WorldWideScience

Sample records for experimental beta-decay energies

  1. Time reversal violation in radiative beta decay: experimental plans

    Science.gov (United States)

    Behr, J. A.; McNeil, J.; Anholm, M.; Gorelov, A.; Melconian, D.; Ashery, D.

    2017-01-01

    Some explanations for the excess of matter over antimatter in the universe involve sources of time reversal violation (TRV) in addition to the one known in the standard model of particle physics. We plan to search for TRV in a correlation between the momenta of the beta, neutrino, and the radiative gamma sometimes emitted in nuclear beta decay. Correlations involving three (out of four) momenta are sensitive at lowest order to different TRV physics than observables involving spin, such as electric dipole moments and spin-polarized beta decay correlations. Such experiments have been done in radiative kaon decay, but not in systems involving the lightest generation of quarks. An explicit low-energy physics model being tested produces TRV effects in the Fermi beta decay of the neutron, tritium, or some positron-decaying isotopes. We will present plans to measure the TRV asymmetry in radiative beta decay of laser-trapped 38mK at better than 0.01 sensitivity, including suppression of background from positron annihilation. Supported by NSERC, D.O.E., Israel Science Foundation. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  2. Nab: precise experimental study of unpolarized neutron beta decay

    Science.gov (United States)

    Pocanic, Dinko; Nab Collaboration

    2014-09-01

    Nab, a program of experimental study of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN, aims to determine a, the electron-neutrino correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . Neutron beta decay's simple theoretical description in the Standard Model (SM) is overconstrained by the set of available observables, providing opportunities to search for evidence of SM extensions. Planned Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, the experiment may detect a discrepancy from SM predictions consistent with certain realizations of supersymmetry. An optimized, asymmetric spectrometer has been designed to achieve the narrow proton momentum response function required to meet the physics goals of the experiment. The apparatus is to be used in a follow-up measurement (ABba) of asymmetry observables A and B in polarized neutron decay. Nab is funded, now in the construction stage, with planned beam readiness in 2016. We discuss the experiment's motivation, expected reach, design and method. Nab, a program of experimental study of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN, aims to determine a, the electron-neutrino correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . Neutron beta decay's simple theoretical description in the Standard Model (SM) is overconstrained by the set of available observables, providing opportunities to search for evidence of SM extensions. Planned Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, the experiment may detect a discrepancy from SM

  3. Theoretical and Experimental Considerations for Neutrinoless Double Beta Decay

    CERN Document Server

    Castillo, O; Grosse-Oetringhaus, J F; Lenzi, B; Panes, B; Tibbetts, M; Valenzuela, C; Yacoob, S; Yagues, A G; Zanetti, C

    2008-01-01

    In the rst part of this work we show some theoretical aspects of the generation of the neutrino mass by means of a direct extension of the Standard Model of particles, which include the presence of heavy right-handed neutrinos and large Majorana mass terms. From these two new ingredients, it is possible to nd a mass for the light neutrinos which is naturally of the order of 1 eV or less. The idea is to put these theoretical aspects in the context of the search for neutrino mass values by the study of the signal from the Neutrinoless Double Beta Decay Process (0 ). In the second part, a brief summary is given of the experimental considerations required for the measurement of effective Majorana neutrino mass using (0 ). Measurement strategies and background considerations are introduced and an outline of both active and passive methods is given. Finally, current results are discussed with particular emphasis on the Heidelberg–Moscow experiment. This note is based on the presentation given at the CERN–CLAF 4th...

  4. New experimental results on double beta decay of 130Te

    Science.gov (United States)

    Alessandrello, A.; Brofferio, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Vanzini, M.; Zanotti, L.; Bucci, C.; Pobes, C.

    2000-07-01

    New results are presented of a search for double beta decay of Te isotopes carried out, using the bolometric technique, with an array of 20 natural tellurite crystals with a total cryogenic mass of /~6.8 kilograms. The array has been run at a temperature around 10 mK in the Gran Sasso Underground Laboratory. No evidence has been found for neutrinoless double beta decay of 128Te and 130Te and upper limits of 8.6 /× 1022 and 1.44 /× 1023 years, respectively, have been achieved at the 90% confidence level. From the latter we obtain limits on the lepton non-conserving parameters which are the most restrictive ones in direct experiments after those on 76Ge according to theoretical calculations. Results on two neutrino and majoron mediated decays are also presented and discussed with respect to those obtained for the same nuclei in geochemical experiments.

  5. Experimental study of double beta decay modes using a CdZnTe detector array

    CERN Document Server

    Dawson, J V; Janutta, B; Junker, M; Koettig, T; Münstermann, D; Rajek, S; Reeve, C; Schulz, O; Wilson, J R; Zuber, K

    2009-01-01

    An array of sixteen 1 cm^3 CdZnTe semiconductor detectors was operated at the Gran Sasso Underground Laboratory (LNGS) to further investigate the feasibility of double beta decay searches with such devices. As one of the double beta decay experiments with the highest granularity the 4 x 4 array accumulated an overall exposure of 18 kg days. The set-up and performance of the array is described. Half-life limits for various double beta decay modes of Cd, Zn and Te isotopes are obtained. No signal has been found, but several limits beyond 10^20 years have been performed. They are an order of magnitude better than those obtained with this technology before and comparable to most other experimental approaches for the isotopes under investigation.

  6. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products.

    Science.gov (United States)

    Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A

    2012-11-16

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.

  7. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given. Keywords. Double beta ...

  8. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Abstract. The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  9. Double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.; Picciotto, C.

    1978-01-01

    The problem of double beta decay is reviewed with emphasis on its relevance to lepton number conservation. Recently, the ratio of the double beta-decay half-lives of /sup 128/Te and /sup 130/Te has been measured in a geological experiment and a limit for the ratio of the neutrinoless rate to the total rate for /sup 82/Se decay has been obtained from a direct-detection experiment. For the first time, these results show conclusively that double beta decay is not primarily a lepton-number-violating neutrinoless process. However, they also do not agree with calculations which assume that only lepton-number-conserving two-neutrino double beta decay occurs. The conclusion that lepton number conservation is violated is suggested by limited experimental information. By considering contributions to the total rate from both the two-neutrino and the neutrinoless channels, we obtain data which are consistent with a lepton nonconservation parameter of order eta=3.5 x 10/sup -5/. Roughly the same value of eta is obtained by assuming that the decay occurs either via lepton emission from two nucleons or via emission from a resonance in the nucleus.

  10. Experimental study of 113Cd beta decay using CdZnTe detectors

    CERN Document Server

    Gössling, C; Kiel, H; Münstermann, D; Oehl, S; Zuber, K

    2005-01-01

    A search for the 4-fold forbidden beta decay of \\iso{Cd}{113} has been performed with CdZnTe semiconductors. With 0.86 kg $\\cdot$ days of statistics a half-life for the decay of $T_{1/2} = (8.2 \\pm 0.2 (stat.) ^{+0.2}_{-1.0} (sys.)) \\cdot 10^{15}$yrs has been obtained. This is in good agreement with published values. A comparison of the spectral shape with the one given on the Table of Isotopes Web-page shows a severe deviation.

  11. Tests of the standard electroweak model in beta decay

    CERN Document Server

    Severijns, N; Naviliat-Cuncic, O

    2006-01-01

    We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C_A/C_V = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed.

  12. Tests of the standard electroweak model in beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Severijns, N.; Beck, M. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium); Naviliat-Cuncic, O. [Caen Univ., CNRS-ENSI, 14 (France). Lab. de Physique Corpusculaire

    2006-05-15

    We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C{sub A},/C{sub V} = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed. (author)

  13. First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment

    CERN Document Server

    Beck, M; Kozlov, V Yu; Breitenfeld, M; Delahaye, P; Friedag, P; Herbane, M; Herlert, A; Kraev, I S; Mader, J; Tandecki, M; Van Gorp, S; Wauters, F; Weinheimer, Ch; Wenander, F; Severijns, N

    2011-01-01

    The WITCH experiment (Weak Interaction Trap for CHarged particles) will search for exotic interactions by investigating the beta-neutrino angular correlation via the measurement of the recoil energy spectrum after beta decay. As a first step the recoil ions from the beta-minus decay of 124In stored in a Penning trap have been detected. The evidence for the detection of recoil ions is shown and the properties of the ion cloud that forms the radioactive source for the experiment in the Penning trap are presented.

  14. Energy and efficiency calibration of an array of six Euroball Cluster detectors used for beta-decay studies

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Z.; Collatz, R.; Grawe, H.; Roeckl, E.

    1998-07-01

    The use of an array of 6 euroball cluster detectors, i.e. 42 large-volume germanium detectors, for beta-decay studies is described. The solid angle with respect to a source placed in the center of the array amounts to 65% of 4{pi} sr. The total photo-peak efficiency for 1.33 MeV {gamma}-rays is 10.2(5)%, without ``adding back`` the Compton-scattered events. For this {gamma}-ray energy, the energy resolution of the entire setup is 2.8 keV. The performance of the array up to {gamma}-ray energies of 8 MeV is discussed, and alternative ways of determining the photo-peak efficiency are presented. (orig.) 13 refs.

  15. Experimental bounds on. beta beta. -decay, cold dark matter and solar axions with an ultralow background Ge detector

    Energy Technology Data Exchange (ETDEWEB)

    Avignone, F.T. III; Ahlen, S.P.; Brodzinski, R.L.; Dimopolous, S.; Drukier, A.K.; Gelmini, G.; Lynn, B.W.; Miley, H.S.; Reeves, J.H.; Spergel, D.N.

    1986-10-08

    The PNL/USC ultralow background prototype Ge detector in the Homestake goldmine is being applied to searches for 0 nu ..beta beta..-decay, dark matter candidates and solar axions. An upper bound of 2.2 eV has been placed on the Majorana mass of the electron neutrino. The low energy data exclude particles with spin independent Z/sup 0/ exchange interactions having masses between 20 GeV and 5 TeV as significant contributors to the cold dark matter of the halo of our galaxy. The existence of stable Dirac neutrinos more massive than 20 GeV is also excluded except for a narrow region around the Z/sup 0/ resonance. Finally, Dine-Fischler-Srednicki (DFS) axion models with F/2x'/sub e/ less than or equal to 0.5 x 10/sup 7/ GeV are ruled out by the maximum count rate attributable to solar axions. 36 refs., 11 figs.

  16. TOPICAL REVIEW: Double beta decay

    Science.gov (United States)

    Faessler, Amand; Simkovic, Fedor

    1998-12-01

    We review the recent developments in the field of nuclear double beta decay, which is presently an important topic in both nuclear and particle physics. The mechanism of lepton number violation within the neutrinoless double beta decay (0954-3899/24/12/001/img5-decay) is discussed in the context of the problem of neutrino mixing and the R-parity violating supersymmetric extensions of the standard model. The problem of reliable determination of the nuclear matrix elements governing both two-neutrino and neutrinoless modes of the double beta decay is addressed. The validity of different approximation schemes in the considered nuclear structure studies is analysed and the role of the Pauli exclusion principle for a correct treatment of nuclear matrix elements is emphasized. The constraints on different lepton-number violating parameters such as effective electron neutrino mass, effective right-handed weak interaction parameters, effective Majoron coupling constant and R-parity violating SUSY parameters are derived from the best presently available experimental limits on the half-life of 0954-3899/24/12/001/img5-decay.

  17. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J. [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  18. Neutrinoless double beta decay from lattice QCD

    Science.gov (United States)

    Nicholson, Amy; Cheng, Chia; Berkowitz, Evan; Rinaldi, Enrico; Walker-Loud, Andre; Vranas, Pavlos; Kurth, Thorsten; Clark, M. A.; Garron, Nicolas; Tiburzi, Brian; Monge-Camacho, Henry; Brantley, David; Joo, Balint; Callat Collaboration

    2017-09-01

    Lepton number-violating neutrinoless double beta decay is a natural consequence of Majorana neutrinos and many BSM theories, and, if observed, could potentially explain the observed matter/anti-matter asymmetry in the universe. Several experimental searches for these processes using nuclear sources are planned and/or underway worldwide, and understanding quantitatively how neutrinoless double beta decay would manifest in nuclear environments is key for interpreting any observed signals. While long-range, light neutrino exchange is the most common mechanism studied, short-range interactions involving heavy mediator exchange may also contribute. In this talk I will give an overview of the microscopic observables relevant for experimental searches for neutrinoless double beta decay which may be calculated directly from QCD using lattice methods, and present results for short-range matrix elements contributing to pion exchange diagrams between nucleons.

  19. Challenges in Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Oliviero Cremonesi

    2014-01-01

    Full Text Available In the past ten years, neutrino oscillation experiments have provided the incontrovertible evidence that neutrinos mix and have finite masses. These results represent the strongest demonstration that the electroweak Standard Model is incomplete and that new Physics beyond it must exist. In this scenario, a unique role is played by the Neutrinoless Double Beta Decay searches which can probe lepton number conservation and investigate the Dirac/Majorana nature of the neutrinos and their absolute mass scale (hierarchy problem with unprecedented sensitivity. Today Neutrinoless Double Beta Decay faces a new era where large-scale experiments with a sensitivity approaching the so-called degenerate-hierarchy region are nearly ready to start and where the challenge for the next future is the construction of detectors characterized by a tonne-scale size and an incredibly low background. A number of new proposed projects took up this challenge. These are based either on large expansions of the present experiments or on new ideas to improve the technical performance and/or reduce the background contributions. In this paper, a review of the most relevant ongoing experiments is given. The most relevant parameters contributing to the experimental sensitivity are discussed and a critical comparison of the future projects is proposed.

  20. Precision study of the $\\beta$-decay of $^{74}$Rb

    CERN Multimedia

    Van Duppen, P L E; Lunney, D

    2002-01-01

    We are proposing a high-resolution study of the $\\beta$-decay of $^{74}$Rb in order to extrapolate our precision knowledge of the superallowed $\\beta$-decays from the sd and fp shells towards the medium-heavy Z=N nuclei. The primary goal is to provide new data for testing the CVC hypothesis and the unitarity condition of the CKM matrix of the Standard Model. The presented programme would involve the careful measurements of the decay properties of $^{74}$Rb including the branching ratios to the excited states as well as the precise determination of the decay energy of $^{74}$Rb. The experimental methods readily available at ISOLDE include high-transmission conversion electron spectroscopy, $\\gamma$-ray spectroscopy as well as the measurements of the masses of $^{74}$Rb and $^{74}$Kr using two complementary techniques, ISOLTRAP and MISTRAL. The experiment would rely on a high-quality $^{74}$Rb beam available at ISOLDE with adequate intensity.

  1. beta-decay of O-13

    NARCIS (Netherlands)

    Knudsen, HH; Fynbo, HOU; Borge, MJG; Boutami, R; Dendooven, P; Diget, CA; Eronen, T; Fox, S; Fraile, LM; Fulton, B; Huikary, J; Jeppesen, HB; Jokinen, AS; Jonson, B; Kankainen, A; Moore, [No Value; Nieminen, A; Nyman, G; Penttila, H; Riisager, K; Rinta-Antila, S; Tengblad, O; Wang, Y; Wilhelmsen, K; Aysto, J

    2005-01-01

    The beta decay of O-13 has been studied at the IGISOL facility of the Jyvaskyla accelerator centre (Finland). By developing a low-energy isotope-separated beam of O-13 and using a modern segmented charged-particle detector array an improved measurement of the delayed proton spectrum was possible.

