtain instantaneous velocity and concentration field...

  11. Lobate geometries as a function of upstream channel hydraulics: experimental results from supercritical alluvial fans

    Science.gov (United States)

    Hamilton, P.; Strom, K. B.; Hoyal, D. C.

    2012-12-01

    Channel and lobe mechanics represent the morphodynamic signature of distributive systems over intermediate time and length scales (mesoscales). Whereas the microscale (e.g., bedforms) is governed by turbulent interaction with the sediment bed and the macroscale (e.g., basin filling) is influenced by shifts in tectonic activity and climate, mesoscale mechanics are governed by non-linear morphodynamic feedbacks between the mobile sediment bed and fluid flow. As an interrelated feedback mechanism, variations in bed morphology drive changes in the fluid mechanics that are propagated solely downstream in the supercritical case. Here, a series of supercritical fan experiments were run to better understand the interaction and relationship between distributive channels and their terminal lobes. Lobe geometries are considered in terms of the maximum length, width, and thickness along with the variation of width and thickness as a function of distance down lobe. Channel hydraulics are measured using the combination of Large Scale Particle Image Velocimetry (LSPIV) for velocity and an apparent dye-intensity method for depth. Planform lobe dimensions are measured from overhead images and thicknesses are measured from a terrestrial LiDAR unit. From the collected data, lobe geometries are correlated to the upstream distributive channel hydraulics to better understand the autogenic morphodynamic feedback cycle.; lobe dimensions measured from autogenic cylces

  12. Experimental evaluation of the effect of winter feeding on channel catfish growout pond plankton

    Science.gov (United States)

    Ten, 0.25 acre ponds at the UAPB Aquaculture Station were sampled weekly from Dec. 7-Feb. 22 (n=90) for phytoplankton and zooplankton. Five of the ponds were randomly assigned to each of two treatments: no feeding and feeding based on recommended rates. Channel catfish sizes and numbers approximated...

  13. Fundamental and experimental aspects of diffraction for characterizing dislocations by electron channeling contrast imaging in scanning electron microscope.

    Science.gov (United States)

    Kriaa, H; Guitton, A; Maloufi, N

    2017-08-29

    Nowadays Field Emission Gun-Scanning Electron Microscopes provide detailed crystallographic information with high spatial and angular resolutions, and allow direct observation of crystalline defects, such as dislocations, through an attractive technique called Electron Channeling Contrast Imaging (ECCI). Dislocations play a crucial role in the properties of materials and ECCI has naturally emerged as an adapted tool for characterizing defects in bulk specimen. Nevertheless, fine control of the channeling conditions is absolutely required to get strong dislocation contrast for achieving comprehensive analysis. In this work, experiment-assisted fundamental aspects of the origin of dislocation contrast are studied. Experimentally, the potential of ECCI is explored in several dislocation configurations in Interstitial-Free steel (Fe - 1% Si) used as a model material. Full interpretations of dislocation contrast in (g, -g) and its evolution along the Kikuchi band are shown. Furthermore, a dislocation dipole is observed and fully characterized for the first time in an SEM.

  14. Numerical simulation and experimental validation of liquid water behaviors in a proton exchange membrane fuel cell cathode with serpentine channels

    Science.gov (United States)

    Le, Anh Dinh; Zhou, Biao; Shiu, Huan-Ruei; Lee, Chun-I.; Chang, Wen-Chen

    The volume-of-fluid (VOF) approach is one of the most promising methods of investigating water transport and water management in proton exchange membrane fuel cells (PEMFCs). A general PEMFC model combined with the VOF method has been developed by our group to simulate the mechanisms of fluid flows, mass and heat transport, and electrochemical reactions in a PEMFC, and it is necessary to validate the numerical model through experiments. In this paper, both the numerical model and an experimental visualization that can simulate the motion and transport behavior of liquid water in a cathode flow channel of a PEMFC are presented. Direct optical visualization is used in this work to capture the droplets' motions with high spatial and temporal resolutions. The numerical model and experimental setup have similar geometric dimensions and operating conditions, and the results of the experiment are in good agreement with numerical simulations. Moreover, the physics of droplet and liquid water behavior based on certain material and liquid properties and the operating conditions in the fuel cell channel are also addressed. This analysis also offers some basic understanding of the mechanism of liquid droplet dynamics in numerical and experimental studies of micro-fluidics.

  15. Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers

    Science.gov (United States)

    Nimmagadda, Rajesh; Venkatasubbaiah, K.

    2017-06-01

    The present study investigates the laminar forced convection flow of single walled carbon nanotube (SWCNT), gold (Au), aluminum oxide (Al2O3), silver (Ag) and hybrid (Al2O3 + Ag) nanofluids (HyNF) in a wide rectangular micro-channel at low Reynolds numbers. The heat transfer characteristics of de-ionized (DI) water and SWCNT nanofluid with different nanoparticle volume concentrations have been experimental studied. Furthermore, numerical study has also been carried out to investigate the flow and heat transfer characteristics of DI water, SWCNT, Au, Al2O3, Ag and HyNF at different Reynolds numbers with different nanoparticle volume concentrations and particle diameters. The numerical study consider the effects of both inertial and viscous forces by solving the full Navier-Stokes equations at low Reynolds numbers. A two dimensional conjugate heat transfer multiphase mixture model has been developed and used for numerical study. A significant enhancement in the average Nusselt number is observed both experimentally and numerically for nanofluids. The study presents four optimized combinations of nanofluids (1 vol% SWCNT and 1 vol% Au with d_p = 50 nm), (2 vol% SWCNT and 3 vol% Au with d_p = 70 nm), (3 vol% Al2O3 and 2 vol% Au with d_p = 70 nm) as well as (3 vol% HyNF (2.4% Al2O3 + 0.6% Ag) and 3 vol% Au with d_p = 50 nm) that provides a better switching option in choosing efficient working fluid with minimum cost based on cooling requirement. The conduction phenomenon of the solid region at bottom of the micro-channel is considered in the present investigation. This phenomenon shows that the interface temperature between solid and fluid region increases along the length of the channel. The present results has been validated with the experimental and numerical results available in the literature.

  16. Experimental investigation of the effect of curvature on heat transfer in a curved rectangular channel of high aspect ratio

    Science.gov (United States)

    Hawk, John R., III

    1987-03-01

    An experimental investigation was conducted to study convective heat transfer in straight and curved rectangular channels of high aspect ratio that approximate plates of infinite extent. Experiments were performed at steady state in the turbulent flow regime with one wall held at a constant heat flux and the opposite wall essentially adiabatic. The effect of curvature induced secondary flow on heat transfer on the concave and convex walls was observed by comparing Nusselt numbers for four different configurations at several different Reynolds numbers. Significant heat transfer enhancement was observed on the concave wall. Correlations for Nusselt number as a function of Reynolds number were calculated for the cases studied.

  17. Experimental Investigation of Subject-Specific On-Body Radio Propagation Channels for Body-Centric Wireless Communications

    Directory of Open Access Journals (Sweden)

    Mohammad Monirujjaman Khan

    2014-01-01

    Full Text Available In this paper, subject-specific narrowband (2.45 GHz and ultra-wideband (3–10.6 GHz on-body radio propagation studies in wireless body area networks (WBANs were performed by characterizing the path loss for eight different human subjects of different shapes and sizes. The body shapes and sizes of the test subjects used in this study are characterised as thin, medium build, fatty, shorter, average height and taller. Experimental investigation was made in an indoor environment using a pair of printed monopoles (for the narrowband case and a pair of tapered slot antennas (for the ultra-wideband (UWB case. Results demonstrated that, due to the different sizes, heights and shapes of the test subjects, the path loss exponent value varies up to maximum of 0.85 for the narrowband on-body case, whereas a maximum variation of the path loss exponent value of 1.15 is noticed for the UWB case. In addition, the subject-specific behaviour of the on-body radio propagation channels was compared between narrowband and UWB systems, and it was deduced that the on-body radio channels are subject-specific for both narrowband and UWB system cases, when the same antennas (same characteristics are used. The effect of the human body shape and size variations on the eight different on-body radio channels is also studied for both the narrowband and UWB cases.

  18. An experimental investigation of the dynamics of submarine leveed channel initiation as sediment-laden density currents experience sudden unconfinement

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Joel C [Los Alamos National Laboratory; Hilley, George E [STANFORD UNIV; Fildani, Andrea [CHEVRON ETC

    2009-01-01

    Leveed submarine channels play a critical role in the transfer of sediment from the upper continental slopes to interslope basins and ultimately deepwater settings. Despite a reasonable understanding of how these channels grow once established, how such channels initiate on previously unchannelized portions of the seafloor remains poorly understood. We conducted a series of experiments that elucidate the influence of excess density relative to flow velocity on the dynamics of, and depositional morphologies arising from, density currents undergoing sudden unconfinement across a sloped bed. Experimental currents transported only suspended sediment across a non-erodible substrate. Under flow conditions ranging from supercritical to subcritical (bulk Richardson numbers of 0.02 to 1.2) our experiments failed to produce deposits resembling or exhibiting the potential to evolve into self-formed leveed channels. In the absence of excess density, a submerged sediment-laden flow produced sharp crested lateral deposits bounding the margins of the flow for approximately a distance of two outlet widths down basin. These lateral deposits terminated in a centerline deposit that greatly exceeded marginal deposits in thickness. As excess density increased relative to the outlet velocity, the rate of lateral spreading of the flow increased relative to the downstream propagation of the density current, transitioning from a narrow flow aligned with the channel outlet to a broad radially expanding flow. Coincident with these changes in flow dynamics, the bounding lateral deposits extended for shorter distances, had lower, more poorly defined crests that were increasingly wider in separation than the initial outlet, and progressively became more oblong rather than linear. Based on our results, we conclude that leveed channels cannot initiate from sediment-laden density currents under strictly depositional conditions. Partial confinement of these currents appears to be necessary to

  19. Encoding many channels on the same frequency through radio vorticity: first experimental test

    National Research Council Canada - National Science Library

    Tamburini, Fabrizio; Mari, Elettra; Sponselli, Anna; Thide, Bo; Bianchini, Antonio; Romanato, Filippo

    2012-01-01

    We have shown experimentally, in a real-world setting, that it is possible to use two beams of incoherent radio waves, transmitted on the same frequency but encoded in two different orbital angular...

  20. Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C.; Kang, E. [Dept. of Mechanical Engineering, Johns Hopkins Univ., Baltimore, MD (United States)

    2001-01-01

    An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien-Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. (orig.)

  1. Characterization of Histopathological and Ultrastructural Changes in Channel Catfish Experimentally Infected with Virulent Aeromonas hydrophila

    Directory of Open Access Journals (Sweden)

    Hossam Abdelhamed

    2017-08-01

    Full Text Available A highly virulent clonal population of Aeromonas hydrophila (vAh has been the cause of recent motile Aeromonas septicemia epizootic in channel catfish (Ictalurus punctatus farms in the Southeastern United States. The pathology of the disease caused by vAh has not been studied well yet. Thus, our aim was to determine histopathological and ultrastructural changes in channel catfish following vAh challenge. To accomplish this, catfish fingerlings were challenged with vAh (strain ML09-119 by bath. Six fish per each time point were collected at 1, 3, 5, 6, 24, and 48 h for light microscopy, and six fish were collected at 48 h for transmission electron microscopy (TEM. The first pathological lesions were detected in the spleen and stomach at 1 h post-challenge (HPC while intestine, gills, kidney, and liver lesions were observed at 24 and 48 HPC. Histopathological examination revealed degenerative changes, necrosis, extensive edema, and inflammation in internal organs. The TEM showed severe tissue destruction with multiple bacterial cells secreting outer membrane vesicles, especially in spleen and gills and far number in the stomach. Degenerated bacterial cells were observed in the intestinal lumen and the phagosomes of phagocytic kidney cells. We identified, for the first time, degranulate eosinophilic granular cells, and dendritic cells like (DC-like cells in the necrotic intestinal epithelium. These findings suggest that vAh rapidly proliferated and spread through the catfish organs following bath challenge.

  2. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  3. Sensing fluid pressure during plucking events in a natural bedrock channel and experimental flume

    Science.gov (United States)

    Wilkinson, C.; Harbor, D. J.; Keel, D.; Levy, S.; Kuehner, J. P.

    2016-12-01

    River channel erosion by plucking is believed to be the dominant erosional process in channels with fractured or jointed bedrock. However, despite its significance as an erosional mechanism, plucking is poorly studied in both laboratory and natural channels. In previous flume studies, model bedrock was plucked by fluid forces alone in nonuniform flow near jumps and waves even where blocks do not protrude into the flow. Here we develop sensor systems to test the hypothesis that bed fluid pressure gradients lift "pluckable" bedrock blocks in a natural field setting and a hydraulic flume. The field setting closely mimics the previous flume setup; the instrumented block is downstream of a roughly 1m step and exhibits no protrusion into the flow. The presence of the step promotes nonuniform flow which changes pressure in the bedrock crack network; slabs of bedrock that have slid downstream and sediment that has been pushed upstream 3-4 m under the bed and in the cracks suggest the influence of pressure differences throughout the crack network and below the bed. In this initial deployment, we evaluate a sensor that monitors movement and simultaneous pressure above and below the block. Sensors are emplaced in a 26kg, 45-cm-long, 20-cm-wide block broken from a 4.5-m-long, 11-cm-thick sandstone bed with a dense network of cracks nearly parallel to flow direction and include a tri-axial accelerometer/gyroscope and two fluid pressure sensors. The electronics are housed in a custom-designed 3D-printed ABS waterproof capsule that is mounted in a vertical hole through the rock. A concurrent flume study develops the sensors necessary to investigate the longitudinal pressure difference below a step using multiple analog sensors (0-1 psi gauge pressure) mounted flush to a false floor under the center of a 30x14-cm test zone. The 15-mm-wide sensors are aligned along the flow centerline and are placed under 25 1-cm-thick "pluckable" bedrock blocks constructed with a proprietary

  4. Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2016-09-01

    Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.

  5. Convective fluid flows in a horizontal channel with evaporation: analytical and experimental investigations

    Science.gov (United States)

    Lyulin, Y. V.; Rezanova, E. V.

    2017-11-01

    Heat- and mass transfer processes in a two-layer system of the liquid and gas are studied with respect to evaporation at interface. The stationary convective flows of two immiscible viscous incompressible fluids filling an infinite channel and being under action of the transverse gravitation field are studied analytically. Mathematical modeling of the flows is carried out with the help of the Navier-Stokes equations in Boussinesq approximation. The Dufour and Soret effects are taken into consideration in the gas-vapor phase. In the two-dimensional case the exact solutions of special type are constructed under condition of a given specific gas flow rate. Comparison of the analytical results with results of the physical experiments with the “liquid-gas” system like “ethanol-air” are presented.

  6. Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers

    NARCIS (Netherlands)

    Li, F.; Meindersma, G.W.; de Haan, A.B.; Reith, T.

    2004-01-01

    The objective of the present paper is to validate experimentally the mass transfer simulations presented in a previous paper by the same authors [J. Membr. Sci. 208 (2002) 289]. In the present study, mass transfer coefficients were obtained by the limiting current method. The results from CFD

  7. Progress in on-going experimental and computational fluid dynamic investigations within a CANDU fuel channel

    Energy Technology Data Exchange (ETDEWEB)

    Piro, M.H.A., E-mail: markus.piro@cnl.ca [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Station 88, Chalk River, ON, Canada 37831-6063 (Canada); Wassermann, F., E-mail: wassermann@csi.tu-darmstadt.de [Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt (Germany); Grundmann, S. [Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt (Germany); Leitch, B.W. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Station 88, Chalk River, ON, Canada 37831-6063 (Canada); Tropea, C. [Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt (Germany)

    2016-04-01

    The present work investigates the velocity field within a simplified CANDU fuel bundle with Computational Fluid Dynamic (CFD) simulations and Magnetic Resonance Velocimetry (MRV). MRV is a relatively new experimental method that is not prone to many limitations inherent to conventional fluid flow measurement techniques. Initial results of a simplified non-deformed bundle are presented as a proof-of-concept study, while simultaneously introducing the MRV technique to the nuclear thermal–hydraulics community. The CFD predictions are generally in good agreement with experimental results, both of which reveal complex turbulent behaviour, including rotation, swirl and vortex shedding. This work presents progress in a greater effort to understand the fluid behaviour through a deformed fuel bundle in the context of safety.

  8. Experimental study on fire smoke control using water mist curtain in channel.

    Science.gov (United States)

    Wang, Zhigang; Wang, Xishi; Huang, Yanqing; Tao, Changfa; Zhang, Heping

    2018-01-15

    The hazards of the spread of fire smoke in a channel have been recognized. This paper relates to the potential use of a water mist curtain (WMC) for preventing the spread of fire smoke, focusing particularly on smoke control at the early stage of a fire, with the aim of reducing the harm of fire smoke and allowing time for people to escape. Fatal factors for occupant evacuation in a fire, such as carbon monoxide concentration, smoke temperature, and visibility, were measured in the section controlled by the WMC. The results indicate that the WMC can be effective in preventing fire smoke from spreading at the early stage, and may provide a useful reference for developing a novel method of smoke control. Furthermore, the effects of nozzles with different spray characteristics were investigated and an optimal working pressure was suggested. In addition, a mathematical model was simplified and used to analyze the interaction between the fire-induced smoke layer and WMC spray. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Experimental investigation of internal structure of open-channel flow with intense transport of sediment

    Directory of Open Access Journals (Sweden)

    Matoušek Václav

    2015-12-01

    Full Text Available Gravity-driven open-channel flows carrying coarse sediment over an erodible granular deposit are studied. Results of laboratory experiments with artificial sediments in a rectangular tilting flume are described and analyzed. Besides integral quantities such as flow rate of mixture, transport concentration of sediment and hydraulic gradient, the experiments include measurements of the one-dimensional velocity distribution across the flow. A vertical profile of the longitudinal component of local velocity is measured across the vertical axis of symmetry of a flume cross section using three independent measuring methods. Due to strong flow stratification, the velocity profile covers regions of very different local concentrations of sediment from virtually zero concentration to the maximum concentration of bed packing. The layered character of the flow results in a velocity distribution which tends to be different in the transport layer above the bed and in the sediment-free region between the top of the transport layer and the water surface. Velocity profiles and integral flow quantities are analyzed with the aim of evaluating the layered structure of the flow and identifying interfaces in the flow with a developed transport layer above the upper plane bed.

  10. Experimental Study on the Effect of Initial Temperature on CHF in a Vertical Annulus Narrow Channel with Bilateral Heated

    Directory of Open Access Journals (Sweden)

    M. Juarsa

    2011-08-01

    Full Text Available Study on understanding of the complexities of boiling in the narrow channel which was occured in a severe accident on nuclear power plant has been carried out in experimentally using simulation apparatus in order to achieve the safety management capability. Critical Heat Flux (CHF is one important parameter to control heat during transient accident. The methodology of research is an experiment using experiment apparatus called HeaTiNG-01 test section with modifications in the outside pipe using stainless steel material as the reactor vessel wall simulation. Experiments were conducted by heating the heated rod as a simulation of debris until the desired initial temperature by bilateral heated. Then water with a saturation temperature in atmospheric was poured gravitationally into the narrow channel. Data acquisition system recorded temperature changes in transient during the cooling process. The transient temperature profile in double heating surface and rewetting point (rewet fronts was characterized. Experiment was conducted at three initial temperature variations i.e. 650oC, 750oC and 850oC and using channel width 1 mm. Experiment data was used to calculate heat flux then to fitting CHF form boiling curve. The results showed that CHF in outer pipe is higher than heated rod, these conditions explain that more heat is released through the outer pipe, so that the heat control can be done from outside the system to reduce the temperature quickly. The average value of CHF for each vertical position 100 mm and 400 mm at outer pipe are 380 kW/m2 and 733 kW/m2, and then at the heated rod are 250 kW/m2 and 497 kW/m2

  11. Safety of the novel atrial-selective K+-channel blocker AVE0118 in experimental heart failure.

    Science.gov (United States)

    Schneider, H-J; Husser, O; Rihm, M; Fredersdorf, S; Birner, C; Dhein, S; Muders, F; Jeron, A; Goegelein, H; Riegger, G A; Luchner, A

    2009-03-01

    Congestive heart failure (CHF) is often associated with atrial fibrillation. The safety of many antiarrhythmic drugs in CHF is limited by proarrhythmic effects. We aimed to assess the safety of a novel atrial-selective K(+)-channel blocker AVE0118 in CHF compared to a selective (dofetilide) and a non-selective IKr blocker (terfenadine). For the induction of CHF, rabbits (n = 12) underwent rapid right ventricular pacing (330-380 bpm for 30 days). AVE0118 (1 mg/kg) dofetilide (0.02 mg/kg) and terfenadine (2 mg/kg) were administered in baseline (BL) and CHF. A six-lead ECG was continuously recorded digitally for 30 min after each drug administration. At BL, dofetilide and terfenadine significantly prolonged QTc interval (218 +/- 30 ms vs 155 +/- 8 ms, p = 0.001 and 178 +/- 23 ms vs. 153 +/- 12 ms, p = 0.01, respectively) while QTc intervals were constant after administration of AVE0118 (p = n.s.). In CHF, dofetilide and terfenadine caused torsades de pointes and symptomatic bradycardia, respectively, and prolonged QTc interval (178 +/- 30 ms vs. 153 +/- 14 ms, p = 0.02 and 157 +/- 7 ms vs. 147 +/- 10 ms, p = 0.02, respectively) even at reduced dosages, whereas no QTc-prolongation or arrhythmia was observed after full-dose administration of AVE0118. In conclusion, atrial-selective K(+)-channel blockade by AVE0118 appears safe in experimental CHF.

  12. An Underlay Communication Channel for 5G Cognitive Mesh Networks: Packet Design, Implementation, Analysis, and Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Tarek Haddadin; Stephen Andrew Laraway; Arslan Majid; Taylor Sibbett; Daryl Leon Wasden; Brandon F Lo; Lloyd Landon; David Couch; Hussein Moradi; Behrouz Farhang-Boroujeny

    2016-04-01

    This paper proposes and presents the design and implementation of an underlay communication channel (UCC) for 5G cognitive mesh networks. The UCC builds its waveform based on filter bank multicarrier spread spectrum (FB-MCSS) signaling. The use of this novel spread spectrum signaling allows the device-to-device (D2D) user equipments (UEs) to communicate at a level well below noise temperature and hence, minimize taxation on macro-cell/small-cell base stations and their UEs in 5G wireless systems. Moreover, the use of filter banks allows us to avoid those portions of the spectrum that are in use by macro-cell and small-cell users. Hence, both D2D-to-cellular and cellular-to-D2D interference will be very close to none. We propose a specific packet for UCC and develop algorithms for packet detection, timing acquisition and tracking, as well as channel estimation and equalization. We also present the detail of an implementation of the proposed transceiver on a software radio platform and compare our experimental results with those from a theoretical analysis of our packet detection algorithm.

  13. Experimental investigation of the dynamics of the phase transition boundary in the motion of a heated non-Newtonian fluid in a channel

    Science.gov (United States)

    Basteev, A. V.; Dashkov, A. V.; Kravchenko, O. V.; Repalova, O. N.; Forfutdinov, V. V.

    2010-07-01

    The process of growth of the boundary crystallized phase in the motion of a heated non-Newtonian fluid in a channel with a cold wall has been studied experimentally. As the fluid, polypropylene with pseudoplastic properties was used. Experimental curves of the growth of the wall crystallized phase as a function of time were obtained for different values of the initial fluid melt temperature. The experimental value of the Nusselt number at the solid-liquid interface has been computed.

  14. Numerical and Experimental Investigation of Natural Convection in Open-Ended Channels with Application to Building Integrated Photovoltaic (BIPV Systems

    Directory of Open Access Journals (Sweden)

    Timchenko V.

    2015-01-01

    Full Text Available Numerical and experimental investigations of the flow and heat transfer in open-ended channel formed by the double skin façade have been undertaken in order to improve understanding of the phenomena and to apply it to passive cooling of building integrated photovoltaic systems. Both uniform heating and non-uniform heating configurations in which heat sources alternated with unheated zones on both skins were studied. Different periodic and asymmetric heating modes have been considered for the same aspect ratio 1/15 of wall distance to wall height and for periodicity 1/15 and 4/15 of heated/unheated zones and heat input, 220 W/m2. In computational study three dimensional transient LES simulation was carried out. It is shown that in comparison to uniformly heating configuration, non-uniformly heating configuration enhances both convective heat transfer and chimney effect.

  15. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak.

    Science.gov (United States)

    Han, X; Liu, X; Liu, Y; Domier, C W; Luhmann, N C; Li, E Z; Hu, L Q; Gao, X

    2014-07-01

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104-168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ~500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  16. Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems.

    Science.gov (United States)

    Wu, Menglong; Han, Dahai; Zhang, Xiang; Zhang, Feng; Zhang, Min; Yue, Guangxin

    2014-03-10

    We have implemented a modified Low-Density Parity-Check (LDPC) codec algorithm in ultraviolet (UV) communication system. Simulations are conducted with measured parameters to evaluate the LDPC-based UV system performance. Moreover, LDPC (960, 480) and RS (18, 10) are implemented and experimented via a non-line-of-sight (NLOS) UV test bed. The experimental results are in agreement with the simulation and suggest that based on the given power and 10(-3)bit error rate (BER), in comparison with an uncoded system, average communication distance increases 32% with RS code, while 78% with LDPC code.

  17. Coupled dynamics of the co-evolution of gravel bed topography, flow turbulence and sediment transport in an experimental channel

    Science.gov (United States)

    Singh, Arvind; Foufoula-Georgiou, Efi; Porté-Agel, Fernando; Wilcock, Peter R.

    2012-12-01

    A series of flume experiments were conducted in a large experimental channel at the St. Anthony Falls Laboratory to understand the coupled dynamics of flow and bed forms above the sediment-water interface. Simultaneous high resolution measurements of velocity fluctuations, bed elevations and sediment flux at the downstream end of the channel, were made for a range of discharges. The probability density functions (pdfs) of bed elevation increments and instantaneous Reynolds stress reveal a power law tail behavior and a wavelet cross-correlation analysis depicts a strong dependence of these series across a range of scales, indicating a feedback between bed form dynamics and near-bed turbulence. These results complement our previous findings in which the signature of bed form evolution on the near-bed velocity fluctuations was confirmed via the presence of a spectral gap and two distinct power law scaling regimes in the spectral density of velocity fluctuations. We report herein a strong asymmetry in the probability distribution of bed elevation increments and instantaneous Reynolds stresses, the latter being further analyzed and interpreted via a quadrant analysis of velocity fluctuations in the longitudinal and vertical directions. We also report the presence of intermittency (multifractality) in bed elevation increments and interpret it, in view of the asymmetric nature of the pdfs, as the result of scale coupling. In other words, the geometric asymmetry at the bed form scale gets transferred down to a probabilistic asymmetry at all smaller scales indicating a local anisotropy in the energy transfer. Finally, we propose a predictive relationship between bed form averaged sediment transport rates and bed form averaged instantaneous Reynolds stress and validate it using our experimental data.

  18. Theoretical and experimental studies of plasma channel generation for beam driven plasma wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Tauscher, Gabriele; Mehrling, Timon [University of Hamburg (Germany); Aschikhin, Alexander; Erbe, Jan-Hendrik; Goldberg, Lars; Schwinkendorf, Jan-Patrick [University of Hamburg (Germany); Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Dale, John; Schaper, Lucas; Streeter, Matthew; Schmidt, Bernhard; Osterhoff, Jens [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-07-01

    Plasma-based wakefield acceleration is a promising approach in shrinking the size and cost of future particle accelerators and free-electron lasers. In the FLASHForward project a wakefield accelerator will be driven by an electron bunch from the FLASH accelerator while a multi-TW short pulse laser will pre-ionise a hydrogen gas target to form a plasma. Disentangling the processes of ionisation and wakefield driving enables improved control over the plasma density profiles and therefore over the structure of the wakefields crucially effecting the quality of the accelerated beams. To work out the electron density distribution in the target, we compute the ionisation rates of hydrogen molecules in strong laser fields. To be able to benchmark the predicted behaviour experimentally we also take into account the temporal and spatial laser-intensity profile evolution. The here developed understanding of the underlying processes of plasma generation ultimately allows for tailoring of the focusing geometry and laser-power-profile evolution to achieve desired plasma properties. As a proof of concept, we aim to realise plasmas with tailored shapes experimentally early 2016.

  19. Experimental investigation and numerical simulation of a copper micro-channel heat exchanger with HFE-7200 working fluid

    Science.gov (United States)

    Borquist, Eric

    Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to

  20. Experimental verification of the feasibility of a quantum channel between space and Earth

    Energy Technology Data Exchange (ETDEWEB)

    Villoresi, P; Bonato, C [Department of Information Engineering, University of Padova and INFM-CNR LUXOR Laboratory for Ultraviolet and X-ray Optical Research, Padova (Italy); Jennewein, T; Aspelmeyer, M; Zeilinger, A [Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna (Austria); Tamburini, F; Barbieri, C [Department of Astronomy, University of Padova (Italy); Ursin, R [Faculty of Physics, Institute for Experimental Physics, University of Vienna (Austria); Pernechele, C [INAF-Cagliari, Capoterra (Canada) (Italy); Luceri, V [Centro di Geodesia Spaziale ' G Colombo' , e-GEOS SpA, Matera (Italy); Bianco, G [Centro di Geodesia Spaziale ' G Colombo' , Agenzia Spaziale Italiana, Matera (Italy)], E-mail: paolo.villoresi@unipd.it

    2008-03-15

    Extending quantum communication to space environments would enable us to perform fundamental experiments on quantum physics as well as applications of quantum information at planetary and interplanetary scales. Here, we report on the first experimental study of the conditions for the implementation of the single-photon exchange between a satellite and an Earth-based station. We built an experiment that mimics a single photon source on a satellite, exploiting the telescope at the Matera Laser Ranging Observatory of the Italian Space Agency to detect the transmitted photons. Weak laser pulses, emitted by the ground-based station, are directed toward a satellite equipped with cube-corner retroreflectors. These reflect a small portion of the pulse, with an average of less-than-one photon per pulse directed to our receiver, as required for faint-pulse quantum communication. We were able to detect returns from satellite Ajisai, a low-Earth orbit geodetic satellite, whose orbit has a perigee height of 1485 km.

  1. A Combined Numerical and Experimental Study of Heat Transfer in a Roughened Square Channel with 45 ∘ Ribs

    Directory of Open Access Journals (Sweden)

    Taslim M. E.

    2005-01-01

    Full Text Available Experimental investigations have shown that the enhancement in heat transfer coefficients for air flow in a channel roughened with low blockage ( e/ D h <0.1 angled ribs is on the average higher than that roughened with 90 ∘ ribs of the same geometry. Secondary flows generated by the angled ribs are believed to be responsible for these higher heat transfer coefficients. These secondary flows also create a spanwise variation in the heat transfer coefficient on the roughened wall with high levels of the heat transfer coefficient at one end of the rib and low levels at the other end. In an effort to investigate the thermal behavior of the angled ribs at elevated Reynolds numbers, a combined numerical and experimental study was conducted. In the numerical part, a square channel roughened with 45 ∘ ribs of four blockage ratios ( e/ D h of 0.10,0.15,0.20 , and 0.25 , each for a fixed pitch-to-height ratio ( P/e of 10 , was modeled. Sharp as well as round-corner ribs ( r/e =0 and 0.25 in a staggered arrangement were studied. The numerical models contained the smooth entry and exit regions to simulate exactly the tested geometries. A pressure-correction-based, multiblock, multigrid, unstructured/adaptive commercial software was used in this investigation. Standard high Reynolds number k−ϵ turbulence model in conjunction with the generalized wall function for most parts was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. In the experimental part, a selected number of these geometries were built and tested for heat transfer coefficients at elevated Reynolds numbers up to 150 000, using a liquid crystal technique. Comparisons between the test and numerically evaluated results showed reasonable agreements between the two for most cases. Test results showed that (a 45 ∘ angled ribs with high blockage ratios 0.2$"> ( >0.2 at elevated Reynolds numbers

  2. Capillary Channel Flow (CCF) EU2-02 on the International Space Station (ISS): An Experimental Investigation of Passive Bubble Separations in an Open Capillary Channel

    Science.gov (United States)

    Weislogel, Mark M.; Wollman, Andrew P.; Jenson, Ryan M.; Geile, John T.; Tucker, John F.; Wiles, Brentley M.; Trattner, Andy L.; DeVoe, Claire; Sharp, Lauren M.; Canfield, Peter J.; hide

    2015-01-01

    It would be signicantly easier to design fluid systems for spacecraft if the fluid phases behaved similarly to those on earth. In this research an open 15:8 degree wedge-sectioned channel is employed to separate bubbles from a two-phase flow in a microgravity environment. The bubbles appear to rise in the channel and coalesce with the free surface in much the same way as would bubbles in a terrestrial environment, only the combined effects of surface tension, wetting, and conduit geometry replace the role of buoyancy. The host liquid is drawn along the channel by a pump and noncondensible gas bubbles are injected into it near the channel vertex at the channel inlet. Control parameters include bubble volume, bubble frequency, liquid volumetric flow rate, and channel length. The asymmetrically confined bubbles are driven in the cross-flow direction by capillary forces until they at least become inscribed within the section or until they come in contact with the free surface, whereupon they usually coalesce and leave the flow. The merging of bubbles enhances, but does not guarantee, the latter. The experiments are performed aboard the International Space Station as a subset of the Capillary Channel Flow experiments. The flight hardware is commanded remotely and continuously from ground stations during the tests and an extensive array of experiments is conducted identifying numerous bubble flow regimes and regime transitions depending on the ratio and magnitude of the gas and liquid volumetric flow rates. The breadth of the publicly available experiments is conveyed herein primarily by narrative and by regime maps, where transitions are approximated by simple expressions immediately useful for the purposes of design and deeper analysis.

  3. Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI

    Science.gov (United States)

    Mangalathu-Arumana, Jain; Liebenthal, Einat; Beardsley, Scott A.

    2018-01-01

    Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10–30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected. PMID:29410611

  4. [Expression of voltage gated sodium channel Nav1.9 in experimental pulpal lesions in the rats].

    Science.gov (United States)

    Xu, Le; Zhu, Xinwei; Chen, Qingfeng; Hu, Yuanping; Zhu, Ling; Jiang, Yong

    2014-02-01

    To investigate the relationship between pulpitis pain and voltage-gated sodium channel (Nav1.9) by detecting the expression of Nav1.9 at different time points of the rat pulpal lesion model. Thirty-six SD pulpal lesions rat models were divided into three experimental groups, 1 d (n = 12), 3 d (n = 12) and 5 d group(n = 12).Normal SD rats served as control(n = 12). Tumor necrosis factor-α (TNF-α) and Nav1.9 mRNA expressions were evaluated by reverse transcription PCR (RT-PCR) .Nav1.9 protein expressions were analyzed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The expression of TNF-α in the experimental group (1 d:0.514 ± 0.098, 3 d:0.739 ± 0.104, 5 d:1.238 ± 0.082) was higher than those in the control group (0.147 ± 0.016) (P Nav1.9 mRNA was up-regulated markedly in experimental groups (1 d: 0.296 ± 0.038, 3 d:0.409 ± 0.013, 5 d: 0.487 ± 0.028) , compare with control group (0.223 ± 0.020) (P Nav1.9 in control pulp tissue was (4.013 ± 0.292) µg/L, in painful pulp tissue of 1 d group was (5.143 ± 0.101) µg/L, in painful pulp tissue of 3 d group was (5.835 ± 0.088) µg/L and in painful pulp tissue of 5 d group was (6.307 ± 0.137) µg/L (P Nav1.9 in experimental groups (1 d: 0.106 ± 0.007, 3 d:0.170 ± 0.013, 5 d:0.238 ± 0.004) was up-regulated significantly compared with control group (0.073 ± 0.004)(P Nav1.9 had a significant increase in painful pulp tissue. Moreover, with the degree of pain aggravation, the expression of Nav1.9 increased in pulp tissue.It suggests that Nav1.9 may play an important role in the development of pulpitis pain.

  5. Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel

    Science.gov (United States)

    Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D.; Reusken, A.; Schlüter, M.; Wörner, M.

    2016-01-01

    The vertically upward Taylor flow in a small square channel (side length 2 mm) is one of the guiding measures within the priority program "Transport Processes at Fluidic Interfaces" (SPP 1506) of the German Research Foundation (DFG). This paper presents the results of coordinated experiments and three-dimensional numerical simulations (with three different academic computer codes) for typical local flow parameters (bubble shape, thickness of the liquid film, and velocity profiles) in different cutting planes (lateral and diagonal) for a specific co-current Taylor flow. For most quantities, the differences between the three simulation results and also between the numerical and experimental results are below a few percent. The experimental and computational results consistently show interesting three-dimensional flow effects in the rear part of the liquid film. There, a local back flow of liquid occurs in the fixed frame of reference which leads to a temporary reversal of the direction of the wall shear stress during the passage of a Taylor bubble. Notably, the axial positions of the region with local backflow and those of the minimum vertical velocity differ in the lateral and the diagonal liquid films. By a thorough analysis of the fully resolved simulation results, this previously unknown phenomenon is explained in detail and, moreover, approximate criteria for its occurrence in practical applications are given. It is the different magnitude of the velocity in the lateral film and in the corner region which leads to azimuthal pressure differences in the lateral and diagonal liquid films and causes a slight deviation of the bubble from the rotational symmetry. This deviation is opposite in the front and rear parts of the bubble and has the mentioned significant effects on the local flow field in the rear part of the liquid film.

  6. Dendritic distributions of Ih channels in experimentally-derived multi-compartment models of oriens-lacunosum/moleculare (O-LM hippocampal interneurons

    Directory of Open Access Journals (Sweden)

    Vladislav eSekulic

    2015-02-01

    Full Text Available The O-LM cell type mediates feedback inhibition onto hippocampal pyramidal cells and gates information flow in the CA1. Its functions depend on the presence of voltage-gated channels (VGCs, which affect its integrative properties and response to synaptic input. Given the challenges associated with determining densities and distributions of VGCs on interneuron dendrites, we take advantage of computational modeling to consider different possibilities. In this work, we focus on hyperpolarization-activated channels (h-channels in O-LM cells. While h-channels are known to be present in O-LM cells, it is unknown whether they are present on their dendrites. In previous work, we used ensemble modeling techniques with experimental data to obtain insights into potentially important conductance balances. We found that the best O-LM models that included uniformly distributed h-channels in the dendrites could not fully capture the sag response. This led us to examine activation kinetics and non-uniform distributions of h-channels in the present work. In tuning our models, we found that different kinetics and non-uniform distributions could better reproduce experimental O-LM cell responses. In contrast to CA1 pyramidal cells where higher conductance densities of h-channels occur in more distal dendrites, decreasing conductance densities of h-channels away from the soma were observed in O-LM models. Via an illustrative scenario, we showed that having dendritic h-channels clearly speeds up back-propagating action potentials in O-LM cells, unlike when h-channels are present only in the soma. Although the present results were morphology-dependent, our work shows that it should be possible to determine the distributions and characteristics of O-LM cells with recordings and morphologies from the same cell. We hypothesize that h-channels are distributed in O-LM cell dendrites and endow them with particular synaptic integration properties that shape information flow

  7. Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid

    Directory of Open Access Journals (Sweden)

    M.A. Ahmed

    2015-09-01

    Full Text Available In this paper, convective heat transfer of SiO2–water nanofluid flow in channels with different shapes is numerically and experimentally studied over Reynolds number ranges of 400–4000. Three different channels such as trapezoidal, sinusoidal and straight were fabricated and tested. The SiO2–water nanofluid with different volume fractions of 0%, 0.5% and 1.0% were prepared and examined. All physical properties of nanofluid which are required to evaluate the flow and thermal characteristics have been measured. In the numerical aspect of the current work, the governing equations are discretized by using the collocated finite volume method and solved iteratively by using the SIMPLE algorithm. In addition, the low Reynolds number k–ε model of Launder and Sharma is employed to compute the turbulent non-isothermal flow in the present study. The results showed that the average Nusselt number and the heat transfer enhancement increase as the nanoparticles volume fraction increases, however, at the expense of increasing pressure drop. Furthermore, the trapezoidal-corrugated channel has the highest heat transfer enhancement followed by the sinusoidal-corrugated channel and straight channel. The numerical results are compared with the corresponding experimental data, and the results are in a good agreement.

  8. Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks

    Science.gov (United States)

    Al-Samman, A. M.; Rahman, T. A.; Azmi, M. H.; Hindia, M. N.; Khan, I.; Hanafi, E.

    2016-01-01

    This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios. PMID:27654703

  9. Experimental study on bank erosion and protection using submerged vane placed at an optimum angle in a 180° laboratory channel bend

    Science.gov (United States)

    Dey, Litan; Barbhuiya, Abdul Karim; Biswas, Piya

    2017-04-01

    Unsteadiness of the vertical velocity profile and secondary flow in open channel bends poses serious problems in hydraulic engineering design. Insertion of vertical submerged vanes in the channel bend at an optimum angle with the tangential component of flow can minimize the unsteadiness and generation of secondary flow resulting in the reduction of scour depth at the outer bank. A series of experiments were conducted in a 180° bend laboratory channel to study flow erosion and effective ness of the submerged vane in reducing scour depth. The average approach to flow velocity at 0.20 m flow depth above the lowest initial bed level was 25 cm/s. An Acoustic Doppler Velocimeter (ADV) was used to measure the three-dimensional time-averaged velocity components at different azimuthal sections on stabilized nonscoured beds without vane. Scour bed profile without vanes shows that bank erosion in a 180° parabolic-shaped bed channel occurs mostly at the zone from bend angles 120° to 140°. Vanes were installed at angles of 10°, 15°, 20°, 30°, and 40° to the tangential flow component maintaining a spacingof 75 cm distance from one vane to another. Experimental results show that a 15° vane angle produces best result in reducing outer bank scour in a parabolic-shaped channel. The data presented in this paper can also be used for validating three-dimensional turbulence models for simulating flows in a curved channel.

  10. Experimental hydraulic analysis in conduction tunnels at the trunk section working as a channel considering compound roughness; Analisis hidraulico experimental en tuneles de conduccion en seccion baul trabajando como canal, considerando rugosidades compuestas

    Energy Technology Data Exchange (ETDEWEB)

    Marengo-Mogollon, Humberto; Cortes-Cortes, Carlos [Comision Federal de Electricidad (Mexico); Arreguin-Cortes, Felipe I [Comision Nacional del Agua (Mexico)

    2008-01-15

    This paper presents the roughness coefficients of a conduction tunnel at the trunk section working as a channel obtained experimentally using a hydraulic model of the diversion tunnel of the Hydroelectric Project called El Cajon (Mexico). A comparative analysis between experimental and theoretical coefficients obtained in the literature is shown. [Spanish] Se presentan los coeficientes de rugosidad compuesta de un tunel de conduccion en seccion baul trabajando como canal obtenidos en forma experimental en un modelo hidraulico del tunel de desvio del Proyecto Hidroelectrico El Cajon (Mexico). Se muestra un analisis comparativo entre los coeficientes experimentales y los teoricos obtenidos en la literatura.

  11. Experimental investigation of effect of flow attack angle on thermohydraulic performance of air flow in a rectangular channel with discrete V-pattern baffle on the heated plate

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2016-05-01

    Full Text Available In this work, the effect of angle of attack ( α a of the discrete V-pattern baffle on thermohydraulic performance of rectangular channel has been studied experimentally. The baffle wall was constantly heated and the other three walls of the channel were kept insulated. The experimentations were conducted to collect the data on Nusselt number ( N u b and friction factor ( f b by varying the Reynolds number (Re = 3000–21,000 and angle of attack ( α a from 30° to 70°, for the kept values of relative baffle height ( H b / H = 0 . 50 , relative pitch ratio ( P b / H = 1 . 0 , relative discrete width ( g w / H b = 1 . 5 and relative discrete distance ( D d / L v = 0 . 67 . As compared to the smooth wall, the V-pattern baffle roughened channel enhances the Nusselt number ( N u b and friction factor ( f b by 4.2 and 5.9 times, respectively. The present discrete V-pattern baffle shapes with angle of attack ( α a of 60° equivalent to flow Reynolds number of 3000 yields the greatest thermohydraulic performance. Discrete V-pattern baffle has improved thermal performance as compared to other baffle shapes’ rectangular channel.

  12. Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution.

    Science.gov (United States)

    Collins, Robert J; Amiri, Ryan; Fujiwara, Mikio; Honjo, Toshimori; Shimizu, Kaoru; Tamaki, Kiyoshi; Takeoka, Masahiro; Sasaki, Masahide; Andersson, Erika; Buller, Gerald S

    2017-06-12

    Ensuring the integrity and transferability of digital messages is an important challenge in modern communications. Although purely mathematical approaches exist, they usually rely on the computational complexity of certain functions, in which case there is no guarantee of long-term security. Alternatively, quantum digital signatures offer security guaranteed by the physical laws of quantum mechanics. Prior experimental demonstrations of quantum digital signatures in optical fiber have typically been limited to operation over short distances and/or operated in a laboratory environment. Here we report the experimental transmission of quantum digital signatures over channel losses of up to 42.8 ± 1.2 dB in a link comprised of 90 km of installed fiber with additional optical attenuation introduced to simulate longer distances. The channel loss of 42.8 ± 1.2 dB corresponds to an equivalent distance of 134.2 ± 3.8 km and this represents the longest effective distance and highest channel loss that quantum digital signatures have been shown to operate over to date. Our theoretical model indicates that this represents close to the maximum possible channel attenuation for this quantum digital signature protocol, defined as the loss for which the signal rate is comparable to the dark count rate of the detectors.

  13. Experimental investigations on effect of different materials and varying depths of one turn exhaust channel swiss roll combustor on its thermal performance

    Science.gov (United States)

    Mane Deshmukh, Sagar B.; Krishnamoorthy, A.; Bhojwani, V. K.; Pawane, Ashwini

    2017-05-01

    More energy density of hydrocarbon fuels compared to advanced batteries available in the market demands for development of systems which will use hydrocarbon fuels at small scale to generate power in small quantity (i.e. in few watts) and device efficiency should be reasonably good, but the basic requirement is to generate heat from the fuels like methane, propane, hydrogen, LPG and converting into power. Swiss roll combustor has proved to be best combustor at small scale. Present work is carried out on one turn exhaust channel and half turn of inlet mixture channel Swiss roll combustor. Purpose of keeping exhaust channel length more than the inlet mixture channel to ensure sufficient time for heat exchange between burned and unburned gases, which is not reported in earlier studies. Experimental study mentions effects of different design parameters like materials of combustor, various depths, equivalence ratio, mass flow rates of liquefied petroleum gas (LPG), volume of combustion space and environmental conditions (with insulation and without insulation to combustors) on fuel lean limit and fuel rich limit, temperature profile obtained on all external surfaces, in the main combustion chamber, in the channel carrying unburned gas mixture and burned gas mixture, heat loss to atmosphere from all the walls of combustor, flame location. Different combustor materials tested were stainless steel, Aluminum, copper, brass, bronze, Granite. Depths considered were 22mm, 15mm, 10mm and 5mm. It was observed that flame stability inside the combustion chamber is affected by materials, depths and flow rates. Unburned mixture carrying channel was kept below quenching distance of flame to avoid flash back. Burned gas carrying channel dimension was more than the quenching distance. Considerable temperature rise was observed with insulation to combustors. But combustors with more thermal conductivity showed more heat loss to atmosphere which led to instability of flame.

  14. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes

    KAUST Repository

    Bucs, Szilard

    2015-09-25

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m∙s-1) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m∙s-1) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m∙s-1, thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems.

  15. CONTRIBUTION TO THE EXPERIMENTAL STUDY OF THE HYDRAULIC JUMP EVOLVING IN AN U-SHAPED CHANNEL, WITH ROUGH BED

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2010-12-01

    Full Text Available This study aims to investigate the threshold-controlled hydraulic jump, moving in channel profile 'U' fully rough for a single roughness value  = 7,14 mm. Functional relations in dimensionless terms, linking the different characteristics of the jump, showing the effect of bottom friction channel, are obtained as: y2= (-14,19y1 + 6, 42 Q*; y2= 1,13y10,65 exp [0,95y10,61.s/h1] . The method is as follows: we vary the flow volume by manipulating the valve and their measurements are read directly on the meter display éctronique. Supply channel is by means of a pump flow up 40 l / s. The flume was designed in the laboratory 'LARHYSS, University of Biskra.

  16. Quantifying flow retention due to vegetation in an earthen experimental channel using the Aggregated Dead Zone (ADZ) dilution approach

    NARCIS (Netherlands)

    Carling, Paul; Kleinhans, Maarten; Leyland, Julian; Besozzi, Louison; Duranton, Pierre; Trieu, Hai; Teske, Roy

    2014-01-01

    Understanding of flow resistance of forested floodplains is essential for floodplain flow routing and floodplain reforestation projects. Although the flow resistance of grass-lined channels is well-known, flow retention due to flow-blocking by trees is poorly understood. Flow behaviour through

  17. Decrease of a Current Mediated by Kv1.3 Channels Causes Striatal Cholinergic Interneuron Hyperexcitability in Experimental Parkinsonism

    Directory of Open Access Journals (Sweden)

    Cecilia Tubert

    2016-09-01

    Full Text Available The mechanism underlying a hypercholinergic state in Parkinson’s disease (PD remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels.

  18. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2015-10-01

    Full Text Available Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for the job, production and operating costs. Studies have examined the air flow parameters change in one–, two– and three–levels multichannel cyclone. These constructions differ according to the productivity of cleaned air under the constant peripheral and transitional (50/50 case air flow relations. Accordance with the results of air flow dynamics – velocity distribution of multi-channel cyclone, aerodynamic resistance and efficiency can be judged on the flow turbulence, the flow channel cross-section and select the most appropriate application. Cleaning efficiency studies were carried out using fine granite and wood ashes PM. The maximum cleaning efficiency was 93.3%, at an average of 4.5 g/m3, the aerodynamic resistance was equal to 1525 Pa.

  19. Fundamental and experimental aspects of diffraction for characterizing dislocations by electron channeling contrast imaging in scanning electron microscope

    OpenAIRE

    Kriaa, H.; Guitton, A.; Maloufi, N.

    2017-01-01

    Nowadays Field Emission Gun-Scanning Electron Microscopes provide detailed crystallographic information with high spatial and angular resolutions, and allow direct observation of crystalline defects, such as dislocations, through an attractive technique called Electron Channeling Contrast Imaging (ECCI). Dislocations play a crucial role in the properties of materials and ECCI has naturally emerged as an adapted tool for characterizing defects in bulk specimen. Nevertheless, fine control of th...

  20. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates.

    Science.gov (United States)

    Comtois, Philippe; Sakabe, Masao; Vigmond, Edward J; Munoz, Mauricio; Texier, Anne; Shiroshita-Takeshita, Akiko; Nattel, Stanley

    2008-10-01

    Atrial fibrillation (AF) is the most common sustained clinical arrhythmia and is a problem of growing proportions. Recent studies have increased interest in fast-unbinding Na(+) channel blockers like vernakalant (RSD1235) and ranolazine for AF therapy, but the mechanism of efficacy is poorly understood. To study how fast-unbinding I(Na) blockers affect AF, we developed realistic mathematical models of state-dependent Na(+) channel block, using a lidocaine model as a prototype, and studied the effects on simulated cholinergic AF in two- and three-dimensional atrial substrates. We then compared the results with in vivo effects of lidocaine on vagotonic AF in dogs. Lidocaine action was modeled with the Hondeghem-Katzung modulated-receptor theory and maximum affinity for activated Na(+) channels. Lidocaine produced frequency-dependent Na(+) channel blocking and conduction slowing effects and terminated AF in both two- and three-dimensional models with concentration-dependent efficacy (maximum approximately 89% at 60 microM). AF termination was not related to increases in wavelength, which tended to decrease with the drug, but rather to decreased source Na(+) current in the face of large ACh-sensitive K(+) current-related sinks, leading to the destabilization of primary generator rotors and a great reduction in wavebreak, which caused primary rotor annihilations in the absence of secondary rotors to resume generator activity. Lidocaine also reduced the variability and maximum values of the dominant frequency distribution during AF. Qualitatively similar results were obtained in vivo for lidocaine effects on vagal AF in dogs, with an efficacy of 86% at 2 mg/kg iv, as well as with simulations using the guarded-receptor model of lidocaine action. These results provide new insights into the mechanisms by which rapidly unbinding class I antiarrhythmic agents, a class including several novel compounds of considerable promise, terminate AF.

  1. Effects of Cd2+ on the epithelial Na+ channel (ENaC) investigated by experimental and modeling studies.

    Science.gov (United States)

    Mernea, Maria; Ulăreanu, Roxana; Călborean, Octavian; Chira, Sergiu; Popescu, Octavian; Mihailescu, Dan F; Cucu, Dana

    2016-07-01

    The function of the epithelial Na+ channel from the apical membrane of many Na+ transporting epithelia is modulated by various chemical compounds from the extracellular space, such as heavy metals, protons or chloride ions. We have studied the effect of extracellular Cd2+ on the function of the epithelial Na+ channel (ENaC) in heterologously expressed Xenopus laevis oocytes and Na+-transporting epithelia. We assayed channel function as the amiloride-sensitive sodium current (I(Na)). Cd2+ rapidly and voltage-independently inhibited INa in oocytes expressing αβγ Xenopus ENaC (xENaC). The extracellular Cd2+ inhibited Na+ transport and showed no influence on ENaC trafficking, as revealed by concomitant measurements of the transepithelial current, conductance and capacitance in Na+-transporting epithelia. Instead, amiloride inhibition was noticeably diminished in the presence of Cd2+ on the apical membrane. Using molecular modeling approaches, we describe the amiloride binding sites in rat and xENaC structures, and we present four putative binding sites for Cd2+. These results indicate that ENaC functions as a sensor for external Cd2+.

  2. Experimental study of an optimized PSP-OSTBC scheme with m-PPM in ultraviolet scattering channel for optical MIMO system.

    Science.gov (United States)

    Han, Dahai; Gu, Yanjie; Zhang, Min

    2017-08-10

    An optimized scheme of pulse symmetrical position-orthogonal space-time block codes (PSP-OSTBC) is proposed and applied with m-pulse positions modulation (m-PPM) without the use of a complex decoding algorithm in an optical multi-input multi-output (MIMO) ultraviolet (UV) communication system. The proposed scheme breaks through the limitation of the traditional Alamouti code and is suitable for high-order m-PPM in a UV scattering channel, verified by both simulation experiments and field tests with specific parameters. The performances of 1×1, 2×1, and 2×2 PSP-OSTBC systems with 4-PPM are compared experimentally as the optimal tradeoff between modification and coding in practical application. Meanwhile, the feasibility of the proposed scheme for 8-PPM is examined by a simulation experiment as well. The results suggest that the proposed scheme makes the system insensitive to the influence of path loss with a larger channel capacity, and a higher diversity gain and coding gain with a simple decoding algorithm will be achieved by employing the orthogonality of m-PPM in an optical-MIMO-based ultraviolet scattering channel.

  3. Experimental study of the possibility of reducing the resistance and unevenness of output field of velocities in flat diffuser channels with large opening angles

    Science.gov (United States)

    Dmitriev, S. S.; Vasil'ev, K. E.; Mokhamed, S. M. S. O.; Gusev, A. A.; Barbashin, A. V.

    2017-11-01

    In modern combined cycle gas turbines (CCGT), when designing the reducers from the output diffuser of a gas turbine to a boiler-utilizer, wide-angle diffusers are used, in which practically from the input a flow separation and transition to jet stream regime occurs. In such channels, the energy loss in the field of velocities sharply rise and the field of velocities in the output from them is characterized by considerable unevenness that worsens the heat transfer process in the first by motion tube bundles of the boiler-utilizer. The results of experimental research of the method for reducing the energy loss and alignment of the field of velocities at the output from a flat asymmetrical diffuser channel with one deflecting wall with the opening angle of 40° by means of placing inside the channel the flat plate parallel to the deflecting wall are presented in the paper. It is revealed that, at this placement of the plate in the channel, it has a chance to reduce the energy loss by 20%, considerably align the output field of velocities, and decrease the dynamic loads on the walls in the output cross-section. The studied method of resistance reduction and alignment of the fields of velocities in the flat diffuser channels was used for optimization of the reducer from the output diffuser of the gas turbine to the boiler-utilizer of CCGT of PGU-450T type of Kaliningrad Thermal Power Plant-2. The obtained results are evidence that the configuration of the reducer installed in the PGU-450T of Kaliningrad Thermal Power Plant-2 is not optimal. It follows also from the obtained data that working-off the reducer should be necessarily conducted by the test results of the channel consisting of the model of reducer with the model of boiler-utilizer installed behind it. Application of the method of alignment of output field of velocities and reducing the resistance in the wide-angle diffusers investigated in the work made it possible—when using the known model of diffusion

  4. Charge Reduction Potentials of Several Refrigerants Based on Experimentally Validated Micro-Channel Heat Exchangers Performance and Charge Model

    OpenAIRE

    Padilla Fuentes, Yadira; Hrnjak, Predrag S.

    2012-01-01

    This paper presents an experimentally validated simulation model developed to obtain accurate prediction of evaporator microchannel heat exchanger performance and charge. Effects of using various correlations are presented and discussed with focus on serpentine microchannel evaporators. Experiments with propane are used to validate the model. The experimentally validated model is used to compare the charge reduction potential of various refrigerants. The procedure for charge reduction analysi...

  5. Ocular Hypotensive Effects of the ATP-Sensitive Potassium Channel Opener Cromakalim in Human and Murine Experimental Model Systems.

    Directory of Open Access Journals (Sweden)

    Uttio Roy Chowdhury

    Full Text Available Elevated intraocular pressure (IOP is the most prevalent and only treatable risk factor for glaucoma, a leading cause of irreversible blindness worldwide. Unfortunately, all current therapeutics used to treat elevated IOP and glaucoma have significant and sometimes irreversible side effects necessitating the development of novel compounds. We evaluated the IOP lowering ability of the broad spectrum KATP channel opener cromakalim. Cultured human anterior segments when treated with 2 μM cromakalim showed a decrease in pressure (19.33 ± 2.78 mmHg at 0 hours to 13.22 ± 2.64 mmHg at 24 hours; p<0.001 when compared to vehicle treated controls (15.89 ± 5.33 mmHg at 0 h to 15.56 ± 4.88 mmHg at 24 hours; p = 0.89. In wild-type C57BL/6 mice, cromakalim reduced IOP by 18.75 ± 2.22% compared to vehicle treated contralateral eyes (17.01 ± 0.32 mmHg at 0 hours to 13.82 ± 0.37 mmHg at 24 hours; n = 10, p = 0.002. Cromakalim demonstrated an additive effect when used in conjunction with latanoprost free acid, a common ocular hypotensive drug prescribed to patients with elevated IOP. To examine KATP channel subunit specificity, Kir6.2(-/- mice were treated with cromakalim, but unlike wild-type animals, no change in IOP was noted. Histologic analysis of treated and control eyes in cultured human anterior segments and in mice showed similar cell numbers and extracellular matrix integrity within the trabecular meshwork, with no disruptions in the inner and outer walls of Schlemm's canal. Together, these studies suggest that cromakalim is a potent ocular hypotensive agent that lowers IOP via activation of Kir6.2 containing KATP channels, its effect is additive when used in combination with the commonly used glaucoma drug latanoprost, and is not toxic to cells and tissues of the aqueous humor outflow pathway, making it a candidate for future therapeutic development.

  6. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Lim Theodore

    2007-01-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  7. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Rafael Gil-Otero

    2007-02-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  8. Experimental signature of entrance channel effect in heavy mass region via evaporation residue cross section and spin distribution measurements

    NARCIS (Netherlands)

    Shidling, P. D.; Madhavan, N.; Ramamurthy, V. S.; Nath, S.; Badiger, N. M.; Pal, Santanu; Sinha, A. K.; Jhingan, A.; Muralithar, S.; Sugathan, P.; Kailas, S.; Behera, B. R.; Singh, R.; Varier, K. M.; Radhakrishna, M. C.

    2008-01-01

    Evaporation residue (ER) cross sections and gamma multiplicity distributions have been measured for (16)O + (184)W and (19)F + (181)Ta systems in the excitation energy range of 50-90 MeV, leading to the same compound nucleus (200)Pb*. Comparison of experimental results of both the systems shows that

  9. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings

    Directory of Open Access Journals (Sweden)

    Donghyeon Kim

    2017-02-01

    Full Text Available In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.

  10. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings.

    Science.gov (United States)

    Kim, Donghyeon; Yeon, Chanmi; Kim, Kiseon

    2017-02-09

    In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG) research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP) experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD) and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.

  11. Experimental investigation of the Cu/R141b nanofluids on the evaporation/boiling heat transfer characteristics for surface with capillary micro-channels

    Science.gov (United States)

    Diao, Yanhua; Liu, Yan; Wang, Rui; Zhao, Yaohua; Guo, Lei

    2014-09-01

    An experimental study was conducted to investigate the heat transfer characteristic of a vertical copper plate with rectangular micro-channels. In this research, Cu/R141b nanofluids were used as the working fluid. Three different volume concentrations—0.001, 0.01, and 0.1 %—of Cu nanoparticles with an average diameter of 20 nm dispersed in R141b were prepared. Experiments were performed to measure thermal resistance of the microchannel surface under a steady operating pressure range of 0.86 × 105 Pa to 2 × 105 Pa. Thermal resistance weakened with addition of nanoparticles into the base fluid. The maximum reduction effect of the thermal resistance was 50 %, which corresponds to 0.01 % volume concentration of nanofluid at low operating pressure. The operating pressure significantly affects thermal performance of the microchannel surface. This paper also studied heat transfer characteristics for a Cu nanoparticle-coated surface with rectangular microchannels, which were produced by heating in different volume concentrations from 0.001 to 0.1 %. Nanoparticle layer on the micro-channel surface is responsible for enhanced heat transfer of nanofluids with 0.001 and 0.01 % volume concentrations.

  12. Experimental investigation of convective boiling in mini-channels: Cooling application of the proton exchange membrane fuel cells

    Directory of Open Access Journals (Sweden)

    Boudouh Mounir

    2017-01-01

    Full Text Available An experimental study of convective boiling heat transfer of water flowing in minichannels at low flow rate is carried out with pure de-ionised water and copper-water nanofluids. A low concentration of copper nanometer-sized particles was used to enhance the boiling heat transfer. The aim is to characterize the surface temperature as well as to estimate the local heat transfer coefficients by using the inverse heat conduction problem IHCP. The inlet water temperature is fixed at 60°C and mass fluxes operated in range of 212-573 kg/m².s in minichannels of dimensions 500×2000 μm². The maximum heat flux investigated in the tests is limited to 7000 W/m². The results show that the surface temperature and the local heat transfer coefficient are dependent on the axial location and the adding of copper nanoparticles can significantly improve the heat transfer.

  13. Experimental study of humidity changes on the performance of an elliptical single four-channel PEM fuel cell

    Science.gov (United States)

    Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman

    2017-01-01

    Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.

  14. An experimental approach for archeological soil micromorphology: building a model for site taphonomy in coastal shell middens of the Beagle Channel (Argentina)

    Science.gov (United States)

    Balbo, Andrea; Suarez Villagran, Ximena; Madella, Marco; Vila, Asumpcio; Estevez, Jordi

    2010-05-01

    There are still many archaeological contexts where soil micromorphology has been little applied. Examples of such are anthropic shell deposits, common in coastal settings worldwide. These archaeological sites have complex stratigraphies composed mainly of shell from diverse species of local mollusks and gastropods. They have the peculiarity of being highly porous sediments with a coarse fraction that is dominated by gravel-sized bioclastic remains (shell, fish bones) and a fine fraction composed of organic material (charcoal, organic matter). The use of soil micromorphology in shell deposits was started by the Spanish-Argentinean research team working in Tierra del Fuego (Argentina) since 1986. This project focused on excavation of hunter-gatherer sites from the contact period. One of the main objectives was to develop a detailed excavation method for shell middens that maximized the amount of recorded data during archaeological excavation. In this perspective, microstratigraphy was conceived as a fundamental complement for the study of site formation processes, as it would provide with high definition data for identification of shell accumulation episodes, trampling on site, abandonment periods, taphonomic alterations etc. A reference collection of known environmental and anthropic control features, such as hearths, trampling areas, wood ashes from local species, among others, was built to help in the microscopic characterization of archaeological samples. In this work, we analyze this experimental collection and compare it with samples from the Tunel VII archaeological site, located in the northern coast of the Beagle Channel and dated from the 18th-19th centuries. The set of modern samples included: trampling area from an animal pathway; beach deposit; forest litter; soil under the forest; hearths lit in diverse contexts (on the prairie, the beach and from the archaeologist camp site); and experimental burnt valves of Mytilus edulis, the main malacological

  15. EVALUACIÓN EXPERIMENTAL DE CAPACIDAD MIMO DE ARREGLOS DE ANTENAS PIFA COMPACTOS EN BANDA DE 2.45 GHz EXPERIMENTAL EVALUATION OF MIMO CHANNEL CAPACITY FOR COMPACT ARRAYS OF PIFA ANTENNAS AT 2.45 GHz BAND

    Directory of Open Access Journals (Sweden)

    Héctor Carrasco E

    2007-12-01

    Full Text Available En este trabajo se presentan resultados experimentales de medición de canal y evaluación de capacidad MIMO (Multiple Input Multiple Output de arrays de antenas PIFA (Planar Inverted "F" Antenna compactos en la banda de frecuencia de 2.45 GHz, en entornos interiores ricos en multitrayecto. Se evalúan dos configuraciones básicas de arrays, Lineal y Cuadrada de cuatro antenas PIFA, cuyas características de bajo perfil y grados de libertad de construcción y configuración constituyen ventajas comparativas para aplicaciones con terminales compactos potables. Las mediciones de la matriz de canal MIMO se hacen utilizando un VNA (Vector Network Analyzer controlado vía estándar GPIB (General Purpose Interface Bus. La capacidad MIMO se evalúa estadísticamente para un gran número de medidas del canal, en espacio y frecuencia, con separación de antenas en cada array de 0,1 a 0,8 longitudes de onda, con el objetivo principal de estudiar el efecto del acoplamiento mutuo en la capacidad MIMO. Los resultados de capacidad medida muestran que las configuraciones propuestas más eficientes pueden operar como mínimo hasta separaciones de antenas en el rango de 0,3 a 0,4 longitudes de onda, sin producir gran degradación de capacidad debido al acoplamiento y bloqueo de señal. Este resultado implica separaciones cercanas a 4 cm y, en consecuencia, arrays significativamente compactosThis paper presents experimental results of indoor MIMO wireless channel and channel capacity evaluation for compact PIFA (Planar Inverted "F" Antenna antenna arrays at the 2.45 GHz frequency band. Linear and square array configurations are evaluated using PIFA antenna elements because of its advantages of low profile and flexible configuration design for compact and portable mobile terminals. Measurements are performed using a VNA with GPIB standard for automatic data acquisition. MIMO channel capacity results are calculated from a large amount of data combining uncorrelated

  16. Experimental investigations and numerical simulations for an open channel flow of a weak elastic polymer solution around a T-profile

    Energy Technology Data Exchange (ETDEWEB)

    Balan, C.; Neagoe, A.; Nistoran, D. [Hydraulics and Hydraulic Machinery Department - REOROM Group, University ' ' Politehnica' ' of Bucharest, Splaiul Independentei 313, 79590, Bucharest (Romania); Legat, V. [University of Louvain-la-Neuve - Center for Systems Engineering Applied Mechanics (CESAME), Batiment Euler, Av. Georges Lemaitre 4, 1348, Louvain-la-Neuve (Belgium)

    2004-03-01

    The present paper is concerned with experimental and numerical investigations of planar complex flows of ''weak'' elastic polymer solutions (whose concentration are below the critical overlap concentration), characterised by small relaxation times ({lambda}<0.1 s) and almost constant shear viscosities for small and medium shear rates. The main aim of the study is to detect to what extent a very small amount of elasticity present in a viscous fluid can influence its behaviour in complex flows, without introducing major modifications of classical rheological tests. The samples are polymer solutions of low PIB molecular weight dissolved in highly viscous Newtonian mineral oil. The analysed motion is steady, and takes place in an open channel around a ''T'' profile. Maximum values of the characteristic parameters for the experiments, the Reynolds and Weissenberg numbers, were 45 and 0.1, respectively. The experiments show a decrease of the wake length downstream the profile for weak elastic solutions in comparison to the Newtonian solvent. Actually, the same wake length as in the Newtonian case was obtained for tested polymer solutions, but at higher Re numbers. Numerical simulations using the Giesekus model predict the same behaviour and are consistent with experiments from both qualitative and quantitative point of views. The results of research conclude that, even in small amounts, the presence of elasticity in pure viscous liquids induces quantitative changes from Newtonian flow in complex dominant elongational flows, at elongational rates for which the sudden thickening of extensional viscosity is remarkable. The study is important, since it should enable better understanding and modelling of viscoelastic flows that involve dilute polymer solutions, or fluids with similar rheology; biofluid mechanics being one area of application of this research. Corroboration of experimental flow visualization with numerical simulation is

  17. Ion channel pharmacology.

    Science.gov (United States)

    Camerino, Diana Conte; Tricarico, Domenico; Desaphy, Jean-François

    2007-04-01

    Because ion channels are involved in many cellular processes, drugs acting on ion channels have long been used for the treatment of many diseases, especially those affecting electrically excitable tissues. The present review discusses the pharmacology of voltage-gated and neurotransmitter-gated ion channels involved in neurologic diseases, with emphasis on neurologic channelopathies. With the discovery of ion channelopathies, the therapeutic value of many basic drugs targeting ion channels has been confirmed. The understanding of the genotype-phenotype relationship has highlighted possible action mechanisms of other empirically used drugs. Moreover, other ion channels have been pinpointed as potential new drug targets. With regards to therapy of channelopathies, experimental investigations of the intimate drug-channel interactions have demonstrated that channel mutations can either increase or decrease affinity for the drug, modifying its potential therapeutic effect. Together with the discovery of channel gene polymorphisms that may affect drug pharmacodynamics, these findings highlight the need for pharmacogenetic research to allow identification of drugs with more specific effects on channel isoforms or mutants, to increase efficacy and reduce side effects. With a greater understanding of channel genetics, structure, and function, together with the identification of novel primary and secondary channelopathies, the number of ion channel drugs for neurologic channelopathies will increase substantially.

  18. Experimental Study of Falling Water Limitation under a Counter-Current Flow in a Vertical Rectangular Channel : 1st Report, Effect of Flow Channel Configuration and Introduction of CCFL Correlation

    National Research Council Canada - National Science Library

    SUDO, Yukio; USUI, Tohru; KAMINAGA, Masanori

    1991-01-01

    Counter-current-flow limitation (CCFL) experiments were carried out for both vertical rectangular channels and vertical circular tubes varying in size and in configuration of their cross sections to clarify CCFL characteristics...