  2. Observation of the Double Beta Decay of ^48Ca^*

    Science.gov (United States)

    Piepke, Andreas

    1996-10-01

    Neutrino-less double beta decay is at present the most sensitive kinematic test for finite neutrino mass. The unfolding of a neutrino mass (or a mass limit) from measured decay rates, however, relies on complicated nuclear structure calculations. In the absence of any rigorous test for these calculations the investigation of the very rare two-neutrino double beta decay (β β 2ν) decay serves to verify the validity of the nuclear models. Among all candidate nuclei the double beta decay ^48Caarrow ^48Ti is unique, since it is the only one which can be treated ``exactly'' in the nuclear shell model. Taking advantage of this special situation, isotopically enriched ^48Ca (enrichment 73% ), in form of finely powdered CaCO_3, was exposed in the Irvine time projection chamber located at the Hoover dam, 72 m below ground. The ongoing data analysis shows strong evidence for the presence of a β β 2ν signal i.e. a two electron spectrum with the expected endpoint of 4.3 MeV. The experimental half life appears to agree with most shell model calculations. A detailed discussion of the results will be presented.(Work in collaboration with A. Balysh, V.I. Lebedev, A. Pronsky, KIAE Moscow, A. De Silva, M.K. Moe, M.A. Nelson, M.A. Vient, UC Irvine and K. Lou, P. Vogel, Caltech.) ^* Supported by U.S. Department of Energy. A.P. acknowledges support of the Alexander von Humboldt Foundation.

  3. Tables of double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Tretyak, V.I. [AN Ukrainskoj SSR, Kiev (Ukraine)]|[Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Zdesenko, Y.G. [AN Ukrainskoj SSR, Kiev (Ukraine)

    1995-12-31

    A compilation of experimental data on double beta decay is presented. The tables contain the most stringent known experimental limits or positive results of 2{beta} transitions of 69 natural nuclides to ground and excited states of daughter nuclei for different channels (2{beta}{sup -}; 2{beta}{sup +}; {epsilon}{beta}{sup +}; 2{epsilon}) and modes (0{nu}; 2{nu}; 0{nu}M) of decay. (authors). 189 refs., 9 figs., 3 tabs.

  4. Double Beta Decay Experiments with Thermal Detectors

    Science.gov (United States)

    Alessandrello, A.; Brofferio, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Vanzini, M.; Zanotti, L.; Bucci, C.

    2001-05-01

    Massive low temperature particle detectors and their possible impacts on searches for neutrinoless double beta decay (O-DBD) are presented and discussed. In particular, the experimental work of the Milano group is described. Special relevance is given to the present status of the search for O-DBD of 130Te and to the possible expansion of this experiment in the near future. The most recent results obtained by the Milano-Gran Sasso collaboration with a 20 bolometer array are presented. On the basis of these results, the construction of a 42 kg array consisting of 56 TeO2 bolometers (CUORICINO project), to extend the sensitivity of the present experiment, has been proposed. CUORICINO should represent also a feasibility test for a large array of 1000 bolometers (CUORE project) aiming at the search for neutrinoless Double Beta Decay, Cold Dark Matter and Solar Axions with extremely high sensitivity.

  5. NEXT, a HPGXe TPC for neutrinoless double beta decay searches

    CERN Document Server

    Granena, F; Nova, F; Rico, J; Sánchez, F; Nygren, D R; Barata, J A S; Borges, F I G M; Conde, C A N; Dias, T H V T; Fernandes, L M P; Freitas, E D C; Lopes, J A M; Monteiro, C M B; Santos, J M F dos; Santos, F P; Tavora, L M N; Veloso, J F C A; Calvo, E; Gil-Botella, I; Novella, P; Palomares, C; Verdugo, A; Giomataris, Yu; Ferrer-Ribas, E; Hernando-Morata, J A; Martínez, D; Cid, X; Ball, M; Carcel, S; Cervera-Villanueva, Anselmo; Díaz, J; Gil, A; Gómez-Cadenas, J J; Martín-Albo, J; Monrabal, F; Munoz-Vidal, J; Serra, L; Sorel, M; Yahlali, N; Bosch, R Esteve; Lerche, C W; Martinez, J D; Mora, F J; Sebastiá, A; Tarazona, A; Toledo, J F; Lazaro, M; Perez, J L; Ripoll, L; Carmona, J M; Cebrián, S; Dafni, T; Galan, J; Gomez, H; Iguaz, F J; Irastorza, I G; Luzón, G; Morales, J; Rodríguez, A; Ruz, J; Tomas, A; Villar, J A

    2009-01-01

    We propose a novel detection concept for neutrinoless double-beta decay searches. This concept is based on a Time Projection Chamber (TPC) filled with high-pressure gaseous xenon, and with separated-function capabilities for calorimetry and tracking. Thanks to its excellent energy resolution, together with its powerful background rejection provided by the distinct double-beta decay topological signature, the design discussed in this Letter Of Intent promises to be competitive and possibly out-perform existing proposals for next-generation neutrinoless double-beta decay experiments. We discuss the detection principles, design specifications, physics potential and R&D plans to construct a detector with 100 kg fiducial mass in the double-beta decay emitting isotope Xe(136), to be installed in the Canfranc Underground Laboratory.

  6. Neutron Beta Decay Studies with Nab

    CERN Document Server

    Baeßler, S.; Alonzi, L.P.; Balascuta, S.; Barrón-Palos, L.; Bowman, J.D.; Bychkov, M.A.; Byrne, J.; Calarco, J.R.; Chupp, T.; Cianciolo, T.V.; Crawford, C.; Frlež, E.; Gericke, M.T.; Glück, F.; Greene, G.L.; Grzywacz, R.K.; Gudkov, V.; Harrison, D.; Hersman, F.W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P.L.; McGovern, S.; Page, S.; Penttilä, S.I.; Počanić, D.; Rykaczewski, K.P.; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W.S.; Young, A.R.

    2012-01-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  7. Nuclear Data Compilation for Beta Decay Isotope

    Science.gov (United States)

    Olmsted, Susan; Kelley, John; Sheu, Grace

    2015-10-01

    The Triangle Universities Nuclear Laboratory nuclear data group works with the Nuclear Structure and Decay Data network to compile and evaluate data for use in nuclear physics research and applied technologies. Teams of data evaluators search through the literature and examine the experimental values for various nuclear structure parameters. The present activity focused on reviewing all available literature to determine the most accurate half-life values for beta unstable isotopes in the A = 3-20 range. This analysis will eventually be folded into the ENSDF (Evaluated Nuclear Structure Data File). By surveying an accumulated compilation of reference articles, we gathered all of the experimental half-life values for the beta decay nuclides. We then used the Visual Averaging Library, a data evaluation software package, to find half-life values using several different averaging techniques. Ultimately, we found recommended half-life values for most of the mentioned beta decay isotopes, and updated web pages on the TUNL webpage to reflect these evaluations. To summarize, we compiled and evaluated literature reports on experimentally determined half-lives. Our findings have been used to update information given on the TUNL Nuclear Data Evaluation group website. This was an REU project with Triangle Universities Nuclear Laboratory.

  8. Beta-decay energies and masses of short-lived isotopes of rubidium, caesium, francium, and radium

    CERN Document Server

    Westgaard, L; Nyman, G H; Roeckl, E

    1975-01-01

    Total decay energies have been measured for a number of neutron- deficient Rb and Cs isotopes, as well as for some neutron-rich isotopes of Fr and Ra. Mass separated sources were produced at the ISOLDE on-line separator at CERN. By applying two different beta - gamma coincidence methods, Q values or their lower limits were determined for /sup 76-78/Rb, /sup 80/Rb, /sup 121-124/Cs, /sup 222 /Fr, /sup 224-226/Fr, /sup 229/Ra and /sup 229/Ac. For many of these nuclei, the atomic mass excesses could be derived, allowing the comparison of masses of far unstable nuclei with predictions from mass formulae. The odd-odd nuclei /sup 76/Rb and /sup 78/Rb appear to be 1-1/sup 1///sub 2/ MeV more strongly bound than expected from the systematics. (70 refs).

  9. Sensitivity of NEXT-100 to neutrinoless double beta decay

    CERN Document Server

    Martín-Albo, J.; Ferrario, P.; Nebot-Guinot, M.; Gómez-Cadenas, J.J.; Álvarez, V.; Azevedo, C.D.R.; Borges, F.I.G.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L.M.P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R.M.; Henriques, C.A.O.; Hernando Morata, J.A.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Novella, P.; Nygren, D.; Para, A.; Perez, J.; Perez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Yepes-Ramírez, H.; Hauptman, J.

    2016-01-01

    NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta decay of Xe-136. The detector possesses two features of great value in neutrinoless double beta decay searches: very good energy resolution (better than 1% FWHM at the Q value of Xe-136) and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Detailed Monte Carlo detector simulations and material-screening measurements predict a background rate for NEXT-100 of at most 0.0004 counts/(keV kg yr). Accordingly, the detector will reach a sensitivity to the neutrinoless double beta decay half-life of 6.E25 years after running for 3 effective years.

  10. $\\beta$ decay of $^{47}$Ar

    CERN Document Server

    Weissman, L; Bergmann, U C; Brown, B A; Catherall, R; Cederkäll, J; Dillmann, I; Hallmann, O; Fraile-Prieto, L M; Franchoo, S; Gaudefroy, L; Köster, U; Kratz, K L; Pfeiffer, B; Sorlin, O; 10.1103/PhysRevC.70.024304

    2004-01-01

    Information on beta -decay properties of neutron-rich /sup 47/Ar was obtained at the ISOLDE facility at CERN using isobaric selectivity. This was achieved by a combination of a plasma-ion source with a cooled transfer line and subsequent mass separation. A doubly charged beam was used in order to improve the signal-to-background ratio associated with multi-charged noble gas fission products. The identification of the /sup 47/Ar gamma -ray transitions was performed by comparing the spectra obtained from direct proton bombardment of the target and of the neutron converter. New excited levels in the daughter /sup 47/K nucleus corresponding to the negative-parity states were observed. The obtained data are compared to the result of large-scale shell model calculations and quasiparticle random-phase approximation predictions. (29 refs).

  11. Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method

    Energy Technology Data Exchange (ETDEWEB)

    Doe, Peter J.; Kofron, Jared N.; MCBride, Lisa; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Doelman, S.; Rogers, Alan E.; Formaggio, Joseph; Furse, Daniel; Oblath, Noah S.; LaRoque, Benjamin; Leber, Michelle; Monreal, Ben; Bahr, Matthew; Asner, David M.; Jones, Anthony M.; Fernandes, Justin L.; VanDevender, Brent A.; Patterson, Ryan B.; Bradley, Rich; Thummler, Thomas

    2013-10-04

    A general description is given of Project 8, a new approach to measuring the neutrino mass scale via the beta decay of tritium. In Project 8, the energy of electrons emitted in beta decay is determined from the frequency of cyclotron radiation emitted as the electrons spiral in a uniform magnetic field

  12. Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method

    CERN Document Server

    Doe, P J; McBride, E L; Robertson, R G H; Rosenberg, L J; Rybka, G; Doelman, S; Rogers, A; Formaggio, J A; Furse, D; Oblath, N S; LaRoque, B H; Leber, M; Monreal, B; Bahr, M; Asner, D M; Jones, A M; Fernandes, J; VanDevender, B A; Patterson, R; Bradley, R; Thuemmler, T

    2013-01-01

    A general description is given of Project 8, a new approach to measuring the neutrino mass scale via the beta decay of tritium. In Project 8, the energy of electrons emitted in beta decay is determined from the frequency of cyclotron radiation emitted as the electrons spiral in a uniform magnetic field.

  13. The theory of beta-decay

    CERN Document Server

    Strachan, Charles

    1969-01-01

    The Theory of Beta-Decay covers the formulas, theories, probabilities, and spectra of beta-decay. This book is divided into 2 parts compassing 12 chapters, and starts with the introduction to the neutrino and the quantum theoretical background, explaining the basic phenomenon of beta-decay and the emission of electrons. The subsequent chapters deal with the interaction and the transition probability, as well as formulas of solutions. These topics are followed by discussions on the developments in the non-conservation of parity and helicity, the two-component theory of the neutrino, possible i

  14. Getting Information on |Ue3|2 from Neutrinoless Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Alexander Merle

    2007-01-01

    neutrinoless double beta decay. We show that typically a lower limit on |Ue3| as a function of the smallest neutrino mass can be set. Furthermore, we give the values of the sum of neutrino masses and |Ue3| which are allowed and forbidden by an experimental upper limit on the effective mass. Alternative explanations for neutrinoless double beta decay, Dirac neutrinos or unexplained cosmological features would be required if future measurements showed that the values lie in the respective regions. Moreover, we show that a measurement of |Ue3| from neutrinoless double beta decay is very difficult due to the expected errors on the effective mass and the oscillation parameters.

  15. Beta-decay branching ratios of {sup 62}Ga

    Energy Technology Data Exchange (ETDEWEB)

    Bey, A.; Blank, B.; Canchel, G.; Dossat, C.; Giovinazzo, J.; Matea, I. [Universite Bordeaux 1 - UMR 5797 CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, Chemin du Solarium, BP 120, Gradignan Cedex (France); Elomaa, V.V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.; Penttilae, H.; Rinta-Antila, S.; Saastamoinen, A.; Sonoda, T.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); Adimi, N. [Faculte de Physique, USTHB, El Alia, B.P. 32, Bab Ezzouar, Alger (Algeria); France, G. de; Thomas, J.C.; Voltolini, G. [Grand Accelerateur National d' Ions Lourds, CEA/DSM - CNRS/IN2P3, B.P. 55027, Caen Cedex 5 (France)

    2008-05-15

    Beta-decay branching ratios of {sup 62}Ga have been measured at the IGISOL facility of the Accelerator Laboratory of the University of Jyvaeskylae. {sup 62}Ga is one of the heavier T{sub z}=0, 0{sup +}{yields}0{sup +}{beta}-emitting nuclides used to determine the vector coupling constant of the weak interaction and the V{sub ud} quark-mixing matrix element. For part of the experimental studies presented here, the JYFLTRAP facility has been employed to prepare isotopically pure beams of {sup 62}Ga. The branching ratio obtained, BR=99.893(24) %, for the super-allowed branch is in agreement with previous measurements and allows to determine the ft value and the universal Ft value for the super-allowed {beta} -decay of {sup 62}Ga. (orig.)

  16. Precision Study of the $\\beta$-decay of $^{62}$Ga

    CERN Multimedia

    2002-01-01

    It is proposed to perform a precision study of the $\\beta$-decay of $\\,^{62}$Ga taking advantage of recent developments of the ISOLDE Laser Ion Source. The goal is to eventually extend the high-precision knowledge of superallowed $\\beta$-decays beyond the nine decays that presently are used for extracting the V$_{ud}$ quark mixing matrix element of the CKM matrix. The scientific motivations are the current deviation of more than 2$\\sigma$ of the unitary condition of this matrix, which could be an indication of non-standard-model physics, and a test of the theoretical corrections applied to the experimental data. The experiment will utilise the Total Absorption $\\gamma$-ray (TAG) spectrometer in order to determine weak branchings to excited states in $^{62}$Zn and the ISOLDE spectroscopy station to perform half-life measurements and detailed spectroscopy of this nucleus.

  17. Large-scale calculations of the beta-decay rates and r-process nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Borzov, I.N.; Goriely, S. [Inst. d`Astronomie et d`Astrophysique, Univ. Libre de Bruxelles, Campus Plaine, Bruxelles (Belgium); Pearson, J.M. [Inst. d`Astronomie et d`Astrophysique, Univ. Libre de Bruxelles, Campus Plaine, Bruxelles (Belgium)]|[Lab. de Physique Nucleaire, Univ. de Montreal, Montreal (Canada)

    1998-06-01

    An approximation to a self-consistent model of the ground state and {beta}-decay properties of neutron-rich nuclei is outlined. The structure of the {beta}-strength functions in stable and short-lived nuclei is discussed. The results of large-scale calculations of the {beta}-decay rates for spherical and slightly deformed nuclides of relevance to the r-process are analysed and compared with the results of existing global calculations and recent experimental data. (orig.)

  18. $\\beta$-decay study of $^{77}$Cu

    CERN Document Server

    Patronis, N; Górska, M; Huyse, M; Kruglov, K; Pauwels, D; Van de Vel, K; Van Duppen, P; Van Roosbroeck, J; Thomas, J-C; Franchoo, S; Cederkäll, J; Fedosseev, V; Fynbo, H; Georg, U; Jonsson, O; Köster, U; Materna, T; Mathieu, L; Serot, O; Weissman, L; Müller, W F; Mishin, V I; Fedorov, D

    2009-01-01

    A beta-decay study of Cu-77 has been performed at the ISOLDE mass separator with the aim to deduce its beta-decay properties and to obtain spectroscopic information on Zn-77. Neutron-rich copper isotopes were produced by means of proton- or neutron-induced fission reactions on U-238. After the production, Cu-77 was selectively laser ionized, mass separated and sent to different detection systems where beta-gamma and beta-n coincidence data were collected. We report on the deduced half-live, decay scheme, and possible spin assignment of 77Cu.

  19. Laboratory tests for the cosmic neutrino background using beta-decaying nuclei

    CERN Document Server

    McElrath, Bob

    2009-01-01

    We point out that the Pauli blocking of neutrinos by cosmological relic neutrinos can be a significant effect. For zero-energy neutrinos, the standard parameters for the neutrino background temperature and density give a suppression of approximately 1/2. We show the effect this has on three-body beta decays. The size of the effect is of the same order as the recently suggested neutrino capture on beta-decaying nuclei.

  20. Sensitivity of CUORE to Neutrinoless Double-Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    CUORE; Alessandria, F.; Andreotti, E.; Ardito, R.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Cai, X. Z.; Canonica, L.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Biasi, A. De; Decowski, M. P.; Deninno, M. M.; Waard, A. de; Domizio, S. Di; Ejzak, L.; Faccini, R.; Fang, D. Q.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Franceschi, M. A.; Freedman, S. J.; Frossati, G.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Huang, H. Z.; Ichimura, K.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kogler, L.; Kolomensky, Yu. G.; Kraft, S.; Lenz, D.; Li, Y. L.; Liu, X.; Longo, E.; Ma, Y. G.; Maiano, C.; Maier, G.; Maino, M.; Mancini, C.; Martinez, C.; Martinez, M.; Maruyama, R. H.; Moggi, N.; Morganti, S.; Napolitano, T.; Newman, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rimondi, F.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Stivanello, F.; Taffarello, L.; Terenziani, G.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Whitten Jr., C. A.; Wise, T.; Woodcraft, A.; Xu, N.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2011-11-23

    In this paper, we study the sensitivity of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity are discussed and compared, and the formulas and parameters used in the sensitivity estimates are provided. Assuming a background rate of 10{sup -2} cts/(keV kg y), we find that, after 5 years of live time, CUORE will have a 1 {sigma} sensitivity to the neutrinoless double-beta decay half-life of {caret T{sup 0{nu}}{sub 1/2}}(1{sigma} ) = 1.6x 10{sup 26} y and thus a potential to probe the effective Majorana neutrino mass down to 41-95 meV; the sensitivity at 1.64{sigma} , which corresponds to 90% C.L., will be {caret T{sup 0{nu}}{sub 1/2}(1.64{sigma} }) = 9.5x10{sup 25} y. This range is compared with the claim of observation of neutrinoless double-beta decay in {sup 76}Ge and the preferred range in the neutrino mass parameter space from oscillation results.

  1. Reactor antineutrino spectra and forbidden beta decays

    Science.gov (United States)

    Štefánik, Dušan; Dvornický, Rastislav; Šimkovic, Fedor

    2017-10-01

    The exact relativistic shape factors, associated with the nuclear matrix elements governing the first forbidden beta decays, are presented. It is expected that their consideration can allow a more accurate theoretical description of antineutrino fluxes from the power reactor. A qualitative analysis of the uncertainty of reactor antineutrino flux from 235U within the electron spectrum conversion method is performed.

  2. Neutrino masses and neutrinoless double-beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, M. [Dipartimento di Fisica dell' Universita di Milano, Bicocca and sezioneINFN di Milano Bicocca (Italy)

    2008-12-15

    The potentials of Double Beta Decay experiments in the field of neutrino study are here discussed. Sensitivity and results are compared with the information coming from oscillation, cosmology and beta decay measurements. (Author)

  3. Project for detecting the double beta decay of136Xe

    Science.gov (United States)

    Miyajima, M.; Sasaki, S.; Tawara, H.

    1992-10-01

    For detecting the nuclear double beta decay of136Xe, a liquid-xenon positive-ion collector and a time-of-flight mass spectrometer are under development for detecting the decay product136Ba. Two sets of lasers are used with the mass spectrometer. An Nd-YAG laser is used for sampling136Ba from the surface of the positive-ion collector electrode, and a dye laser pumped by an Nd-YAG laser is used for the selective ionization of136Ba. The principle of measurements as well as the experimental apparatus and procedures are described in detail, together with our future plans.

  4. The Proposed Majorana 76Ge Double-Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E; Anderson, Dale N; Arthur, Richard J; Avignone, Frank; Baktash, Cryus; Ball, Thedore; Barabash, Alexander S; Bertrand, F; Brodzinski, Ronald L; Brudanin, V; Bugg, William; Champagne, A E; Chan, Yuen-Dat; Cianciolo, Thomas V; Collar, J I; Creswick, R W; Descovich, M; Di Marco, Marie; Doe, P J; Dunham, Glen C; Efremenko, Yuri; Egerov, V; Ejiri, H; Elliott, Steven R; Emanuel, A; Fallon, Paul; Farach, H A; Gaitskell, R J; Gehman, Victor; Grzywacz, Robert; Hallin, A; Hazma, R; Henning, R; Hime, Andrew; Hossbach, Todd W; Jordan, David V; Kazkaz, K; Kephart, Jeremy; King, G S; Kochetov, Oleg; Konovalov, S; Kouzes, Richard T; Lesko, Kevin; Luke, P; Luzum, M; Macchiavelli, A O; McDonald, A; Mei, Dongming; Miley, Harry S; Mills, G B; Mokhtarani, A; Nomachi, Masaharu; Orrell, John L; Palms, John M; Poon, Alan; Radford, D C; Reeves, James H; Robertson, R G. H.; Runkle, Robert C; Rykaczewski, Krzysztof P; Saburov, Konstantin; Sandukovsky, Viatcheslav; Sonnenschein, Andrew; Tornow, W; Tull, C; van de Water, R G; Vanushin, Igor; Vetter, Kai; Warner, Ray A; Wilkerson, John F; Wouters, Jan M; Young, A R; Yumatov, V

    2005-01-01

    The proposed Majorana experiment is based on an array of segmented intrinsic Ge detectors with a total mass of 500 kg of Ge isotopically enriched to 86% in 76Ge. Background reduction will be accomplished by: material selection, detector segmentation, pulse shape analysis, electro-formation of copper parts, and granularity of detector spacing. The predicted experimental sensitivity for measurement of the neutrinoless double-beta decay mode of 76Ge, over a data acquisition period of 5000 kg•y, is ~ 4 x 1027 y.

  5. Milano group development of bolometric detectors: a 6.8Kg TeO sub 2 bolometer array for beta beta decay and high energy resolution mu-bolometers for nuclear and X-ray physics

    CERN Document Server

    Alessandrello, A; Bucci, C; Cremonesi, O; Fiorini, Ettore; Giuliani, A; Monfardini, A; Nucciotti, A; Pavan, M M; Pessina, G; Pirro, S; Previtali, E; Vanzini, M; Zanotti, L

    1999-01-01

    In this paper we want to discuss the results obtained on bolometer detectors in the last year by the Milano Group. At first we will show the results on double decay of sup 1 sup 3 sup 0 Te obtained running an array of twenty cryogenic detectors for about 1450h (0.31Kg/y of sup 1 sup 3 sup 0 Te under test). The set-up is made with crystals of TeO sub 2 of 340 grams each. It was run in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. By recording the pulses of each detector, in anticoincidence with the others, a 90% c.l. lower limit of 0.87x10 sup 2 sup 3 years has been obtained on neutrinoless beta beta decay of sup 1 sup 3 sup 0 Te. Then we will show the exceptional energy resolution of two bolometers composed of tin absorbers and NTD Ge thermistors. They have been fabricated in preparation of experiments in nuclear and subnuclear physics. Both detectors fully resolve the two K subalpha sub 1 and K subalpha sub 2 lines of sup 5 sup 5 Mn. The deconvolved FWHM resolution in this energy regi...

  6. Milano group development of bolometric detectors: a 6.8Kg TeO{sub 2} bolometer array for {beta}{beta} decay and high energy resolution {mu}-bolometers for nuclear and X-ray physics

    Energy Technology Data Exchange (ETDEWEB)

    Alessandrello, A.; Brofferio, C.; Bucci, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Monfardini, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Vanzini, M.; Zanotti, L

    1999-07-26

    In this paper we want to discuss the results obtained on bolometer detectors in the last year by the Milano Group. At first we will show the results on double decay of {sup 130}Te obtained running an array of twenty cryogenic detectors for about 1450h (0.31Kg/y of {sup 130}Te under test). The set-up is made with crystals of TeO{sub 2} of 340 grams each. It was run in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. By recording the pulses of each detector, in anticoincidence with the others, a 90% c.l. lower limit of 0.87x10{sup 23} years has been obtained on neutrinoless {beta}{beta} decay of {sup 130}Te. Then we will show the exceptional energy resolution of two bolometers composed of tin absorbers and NTD Ge thermistors. They have been fabricated in preparation of experiments in nuclear and subnuclear physics. Both detectors fully resolve the two K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} lines of {sup 55}Mn. The deconvolved FWHM resolution in this energy region ranges from 4.5 to 5.7 eV, according to different intrinsic measured value of those lines.

  7. Herman Feshbach Prize in Theoretical Nuclear Physics Xiangdong Ji, University of Maryland PandaX-III: high-pressure gas TPC for Xe136 neutrinoless double beta decay at CJPL

    Science.gov (United States)

    Ji, Xiangdong; PandaX-III Collaboration

    2016-03-01

    The PandaX-III in China's Jinping Underground Lab is a new neutrinoless double beta decay experiment using Xe136 high-pressure gas TPC. The first phase of the experiment uses a 4 m3 gas detector with symmetric Micromegas charge readout planes. The gas TPC allows full reconstruction of the event topology, capable of distinguishing the two electron events from gamma background with high confidence level. The energy resolution can reach about 3% FWHM at the beta decay Q-value. The detector construction and the experimental lab is currently under active development. In this talk, the current status and future plan are reported.

  8. Signal and background studies for the search of neutrinoless double beta decay in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Matteo

    2013-04-24

    The GERDA experiment searches for the neutrinoless double beta decay in Ge-76, by operating bare HPGe detectors in ultra-pure liquid Ar. This dissertation presents a first decomposition of the background measured in the current data-taking phase. The background at the energy of interest was found to be dominated by {sup 214}Bi, {sup 208}Tl and {sup 42}K gamma-rays, with secondary contributions from {sup 42}K and {sup 214}Bi beta-rays, and {sup 210}Po alpha-rays. For the forthcoming upgrade of the apparatus, a new HPGe detector design (BEGe) has been studied, with focus on its capability of suppressing the identified backgrounds through pulse shape analysis. This included the development of a comprehensive modeling of the detectors and the experimental characterization of their response to surface interactions. The achieved results show that GERDA can improve the present limit on the neutrinoless double beta decay half-life by an order of magnitude.

  9. Superallowed nuclear beta decay: Precision measurements for basic physics

    Science.gov (United States)

    Hardy, J. C.

    2012-11-01

    For 60 years, superallowed 0+→0+ nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision (±0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix (±0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from 10C to 74Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, GV, has been extracted from the data and used to determine the top left element of the CKM matrix, Vud. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  10. PandaX-III neutrinoless double beta decay experiment

    Science.gov (United States)

    Wang, Shaobo; PandaX-III Collaboration

    2017-09-01

    The PandaX-III experiment uses high pressure Time Projection Chambers (TPCs) to search for neutrinoless double-beta decay of Xe-136 with high energy resolution and sensitivity at the China Jin-Ping underground Laboratory II (CJPL-II). Fine-pitch Microbulk Micromegas will be used for charge amplification and readout in order to reconstruct both the energy and track of the neutrinoless double-beta decay event. In the first phase of the experiment, the detector, which contains 200 kg of 90% Xe-136 enriched gas operated at 10 bar, will be immersed in a large water tank to ensure 5 m of water shielding. For the second phase, a ton-scale experiment with multiple TPCs will be constructed to improve the detection probability and sensitivity. A 20-kg scale prototype TPC with 7 Micromegas modules has been built to optimize the design of Micromegas readout module, study the energy calibration of TPC and develop algorithm of 3D track reconstruction.

  11. Time-interval analysis of beta decay

    Science.gov (United States)

    Horvat, V.; Hardy, J. C.

    2013-06-01

    A time-interval method of beta-decay half-life analysis is described. The method is expected to produce results that are highly accurate (for the given number of events analyzed), regardless of the event rate, nature of the detection-system dead time, and/or extent of the dead time. This was verified by applying the method in a systematic way to an array of simulated data sets characterized by typical as well as extreme combinations of simulation parameters. The results of the analysis are presented and discussed.

  12. A Combined Limit on the Neutrino Mass from Neutrinoless Double-Beta Decay and Constraints on Sterile Majorana Neutrinos

    CERN Document Server

    Guzowski, Pawel; Evans, Justin; Karagiorgi, Georgia; McCabe, Nathan; Soldner-Rembold, Stefan

    2015-01-01

    We present a framework to combine data from the latest neutrinoless double-beta decay experiments for multiple isotopes and derive a limit on the effective neutrino mass using the experimental energy distributions. The combined limits on the effective mass range between 130-310 meV, where the spread is due to different model calculations of nuclear matrix elements (NMEs). The statistical consistency (p values) between this result and the signal observation claimed by the Heidelberg-Moscow experiment is derived. The limits on the effective mass are also evaluated in a (3+1) sterile neutrino model, assuming all neutrinos are Majorana particles.

  13. Neutrinoless double beta decay search with SNO+

    Directory of Open Access Journals (Sweden)

    Lozza V.

    2014-01-01

    Full Text Available The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.’s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te, it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  14. Neutrinoless double beta decay search with SNO+

    Science.gov (United States)

    Lozza, V.