  19. Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures

    Directory of Open Access Journals (Sweden)

    T. Faug

    2002-01-01

    Full Text Available An experimental investigation with dry granular flows passing over an obstacle down a rough inclined channel has been performed. The aim is to improve our understanding of the interaction between dense snow avalanches and defence structures. Specific attention was directed to the study of the zone of influence upstream from the obstacle, linked to the formation of a dead zone. The dead zone length L was systematically measured as a function of the obstacle height H and the channel inclination θ, for several discharges. In a whole range of channel inclinations, all the data are shown to collapse into a single curve when properly scaled. The scaling is based on the introduction of a theoretical deposit length (depending on H, θ and the internal friction angle of the material, φ and a Froude number of the flow depending on the obstacle height.

  20. Athermalized channeled spectropolarimeter enhancement.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  1. EFFECT FOR A SINGLE ROUGHNESS E=5,63mm OF EXPERIMENTAL TO STUDY HYDRAULIC JUMP PROFILE IN A CHANNEL IN U A ROUGH BOTTOM

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2015-07-01

    Full Text Available This study aims to study the hydraulic jump controlled by threshold, moving in a channel profile 'U' bottomed rough for a single roughness E=5,63mm. Functional relations in dimensionless terms, linking the different characteristics of the projection, showing the effect of roughness of the bottom of the channel are obtained. The hydraulic jump is the primary means used by hydraulic structures to dissipate energy. This hydraulic jump is formed at the sharp transition from a supercritical flow a stream flow.

  2. EFFECT FOR A SINGLE ROUGHNESS E=5,63mm OF EXPERIMENTAL TO STUDY HYDRAULIC JUMP PROFILE IN A CHANNEL IN U A ROUGH BOTTOM

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2013-06-01

    Full Text Available This study aims to study the hydraulic jump controlled by threshold, moving in a channel profile 'U' bottomed rough for a single roughness E=5,63mm. Functional relations in dimensionless terms, linking the different characteristics of the projection, showing the effect of roughness of the bottom of the channel are obtained. The hydraulic jump is the primary means used by hydraulic structures to dissipate energy. This hydraulic jump is formed at the sharp transition from a supercritical flow a stream flow.

  3. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice.

    Science.gov (United States)

    Masocha, Willias

    2016-01-01

    Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav) subunits by real time polymerase chain reaction (PCR) in the anterior cingulate cortex (ACC) at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct) values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1-Navβ4. There were no differences in the transcript levels of Nav1.1-Nav1.3, Nav1.6, Nax, Navβ1-Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP) there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  4. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  5. Roles of Pannexin-1 Channels in Inflammatory Response through the TLRs/NF-Kappa B Signaling Pathway Following Experimental Subarachnoid Hemorrhage in Rats

    Directory of Open Access Journals (Sweden)

    Ling-Yun Wu

    2017-06-01

    Full Text Available Background: Accumulating evidence suggests that neuroinflammation plays a critical role in early brain injury after subarachnoid hemorrhage (SAH. Pannexin-1 channels, as a member of gap junction proteins located on the plasma membrane, releases ATP, ions, second messengers, neurotransmitters, and molecules up to 1 kD into the extracellular space, when activated. Previous studies identified that the opening of Pannexin-1 channels is essential for cellular migration, apoptosis and especially inflammation, but its effects on inflammatory response in SAH model have not been explored yet.Methods: Adult male Sprague-Dawley rats were divided into six groups: sham group (n = 20, SAH group (n = 20, SAH + LV-Scramble-ShRNA group (n = 20, SAH + LV-ShRNA-Panx1 group (n = 20, SAH + LV-NC group (n = 20, and SAH + LV-Panx1-EGFP group (n = 20. The rat SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. In SAH + LV-ShRNA-Panx1 group and SAH + LV-Panx1-EGFP group, lentivirus was administered via intracerebroventricular injection (i.c.v. at 72 h before the induction of SAH. The Quantitative real-time polymerase chain reaction, electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting were performed to explore the potential interactive mechanism between Pannexin-1 channels and TLR2/TLR4/NF-κB-mediated signaling pathway. Cognitive and memory changes were investigated by the Morris water maze test.Results: Administration with LV-ShRNA-Panx1 markedly decreased the expression levels of TLR2/4/NF-κB pathway-related agents in the brain cortex and significantly ameliorated neurological cognitive and memory deficits in this SAH model. On the contrary, administration of LV-Panx1-EGFP elevated the expressions of TLR2/4/NF-κB pathway-related agents, which correlated with augmented neuronal apoptosis.Conclusion: Pannexin-1 channels may

  6. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  7. Experimental Study of Effective Carrier Mobility of Multi-Fin-Type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistors with (111) Channel Surface Fabricated by Orientation-Dependent Wet Etching

    Science.gov (United States)

    Liu, Yongxun; Sugimata, Etsuro; Ishii, Kenichi; Masahara, Meishoku; Endo, Kazuhiko; Matsukawa, Takashi; Yamauchi, Hiromi; O'uchi, Shinichi; Suzuki, Eiichi

    2006-04-01

    We present an experimental study of effective carrier mobility ( μ eff) of multi-fin-type double-gate metal-oxide-semiconductor field-effect transistors (FinFETs) with a (111) channel surface fabricated by orientation-dependent wet etching. The peak values of the obtained μ eff of electrons and holes are approximately 300 and 160 cm2/(V s), respectively, which are close to those in (111) bulk metal-oxide-semiconductor field-effect transistors (MOSFETs). Moreover, the effective electric field (Eeff) dependence of the μ eff of electrons and holes shows a good agreement with the mobility universal curves of (111) bulk MOSFETs. These results indicate that the quality and channel surface roughness of Si-fins by orientation-dependent wet etching are excellent. The obtained results of μ eff are very useful for the modeling and design of FinFET-complementary metal-oxide-semiconductor (CMOS) circuits and the developed wet etching technique is very attractive in the fabrication of ultrathin and high-quality Si-fin channels.

  8. Experimental investigation on axial-flow turbine arrays in erodible and non-erodible channels: Performance, flow-field, and bathymetric interactions

    Science.gov (United States)

    Hill, Craig; Sotiropoulos, Fotis; Guala, Michele

    2014-11-01

    Natural channels ideal for hydrokinetic turbine installations present complex environments containing asymmetric flow, regions of high shear and turbulent eddies that impact turbine performance. To understand the impacts caused by variable topography, baseline conditions in a laboratory flume are compared to turbine performance, flow characteristics, and channel topography measurements from two additional experiments with small-scale and large-scale bathymetric features. Both aligned and staggered multi-turbine configurations were investigated. Small-scale axial-flow rotors attached to miniature DC motors provided measurements of turbine performance and response to i) complex topographic features and ii) flow features induced by upstream turbines. Discussion will focus on optimal streamwise and lateral spacing for axial-flow devices, turbine-topography interactions within arrays and inter-array flow-field measurements. Primary focus will center on results from turbines separated by a streamwise distance of 7dT. Additionally, results indicate possible control strategies for turbines installed in complex natural environments. This work was supported by NSF PFI Grant IIP-1318201, CAREER: Geophysical Flow Control (NSF).

  9. Defect Distributions in Channeling Experiments

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik; Sigmund, P.

    1965-01-01

    A simple collision model allows to calculate energy losses of perfectly channeled particles. The maximum energy loss is related in a simple way to the displacement energy of lattice atoms perpendicular to the channel. From that, one obtains rather definite predictions on the possibility...... of radiation damage by channeled particles. As an application, one gets a necessary criterion for the occurence of super tails in channeling experiments. The theory involves some assumptions on the behaviour of Born-Mayer potentials which are verified by comparison to experimental displacement energies....

  10. Experimental and theoretical study of hydrodynamic cell lysing of cancer cells in a high-throughput Circular Multi-Channel Microfiltration device

    KAUST Repository

    Ma, W.

    2013-04-01

    Microfiltration is an important microfluidic technique suitable for enrichment and isolation of cells. However, cell lysing could occur due to hydrodynamic damage that may be detrimental for medical diagnostics. Therefore, we conducted a systematic study of hydrodynamic cell lysing in a high-throughput Circular Multi-Channel Microfiltration (CMCM) device integrated with a polycarbonate membrane. HeLa cells (cervical cancer cells) were driven into the CMCM at different flow rates. The viability of the cells in the CMCM was examined by fluorescence microscopy using Acridine Orange (AO)/Ethidium Bromide (EB) as a marker for viable/dead cells. A simple analytical cell viability model was derived and a 3D numerical model was constructed to examine the correlation of between cell lysing and applied shear stress under varying flow rate and Reynolds number. The measured cell viability as a function of the shear stress was consistent with theoretical and numerical predictions when accounting for cell size distribution. © 2013 IEEE.

  11. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  12. Spark channel propagation in a microbubble liquid

    Energy Technology Data Exchange (ETDEWEB)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  13. MARKETING CHANNELS

    Directory of Open Access Journals (Sweden)

    Ljiljana Stošić Mihajlović

    2014-07-01

    Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.

  14. Effect of variable winds on current structure and Reynolds stresses in a tidal flow: analysis of experimental data in the eastern English Channel

    Directory of Open Access Journals (Sweden)

    K. A. Korotenko

    2012-11-01

    Full Text Available Wind and wave effects on tidal current structure and turbulence throughout the water column are examined using an upward-looking acoustic Doppler current profiler (ADCP. The instrument has been deployed on the seafloor of 18-m mean depth, off the north-eastern French coast in the eastern English Channel, over 12 tidal cycles, and covered the period of the transition from mean spring to neap tide, and forcing regimes varied from calm to moderate storm conditions. During storms, we observed gusty winds with magnitudes reaching 15 m s−1 and wave heights reaching up to 1.3 m. Analysis of velocity spectra revealed a noticeable contribution of wind-induced waves to spectral structure of velocity fluctuations within the subsurface layer. Near the surface, stormy winds and waves produced a significant intensification of velocity fluctuations, particularly when the sustained wind blew against the ebb tide flow. As during wavy periods, the variance-derived Reynolds stress estimates might include a wave-induced contamination, we applied the Variance Fit method to obtain unbiased stresses and other turbulent quantities. Over calm periods, the turbulent quantities usually decreased with height above the seabed. The stresses were found to vary regularly with the predominantly semidiurnal tidal flow. The along-shore stress being generally greater during the flood flow (~2.7 Pa than during the ebb flow (~−0.6 Pa. The turbulent kinetic energy production rate, P, and eddy viscosity, Az, followed a nearly regular cycle with close to a quarter-diurnal period. As for the stresses, near the seabed, we found the maximum values of estimated quantities of P and Az to be 0.1 Wm−3 and 0.5 m2 s−1, respectively, during the flood flow. Over the storm periods, we found the highest unbiased stress values (~−2.6 Pa during ebb when tidal currents were opposite to the

  15. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower...... for oxidant and coolant supply, which reduces the overall size of the stack, power losses, and results in a lower system volume. In the present study, we present unique designs for an open-cathode system which offers uniform temperature distribution with a minimum temperature gradient and a uniform flow...... distribution through each cell. Design studies were carried out to increase power density. An experimental and simulation approach was carried out to design the novel open-cathode system. Two unique parallel serpentine flow designs were developed to yield a low pressure drop and uniform flow distribution, one...

  16. Before-After analysis of the trophic network of an experimental dumping site in the eastern part of the Bay of Seine (English Channel).

    Science.gov (United States)

    Pezy, Jean-Philippe; Raoux, Aurore; Marmin, Stella; Balay, Pierre; Niquil, Nathalie; Dauvin, Jean-Claude

    2017-05-15

    An experimental study was conducted to assess the physical and biological impacts of muddy fine sand dredged material dumped on a medium sand site Machu offshore the Seine Estuary. Complementary trophic web modelling tools were applied to the Machu ecosystem to analyse the effects of dumping operations. Results show that, after the dumping operations, the biomass of fish increased while invertebrate biomass remained relatively stable through time. Nevertheless, the biomasses of benthic invertebrates, omnivores/scavengers and predators showed some increases, while non-selective deposit feeders and filter feeders decreased. At the ecosystem level, results show that the total ecosystem activity, the ascendency and the overall omnivorous character of the food-web structure increased after dumping operations, whereas recycling subsequently decreased. Finally, the fine and medium sand habitat offshore from the Seine estuary, which undergoes regular natural physical perturbations, shows a high resilience after a short dumping phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  18. Magnetically suspended virtual divergent channel

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Ryuichiro [Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515 (Japan)]. E-mail: yamane@kokushikan.ac.jp; Oshiama, Shuzo [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Park, Myeong-Kwan [Pusan National University, 30 Changjeon-dong, Kumjeong-ku, Pusan 609-735 (Korea, Republic of)

    2005-03-15

    Two permanent magnets are set face-to-face and inclined with each other to produce the long cuspidal magnetic field. The diamagnetic liquid is levitated and flows through it without contact with the solid walls as if it is in the virtual divergent channel. Analysis is made on the shape of the virtual channel, and the results are compared with the experimental ones. The divergence angle increases with the increase in the inclination of the magnets.

  19. Single-channel kinetics of BK (Slo1) channels

    Science.gov (United States)

    Geng, Yanyan; Magleby, Karl L.

    2014-01-01

    Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states. PMID:25653620

  20. BK channel modulators: a comprehensive overview

    DEFF Research Database (Denmark)

    Nardi, Antonio; Olesen, Søren-Peter

    2008-01-01

    the notion that the channel represents an innovative and promising drug target. However, after more than ten years of intense research effort both in academia and industry, scientists have yet to witness the approval of a single BK channel modulator for clinical use. On the contrary, three BK openers...... and blockers 4) Marketed and/or investigational drugs with BK-modulating side properties and structural analogues 5) Naturally-occurring BK channel openers and structural analogues 6) Synthetic BK channel openers. This review is intended to provide readers with current opinion on the BK channel as a drug......The large Ca(2+)-activated K(+) channel (BK channel) reflects per excellence the dilemma of the molecular target driven drug discovery process. Significant experimental evidence suggests that the BK channels play a pivotal and specific role in many pathophysiological conditions supporting...

  1. On Shor's Channel Extension and Constrained Channels

    Science.gov (United States)

    Holevo, A. S.; Shirokov, M. E.

    Several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity, are given. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. After giving an algebraic formulation for Shor's channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, ``global'' additivity for channels with arbitrary constraints is equivalent to additivity without constraints.

  2. Hydraulic flow through a channel contraction: multiple steady states

    NARCIS (Netherlands)

    Akers, B.; Bokhove, Onno

    2008-01-01

    We have investigated shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width $b_0$ ending in a linear contraction of minimum width $b_c$. Experimentally, we observe

  3. Mimicking an amplitude damping channel for Laguerre Gaussian Modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-10-01

    Full Text Available An amplitude damping channel for Laguerre-Gaussian (LG) modes is presented. Experimentally the action of the channel on LG modes is in good agreement with that predicted theoretically....

  4. Direct coupled-channels deperturbation analysis of the A{sup 1}Σ{sup +} ∼ b{sup 3}Π complex in LiCs with experimental accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, P., E-mail: Pawel.Kowalczyk@fuw.edu.pl [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Jastrzebski, W.; Szczepkowski, J. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Pazyuk, E. A.; Stolyarov, A. V., E-mail: avstol@phys.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991 (Russian Federation)

    2015-06-21

    We have carried out the direct deperturbation analysis of about 780 rovibronic term values of the strongly spin-orbit (SO) coupled A{sup 1}Σ{sup +} and b{sup 3}Π states of the {sup 7}Li{sup 133}Cs molecule recorded by polarization labelling spectroscopy technique. The explicit A{sup 1}Σ{sup +} ∼ b{sup 3}Π{sub Ω=0,1,2} coupled-channels treatment allowed us to reproduce 95% experimental term values with a standard deviation of 0.05 cm{sup −1} which is close to the accuracy of the present experiment. The initial potential energy curves (PECs) of the mutually perturbed states and SO matrix elements were ab initio evaluated in the basis of the spin-averaged wave functions. The empirically refined PECs and SO functions, along with the theoretical transition dipole moments, were used to predict energy and radiative properties of the A ∼ b complex for low J levels of both {sup 7}Li{sup 133}Cs and {sup 6}Li{sup 133}Cs isotopologues. The reasonable candidates for the stimulated Raman transitions between initial Feshbach resonance states, the mixed levels of the A ∼ b complex, and absolute ground X{sup 1}Σ{sup +} (v = 0 and J = 0) state were identified.

  5. Ion channel model development and validation

    Science.gov (United States)

    Nelson, Peter Hugo

    2010-03-01

    The structure of the KcsA ion channel selectivity filter is used to develop three simple models of ion channel permeation. The quantitative predictions of the knock-on model are tested by comparison with experimental data from single-channel recordings of the KcsA channel. By comparison with experiment, students discover that the knock-on model can't explain saturation of ion channel current as the concentrations of the bathing solutions are increased. By inverting the energy diagram, students derive the association-dissociation model of ion channel permeation. This model predicts non-linear Michaelis-Menten saturating behavior that requires students to perform non-linear least-squares fits to the experimental data. This is done using Excel's solver feature. Students discover that this simple model does an excellent job of explaining the qualitative features of ion channel permeation but cannot account for changes in voltage sensitivity. The model is then extended to include an electrical dissociation distance. This rapid translocation model is then compared with experimental data from a wide variety of ion channels and students discover that this model also has its limitations. Support from NSF DUE 0836833 is gratefully acknowledged.

  6. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  7. Channel nut tool

    Science.gov (United States)

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  8. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  9. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    Directory of Open Access Journals (Sweden)

    Sanggil Yeoum

    2017-05-01

    Full Text Available Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs. While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  10. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  11. [Memory and potassium channels].

    Science.gov (United States)

    Solntseva, E I; Bukanova, Iu V; Skrebitskiĭ, V G

    2003-01-01

    The K(+)-channels of the surface membrane play a crucial role in the generation of electrical activity of a neuron. There is a large diversity of the K(+)-channels that depends on a great number (over 200) of genes encoding channels proteins. An evolutionary conservation of channel's proteins is determined. The K(+)-channels were found to have a great importance in the memory processes. It was shown on different model systems that K(+)-current of the surface membrane decreases during the learning. The antagonists of K(+)-channels were found to improve the learning and memory. It was revealed in electrophysiological experiments that K(+)-channels antagonists can either themselves induce a long-term synaptic potentiation or intensify the synaptic potentiation induced by a tetanization. The disfunction of K(+)-channels is believed to be an important link in the mechanisms of memory disturbances. In animal mutants with K(+)-channels disfunction, learning and memory are deficient. In behavioral experiments, the use of K(+)-channels openers make the learning worse. Amnesia caused by cerebral ischemia is explained by strong activity of K(+)-channels which not only inhibits neuronal excitement but also causes neurodegeneration. The question on the K(+)-channels involvement into pathophysiology of Alzheimer's disease is discussed. Neurotoxic peptide beta-amyloid, which is supposed to be involved into mechanisms of Alzheimer's disease, modulates K(+)-channels function. The effect of beta-amyloid depends on the subtype of K(+)-channels: A-channels are inhibited, and KDR-channels, on the contrary, become stronger. The effect of the cognitive enhancers (vinpocetine, piracetam, tacrine, linopirdine) on K(+)-current also depends on the subtype of K(+)-channels. Slow-inactivating K(+)-currents (IDR, IK(Ca), IM) are inhibited in the presence of these drugs, while fast-in-activating K(+)-current (A-current) remains unchanged or even increases.

  12. Hadamard quantum broadcast channels

    Science.gov (United States)

    Wang, Qingle; Das, Siddhartha; Wilde, Mark M.

    2017-10-01

    We consider three different communication tasks for quantum broadcast channels, and we determine the capacity region of a Hadamard broadcast channel for these various tasks. We define a Hadamard broadcast channel to be such that the channel from the sender to one of the receivers is entanglement-breaking and the channel from the sender to the other receiver is complementary to this one. As such, this channel is a quantum generalization of a degraded broadcast channel, which is well known in classical information theory. The first communication task we consider is classical communication to both receivers, the second is quantum communication to the stronger receiver and classical communication to other, and the third is entanglement-assisted classical communication to the stronger receiver and unassisted classical communication to the other. The structure of a Hadamard broadcast channel plays a critical role in our analysis: The channel to the weaker receiver can be simulated by performing a measurement channel on the stronger receiver's system, followed by a preparation channel. As such, we can incorporate the classical output of the measurement channel as an auxiliary variable and solve all three of the above capacities for Hadamard broadcast channels, in this way avoiding known difficulties associated with quantum auxiliary variables.

  13. Altered expression of the voltage-gated calcium channel subunit alpha(2)delta-1: A comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain

    Czech Academy of Sciences Publication Activity Database

    Nieto-Rostro, M.; Sandhu, G.; Bauer, C. S.; Jiruška, Přemysl; Jefferys, J. G. R.; Dolphin, A. C.

    2014-01-01

    Roč. 283, Dec (2014), s. 124-137 ISSN 0306-4522 R&D Projects: GA MZd(CZ) NT14489 Institutional support: RVO:67985823 Keywords : calcium channel * dorsal root ganglion (DRG) * alpha2delta subunit * epilepsy * neuropathic pain * reactive gliosis Subject RIV: FH - Neurology Impact factor: 3.357, year: 2014

  14. USACE Navigation Channels 2012

    Data.gov (United States)

    California Department of Resources — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  15. Calcium channel blocker overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used to ...

  16. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-05-30

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  17. Channel morphology [Chapter 5

    Science.gov (United States)

    Jonathan W. Long; Alvin L. Medina; Daniel G. Neary

    2012-01-01

    Channel morphology has become an increasingly important subject for analyzing the health of rivers and associated fish populations, particularly since the popularization of channel classification and assessment methods. Morphological data can help to evaluate the flows of sediment and water that influence aquatic and riparian habitat. Channel classification systems,...

  18. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  19. Reptation theory of ion channel gating.

    Science.gov (United States)

    Millhauser, G L

    1990-04-01

    Reptation theory is a highly successful approach for describing polymer dynamics in entangled systems. In turn, this molecular process is the basis of viscoelasticity. We apply a modified version of reptation dynamics to develop an actual physical model of ion channel gating. We show that at times longer than microseconds these dynamics predict an alpha-helix-screw motion for the amphipathic protein segment that partially lines the channel pore. Such motion has been implicated in several molecular mechanics studies of both voltage-gated and transmitter-gated channels. The experimental probability density function (pdf) for this process follows t-3/2 which has been observed in several experimental systems. Reptation theory predicts that channel gating will occur on the millisecond time scale and this is consistent with experimental results from single-channel recording. We examine the consequences of reptation over random barriers and we show that, to first order, the pdf remains unchanged. In the case of a charged helix undergoing reptation in the presence of a transmembrane potential we show that the tail of the pdf will be exponential. We provide a list of practical experimental predictions to test the validity of this physical theory.

  20. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  1. Hidden systematics of fission channels

    Directory of Open Access Journals (Sweden)

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  2. Dysfunctional HCN ion channels in neurological diseases

    Directory of Open Access Journals (Sweden)

    Jacopo C. DiFrancesco

    2015-03-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are expressed as four different isoforms (HCN1-4 in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic and

  3. Channel characterization for high-speed W-band wireless communication links

    DEFF Research Database (Denmark)

    Rommel, Simon; Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José

    2015-01-01

    We present and discuss results from an experimental characterization of the W-band indoor wireless channel, including both large and small scale fading phenomena as well as corresponding channel parameters and their impact on system performance....

  4. The Neural Noisy Channel

    OpenAIRE

    Yu, Lei; Blunsom, Phil; Dyer, Chris; Grefenstette, Edward; Kocisky, Tomas

    2016-01-01

    We formulate sequence to sequence transduction as a noisy channel decoding problem and use recurrent neural networks to parameterise the source and channel models. Unlike direct models which can suffer from explaining-away effects during training, noisy channel models must produce outputs that explain their inputs, and their component models can be trained with not only paired training samples but also unpaired samples from the marginal output distribution. Using a latent variable to control ...

  5. A simple quantum channel having superadditivity of channel capacity

    OpenAIRE

    Sasaki, Masahide; Kato, Kentaro; Izutsu, Masayuki; Hirota, Osamu

    1997-01-01

    When classical information is sent through a quantum channel of nonorthogonal states, there is a possibility that transmittable classical information exceeds a channel capacity in a single use of the initial channel by extending it into multi-product channel. In this paper, it is shown that this remarkable feature of a quantum channel, so-called superadditivity, appears even in as low as the third extended coding of the simplest binary input channel. A physical implementation of this channel ...

  6. Characteristics of two-phase flows in large diameter channels

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65401 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)

    2016-12-15

    Two-phase flows in large diameter channels have a great deal of importance in a wide variety of industrial applications. Nuclear systems, petroleum refineries, and chemical processes make extensive use of larger systems. Flows in such channels have very different properties from flows in smaller channels which are typically used in experimental research. In this paper, the various differences between flows in large and small channels are highlighted using the results of previous experimental and analytical research. This review is followed by a review of recent experiments in and model development for flows in large diameter channels performed by the authors. The topics of these research efforts range from void fraction and interfacial area concentration measurement to flow regime identification and modeling, drift-flux modeling for high void fraction conditions, and evaluation of interfacial area transport models for large diameter channels.

  7. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times......Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...

  8. Mechanotransduction channels of the trabecular meshwork.

    Science.gov (United States)

    Tran, Vu T; Ho, Phi T; Cabrera, Lais; Torres, Juan E; Bhattacharya, Sanjoy K

    2014-03-01

    To determine whether the trabecular meshwork (TM), like the other organs engaged in filter like activities (such as kidneys), show the expression of known mechanotransduction channels at protein level. Human donor eye globes (n = 20), Donor eye derived TM tissue and primary TM cells were utilized for these studies. Commercially available antibodies to channels, immunohisto- and immunocytochemistry, Western blot and mass spectrometric analyses were performed to determine the presence of mechanosensitive channels at protein level. The study was performed adhering to tenets of declaration of Helsinki. We demonstrate here the presence of 11 mechanotransduction channels (Piezo1, Piezo2, TASK1, TREK1, TRPA1, TRPC1, TRPC2, TRPC3, TRPC6, TRPM2, TRPP2) as expressed protein in the TM tissue and at the isolated TM cell level. Presence of at least one known isoform of these channels was demonstrated using Western blot analyses. We demonstrated the presence of 11 mechanotransduction channels in the TM and in isolated TM cells at protein level. Demonstration of these channels as proteins at tissue and cellular level will pave the way for further experimentation.

  9. TRP channels in schistosomes

    Directory of Open Access Journals (Sweden)

    Swarna Bais

    2016-12-01

    Full Text Available Praziquantel (PZQ is effectively the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions of people worldwide. Many anthelmintics, likely including PZQ, target ion channels, membrane protein complexes essential for normal functioning of the neuromusculature and other tissues. Despite this fact, only a few classes of parasitic helminth ion channels have been assessed for their pharmacological properties or for their roles in parasite physiology. One such overlooked group of ion channels is the transient receptor potential (TRP channel superfamily. TRP channels share a common core structure, but are widely diverse in their activation mechanisms and ion selectivity. They are critical to transducing sensory signals, responding to a wide range of external stimuli. They are also involved in other functions, such as regulating intracellular calcium and organellar ion homeostasis and trafficking. Here, we review current literature on parasitic helminth TRP channels, focusing on those in schistosomes. We discuss the likely roles of these channels in sensory and locomotor activity, including the possible significance of a class of TRP channels (TRPV that is absent in schistosomes. We also focus on evidence indicating that at least one schistosome TRP channel (SmTRPA has atypical, TRPV1-like pharmacological sensitivities that could potentially be exploited for future therapeutic targeting.

  10. Study on Boiling Heat Transfer Phenomenon in Micro-channels

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Namgyun [Inha Technical College, Incheon (Korea, Republic of)

    2017-09-15

    Recently, efficient heat dissipation has become necessary because of the miniaturization of devices, and research on boiling on micro-channels has attracted attention. However, in the case of micro-channels, the friction coefficient and heat transfer characteristics are different from those in macro-channels. This leads to large errors in the micro scale results, when compared to correlations derived from the macro scale. In addition, due to the complexity of the mechanism, the boiling phenomenon in micro-channels cannot be approached only by experimental and theoretical methods. Therefore, numerical methods should be utilized as well, to supplement these methods. However, most numerical studies have been conducted on macro-channels. In this study, we applied the lattice Boltzmann method, proposed as an alternative numerical tool to simulate the boiling phenomenon in the micro-channel, and predicted the bubble growth process in the channel.

  11. REVIEW OF WIRELESS MIMO CHANNEL MODELS

    African Journals Online (AJOL)

    user

    represented as a hybrid of both the deterministic and analytical modeling approaches. The SV model is a case of statistical model that was validated experimentally. Although, the SV model was developed for smart antennas, it has been extended in literature to accommodate MIMO channels [12]. The received signal rays ...

  12. DESIGN OF PARABOLIC CHANNELS

    Directory of Open Access Journals (Sweden)

    A. K. Alibekov

    2015-01-01

    Full Text Available The dependence of the apparent location of the hydraulic parameters of parabolic channels in earthen channel and volume of dredging required in their design and construction, on the basis of conditions to ensure the stability of the slope at the maximum water flow rate. 

  13. Turbulence characteristics in sharp open-channel bends

    NARCIS (Netherlands)

    Blanckaert, K.; De Vriend, H.J.

    2005-01-01

    In spite of its importance, little is known about the turbulence characteristics in open-channel bends. This paper reports on an experimental investigation of turbulence in one cross section of an open-channel bend. Typical flow features are a bicellular pattern of cross-stream circulation

  14. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  15. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  16. CHANNEL ESTIMATION TECHNIQUE

    DEFF Research Database (Denmark)

    2015-01-01

    A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....

  17. Extreme bosonic linear channels

    Science.gov (United States)

    Holevo, A. S.

    2013-02-01

    The set of all channels with a fixed input and output is convex. We first give a convenient formulation of the necessary and sufficient condition for a channel to be an extreme point of this set in terms of the complementary channel, a notion of great importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra in the spirit of Arveson. We then use this formulation to prove our main result: under certain nondegeneracy conditions, environmental purity is necessary and sufficient for the extremality of a bosonic linear (quasifree) channel. It hence follows that a Gaussian channel between finite-mode bosonic systems is extreme if and only if it has minimum noise.

  18. Conductive Channel for Energy Transmission

    Science.gov (United States)

    Apollonov, Victor V.

    2011-11-01

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of "Impulsar" represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The "Impulsar"—laser jet engine vehicle—propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO2—laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  19. Performance evaluation of hybrid modified micro-channel solar cell ...

    African Journals Online (AJOL)

    user

    Keywords: Solar cell thermal tile, Micro-channel, Electrical efficiency, Thermal modeling. 1. ... performance of building integrated photovoltaic water –heating system for ... experimental study on energy generation with a photovoltaic (PV) solar ...

  20. Evaluation channel performance in multichannel environments

    NARCIS (Netherlands)

    Gensler, S.; Dekimpe, M.; Skiera, B.

    2007-01-01

    Evaluating channel performance is crucial for actively managing multiple sales channels, and requires understanding the customers' channel preferences. Two key components of channel performance are (i) the existing customers' intrinsic loyalty to a particular channel and (ii) the channel's ability

  1. Assay for calcium channels

    Energy Technology Data Exchange (ETDEWEB)

    Glossmann, H.; Ferry, D.R.

    1985-01-01

    This chapter focuses on biochemical assays for Ca/sup 2 +/-selective channels in electrically excitable membranes which are blocked in electrophysiological and pharmacological experiments by verapamil, 1,4-dihydropyridines, diltiazen (and various other drugs), as well as inorganic di- or trivalent cations. The strategy employed is to use radiolabeled 1,4-dihydropyridine derivatives which block calcium channels with ED/sub 50/ values in the nanomolar range. Although tritiated d-cis-diltiazem and verapamil can be used to label calcium channels, the 1,4-dihydropyridines offer numerous advantages. The various sections cover tissue specificity of channel labeling, the complex interactions of divalent cations with the (/sup 3/H)nimodipine-labeled calcium channels, and the allosteric regulation of (/sup 3/H)nimodipine binding by the optically pure enantiomers of phenylalkylamine and benzothiazepine calcium channel blockers. A comparison of the properties of different tritiated 1,4-dihydropyridine radioligands and the iodinated channel probe (/sup 125/I)iodipine is given.

  2. Investigating quantum metrology in noisy channels.

    Science.gov (United States)

    Falaye, B J; Adepoju, A G; Aliyu, A S; Melchor, M M; Liman, M S; Oluwadare, O J; González-Ramírez, M D; Oyewumi, K J

    2017-11-30

    Quantum entanglement lies at the heart of quantum information and quantum metrology. In quantum metrology, with a colossal amount of quantum Fisher information (QFI), entangled systems can be ameliorated to be a better resource scheme. However, noisy channels affect the QFI substantially. This research work seeks to investigate how QFI of N-qubit Greenberger-Horne-Zeilinger (GHZ) state is affected when subjected to decoherence channels: bit-phase flip (BPF) and generalize amplitude damping (GAD) channels, which can be induced experimentally. We determine the evolution under these channels, deduce the eigenvalues, and then derive the QFI. We found that when there is no interaction with the environment, the Heisenberg limit can be achieved via rotations along the z direction. It has been shown that in BPF channel, the maximal mean QFI of the N-qubit GHZ state ([Formula: see text]) dwindles as decoherence rate (p B ) increases due to flow of information from the system to the environment, until p B  = 0.5, then revives to form a symmetric around p B  = 0.5. Thus, p B  > 0.5 leads to a situation where more noise yields more efficiency. We found that in GAD channel, at finite temperature, QFIs decay more rapidly than at zero temperature. Our results also reveal that QFI can be enhanced by adjusting the temperature of the environment.

  3. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink

    Science.gov (United States)

    Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.

    2016-07-01

    The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.

  4. Channel Choice: A Literature Review

    DEFF Research Database (Denmark)

    Østergaard Madsen, Christian; Kræmmergaard, Pernille

    2015-01-01

    The channel choice branch of e-government studies citizens’ and businesses’ choice of channels for interacting with government, and how government organizations can integrate channels and migrate users towards the most cost-efficient channels. In spite of the valuable contributions offered no sys...... no systematic overview exist of channel choice. We present a literature review of channel choice studies in government to citizen context identifying authors, countries, methods, concepts, units of analysis, and theories, and offer suggestionsfor future studies....

  5. Central schemes for open-channel flow

    Science.gov (United States)

    Gottardi, Guido; Venutelli, Maurizio

    2003-03-01

    The resolution of the Saint-Venant equations for modelling shock phenomena in open-channel flow by using the second-order central schemes of Nessyahu and Tadmor (NT) and Kurganov and Tadmor (KT) is presented. The performances of the two schemes that we have extended to the non-homogeneous case and that of the classical first-order Lax-Friedrichs (LF) scheme in predicting dam-break and hydraulic jumps in rectangular open channels are investigated on the basis of different numerical and physical conditions. The efficiency and robustness of the schemes are tested by comparing model results with analytical or experimental solutions.