    2014-01-01

    The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.'s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB) in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te), it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  15. Spectroscopy at the N=20 shell closure: the {beta}-decay of {sup 32}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Grevy, S. E-mail: grevy@in2p3.fr; Pietri, S.; Achouri, L.; Angelique, J.C.; Baumann, P.; Borcea, C.; Buta, A.; Catford, W.; Courtin, S.; Daugas, J.M.; De Oliveira, F.; Dessagne, P.; Dlouhy, Z.; Mueller, D. Guillemaud; Hadeler, R.; Knipper, A.; Lecolley, F.R.; Lecouey, J.L.; Lewitowicz, M.; Lienard, E.; Miehe, C.; Mrazek, J.; Negoita, F.; Orr, N.A.; Penionzhkevich, Y.; Peter, J.; Poirier, E.; Stanoiu, M.; Tarasov, O.; Timis, C.; Walter, G

    2004-04-05

    The shell closure N=20 has been studied by {beta}-decay spectroscopy experiment performed at the GANIL facility. The experimental setup is described and first results on the beta-decay of {sup 32}Mg are presented. The extracted level scheme of {sup 32}Al is compared to Shell Model calculations and discussed in the light of the structural changes observed for the nuclei of the so-called island of inversion. Finally, neutron time-of-flight spectrum from the {beta}-delayed neutron decay of {sup 32}Mg is presented.

  16. Search for double beta decay of 48Ca in the TGV experiment

    Science.gov (United States)

    Brudanin, V. B.; Rukhadze, N. I.; Briançon, C.; Egorov, V. G.; Kovalenko, V. E.; Kovalik, A.; Salamatin, A. V.; Štekl, I.; Tsoupko-Sitnikov, V. V.; Vylov, T.; Čermák, P.

    2000-12-01

    This Letter describes a collaborative TGV (Telescope Germanium Vertical) study of the double beta decay of 48Ca with a low-background and high sensitivity Ge multi-detector spectrometer. The results of T1/22νββ=(4.2+3.3- 1.3)×1019 years and T1/20νββ>1.5×1021 years (90% CL) for double beta decay of 48Ca were found after processing experimental data obtained after 8700 hours of measuring time, using approximately 1 gramme of 48Ca. The features of a TGV-2 experiment are also presented.

  17. Recent status of the studies of nuclear masses and {beta}-decay

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masami [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1996-05-01

    The recent status of the above studies was explained, especially, nuclear masses were described from the aspect of probability theory and that of {beta}-decay suggested that the first forbidden transition was hindered between the ground states. We have to study various systematics in order to know the mass surface, Way-Yamada-Matumoto type systematics is better to check the experimental nuclear masses. The gross theory is very useful to understand the general aspect of {beta}-decay. The understanding method of mass surface, systematic check of mass and hindrance of the first forbidden transition at rank 1 were explained. (S.Y.)

  18. A Search for various Double Beta Decay Modes of Cd, Te and Zn Isotopes

    CERN Document Server

    Kiel, H; Zuber, K

    2003-01-01

    Various double beta decay modes of Cd, Zn and Te isotopes are explored with the help of CdTe and CdZnTe semiconductor detectors. The data set is splitted in an energy range below 1 MeV having a statistics of 134.5 g$\\cdot$d and one above 1 MeV resulting in 532 g$\\cdot$d. No signals were observed in all channels under investigation. New improved limits for the neutrinoless double beta decay of Zn70 of $T_{1/2} > 1.3 \\cdot 10^{16} yrs$ (90% CL), the longest standing limit of all double beta isotopes, and 0$\

  19. Neutrinoless Double Beta Decay with SNO+

    Science.gov (United States)

    Hartnell, J.; SNO+ Collaboration

    2012-07-01

    SNO+ will search for neutrinoless double beta decay by loading 780 tonnes of linear alkylbenzene liquid scintillator with O(tonne) of neodymium. Using natural Nd at 0.1% loading will provide 43.7 kg of 150Nd given its 5.6% abundance and allow the experiment to reach a sensitivity to the effective neutrino mass of 100-200 meV at 90% C.L in a 3 year run. The SNO+ detector has ultra low backgrounds with 7000 tonnes of water shielding and self-shielding of the scintillator. Distillation and several other purification techniques will be used with the aim of achieving Borexino levels of backgrounds. The experiment is fully funded and data taking with light-water will commence in 2012 with scintillator data following in 2013.

  20. Statistical criteria for possible indications of new physics in tritium $\\beta$-decay spectrum

    CERN Document Server

    Lokhov, Aleksei

    2014-01-01

    The method of quasi-optimal weights is applied to constructing (quasi-)optimal criteria for various anomalous contributions in experimental spectra. Anomalies in the spectra could indicate physics beyond the Standard Model (additional interactions and neutrino flavours, Lorenz violation etc.). In particular the cumulative tritium $\\beta$-decay spectrum (for instance, in Troitsk-$\

  1. Neutrinoless double beta decay with small and hierarchical neutrino ...

    Indian Academy of Sciences (India)

    Evidence of atmospheric [1] and solar [2] neutrino oscillations has made the notion of neutrino mass generally acceptable. In the absence of any direct evidence of neutrino mass in plain old beta decay [3], a recent observation [4] of neutrinoless double beta decay [5] has made a second case of a large effective Majorana ...

  2. High-resolution (He-3,t) reaction on the double-beta decaying nucleus Xe-136

    NARCIS (Netherlands)

    Puppe, P.; Frekers, D.; Adachi, T.; Akimune, H.; Aoi, N.; Bilgier, B.; Ejiri, H.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Ganioglu, E.; Harakeh, M. N.; Hatanaka, K.; Holl, M.; Kozer, H. C.; Lee, J.; Lennarz, A.; Matsubara, H.; Miki, K.; Orrigo, S. E. A.; Suzuki, T.; Tamii, A.; Thies, J. H.

    2011-01-01

    A (He-3, t) charge-exchange reaction experiment on the double-beta decaying nucleus Xe-136 has been performed at an incident energy of 420 MeV with the objective to measure the Gamow-Teller (GT) strength distribution in Cs-136. The measurements have been carried out at the dispersion-matched WS beam

  3. Experiments TGV I (double-beta decay of 48Ca) and TGV II (double-beta decay of 106Cd and 48Ca)

    Science.gov (United States)

    Štekl, I.; Čermák, P.; Beneš, P.; Brudanin, V. B.; Rukhadze, N. I.; Egorov, V. G.; Kovalenko, V. E.; Kovalík, A.; Salamatin, A. V.; Tsoupko-Sitnikov, V. V.; Vylov, Ts.; Briancon, Ch.; Šimkovic, F.

    2000-04-01

    Present status of experiments TGV I and TGV II is given. The TGV I collaboration has studied the double-beta decay of 48Ca with a low-background and high sensitivity Ge multi-detector spectrometer TGV (Telescope Germanium Vertical). The preliminary results of years and years (90% CL) for double-beta decay of 48 Ca has been found after the processing of experimental data obtained after 8700 hours of measuring time using approximately 1 gramme of 48Ca. The aim of the experiment TGV II is the development of the experimental methods, construction of spectrometers and measurement of the decay (++, β+/EC, EC/EC) of 106Cd particularly the 2νEC/EC mode. The theoretical description and performance of the TGV II spectrometer are also given.

  4. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    Science.gov (United States)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  5. Neutron bound beta-decay: BOB

    Science.gov (United States)

    McAndrew, Josephine; Paul, Stephan; Emmerich, Ralf; Engels, Ralf; Fierlinger, Peter; Gabriel, Mirko; Gutsmiedl, Erwin; Mellenthin, Johannes; Schön, Johannes; Schott, Wolfgang; Ulrich, Andreas; Grüenauer, Florian; Röhrmoser, Anton

    2012-05-01

    An experiment to observe the bound beta-decay (BOB) of the free neutron into a hydrogen atom and an electron anti-neutrino is described. The hyperfine spin state population of the monoenergetic hydrogen atom yields the neutrino left-handedness or possible right-handed admixture as well as possible small scalar and tensor contributions to the weak force. The BOB H(2s) hyperfine states can be separated with a Lamb-Shift Spin Filter. These monoenergetic H(2s) atoms are ionised into H- by charge exchanging within an argon cell. These ions are then separated using an adaptation of a MAC-E Filter. A first experiment is proposed at the FRMII high thermal-neutron flux beam reactor SR6 through-going beam tube, where we will seek to observe this rare neutron decay-mode for the first time and determine the branching ratio. After successful completion, the hyperfine spin state population will be determined, possibly at the ILL high-flux beam reactor through-going beam tube H6-H7, where the thermal neutron flux is a factor of four larger.

  6. $\\beta$- decay of $^{58}$Zn. A critical test for the charge-exchange reaction as a probe for the $\\beta$- decay strength distribution

    CERN Multimedia

    2002-01-01

    % IS353 \\\\ \\\\ Due to its importance in fundamental physics and astrophysics, a great effort both theoretically and experimentally is devoted to study Gamow Teller (GT)-strength. The GT-strength and its distribution play a key role in late stellar evolution. During the pre-supernova core-collapse of massive stars, the electron capture and nuclear $\\beta$ -decay determine the electron-to-baryon ratio, which influences the infall dynamics and the mass of the final core. The cross-section of the charge-exchange reaction at forward angles with energies above 100~MeV is expected to be proportional to the squares of Fermi and GT matrix elements. This proportionality should provide a Q-value free method to probe the weak interaction strength and renormalization effects in nuclei. Thus charge-exchange reactions are often used to determine the experimental GT-strength. However, the connection between the GT-strength and the cross-section of the charge-exchange reaction is partially model-dependent and the question aris...

  7. Complementarity of Neutrinoless Double Beta Decay and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; Lykken, Joseph

    2014-03-20

    Neutrinoless double beta decay experiments constrain one combination of neutrino parameters, while cosmic surveys constrain another. This complementarity opens up an exciting range of possibilities. If neutrinos are Majorana particles, and the neutrino masses follow an inverted hierarchy, then the upcoming sets of both experiments will detect signals. The combined constraints will pin down not only the neutrino masses but also constrain one of the Majorana phases. If the hierarchy is normal, then a beta decay detection with the upcoming generation of experiments is unlikely, but cosmic surveys could constrain the sum of the masses to be relatively heavy, thereby producing a lower bound for the neutrinoless double beta decay rate, and therefore an argument for a next generation beta decay experiment. In this case as well, a combination of the phases will be constrained.

  8. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  9. Study of the $\\beta$-decay of $^{20}$Mg

    CERN Multimedia

    Cederkall, J A; Riisager, K; Garcia borge, M J; Madurga flores, M; Jonson, B N G; Fynbo, H O U; Koldste, G T; Giles, T J; Nilsson, T; Perea martinez, A

    We propose to perform a detailed study of the $\\beta$-decay of the dripline nucleus $^{20}$Mg. This will provide important information on resonances in $^{20}$Na relevant for the astrophysical rp-process as well as improved information for detailed comparison with state-of-the-art Shell-Model calculations and for comparison with the mirror $\\beta$-decay of $^{20}$O.

  10. Measuring Directionality in Double-Beta Decay and Neutrino Interactions with Kiloton-Scale Scintillation Detectors

    OpenAIRE

    Aberle, C.; Elagin, A.; Frisch, H. J.; Wetstein, M.; Winslow, L.

    2013-01-01

    Large liquid-scintillator-based detectors have proven to be exceptionally effective for low energy neutrino measurements due to their good energy resolution and scalability to large volumes. The addition of directional information using Cherenkov light and fast timing would enhance the scientific reach of these detectors, especially for searches for neutrino-less double-beta decay. In this paper, we develop a technique for extracting particle direction using the difference in arrival times fo...

  11. QCD-improved limits from neutrinoless double beta decay

    Science.gov (United States)

    Arbeláez, C.; González, M.; Kovalenko, S. G.; Hirsch, M.

    2017-07-01

    We analyze the impact of QCD corrections on limits derived from neutrinoless double beta decay (0 ν β β ). As demonstrated previously, the effect of the color mismatch arising from loops with gluons linking the quarks from different color-singlet currents participating in the effective operators has a dramatic impact on the predictions for some particular Wilson coefficients. Here, we consider all possible contributions from heavy particle exchange, i.e. the so-called short-range mechanism of 0 ν β β decay. All high-scale models (HSM) in this class match at some scale around a ˜ few TeV with the corresponding effective theory, containing a certain set of effective dimension-9 operators. Many of these HSM receive contributions from more than one of the basic operators and we calculate limits on these models using the latest experimental data. We also show with one nontrivial example, how to derive limits on more complicated models, in which many different Feynman diagrams contribute to 0 ν β β decay, using our general method.

  12. Electron capture decay of {sup 116}In and nuclear structure of double {beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, M.; Garcia, A.; Ortiz, C.E.; Kaloskamis, N.I. [University of Notre Dame, Notre Dame, Indiana 46556 (United States); Hindi, M.M. [Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Norman, E.B. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Davids, C.N. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Civitarese, O. [Department of Physics, University of La Plata, C. C. 67, 1900-La Plata (Argentina); Suhonen, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, SF-40351, Jyvaeskylae (Finland)

    1998-08-01

    Quasiparticle-random-phase-approximation (QRPA) calculations of double {beta} decays have not been able to reproduce data in the A=100 system. We propose the A=116 system{emdash}because of its smaller deformation{emdash}as a simpler system to test QRPA calculations. We present results of two experiments we performed, which determine the electron-capture-decay branch of {sup 116}In to be (2.27{plus_minus}0.63){times}10{sup {minus}2}{percent}, from which we deduce logft=4.39{sub {minus}0.15}{sup +0.10}. We present QRPA calculations and compare their predictions to experimental data. Finally we use these calculations to predict the 2{nu} double-{beta}-decay rate of {sup 116}Cd to the ground and excited states of {sup 116}Sn. {copyright} {ital 1998} {ital The American Physical Society}

  13. First Search for Lorentz and CPT Violation in Double Beta Decay with EXO-200

    CERN Document Server

    :,; Barbeau, P S; Beck, D; Belov, V; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, C G; Davis, J; Delaquis, S; Der Mesrobian-Kabakian, A; DeVoe, R; Díaz, J S; Didberidze, T; Dilling, J; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feyzbkhsh, S; Feldmeier, W; Fierlinger, P; Fudenberg, D; Gornea, R; Graham, K; Gratta, G; Hall, C; Homiller, S; Hughes, M; Jewell, M J; Jiang, X S; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krücken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Nelson, R; Njoya, O; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Prescott, C Y; Retiére, F; Rowson, P C; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tsang, R; Twelker, K; Vuilleumier, J -L; Vogel, P; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Wood, J; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2016-01-01

    A search for Lorentz- and CPT-violating signals in the double beta decay spectrum of $^{136}$Xe has been performed using an exposure of 100 kg$\\cdot$yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz-violation was found, and a two-sided limit of $-2.65 \\times 10^{-5 } \\; \\textrm{GeV} < \\mathring{a}^{(3)}_{\\text{of}} < 7.60 \\times 10^{-6} \\; \\textrm{GeV}$ is placed on the relevant coefficient within the Standard-Model Extension (SME). This is the first experimental study of the effect of the SME-defined oscillation-free and momentum-independent neutrino coupling operator on the double beta decay process.

  14. Higher order terms of the nucleon current in the neutrino mass mechanism of neutrinoless double beta decay

    CERN Document Server

    Pantis, G

    2000-01-01

    The nuclear matrix elements for light and heavy Majorana neutrino in neutrinoless double beta decay have been reconsidered by including additional higher order terms in the nucleon current. The form of the nucleon current now includes except the usual vector and axial-vector terms additional contributions arising from weak magnetism and induced pseudoscalar coupling. The later is derived by the partially conserved axial-vector current hypothesis. We have considered all nuclei that undergo double beta decay in the mass region A=76 up to A=150 using the renormalized quasiparticle random phase approximation. Our results show that these contributions are very important. They bring significant reductions to the nuclear matrix element for both the light and the heavy neutrino. Thus new limits for the neutrino mass are extracted using the best presently available experimental limits on the half-life of neutrinoless double beta-decay.