  6. Convex approximations of quantum channels

    Science.gov (United States)

    Sacchi, Massimiliano F.; Sacchi, Tito

    2017-09-01

    We address the problem of optimally approximating the action of a desired and unavailable quantum channel Φ having at our disposal a single use of a given set of other channels {Ψi} . The problem is recast to look for the least distinguishable channel from Φ among the convex set ∑ipiΨi , and the corresponding optimal weights {pi} provide the optimal convex mixing of the available channels {Ψi} . For single-qubit channels we study specifically cases where the available convex set corresponds to covariant channels or to Pauli channels, and the desired target map is an arbitrary unitary transformation or a generalized damping channel.

  7. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  8. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  9. Coding for optical channels

    CERN Document Server

    Djordjevic, Ivan; Vasic, Bane

    2010-01-01

    This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.

  10. Imperfect Channel State Estimation

    Directory of Open Access Journals (Sweden)

    Tao Qin

    2010-01-01

    in a multiuser OFDM CR system. A simple back-off scheme is proposed, and simulation results are provided which show that the proposed scheme is very effective in mitigating the negative impact of channel estimation errors.

  11. Channelized Streams in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This draft dataset consists of all ditches or channelized pieces of stream that could be identified using three input datasets; namely the1:24,000 National...

  12. 28-Channel rotary transformer

    Science.gov (United States)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  13. Channelling versus inversion

    DEFF Research Database (Denmark)

    Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten

    2013-01-01

    Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....

  14. Ion Channels in Leukocytes

    Science.gov (United States)

    1991-07-01

    state (170).-Single K, channel currents were blocked by gesting that the synthesis of new channel protein was external-Ba (2.5 mM) and, like whole...Hg, La, cells, NK cells, human 2M2, 267 nifedipine, and murine B-cells diltiazem, chlorpromazine , forskolin, trifluorperazine, noxiustoxin -K, (I...Cells that ultimately leads to an increase in DNA synthesis and cell division. T lymphocytes develop in the thymus and have both effector and

  15. The pattern of expression of the voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models.

    Science.gov (United States)

    Decosterd, Isabelle; Ji, Ru-Rong; Abdi, Salahadin; Tate, Simon; Woolf, Clifford J

    2002-04-01

    A spared nerve injury of the sciatic nerve (SNI) or a segmental lesion of the L5 and L6 spinal nerves (SNL) lead to behavioral signs of neuropathic pain in the territory innervated by adjacent uninjured nerve fibers, while a chronic constriction injury (CCI) results in pain sensitivity in the affected area. While alterations in voltage-gated sodium channels (VGSCs) have been shown to contribute to the generation of ectopic activity in the injured neurons, little is known about changes in VGSCs in the neighboring intact dorsal root ganglion (DRG) neurons, even though these cells begin to fire spontaneously. We have now investigated changes in the expression of the TTX-resistant VGSCs, Nav1.8 (SNS/PN3) and Nav1.9 (SNS2/NaN) by immunohistochemistry in rat models of neuropathic pain both with an intermingling of intact and degenerated axons in the nerve stump (SNL and CCI) and with a co-mingling in the same DRG of neurons with injured and uninjured axons (sciatic axotomy and SNI). The expression of Nav1.8 and Nav1.9 protein was abolished in all injured DRG neurons, in all models. In intact DRGs and in neighboring non-injured neurons, the expression and the distribution among the A- and C-fiber neuronal populations of Nav1.8 and Nav1.9 was, however, unchanged. While it is unlikely, therefore, that a change in the expression of TTX-resistant VGSCs in non-injured neurons contributes to neuropathic pain, it is essential that molecular alterations in both injured and non-injured neurons in neuropathic pain models are investigated.

  16. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  17. Experimental thermo-aerodynamic characterisation of a jet in crossflow, impacting or not, in channel turbulence; Caracterisation experimentale thermo-aeraulique d'un jet transverse impactant ou non, en turbulence de conduite

    Energy Technology Data Exchange (ETDEWEB)

    Fougairolle, P.

    2009-07-15

    This work consists in the experimental study of a jet in crossflow in a closed wind tunnel. Depending on the value of the velocity ratio (r U{sub j}/U{infinity}), this confined rectangular jet can interact or impact with the opposite wall from the one it issues. The jet is slightly heated ({approx}10 C) in order to stay in the passive scalar case. An improvement of the experimental facility has been done to obtain thermal boundary conditions compatible with the measurements of slight differences of temperature, imposed by the passive scalar. Concerning the metrology, hot and cold wire anemometry and thermometry are used, and all the anemometric devices are developed and built in the lab. Probes made with Wollaston wire (Pt-Rh) of 0.35{mu}m diameter are coupled with an anemometer and a thermometer optimized to maximize the signal to noise ratio. The results are obtained both thanks to visualizations by fast camera shots for several velocity ratios (r between 3 and 12), and thanks to local hot and cold wire measurements, in the particular case of two velocity ratios (r = 3.3 and 9.4). Mixing properties of the scalar are studied by the plot of statistical values of velocity and temperature in different plans, perpendicularly to the three axis. The analysis of spectral densities of the signals on several typical locations emphasizes some features of the dynamic behaviour of the jet. (author)

  18. Interacting divided channel method for compound channel flow

    NARCIS (Netherlands)

    Huthoff, Freek; Roos, Pieter C.; Augustijn, Dionysius C.M.; Hulscher, Suzanne J.M.H.

    2008-01-01

    A new method to calculate flow in compound channels is proposed: the interacting divided channel method (IDCM), based on a new parametrization of the interface stress between adjacent flow compartments, typically between the main channel and floodplain of a two-stage channel. This expression is

  19. Multipath correlations in underwater acoustic communication channels.

    Science.gov (United States)

    Huang, S H; Yang, T C; Huang, Chen-Fen

    2013-04-01

    Uncorrelated scattering (US), which assumes that multipath arrivals undergo uncorrelated scattering and are thus uncorrelated, has been the standard model for digital communications including underwater acoustic communications. This paper examines the cross-correlation of multipath arrivals based on at-sea data with different temporal coherence time, assuming quasi-stationary statistics. It is found that multipath arrivals are highly cross-correlated when the channel is temporally coherent, and are uncorrelated when the channel is temporally incoherent. A theoretical model based on the path phase rates and relative-phase fluctuations is used to explain experimentally observed phenomena, assuming the path amplitudes vary slowly compared with the phases. The implications of correlated scattering for underwater acoustic communication channel tracking are discussed.

  20. Channels with Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Isabella Appiah

    2012-01-01

    Full Text Available The uteri, spontaneously active or Ca2+ (6 mM induced, were allowed to equilibrate, and to inhibit voltage-gated potassium ( channels 1 mM 4-amino pyridine (4-AP was applied for 15 min before adding H2O2 .  H2O2 was added cumulatively: 2 μM, 20 μM, 200 μM, 400 μM, and 3 mM. Average time for H2O2 concentrations (2, 20, 200, and 400 μM to reach its full effect was 15 min. H2O2 3 mM had a prolonged effect and therefore was left to act for 30 min. Two-way ANOVA showed significant differences in time dependency between spontaneous and Ca2+-induced rat uteri after applying 3 mM H2O2 (type of contraction, , but not 400 μM H2O2 (. Our results indicate that H2O2 oxidises channel intracellular thiol groups and activates the channel, inducing relaxation. Cell antioxidative defence system quickly activates glutathione peroxidase (GSHPx defence mechanism but not catalase (CAT defence mechanism. Intracellular redox mechanisms repair the oxidised sites and again establish deactivation of channels, recuperating contractility. In conclusion, our results demonstrate that channels can be altered in a time-dependent manner by reversible redox-dependent intracellular alterations.

  1. MEMS in microfluidic channels.

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  2. Channel Identification Machines

    Directory of Open Access Journals (Sweden)

    Aurel A. Lazar

    2012-01-01

    Full Text Available We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  3. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  4. Headward growth and branching in subterranean channels

    Science.gov (United States)

    Kudrolli, Arshad; Ionkin, Nikolay; Panaitescu, Andreea

    2017-11-01

    We investigate the erosive growth of channels in a thin subsurface sedimentary layer driven by hydrodynamic drag toward understanding subterranean networks and their relation to river networks charged by ground water. Building on a model based on experimental observations of fluid-driven evolution of bed porosity, we focus on the characteristics of the channel growth and their bifurcations in a horizontal rectangular domain subject to various fluid source and sink distributions. We find that the erosion front between low- and high-porosity regions becomes unstable, giving rise to branched channel networks, depending on the spatial fluctuations of the fluid flow near the front and the degree to which the flow is above the erodibility threshold of the medium. Focusing on the growth of a network starting from a single channel, and by identifying the channel heads and their branch points, we find that the number of branches increases sublinearly and is affected by the source distribution. The mean angles between branches are found to be systematically lower than river networks in humid climates and depend on the domain geometry.

  5. Chaos in quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Hosur, Pavan; Qi, Xiao-Liang [Department of Physics, Stanford University,476 Lomita Mall, Stanford, California 94305 (United States); Roberts, Daniel A. [Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, Massachusetts 02139 (United States); Yoshida, Beni [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena CA 91125 (United States)

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  6. Nanoscale Vacuum Channel Transistor.

    Science.gov (United States)

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M

    2017-04-12

    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  7. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle....... Understanding the structure/function relationship of TRPV4 is essential for future development of specific TRPV4 agonist for treatment of diseases causes by dysfunctional TRPV4. E.g. two inherited bone dysplasias have recently been demonstrated in humans to originate from TRPV4 mutations....

  8. Superhydrophobic nanofluidic channels for enhanced electrokinetic conversion

    Science.gov (United States)

    Checco, Antonio; Al Hossain, Aktaruzzaman; Rahmani, Amir; Black, Charles; Doerk, Gregory; Colosqui, Carlos

    2017-11-01

    We present current efforts in the development of novel slit nanofluidic channels with superhydrophobic nanostructured surfaces designed to enhance hydrodynamic conductivity and improve selective transport and electrokinetic energy conversion efficiencies (mechanical-electrical energy conversion). The nanochannels are fabricated on silicon wafers using UV lithography, and their internal surface is patterned with conical nanostructures (feature size and spacing 30 nm) defined by block copolymer self-assembly and plasma etching. These nanostructures are rendered superhydrophobic by passivation with a hydrophobic silane monolayer. We experimentally characterize hydrodynamic conductivity, effective zeta potentials, and eletrokinetic flows for the patterned nanochannels, comparing against control channels with bare surfaces. Experimental observations are rationalized using both continuum-based modeling and molecular dynamics simulations. Scientific and technical knowledge produced by this work is particularly relevant for sustainable energy conversion and storage, separation processes and water treatment using nanoporous materials. The ONR Contract # N000141613178 and NSF-CBET award# 1605809.

  9. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    Energy Technology Data Exchange (ETDEWEB)

    Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  10. Ionic Channels in Thunderclouds

    Science.gov (United States)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  11. A new Infrared Atmospheric Sounding Interferometer channel selection and assessment of its impact on Met Office NWP forecasts

    Science.gov (United States)

    Noh, Young-Chan; Sohn, Byung-Ju; Kim, Yoonjae; Joo, Sangwon; Bell, William; Saunders, Roger

    2017-11-01

    A new set of Infrared Atmospheric Sounding Interferometer (IASI) channels was re-selected from 314 EUMETSAT channels. In selecting channels, we calculated the impact of the individually added channel on the improvement in the analysis outputs from a one-dimensional variational analysis (1D-Var) for the Unified Model (UM) data assimilation system at the Met Office, using the channel score index (CSI) as a figure of merit. Then, 200 channels were selected in order by counting each individual channel's CSI contribution. Compared with the operationally used 183 channels for the UM at the Met Office, the new set shares 149 channels, while the other 51 channels are new. Also examined is the selection from the entropy reduction method with the same 1D-Var approach. Results suggest that channel selection can be made in a more objective fashion using the proposed CSI method. This is because the most important channels can be selected across the whole IASI observation spectrum. In the experimental trial runs using the UM global assimilation system, the new channels had an overall neutral impact in terms of improvement in forecasts, as compared with results from the operational channels. However, upper-tropospheric moist biases shown in the control run with operational channels were significantly reduced in the experimental trial with the newly selected channels. The reduction of moist biases was mainly due to the additional water vapor channels, which are sensitive to the upper-tropospheric water vapor.

  12. Studies on positive conveying in helically channeled single screw extruders

    Directory of Open Access Journals (Sweden)

    L. Pan

    2012-07-01

    Full Text Available A solids conveying theory called double-flight driving theory was proposed for helically channeled single screw extruders. In the extruder, screw channel rotates against static barrel channel, which behaves as cooperative embedded twin-screws for the positive conveying. They turn as two parallel arc plates, between which an arc-plate solid-plug was assumed. By analyzing the forces on the solid-plug in the barrel channel and screw channel, the boundary conditions when the solid-plug is waived of being cut off on barrel wall, were found to have the capacity of the positive conveying. Experimental data were obtained using a specially designed extruder with a helically channeled barrel in the feeding zone and a pressure-adjustable die. The effects of the barrel channel geometry and friction coefficients on the conveying mechanism were presented and compared with the experimental results. The simulations showed that the positive conveying could be achieved after optimizing extruder designs. Compared with the traditional design with the friction-drag conveying, the throughput is higher while screw torque and energy consumption are decreased. Besides, the design criteria of the barrel channel were also discussed.

  13. Aquaporins as gas channels.

    Science.gov (United States)

    Herrera, Marcela; Garvin, Jeffrey L

    2011-10-01

    Gas molecules play important roles in human physiology. Volatile substances produced by one cell often regulate neighboring cells in a paracrine fashion. While gaseous molecules have traditionally been thought to travel from cell to cell by free diffusion through the bilayer portion of the membrane, this does not explain their rapid physiological actions. The recent observations that: (1) water channels can transport other molecules besides water, and (2) aquaporins are often expressed in tissues where gas (but not water) transport is essential suggest that these channels conduct physiologically important gases in addition to water. This review summarizes recent findings on the role of aquaporins as gas transporters as well as their physiological significance.

  14. Sodium channels and pain.

    Science.gov (United States)

    Habib, Abdella M; Wood, John N; Cox, James J

    2015-01-01

    Human and mouse genetic studies have led to significant advances in our understanding of the role of voltage-gated sodium channels in pain pathways. In this chapter, we focus on Nav1.7, Nav1.8, Nav1.9 and Nav1.3 and describe the insights gained from the detailed analyses of global and conditional transgenic Nav knockout mice in terms of pain behaviour. The spectrum of human disorders caused by mutations in these channels is also outlined, concluding with a summary of recent progress in the development of selective Nav1.7 inhibitors for the treatment of pain.

  15. Magnetoresistance Mobility Profiling of MESFET Channels.

    Science.gov (United States)

    1980-04-01

    means of gate-controlled magneto- resistance measurements made on specimens having Corbino disc circular sym- metry was described by Poth .18] Such...calculated by means of Eqn. (21 from the gate-voltage dependence of the magnetoresistance measured experimentally by Poth was found to Fe tn good .agreement...constancy of the mobility with channel thickness agrees with the Corbino 7 . .. ..... . . disc results of Poth [8] and with the Hall measurements of

  16. Predicting channel bed topography in hydraulic falls

    Science.gov (United States)

    Tam, Alexander; Yu, Zheng; Kelso, Richard M.; Binder, Benjamin J.

    2015-11-01

    We consider inverse methods for predicting the channel bed topography in experiments of hydraulic falls. Nonlinear solutions and weakly nonlinear approximations from Euler-based models are compared to experimental observations. Accurate predictions are obtained for the maximum height of the topography and its constant horizontal level far downstream using the nonlinear method. The weakly nonlinear approximation is shown only to be a good predictor of the maximum height of the topography. The error in the inverse predictions is examined and discussed.

  17. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.

    Science.gov (United States)

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-28

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  18. On the estimation of cooperativity in ion channel kinetics: Activation free energy and kinetic mechanism of Shaker K+ channel

    Science.gov (United States)

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-01

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K^+ channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  19. UMTS Common Channel Sensitivity Analysis

    DEFF Research Database (Denmark)

    Pratas, Nuno; Rodrigues, António; Santos, Frederico

    2006-01-01

    The UMTS common transport channels forward access channel (FACH) and the random access channel (RACH) are two of the three fundamental channels for a functional implementation of an UMTS network. Most signaling procedures, such as the registration procedure, make use of these channels...... and as such it is necessary that both channels be available across the cell radius. This requirement makes the choice of the transmission parameters a fundamental one. This paper presents a sensitivity analysis regarding the transmission parameters of two UMTS common channels: RACH and FACH. Optimization of these channels...... is performed and values for the key transmission parameters in both common channels are obtained. On RACH these parameters are the message to preamble offset, the initial SIR target and the preamble power step while on FACH it is the transmission power offset....

  20. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  1. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  2. Learning in Tactile Channels

    Science.gov (United States)

    Gescheider, George A.; Wright, John H.

    2012-01-01

    Vibrotactile intensity-discrimination thresholds for sinusoidal stimuli applied to the thenar eminence of the hand declined as a function of practice. However, improvement was confined to the tactile information-processing channel in which learning had occurred. Specifically, improvements in performance with training within the Pacinian-corpuscle…

  3. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    Science.gov (United States)

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.

  4. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  5. Conductance of Ion Channels - Theory vs. Experiment

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  6. Ionic channel changes in glaucomatous retinal ganglion cells: multicompartment modeling.

    Science.gov (United States)

    Maturana, Matias I; Turpin, Andrew; McKendrick, Allison M; Kameneva, Tatiana

    2014-01-01

    This research takes a step towards discovering underlying ionic channel changes in the glaucomatous ganglion cells. Glaucoma is characterized by a gradual death of retinal ganglion cells. In this paper, we propose a hypothesis that the ionic channel concentrations change during the progression of glaucoma. We use computer simulation of a multi-compartment morphologically correct model of a mouse retinal ganglion cell to verify our hypothesis. Using published experimental data, we alter the morphology of healthy ganglion cells to replicate glaucomatous cells. Our results suggest that in glaucomatous cell, the sodium channel concentration decreases in the soma by 30% and by 60% in the dendrites, calcium channel concentration decreases by 10% in all compartments, and leak channel concentration increases by 40% in the soma and by 100% in the dendrites.

  7. Biological Membrane Ion Channels Dynamics, Structure, and Applications

    CERN Document Server

    Chung, Shin-Ho; Krishnamurthy, Vikram

    2007-01-01

    Ion channels are biological nanotubes that are formed by membrane proteins. Because ion channels regulate all electrical activities in living cells, understanding their mechanisms at a molecular level is a fundamental problem in biology. This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences. Key Features Presents the latest information on the molecular mechanisms of ion permeation through membrane ion channels Uses schematic diagrams to illustrate important concepts in biophysics Written by leading researchers in the area of ion channel investigations

  8. What controls channel form in steep mountain streams?

    Science.gov (United States)

    Palucis, M. C.; Lamb, M. P.

    2017-07-01

    Steep mountain streams have channel morphologies that transition from alternate bar to step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and sediment transport. Experimental and theoretical studies suggest that alternate bars form under large channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the connection between these process variables and bed slope—the apparent dominant variable for natural stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique channel morphologies because the process variables covary systematically with bed slope. Multiple stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying processes leads to the emergence of the most stable channel form.

  9. Premixed Flame Dynamics in Narrow 2D Channels

    CERN Document Server

    Ayoobi, Mohsen

    2015-01-01

    Premixed flames propagating within small channels show complex combustion phenomena that differ from flame propagation at conventional scales. Available experimental and numerical studies have documented stationary/non-stationary and/or asymmetric modes that depend on properties of the incoming reactant flow as well as channel geometry and wall temperatures. The present work seeks to illuminate mechanisms leading to symmetry-breaking and limit cycle behavior that are fundamental to these combustion modes. Specifically, four cases of lean premixed methane/air combustion -- two equivalence ratios (0.53 and 0.7) and two channel widths (2 and 5mm) -- are investigated in a 2D configuration with constant channel length and bulk inlet velocity, where numerical simulations are performed using detailed chemistry. External wall heating is simulated by imposing a linear temperature gradient as a boundary condition on both walls. In the 2mm-channel, both equivalence ratios produce flames that stabilize with symmetric fla...

  10. Turbulent structure in the junction region of compound open channels

    OpenAIRE

    冨永, 晃宏; 江崎, 一博; 森上, 秀樹

    1989-01-01

    An investigation on three-dimensional turbulent structure including secondary currents in compound open-channel flow is very important in basic hydraulics as well as practical engineering to verify the friction law of flow and sediment transport. In this study, secondary currents and three-dimensional turbulent structures in compound open channels were revealed experimentally by making use of a fiber-optic laser Doppler anemometer. Strong inclined upflow which is associated with a pair of lon...

  11. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  12. Intracellular ion channels and cancer

    OpenAIRE

    Luigi eLeanza; Lucia eBiasutto; Antonella eManago; Erich eGulbins; Mario eZoratti; Ildikò eSzabò

    2013-01-01

    Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channel...

  13. Towards Einstein-Podolsky-Rosen quantum channel multiplexing

    Energy Technology Data Exchange (ETDEWEB)

    Samblowski, Aiko; Hage, Boris; Schnabel, Roman [Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover und Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Callinstrasse 38, 30167 Hannover (Germany)

    2008-07-01

    We present an experiment to utilize a single broadband squeezed field as a source for a large number N of quantum channels, based on distributed Einstein-Podolsky-Rosen (EPR) entangled states. Each of those channels can serve as a resource for independent quantum communication protocols. N-fold channel multiplexing can be realized by accessing 2N squeezed modes at different Fourier frequencies of a single squeezed field. We demonstrate the experimental implementation of the N=1 case through the interference of two squeezed modes.

  14. Adaptive underwater channel estimation for hybrid lidar/radar

    Science.gov (United States)

    Lee, Robert W.; Illig, David W.; Mullen, Linda J.

    2017-05-01

    Adaptive filtering and channel estimation techniques are applied to laser based ranging systems that utilize wide-band intensity modulation to measure the range and reflectivity of underwater objects. The proposed method aims to iteratively learn the frequency dependent characteristics of the underwater environment using a frequency domain adaptive filter, which results in an estimate for the channels optical impulse response. This work presents the application of the frequency domain adaptive filter to simulated and experimental data, and shows it is possible to iteratively learn the underwater optical channel impulse response while using Hybrid Lidar/Radar techniques.

  15. ``Just Another Distribution Channel?''

    Science.gov (United States)

    Lemstra, Wolter; de Leeuw, Gerd-Jan; van de Kar, Els; Brand, Paul

    The telecommunications-centric business model of mobile operators is under attack due to technological convergence in the communication and content industries. This has resulted in a plethora of academic contributions on the design of new business models and service platform architectures. However, a discussion of the challenges that operators are facing in adopting these models is lacking. We assess these challenges by considering the mobile network as part of the value system of the content industry. We will argue that from the perspective of a content provider the mobile network is ‘just another’ distribution channel. Strategic options available for the mobile communication operators are to deliver an excellent distribution channel for content delivery or to move upwards in the value chain by becoming a content aggregator. To become a mobile content aggregator operators will have to develop or acquire complementary resources and capabilities. Whether this strategic option is sustainable remains open.

  16. The M2 Channel

    DEFF Research Database (Denmark)

    Santner, Paul

    Drug resistance of Influenza A against antivirals is an increasing problem. No effective Influenza A drugs targeting the crucial viral protein, the proton transporter M2 are available anymore due to widespread resistance. Thanks to research efforts elucidating M2 protein structure, function and i...... resistance escape routes from drug inhibition. We thereby were hopefully able to provide a platform for the large-scale evaluation of M2 channel activity, inhibitors and resistance....

  17. Micro-channel plate detector

    Science.gov (United States)

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  18. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  19. Totally Asynchronous Interference Channels

    CERN Document Server

    Moshksar, Kamyar

    2010-01-01

    This paper addresses an interference channel consisting of $\\mathbf{n}$ active users sharing $u$ frequency sub-bands. Users are asynchronous meaning there exists a mutual delay between their transmitted codes. A stationary model for interference is considered by assuming the starting point of an interferer's data is uniformly distributed along the codeword of any user. The spectrum is divided to private and common bands each containing $v_{\\mathrm{p}}$ and $v_{\\mathrm{c}}$ frequency sub-bands respectively. We consider a scenario where all transmitters are unaware of the number of active users and the channel gains. The optimum $v_{\\mathrm{p}}$ and $v_{\\mathrm{c}}$ are obtained such that the so-called outage capacity per user is maximized. If $\\Pr\\{\\mathbf{n}\\leq 2\\}=1$, upper and lower bounds on the mutual information between the input and output of the channel for each user are derived using a genie-aided technique. The proposed bounds meet each other as the code length grows to infinity yielding a closed ex...

  20. Intracellular ion channels and cancer.

    Science.gov (United States)

    Leanza, Luigi; Biasutto, Lucia; Managò, Antonella; Gulbins, Erich; Zoratti, Mario; Szabò, Ildikò

    2013-09-03

    Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K(+) channels (Ca(2+)-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K(+) channel-3 (TASK-3)), Ca(2+) uniporter MCU, Mg(2+)-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca(2+) depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca(2+) channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.

  1. Intracellular ion channels and cancer

    Directory of Open Access Journals (Sweden)

    Luigi eLeanza

    2013-09-01

    Full Text Available Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3, Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC and the Permeability Transition Pore (MPTP contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER-located inositol 1,4,5-trisphosphate (IP3 receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1, a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.

  2. Jamming of Cylindrical Grains in Featureless Vertical Channels

    Science.gov (United States)

    Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas

    2013-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College

  3. Emulating Realistic Bidirectional Spatial Channels for MIMO OTA Testing

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2015-01-01

    Full Text Available This paper discusses over the air (OTA testing for multiple input multiple output (MIMO capable terminals with emphasis on modeling bidirectional spatial channel models in multiprobe anechoic chamber (MPAC setups. In the literature, work on this topic has been mainly focused on how to emulate downlink channel models, whereas uplink channel is often modeled as free space line-of-sight channel without fading. Modeling realistic bidirectional (i.e., both uplink and downlink propagation environments is essential to evaluate any bidirectional communication systems. There have been works stressing the importance of emulating full bidirectional channel and proposing possible directions to implement uplink channels in the literature. Nevertheless, there is no currently published work reporting an experimental validation of such concepts. In this paper, a general framework to emulate bidirectional channels for time division duplexing (TDD and frequency division duplexing (FDD communication systems is proposed. The proposed technique works for MPAC setups with arbitrary uplink and downlink probe configurations, that is, possibly different probe configurations (e.g., number of probes or their configurations in the uplink and downlink. The simulation results are further supported by measurements in a practical MPAC setup. The proposed algorithm is shown to be a valid method to emulate bidirectional spatial channel models.

  4. Contribution to the experimental study of the hydraulic jump in ...

    African Journals Online (AJOL)

    The purpose of this study is to study experimentally the hydraulic jump evolving in a symmetric trapezoidal channel with a positive slope, requires the use of an experimental protocol, and to find experimental relations linking the characteristics of the formed projection. The experimental study investigated the variation of the ...

  5. The Earliest Ion Channels in Protocellular Membranes

    Science.gov (United States)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    2010-01-01

    indicates that their structures are unique and stable. In addition, it is also believed that the trichotoxin channel displays some selectivity between potassium and chloride ions. This makes trichotoxin and antiamoebin ideal models of the earliest ion channels that could provide insight into the origins of ion conductance and selectivity. In the absence of crystal structure of the trichotoxin and antiamoebin channels, we propose their molecular models based on experimentally determined number of monomers forming the bundles. We use molecular dynamics simulations to validate the models in terms of their conductance and selectivity. On the basis of our simulations we show that the emergence of channels built of small, alpha-helical peptides was protobiologically plausible and did not require highly specific amino acid sequences, which is a convenient evolutionary trait. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. To this end, we will discuss how the amino acid sequence and structure of primitive channels give rise to the phenomena of ionic conductance and selectivity across the earliest cell walls, which were essential functions for the emergence and early evolution of protocells. Furthermore, we will argue that even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  6. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    Science.gov (United States)

    Laha, Kurt T; Ghosh, Borna; Czajkowski, Cynthia

    2013-01-01

    Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying p

  7. Experimental Study of a Positron\\\\ Source Using Channeling

    CERN Multimedia

    Gavrykov, V; Kulibaba, V; Baier, V; Beloborodov, K; Bojenok, A; Bukin, A; Burdin, S; Dimova, T; Druzhinin, V; Dubrovin, M; Seredniakov, S; Shary, V; Strakhovenko, V; Keppler, P; Major, J; Bogdanov, A V; Potylitsin, A; Vnoukov, I; Artru, X; Lautesse, P; Poizat, J-C; Remillieux, J

    2002-01-01

    Many simulations have predicted that the yield of positrons, resulting from the interaction of fast electrons in a solid target, increases if the target is a crystal oriented with a major axis parallel to the electron beam. Tests made at Orsay and Tokyo confirmed these expectations. The experiment WA 103 concerns the determination of the main characteristics (emittance, energy spread) of a crystal positron source which could replace advantageously the conventional positron converters foreseen in some linear collider projects. The main element of the set-up is a magnetic spectrometer, using a drift chamber, where the positron trajectories are reconstructed (see Figure 1) A first run has been operated in july 2000 and the first results showed, as expected, a significant enhancement in photon and positron generation along the $$ axis of the tungsten crystal. Indications about a significant increase in the number of soft photons and positrons were also gathered : this point is of importance for the positron colle...

  8. Experimental studies on the flow through soft tubes and channels

    Indian Academy of Sciences (India)

    V Kumaran either an increase in the transition Reynolds number, or due to turbulence attenuation. In the case .... Schlichting modes in the flow past a rigid surface and which are destabilised by increased dissipation in the ..... normal wall displacements, whereas in reality the gel will experience both tangential and normal.

  9. Forced convection of low temperature nitrogen gas in rectangular channels with small aspect ratio

    Science.gov (United States)

    Mo, H. L.; Zhou, Y. X.; Zhu, T. Y.; Guo, T. W.

    2004-05-01

    Forced convection of low temperature (80-150 K) nitrogen gas flowing through rectangular channels with hydraulic diameters of 0.513-1.814 mm and aspect ratios of 0.013-0.048 has been investigated experimentally. Close attention was focused on the effects of channel depth and heat addition on the heat transfer and flow characteristics, the transition from laminar to turbulent flow and the existence of an optimum channel depth. A dimensionless heating number was adopted to characterize the heating effect. The experimental correlation developed for the Nusselt number shows that the heat addition is the most important effect, followed by the channel aspect ratio, Reynolds number and Prandtl number.

  10. Efficient channel-plasmon excitation by nano-mirrors

    DEFF Research Database (Denmark)

    Radko, Ilya P.; Stær, Tobias Holmgaard; Han, Zhanghua

    2011-01-01

    We demonstrate a configuration for efficient channel-plasmon mode excitation using tapered terminations of V-shaped groove waveguides. The plasmon excitation is achieved by directly illuminating tapers of gold V-grooves with a focused laser beam, incident normally onto the sample surface. For near......-infrared wavelengths, we find experimentally as well as numerically, by conducting three-dimensional finite-difference time-domain calculations, that the efficiency of channel-plasmon mode excitation exceeds 10% in the optimum configuration, which is the highest experimentally observed efficiency of coupling from free-propagation...

  11. Capillary Condensation in 8 nm Deep Channels.

    Science.gov (United States)

    Zhong, Junjie; Riordon, Jason; Zandavi, Seyed Hadi; Xu, Yi; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2018-02-01

    Condensation on the nanoscale is essential to understand many natural and synthetic systems relevant to water, air, and energy. Despite its importance, the underlying physics of condensation initiation and propagation remain largely unknown at sub-10 nm, mainly due to the challenges of controlling and probing such small systems. Here we study the condensation of n-propane down to 8 nm confinement in a nanofluidic system, distinct from previous studies at ∼100 nm. The condensation initiates significantly earlier in the 8 nm channels, and it initiates from the entrance, in contrast to channels just 10 times larger. The condensate propagation is observed to be governed by two liquid-vapor interfaces with an interplay between film and bridging effects. We model the experimental results using classical theories and find good agreement, demonstrating that this 8 nm nonpolar fluid system can be treated as a continuum from a thermodynamic perspective, despite having only 10-20 molecular layers.

  12. Flow of foam through a convergent channel.

    Science.gov (United States)

    Dollet, Benjamin; Bocher, Claire

    2015-11-01

    We study experimentally the flow of a foam confined as a bubble monolayer between two plates through a convergent channel. We quantify the velocity, the distribution and orientation of plastic events, and the elastic stress, using image analysis. We use two different soap solutions: a sodium dodecyl sulfate (SDS) solution, with a negligible wall friction between the bubbles and the confining plates, and a mixture containing a fatty acid, giving a large wall friction. We show that for SDS solutions, the velocity profile obeys a self-similar form which results from the superposition of plastic events, and the elastic deformation is uniform. For the other solution, the velocity field differs and the elastic deformation increases towards the exit of the channel. We discuss and quantify the role of wall friction on the velocity profile, the elastic deformation, and the rate of plastic events.

  13. MITOCHONDRIAL BKCa CHANNEL

    OpenAIRE

    Enrique eBalderas; Jin eZhang; Enrico eStefani; Ligia eToro

    2015-01-01

    Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa) has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS), voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, an...

  14. Improving virtual channel discrimination in a multi-channel context.

    Science.gov (United States)

    Srinivasan, Arthi G; Shannon, Robert V; Landsberger, David M

    2012-04-01

    Improving spectral resolution in cochlear implants is key to improving performance in difficult listening conditions (e.g. speech in noise, music, etc.). Current focusing might reduce channel interaction, thereby increasing spectral resolution. Previous studies have shown that combining current steering and current focusing reduces spread of excitation and improves virtual channel discrimination in a single-channel context. It is unclear whether the single-channel benefits from current focusing extend to a multi-channel context, in which the physical and perceptual interference of multiple stimulated channels might overwhelm the benefits of improved spectral resolution. In this study, signal discrimination was measured with and without current focusing, in the presence of competing stimuli on nearby electrodes. Results showed that signal discrimination was consistently better with current focusing than without, regardless of the amplitude of the competing stimuli. Therefore, combining current steering and current focusing may provide more effective spectral cues than are currently available.

  15. Cholesterol binding to ion channels

    Directory of Open Access Journals (Sweden)

    Irena eLevitan

    2014-02-01

    Full Text Available Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.

  16. Channel Wall Landslides

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation. Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Mechanisms of action of ligands of potential-dependent sodium channels.

    Science.gov (United States)

    Tikhonov, D B

    2008-06-01

    Potential-dependent sodium channels play a leading role in generating action potentials in excitable cells. Sodium channels are the site of action of a variety of modulator ligands. Despite numerous studies, the mechanisms of action of many modulators remain incompletely understood. The main reason that many important questions cannot be resolved is that there is a lack of precise data on the structures of the channels themselves. Structurally, potential-dependent sodium channels are members of the P-loop channel superfamily, which also include potassium and calcium channels and glutamate receptor channels. Crystallization of a series of potassium channels showed that it was possible to analyze the structures of different members of the superfamily using the "homologous modeling" method. The present study addresses model investigations of the actions of ligands of sodium channels, including tetrodotoxin and batrachotoxin, as well as local anesthetics. Comparison of experimental data on sodium channel ligands with x-ray analysis data allowed us to reach a new level of understanding of the mechanisms of channel modulation and to propose a series of experimentally verifiable hypotheses.

  18. Prediction of concentrated flow width in ephemeral gully channels

    Science.gov (United States)

    Nachtergaele, J.; Poesen, J.; Sidorchuk, A.; Torri, D.

    2002-07-01

    Empirical prediction equations of the form W = aQb have been reported for rills and rivers, but not for ephemeral gullies. In this study six experimental data sets are used to establish a relationship between channel width (W, m) and flow discharge (Q, m3 s-1) for ephemeral gullies formed on cropland. The resulting regression equation (W = 2·51 Q0·412; R2 = 0·72; n = 67) predicts observed channel width reasonably well. Owing to logistic limitations related to the respective experimental set ups, only relatively small runoff discharges (i.e. Q channel width was attributed to a calculated peak runoff discharge on sealed cropland, the application field of the regression equation was extended towards larger discharges (i.e. 5 × 10channels revealed that the discharge exponent (distribution over the wetted perimeter between rills, gullies and rivers, (ii) a decrease in probability of a channel formed in soil material with uniform erosion resistance from rills over gullies to rivers and (iii) a decrease in average surface slope from rills over gullies to rivers.channel width equation for concentrated flow on cropland. For the frozen soils the equation

  19. Modeling Dubai City Artificial Channel

    Directory of Open Access Journals (Sweden)

    Elhakeem Mohamed

    2016-01-01

    Full Text Available Dubai’s new channel further enhances the urban-scape of the city offering new waterfront developments, transportation venues and diversified panoramas to the city. This paper performs a study to simulate the flow field in the proposed Dubai artificial channel using a 2D hydrodynamic model. The model predicts the flow depth and velocity in the channel, lagoons and bends. The model predictions show that the velocity is higher in the channel sections compared to the lagoons and bends sections. On the other hand, the water depth is lower in the channel sections compared to the lagoons and bends sections. Nonetheless, the velocities in the channel are within the accepted range that prevents boundary erosion and sediment deposition.

  20. Upgrading a marketing channels role

    Directory of Open Access Journals (Sweden)

    Tišma-Borota Ankica

    2002-01-01

    Full Text Available As one of the marketing mix instruments, marketing channels were usually behind other instruments (product, price and promotion. Many companies regarded marketing channels as something that was 'left' after more important strategies of price, product and promotion were created. In recent past, things have changed and marketing channels became more interesting for research. This change came as a result of change in global market functioning especially in competitive advantage, distributors' strength and increasing technology.

  1. Turbulent flow in two-inlet channels

    Energy Technology Data Exchange (ETDEWEB)

    Kao, H.C. [NASA, Cleveland, OH (United States). Lewis Research Center

    1993-12-01

    The problem of turbulent flows in two-inlet channels has been studied numerically by solving the Reynolds-averaged Navier-Stokes equations with the {kappa}-{epsilon} model in a mapped domain. Both the high Reynolds number and the low Reynolds number form were used for this purpose. In general, the former predicts a weaker and smaller recirculation zone that the latter. Comparisons with experimental data, when applicable, were also made. The bulk of the present computations used, however, the high Reynolds number form to correlate different geometries and inflow conditions with the flow properties after turning.

  2. Simulation Of Single Channel Length Vertical Silicon MOSFET

    Science.gov (United States)

    Ooi, P. K.; Ibrahim, K.

    2008-05-01

    Vertical MOSFET has been introduced in the last few decades. As planar devices become smaller and smaller, vertical MOS transistor is one of the solutions for surpassing the short channel effects and pattern transfer. Thus, it is a promising approach to achieve channel lengths between 100 nm and 25 nm. In this work, we simulate sub-100 nm single channel length vertical silicon MOSFET. The simulations are done with using ATHENA, DEVEDIT and ATLAS from SILVACO International. Input and output electrical characteristics of the vertical MOS transistors are investigated. The short channel effects of the vertical MOSFETs are explored. Due to the structure is not symmetry, source at top and bottom is also considered. The results also compared with experimental results from other researcher.

  3. Natural and Synthetic Modulators of the TRPM7 Channel

    Directory of Open Access Journals (Sweden)

    Vladimir Chubanov

    2014-11-01

    Full Text Available Transient receptor potential cation channel subfamily M member 7 (TRPM7 is a bi-functional protein comprising a TRP ion channel segment linked to an α-type protein kinase domain. Genetic inactivation of TRPM7 revealed its central role in magnesium metabolism, cell motility, proliferation and differentiation. TRPM7 is associated with anoxic neuronal death, cardiac fibrosis and tumor progression highlighting TRPM7 as a new drug target. Recently, several laboratories have independently identified pharmacological compounds inhibiting or activating the TRPM7 channel. The recently found TRPM7 modulators were used as new experimental tools to unravel cellular functions of the TRPM7 channel. Here, we provide a concise overview of this emerging field.

  4. Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels

    Science.gov (United States)

    Friedl, Nicholas; Baxter, G. William

    2014-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  5. Marketing channels and competitive advantage

    OpenAIRE

    Jovičić Dragoljub

    2005-01-01

    Issue that can already be seen and will be very clear in the future is that the central problem in the market of tube caps will not be the product or the price or promotion, but marketing channels. Therefore, the competitive advantage will most probably be built on marketing channels and not the production - as it has been so far, so, the questions of choice functioning and modification of marketing channels, as well as selection of the most appropriate members of channels will become more an...

  6. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  7. Beyond the Manual Channel

    DEFF Research Database (Denmark)

    This collection of papers stems from the Sixth Workshop on the Representation and Processing of Sign Languages, held in May 2014 as a satellite to the Language Resources and Evaluation Conference in Reykjavik. While there has been occasional attention for sign languages at the main LREC conference......, the main focus there is on spoken languages in their written and spoken forms. This series of workshops, however, offers a forum for researchers focussing on sign languages. For the fourth time, the workshop had sign language corpora as its main topic. This time, the focus was on any aspect beyond...... the manual channel. Not surprisingly, most papers deal with non-manuals on the face. Once again, the papers at this workshop clearly identify the potentials of even closer cooperation between sign linguists and sign language engineers, and we think it is events like this that contribute a lot to a better...

  8. Supercritical heat transfer in an annular channel with bilateral heating

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, V.V.; Gal' chenko, E.F.; Remizov, O.V.

    1986-09-01

    This paper presents the experimental investigation of the degradation of heat transfer accompanying an ascending flow of a steam-water mixture and the development of an engineering method for calculating supercritical heat transfer in a vertical annular channel with bilateral heating. The experimental setup is described. The temperature of the exothermic surfaces from the indications of the thermocouples are determined taking into account their individual calibration, the temperature drops in the wall, and thermal losses. The temperature distribution along the length and periphery of the exothermic surfaces of the annular channel is shown and the dependence of the critical steam content on the power fed to the outer wall of the channel with different mass velocities is presented.

  9. Effect of Wall Shear Stress Distribution on Manning Coefficient of Smooth Open Rectangular Channel Flows

    OpenAIRE

    BİLGİL, Ahmet

    2003-01-01

    The determination of velocity distribution in open channel flows is crucial in many critical engineering problems such as channel design, calculation of energy losses and sedimentation. In this study, velocity distribution is experimentally investigated in a smooth rectangular open channel. Wall shear stresses are calculated using measured local velocities. Assuming logarithmic velocity distribution along perpendiculars to a wetted perimeter, dimensionless wall shear stresses K(I) =...

  10. Modeling and characterization of different channels based on human body communication.

    Science.gov (United States)

    Jingzhen Li; Zedong Nie; Yuhang Liu; Lei Wang

    2017-07-01

    Human body communication (HBC), which uses the human body as a transmission medium for electrical signals, provides a prospective communication solution for body sensor networks (BSNs). In this paper, an inhomogeneous model which includes the tissue layers of skin, fat, and muscle is proposed to study the propagation characteristics of different HBC channels. Specifically, the HBC channels, namely, the on-body to on-body (OB-OB)channel, on-body to in-body (OB-IB) channel, in-body to on-body (IB-OB) channel, and in-body to in-body (IB-IB)channel, are studied over different frequencies (from 1MHz to 100MHz) through numerical simulations with finite-difference time-domain (FDTD) method. The results show that the gain of OB-IB channel and IB-OB channel is almost the same. The gain of IB-IB channel is greater than other channels in the frequency range 1MHz to 70MHz. In addition, the gain of all channels is associated with the channel length and communication frequency. The simulations are verified by experimental measurements in a porcine tissue sample. The results show that the simulations are in agreement with the measurements.

  11. Foam relaxation in fractures and narrow channels

    Science.gov (United States)

    Lai, Ching-Yao; Rallabandi, Bhargav; Perazzo, Antonio; Stone, Howard A.

    2017-11-01

    Various applications, from foam manufacturing to hydraulic fracturing with foams, involve pressure-driven flow of foams in narrow channels. We report a combined experimental and theoretical study of this problem accounting for the compressible nature of the foam. In particular, in our experiments the foam is initially compressed in one channel and then upon flow into a second channel the compressed foam relaxes as it moves. A plug flow is observed in the tube and the pressure at the entrance of the tube is higher than the exit. We measure the volume collected at the exit of the tube, V, as a function of injection flow rate, tube length and diameter. Two scaling behaviors for V as a function of time are observed depending on whether foam compression is important or not. Our work may relate to foam fracturing, which saves water usage in hydraulic fracturing, more efficient enhanced oil recovery via foam injection, and various materials manufacturing processes involving pressure-driven flow foams.

  12. Understanding cell passage through constricted microfluidic channels

    Science.gov (United States)

    Cartas-Ayala, Marco A.; Karnik, Rohit

    2012-11-01

    Recently, several microfluidic platforms have been proposed to characterize cells based on their behaviour during cell passage through constricted channels. Variables like transit time have been analyzed in disease states like sickle cell anemia, malaria and sepsis. Nevertheless, it is hard to make direct comparisons between different platforms and cell types. We present experimental results of the relationship between solid deformable particle properties, i.e. stiffness and relative particle size, and flow properties, i.e. particle's velocity. We measured the hydrodynamic variables during the flow of HL-60 cells, a white myeloid cell type, in narrow microfluidic square channels using a microfluidic differential manometer. We measured the flow force required to move cells of different sizes through microchannels and quantified friction forces opposing cell passage. We determined the non-dimensional parameters that influence the flow of cells and we used them to obtain a non dimensional expression that can be used to predict the forces needed to drive cells through microchannels. We found that the friction force needed to flow HL-60 through a microfluidic channel is the sum of two parts. The first part is a static friction force that is proportional to the force needed to keep the force compressed. The second part is a factor that is proportional to the cell velocity, hence a dynamic term, and slightly sensitive to the compressive force. We thank CONACYT (Mexican Science and Technology Council) for supporting this project, grant 205899.

  13. Numerical Investigation of Startup Instabilities in Parallel-Channel Natural Circulation Boiling Systems

    Directory of Open Access Journals (Sweden)

    S. P. Lakshmanan

    2010-01-01

    Full Text Available The behaviour of a parallel-channel natural circulation boiling water reactor under a low-pressure low-power startup condition has been studied numerically (using RELAP5 and compared with its scaled model. The parallel-channel RELAP5 model is an extension of a single-channel model developed and validated with experimental results. Existence of in-phase and out-of-phase flashing instabilities in the parallel-channel systems is investigated through simulations under equal and unequal power boundary conditions in the channels. The effect of flow resistance on Type-I oscillations is explored. For nonidentical condition in the channels, the flow fluctuations in the parallel-channel systems are found to be out-of-phase.

  14. End depth in steeply sloping rough rectangular channels

    Indian Academy of Sciences (India)

    known end depth and Nikuradse equivalent sand roughness is also presented. Results from the present model correspond satisfactorily with experimental observations except for some higher roughnesses. Keywords. Brink depth; end depth; free overfall; one-dimensional flow; open channel flow; steady flow. 1. Introduction.

  15. Temperature dependence of single-event burnout in n-channel power MOSFETs

    Science.gov (United States)

    Johnson, Gregory H.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Koga, Rocky

    1992-12-01

    The temperature dependence of single-event burnout (SEB) in n-channel power MOSFETs is investigated experimentally and analytically. Experimental data are presented which indicate that the SEB susceptibility of the power MOSFET decreases with increasing temperature. A previously reported analytical model that describes the SEB mechanism is updated to include temperature variations. This model is shown to agree with the experimental trends.

  16. Hydrodynamics of 90o concordant beds' confluences of straight-channels with unequal channel widths

    Science.gov (United States)

    Đorđević, Dejana

    2017-04-01

    With the exception of confluences of large alluvial rivers, tributary channel is usually narrower that the channel of the main-river. hydrodynamics of confluences of equal width channels has been thoroughly studied using 3D numerical models and to a certain extent it was studied in laboratory confluences. Hydrodynamics and morphodynamics of confluences with unequal channel widths were recently studied experimentally for mountainous rivers, and there are limited experimental data on hydrodynamic characteristics for horizontal bed confluences. This study aims at analysing hydrodynamics of alluvial river confluences with unequal channel widths and concordant beds. They are analysed for the three typical hydrological scenarios at the confluence (defined by the discharge ratio DR = QMR / (QMR + QT)): 1) the dominance of the tributary flow (DR = 0.250), 2) equal contributions of the combining flows (DR = 0.583) and 3) the dominance of the main-river flow (DR = 0.750). A confluence with the 90o junction angle is chosen for the study, since this angle allows for the development of all six subzones within the confluence hydrodynamics zone that were recognised by Best in 1980s. Two values of the channel-width-ratio of the tributary ("T") and main-channels ("MR") (BT / BMR = {0.75, 0.50}) are analysed in addition to the case of equal width channels (BT / BMR = 1.00). As it was expected, the flow deflection on the horizontal plane (defined by the flow angle δ = arc tg (v/ u)) reduced with the narrowing of the tributary channel, due to increase in the value of the momentum-flux ratio. For DR=0.250, the momentum-flux ratio increases by 22 and 73% for BT/BMR = {0.75, 0.50}, respectively, whereas for DR= 0.583 and DR = 0.750, this increase ranges between 10 and 40%. The greatest effect on the reduction of the flow deflection (increase in the average flow angle (δav)) is achieved in the case when the main-river flow dominates. The increase is between 28 and 33% for BT/BMR = {0

  17. Perceived quality of channel zapping

    NARCIS (Netherlands)

    Kooij, R.E.; Ahmed, K.; Brunnström, K.

    2006-01-01

    The end user experience of service quality is critical to the success of a service provider's IPTV deployment program. A key element involved in validating IPTV quality of experience (QoE) is how quickly and reliably users can change TV channels, often referred to as channel zapping. Currently there

  18. The EMBL-EBI channel.

    Science.gov (United States)

    McEntyre, Jo; Birney, Ewan

    2016-01-01

    This editorial introduces the EMBL-EBI channel in F1000Research. The aims of the channel are to present EMBL-EBI outputs and collate research published on F1000Research contributed, in whole or in part, EMBL-EBI researchers.

  19. FMCG companies specific distribution channels

    National Research Council Canada - National Science Library

    Ioana Barin

    2009-01-01

    ... existing distribution channels and logistics system. One of the essential functions of a distribution is performing acts of sale, through which, with the actual movement of goods, their change of ownership takes place, that the successive transfer of ownership from producer to consumer. This is an itinerary in the economic cycle of goods, called the distribution channel.

  20. An improved channel assessment scheme

    KAUST Repository

    Bader, Ahmed

    2014-05-01

    A source node in a multihop network determines whether to transmit in a channel based on whether the channel is occupied by a packet transmission with a large number of relays; whether the source node is in the data tones back-off zone; and the source node is in the busy tone back-off zone.

  1. The Orange Juice Distribution Channels

    African Journals Online (AJOL)

    is to provide a general overview about the agents in the European marketing channels of the FCOJ, focusing on the final juice consumers, retailing, food service and the beverage industry. The framework for this part is build up of the marketing channel concepts and functions (Stern et al., 1996; Berman,. 1996; Rosembloom ...

  2. Hydrodynamic instability of meandering channels

    Science.gov (United States)

    Ali, Sk Zeeshan; Dey, Subhasish

    2017-12-01

    In this paper, we explore the hydrodynamic instability of meandering channels driven by the turbulent flow. The governing equations of channel dynamics with suitable boundary conditions are closed with the fluid and granular constitutive relationships. A regular expansion of the fundamental variables is employed to linearize the parent equations by superimposing the perturbations on the basic unperturbed flow. The channel dynamics reveal a resonance phenomenon which occurs when the key variables fall in the vicinity of the distinct critical values. The resonance phenomenon preserves its distinctive signature in different flow regimes which are guided by the characteristic values of the shear Reynolds number. The hydrodynamic analysis indicates that the fluid friction and the volumetric sediment flux play a decisive role to characterize the channel instability in different flow regimes. The growths of azimuthal velocity perturbation in phase with curvature, bed topography perturbation, bend amplification rate, and meander propagation speed in different flow regimes are investigated by varying the meander wavenumber, Shields number, channel aspect ratio, and relative roughness number. The analysis is capable to capture the effects of grain size on azimuthal velocity perturbation, bed topography perturbation, bend amplification rate, and meandering propagation speed over a wide range of shear Reynolds numbers. The variations of resonant wavenumbers in different flow regimes with the Shields number, channel aspect ratio, and relative roughness number are addressed. For a specific flow regime, the upstream and downstream migrations of meandering channels are typically governed by the Shields number, channel aspect ratio, and relative roughness number.

  3. Capacity of quantum Gaussian channels

    Science.gov (United States)

    Holevo, A. S.; Sohma, M.; Hirota, O.

    1999-03-01

    The aim of this paper is to give explicit calculation of the classical capacity of quantum Gaussian channels, in particular, involving squeezed states. The calculation is based on a general formula for the entropy of a quantum Gaussian state, which is of independent interest, and on the recently proved coding theorem for quantum communication channels.

  4. Incompatibility of requirements for optimizing short channel behaviour and long term stability in MOSFETs

    Science.gov (United States)

    Bauer, F.; Jain, S. C.; Korec, J.; Lauer, V.; Offenberg, M.; Balk, P.

    1988-01-01

    An analytical approach is presented which predicts that the requirements for minimizing short channel effects and long term degradation due to hot carrier trapping lead to incompatible requirements on the design of short channel MOSFETs. Model predictions are compared with experimental data and with the results of 2-D simulations. An asymmetrical MOSFET structure is proposed to circumvent this design problem.

  5. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  6. Simultaneous regeneration of two 160 Gbit/s WDM channels in a single highly nonlinear fiber

    DEFF Research Database (Denmark)

    Wang, Ju; Ji, Hua; Hu, Hao

    2013-01-01

    We experimentally demonstrate simultaneous all-optical regeneration of two 160-Gbit/s wavelength-division multiplexed (WDM) channels in a single highly nonlinear fiber (HNLF). The multi-channel regeneration performance is confirmed by bit-error rate (BER) measurements. The receiver powers at a BER...

  7. Marketing channels and competitive advantage

    Directory of Open Access Journals (Sweden)

    Jovičić Dragoljub

    2005-01-01

    Full Text Available Issue that can already be seen and will be very clear in the future is that the central problem in the market of tube caps will not be the product or the price or promotion, but marketing channels. Therefore, the competitive advantage will most probably be built on marketing channels and not the production - as it has been so far, so, the questions of choice functioning and modification of marketing channels, as well as selection of the most appropriate members of channels will become more and more important. Accordingly, it may freely be said that the choice, i.e. the movement of marketing channels represents one of the strategic decisions which has to be made by a company management and which will subsequently very significantly influence the functioning and efficacy of not only the system of distribution, but also the entire business transactions.

  8. Channel Aggregation Schemes for Cognitive Radio Networks

    Science.gov (United States)

    Lee, Jongheon; So, Jaewoo

    This paper proposed three channel aggregation schemes for cognitive radio networks, a constant channel aggregation scheme, a probability distribution-based variable channel aggregation scheme, and a residual channel-based variable channel aggregation scheme. A cognitive radio network can have a wide bandwidth if unused channels in the primary networks are aggregated. Channel aggregation schemes involve either constant channel aggregation or variable channel aggregation. In this paper, a Markov chain is used to develop an analytical model of channel aggregation schemes; and the performance of the model is evaluated in terms of the average sojourn time, the average throughput, the forced termination probability, and the blocking probability. Simulation results show that channel aggregation schemes can reduce the average sojourn time of cognitive users by increasing the channel occupation rate of unused channels in a primary network.

  9. Voltage-gated Proton Channels

    Science.gov (United States)

    DeCoursey, Thomas E.

    2014-01-01

    Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance ~103 smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn2+ (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H+ for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens. PMID:23798303

  10. Model studies of dense water overflows in the Faroese Channels

    Science.gov (United States)

    Cuthbertson, Alan; Davies, Peter; Stashchuk, Nataliya; Vlasenko, Vasiliy

    2014-01-01

    The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with

  11. Experimental quantum digital signature over 102 km

    Science.gov (United States)

    Yin, Hua-Lei; Fu, Yao; Liu, Hui; Tang, Qi-Jie; Wang, Jian; You, Li-Xing; Zhang, Wei-Jun; Chen, Si-Jing; Wang, Zhen; Zhang, Qiang; Chen, Teng-Yun; Chen, Zeng-Bing; Pan, Jian-Wei

    2017-03-01

    Quantum digital signature (QDS) is an approach to guarantee the nonrepudiation, unforgeability, and transferability of a signature with information-theoretical security. Previous experimental realizations of QDS relied on an unrealistic assumption of secure channels and the longest distance is several kilometers. Here, we have experimentally demonstrated a recently proposed QDS protocol without assuming any secure channel. Exploiting the decoy state modulation, we have successfully signed a one-bit message through an up to 102-km optical fiber. Furthermore, we continuously run the system to sign the longer message "USTC" with 32 bits at the distance of 51 km. Our results pave the way towards the practical application of QDS.

  12. Channel Guided Standard LWFA (CGSL) Project

    Energy Technology Data Exchange (ETDEWEB)

    Hafizi, B.; Zigler, A.

    2006-03-04

    During the project we have demonstrated control of several important parameters of capillary channels. We achieved the required profiles for guiding, we have demonstrated channels in density range between 10{sup 17}-10{sup 19}cm{sup -3} in both short and long capillaries. The plasma temperature and density profiles were measured in both radial and longitudinal directions. The Boron Nitride capillary has provided a guiding medium that can withstand more than 1000 shots. The laser ignition of capillary discharge provided reliable almost jitter free approach. Both laser and experimental set up were upgraded. The laser system upgrade included development of a 10 TW Ti-sapphire laser facility that will be used for acceleration experiments instead T cube. We have conducted high intensity (above 10{sup 17}W/cm{sup 2}) guiding experiments through various capillaries. The concerns related to influence of relatively high current density flow through capillary on the injected electrons were studied extensively by us both theoretically and experimentally using a simple injection method. The method is based on the interaction of a high intensity laser pulse with a thin wire placed near capillary entrance. The influence of magnetic fields was found to be insignificant. Using this method we have studied transport of electrons though capillary discharge. We have simulated beam injection into a channel guided LWFA and found that under certain conditions the injected electron distribution can be very broad. Finally, prior to the staging of the capillary based accelerators, we performed a proof-of-principal experiment on staged optical injection and laser wakefield acceleration using two different short laser pulses focused into two spatially separated gas jets.

  13. 47 CFR 95.7 - Channel sharing.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Channel sharing. 95.7 Section 95.7... SERVICES General Mobile Radio Service (GMRS) § 95.7 Channel sharing. (a) Channels or channel pairs (one 462... and use of channels to reduce interference and to make the most effective use of the facilities. (b...

  14. Experimental Test Plan DOE Tidal and River Reference Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Gunawan, Budi [ORNL

    2012-09-01

    Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers.

  15. Convergence of estuarine channels

    Science.gov (United States)

    Dronkers, Job

    2017-07-01

    Tide-dominated coastal plain estuaries have typically up-estuary convergent tidal channels. Analysis of estuarine characteristics indicates a dependence of the convergence length on relative tidal amplitude, relative intertidal area and river flow velocity. In order to explain these relationships we investigate a condition for continuity of net sediment transport throughout the estuary, corresponding to morphodynamic equilibrium. We show, by using an analytical solution of the tidal equations, that this condition is equivalent to a condition on the convergence length. This condition is evaluated for 21 estuaries in different regions of the world. It appears that the convergence length determined in this way can explain observed convergence lengths for the considered set of estuaries. The dependence of the convergence length on different estuarine characteristics is analysed by solving the fully coupled hydro-morphodynamic equations. We show that this dependence limits the range of variation of the tidal velocity amplitude. The analysis provides insight in the morphological response of estuaries to human interventions. The condition can easily be evaluated to yield an estimate of this response.

  16. Experimental philosophy.

    Science.gov (United States)

    Knobe, Joshua; Buckwalter, Wesley; Nichols, Shaun; Robbins, Philip; Sarkissian, Hagop; Sommers, Tamler

    2012-01-01

    Experimental philosophy is a new interdisciplinary field that uses methods normally associated with psychology to investigate questions normally associated with philosophy. The present review focuses on research in experimental philosophy on four central questions. First, why is it that people's moral judgments appear to influence their intuitions about seemingly nonmoral questions? Second, do people think that moral questions have objective answers, or do they see morality as fundamentally relative? Third, do people believe in free will, and do they see free will as compatible with determinism? Fourth, how do people determine whether an entity is conscious?

  17. The Transitional Backward-Facing Step Flow in a Water Channel with Variable Expansion Geometry

    OpenAIRE

    Tihon, J. (Jaroslav); Pěnkavová, V. (Věra); Havlica, J. (Jaromír); Šimčík, M. (Miroslav)

    2012-01-01

    The backward-facing step flow is investigated experimentally and numerically at moderate Reynolds numbers. The different channel expansion ratios (ER = 1.4, 2, 2.5, and 4) and inlet flow conditions (steady and pulsatile) are applied with the aim to analyze the structure and stability of the flow behind the step. The electrodiffusion technique is used to measure the wall shear rate along the experimental water channel. The direction sensitive sensors detect the near-wall extent of different fl...

  18. Digital Non-Linear Equalization for Flexible Capacity Ultradense WDM Channels for Metro Core Networking

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.

    2011-01-01

    We experimentally demonstrate that digital non-linear equalization allows for using independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking.......We experimentally demonstrate that digital non-linear equalization allows for using independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking....

  19. Dual axial channel heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Alario, J.P.; Haslett, R.A.; Kosson, R.L.

    1984-09-11

    A heat pipe comprising an elongated sealed metallic envelope having at least a pair of longitudinal channels extending along the length thereof. One of the channels is for the circulation of the vapor phase of the working medium in operation and the other for the liquid phase and capillary means are provided to furnish fluid communication therebetween. Dedicated vapor and liquid channels result in low viscous pressure drops, the capillary communication means and circumferential grooving in the vapor channel provide high capillary pressure differences, and circumferential grooving is provided to furnish the high evaporation and condensation film coefficients required. To support higher heat fluxes, wicking can be used to augment the capillary flow from the liquid channel. To support higher evaporator heat flux without the need for wicking means, the heat pipe can be provided with more than one liquid channel, each communicating with the vapor channel by capillary means. The heat pipe can be provided with an integral fin or equivalent means for rejection of heat by radiation to ambient or for attachment to a source of heat in the evaporator region thereof.

  20. Thermally stable imaging channeled spectropolarimetry

    Science.gov (United States)

    Craven-Jones, Julia; Way, Brandyn M.; Hunt, Jeff; Kudenov, Michael W.; Mercier, Jeffrey A.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. Past work has addressed this issue by developing athermalized retarders using two or more uniaxial crystals. Recently, a retarder made of biaxial KTP and cut at a thermally insensitive angle was used to produce an athermal channeled spectropolarimeter. This paper presents the results of the biaxial crystal system and compares the two thermal stabilization techniques in the context of producing an imaging thermally stable channeled spectropolarimeter. A preliminary design for a snapshot imaging channeled spectropolarimeter is also presented.

  1. Ion Channels in Brain Metastasis.

    Science.gov (United States)

    Klumpp, Lukas; Sezgin, Efe C; Eckert, Franziska; Huber, Stephan M

    2016-09-08

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial-mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood-brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation.

  2. Ion Channels in Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Lukas Klumpp

    2016-09-01

    Full Text Available Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial–mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood–brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation.

  3. Small Ion Channel Linking Molecular Simulations and Electrophysiology

    Science.gov (United States)

    Pohorille, Andrzej

    2017-01-01

    Ion channels are pore-forming protein assemblies that mediate the transport of small ions across cell membranes. Otherwise, membrane bilayers would be almost impermeable to ions incapable to traverse the low dielectric constant, hydrophobic membrane core. Ion channels are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses, cardiac functions, muscle contraction and apoptosis. On the other extreme of biological complexity, viral ion channels (viroporins) influence many stages of the virus infection cycle either through regulating virus replication, such as entry, assembly and release or modulating the electrochemical balance in the subcellular compartments of host cells. Ion channels were crucial components of protocells. Their emergence facilitated adaptation of nascent life to different environmental conditions. The earliest ion channels must have been much simpler than most of their modern ancestors. Viral channels are among only a few naturally occurring models to study the structure, function and evolution of primordial channels. Experimental studies of these properties are difficult and often unreliable. In principle, computational methods, and molecular dynamics (MD) simulations in particular, can aid in providing information about both the structure and the function of ion channels. However, MD suffers from its own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. It is, therefore, essential to determine the reliability of MD simulations. We propose to do so on the basis of two criteria. One is channel stability on time scales that extend for several microseconds or longer. The other is the ability to reproduce the measured ionic conductance as a function of applied voltage. If both the stability and the calculated ionic conductance are satisfactory it will greatly increase our confidence that the structure and the function of a

  4. Multi-carrier Communications over Time-varying Acoustic Channels

    Science.gov (United States)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple

  5. Numerical Investigation of Developing Velocity Distributions in Open Channel Flows

    Directory of Open Access Journals (Sweden)

    Usman Ghani

    2014-04-01

    Full Text Available The velocity profiles in open channel flows start developing after entering into the channel for quite some length. All types of laboratory experiments for open channel flows are carried out in the fully developed flow regions which exist at some length downstream the inlet. In this research work an attempt has been made to investigate the impact of roughness and slope of the channel bed on the length required for establishment of fully developed flow in an open channel. A range of different roughness values along with various slopes were considered for this purpose. It was observed that an increase in roughness results in reduction of development length; and development length reduces drastically when roughness reaches to the range normally encountered in open channel flows with emergent vegetation or natural river flows. However, it was observed that the change of slope did not have any noticeable effect on development length. This work suggests that CFD (Computational Fluid Dynamics technique can be used for getting a reliable development length before performing an experimental work

  6. Scalable video transmission over Rayleigh fading channels using LDPC codes

    Science.gov (United States)

    Bansal, Manu; Kondi, Lisimachos P.

    2005-03-01

    In this paper, we investigate an important problem of efficiently utilizing the available resources for video transmission over wireless channels while maintaining a good decoded video quality and resilience to channel impairments. Our system consists of the video codec based on 3-D set partitioning in hierarchical trees (3-D SPIHT) algorithm and employs two different schemes using low-density parity check (LDPC) codes for channel error protection. The first method uses the serial concatenation of the constant-rate LDPC code and rate-compatible punctured convolutional (RCPC) codes. Cyclic redundancy check (CRC) is used to detect transmission errors. In the other scheme, we use the product code structure consisting of a constant rate LDPC/CRC code across the rows of the `blocks' of source data and an erasure-correction systematic Reed-Solomon (RS) code as the column code. In both the schemes introduced here, we use fixed-length source packets protected with unequal forward error correction coding ensuring a strictly decreasing protection across the bitstream. A Rayleigh flat-fading channel with additive white Gaussian noise (AWGN) is modeled for the transmission. The rate-distortion optimization algorithm is developed and carried out for the selection of source coding and channel coding rates using Lagrangian optimization. The experimental results demonstrate the effectiveness of this system under different wireless channel conditions and both the proposed methods (LDPC+RCPC/CRC and RS+LDPC/CRC) outperform the more conventional schemes such as those employing RCPC/CRC.

  7. Simple haptotactic gradient generation within a triangular microfluidic channel.

    Science.gov (United States)

    Park, Jungyul; Kim, Deok-Ho; Kim, Gabriel; Kim, Younghoon; Choi, Eunpyo; Levchenko, Andre

    2010-08-21

    Most microfluidic devices developed to date for the analysis of live cells incorporate channels with relatively simple constant rectangular or semi-circular cross-sections, relying on complex channel network geometries rather than alteration of the shapes of the channels themselves for development of diverse functional fluidic controls, e.g., spatial gradients of bioactive ligands. In this study we describe a simple alternative method to create highly defined and predictable gradients of surface bound molecules. This method relies on the generation of a considerable variation in the spatial distribution of flow velocities within a channel with a triangular cross-section. The triangular shape can be easily implemented by using bulk wet etching and polydimethylsiloxane (PDMS) replica molding techniques. By analytical modeling and simulation, we predict that the deposition of the solute onto a channel boundary depends on the local flow rate values, yielding gradient spanning the whole width of the channel. This prediction was validated by direct visualization of the flow rate and fibronectin-rhodamine deposition in a fabricated microchannel. Using this experimental platform, we assessed cell migration in response to a fibronectin gradient deposited in the microchannels. We find that this gradient could induce robust haptotaxis of Chinese Hamster Ovary (CHO) cells towards the areas of higher fibronectin surface density. We propose that the described simple gradient generation method can help to avoid complexity present in many current device designs, allowing to introduce more easily other potentially useful design features.

  8. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    Directory of Open Access Journals (Sweden)

    Kurt T Laha

    Full Text Available Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs. Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC and Gloeobacter violaceus (GLIC in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover

  9. Landslide-channel feedbacks amplify flood response and channel erosion

    Science.gov (United States)

    Bennett, Georgina; Kean, Jason; Rengers, Francis; Ryan, Sandra; Rathburn, Sara

    2017-04-01

    Flood stream power is amplified in mountainous catchments by channel confinement and steep slopes, generating widespread channel erosion and causing significant challenges for flood risk management. Approaches to predicting flood channel response include identification of stream power thresholds. However, in a mountainous catchment in Colorado, USA, we find that stream power, estimated from the pre-storm DEM, was not a good predictor of channel flood response and that landslide-channel feedbacks better explain the observed pattern of channel erosion. The North St Vrain is a 250 km2 catchment in the Colorado Front Range. It was among several catchments impacted by a 1000 yr prolonged rainfall event in September 2013, which generated a 200 yr flood and >100 landslides in the catchment. We estimated peak discharge and stream power using radar-based rainfall data, wherein the rainfall was converted to a discharge based on the upstream drainage area and assuming no infiltration (a reasonable assumption after 3 days of heavy rainfall). Measured high water marks in key reaches were used to calculate a field-based estimate of peak discharge. These discharge estimates were compared with spatial erosion estimates, calculated using the differenced pre- and post-flood LiDAR DEMs. We found that the onset of profound channel erosion was determined by the formation and failure of an in-channel dam. The dam, composed of debris flow and tributary sediment input, was sufficiently large (˜150,000 m3) to temporarily overwhelm channel transport capacity even during flood. Our field-based estimate of peak discharge downstream of the dam is more than 2 times greater than our rainfall-based estimate, which suggests a dam burst event occurred. Further downstream we observe additional channel reaches in which erosion was amplified by landslide and tributary sediment input, either through the formation and failure of dams or potentially through sediment bulking alone. These findings imply

  10. Discovery and Development of Calcium Channel Blockers

    Directory of Open Access Journals (Sweden)

    Théophile Godfraind

    2017-05-01

    Full Text Available In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan and Heibrunn (USA experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are

  11. Marine Toxins Targeting Ion Channels

    Directory of Open Access Journals (Sweden)

    Hugo R. Arias

    2006-04-01

    Full Text Available Abstract: This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs, as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs, are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV, Ca2+ (CaV, and K+ (KV channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR, and the ATP-activated (P2XnR receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+, whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−. In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers of ion channel functions to treat or to alleviate a specific

  12. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  13. ACE Strategy with Virtual Channels

    Directory of Open Access Journals (Sweden)

    T. Tichy

    2008-12-01

    Full Text Available Cochlear implant is an electronic device, which can mediate hearing sensations to profoundly deaf people. Contemporary cochlear implants are sophisticated electronic devices; however, their performance could still be improved. This paper describes an experiment we made in that direction: additional 21 virtual channels were implemented by sequential stimulation of adjacent intracochlear electrodes, and the ACE strategy with virtual channels (ACEv, Advanced Combination Encoder strategy with virtual channels for the Nucleus® 24 Cochlear Implant System was created and verified in a clinical test with four patients.