  15. Direct measurement of neutrino mass utilizing beta decay of tritium

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hirokane (Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study)

    1992-10-01

    Among elementary particles, neutrino is the queer, wondrous elementary particle that has asymmetric property, and in spite of strenuous efforts, its mass has not been determined. The mass value expected for electron neutrino is as extremely small as several tens eV, but its value may control the future of the space whether this vast space continues to expand as it is or turns to contract. Accordingly, it has become a very important subject for space physics as well as elementary particle physics. The mass of neutrino has been considered to be nearly zero, but in 1980, the USSR group gave the finite value of 14-46 eV for the first time. Since then, the experiments for verifying this result were begun in more than ten places in the world. The method of measuring the mass of neutrino is that by precisely measuring with a beta ray analyzer the vicinity of the maximum value in the continuous energy spectra of the electron beam emitted simultaneously with neutrinos in the beta decay of tritium, and determining the mass from its form. [pi][radical]2 type air core beta ray analyzer, beta ray source, electron detector, the comparison of the contents of the published experiments, and the results of measurement are reported. (K.I.).

  16. Search for non Standard Model physics in nuclear-$\\beta$ decay with the WITCH experiment

    CERN Document Server

    Coeck, Sam

    In this work the WITCH experiment, which primarily aims for precision measurements of the beta-neutrino-angular correlation coefficient, is presented in detail. First a theoretical description of the beta-decay process is presented and it was shown how measurements of correlation coefficients can reveal the exact nature of the weak interaction. Although many experiments have already been conducted in this field, there is still considerable room for additional phenomena that are not included in the Standard Model. At WITCH the beta-neutrino-angular correlation coefficient will be obtained from precision measurements of the energy spectrum of the nuclei that recoil after beta-decay, thus avoiding the need to observe the neutrino. To enable a measurement of the recoiling ions, the setup uses a combination of two electromagnetic Penning traps and a retardation spectrometer. This allows one to construct the scattering free radioactive source that is needed as the recoiling ions have only a very small kinetic energ...

  17. Nilsson-pairing model for double beta decay

    Science.gov (United States)

    Zamick, L.; Auerbach, N.

    1982-11-01

    The double beta decay process for 48Ca and 76Ge is considered. The inhibition of the process for 48Ca, previously considered by Khodel, is discussed in terms of a K selection rule. The large value found for the 76Ge transition to 76Se, by Haxton, Stephenson, and Strottman, is here illustrated by a pairing calculation using asymptotic Nilsson wave functions. The coherence of the process is clearly shown in this model. The contribution of high lying intermediate states, especially due to delta particle-nucleon hole states, is discussed. RADIOACTIVITY Double beta decay, pairing correlations, delta admixtures.

  18. Heavy sterile neutrinos and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Bamert, P. [Neuchatel Univ. (Switzerland). Inst. de Physique; Burgess, C.P. [Neuchatel Univ. (Switzerland). Inst. de Physique]|[Physis Department, Mcs Department, McGill University, 3600 University St., Montreal, Quebe (Canada); Mohapatra, R.N. [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    1995-03-27

    We investigate the possibility of producing neutrinoless double beta decay without having an electron neutrino with a mass in the vicinity of 1 eV. We do so by having a much lighter electron neutrino mix with a much heavier (m> or {approx}1 GeV) sterile neutrino. We study the constraints on the masses and mixings of such heavy sterile neutrinos from existing laboratory, astrophysical and cosmological information, and discuss the properties it would require in order to produce a detectable signal in current searches for neutrinoless double beta decay. ((orig.)).

  19. First observation of a reactor-status effect on the beta+ decay rate of 22Na

    CERN Document Server

    de Meijer, Robert; Stegenga, Jan; Steyn, Steph; Lindsay, Robbie; van Rooy, Milton

    2016-01-01

    In the search for an electron antineutrino detection method with sensitivity below the 1.8 MeV threshold for the inverse beta decay reaction, beta-decay counting experiments with ca. 3 kBq 22Na and 60Co sources were conducted at unit #1 (2.775 GWth) of the Koeberg Nuclear Power Station in South Africa. The goal was to determine if the rate of decay is measurably influenced by a change between the ON-OFF status of such a reactor. The experimental setup consisted of a single NaI crystal to measure de-excitation and annihilation photons associated with beta-decay. Its volume and well shape were purposely chosen to use coincidence summing in the interval 170-2452 keV to differentiate between electron capture and beta+ emission in 22Na. The Pb-shielded setup was placed in the seismic vault underneath the containment building, thereby shielded from the reactor core by 8 m of uninterrupted concrete. For 22Na two measurement series were made, each covering an ON-OFF-ON cycle of the reactor. The following fractional c...

  20. Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Alessandria, F; Ardito, R; Artusa, DR; III, FTA; Azzolini, O; Balata, M; Banks, TI; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Bloxham, T; Brofferio, C; Bucci, C; Cai, XZ; Canonica, L; Cao, X; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Cosmelli, C; Cremonesi, O; Creswick, RJ; Dafinei, I; Dally, A; Datskov, V; Biasi, AD; Deninno, MM; Domizio, SD; Vacri, MLD; Ejzak, L; Faccini, R; Fang, DQ; Farach, HA; Faverzani, M; Fernandes, G; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, MA; Freedman, SJ; Fujikawa, BK; Giachero, A; Gironi, L; Giuliani, A; Goett, J; Gorla, P; Gotti, C; Guardincerri, E; Gutierrez, TD; Haller, EE; Han, K; Heeger, KM; Huang, HZ; Kadel, R; Kazkaz, K; Keppel, G; Kogler, L; Kolomensky, YG; Lenz, D; Li, YL; Ligi, C; Liu, X; Ma, YG; Maiano, C; Maino, M; Martinez, M; Maruyama, RH; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Newman, S; Nisi, S; Nones, C; Norman, EB; Nucciotti, A; O' Donnell, T; Orio, F; Orlandi, D; Ouellet, JL; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Piperno, G; Pirro, S; Previtali, E; Rampazzo, V; Rimondi, F; Rosenfeld, C; Rusconi, C; Sala, E; Sangiorgio, S; Scielzo, ND; Sisti, M; Smith, AR; Stivanello, F; Taffarello, L; Tenconi, M; Tian, WD; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, BS; Wang, HW; Wise, T; Woodcraft, A; Zanotti, L; Zarra, C; Zhu, BX; Zucchelli, S

    2017-07-06

    We present a study of the sensitivity and discovery potential of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity for various background scenarios are presented, and an extension of the sensitivity formulation to the discovery potential case is also discussed. Assuming a background rate of 10-2 cts/(keV kg y), we find that, after 5 years of live time, CUORE has a 1 sigma sensitivity to the neutrinoless double-beta decay half-life of T$0v\\atop{1/2}$(1θ) = 1.6 \\times 1026 y and thus a potential to probe the effective Majorana neutrino mass down to 40-100 meV; the sensitivity at 1.64 sigma, which corresponds to 90% C.L., will be T$0v\\atop{1/2}$(1.64θ) = 9.5 \\times 1025 y. This range is compared with the claim of observation of neutrinoless double-beta decay in 76Ge and the preferred range of the neutrino mass parameter space from oscillation results.

  1. Novel Approaches to Calculate Nuclear Matrix Elements for Double Beta Decays

    Directory of Open Access Journals (Sweden)

    Horoi Mihai

    2014-03-01

    Full Text Available Neutrinoless double beta decay is a unique process that could reveal physics beyond the Standard Model of particle physics. If observed, it would prove that neutrinos are Majorana particles, and it could give information regarding the neutrino masses and their hierarchy, provided that reliable nuclear matrix elements (NME can be obtained. The two-neutrino double beta decay is an associate process that is allowed by the Standard Model and it was observed for about ten nuclei. The NME associated with this decay mode could be even more difficult to calculate, but they can be directly related to the experimental half-lives, and they can be constrained using data from charge-exchange reactions. Here we offer a brief overview of the theoretical challenges associated with these two processes, emphasizing the tools necessary to reliably calculate the associated nuclear matrix elements. We also emphasize the role of the competing mechanisms that could contribute to the neutrinoless double beta decay half-life.

  2. Beta decay heat following U-235, U-238 and Pu-239 neutron fission

    Science.gov (United States)

    Li, Shengjie

    1997-09-01

    This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(<1 MeV) internal-conversion electron studies, a set of trial responses for the spectrometer was established and spanned electron energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.

  3. Double beta decay - physics beyond the standard model now, and in future (Genius)

    Energy Technology Data Exchange (ETDEWEB)

    Klapdor-Kleingrothaus, H.V.

    1998-08-01

    Nuclear double beta decay provides an extraordinarily broad potential to search for beyond standard model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso - probes the electron mass now in the sub eV region and will reach a limit of {proportional_to}0.1 eV in a few years. Basing to a large extent on the theoretical work of the Heidelberg double beta group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), compositeness, right-handed W boson mass and others. These results are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. Second, future perspectives of {beta}{beta} research are discussed. A new Heidelberg experimental proposal (GENIUS) is presented which would allow to increase the sensitivity for Majorana neutrino masses from the present level of at best 0.1 eV down to 0.01 or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many beyond standard models. Its sensitivity for neutrino oscillation parameters would be larger than of all present terrestrial neutrino oscillation experiments and of those planned for the future. (orig.)

  4. Results on neutrinoless double beta decay from GERDA phase I

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    After motivating searches of double beta decay and lepton number violation details about the construction, operation and analysis of GERDA will be given. Results of the recently completed phase I of data taking will then be presented and interpreted. Finally an outlook on future plans will be given.

  5. Influence of pairing in double beta decay of 48Ca

    Indian Academy of Sciences (India)

    Influence of pairing in double beta decay of 48Ca. PRIANKA ROY∗ and SHASHI K DHIMAN. Department of Physics, Himachal Pradesh University, Shimla 171 005, India. ∗Corresponding author. E-mail: royprianka04@gmail.com. MS received 4 August 2009; accepted 9 October 2009. Abstract. Two-neutrino ββ decay ...

  6. Present and future strategies for neutrinoless double beta decay ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Moreover, since neutrino oscillation experiments measure only the absolute value of the difference of the square of the neutrino masses, the discovery of neutrinoless double beta decay would help to disentangle questions that still remain unsolved: what is the absolute mass scale of the neutrinos and ...

  7. Neutrino mass bounds from neutrinoless double beta-decays and ...

    Indian Academy of Sciences (India)

    2016-01-21

    Jan 21, 2016 ... We investigate the way the total mass sum of neutrinos can be constrained from the neutrinoless double beta-decay and cosmological probes with cosmic microwave background (CMBR), large-scale structures including 2dFGRS and SDSS datasets. First we discuss, in brief, the current status of neutrino ...

  8. Neutrino mass bounds from neutrinoless double beta-decays and ...

    Indian Academy of Sciences (India)

    2016-01-21

    Jan 21, 2016 ... Abstract. We investigate the way the total mass sum of neutrinos can be constrained from the neu- trinoless double beta-decay and cosmological probes with cosmic microwave background (CMBR), large-scale structures including 2dFGRS and SDSS datasets. First we discuss, in brief, the current status of ...

  9. A calorimetric search on double beta decay of 130Te

    Science.gov (United States)

    Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Pobes, C.; Previtali, E.; Sisti, M.; Vanzini, M.

    2003-04-01

    We report on the final results of a series of experiments on double beta decay of 130Te carried out with an array of twenty cryogenic detectors. The set-up is made with crystals of TeO2 with a total mass of 6.8 kg, the largest operating one for a cryogenic experiment. Four crystals are made with isotopically enriched materials: two in 128Te and two others in 130Te. The remaining ones are made with natural tellurium, which contains 31.7% and 33.8% 128Te and 130Te, respectively. The array was run under a heavy shield in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. By recording the pulses of each detector in anticoincidence with the others a lower limit of 2.1×1023 years has been obtained at the 90% C.L. on the lifetime for neutrinoless double beta decay of 130Te. In terms of effective neutrino mass this leads to the most restrictive limit in direct experiments, after those obtained with Ge diodes. Limits on other lepton violating decays of 130Te and on the neutrinoless double beta decay of 128Te to the ground state of 128Xe are also reported and discussed. An indication is presented for the two neutrino double beta decay of 130Te. Some consequences of the present results in the interpretation of geochemical experiments are discussed.

  10. Present and Future Cryogenic Experiments on Double-Beta Decay

    Science.gov (United States)

    Brofferio, C.; Arnaboldi, C.; Capelli, S.; Carbone, L.; Cremonesi, O.; Fiorini, E.; Giugni, D.; Negri, P.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.; Beeman, J.; McDonald, R. J.; Haller, E. E.; Norman, E. B.; Smith, A. R.; Giuliani, A.; Pedretti, M.; Barucci, M.; Ventura, G.; Balata, M.; Bucci, C.; Pobes, C.; Palmieri, V.; Frossati, G.; de Waard, A.; Avignone, F. T.; Creswick, R. J.; Farach, H. A.; Rosenfeld, C.; Cebrian, S.; Irastorza, I. G.; Morales, A.

    2002-04-01

    Thermal detectors are introduced and their possible impact on neutrinoless double-beta-decay (20) search is discussed. The thermal experiment MIBETA is described, reporting the up-to-date limits on 130Te and 128Te. A new generation experiment, consisting in a large expansion of MIBETA and known as CUORE, is presented and discussed.

  11. Experiments searching for new interactions in nuclear beta-decay

    NARCIS (Netherlands)

    Jungmann, Klaus P.; Brown, BA; Engel, J; Haxton, W; RamseyMusolf, M; Romalis, M; Savard, G

    2009-01-01

    Precision measurements of beta-decays in nuclei, muons and neutrons allow to search for non V-A contributions in, weak interactions and to set; limits on parameters relevant to theoretical models beyond standard theory. Novel experiments are possible in particular at, presently operating stable beam

  12. Testing CVC and CKM Unitarity via superallowed nuclear beta decay

    Science.gov (United States)

    Hardy, J. C.; Towner, I. S.; Park, H. I.; Iacob, V. E.; Chen, L.; Horvat, V.; Nica, N.; Bencomo, M.

    2015-05-01

    Currently, the most restrictive test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is anchored by nuclear beta decay. Precise measurements of the ft-values for superallowed beta transitions between analog 0+ states are used to determine GV, the vector coupling constant; this, in turn, yields Vud, the up-down quark-mixing element of the CKM matrix. The determination of a transition's ft-value requires the measurement of three quantities: its Q value, branching ratio and parent half-life. To achieve 0.1% precision on the final result, each of these quantities must be measured to substantially better precision, for which special techniques have had to be developed. A new survey and analysis of world data reveals that there are now fourteen such transitions with ft-values known to ˜ 0.1% precision or better, and that they span a wide range of nuclear masses, from 10C, the lightest parent, to 74Rb, the heaviest. Of particular interest is the recent completion of the first mirror pair of 0+ → 0+ transitions, 38Ca → 38mK and 38mK → 38Ar, which provides a valuable constraint on the calculated isospin-symmetry-breaking corrections needed to derive GV from the experimental data. As anticipated by the Conserved Vector Current hypothesis, CVC, all fourteen transitions yield consistent values for GV. The value of Vud derived from their average makes it by far the most precisely known element of the CKM matrix, which, when combined with the other top-row elements, Vus and Vub, leads to the most demanding test available of the unitarity of that matrix. Since CKM unitarity is a key pillar of the Electroweak Standard Model, this test is of fundamental significance.