  14. Experimental study of the hydraulic jump in a hydraulic jump in a ...

    African Journals Online (AJOL)

    The hydraulic jump in a sloped rectangular channel is theoretically and experimentally examined. The study aims to determine the effect of the channel's slope on the sequent depth ratio of the jump. A theoretical relation is proposed for the inflow Froude number as function of the sequent depth ratio and the channel slope.

  15. Modulation of acetylcholine receptor channel by a polar component isolated from toxic Ostreopsis lenticularis extracts.

    Science.gov (United States)

    Escalona De Motta, G; Mercado, J A; Tosteson, T R; González, I; Lasalde, J A

    1992-01-01

    Methanol extracts obtained from O. lenticularis clones are toxic to mice and inhibit acetylcholine-induced contractions in frog skeletal muscle. Chromatographic fractionation of extracts produced two major fractions with different retention times. Single channel recordings in myocyte membrane patches exposed to more polar fraction showed the appearance of acetylcholine-activated channels whose mean current amplitude was nearly half that of the controls. Channel open times under control and experimental conditions were similar. Thus, this dinoflagellate fraction reduces the ionic conductance of nicotinic receptor channels without altering their lifetime.

  16. Paired SSB optical OFDM channels for high spectral efficient signal transmission over DWDM networks

    Science.gov (United States)

    Chicharro, Francisco I.; Ortega, Beatriz; Mora, José

    2016-07-01

    A new high spectral efficient SSB-OOFDM DWDM transmission system has been experimentally demonstrated. The proposed transmitter employs paired optical channels consisting of two SSB modulated OFDM signals using opposite sidebands in order to allow an efficient use of the spectrum with optical carriers separation under 10 GHz. Moreover, different paired channels are multiplexed into the 25 GHz grid DWDM fiber transmission link. Optical carrier spacing of 8.75 GHz in paired channels has been demonstrated allowing 40.8 Gb/s signal transmission rate over a 25 GHz paired channel bandwidth.

  17. Plasma channels under filamentation of infrared and ultraviolet double femtosecond laser pulses

    CERN Document Server

    Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S

    2013-01-01

    An influence of plasma channel created by a filament of focused UV or IR femtosecond laser pulse ({\\lambda}=248 nm or 740 nm) on characteristics of other plasma channel formed by a femtosecond pulse at the same wavelength following the first one with varied nanosecond time delay was experimentally studied. A dependence of optical transparency of the first channel and plasma density of the second channel on the time delay was demonstrated to be quite different for such a double UV and IR femtosecond pulses.

  18. Low complexity source and channel coding for mm-wave hybrid fiber-wireless links

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Vegas Olmos, Juan José; Pang, Xiaodan

    2014-01-01

    performance of several encoded high-definition video sequences constrained by the channel bitrate and the packet size. We argue that light video compression and low complexity channel coding for the W-band fiber-wireless link enable low-delay multiple channel 1080p wireless HD video transmission.......We report on the performance of channel and source coding applied for an experimentally realized hybrid fiber-wireless W-band link. Error control coding performance is presented for a wireless propagation distance of 3 m and 20 km fiber transmission. We report on peak signal-to-noise ratio...

  19. Changes in ion channel geometry resolved to sub-angstroem precision via single molecule mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Joseph W F; Kasianowicz, John J; Reiner, Joseph E [Semiconductor Electronics Division, Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2010-11-17

    The ion channel formed by Staphylococcus aureus alpha-hemolysin switches between multiple open conducting states. We describe a method for precisely estimating the changes in the ion channel geometry that correspond to these different states. Experimentally, we observed that the permeability of a single channel to differently sized poly(ethylene glycol) molecules depends on the magnitude of the open state conductance. A simple theory is proposed for determining changes in channel length of 4.2% and in cross-sectional area of - 0.4%.

  20. An O(NlogN Algorithm for Region Definition Using Channels/Switchboxes and Ordering Assignment

    Directory of Open Access Journals (Sweden)

    Jin-Tai Yan

    1996-01-01

    Full Text Available For a building block placement, the routing space can be further partitioned into channels and switchboxes. In general, the definition of switchboxes releases the cyclic channel precedence constraints and further yields a safe routing ordering process. However, switchbox routing is more difficult than channel routing. In this paper, an O(NlogN region definition and ordering assignment (RDAOA algorithm is proposed to minimize the number of switchboxes for the routing phase, where N is the number of vertices in a channel precedence graph. Several examples have been tested on the proposed algorithm, and the experimental results are listed and compared.

  1. Report on Physics of Channelization: Theory, Experiment, and Observation

    Energy Technology Data Exchange (ETDEWEB)

    Kudrolli, Arshad [Clark University

    2014-05-19

    The project involved a study of physical processes that create eroded channel and drainage networks. A particular focus was on how the shape of the channels and the network depended on the nature of the fluid flow. Our approach was to combine theoretical, experimental, and observational studies in close collaboration with Professor Daniel Rothman of the Massachusetts Institute of Technology. Laboratory -scaled experiments were developed and quantitative data on the shape of the pattern and erosion dynamics are obtained with a laser-aided topography technique and fluorescent optical imaging techniques.

  2. Voltage- and temperature- controlled LC:PDMS waveguide channels

    Science.gov (United States)

    Rutkowska, Katarzyna A.; Asquini, Rita; d'Alessandro, Antonio

    2017-08-01

    In this paper, we present our studies on electrical and thermal tuning of light propagation in waveguide channels, made for the scope from a polydimethylsiloxane (PDMS) substrate infiltrated with nematic liquid crystal (LC). We demonstrated, via numerical simulations, the changes of the waveguide optical parameters when solicited by temperature changes or electric fields. Moreover, the paper goes through the fabrication process of a waveguide channel sample and its characterization, as well as some preliminary experimental trials of sputtering indium tin oxide (ITO) and chromium layers on PDMS substrate to obtain flat electrodes.

  3. Multi-channel PSD Estimators for Speech Dereverberation

    DEFF Research Database (Denmark)

    Kuklasinski, Adam; Doclo, Simon; Gerkmann, Timo

    2015-01-01

    In this paper we perform an extensive theoretical and experimental comparison of two recently proposed multi-channel speech dereverberation algorithms. Both of them are based on the multi-channel Wiener filter but they use different estimators of the speech and reverberation power spectral...... distributions of the interference both estimators yield the same MSE. The theoretically derived MSE values are in good agreement with numerical simulation results and with instrumental speech quality measures in a realistic speech dereverberation task for binaural hearing aids....

  4. Bent crystal channeling of 255 MeV electrons

    Science.gov (United States)

    Takabayashi, Y.; Pivovarov, Yu. L.; Tukhfatullin, T. A.

    2018-01-01

    Charged particles channeled in a bent crystal plane are known to be deflected along the bent plane. Such studies have mainly been performed for high-energy positively-charged particles such as protons, and recently for electrons with energies from 855 MeV to 20.35 GeV. In this work, we present experimental results on the bent crystal channeling of electrons for a lower energy region (255 MeV), where the multiple scattering effect in a crystal is expected to be more dominant. Angular distributions of electrons transmitted through a bent Si crystal have been measured, which are in good agreement with the simulation results.

  5. Catalytic reaction in confined flow channel

    Energy Technology Data Exchange (ETDEWEB)

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  6. Charge‐selective claudin channels

    National Research Council Canada - National Science Library

    Krug, Susanne M; Günzel, Dorothee; Conrad, Marcel P; Lee, In‐Fah M; Amasheh, Salah; Fromm, Michael; Yu, Alan S. L

    2012-01-01

    Claudins are the main determinants of barrier properties of the tight junction. Many claudins have been shown to act by tightening the paracellular pathway, but several function as paracellular channels...

  7. Kinetic ELISA in microfluidic channels

    National Research Council Canada - National Science Library

    Yanagisawa, Naoki; Dutta, Debashis

    2011-01-01

    In this article, we describe the kinetic ELISA of Blue Tongue and Epizootic Hemorrhagic Disease viral antibodies in microfluidic channels by monitoring the rate of generation of the enzyme reaction...

  8. Wireless Communication over Dispersive Channels

    NARCIS (Netherlands)

    Fang, K.

    2010-01-01

    Broadband wireless communication systems require high transmission rates, where the bandwidth of the transmitted signal is larger than the channel coherence bandwidth. This gives rise to time dispersion of the transmitted symbols or frequency-selectivity with different frequency components

  9. Biophysics of BK Channel Gating.

    Science.gov (United States)

    Pantazis, A; Olcese, R

    2016-01-01

    BK channels are universal regulators of cell excitability, given their exceptional unitary conductance selective for K(+), joint activation mechanism by membrane depolarization and intracellular [Ca(2+)] elevation, and broad expression pattern. In this chapter, we discuss the structural basis and operational principles of their activation, or gating, by membrane potential and calcium. We also discuss how the two activation mechanisms interact to culminate in channel opening. As members of the voltage-gated potassium channel superfamily, BK channels are discussed in the context of archetypal family members, in terms of similarities that help us understand their function, but also seminal structural and biophysical differences that confer unique functional properties. © 2016 Elsevier Inc. All rights reserved.

  10. FMCG companies specific distribution channels

    Directory of Open Access Journals (Sweden)

    Ioana Barin

    2009-12-01

    Full Text Available Distribution includes all activities undertaken by the producer, alone or in cooperation, since the end of the final finished products or services until they are in possession of consumers. The distribution consists of the following major components: distribution channels or marketing channels, which together form a distribution network; logistics o rphysical distribution. In order to effective achieve, distribution of goods requires an amount of activities and operational processes related to transit of goods from producer to consumer, the best conditions, using existing distribution channels and logistics system. One of the essential functions of a distribution is performing acts of sale, through which, with the actual movement of goods, their change of ownership takes place, that the successive transfer of ownership from producer to consumer. This is an itinerary in the economic cycle of goods, called the distribution channel.

  11. Potassium Channels in Neurofbromatosis-1

    National Research Council Canada - National Science Library

    Chen, Mingkui

    2006-01-01

    .... We were the first to investigate potential mechanisms of cognitive impairment in NF-1 at the molecular level involving potassium channels, and demonstrated a possible mechanism for the learning deficits seen in NF1...

  12. Channel estimation algorithm for interference suppression in IMDD-OQAM-OFDM transmission systems

    Science.gov (United States)

    Zhang, Lu; Xiao, Shilin; Bi, Meihua; Liu, Ling; Zhou, Zhao

    2016-04-01

    In this paper, we investigate the intrinsic interference caused by intra-symbol data and channel noise in the intensity-modulation direct-detection OQAM-OFDM (IMDD-OQAM-OFDM) system by theoretical derivation. Based on the analysis, we proposed and experimentally demonstrated a channel estimation algorithm with the combination of IAM-C and frequency-averaging method to combat the effect of these noises. Experimental results show that compared to the common channel estimation algorithms, our algorithm can greatly reduce the error vector magnitude (EVM) and achieve ~1.5 dB sensitivity improvement.

  13. Skeletal Muscle Na+ Channel Disorders

    OpenAIRE

    Dina eSimkin; Saïd eBendahhou

    2011-01-01

    Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the impo...

  14. Animal experimentation.

    Science.gov (United States)

    Kolar, Roman

    2006-01-01

    Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation.

  15. Description and preliminary results of the PACEM 2 experimental program

    Science.gov (United States)

    Gole, P.; Lavergnat, J.; Sylvain, M.

    The CNET experimental PACEM program, which is aimed at obtaining a better understanding of multipath propagation on microwave line-of-sight channels, is considered. The results of a previous experiment on channel modeling is summarized, and an experiment investigating the seasonal variations on a space diversity channel is described. To monitor the experiment remotely, an efficient data compression technique that involved Hadamard transforming was used. It is shown that the number of significant transform coefficients allows a quick evaluation of the propagation channel behavior without decompressing the data. First results obtained using the method are presented for a one-year period.

  16. Estimation of MIMO channel capacity from phase-noise impaired measurements

    DEFF Research Database (Denmark)

    Pedersen, Troels; Yin, Xuefeng; Fleury, Bernard Henri

    2008-01-01

    that phase noise of the transmitter and receiver local oscillators, when it is assumed to be a white Gaussian random process, can cause large errors of the estimated channel capacity of a low-rank MIMO channel when the standard channel matrix estimator is used. Experimental evidence shows that consecutive...... phase noise samples affecting measurement samples collected with real TDMMIMO channel sounders are correlated. In this contribution a capacity estimator that accounts for the phase noise correlation is proposed. The estimator is based on a linear minimum mean square error estimate of the MIMO channel...... matrix. It is shown by means of Monte Carlo simulations assuming a measurementbased phase noise model, that the MIMO channel capacity can be estimated accurately for signal to noise ratios up to about 35 dB...

  17. Quantitative shearography: error reduction by using more than three measurement channels

    Energy Technology Data Exchange (ETDEWEB)

    Charrett, Tom O. H.; Francis, Daniel; Tatam, Ralph P.

    2011-01-10

    Shearography is a noncontact optical technique used to measure surface displacement derivatives. Full surface strain characterization can be achieved using shearography configurations employing at least three measurement channels. Each measurement channel is sensitive to a single displacement gradient component defined by its sensitivity vector. A matrix transformation is then required to convert the measured components to the orthogonal displacement gradients required for quantitative strain measurement. This transformation, conventionally performed using three measurement channels, amplifies any errors present in the measurement. This paper investigates the use of additional measurement channels using the results of a computer model and an experimental shearography system. Results are presented showing that the addition of a fourth channel can reduce the errors in the computed orthogonal components by up to 33% and that, by using 10 channels, reductions of around 45% should be possible.

  18. Quantitative shearography: error reduction by using more than three measurement channels.

    Science.gov (United States)

    Charrett, Tom O H; Francis, Daniel; Tatam, Ralph P

    2011-01-10

    Shearography is a noncontact optical technique used to measure surface displacement derivatives. Full surface strain characterization can be achieved using shearography configurations employing at least three measurement channels. Each measurement channel is sensitive to a single displacement gradient component defined by its sensitivity vector. A matrix transformation is then required to convert the measured components to the orthogonal displacement gradients required for quantitative strain measurement. This transformation, conventionally performed using three measurement channels, amplifies any errors present in the measurement. This paper investigates the use of additional measurement channels using the results of a computer model and an experimental shearography system. Results are presented showing that the addition of a fourth channel can reduce the errors in the computed orthogonal components by up to 33% and that, by using 10 channels, reductions of around 45% should be possible.

  19. Reducing Channel Interaction Through Cochlear Implant Programming May Improve Speech Perception

    Directory of Open Access Journals (Sweden)

    Julie A. Bierer

    2016-06-01

    Full Text Available Speech perception among cochlear implant (CI listeners is highly variable. High degrees of channel interaction are associated with poorer speech understanding. Two methods for reducing channel interaction, focusing electrical fields, and deactivating subsets of channels were assessed by the change in vowel and consonant identification scores with different program settings. The main hypotheses were that (a focused stimulation will improve phoneme recognition and (b speech perception will improve when channels with high thresholds are deactivated. To select high-threshold channels for deactivation, subjects’ threshold profiles were processed to enhance the peaks and troughs, and then an exclusion or inclusion criterion based on the mean and standard deviation was used. Low-threshold channels were selected manually and matched in number and apex-to-base distribution. Nine ears in eight adult CI listeners with Advanced Bionics HiRes90k devices were tested with six experimental programs. Two, all-channel programs, (a 14-channel partial tripolar (pTP and (b 14-channel monopolar (MP, and four variable-channel programs, derived from these two base programs, (c pTP with high- and (d low-threshold channels deactivated, and (e MP with high- and (f low-threshold channels deactivated, were created. Across subjects, performance was similar with pTP and MP programs. However, poorer performing subjects (scoring  2. These same subjects showed slightly more benefit with the reduced channel MP programs (5 and 6. Subjective ratings were consistent with performance. These finding suggest that reducing channel interaction may benefit poorer performing CI listeners.

  20. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  1. Flow dynamics and concentration polarisation in spacer-filled channels

    DEFF Research Database (Denmark)

    Lipnizki, Jens; Jonsson, Gunnar Eigil

    2002-01-01

    been shown that the mass transport along the membrane is not fully described by the Sherwood correlation, which describes a decreasing mass transfer with an increasing distance from the inlet. It was observed that in open channel without spacers, the slope of the Sherwood correlation is decreasing......The key to developing highly efficient spiral-wound modules is the improvement of the mass transfer mechanisms. In this study a study of the mass transfer has been carried out using a flat test cell with six permeate outlets and a rectangular feed channel. Using this experimental set-up, it has....... This phenomenon was also observed in spacer-filled channels. In this case the stripes on the surface depended on the spacer geometry. Furthermore, the experiments were used to calculate the energy consumption vs. the mass transfer coefficient for different spacers. This research can be used as a foundation...

  2. Channel microstructure and thermal insulation mechanism of sepiolite mineral nanofibers.

    Science.gov (United States)

    Wang, Fei; Liang, Jinsheng; Tang, Qingguo; Chen, Cong; Chen, Yalei

    2014-05-01

    The longitudinal and cross sectional TEM images of sepiolite mineral nanofibers were prepared by cutting in the direction parallel and perpendicular to nanofibers, and the channel microstructure of sepiolite nanofibers was studied. The thermal insulation mechanism of sepiolite nanofibers was analyzed according to the diagrammatic sketch obtained from the above experimental method. The results showed that many discontinuously connected bending shape channels with about 23-26 nm in diameter existed in the center region of nanofibers, and many discontinuously connected irregular micropores and mesopores with the size of about 1-9 nm existed on the wall of nanofibers. The main reasons for the formation of channel microstructure in sepiolite nanofibers were their minerogenetic conditions and the interaction between acid and high-speed airflow in the process of nanofibers preparation, and bubbles in the hydrotherm played a significant role in the microstructure formation. The thermal insulation performance of sepiolite nanofibers could be attributed to obstructive and infrared radiative thermal insulation.

  3. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  4. Evaluation of microfluidic channels with optical coherence tomography

    Science.gov (United States)

    Czajkowski, J.; Prykäri, T.; Alarousu, E.; Lauri, J.; Myllylä, R.

    2010-11-01

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  5. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.

    2010-06-25

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  6. Experimental macroevolution†

    Science.gov (United States)

    Bell, Graham

    2016-01-01

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  7. Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Berger ChristianR

    2010-01-01

    Full Text Available We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input multiple-output (MIMO detection and low-density parity-check (LDPC channel decoding. In particular, the channel estimator is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive interference cancellation and soft minimum mean-square error (MMSE equalization, and channel coding uses nonbinary LDPC codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that soft decision feedback slightly outperforms hard decision feedback.

  8. Optimal Erasure Protection Assignment for Scalable Compressed Data with Small Channel Packets and Short Channel Codewords

    Directory of Open Access Journals (Sweden)

    Johnson Thie

    2004-03-01

    Full Text Available We are concerned with the efficient transmission of scalable compressed data over lossy communication channels. Recent works have proposed several strategies for assigning optimal code redundancies to elements in a scalable data stream under the assumption that all elements are encoded onto a common group of network packets. When the size of the data to be encoded becomes large in comparison to the size of the network packets, such schemes require very long channel codes with high computational complexity. In networks with high loss, small packets are generally more desirable than long packets. This paper proposes a robust strategy for optimally assigning elements of the scalable data to clusters of packets, subject to constraints on packet size and code complexity. Given a packet cluster arrangement, the scheme then assigns optimal code redundancies to the source elements subject to a constraint on transmission length. Experimental results show that the proposed strategy can outperform previously proposed code redundancy assignment policies subject to the above-mentioned constraints, particularly at high channel loss rates.

  9. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    OpenAIRE

    Sanggil Yeoum; Byungseok Kang; Jinkyu Lee; Hyunseung Choo

    2017-01-01

    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel...

  10. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  11. Transient receptor potential channels in essential hypertension

    DEFF Research Database (Denmark)

    Liu, Daoyan; Scholze, Alexandra; Zhu, Zhiming

    2006-01-01

    The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated.......The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated....

  12. 18 CFR 1304.303 - Channel excavation.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Channel excavation... Activities on TVA Flowage Easement Shoreland § 1304.303 Channel excavation. (a) Channel excavation of... encourage owners of flowage easement property to adopt the standards for channel excavation applicable to...

  13. Therapeutic approaches to ion channel diseases.

    Science.gov (United States)

    Camerino, Diana Conte; Desaphy, Jean-François; Tricarico, Domenico; Pierno, Sabata; Liantonio, Antonella

    2008-01-01

    More than 400 genes are known that encode ion channel subunits. In addition, alternative splicing and heteromeric assembly of different subunits increase tremendously the variety of ion channels. Such many channels are needed to accomplish very complex cellular functions, whereas dysfunction of ion channels are key events in many pathological processes. The recent discovery of ion channelopathies, which, in its more stringent definition, encloses monogenic disorders due to mutations in ion channel genes, has largely contributed to our understanding of the function of the various channel subtypes and of the role of ion channels in multigenic or acquired diseases. Last but not least, ion channels are the main targets of many drugs already used in the clinics. Most of these drugs were introduced in therapy based on the experience acquired quite empirically, and many were discovered afterward to target ion channels. Now, intense research is being conducted to develop new drugs acting selectively on ion channel subtypes and aimed at the understanding of the intimate drug-channel interaction. In this review, we first focus on the pharmacotherapy of ion channel diseases, which includes many drugs targeting ion channels. Then, we describe the molecular pharmacology of ion channels, including the more recent advancement in drug development. Among the newest aspect of ion channel pharmacology, we draw attention to how polymorphisms or mutations in ion channel genes may modify sensitivity to drugs, opening the way toward the development of pharmacogenetics.

  14. Electrophysiological characterisation of KCNQ channel modulators

    DEFF Research Database (Denmark)

    Schrøder, R.L

    as these channels were identified only recently. Therefore, there is a need for understanding the biophysical behavior and pharmacology of these ion channels. KCNQ channels belong to the group of voltage-activated K+ channels. The subfamily consists of KCNQ1-5, which is primarily expressed in the CNS, heart, ear...

  15. Conjugate heat transfer characterization in cooling channels

    Science.gov (United States)

    Cukurel, Beni; Arts, Tony; Selcan, Claudio

    2012-06-01

    Cooling technology of gas turbine blades, primarily ensured via internal forced convection, is aimed towards withdrawing thermal energy from the airfoil. To promote heat exchange, the walls of internal cooling passages are lined with repeated geometrical flow disturbance elements and surface non-uniformities. Raising the heat transfer at the expense of increased pressure loss; the goal is to obtain the highest possible cooling effectiveness at the lowest possible pressure drop penalty. The cooling channel heat transfer problem involves convection in the fluid domain and conduction in the solid. This coupled behavior is known as conjugate heat transfer. This experimental study models the effects of conduction coupling on convective heat transfer by applying iso-heat-flux boundary condition at the external side of a scaled serpentine passage. Investigations involve local temperature measurements performed by Infrared Thermography over flat and ribbed slab configurations. Nusselt number distributions along the wetted surface are obtained by means of heat flux distributions, computed from an energy balance within the metal domain. For the flat plate experiments, the effect of conjugate boundary condition on heat transfer is estimated to be in the order of 3%. In the ribbed channel case, the normalized Nusselt number distributions are compared with the basic flow features. Contrasting the findings with other conjugate and convective iso-heat-flux literature, a high degree of overall correlation is evident.

  16. Information transfer through quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Kretschmann, D.

    2007-03-12

    This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische Universitaet Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. My thesis falls into the field of abstract quantum information theory. This work investigates both fundamental properties of quantum channels and their asymptotic capacities for classical as well as quantum information transfer. Stinespring's theorem is the basic structure theorem for quantum channels. It implies that every quantum channel can be represented as a unitary evolution on an enlarged system. In Ch. 3 we present a continuity theorem for Stinespring's representation: two quantum channels are similar if and only if it is possible to find unitary implementations that are likewise similar, with dimension-independent norm bounds. The continuity theorem allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, and a continuity estimate for the no-broadcasting principle. In Ch. 4 we then apply the continuity theorem to give a strengthened no-go proof for quantum bit commitment, an important cryptographic primitive. This result also provides a natural characterization of those protocols that fall outside the standard setting of unconditional security, and thus may allow secure bit commitment. We present a new such protocol whose security relies on decoherence in the receiver's lab. Ch. 5 reviews the capacities of quantum channels for the transfer of both classical and quantum information, and investigates several variations in the notion of channel capacity. Memory effects are then investigated in detail in Ch. 6. We advertise a model which is sufficiently general to encompass all causal automata: every quantum process in which the outputs up to any given time t do not depend on the inputs at times t'>t can be represented as a concatenated memory

  17. Positive Surge Propagation in Sloping Channels

    Directory of Open Access Journals (Sweden)

    Daniele Pietro Viero

    2017-07-01

    Full Text Available A simplified model for the upstream propagation of a positive surge in a sloping, rectangular channel is presented. The model is based on the assumptions of a flat water surface and negligible energy dissipation downstream of the surge, which is generated by the instantaneous closure of a downstream gate. Under these hypotheses, a set of equations that depends only on time accurately describes the surge wave propagation. When the Froude number of the incoming flow is relatively small, an approximate analytical solution is also proposed. The predictive ability of the model is validated by comparing the model results with the results of an experimental investigation and with the results of a numerical model that solves the full shallow water equations.

  18. Quantum systems, channels, information. A mathematical introduction

    Energy Technology Data Exchange (ETDEWEB)

    Holevo, Alexander S.

    2012-07-01

    The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.

  19. Modeling of sectionally continuous communication channel with inhomogeneously distributed tissues.

    Science.gov (United States)

    Zhang, Shuang; Qin, Yu-Ping; Kuang, Jiang-Ming; Liu, Yi-He; Yang, Ji-Ning; Yin, Fu-Cheng

    2017-08-01

    This study aimed to investigate effects on the transmission channel caused by heterogeneous distribution in tissues and joint characteristics. Human arm section scans were taken using CT technology, and zoned, following which, a circumference measurement experiment was performed to analyze the effect of inhomogeneous distribution of tissues. In order to analyze the arm joint's effect on channel transmission, we proposed a piecewise modeling method in combination with connection conditions. It can be seen from the experiment that, in the quasi-static mode, the communication channel error caused by the inhomogeneous distribution of tissues is small enough to be negligible. The error between calculated and experimental results is reduced by 3.93 dB in this experiment relative to models that did not include joint characteristics, and the average error is lowered by 0.73 dB. The variation curve fit to experimental data is also improved in this method. As such, it can be quantitatively determined that a channel model with joint characteristics is superior to models excluding joint characteristics.

  20. Geometry-based channel modelling of MIMO channels in comparison with channel sounder measurements

    Directory of Open Access Journals (Sweden)

    G. Del Galdo

    2004-01-01

    Full Text Available In this paper we propose a flexible geometrybased propagation model for wireless communications developed at Ilmenau University of Technology. The IlmProp comprises a geometrical representation of the environment surrounding the experiment and a precise representation of the transmitting and receiving antennas. The IlmProp is capable of simulating Multi-User MIMO scenarios and includes a complete collection of tools to analyze the synthetic channels. In order to assess the potentials as well as the limits of our channel simulator we reconstruct the scenario encountered in a recent measurement campaign at Ilmenau University of Technology leading to synthetic data sets similar to the ones actually measured. The measurements have been collected with the RUSK MIMO multi-dimensional channel sounder. From the comparisons of the two channel matrices it is possible to derive useful information to improve the model itself and to better understand the physical origins of small-scale fading. In particular the effects of the different parameters on the synthetic channel have been studied in order to assess the sensibility of the model. This analysis shows that the correct positioning of a small number of scatterers is enough to achieve frequency selectiveness as well as specific traits of the channel statistics. The size of the scattering clusters, the number of scatterers per cluster, and the Rician K-factor can be modified in order to tune the channel statistics at will. To obtain higher levels of time variance, moving scatterers or time dependent reflection coefficients must be introduced.

  1. Channel Engineering for Nanotransistors in a Semiempirical Quantum Transport Model

    Directory of Open Access Journals (Sweden)

    Ulrich Wulf

    2017-11-01

    Full Text Available One major concern of channel engineering in nanotransistors is the coupling of the conduction channel to the source/drain contacts. In a number of previous publications, we have developed a semiempirical quantum model in quantitative agreement with three series of experimental transistors. On the basis of this model, an overlap parameter 0 ≤ C ≤ 1 can be defined as a criterion for the quality of the contact-to-channel coupling: A high level of C means good matching between the wave functions in the source/drain and in the conduction channel associated with a low contact-to-channel reflection. We show that a high level of C leads to a high saturation current in the ON-state and a large slope of the transfer characteristic in the OFF-state. Furthermore, relevant for future device miniaturization, we analyze the contribution of the tunneling current to the total drain current. It is seen for a device with a gate length of 26 nm that for all gate voltages, the share of the tunneling current becomes small for small drain voltages. With increasing drain voltage, the contribution of the tunneling current grows considerably showing Fowler–Nordheim oscillations. In the ON-state, the classically allowed current remains dominant for large drain voltages. In the OFF-state, the tunneling current becomes dominant.

  2. A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins.

    Science.gov (United States)

    Xiao, Li; Diao, Jianxiong; Greene, D'Artagnan; Wang, Junmei; Luo, Ray

    2017-07-11

    Membrane proteins constitute a large portion of the human proteome and perform a variety of important functions as membrane receptors, transport proteins, enzymes, signaling proteins, and more. Computational studies of membrane proteins are usually much more complicated than those of globular proteins. Here, we propose a new continuum model for Poisson-Boltzmann calculations of membrane channel proteins. Major improvements over the existing continuum slab model are as follows: (1) The location and thickness of the slab model are fine-tuned based on explicit-solvent MD simulations. (2) The highly different accessibilities in the membrane and water regions are addressed with a two-step, two-probe grid-labeling procedure. (3) The water pores/channels are automatically identified. The new continuum membrane model is optimized (by adjusting the membrane probe, as well as the slab thickness and center) to best reproduce the distributions of buried water molecules in the membrane region as sampled in explicit water simulations. Our optimization also shows that the widely adopted water probe of 1.4 Å for globular proteins is a very reasonable default value for membrane protein simulations. It gives the best compromise in reproducing the explicit water distributions in membrane channel proteins, at least in the water accessible pore/channel regions. Finally, we validate the new membrane model by carrying out binding affinity calculations for a potassium channel, and we observe good agreement with the experimental results.

  3. Position and Trajectrories of helical microswimmers inside circular channels

    Science.gov (United States)

    Caldag, Hakan; Yesilyurt, Serhat

    2015-11-01

    This work reports the position and orientation of helical mm-sized microswimmers in circular channels obtained by image processing of recorded images. Microswimmers are biologically inspired structures with huge potential for medical practices such as delivery of potent drugs into tissues. In order to understand the hydrodynamic effects of confinement on the velocity and stability of trajectories of swimmers, we developed helical microswimmers with a magnetic head and a rigid helical tail, similar to those of E. coli bacteria. The experiments are recorded using a digital camera, which is placed above the experimental setup that consists of three Helmholtz pairs, generating a rotating magnetic field. A channel containing the microswimmer is placed along the axis of the innermost coil. Image processing tools based on contrast-enhancement are used to obtain the centroid of the head of the swimmer and orientation of the whole swimmer in the channel. Swimmers that move in the direction of the head, i.e. pushed kinematically by the tail, has helical trajectories, which are more unstable in the presence of Poiesuille flow inside the channel; and the swimmers that are pulled by the tail, have trajectories that stabilize at the centerline of the channel.

  4. Transient Receptor Potential Channels as Targets for Phytochemicals

    Science.gov (United States)

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  5. Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen

    Science.gov (United States)

    Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2013-01-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  6. On stimulated resonance radiation by channeled particles

    Science.gov (United States)

    Dabagov, S. B.; Kalashnikov, N. P.

    2017-07-01

    The channeled particles undergo quasiperiodic transverse bound motion along main crystallographic directions at either 1D planar or 2D axial channeling. This motion is accompanied by spontaneous radiation known as channeling radiation due to projectile's transmission between discrete quantum states. In this work we have presented preliminary evaluation of the processes of resonance scattering of external electromagnetic field when the external frequency becomes close to the channeled particle transition energies that might be of the source for induced radiation at channeling.

  7. Channels of Monetary Transmission in the CIS

    OpenAIRE

    Jamilov, Rustam

    2012-01-01

    Twenty years have passed since the breakdown of the Soviet Union, and it is time to draw a concluding line for monetary policy efficiency in the Commonwealth of Independent States (CIS). We propose a comprehensive treatment of the subject for nine members of the CIS for the period of 2000-2009. Four transmission channels are investigated: interest rate channel, exchange rate channel, bank lending channel, and monetary channel. First, we design a VAR framework for each CIS member-state and inv...

  8. Insect sodium channels and insecticide resistance

    OpenAIRE

    Dong, Ke

    2007-01-01

    Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent...

  9. Experimental macroevolution.

    Science.gov (United States)

    Bell, Graham

    2016-01-13

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. © 2016 The Author(s).

  10. Cross-Sectional Channel Shape Dependence of Short-Channel Effects in Fin-Type Double-Gate Metal Oxide Semiconductor Field-Effect Transistors

    Science.gov (United States)

    Liu, Yongxun; Ishii, Kenichi; Masahara, Meishoku; Tsutsumi, Toshiyuki; Takashima, Hidenori; Yamauchi, Hiromi; Suzuki, Eiichi

    2004-04-01

    The dependence of short-channel effects (SCEs) on the cross-sectional channel shape of the fin-type double-gate metal oxide semiconductor field-effect transistors (MOSFETs) has been experimentally investigated from the viewpoint of fin fabrication. The three types of fin-type double-gate MOSFETs (FinFETs) with a rectangular-cross-section channel on a (110)-oriented silicon-on-insulator (SOI) wafer, and a triangular and trapezoidal channels on a (100)-oriented SOI wafer were fabricated using the same orientation-dependent wet etching process. The experimental results show that the SCEs in rectangular-cross-section silicon (Si)-fin channel devices are well suppressed compared with those in a triangular or a trapezoidal Si-fin channel device fabricated using a similar mask pattern, in the regimes of the gate length of less than 85 nm and Si fin height of larger than 65 nm. The presented experimental results are valuable for FinFET design and fabrication.