  13. Structure of $^{191}$Pb from $\\alpha$- and $\\beta$-decay spectroscopy

    CERN Document Server

    Cocolios, T E; Van de Walle, J; Franchoo, S; Marsh, B A; Sjoedin, A M; Huyse, M; Zemlyanoy, S; Cocolios, T E; Bastin, B; Barzakh, A; Page, R D; Mane, E; Van Duppen, P; Darby, I G; Venhart, M; Kudryavtsev, Yu; Huber, G; Fedosseev, V N; Andreyev, A N; Keupers, M; Flanagan, K T; Stefan, I; Dexters, W; Koester, U; Antalic, S; Buscher, J; Molkanov, P; Fedorov, D V

    2010-01-01

    Complementary studies of $^{191}$Pb have been made in the $\\beta$- decay of $^{191}$Bi at LISOL (CRC) and in the $\\alpha$- decay of $^{195}$Po at ISOLDE (CERN). Fine structures in the $\\alpha$- decay of the low-spin and high-spin isomers of $^{195}$Po have been fully resolved. Identification of the parent state is made possible via isomer selection based on narrow-band laser frequency scanning. The $\\alpha$-particle and $\\gamma$-ray energies have been determined with greater precision. New $\\alpha$-particle and $\\gamma$-ray energies are identified. Branching ratios in the decay of $^{195}$Po and $^{191}$Pb have been examined.

  14. Double-beta decay with emission of single free electron

    Science.gov (United States)

    Babič, A.; Štefánik, D.; Krivoruchenko, M. I.; Šimkovic, F.

    2017-10-01

    We study a new mode of the neutrinoless and two-neutrino double-beta decays in which one of the electrons is emitted from the atom, while the other is directly produced in one of the available s1/2 or p1/2 subshells of the daughter ion. We calculate the phase-space factors, estimate the half-lives and derive the single-electron spectra for 0+ → 0+ ground-state nuclear transitions of the most relevant double-beta-decay isotopes: 48Ca, 76Ge, 82Se, 100Mo, 136Xe and 150Nd. The relativistic electron wave functions are evaluated at the nuclear radius by means of the multiconfiguration Dirac-Hartree-Fock package Grasp2K. We discuss the prospects for detecting these new modes in the tracking-and-calorimetry experiments NEMO-3 and SuperNEMO.

  15. Light sterile neutrinos and neutrinoless double-beta decay

    Science.gov (United States)

    Giunti, Carlo

    2017-10-01

    The LSND, Gallium and reactor neutrino anomalies can be explained by short-baseline neutrino oscillations due to the mixing of the active neutrinos with sterile neutrinos at the eV scale. I review the results of a 3+1 global fit of short-baseline neutrino oscillation data that includes the recent measurements of the MINOS, IceCube, and NEOS experiments, and I discuss the implications for neutrinoless double-beta decay.

  16. Neutrinoless double beta decay searches with 76Ge

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The search for neutrinoless double beta decay might be the only window to observe lepton number violation. Its observation would favour the leptogenesis mechanism for the explanation of the baryon asymmetry of the universe and is therefore considered to be of highest relevance. The isotope 76Ge has historically been most important for this search and the ongoing experiment GERDA has the lowest background of all experiments in the field. The talk reviews the motivation, the current status of experiments and future programs.

  17. Recent advances in neutrinoless double beta decay search

    CERN Document Server

    Miramonti, L; Miramonti, Lino; Reseghetti, Franco

    2004-01-01

    Even after the discovery of neutrino flavour oscillations, based on data from atmospheric, solar, reactor, and accelerator experiments, many characteristics of the neutrino remain unknown. Only the neutrino square-mass differences and the mixing angle values have been estimated, while the value of each mass eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is still escaping. Neutrinoless double beta decay ($0\

  18. Covariances of nuclear matrix elements for O{nu}{beta}{beta} decay

    Energy Technology Data Exchange (ETDEWEB)

    Fogli, G L; Rotunno, A M [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' , Via Orabona 4, 70126 Bari (Italy); Lisi, E, E-mail: annamaria.rotunno@ba.infn.i [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy)

    2010-01-01

    Estimates of nuclear matrix elements (NME) for neutrinoless double beta decay (O{nu}{beta}{beta}) based on the quasiparticle random phase approximations (QRPA) are affected by theoretical uncertainties, which may play a dominant role in comparison with projected experimental errors of future O{nu}{beta}{beta} experiments. We discuss the estimated variances and covariances of NME of several candidate nuclei within the QRPA, focusing on the following aspects: 1) the comparison of O{nu}{beta}{beta} signals, or limits, in different nuclei; 2) the prospects for testing nonstandard O{nu}2{beta} mechanisms in future experiments.

  19. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    Directory of Open Access Journals (Sweden)

    Moggi N.

    2015-01-01

    Full Text Available The Cryogenic Underground Observatory for Rare Events (CUORE is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0 is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  20. COBRA - Double beta decay searches using CdTe detectors

    CERN Document Server

    Zuber, K

    2001-01-01

    A new approach (called COBRA) for investigating double beta decay using CdTe (CdZnTe) semiconductor detectors is proposed. It follows the idea that source and detector are identical. This will allow simultaneous measurements of 5 $\\beta^-\\beta^-$ - and 4 $\\beta^+\\beta^+$ - emitters at once. Half-life limits for neutrinoless double beta decay of Cd-116 and Te-130 can be improved by more than one order of magnitude with respect to current limits and sensitivities on the effective Majorana neutrino mass of less than 1 eV can be obtained. Furthermore, for the first time a realistic chance of observing double electron capture processes exists. Additional searches for rare processes like the 4-fold forbidden Cd-113 $\\beta$-decay, the electron capture of Te-123 and dark matter detection can be performed. The achievable limits are evaluated for 10 kg of such detectors and can be scaled accordingly towards higher detector masses because of the modular design of the proposed experiment.

  1. Study of multi-neutron emission in the $\\beta$-decay of $^{11}$Li

    CERN Multimedia

    A new investigation of neutron emission in the $\\beta$-decay of $^{11}$Li is proposed. The principal goal of this study will be to directly measure, for the first time for any system, two $\\beta$-delayed neutrons in coincidence and determine the energy and angular correlations. This will be possible using liquid scintillator detectors, capable of distinguishing between neutrons and ambient $\\gamma$ and cosmic-rays, coupled to a new digital electronics and acquisition system. In parallel, a considerably more refined picture of the single-neutron emission will be obtained.

  2. Towards the detection of cosmological relic neutrino with neutrino capture on a beta decaying nuclei

    CERN Document Server

    Messina, M; Mangano, G

    2010-01-01

    In this paper we report on recent results in the Þeld of the phenomenology of very low energy neutrino interactions. We brießy describe the cross section calculation for Neutrino Capture on Beta decay nuclei (NCB). We show that the resulting cross section open the possibility to detect the cosmological relic neutrinos. With this achievement, the relic neutrino detection has been downscaled from a principle problem to a technological challenge. We also summarise the state of the art about possible detection techniques.

  3. Study of the deuteron emission in the $\\beta$-decay of $^{6}$He

    CERN Multimedia

    Karny, M; Tengblad, O; Riisager, K; Perkowski, J; Garcia borge, M J; Raabe, R; Kowalska, M; Fynbo, H O U; Perea martinez, A; Ter-akopian, G; Huyse, M L

    The main goal of the present proposal is to measure the continuous spectrum of deuterons emitted in the $\\beta$-decay of $^{6}$He. In particular, we want to focus on the low energy part of the spectrum, below 400 keV, which could not be accessed by all previous experiments. For the decay spectroscopy the Warsaw Optical Time Projection Chamber (OTPC) will be used. The bunches of $^{6}$He ions produced by REX-ISOLDE facility will be implanted into the active volume of the OTPC, where the rare events of deuteron emission will be recorded, practically background free.

  4. AXEL : Neutrinoless double beta decay search with a high pressure xenon gas Time Projection Chamber

    Science.gov (United States)

    Ban, Sei; AXEL Collaboration

    2017-09-01

    AXEL is a high pressure xenon gas TPC detector being developed for neutrinoless double-beta decay search. It is operated at the proportional scintillation mode. We have developed a new electroluminescence light detection scheme to achieve very high energy resolution with a large detector. The detector has a capability of tracking which can be used to reduce background. The project is in a R&D phase, and we report the current status of our prototype chamber with 10 L and 4 bar Xe gas.

  5. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, Michelle Jean [Univ. of California, Berkeley, CA (United States)

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  6. Superallowed Beta Decay Studies at TRIUMF --- Nuclear Structure and Fundamental Symmetries

    Science.gov (United States)

    Zganjar, E. F.; Achtzehn, T.; Albers, D.; Andreoiu, C.; Andreyev, A. N.; Austin, R. A. E.; Ball, G. C.; Behr, J. A.; Biosvert, G. C.; Bricault, P.; Bishop, S.; Chakrawarthy, R. S.; Churchman, R.; Cross, D.; Cunningham, E.; D'Auria, J. M.; Dombsky, M.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Hardy, J. C.; Hodgson, D. F.; Hyland, B.; Iacob, V.; Klages, P.; Koopmans, K. A.; Kulp, W. D.; Lassen, J.; Lavoie, J. P.; Leslie, J. R.; Linder, T.; MacDonald, J. A.; Mak, H.-B.; Melconian, D.; Morton, A. C.; Ormand, W. E.; Osborne, C. J.; Pearson, C. J.; Pearson, M. R.; Phillips, A. A.; Piechaczek, A.; Ressler, J.; Sarazin, F.; Savard, G.; Schumaker, M. A.; Scraggs, H. C.; Svensson, C. E.; Valiente-Dobon, J. J.; Towner, I. S.; Waddington, J. C.; Walker, P. M.; Wendt, K.; Wood, J. L.

    2007-04-01

    Precision measurement of the beta -decay half-life, Q-value, and branching ratio between nuclear analog states of Jpi = 0+ and T=1 can provide critical and fundamental tests of the Standard Model's description of electroweak interactions. A program has been initiated at TRIUMF-ISAC to measure the ft values of these superallowed beta transitions. Two Tz = 0, A > 60 cases, 74Rb and 62Ga, are presented. These are particularly relevant because they can provide critical tests of the calculated nuclear structure and isospin-symmetry breaking corrections that are predicted to be larger for heavier nuclei, and because they demonstrate the advance in the experimental precision on ft at TRIUMF-ISAC from 0.26% for 74Rb in 2002 to 0.05% for 62Ga in 2006. The high precision world data on experimental ft and corrected Ft values are discussed and shown to be consistent with CVC at the 10-4 level, yielding an average Ft = 3073.70(74) s. This Ft leads to Vud = 0.9737(4) for the up-down element of the Standard Model's CKM matrix. With this value and the Particle Data Group's 2006 values for Vus and Vub, the unitarity condition for the CKM matrix is met. Additional measurements and calculations are needed, however, to reduce the uncertainties in that evaluation. That objective is the focus of the continuing program on superallowed-beta decay at TRIUMF-ISAC.

  7. The Majorana Ge-76 Double-Beta Decay Project

    CERN Document Server

    Aalseth, C E; Barabash, A S; Bowyer, T W; Brodzinski, R L; Brudanin, V B; Collar, J I; Doe, P J; Egorov, S; Elliott, S R; Farach, H A; Gaitskell, R J; Jordan, D; Kochetov, O I; Konovalov, S V; Kouzes, R T; Miley, H S; Pitts, W K; Reeves, J H; Robertson, R G H; Sandukovsky, V G; Smith, E; Stekhanov, V; Thompson, R C; Tornow, W; Umatov, V I; Warner, R A; Webb, J; Wilkerson, J F; Young, A

    2002-01-01

    The Majorana Experiment is a next-generation Ge-76 double-beta decay search. It will employ 500 kg of Ge, isotopically enriched to 86% in Ge-76, in the form of 200 detectors in a close-packed array for high granularity. Each crystal will be electronically segmented, with each region fitted with pulse-shape analysis electronics. A half-life sensitivity is predicted of 4.2e27 y or < 0.02-0.07 eV, depending on the nuclear matrix elements used to interpret the data.

  8. Nilsson-pairing model for double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Zamick, L.; Auerbach, N.

    1982-11-01

    The double beta decay process for /sup 48/Ca and /sup 76/Ge is considered. The inhibition of the process for /sup 48/Ca, previously considered by Khodel, is discussed in terms of a K selection rule. The large value found for the /sup 76/Ge transition to /sup 76/Se, by Haxton, Stephenson, and Strottman, is here illustrated by a pairing calculation using asymptotic Nilsson wave functions. The coherence of the process is clearly shown in this model. The contribution of high lying intermediate states, especially due to delta particle-nucleon hole states, is discussed.

  9. Unambiguous identification of three $\\beta$-decaying Isomers in $^{70}$Cu

    CERN Document Server

    Van Roosbroeck, J; Audi, G; Beck, D; Blaum, K; Bollen, G; Cederkäll, J; Delahaye, P; De Maesschalck, A; De Witte, H; Fedorov, D; Fedosseev, V; Franchoo, S; Fynbo, H O U; Górska, M; Herfurth, F; Heyde, Kris L G; Huyse, M; Kellerbauer, A G; Kluge, H J; Köster, U; Kruglov, K; Lunney, M D; Mishin, V I; Müller, W F; Nagy, S; Schwarz, S; Schweikhard, L; Smirnova, N A; Van de Vel, K; Van Duppen, P; Van Dyck, A; Walters, W B; Weissman, L; Yazidjian, C

    2004-01-01

    Using resonant laser ionization, $\\beta$-decay studies and for the first time mass measurements, three $\\beta$-decaying states have been unambiguously identified in $^{70}$Cu. A mass excess of -62976.1(1.6) keV and a half-life of 44.5(2) s for the (6$^{-}$) ground state have been determined. The level energies of the (3$^{−}$) isomer at 101.1(3) keV with $T_{1/2}=33(2)$   s and the $1^{+}$ isomer at 242.4(3) keV with $T_{1/2}=6.6(2)$   s are confirmed by high-precision mass measurements. The low-lying levels of $^{70}$Cu populated in the decay of $^{70}$Ni and in transfer reactions compare well with large-scale shell-model calculations, and the wave functions appear to be dominated by one proton–one neutron configurations outside the closed Z=28 shell and N=40 subshell. This does not apply to the $1^{+}$ state at 1980 keV which exhibits a particular feeding and deexcitation pattern not reproduced by the shell-model calculations.

  10. 94 {beta}-Decay Half-Lives of Neutron-Rich 55Cs to 67Ho: Experimental Feedback and Evaluation of the r-Process Rare-Earth Peak Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Nishimura, S.; Lorusso, G.; Moller, P; Ideguchi, E; Regan, P. H.; Simpson, G. S.; Soderstrom, P. -A.; Walker, P. M.; Watanabe, H.; Kondev, F. G.