  11. 9-Phenanthrol inhibits recombinant and arterial myocyte TMEM16A channels

    Science.gov (United States)

    Burris, Sarah K; Wang, Qian; Bulley, Simon; Neeb, Zachary P; Jaggar, Jonathan H

    2015-01-01

    Background and Purpose In arterial smooth muscle cells (myocytes), intravascular pressure stimulates membrane depolarization and vasoconstriction (the myogenic response). Ion channels proposed to mediate pressure-induced depolarization include several transient receptor potential (TRP) channels, including TRPM4, and transmembrane protein 16A (TMEM16A), a Ca2+-activated Cl− channel (CaCC). 9-Phenanthrol, a putative selective TRPM4 channel inhibitor, abolishes myogenic tone in cerebral arteries, suggesting that either TRPM4 is essential for pressure-induced depolarization, upstream of activation of other ion channels or that 9-phenanthrol is non-selective. Here, we tested the hypothesis that 9-phenanthrol is also a TMEM16A channel blocker, an ion channel for which few inhibitors have been identified. Experimental Approach Patch clamp electrophysiology was used to measure rat cerebral artery myocyte and human recombinant TMEM16A (rTMEM16A) currents or currents generated by recombinant bestrophin-1, another Ca2+-activated Cl− channel, expressed in HEK293 cells. Key Results 9-Phenanthrol blocked myocyte TMEM16A currents activated by either intracellular Ca2+ or Eact, a TMEM16A channel activator. In contrast, 9-phenanthrol did not alter recombinant bestrophin-1 currents. 9-Phenanthrol reduced arterial myocyte TMEM16A currents with an IC50 of ∼12 μM. Cell-attached patch recordings indicated that 9-phenanthrol reduced single rTMEM16A channel open probability and mean open time, and increased mean closed time without affecting the amplitude. Conclusions and Implications These data identify 9-phenanthrol as a novel TMEM16A channel blocker and provide an explanation for the previous observation that 9-phenanthrol abolishes myogenic tone when both TRPM4 and TMEM16A channels contribute to this response. 9-Phenanthrol may be a promising candidate from which to develop TMEM16A channel-specific inhibitors. PMID:25573456

  12. Research on optimization design of conformal cooling channels in hot stamping tool based on response surface methodology and multi-objective optimization

    OpenAIRE

    He Bin; Si Yanglei; Ying Liang; Hu Ping

    2016-01-01

    In order to optimize the layout of the conformal cooling channels in hot stamping tools, a response surface methodology and multi-objective optimization technique are proposed. By means of an Optimal Latin Hypercube experimental design method, a design matrix with 17 factors and 50 levels is generated. Three kinds of design variables, the radius Rad of the cooling channel, the distance H from the channel center to tool work surface and the ratio rat of each channel center, are optimized to de...

  13. Phase distribution of nitrogen-water two-phase flow in parallel micro channels

    Science.gov (United States)

    Zhou, Mi; Wang, Shuangfeng; Zhou, You

    2017-04-01

    The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.

  14. Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.

    Science.gov (United States)

    Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali

    2017-11-01

    Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.

  15. Drug inhibition and proton conduction mechanisms of the influenza a M2 proton channel.

    Science.gov (United States)

    Gu, Ruoxu; Liu, Limin Angela; Wei, Dongqing

    2015-01-01

    The influenza A virus matrix protein 2 (M2 protein) is a pH-regulated proton channel embedded in the viral membrane. Inhibition of the M2 proton channel has been used to treat influenza infections for decades due to the crucial role of this protein in viral infection and replication. However, the widely-used M2 inhibitors, amantadine and rimantadine, have gradually lost their efficiencies because of naturally-occurring drug resistant mutations. Therefore, investigation of the structure and function of the M2 proton channel will not only increase our understanding of this important biological system, but also lead to the design of novel and effective anti-influenza drugs. Despite the simplicity of the M2 molecular structure, the M2 channel is highly flexible and there have been controversies and arguments regarding the channel inhibition mechanism and the proton conduction mechanism. In this book chapter, we will first carefully review the experimental and computational studies of the two possible drug binding sites on the M2 protein and explain the mechanisms regarding how inhibitors prevent proton conduction. Then, we will summarize our recent molecular dynamics simulations of the drug-resistant mutant channels and propose mechanisms for drug resistance. Finally, we will discuss two existing proton conduction mechanisms and talk about the remaining questions regarding the proton-relay process through the channel. The studies reviewed here demonstrate how molecular modeling and simulations have complemented experimental work and helped us understand the M2 channel structure and function.

  16. Automatic detection of noisy channels in fNIRS signal based on correlation analysis.

    Science.gov (United States)

    Guerrero-Mosquera, Carlos; Borragán, Guillermo; Peigneux, Philippe

    2016-09-15

    fNIRS signals can be contaminated by distinct sources of noise. While most of the noise can be corrected using digital filters, optimized experimental paradigms or pre-processing methods, few approaches focus on the automatic detection of noisy channels. In the present study, we propose a new method that detect automatically noisy fNIRS channels by combining the global correlations of the signal obtained from sliding windows (Cui et al., 2010) with correlation coefficients extracted experimental conditions defined by triggers. The validity of the method was evaluated on test data from 17 participants, for a total of 16 NIRS channels per subject, positioned over frontal, dorsolateral prefrontal, parietal and occipital areas. Additionally, the detection of noisy channels was tested in the context of different levels of cognitive requirement in a working memory N-back paradigm. Bad channels detection accuracy, defined as the proportion of bad NIRS channels correctly detected among the total number of channels examined, was close to 91%. Under different cognitive conditions the area under the Receiver Operating Curve (AUC) increased from 60.5% (global correlations) to 91.2% (local correlations). Our results show that global correlations are insufficient for detecting potentially noisy channels when the whole data signal is included in the analysis. In contrast, adding specific local information inherent to the experimental paradigm (e.g., cognitive conditions in a block or event-related design), improved detection performance for noisy channels. Also, we show that automated fNIRS channel detection can be achieved with high accuracy at low computational cost. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. adequacy of drainage channels f drainage channels in a small

    African Journals Online (AJOL)

    eobe

    analysis, construction and maintenance of drainage c. Keywords: Keywords: Time of concentration, ... nwamba of Civil Engineering Department, University of Nigeria Nsuk. F DRAINAGE CHANNELS IN A SMALL URBAN .... The assessment of extreme precipitation is an important problem in hydrologic risk analysis and.

  18. Lubiprostone: a chloride channel activator.

    Science.gov (United States)

    Lacy, Brian E; Levy, L Campbell

    2007-04-01

    In January 2006 the Food and Drug Administration approved lubiprostone for the treatment of chronic constipation in men and women aged 18 and over. Lubiprostone is categorized as a prostone, a bicyclic fatty acid metabolite of prostaglandin E1. Lubiprostone activates a specific chloride channel (ClC-2) in the gastrointestinal (GI) tract to enhance intestinal fluid secretion, which increases GI transit and improves symptoms of constipation. This article reviews the role of chloride channels in the GI tract, describes the structure, function, and pharmacokinetics of lubiprostone, and discusses clinically important data on this new medication.

  19. Antenna for Ultrawideband Channel Sounding

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact on the a......A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...

  20. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels.

    Science.gov (United States)

    Sartiani, Laura; Mannaioni, Guido; Masi, Alessio; Novella Romanelli, Maria; Cerbai, Elisabetta

    2017-10-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Falsification of the ionic channel theory of hair cell transduction.

    Science.gov (United States)

    Rossetto, Michelangelo

    2013-11-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.

  2. Pressure Drop Experiments on a Flow Channel Filled with Catalysts for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungdeok; Kim, C. S.; Kim, M. H.; Kim, Y. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seo, D. U.; Park, G. C. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    The Korea Atomic Energy Research Institute (KAERI) has developed a hybrid-design decomposer to withstand severe operating conditions. Hong and Seo have been studying a two-dimensional numerical analysis for a catalyst channel line-up with a 3mm ball shaped catalyst. They compared their CFD results to many widespread correlations developed for porous media such as those by Carman, Ergun, and Zhavoronkov as well as Susskind and Becker and Reichelt including a pebble-bed nuclear reactor design correlation. They concluded that the validation should be accomplished by the experiments for a catalyst channel simulating the channel of the PHE. In this paper, we discuss the pressure drop experiments on a flow channel filled with ball shaped catalysts. The test section simulates a single channel of the PHE secondary side plate-fin channel. The experimental results compared well with the known pressure drop correlations and a numerical analysis, respectively. We discussed an experimental validation of a pressure drop correlations and 2D CFD analysis on a flow channel filled with catalysts in the channel. The results of the pressure drop measurements are compared with the results obtained using well-known empirical correlations and 2D CFD analysis. From the comparison results, the validity of all the correlations and 2D numerical analysis is not satisfactory. There are two kind of reasons are presumed. While the general packed channel has radially infinite and complete circular cross section, the catalyst channel has radially finite with a very narrow width and irregular wavy cross section. Another reason is presumed to be because the inordinate large void fraction in the catalyst channel which is beyond the application range on void fraction in the empirical correlations.

  3. Effect of Aspect Ratio, Channel Orientation, Rib Pitch-to-Height Ratio, and Number of Ribbed Walls on Pressure Drop Characteristics in a Rotating Channel with Detached Ribs

    Directory of Open Access Journals (Sweden)

    K. Arun

    2007-01-01

    Full Text Available The present work involves experimental investigation of the effects of aspect ratio, channel orientation angle, rib pitch-to-height ratio (P/e, and number of ribbed walls on friction factor in orthogonally rotating channel with detached ribs. The ribs are separated from the base wall to provide a small region of flow between the base wall and the ribs. Experiments have been conducted at Reynolds number ranging from 10000–17000 with rotation numbers varying from 0–0.38. Pitch-to-rib height ratios (P/e of 5 and 10 at constant rib height-to-hydraulic diameter ratio (e/D of 0.1 and a clearance ratio (C/e of 0.38 are considered. The rib angle of attack with respect to mainstream flow is 90∘. The channel orientation at which the ribbed wall becomes trailing surface (pressure side on which the Coriolis force acts is considered as the 0∘ orientation angle. For one-wall ribbed case, channel is oriented from 0∘ to 180∘ about its axis in steps of 30∘ to change the orientation angle. For two-wall ribbed case, the orientation angle is changed from 0∘ to 90∘ in steps of 30∘. Friction factors for the detached ribbed channels are compared with the corresponding attached ribbed channel. It is found that in one-wall detached ribbed channel, increase in the friction factor ratio with the orientation angle is lower for rectangular channel compared to that of square channel for both the pitch-to-rib height ratios of 5 and 10 at a given Reynolds number and rotation number. Friction factor ratios of two-wall detached ribbed rectangular channel are comparable with corresponding two-wall detached ribbed square channel both under stationary and rotating conditions.

  4. Experimental music for experimental physics

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    Using the sonification technique, physicist and composer Domenico Vicinanza paid homage to CERN at its 60th anniversary ceremony. After months of hard work, he turned the CERN Convention and LHC data into music.   Click here to download the full score of the "LHChamber music". Every birthday deserves gifts and CERN’s 60th anniversary was no exception. Two gifts were very special, thanks to the hard work of Domenico Vicinanza, a physicist and composer. He created two experimental pieces by applying the sonification technique to the CERN Convention and to data recorded by the four LHC detectors during Run 1. “This technique allows us to ‘hear’ data using an algorithm that translates numbers or letters into notes. It keeps the same information enclosed in a graph or a document, but has a more aesthetic exposition,” explains Domenico Vicinanza. “The result is meant to be a metaphor for scientific cooperation, in which d...

  5. Dispersion of strongly confined channel plasmon polariton modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir; Volkov, Valentyn S.; Han, Zhanghua

    2011-01-01

    We report on experimental (by use of scanning near-field optical microscopy) and theoretical investigations of strongly confined (∼λ/5) channel plasmon polariton (CPP) modes propagating at telecom wavelengths (1425–1630 nm) along V-grooves cut in a gold film. The main CPP characteristics (mode in...... index, width, and propagation length) are determined directly from the experimental near-field images and compared to theoretical results obtained using an analytic description of CPP modes supported by (infinitely deep) V-grooves and finite-element simulations implemented in COMSOL....

  6. Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  7. Single top t-channel

    CERN Document Server

    Faltermann, Nils

    2017-01-01

    The production of single top quarks allows to study the interplay of top quark physics and the electroweak sector of the standard model. Deviations from predictions can be a hint for physics beyond the standard model. The t-channel is the dominant production mode for single top quarks at the LHC. This talk presents the latest measurements from the ATLAS and CMS collaborations.

  8. Higgs in Bosonic channel (CMS)

    CERN Document Server

    Gori, Valentina

    2015-01-01

    All the investigated properties result to be fully consistent with the SM predictions: the signal strength and the signal strength modifiers are consistent with unity in all the bosonic channels considered; the hypothesis of a scalar particle is strongly favored, ag...

  9. Sales promotion and channel coordination

    NARCIS (Netherlands)

    Wierenga, B.; Soethoudt, J.M.

    2010-01-01

    Consumer sales promotions are usually the result of the decisions of two marketing channel parties, the manufacturer and the retailer. In making these decisions, each party normally follows its own interest: i.e. maximizes its own profit. Unfortunately, this results in a suboptimal outcome for the

  10. Sales promotions and channel coordination

    NARCIS (Netherlands)

    B. Wierenga (Berend); H. Soethoudt (Han)

    2009-01-01

    textabstractConsumer sales promotions are usually the result of the decisions of two marketing channel parties, the manufacturer and the retailer. In making these decisions, each party normally follows its own interest: i.e. maximizes its own profit. Unfortunately, this results in a suboptimal

  11. Effects of channel blocking on information transmission and energy efficiency in squid giant axons.

    Science.gov (United States)

    Liu, Yujiang; Yue, Yuan; Yu, Yuguo; Liu, Liwei; Yu, Lianchun

    2018-01-11

    Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.

  12. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  13. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  14. CONDUCTIVE CHANNEL FOR ENERGY TRANSMISSION

    Directory of Open Access Journals (Sweden)

    V. V. Apollonov

    2014-01-01

    Full Text Available Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF and short pulse solid-state and UV lasers. Main advantage of short pulse lasers is their ability in forming of super long ionized channels with a characteristic diameter of ~100  µ  in atmosphere along the  beam propagation direction. At estimated electron densities below  10 ⋅ 16 cm–3 in these filaments and laser wavelengths in the range of 0,5–1,0 mm, the plasma barely absorbs laser radiation.  In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (< 1 J. An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m.Not so long ago scientific group from P. N. Lebedev has improved that result, the discharge gap – 1 m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m electric discharge by 100-ns UV pulses. Our previous result  –  16 m long conducting channel controlled by a  laser spark at the voltage  –  3 MV  – was obtained more than 20 years ago in Russia and Japan by using pulsed CO2  laser with energy  –  0,5 kJ. An average electric field strength  was < 190 kV/m. It is still too much for efficient applications.

  15. Demonstration of 4 lanes of 4 × 100 Gbps DMT transmission with channel spacing of 50-GHz compatible with DWDM

    Science.gov (United States)

    Xu, Yuming; Yu, Jianjun; Li, Xinying; Xiao, Jiangnan

    2017-07-01

    We experimentally demonstrate 4 lanes of 416-Gb/s discrete multi-tone (DMT) transmission with 50-GHz channel spacing. This is the first demonstration of 4 × 100 G transmission with less than 100-GHz channel spacing and it can be compatible with dense wavelength division multiplexing (DWDM).

  16. The broad-spectrum cation channel blocker pinokalant (LOE 908 MS) reduces brain infarct volume in rats

    DEFF Research Database (Denmark)

    Christensen, Thomas; Wienrich, Marion; Ensinger, Helmut A

    2005-01-01

    Activation of cation channels conducting Ca2+, Na+ and K+ is involved in the pathogenesis of infarction in experimental focal cerebral ischaemia. Pinokalant (LOE 908 MS) is a novel broad-spectrum inhibitor of several subtypes of such channels and has previously been shown to improve the metabolic...

  17. Interior point decoding for linear vector channels

    Energy Technology Data Exchange (ETDEWEB)

    Wadayama, T [Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi, 466-8555 (Japan)], E-mail: wadayama@nitech.ac.jp

    2008-01-15

    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter-symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem.

  18. Subspace Based Blind Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Hayashi, Kazunori; Matsushima, Hiroki; Sakai, Hideaki

    2012-01-01

    The paper proposes a subspace based blind sparse channel estimation method using 1–2 optimization by replacing the 2–norm minimization in the conventional subspace based method by the 1–norm minimization problem. Numerical results confirm that the proposed method can significantly improve...... the estimation accuracy for the sparse channel, while achieving the same performance as the conventional subspace method when the channel is dense. Moreover, the proposed method enables us to estimate the channel response with unknown channel order if the channel is sparse enough....

  19. Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels

    Science.gov (United States)

    Goodenough, K.; Elkouss, D.; Wehner, S.

    2016-06-01

    One of the most sought-after goals in experimental quantum communication is the implementation of a quantum repeater. The performance of quantum repeaters can be assessed by comparing the attained rate with the quantum and private capacity of direct transmission, assisted by unlimited classical two-way communication. However, these quantities are hard to compute, motivating the search for upper bounds. Takeoka, Guha and Wilde found the squashed entanglement of a quantum channel to be an upper bound on both these capacities. In general it is still hard to find the exact value of the squashed entanglement of a quantum channel, but clever sub-optimal squashing channels allow one to upper bound this quantity, and thus also the corresponding capacities. Here, we exploit this idea to obtain bounds for any phase-insensitive Gaussian bosonic channel. This bound allows one to benchmark the implementation of quantum repeaters for a large class of channels used to model communication across fibers. In particular, our bound is applicable to the realistic scenario when there is a restriction on the mean photon number on the input. Furthermore, we show that the squashed entanglement of a channel is convex in the set of channels, and we use a connection between the squashed entanglement of a quantum channel and its entanglement assisted classical capacity. Building on this connection, we obtain the exact squashed entanglement and two-way assisted capacities of the d-dimensional erasure channel and bounds on the amplitude-damping channel and all qubit Pauli channels. In particular, our bound improves on the previous best known squashed entanglement upper bound of the depolarizing channel.

  20. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    for experimentally observed plasticity in HCN channels accompanying synaptic plasticity in hippocampal neurons, and uncover potential links between HCN-channel plasticity and calcium influx, dynamic gain control and stable synaptic learning. PMID:23390543

  1. Experimental quantum data locking

    Science.gov (United States)

    Liu, Yang; Cao, Zhu; Wu, Cheng; Fukuda, Daiji; You, Lixing; Zhong, Jiaqiang; Numata, Takayuki; Chen, Sijing; Zhang, Weijun; Shi, Sheng-Cai; Lu, Chao-Yang; Wang, Zhen; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei

    2016-08-01

    Classical correlation can be locked via quantum means: quantum data locking. With a short secret key, one can lock an exponentially large amount of information in order to make it inaccessible to unauthorized users without the key. Quantum data locking presents a resource-efficient alternative to one-time pad encryption which requires a key no shorter than the message. We report experimental demonstrations of a quantum data locking scheme originally proposed by D. P. DiVincenzo et al. [Phys. Rev. Lett. 92, 067902 (2004), 10.1103/PhysRevLett.92.067902] and a loss-tolerant scheme developed by O. Fawzi et al. [J. ACM 60, 44 (2013), 10.1145/2518131]. We observe that the unlocked amount of information is larger than the key size in both experiments, exhibiting strong violation of the incremental proportionality property of classical information theory. As an application example, we show the successful transmission of a photo over a lossy channel with quantum data (un)locking and error correction.

  2. The MISO wiretap channel with channel uncertainty: Asymptotic perspectives

    KAUST Repository

    Chaaban, Anas

    2017-05-12

    The N-antenna MISO Gaussian wiretap channel with imperfect channel-state information at the transmitter (CSIT) is studied in terms of secrecy rate scaling versus the signal-to-noise ratio (SNR) and N. Two schemes are considered, beamforming (BF) and artificial noise injection (AN). It is shown that if the CSIT error is independent of SNR, then both schemes do not achieve scaling versus SNR. However, if this error vanishes as SNR increases, then AN achieves the optimal scaling versus SNR, contrary to BF. Scaling can be achieved in BF by increasing N. In fact, BF achieves the optimal scaling versus N. In the AN scheme however, injecting noise in multiple direction deteriorates its scaling versus N. Nevertheless, AN can achieve the optimal scaling if noise is sent in only one direction. This leads to better performance than BF if the CSIT error is smaller than a threshold which is also derived.

  3. Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel

    Science.gov (United States)

    Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde

    2017-01-01

    A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks. PMID:28295024

  4. Simultaneous Regeneration of Two 160 Gbit/s WDM Channels in a Single Highly Nonlinear Fiber

    DEFF Research Database (Denmark)

    Wang, Ju; Ji, Hua; Hu, Hao

    2012-01-01

    We experimentally demonstrate simultaneous all-optical regeneration of two 160 Gbit/s WDM channels in a single HNLF using fiber optical parametric amplification. Receiver sensitivities at a BER of 10-9 are improved by about 2.1 dB and 4.9 dB for the two channels, respectively. The BER is not degr......We experimentally demonstrate simultaneous all-optical regeneration of two 160 Gbit/s WDM channels in a single HNLF using fiber optical parametric amplification. Receiver sensitivities at a BER of 10-9 are improved by about 2.1 dB and 4.9 dB for the two channels, respectively. The BER...

  5. Amplitude spectrum modulation technique for analog data processing in fiber optic sensing system with temporal separation of channels

    Science.gov (United States)

    Adamovsky, Grigory

    1988-01-01

    A novel technique to analyze analog data in fiber optic sensing systems with temporal separation of channels is proposed. A theoretical explanation of the process is presented and an experimental setup that was used to obtain data is described.

  6. Modeling within- and across-channel processes in comodulation masking release

    DEFF Research Database (Denmark)

    Dau, Torsten; Piechowiak, Tobias; Ewert, Stephan D

    2013-01-01

    different mechanisms contribute to overall CMR in the considered conditions: (1) a within-channel process based on changes in the envelope characteristic due to the addition of the signal to the masker; (2) a within-channel process based on nonlinear peripheral processing of the OFB's envelope caused......The relative contributions of within-channel and across-channel processes to perceptual comodulation masking release (CMR) were investigated in the framework of an auditory processing model. A generalized version of the computational auditory signal processing and perception model [CASP; Jepsen et...... al., J. Acoust. Soc. Am. 124, 422-438 (2008)] was used and extended by an across-channel modulation processing stage according to Piechowiak et al. [J. Acoust. Soc. Am. 121, 2111-2126 (2007)]. Five experimental paradigms were considered: CMR with a broadband noise masker as a function of the masker...

  7. Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.

    2005-01-01

    In this paper we propose a SISO UWB radio channel model for short-range radio link scenarios between a fixed device and a dynamic user hand-held device. The channel model is derived based on novel experimental UWB radio propagation investigations carried out in typical indoor PAN scenarios...... including realistic device and user terminal antenna configurations. The radio channel measurements have been performed in the lower UWB frequency band of 3GHz to 5GHz with a 2x4 MIMO antenna configuration. Several environments, user scenarios and two types of user terminals have been used. The developed...... channel model represents an enhancement of the existing IEEE 802.15.3a/4a PAN channel model, where antenna and user-proximity effects are not included. Our investigations showed that significant variations of the received wideband power and time-delay signal clustering are possible due the human body...

  8. Temperature dependence of single-event burnout in n-channel power MOSFET's

    Science.gov (United States)

    Johnson, G. H.; Schrimpf, R. D.; Galloway, K. F.; Koga, R.

    1994-03-01

    The temperature dependence of single-event burnout (SEB) in n-channel power metal-oxide-semiconductor field effect transistors (MOSFET's) is investigated experimentally and analytically. Experimental data are presented which indicate that the SEB susceptibility of the power MOSFET decreases with increasing temperature. A previously reported analytical model that describes the SEB mechanism is updated to include temperature variations. This model is shown to agree with the experimental trends.

  9. Transmembrane helical interactions in the CFTR channel pore.

    Directory of Open Access Journals (Sweden)

    Jhuma Das

    2017-06-01

    Full Text Available Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF. Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF and develop an inward (IWF facing model employing an integrated experimental-molecular dynamics simulation (200 ns approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.

  10. In Vitro Contractile Response of Rabbit Myometrium to BKCa and KATP Potassium Channel Openers

    Directory of Open Access Journals (Sweden)

    Soňa Fraňová

    2009-01-01

    Full Text Available The aim of the study was to evaluate the participation of ligand-sensitive potassium large conductance calcium-activated channels (BKCa and ATP-sensitive potassium channels in uterine smooth muscle reactivity during different stages of the experimentally induced proliferatory and secretory phase in the sexual cycle in ovariectomised rabbits in vitro. The myometrial reactivity to oxytocin (10-6 mol l-1 was investigated by an in vitro method in female rabbits 14 days after ovariectomy treated with 17β-estradiol - 1 mg/kg/day i.m. for 7 days, or with a combination of progesterone 2 mg/kg/day s.c. for 7 days and 17β-estradiol - 0.2 mg/ kg/day (day 3–7. The strips of myometrial smooth muscle were incubated with a specific opener (NS 1619 and an antagonist (TEA of potassium large conductance calcium-activated channel, or with a specific opener (pinacidil and an antagonist (glybenclamide of ATP-sensitive potassium channels before the administration of oxytocin. NS1619 produced more potent inhibition of the oxytocin-induced contraction during the gestagen dominance (experimental secretory phase than the one observed during the oestrogen dominance (experimental proliferatory phase. TEA antagonized the NS1619 induced inhibition of the myometrial contraction. In the matter of KATP potassium channels, after the administration of pinacidil we observed a similar situation in the changes of myometrial contractility. Pinacidil produced more pronounced inhibition of oxytocin-induced contraction during the secretory phase, and its effect was abolished by the selective inhibitor glybenclamide. Our experimental results indicate that both potassium large conductance calcium-activated channels and ATP-sensitive potassium channels significantly participate in the regulation of myometrial oxytocin-induced contractions and the activity of these channels is probably influenced by the levels of oestrogens and gestagens.

  11. The KATP channel in migraine pathophysiology

    DEFF Research Database (Denmark)

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne

    2017-01-01

    BACKGROUND: To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION: KATP channels are widely present in the trigeminovascular system and play...... an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP...... channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION: We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target....

  12. Targeting sodium channels in cardiac arrhythmia

    NARCIS (Netherlands)

    Remme, Carol Ann; Wilde, Arthur A. M.

    2014-01-01

    Cardiac voltage-gated sodium channels are responsible for proper electrical conduction in the heart. During acquired pathological conditions and inherited sodium channelopathies, altered sodium channel function causes conduction disturbances and ventricular arrhythmias. Although the clinical,

  13. Channel Estimation in DCT-Based OFDM

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  14. Channel estimation in DCT-based OFDM.

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform-(DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic.

  15. Coastal Maintained Channels in US waters

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This layer shows coastal channels and waterways that are maintained and surveyed by the U.S. Army Corps of Engineers (USACE). These channels are necessary...

  16. The additivity problem and constrained quantum channels

    Science.gov (United States)

    Holevo, A. S.

    2005-06-01

    We give formulations of the famous additivity conjecture for several important quantities characterizing quantum channel and prove their global equivalence to the additivity of the classical capacity of a channel under input constrains (like mean energy constrain).

  17. Single Channel 106 Gbit/s 16QAM Wireless Transmission in the 0.4 THz Band

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Jia, Shi; Ozolins, Oskars

    2017-01-01

    We experimentally demonstrate a single channel 32-GBd 16QAM THz wireless link operating in the 0.4 THz band. Post-FEC net data rate of 106 Gbit/s is successfully achieved without any spatial/frequency multiplexing.......We experimentally demonstrate a single channel 32-GBd 16QAM THz wireless link operating in the 0.4 THz band. Post-FEC net data rate of 106 Gbit/s is successfully achieved without any spatial/frequency multiplexing....

  18. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  19. Degenerate RFID Channel Modeling for Positioning Applications

    Directory of Open Access Journals (Sweden)

    A. Povalac

    2012-12-01

    Full Text Available This paper introduces the theory of channel modeling for positioning applications in UHF RFID. It explains basic parameters for channel characterization from both the narrowband and wideband point of view. More details are given about ranging and direction finding. Finally, several positioning scenarios are analyzed with developed channel models. All the described models use a degenerate channel, i.e. combined signal propagation from the transmitter to the tag and from the tag to the receiver.

  20. Ion coordination in the amphotericin B channel

    OpenAIRE

    Khutorsky, V

    1996-01-01

    The antifungal polyene antibiotic amphotericin B forms channels in lipid membranes that are permeable to ions, water, and nonelectrolytes. Anion, cation, and ion pair coordination in the water-filled pore of the "barrel" unit of the channels was studied by molecular dynamics simulations. Unlike the case of the gramicidin A channel, the water molecules do not create a single-file configuration in the pore, and some cross sections of the channel contain three or four water molecules. Both the a...

  1. Investigation of Heat Transfer in Mini Channels using Planar Laser Induced Fluorescence

    DEFF Research Database (Denmark)

    Bøgild, Morten Ryge; Poulsen, Jonas Lundsted; Rath, Emil Zacho

    2012-01-01

    In this paper an experimental investigation of the heat transfer in mini channels with a hydraulic diameter of 889 m is conducted. The method used is planar laser induceduorescence (PLIF), which uses the principle of laser excitation of rhodamine B in water. The goal of this study is to validate...... the applicability of PLIF to determine the convective heat transfer coecient in mini channels against conventional correlations of the convective heat transfer coecient. The applicability of the conventional theory in micro and mini channels has been discussed by several researchers, but to the authors knowledge...

  2. Mass shifts and decay widths of psi mesons due to OZI-allowed decay channels

    CERN Document Server

    Yabusaki, N; Hirano, M; Sakai, M; Matsuda, Y

    2000-01-01

    Using effective quark-quark interactions proposed by the Cornell group and by Barbour and Gilchrist, we study the open-channel effects of the psi states. We take into account the meson-meson final-state interaction in open channels, which is derived microscopically from the quark-level one-boson-exchange model. By applying the complex scaling transformation to the coupled-channel equation, mass shifts and OZI-allowed decay widths of the psi states are simultaneously evaluated. Agreement with the experimental data is improved considerably. Refs. 20 (author)

  3. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    Science.gov (United States)

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  4. LDPC-based iterative joint source-channel decoding for JPEG2000.

    Science.gov (United States)

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  5. Monte Carlo simulation for statistical mechanics model of ion-channel cooperativity in cell membranes.

    Science.gov (United States)

    Erdem, Riza; Aydiner, Ekrem

    2009-03-01

    Voltage-gated ion channels are key molecules for the generation and propagation of electrical signals in excitable cell membranes. The voltage-dependent switching of these channels between conducting and nonconducting states is a major factor in controlling the transmembrane voltage. In this study, a statistical mechanics model of these molecules has been discussed on the basis of a two-dimensional spin model. A new Hamiltonian and a new Monte Carlo simulation algorithm are introduced to simulate such a model. It was shown that the results well match the experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon using the cut-open axon technique.

  6. Physiological role of Kv1.3 channel in T lymphocyte cell investigated quantitatively by kinetic modeling.

    Directory of Open Access Journals (Sweden)

    Panpan Hou

    Full Text Available Kv1.3 channel is a delayed rectifier channel abundant in human T lymphocytes. Chronic inflammatory and autoimmune disorders lead to the over-expression of Kv1.3 in T cells. To quantitatively study the regulatory mechanism and physiological function of Kv1.3 in T cells, it is necessary to have a precise kinetic model of Kv1.3. In this study, we firstly established a kinetic model capable to precisely replicate all the kinetic features for Kv1.3 channels, and then constructed a T-cell model composed of ion channels including Ca2+-release activated calcium (CRAC channel, intermediate K+ (IK channel, TASK channel and Kv1.3 channel for quantitatively simulating the changes in membrane potentials and local Ca2+ signaling messengers during activation of T cells. Based on the experimental data from current-clamp recordings, we successfully demonstrated that Kv1.3 dominated the membrane potential of T cells to manipulate the Ca2+ influx via CRAC channel. Our results revealed that the deficient expression of Kv1.3 channel would cause the less Ca2+ signal, leading to the less efficiency in secretion. This was the first successful attempt to simulate membrane potential in non-excitable cells, which laid a solid basis for quantitatively studying the regulatory mechanism and physiological role of channels in non-excitable cells.

  7. Chloride channels in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Rasmussen, B E

    1982-01-01

    A study of the voltage and time dependence of a transepithelial Cl- current in toad skin (Bufo bufo) by the voltage-clamp method leads to the conclusion that potential has a dual role for Cl- transport. One is to control the permeability of an apical membrane Cl-pathway, the other is to drive Cl-......- transport through open channels does not obey the constant-field equation....

  8. Visualizing multi-channel networks

    DEFF Research Database (Denmark)

    Antemijczuk, Paweł; Magiera, Marta; Jørgensen, Sune Lehmann

    2014-01-01

    In this paper, we propose a visualization to illustrate social interactions, built from multiple distinct channels of communication. The visualization displays a summary of dense personal information in a compact graphical notation. The starting point is an abstract drawing of a spider’s web. Below......, we describe the meaning of each data dimension along with the background and motivation for their inclusion. Finally, we present feedback provided by the users (31 individuals) of the visualization....

  9. Channeled and microactiviation of materials

    Energy Technology Data Exchange (ETDEWEB)

    Maggiore, C.J.; Blacic, J.D.; Blondiaux, G.; Debrun, J.L.; Ali, M.H.; Mathez, E.; Misdaq, M.A.; Valladon, M.

    1988-01-01

    Charged particle activation analysis can be combined with channeling to determine lattice location of impurities at the trace level in single crystal samples. It can also be used with a nuclear microprobe to measure impurities at trace levels in small or spatially inhomogeneous samples. Examples of these extensions of activation analysis to realistic samples are carbon determination in organometallic vapor phase epitaxial layers of GaAlAs on GaAs and oxygen determination in diamonds. 5 refs., 2 figs.

  10. Adaptive RAC codes employing statistical channel evaluation ...

    African Journals Online (AJOL)

    In time varying channels the noise and interference vary randomly. Forward error correction codes (FEC) on such channels are designed to cater for the worst possible state and require a large amount of redundancy at all time. This means that when the channel is relatively noiseless, excessive error control power and ...

  11. Electronic Commerce and Retail Channel Substitution

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten); R. van der Noll

    2002-01-01

    textabstractWe analyze a market where firms compete in a conventional and an electronic retail channel. Consumers easily compare prices online, but some incur purchase uncertainties on the online channel. We investigate the market shares of the two retail channels and the prices that are charged. We

  12. Modulation of ERG channels by XE991

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Calloe, Kirstine; Schmitt, Nicole

    2007-01-01

    In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be stan...

  13. Language Planning, Channel Management, and ESP.

    Science.gov (United States)

    Kennedy, Chris

    Channel management, a concept developed in marketing to refer to the process by which a product is moved from production to consumption, uses a channel of distribution operating at several levels, each responsible for one or more of the activities of moving the product forward to the consumer. The function of channel management is to select the…

  14. Genetic control of sodium channel function

    NARCIS (Netherlands)

    Tan, Hanno L.; Bezzina, Connie R.; Smits, Jeroen P. P.; Verkerk, Arie O.; Wilde, Arthur A. M.

    2003-01-01

    Sodium ion (Na) influx through cardiac Na channels triggers the action potential in cells of the working myocardium and the specialized conduction system. Na channels thus act as key molecular determinants of cardiac excitability and impulse propagation. Na channel dysfunction may cause

  15. Comments on Ionization Cooling Channel Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Fermilab Center for Particle Astrophysics

    2013-12-04

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  16. 47 CFR 76.57 - Channel positioning.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Channel positioning. 76.57 Section 76.57... CABLE TELEVISION SERVICE Carriage of Television Broadcast Signals § 76.57 Channel positioning. (a) At... obligations, a cable operator shall carry such signal on the cable system channel number on which the local...

  17. 33 CFR 117.147 - Cerritos Channel.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cerritos Channel. 117.147 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.147 Cerritos Channel. (a) The draw of... immediately. Channel 13 (156.65 MHZ) or other assigned frequencies may be used. (b) The draw of the Henry Ford...

  18. Functional Expression of Drosophila para Sodium Channels

    Science.gov (United States)

    Warmke, Jeffrey W.; Reenan, Robert A.G.; Wang, Peiyi; Qian, Su; Arena, Joseph P.; Wang, Jixin; Wunderler, Denise; Liu, Ken; Kaczorowski, Gregory J.; Ploeg, Lex H.T. Van der; Ganetzky, Barry; Cohen, Charles J.

    1997-01-01

    The Drosophila para sodium channel α subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (Kd ≅ 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels. PMID:9236205

  19. Entanglement-assisted capacity of constrained channels

    Science.gov (United States)

    Holevo, A. S.

    2003-07-01

    In this paper we fil a gap in previous work by proving the conjectured formula for the antanglement-assisted capacity of quantum channel with additive input constraint (such as Bosonic Gaussian channel). The main tools are the coding theorem for classical-quantum constrained channels and a finite dimensional approximation of the input density operators for the entanglement-assisted capacity.

  20. Local Transfer Coefficient, Smooth Channel

    Directory of Open Access Journals (Sweden)

    R. T. Kukreja

    1998-01-01

    Full Text Available Naphthalene sublimation technique and the heat/mass transfer analogy are used to determine the detailed local heat/mass transfer distributions on the leading and trailing walls of a twopass square channel with smooth walls that rotates about a perpendicular axis. Since the variation of density is small in the flow through the channel, buoyancy effect is negligible. Results show that, in both the stationary and rotating channel cases, very large spanwise variations of the mass transfer exist in he turn and in the region immediately downstream of the turn in the second straight pass. In the first straight pass, the rotation-induced Coriolis forces reduce the mass transfer on the leading wall and increase the mass transfer on the trailing wall. In the turn, rotation significantly increases the mass transfer on the leading wall, especially in the upstream half of the turn. Rotation also increases the mass transfer on the trailing wall, more in the downstream half of the turn than in the upstream half of the turn. Immediately downstream of the turn, rotation causes the mass transfer to be much higher on the trailing wall near the downstream corner of the tip of the inner wall than on the opposite leading wall. The mass transfer in the second pass is higher on the leading wall than on the trailing wall. A slower flow causes higher mass transfer enhancement in the turn on both the leading and trailing walls.

  1. Reopening modes of a collapsed elasto-rigid channel

    CERN Document Server

    Ducloué, Lucie; Thompson, Alice B; Juel, Anne

    2016-01-01

    Motivated by the reopening mechanics of strongly collapsed airways, we study the steady propagation of an air finger through a collapsed oil-filled channel with a single compliant wall. In a previous study using fully-compliant elastic tubes, a `pointed' air finger was found to propagate at high speed and low pressure, which may enable rapid reopening of highly collapsed airways with minimal tissue damage (Heap & Juel 2008). In this paper, we identify the selection mechanism of that pointed finger, which remained unexplained, by conducting an experimental study in a rigid rectangular Hele-Shaw channel with an elastic top boundary. The constitutive behaviour of this elasto-rigid channel is broadly similar to that of an elastic tube, but unlike the tube the channel's cross-section adopts self-similar shapes from the undeformed state to the point of first near wall contact. The simplification of the vessel geometry enables the systematic investigation of the reopening dynamics in terms of initial collapse. W...

  2. Information Models of Acupuncture Analgesia and Meridian Channels

    Directory of Open Access Journals (Sweden)

    Chang Hua Zou

    2010-12-01

    Full Text Available Acupuncture and meridian channels have been major components of Chinese and Eastern Asian medicine—especially for analgesia—for over 2000 years. In recent decades, electroacupuncture (EA analgesia has been applied clinically and experimentally. However, there were controversial results between different treatment frequencies, or between the active and the placebo treatments; and the mechanisms of the treatments and the related meridian channels are still unknown. In this study, we propose a new term of infophysics therapy and develop information models of acupuncture (or EA analgesia and meridian channels, to understand the mechanisms and to explain the controversial results, based on Western theories of information, trigonometry and Fourier series, and physics, as well as published biomedical data. We are trying to build a bridge between Chinese medicine and Western medicine by investigating the Eastern acupuncture analgesia and meridian channels with Western sciences; we model the meridians as a physiological system that is mostly constructed with interstices in or between other physiological systems; we consider frequencies, amplitudes and wave numbers of electric field intensity (EFI as information data. Our modeling results demonstrate that information regulated with acupuncture (or EA is different from pain information, we provide answers to explain the controversial published results, and suggest that mechanisms of acupuncture (or EA analgesia could be mostly involved in information regulation of frequencies and amplitudes of EFI as well as neuronal transmitters such as endorphins.

  3. Detection of eye blink artifacts from single prefrontal channel electroencephalogram.

    Science.gov (United States)

    Chang, Won-Du; Cha, Ho-Seung; Kim, Kiwoong; Im, Chang-Hwan

    2016-02-01

    Eye blinks are one of the most influential artifact sources in electroencephalogram (EEG) recorded from frontal channels, and thereby detecting and rejecting eye blink artifacts is regarded as an essential procedure for improving the quality of EEG data. In this paper, a novel method to detect eye blink artifacts from a single-channel frontal EEG signal was proposed by combining digital filters with a rule-based decision system, and its performance was validated using an EEG dataset recorded from 24 healthy participants. The proposed method has two main advantages over the conventional methods. First, it uses single-channel EEG data without the need for electrooculogram references. Therefore, this method could be particularly useful in brain-computer interface applications using headband-type wearable EEG devices with a few frontal EEG channels. Second, this method could estimate the ranges of eye blink artifacts accurately. Our experimental results demonstrated that the artifact range estimated using our method was more accurate than that from the conventional methods, and thus, the overall accuracy of detecting epochs contaminated by eye blink artifacts was markedly increased as compared to conventional methods. The MATLAB package of our library source codes and sample data, named Eyeblink Master, is open for free download. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Modeling and Navigation of Artificial Helical Swimmers in Channels

    Science.gov (United States)

    Temel, Fatma Zeynep; Acemoglu, Alperen; Yesilyurt, Serhat

    2013-11-01

    Recent developments in micro/nanotechnology and manufacturing techniques make use of micro robots for biomedical applications realizable. Controlled in-channel navigation of swimming micro robots is necessary for medical applications performed in conduits and vessels in living bodies. Successful design and control of micro swimmers can be achieved with full understanding of hydrodynamic behavior inside channels and their interaction with channel walls and resultant flows. We performed experimental and modeling studies on untethered mm-sized magnetic helical swimmers inside glycerol-filled rectangular channels. In experiments it is observed that rotation of swimmers in the direction of helical axis leads to forward motion due to fluidic propulsion and lateral motion due to traction forces near the wall. Effects of surface roughness, swimming direction and rotation frequency on the swimmers' speed are analyzed. The flow induced by the tail motion is visualized using micro-particle image velocimetry and analyzed at different radial positions using Computational Fluid Dynamics models. Results indicate that at low frequencies traction forces are effective, however as frequency increases fluid forces become dominant and fluid flow is affecting the swimming motion of helical swimmers. We acknowledge the support from TUBITAK (Techonological & Research Council of Turkey) under the grant no: 111M376.

  5. Estimation of flow direction in meandering compound channels

    Science.gov (United States)

    Liu, Xingnian; Zhou, Qin; Huang, Sheng; Guo, Yakun; Liu, Chao

    2018-01-01

    The flow in the main channel of a meandering compound channel does not occur in the ridge direction because of the effect of the upstream floodplain flows. This study proposes a model for estimating the flow direction in the depth-averaged two-dimensional domain (depth-averaged flow angles) between the entrance and the apex sections. Detailed velocity measurements were performed in the region between the meander entrance section and apex section in a large-scale meandering compound channel. The vertical size of the secondary current cell is highly related to the depth-averaged flow angle; thus, the means of the local flow angles above the secondary current cell and within the cell are separately discussed. The experimental measurements indicate that the mean local flow angle above the cell is equal to the section angle, whereas the mean local flow angle within the cell is equal to zero. The proposed model is validated using published data from five sources. Good agreement is obtained between the predictions and measurements, indicating that the proposed model can accurately estimate the depth-averaged flow direction in the meandering compound channels. Finally, the limitations and application ranges of the model are discussed.

  6. New EPICS Channel Archiver Based on MDSplus Data System

    Science.gov (United States)

    Manduchi, G.; Luchetta, A.; Taliercio, C.; Soppelsa, A.; Barbalace, A.

    2011-12-01

    The EPICS Channel Archiver is used to store data ex ported by EPICS I/O Controllers. The Channel Archiver acts as a Channel Access Client and stores recorded data, acquired via periodic scan or monitored, into indexed binary files. MDSplus is a data management system used in several Nuclear Fusion experiments to handle experimental and configuration data. A data access Application Programming Interface for local and remote data access is available for several languages, namely C, C++, Fortran, Java, Python, MATLAB and IDL, and a set of visualization tools is available for data browsing and display. The paper presents a new implementation of the EPICS Channel Archiver which uses MDSplus for data storage. In this way, it is possible to take advantage of the availability of the local and remote data access layers of MDSplus, widely used in the fusion community to handle large sets of data. A performance comparison between the original implementation and the new one is provided. In particular, the storage space requirements and the data access speed are considered.

  7. Anatomical Region-Specific In Vivo Wireless Communication Channel Characterization.

    Science.gov (United States)

    Demir, Ali Fatih; Abbasi, Qammer H; Ankarali, Z Esat; Alomainy, Akram; Qaraqe, Khalid; Serpedin, Erchin; Arslan, Huseyin

    2017-09-01

    In vivo wireless body area networks and their associated technologies are shaping the future of healthcare by providing continuous health monitoring and noninvasive surgical capabilities, in addition to remote diagnostic and treatment of diseases. To fully exploit the potential of such devices, it is necessary to characterize the communication channel, which will help to build reliable and high-performance communication systems. This paper presents an in vivo wireless communication channel characterization for male torso both numerically and experimentally (on a human cadaver) considering various organs at 915 MHz and 2.4 GHz. A statistical path loss (PL) model is introduced, and the anatomical region-specific parameters are provided. It is found that the mean PL in decibel scale exhibits a linear decaying characteristic rather than an exponential decaying profile inside the body, and the power decay rate is approximately twice at 2.4 GHz as compared to 915 MHz. Moreover, the variance of shadowing increases significantly as the in vivo antenna is placed deeper inside the body since the main scatterers are present in the vicinity of the antenna. Multipath propagation characteristics are also investigated to facilitate proper waveform designs in the future wireless healthcare systems, and a root-mean-square delay spread of 2.76 ns is observed at 5 cm depth. Results show that the in vivo channel exhibit different characteristics than the classical communication channels, and location dependence is very critical for accurate, reliable, and energy-efficient link budget calculations.

  8. Changes in ion channel geometry resolved to sub-ångström precision via single molecule mass spectrometry

    Science.gov (United States)

    Robertson, Joseph W. F.; Kasianowicz, John J.; Reiner, Joseph E.

    2010-11-01

    The ion channel formed by Staphylococcus aureus alpha-hemolysin switches between multiple open conducting states. We describe a method for precisely estimating the changes in the ion channel geometry that correspond to these different states. Experimentally, we observed that the permeability of a single channel to differently sized poly(ethylene glycol) molecules depends on the magnitude of the open state conductance. A simple theory is proposed for determining changes in channel length of 4.2% and in cross-sectional area of - 0.4%.

  9. K-ATP channel expression and pharmacological in vivo and in vitro studies of the K-ATP channel blocker PNU-37883A in rat middle meningeal arteries

    DEFF Research Database (Denmark)

    Ploug, K.B.; Boni, L.J.; Baun, M.

    2008-01-01

    intracranial arteries, including the middle meningeal artery (MMA). We studied the K-ATP channel expression profile in rat MMA and examined the potential inhibitory effects of the K-ATP channel blocker PNU-37883A on K-ATP channel opener-induced relaxation of the rat MMA, using the three K-ATP channel openers...... levcromakalim, pinacidil and P-1075. Experimental approach: mRNA and protein expression of K-ATP channel subunits in the rat MMA were studied by quantitative real-time PCR and western blotting, respectively. The in vivo and in vitro effects of the K-ATP channel drugs on rat MMA were studied in the genuine...... closed cranial window model and in myograph baths, respectively. Key results: Expression studies indicate that inwardly rectifying K+ (Kir)6.1/sulphonylurea receptor (SUR) 2B is the major K-ATP channel complex in rat MMA. PNU-37883A (0.5 mg kg(-1)) significantly inhibited the in vivo dilatory effect...

  10. The use of service channels by citizens in the Netherlands: implications for multi-channel management

    NARCIS (Netherlands)

    Pieterson, Willem Jan; Ebbers, Wolfgang E.

    2008-01-01

    Many governmental organizations are changing their service channel management strategies to multi-channel management. However, very few empirical studies exist that explore how these multi-channel strategies should be shaped. In this article we test a number of hypotheses on citizens' channel use

  11. New design of a cathode flow-field with a sub-channel to improve the polymer electrolyte membrane fuel cell performance

    Science.gov (United States)

    Wang, Yulin; Yue, Like; Wang, Shixue

    2017-03-01

    The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.

  12. Experimental free-space optical network for massively parallel computers.

    Science.gov (United States)

    Araki, S; Kajita, M; Kasahara, K; Kubota, K; Kurihara, K; Redmond, I; Schenfeld, E; Suzaki, T

    1996-03-10

    A free-space optical interconnection scheme is described for massively parallel processors based on the interconnection-cached network architecture. The optical network operates in a circuit-switching mode. Combined with a packet-switching operation among the circuit-switched optical channels, a high-bandwidth, low-latency network for massively parallel processing results. The design and assembly of a 64-channel experimental prototype is discussed, and operational results are presented.

  13. Concerning the width of spark channels with different polarities in submicrosecond sliding discharges in noble gases

    Science.gov (United States)

    Trusov, K. K.

    2010-02-01

    Previously, the parameters of submicrosecond (with a duration of ceramic surface in Ne, Ar, and Xe were studied only for the negative polarity of the applied voltage. The experimental data indicate that the channels expand in the transverse direction mainly due to electron drift from the channel surface layer under the action of the electric field perpendicular to the channel axis and subsequent gas ionization by these electrons. To investigate mechanisms for the channel development in a sliding discharge—in particular, to determine the contribution of electron drift—it is necessary to carry out experiments similar to those performed earlier for the opposite polarity of the applied voltage. Here, the results of measurements of the widths of the spark channels of negativeand positive-polarity sliding discharges excited in Ne, Ar, and Xe at pressures of 30 and 100 kPa are presented and discussed. It is shown that, depending on the pressure and sort of gas, the averaged optical width of positive-polarity channels is smaller by a factor of 1.27-1.60 than that of negative-polarity channels. The experimental data are analyzed using the theory of propagation of ionization waves with different polarities in gases. Analysis has shown that electron diffusion contributes insignificantly to channel expansion and that, for both polarities, the channel expansion rate exceeds the electron drift velocity in the transverse electric field near the channel. In the framework of the so-called approximation of nonlocalized initial conditions, the measured ratio between of the widths of negativeand positive-polarity channels and their relation to the electron mobility are explained by the channel expansion governed by both electron drift and primary free electrons produced by a short-term source in a narrow region ahead of the front of the expansion wave. Numerical simulations show that the width of this region is comparable with that of the wave front and is more than one order of

  14. Activation and inhibition of TMEM16A calcium-activated chloride channels.

    Directory of Open Access Journals (Sweden)

    Yu-Li Ni

    Full Text Available Calcium-activated chloride channels (CaCC encoded by family members of transmembrane proteins of unknown function 16 (TMEM16 have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca(2+-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1 by Ca(2+, Sr(2+, and Ba(2+, and discovered that Mg(2+ competes with Ca(2+ in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore-as revealed by the permeability ratios of these anions-appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA. On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.

  15. Final report on LDRD project : biodiesel production from vegetable oils using slit-channel reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Kalu, E. Eric (FAMU-FSU College of Engineering, Tallahassee, FL); Chen, Ken Shuang

    2008-01-01

    This report documents work done for a late-start LDRD project, which was carried out during the last quarter of FY07. The objective of this project was to experimentally explore the feasibility of converting vegetable (e.g., soybean) oils to biodiesel by employing slit-channel reactors and solid catalysts. We first designed and fabricated several slit-channel reactors with varying channel depths, and employed them to investigate the improved performance of slit-channel reactors over traditional batch reactors using a NaOH liquid catalyst. We then evaluated the effectiveness of several solid catalysts, including CaO, ZnO, MgO, ZrO{sub 2}, calcium gluconate, and heteropolyacid or HPA (Cs{sub 2.5}H{sub 0.5}PW{sub 12}O{sub 40}), for catalyzing the soybean oil-to-biodiesel transesterification reaction. We found that the slit-channel reactor performance improves as channel depth decreases, as expected; and the conversion efficiency of a slit-channel reactor is significantly higher when its channel is very shallow. We further confirmed CaO as having the highest catalytic activity among the solid catalysts tested, and we demonstrated for the first time calcium gluconate as a promising solid catalyst for converting soybean oil to biodiesel, based on our preliminary batch-mode conversion experiments.

  16. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  17. Influences of Hardwood Riparian Vegetation on Stream Channel Geometry in Eastern Forested Environments

    Science.gov (United States)

    Cohen, L. J.; Furbish, D. J.

    2015-12-01

    Riparian vegetation has been recognized as a controlling factor of stream channel morphology, but specific influences on bed topography and planform geometry are yet to be fully clarified. In temperate environments, hardwood trees serve as prominent bank stabilizers and help create diverse habitats for a variety of aquatic organisms in alluvial channels. This project explores the influence of riparian vegetation on channel geometry in alluvial streams of different sizes. Exposed rootwads increase bank stability and slow channel migration rates, but also cause pool scour that affects thalweg and bedform locations downstream, implying that woody riparian vegetation influences flow conditions and two-dimensional bed geometry in alluvial streams. Field data suggest that the presence of hardwood vegetation modulates channel width, bed topography and planform geometry in low-order streams. In larger channels, rootwads have less influence on planform curvature, but create patchy variations in bed topography that establish thalweg locations and amplify relief of curvature-dominated bedforms. Flume experiments illustrate the genesis of rootwad-induced pool scour and its effect on downstream pool and bar formation. Experimental rootwad pools reflect the relative size and shape of those observed in natural channels. Introduction of riparian obstructions to planar beds also influences thalweg location several channel widths downstream, further supporting the idea of riparian influence on bedform modulation and regulation.

  18. Per-colorant-channel color barcodes for mobile applications: an interference cancellation framework.

    Science.gov (United States)

    Blasinski, Henryk; Bulan, Orhan; Sharma, Gaurav

    2013-04-01

    We propose a color barcode framework for mobile phone applications by exploiting the spectral diversity afforded by the cyan (C), magenta (M), and yellow (Y) print colorant channels commonly used for color printing and the complementary red (R), green (G), and blue (B) channels, respectively, used for capturing color images. Specifically, we exploit this spectral diversity to realize a three-fold increase in the data rate by encoding independent data in the C, M, and Y print colorant channels and decoding the data from the complementary R, G, and B channels captured via a mobile phone camera. To mitigate the effect of cross-channel interference among the print-colorant and capture color channels, we develop an algorithm for interference cancellation based on a physically-motivated mathematical model for the print and capture processes. To estimate the model parameters required for cross-channel interference cancellation, we propose two alternative methodologies: a pilot block approach that uses suitable selections of colors for the synchronization blocks and an expectation maximization approach that estimates the parameters from regions encoding the data itself. We evaluate the performance of the proposed framework using specific implementations of the framework for two of the most commonly used barcodes in mobile applications, QR and Aztec codes. Experimental results show that the proposed framework successfully overcomes the impact of the color interference, providing a low bit error rate and a high decoding rate for each of the colorant channels when used with a corresponding error correction scheme.

  19. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    Science.gov (United States)

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  20. Modeling the Influence of Ion Channels on Neuron Dynamics in Drosophila

    Directory of Open Access Journals (Sweden)

    Sandra eBerger

    2015-11-01

    Full Text Available Voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of synaptic input patterns. Drosophila and other invertebrates provide valuable model systems for investigating ion channel kinetics and their impact on firing properties. Despite the increasing importance of Drosophila as a model system, few computational models of its ion channel kinetics have been developed. In this study, experimentally observed biophysical properties of voltage gated ion channels from the fruitfly Drosophila melanogaster are used to develop a minimal, conductance based neuron model. We investigate the impact of the densities of these channels on the excitability of the model neuron. Changing the channel densities reproduces different in situ observed firing patterns and induces a switch from integrator to resonator properties. Further, we analyze the preference to input frequency and how it depends on the channel densities and the resulting bifurcation type the system undergoes. An extension to a three dimensional model demonstrates that the inactivation kinetics of the sodium channels play an important role, allowing for firing patterns with a delayed first spike and subsequent high frequency firing as often observed in invertebrates, without altering the delayed rectifier current.

  1. Groundwater flow into underground openings in fractured crystalline rocks: an interpretation based on long channels

    Science.gov (United States)

    Black, John H.; Woodman, Nicholas D.; Barker, John A.

    2017-03-01

    Rethinking an old tracer experiment in fractured crystalline rock suggests a concept of groundwater flow in sparse networks of long channels that is supported by results from an innovative lattice network model. The model, HyperConv, can vary the mean length of `strings' of connected bonds, and the gaps between them, using two independent probability functions. It is found that networks of long channels are able to percolate at lower values of (bond) density than networks of short channels. A general relationship between mean channel length, mean gap length and probability of percolation has been developed which incorporates the well-established result for `classical' lattice network models as a special case. Using parameters appropriate to a 4-m diameter drift located 360 m below surface at Stripa Mine Underground Research Laboratory in Sweden, HyperConv is able to reproduce values of apparent positive skin, as observed in the so-called Macropermeability Experiment, but only when mean channel length exceeds 10 m. This implies that such channel systems must cross many fracture intersections without bifurcating. A general relationship in terms of flow dimension is suggested. Some initial investigations using HyperConv show that the commonly observed feature, `compartmentalization', only occurs when channel density is just above the percolation threshold. Such compartments have been observed at Kamaishi Experimental Mine (Japan) implying a sparse flow network. It is suggested that compartments and skin are observable in the field, indicate sparse channel systems, and could form part of site characterization for deep nuclear waste repositories.

  2. Formulating the shear stress distribution in circular open channels based on the Renyi entropy

    Science.gov (United States)

    Khozani, Zohreh Sheikh; Bonakdari, Hossein

    2018-01-01

    The principle of maximum entropy is employed to derive the shear stress distribution by maximizing the Renyi entropy subject to some constraints and by assuming that dimensionless shear stress is a random variable. A Renyi entropy-based equation can be used to model the shear stress distribution along the entire wetted perimeter of circular channels and circular channels with flat beds and deposited sediments. A wide range of experimental results for 12 hydraulic conditions with different Froude numbers (0.375 to 1.71) and flow depths (20.3 to 201.5 mm) were used to validate the derived shear stress distribution. For circular channels, model performance enhanced with increasing flow depth (mean relative error (RE) of 0.0414) and only deteriorated slightly at the greatest flow depth (RE of 0.0573). For circular channels with flat beds, the Renyi entropy model predicted the shear stress distribution well at lower sediment depth. The Renyi entropy model results were also compared with Shannon entropy model results. Both models performed well for circular channels, but for circular channels with flat beds the Renyi entropy model displayed superior performance in estimating the shear stress distribution. The Renyi entropy model was highly precise and predicted the shear stress distribution in a circular channel with RE of 0.0480 and in a circular channel with a flat bed with RE of 0.0488.

  3. Automatic Estimation of the Dynamics of Channel Conductance Using a Recurrent Neural Network

    Directory of Open Access Journals (Sweden)

    Masaaki Takahashi

    2009-01-01

    Full Text Available In order to simulate neuronal electrical activities, we must estimate the dynamics of channel conductances from physiological experimental data. However, this approach requires the formulation of differential equations that express the time course of channel conductance. On the other hand, if the dynamics are automatically estimated, neuronal activities can be easily simulated. By using a recurrent neural network (RNN, it is possible to estimate the dynamics of channel conductances without formulating the differential equations. In the present study, we estimated the dynamics of the Na+ and K+ conductances of a squid giant axon using two different fully connected RNNs and were able to reproduce various neuronal activities of the axon. The reproduced activities were an action potential, a threshold, a refractory phenomenon, a rebound action potential, and periodic action potentials with a constant stimulation. RNNs can be trained using channels other than the Na+ and K+ channels. Therefore, using our RNN estimation method, the dynamics of channel conductance can be automatically estimated and the neuronal activities can be simulated using the channel RNNs. An RNN can be a useful tool to estimate the dynamics of the channel conductance of a neuron, and by using the method presented here, it is possible to simulate neuronal activities more easily than by using the previous methods.

  4. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

    Directory of Open Access Journals (Sweden)

    Matteo Pascotto

    2013-01-01

    Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

  5. Sodium channels and mammalian sensory mechanotransduction.

    OpenAIRE

    Raouf, R.; Rugiero, F.; Kiesewetter, H.; Hatch, R.; Hummler, E; Nassar, M. A.; Wang, F.; Wood, J.N.

    2012-01-01

    Abstract Background Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. β and γENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is u...

  6. Geometry-based channel modelling of MIMO channels in comparison with channel sounder measurements

    OpenAIRE

    G. Del Galdo; M. Haardt; C. Schneider

    2004-01-01

    In this paper we propose a flexible geometrybased propagation model for wireless communications developed at Ilmenau University of Technology. The IlmProp comprises a geometrical representation of the environment surrounding the experiment and a precise representation of the transmitting and receiving antennas. The IlmProp is capable of simulating Multi-User MIMO scenarios and includes a complete collection of tools to analyze the synthetic channels. In order to assess...

  7. MHD pressure drop characteristics in a three-surface-multi-layered channel under a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, M., E-mail: mao@karma.qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, School of Engineering, Tohoku University, 6-6-01-2 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Ito, S.; Hashizume, H. [Department of Quantum Science and Energy Engineering, School of Engineering, Tohoku University, 6-6-01-2 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Muroga, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2010-12-15

    A three-surface-multi-layered channel is one of the possible methods for reducing the magnetohydrodynamic (MHD) pressure drop in a Li/V blanket. In this study, experimental and numerical evaluations of the liquid metal MHD flow in a three-surface-multi-layered channel were conducted to confirm the extent of MHD pressure reduction in the channel. The MHD flow was tested using a Bi-Sn eutectic alloy (MHD liquid) and an open annular channel under up to 5 T magnetic field. Experimentally determined pressure drops differed from those predicted by numerical analysis. This may be as a result of an increase in the friction force caused by an oxide appearing on the liquid free surface and a decrease in the electromagnetic force owing to the formation of a contact resistance between the Bi-Sn alloy and the bottom wall of the stainless steel channel.

  8. Reduction of the dimensionality of the EEG channels during scoliosis correction surgeries using a wavelet decomposition technique.

    Science.gov (United States)

    Al-Kadi, Mahmoud I; Reaz, Mamun Bin Ibne; Ali, Mohd Alauddin Mohd; Liu, Chian Yong

    2014-07-21

    This paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria's value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded from six patients who underwent scoliosis correction surgeries in the Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM) (the Medical center of National University of Malaysia). The combinational signal was tested by power spectral density, cross-correlation function and wavelet coherence. The experimental results show that the system-outputted EEG signals are neatly switched without any substantial changes in the consistency of EEG components. This paper provides an efficient procedure for analyzing EEG signals in order to avoid averaging the channels that lead to redistribution of the noise on both channels, reducing the dimensionality of the EEG features and preparing the best EEG stream for the classification and monitoring stage.

  9. Reduction of the Dimensionality of the EEG Channels during Scoliosis Correction Surgeries Using a Wavelet Decomposition Technique

    Directory of Open Access Journals (Sweden)

    Mahmoud I. Al-Kadi

    2014-07-01

    Full Text Available This paper presents a comparison between the electroencephalogram (EEG channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4, processing the signal bands using four different criteria (mean, energy, entropy and standard deviation, finding the useful channel according to the criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded from six patients who underwent scoliosis correction surgeries in the Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM (the Medical center of National University of Malaysia. The combinational signal was tested by power spectral density, cross-correlation function and wavelet coherence. The experimental results show that the system-outputted EEG signals are neatly switched without any substantial changes in the consistency of EEG components. This paper provides an efficient procedure for analyzing EEG signals in order to avoid averaging the channels that lead to redistribution of the noise on both channels, reducing the dimensionality of the EEG features and preparing the best EEG stream for the classification and monitoring stage.

  10. A Reliable Channel Reservation based Multi-channel MAC Protocol with A Single Transceiver

    OpenAIRE

    Bo Yang; Bo Li; Zhongjiang Yan; Mao Yang; Xiaoya Zuo

    2015-01-01

    The multi-channel MAC protocols have been proposed recently to improve the network capacity by accommodating more concurrent transmissions. In this paper, we propose a distributed multi-channel MAC protocol using reliable multiple channel reservation with only a single transceiver. Specifically, the control handshake information is reserved to be re-broadcasted over the control channel to address the multi-channel hidden terminal problem. Besides, by reserving multiple data transmission oppor...

  11. [Topology of the mitochondrial potassium ion channels].

    Science.gov (United States)

    Laskowski, Michał; Kulawiak, Bogusz

    In the inner mitochondrial membrane several potassium channels have been identified whose activation lead to cytoprotection during ischemic event. It was found that activation of mitochondrial large conductance calcium activated potassium channel (mitoBKCa) and ATP regulated potassium channel (mitoKATP) preserves brain and heart muscle cells against ischemia/reperfusion induced damage. However the detailed cytoprotection mechanism remains unclear. Similarly, the molecular structures and protein interactions of the mitochondrial potassium channels are still unknown. In this article, we summarize the current knowledge of the mitoKATP and mitoBKCa channels topology. Different aspects of this topic are discussed like import and assembly of the channel subunits and biophysical properties of mitochondrial compartments. Additionally, the consequences of different topology models on the cytoprotective function of the mitochondrial potassium channels were analyzed.

  12. Cardiovascular KATP channels and advanced aging.

    Science.gov (United States)

    Yang, Hua-Qian; Subbotina, Ekaterina; Ramasamy, Ravichandran; Coetzee, William A

    2016-01-01

    With advanced aging, there is a decline in innate cardiovascular function. This decline is not general in nature. Instead, specific changes occur that impact the basic cardiovascular function, which include alterations in biochemical pathways and ion channel function. This review focuses on a particular ion channel that couple the latter two processes, namely the KATP channel, which opening is promoted by alterations in intracellular energy metabolism. We show that the intrinsic properties of the KATP channel changes with advanced aging and argue that the channel can be further modulated by biochemical changes. The importance is widespread, given the ubiquitous nature of the KATP channel in the cardiovascular system where it can regulate processes as diverse as cardiac function, blood flow and protection mechanisms against superimposed stress, such as cardiac ischemia. We highlight questions that remain to be answered before the KATP channel can be considered as a viable target for therapeutic intervention.

  13. Post-Translational Modifications of TRP Channels

    Science.gov (United States)

    Voolstra, Olaf; Huber, Armin

    2014-01-01

    Transient receptor potential (TRP) channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role. PMID:24717323

  14. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  15. On luminescence bleaching of tidal channel sediments

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Pejrup, Morten; Murray, Andrew S.

    2015-01-01

    We investigate the processes responsible for bleaching of the quartz OSL signal from tidal channel sediment. Tidal dynamics are expected to play an important role for complete bleaching of tidal sediments. However, no studies have examined the amount of reworking occurring in tidal channels...... and on tidal flats due to the mixing caused by currents and waves. We apply bed level data to evaluate the amount of vertical sediment reworking in modern tidal channels and at a tidal flat. Cycles of deposition and erosion are measured with a bed level sensor, and the results show that gross sedimentation...... was several times higher than net sedimentation. We propose that tidal channel sediment is bleached either on the tidal flat before it is transported to the tidal channels and incorporated in channel-fill successions or, alternatively, on the shallow intertidal part of the channel banks. Based...

  16. Channel selection for automatic seizure detection

    DEFF Research Database (Denmark)

    Duun-Henriksen, Jonas; Kjaer, Troels Wesenberg; Madsen, Rasmus Elsborg

    2012-01-01

    Objective: To investigate the performance of epileptic seizure detection using only a few of the recorded EEG channels and the ability of software to select these channels compared with a neurophysiologist. Methods: Fifty-nine seizures and 1419 h of interictal EEG are used for training and testing...... of an automatic channel selection method. The characteristics of the seizures are extracted by the use of a wavelet analysis and classified by a support vector machine. The best channel selection method is based upon maximum variance during the seizure. Results: Using only three channels, a seizure detection...... sensitivity of 96% and a false detection rate of 0.14/h were obtained. This corresponds to the performance obtained when channels are selected through visual inspection by a clinical neurophysiologist, and constitutes a 4% improvement in sensitivity compared to seizure detection using channels recorded...

  17. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    We comprehensively analyze multiple WDM channels RZ-to- NRZ format conversion using a single microring resonator. The scheme relies on simultaneous suppression of the first order harmonic components in the spectra of all the RZ channels. An optimized silicon microring resonator with free spectral...... range of 100 GHz and Q value of 7900 is designed and fabricated for this purpose. Multi-channel RZ-to-NRZ format conversion is demonstrated experimentally at 50 Gbit/s for WDM channels with 200 GHz channel spacing using the fabricated device. Bit error rate (BER)measurements show very good conversion...

  18. Initiation and propagation of cleared channels in neutron-irradiated pure copper and a precipitation hardened CuCrZr alloy

    DEFF Research Database (Denmark)

    Edwards, D.J.; Singh, B.N.; Bilde-Sørensen, Jørgen

    2005-01-01

    The formation of ‘cleared’ channels in neutron irradiated metals and alloys have been frequently reported for more than 40 years. So far, however, no unambiguous and conclusive evidence showing as to how and where these channels are initiated has emerged. In the following we present experimental...... results illustrating initiation and propagation of channels during post-irradiation deformation of neutron irradiated copper and a copper alloy. The observations strongly suggest that the channels are initiated at boundaries, large inclusions and even at previously formed cleared channels. Some...

  19. Propagation Characterization and MIMO Channel-Modelling for 3G

    DEFF Research Database (Denmark)

    Schumacher, Laurent; Berger, Lars Torsten; Ramiro-Moreno, Juan

    2004-01-01

    This paper presents a survey of MIMO channel models, distinguishing between determinsistic and stochastic channel models.......This paper presents a survey of MIMO channel models, distinguishing between determinsistic and stochastic channel models....

  20. Opening the shaker K+ channel with hanatoxin.

    Science.gov (United States)

    Milescu, Mirela; Lee, Hwa C; Bae, Chan Hyung; Kim, Jae Il; Swartz, Kenton J

    2013-02-01

    Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1-S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1-S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance-voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin-channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance-voltage relationship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition. Chimeras in which S3b-S4 paddle motifs are transferred between Kv2.1 and Shaker Kv channels, as well as experiments with the related tarantula toxin GxTx-1E, lead us to conclude that the actions of tarantula toxins are not simply a product of where they bind to the channel, but that fine structural details of the toxin-channel interface determine whether a toxin is an inhibitor or opener.