    2017-02-17

    The β-decay half-lives of 94 neutron-rich nuclei 144$-$151Cs, 146$-$154Ba, 148$-$156La, 150$-$158Ce, 153$-$160Pr, 156$-$162Nd, 159$-$163Pm, 160$-$166Sm, 161$-$168Eu, 165$-$170Gd, 166$-$172Tb, 169$-$173Dy, 172$-$175Ho, and two isomeric states 174mEr, 172mDy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β-decay half-lives are observed at neutron-number N = 97 for 58Ce, 59Pr, 60Nd, and 62Sm, and N = 105 for 63Eu, 64Gd, 65Tb, and 66Dy. Lastly, features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system

  11. The SNO+ Experiment for Neutrinoless Double-Beta Decay

    Science.gov (United States)

    Lozza, V.; SNO+ Collaboration

    2016-04-01

    SNO+ is a large scale liquid scintillator based experiment located 2 km underground in a mine near Sudbury, Ontario, Canada. The detector is reusing the Sudbury Neutrino Observatory facility to investigate the Majorana nature of neutrinos through the search for neutrinoless double-beta decay of 130Te. In the double-beta phase about 0.3% natural tellurium will be loaded in the 780 tonnes of liquid scintillator. This corresponds to nearly 800 kg of 130Te. After several years of data taking, it is expected to reach a sensitivity on the effective Majorana neutrino mass below 100 meV. Recent development has suggested that higher loadings, up to few percent, of natural tellurium are possible by which SNO+ could approach, in the near future, the bottom of the inverted hierarchy. Additionally, designed as a general purpose neutrino experiment, SNO+ can measure reactor anti-neutrino oscillations, geo anti-neutrinos in a geologically-interesting location, solar neutrinos and watch supernova neutrinos. A first commissioning phase with the detector filled with water will start at the end of 2014, while the double-beta decay phase is foreseen for the beginning of 2016.

  12. High precision corrections to the neutron beta decay rate and electron asymmetry and current determination of V{sub ud}

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa-Luna, J L [Departamento de Fisica, Centro Universitario de Ciencias Exactas e Ingenierias, Universidad de Guadalajara, Blvd. Marcelino GarcIa Barragan 1508, CP 44840, Guadalajara Jal. (Mexico); GarcIa, A [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 Mexico, Distrito Federal (Mexico)

    2006-03-01

    The goal of the present analysis is to find, in the free neutron beta decay, the expressions for the decay rate and the electron asymmetry that contain all the theoretical effects at the 10{sup -4} level. This accuracy is better than the current experimental precision that modern experiments allow. For this aim it is necessary to study the strong interaction effects, the radiative corrections and the recoil of the proton. A conceptual problem that we discuss in detail is the Fermi function additivity. The model dependence in the radiative corrections yields important effects which must be incorporated. We show that this is the only source of uncertainty that is out of control still at the mentioned order. As an application, we compare the values of the CKM matrix element |V{sub ud} | from this decay with the values both from the superallowed Fermi transition beta decays and the unitarity of the CKM matrix. We discuss the relevance of the observed discrepancies.

  13. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  14. Large hadron collider probe of supersymmetric neutrinoless double-beta-decay mechanism.

    Science.gov (United States)

    Allanach, B C; Kom, C H; Päs, H

    2009-08-28

    In the minimal supersymmetric extension to the standard model, a nonzero lepton number violating coupling lambda(111);(') predicts both neutrinoless double-beta-decay and resonant single slepton production at the LHC. We show that, in this case, if neutrinoless double beta decay is discovered in the next generation of experiments, there exist good prospects to observe single slepton production at the LHC. Neutrinoless double beta decay could otherwise result from a different source (such as a nonzero Majorana neutrino mass). Resonant single slepton production at the LHC can therefore discriminate between the lambda(111);(') neutrinoless double-beta-decay mechanism and others.

  15. Measurement of the Double-Beta Decay Half-Life and Search for the Neutrinoless Double-Beta Decay of $^{48}{\\rm Ca}$ with the NEMO-3 Detector

    CERN Document Server

    :,; Augier, C; Bakalyarov, A M; Baker, J D; Barabash, A S; Basharina-Freshville, A; Blondel, S; Blot, S; Bongrand, M; Brudanin, V; Busto, J; Caffrey, A J; Calvez, S; Cascella, M; Cerna, C; Cesar, J P; Chapon, A; Chauveau, E; Chopra, A; Duchesneau, D; Durand, D; Egorov, V; Eurin, G; Evans, J J; Fajt, L; Filosofov, D; Flack, R; Garrido, X; Gómez, H; Guillon, B; Guzowski, P; Hodák, R; Huber, A; Hubert, P; Hugon, C; Jullian, S; Klimenko, A; Kochetov, O; Konovalov, S I; Kovalenko, V; Lalanne, D; Lang, K; Lebedev, V I; Lemière, Y; Noblet, T Le; Liptak, Z; Liu, X R; Loaiza, P; Lutter, G; Mamedov, F; Marquet, C; Mauger, F; Morgan, B; Mott, J; Nemchenok, I; Nomachi, M; Nova, F; Nowacki, F; Ohsumi, H; Pahlka, R B; Perrot, F; Piquemal, F; Povinec, P; Přidal, P; Ramachers, Y A; Remoto, A; Reyss, J L; Richards, B; Riddle, C L; Rukhadze, E; Rukhadze, N I; Saakyan, R; Salazar, R; Sarazin, X; Shitov, Yu; Simard, L; Šimkovic, F; Smetana, A; Smolek, K; Smolnikov, A; Söldner-Rembold, S; Soulé, B; Štekl, I; Suhonen, J; Sutton, C S; Szklarz, G; Thomas, J; Timkin, V; Torre, S; Tretyak, Vl I; Tretyak, V I; Umatov, V I; Vanushin, I; Vilela, C; Vorobel, V; Waters, D; Zhukov, S V; Žukauskas, A

    2016-01-01

    The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$\\beta$ decay of $^{48}{\\rm Ca}$. Using $5.25$\\,yr of data recorded with a $6.99\\,{\\rm g}$ sample of $^{48}{\\rm Ca}$, approximately $150$ double-$\\beta$ decay candidate events have been selected with a signal-to-background ratio greater than $3$. The half-life for the two-neutrino double-$\\beta$ decay of $^{48}{\\rm Ca}$ has been measured to be \\mbox{$T^{2\

  16. LUMINEU: a search for neutrinoless double beta decay based on ZnMoO4 scintillating bolometers

    Science.gov (United States)

    Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Benoît, A.; Boiko, L. Bergé S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; Coron, N.; Coulter, P.; Danevich, F. A.; de Boissiére, T.; Decourt, R.; De Jesus, M.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Eitel, K.; Enss, C.; Filosofov, D.; Fleischmann, A.; Foerster, N.; Fourches, N.; Gascon, J.; Gastaldo, L.; Gerbier, G.; Giuliani, A.; Gray, D.; Gros, M.; Hehn, L.; Henry, S.; Hervé, S.; Heuermann, G.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kluck, H.; Kobychev, V. V.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Menshikov, A.; Nasonov, S. G.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Penichot, Y.; Pessina, G.; Piro, M. C.; Plantevin, O.; Poda, D. V.; Redon, T.; Robinson, M.; Rodrigues, M.; Rozov, S.; Sanglard, V.; Schmidt, B.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vagneron, L.; Vasiliev, Ya V.; Velazquez, M.; Viraphong, O.; Walker, R. J.; Weber, M.; Yakushev, E.; Zhang, X.; Zhdankov, V. N.

    2016-05-01

    The LUMINEU is designed to investigate the possibility to search for neutrinoless double beta decay in 100 Mo by means of a large array of scintillating bolometers based on ZnMoO4 crystals enriched in 100 Mo. High energy resolution and relatively fast detectors, which are able to measure both the light and the heat generated upon the interaction of a particle in a crystal, are very promising for the recognition and rejection of background events. We present the LUMINEU concepts and the experimental results achieved aboveground and underground with large-mass natural and enriched crystals. The measured energy resolution, the α/β discrimination power and the radioactive internal contamination are all within the specifications for the projected final LUMINEU sensitivity. Simulations and preliminary results confirm that the LUMINEU technology can reach zero background in the region of interest (around 3 MeV) with exposures of the order of hundreds kgxyears, setting the bases for a next generation 0v2β decay experiment capable to explore the inverted hierarchy region of the neutrino mass pattern.

  17. Study of excited states of {sup 31}S through beta-decay of {sup 31}Cl for nucleosynthesis in ONe novae

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, A.; Jokinen, A.; Aeystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (YFL), FI-40014 (Finland); Trache, L.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tribble, R. E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States); Banu, A. [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States); James Madison University, Harrisonburg, VA 22807 (United States); Bentley, M. A. [Department of Physics, University of York, Heslington, York, YO10 5DD (United Kingdom); Davinson, T.; Woods, P. J. [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)

    2011-11-30

    We have produced an intense and pure beam of {sup 31}Cl with the MARS Separator at the Texas A and M University and studied {beta}-decay of {sup 31}Cl by implanting the beam into a novel detector setup, capable of measuring {beta}-delayed protons and {gamma}-rays simultaneously. From our data, we have established decay scheme of {sup 31}Cl, found resonance energies with 1 keV precision, have measured its half-life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.

  18. First results on double beta decay modes of Cd, Te and Zn isotopes with the COBRA experiment

    CERN Document Server

    Bloxham, T; Dawson, J; Dobos, D; Fox, S P; Freer, M; Fulton, B R; Gößling, C; Harrison, P F; Junker, M; Kiel, H; McGrath, J; Morgan, B; Münstermann, D; Nolan, P; Oehl, S; Ramachers, Y; Reeve, C; Stewart, D; Wadsworth, R; Wilson, J R; Zuber, K

    2007-01-01

    Four 1cm^3 CdZnTe semiconductor detectors were operated in the Gran Sasso National Laboratory to explore the feasibility of such devices for double beta decay searches as proposed for the COBRA experiment. The research involved background studies accompanied by measurements of energy resolution performed at the surface. Energy resolutions sufficient to reduce the contribution of two-neutrino double beta decay events to a negligible level for a large scale experiment have already been achieved and further improvements are expected. Using activity measurements of contaminants in all construction materials a background model was developed with the help of Monte Carlo simulations and major background sources were identified. A total exposure of 4.34 kg.days of underground data has been accumulated allowing a search for neutrinoless double beta decay modes of seven isotopes found in CdZnTe. Half-life limits (90% C.L.) are presented for decays to ground and excited states. Four improved lower limits have been obtai...

  19. 'Shake-off' electrons in the beta-decay sup 1 sup 5 sup 2 Eu

    CERN Document Server

    Mitrokhovich, N F

    2003-01-01

    Based on measuring of double and triple coincidences gamma-quants, conversion electrons (CE) and beta-particles on different spectrum parts DELTA beta with electrons (including the electrons of near-zero energy e sub o -coincidence (gamma, CE, DELTA beta)-(e, e sub o) and coincidence gamma beta e sub o) the output of 'shake-off' electrons is measured per on act b-decay sup 1 sup 5 sup 2 Eu for parts beta-spectrum with energies 77, 125, 300 and 350 keV. Intensity value of 'shake-off' electrons (energetic spectrum of 'shake-off'-electrons), and also the output of secondly-emissive e sub o -electrons from 'shake-off'-electrons on act beta-decay is given for these energies. It is proved that beta-particles and 'shake-off' electrons evoked by them are strongly correlated in direction of flight, demonstrating predominantly emitting to the same half sphere.

  20. Study of the background of the neutrinoless double {beta} decay with the detector NEMO 2: contribution arising from the radon diffusion and internal pollution of the source {sup 214}Bi have been estimated; Etude du bruit de fond de la double-desintegration {beta} sans emission de neutrino dans le detecteur NEMO 2: contribution du radon ambiant et mesure de la pollution interne de la source en {sup 214}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, F.

    1995-02-01

    The NEMO experiment is designed to understand the nature of the neutrino by studying the double beta decay of Mo-100 which is related to the Majorana neutrino effective mass. In this kind of experiment a good understanding of the different sources of background is crucial as only few events are expected per year at the required level of sensitivity. In this thesis we present the main theoretical and experimental aspects of the measurement of the neutrinoless double beta decay of Mo-100 with the prototype detector NEMO2. The goal of this study is to obtain a realistic interpretation of the few events detected at high energy in the two-electron channel as a background to neutrinoless double beta decay. In particular, the contribution arising from Bi-214 has been investigated. These events have been selected and analysed by means of the beta-alpha decays of Bi-214 into Pb-210. The events are characterized by a delayed track in the wire chamber and the corresponding signal is rather clean. The study has demonstrated the diffusion of Rn-222 into the detector and its contribution to Bi-214 pollution has been estimated. A measurement of the Bi-214 internal contamination of the source has been made as well as an estimation of the Bi-214 deposit due to Rn-222. As a result of this study it appears that, under the conditions of the NEMO2 experiment, the Bi and Rn contributions are of the same order of magnitude as the background induced at high energy by two-neutrino double beta decay. In conclusion, the backgrounds of the neutrinoless double beta decay of Mo-100 are well understood in the NEMO2 experiment leading to an extrapolation for the NEMO3 experiment. (authors).

  1. The {beta}-decay of {sup 187}Re studied with a cryogenic {mu}-calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Cosulich, E.; Fontanelli, F.; Gallinaro, G.; Gatti, F.; Swift, A.; Vitale, S. [INFN, Genoa (Italy)

    1995-06-01

    An experiment to study the {beta}-decay of {sup 187}Re using a cryogenic {mu}-calorimeter is presented. The physical motivations for undertaking a rhenium experiment, in the context of providing a limit on the V{sub e} mass, are briefly discussed. Preliminary results on the {sup 187}Re {beta} spectrum, obtained with a NTD-Ge thermistor coupled to a superconducting rhenium crystal, are included, where the energy resolution is measured by an external {sup 55}Fe X-ray source to be {sigma} of 54 eV at 5.9 KeV. Future considerations relating to radioactive background, improved detector performance, energy calibration and {sup 187}Re {beta}-spectral analysis are proposed.

  2. Beta decay of sup 5 sup 6 Cu

    CERN Document Server

    Borcea, R; Caurier, E; Dendooven, P; Döring, J; Gierlik, M; Górska, M; Grawe, H; Hellström, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martínez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Pentillä, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M

    2001-01-01

    The proton-rich isotope sup 5 sup 6 Cu was produced at the GSI On-Line Mass Separator by means of the sup 2 sup 8 Si( sup 3 sup 2 S, p3n) fusion-evaporation reaction. Its beta-decay properties were studied by detecting beta-delayed gamma rays and protons. A half-life of 93+-3 ms was determined for sup 5 sup 6 Cu. Compared to the previous work, six new gamma rays and three new levels were assigned to the daughter nucleus sup 5 sup 6 Ni. The measured Gamow-Teller strength values for five sup 5 sup 6 Ni levels are compared to shell-model predictions.

  3. Measurement of Vud with 0+→0+ nuclear beta decays

    Science.gov (United States)

    Hardy, J. C.; Towner, I. S.

    2013-10-01

    Results from superallowed 0+→0+ nuclear beta decays today provide the best value for Vud, with an uncertainty of ±0.02%. Some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from 10C to 74Rb constitute a very robust data set. Excellent consistency among the average results for all 13 transitions - an expected consequence of the conservation of vector current (CVC) - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin-symmetry breaking. With CVC consistency established, the value of the vector coupling constant, GV, has been extracted from the data and used to determine |Vud| = 0.97425 (22).

  4. Spectral shapes and a beta-gamma directional correlation in the beta decay of 172Tm (Jpi = 2-)

    DEFF Research Database (Denmark)

    Gregers Hansen, P.; Loft Nielsen, H.; Wilsky, K.

    1966-01-01

    +(gamma)0+ cascade has been measured at six energies from 1010 to 1550 keV and these results too are consistent with the assumption that the 2- rarr 2+ beta transition is purely of tensor rank 2. The data for the 2- rarr 2+ transition are analysed on the basis of the modified Bij approximation, which......The isotope 172Tm populates the 0+, 2+ and 4+ states of the 172Yb ground-state rotational band directly in beta decay. The shapes and intensities of the three beta groups have been measured by means of a six-gap magnetic spectrometer operated in coincidence with a Nal(Tl) crystal. The experimental...... shape factor plots are taken relative to the 90Y shape factor measured in the same circumstances, and it is concluded that on this basis the shapes of all three 172Tm beta groups agree with the theoretical shape for a first-forbidden unique transition. The directional correlation for the 2-(beta)2...

  5. Beta decay studies of neutron-rich nuclei around N=40

    CERN Document Server

    Sorlin, O

    2001-01-01

    Beta decay studies of neutron-rich nuclei at or around N=40 are presented in the Co, Mn and V isotopic chains aiming to aimig to study excited states in Ni, Fe and Cr isotopes respectively. Examples are taken from experimental studies achieved at Louvain la Neuve, CERN/ISOLDE and GANIL/LISE facilities. Increases in production rates in the last five years has brought a dramatic change in the spectroscopic knowledge in the region of mass when the isospin number is increased. If the spherical N=40 subshell is well-established for 68Ni, its effect is steadily decreased when proceeding towards 64Cr which lies at the mid-distance between Z=20 and Z=28 magic shells

  6. Kobayashi-Maskawa angles and SU(3) breaking in hyperon beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, J.F.; Holstein, B.R.; Klimt, S.W.

    1987-02-01

    The determination of the Kobayashi-Maskawa matrix element V/sub u//sub s/ from hyperon ..beta.. decays has long had a hidden uncertainty due to the almost universal assumption of SU(3) invariance in Cabibbo-type fits, especially since the data definitely indicate the presence of SU(3) breaking. We have reanalyzed the hyperon-decay data using the pattern of symmetry breaking predicted by the quark model including the center-of-mass correction. We find that the SU(3)-broken picture is far superior to the assumption of perfect SU(3), and provides a good fit to experiment. The sensitivity of V/sub u//sub s/ to the breaking is not large and we find V/sub u//sub s/ = 0.220 +- 0.001 +- 0.003 (the errors are experimental and theoretical, respectively), in agreement with the results from kaon decay by Leutwyler and Roos.

  7. The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments

    CERN Document Server

    Agostini, M; Finnerty, P; Kröninger, K; Lenz, D; Liu, J; Marino, M G; Martin, R; Nguyen, K D; Pandola, L; Schubert, A G; Volynets, O; Zavarise, P

    2011-01-01

    The GERDA and Majorana experiments will search for neutrinoless double-beta decay of germanium-76 using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, a...

  8. Properties of low-lying intruder states in $^{34}$Al and $^{34}$Si sequentially populated in $\\beta$-decay of $^{34}$Mg

    CERN Multimedia

    A low-lying long-lived (26±1 ms) isomer in $^{34}$Al has been observed recently and assigned as 1$^{+}$ state of intruder character. It was populated in $^{36}$S fragmentation and feeds, in $\\beta$-decay, the 0$_{2}^{+}$ state in $^{34}$Si whose excitation energy and lifetime were determined in an electron-positron pairs spectroscopy experiment. In the present experiment we intend to measure for the first time the $\\gamma$-rays following the $\\beta$-decay of $^{34}$Mg. Despite the interest for $^{34}$Mg, the up-right corner of the “N$\\thicksim$20 island of inversion”, the only information on its $\\beta$-decay is the lifetime of 20±10 ms, determined from $\\beta$-neutron coincidences. As a result of the proposed experiment, we expect to place the first transitions in the level scheme of $^{34}$Al and to strongly populate the newly observed isomer, measuring its excitation energy, if the branching ratio to 4$^{−}$ ground state is significant. Theoretical estimations for the $\\beta$-decay of the new isome...

  9. Search for the Neutrino Less Double Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    Efremenko, Yuri [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy

    2016-07-11

    During the past few years our understanding of neutrino properties has reached a new level, with experiments such as Super-K, SNO, KamLAND, and others obtaining exciting results. Major questions such as “Do neutrinos have mass?” and “Do neutrinos oscillate?” now have positive answers. However, an extensive program of neutrino research remains. Undoubtedly, the most important of these is the question pointed out by the National Research Council in its February 2002 report “Connecting Quarks with the Cosmos”, specifically: What are the masses of neutrinos and how have they shaped the evolution of the Universe? The MAJORANA collaboration has proposed to build the world’s most sensitive one-ton scale experiment to search for neutrino less double beta decay to answer this question. In its initial stage, the collaboration is building a prototype MAJORANA DEMONSTRATOR (MJD) experiment consisting of detectors made out of enriched Ge76 with a total sensitive mass of ~30 kg. This will accomplish two goals. First, it will test not yet confirmed claim for observation of neutrino-less double beta decay. Second, it will establish that the selected technology is capable of extension to a one-ton experiment with sufficient sensitivity to measure neutrino mass mββ down to 10 meV. To achieve the last goal, collaboration must demonstrate that a background level of 1 count per year per 4 keV per ton of detector is achievable. The University of Tennessee (UT) neutrino group has made a major commitment to the MJD. P.I. accepted the responsibility for one of the major tasks of the experiment, “Materials and Assay Task” which is crucial to the achievement of low background levels required for the experiment. In addition, the UT group is committed to construct, commission, and operate the MJD active veto system. Those activities were supported by NP-DOE via program funding for “Search for the Neutrino Less Double Beta Decay” at the University

  10. On the spectrum of secondary electrons emitted during nuclear $\\beta^{-}$-decay in few-electron atoms

    CERN Document Server

    Frolov, Alexei M

    2015-01-01

    Ionization of light atoms and ions during nuclear $\\beta^{-}$-decay is considered. We determine the velocity/momentum spectrum of secondary electrons emitted during nuclear $\\beta^{-}$-decay in one-electron tritium atom. The same method can be applied to describe velocity/momentum distributions of secondary electrons emitted from $\\beta^{-}$-decaying few-electron atoms and molecules.

  11. The Double Beta Decay of NEODYMIUM-150 and Molybdenum -100

    Science.gov (United States)

    Nelson, Matthew Alan

    1995-01-01

    The double beta decays of ^{150 }Nd and ^{100}Mo were studied in a Time Projection Chamber (TPC) located at an underground site at Hoover Dam. Studies of 6286.6 h of data obtained from 15.48 g of Nd_2O _3 enriched to 91% in ^{150 }Nd reveal a two-neutrino half-life of T _sp{1/2}{2nu}=(6.27_sp {-.049}{+.049}+/-1.2)times10 ^{18} y at the 90% confidence level, and 90% CL half-life limits for the zero-neutrino and majoron decay channels of T_sp{1/2 }{0nu}>1.10times10^{21 } y, and T_sp{1/2} {0nu,chi}>3.30times10^ {20} y, respectively. Similar studies on 3274.7 h of data from a 16.7 g sample of metallic Mo enriched to 97.4% in ^{100}Mo resulted in measurements of T_sp{1/2 }{2nu}=(6.59_sp{-0.51} {+0.52}+/-1.3)times10^{1 8} {rm y}, T_sp {1/2}{0nu}>1.12times10^ {21} {rm y and} T _sp{1/2}{0nu,chi}>4.07 times10^{20} y, all at the 90% CL.

  12. Search for neutrinoless double beta decay with GERDA phase II

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knies, J.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Majorovits, B.; Maneschg, W.; Marissens, G.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Reissfelder, M.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Seitz, H.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-10-01

    The GERmanium Detector Array (gerda) experiment, located at the Gran Sasso underground laboratory in Italy, is one of the leading experiments for the search of 0νββ decay. In Phase II of the experiment 35.6 kg of enriched germanium detectors are operated. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allowed to reduce the background index to the intended level of 10-3 cts/(keV.kg.yr). In the first five month of data taking 10.8 kg yr of exposure were accumulated. No signal has been found and together with data from Phase I a new limit for the neutrinoless double beta decay half-life of 76Ge of 5.3 . 1025 yr at 90% C.L. was established in June 2016. Phase II data taking is ongoing and will allow the exploration of half-lifes in the 1026 yr regime. The current status of data taking and an update on the background index are presented.

  13. Precision measurement of ^23Al beta-decay

    Science.gov (United States)

    Zhai, Yongjun; Iacob, V. E.; Hardy, J. C.; Al-Abdullah, T.; Banu, A.; Fu, C.; Golovko, V. V.; McCleskey, M.; Nica, N.; Park, H. I.; Tabacaru, G.; Tribble, R. E.; Trache, L.

    2007-10-01

    The beta-decay of ^23Al (See [1]) was re-measured with higher statistics and better accuracy at Texas A&M University. Using MARS we produced and separated pure ^23Al at 4000 pps, with a 48 MeV/u ^24Mg beam via the ^24Mg (p, 2n)^ 23Al reaction on a H2 cryogenic target. New β and β-γ coincidence measurements were made with a scintillator, an HPGe detector with BGO shielding and the fast tape transport system. The BGO Compton shield very much improved the quality of the γ spectra around the transition from the IAS state at 7803 keV. From the measured β singles and β-γ coincidence decay spectra we obtained an improved β-decay scheme and a more precise lifetime: t=447(4) ms. We use the method of detailed balance to obtain absolute β-branching ratios and absolute logft values for transitions to final states in ^23Mg. For this method, precise efficiency calibration of the HPGe detector up to about 8 MeV is needed. We extended our previous efficiency calibration to the range Eγ=3.5-8 MeV using the β-decay of ^24Al. [1] V.E. Iacob, Y. Zhai et al., Phys. Rev. C 74, 045810 (2006).

  14. $\\beta$ - decay asymmetry in mirror nuclei: A = 9

    CERN Multimedia

    Axelsson, L E; Smedberg, M

    2002-01-01

    Investigations of light nuclei close to the drip lines have revealed new and intriguing features of the nuclear structure. The occurrence of halo structures in loosely bound systems has had a great impact on the nuclear physics research in the last years. As intriguing but not yet solved is the nature of transitions with very large $\\beta$ - strength. \\\\ \\\\We report here on the investigation of this latter feature by an accurate measurement of the $\\beta$ - decay asymmetry between the mirror nuclei in the A=9 mass chain.\\\\ \\\\The possible asymmetry for the decay to the states around 12 MeV is interesting not only due to the fact that the individual B$_{GT}$ values are large (with large overlap in wave-functions, an unambiguous interpretation is much easier made), but also due to the special role played by this transition for the $^{9}$Li decay. It seems to belong to a class of high-B$_{GT}$ transitions observed at the neutron drip line and has been suggested to be due either to a lowering of the giant Gamow-Te...

  15. Nab: a precise study of unpolarized neutron beta decay

    Science.gov (United States)

    Pocanic, Dinko; Nab Collaboration

    2017-09-01

    Nab is a program of measurements of unpolarized neutron decays at the Spallation Neutron Source, Oak Ridge, TN. Nab aims to determine a, the e- ν correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb = 3 ×10-3 . The set of available observables overconstrains neutron beta decay in the Standard Model (SM), opening the door to searches for evidence of possible SM extensions. Projected Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, Nab may detect a discrepancy from SM predictions consistent with certain realizations of supersymmetry. A long asymmetric spectrometer, optimized to achieve the required narrow proton momentum response function, is currently under construction. The apparatus is to be used in follow-up measurements (ABba experiment) of asymmetry observables A and B in polarized neutron decay. Nab is planned for beam readiness in 2018. We discuss the experiment's motivation, expected reach, design and method, and update its overall status. Work supported by NSF Grants PHY-1126683, 1506320, 1614839 and others.

  16. Microscopic study of muon-capture transitions in nuclei involved in double-beta-decay processes

    CERN Document Server

    Kortelainen, M

    2003-01-01

    Total and partial ordinary muon-capture (OMC) rates to 1 sup + and 2 sup - states are calculated in the framework of the proton-neutron quasiparticle random-phase approximation (pnQRPA) for several nuclei involved in double-beta-decay processes. The aim is to obtain information on intermediate states involved in double-beta-decay transitions having these nuclei as either daughter or parent nuclei. It is found that the OMC observables, just like the 2 nu beta beta-decay amplitudes, strongly depend on the particle-particle part of the proton-neutron interaction. First experiments measuring the partial OMC rates for nuclei involved in double beta decays have recently been performed.

  17. The low background spectrometer TGV II for double beta decay measurements

    Energy Technology Data Exchange (ETDEWEB)

    Benes, P. [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a/22, 128 00 Prague (Czech Republic); Cermak, P. [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a/22, 128 00 Prague (Czech Republic)]. E-mail: pavel.cermak@utef.cvut.cz; Gusev, K.N. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Klimenko, A.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Kovalenko, V.E. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Kovalik, A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nuclear Physics Institute of the CAS, 25263 Rez near Prague (Czech Republic); Rukhadze, N.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Salamatin, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Simkovic, F. [Comenius University in Bratislava, SK-842 15 Bratislava (Slovakia); Stekl, I. [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a/22, 128 00 Prague (Czech Republic); Timkin, V.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Vylov, Ts. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2006-12-21

    The low-background multi-HPGe spectrometer TGVII installed in the Modane Underground Laboratory (France) is described in detail and the results of the background measurements are reported. The spectrometer is focused on the double beta decay measurements with two isotopes-{sup 106}Cd (2{nu}EC/EC mode) and {sup 48}Ca ({beta}{beta} mode). A basic summary of the physics of {beta}{beta} decay (especially EC/EC mode) is also given.

  18. Development of ^{100}Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search

    Science.gov (United States)

    Armengaud, E.; Augier, C.; Barabash, A. S.; Beeman, J. W.; Bekker, T. B.; Bellini, F.; Benoît, A.; Bergé, L.; Bergmann, T.; Billard, J.; Boiko, R. S.; Broniatowski, A.; Brudanin, V.; Camus, P.; Capelli, S.; Cardani, L.; Casali, N.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; de Combarieu, M.; Coron, N.; Danevich, F. A.; Dafinei, I.; Jesus, M. De; Devoyon, L.; Domizio, S. Di; Dumoulin, L.; Eitel, K.; Enss, C.; Ferroni, F.; Fleischmann, A.; Foerster, N.; Gascon, J.; Gastaldo, L.; Gironi, L.; Giuliani, A.; Grigorieva, V. D.; Gros, M.; Hehn, L.; Hervé, S.; Humbert, V.; Ivannikova, N. V.; Ivanov, I. M.; Jin, Y.; Juillard, A.; Kleifges, M.; Kobychev, V. V.; Konovalov, S. I.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Laubenstein, M.; Sueur, H. Le; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Nagorny, S.; Navick, X.-F.; Nikolaichuk, M. O.; Nones, C.; Novati, V.; Olivieri, E.; Pagnanini, L.; Pari, P.; Pattavina, L.; Pavan, M.; Paul, B.; Penichot, Y.; Pessina, G.; Piperno, G.; Pirro, S.; Plantevin, O.; Poda, D. V.; Queguiner, E.; Redon, T.; Rodrigues, M.; Rozov, S.; Rusconi, C.; Sanglard, V.; Schäffner, K.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tomei, C.; Tretyak, V. I.; Umatov, V. I.; Vagneron, L.; Vasiliev, Ya. V.; Velázquez, M.; Vignati, M.; Weber, M.; Yakushev, E.; Zolotarova, A. S.

    2017-11-01

    This paper reports on the development of a technology involving ^{100}Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass (˜ 1 kg), high optical quality, radiopure ^{100}Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of ^{100}Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α -induced dominant background above 2.6 MeV is better than 8σ . Less than 10 μ Bq/kg activity of ^{232}Th (^{228}Th) and ^{226}Ra in the crystals is ensured by boule recrystallization. The potential of ^{100}Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg× d exposure: the two neutrino double-beta decay half-life of ^{100}Mo has been measured with the up-to-date highest accuracy as T_{1/2} = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10^{18} years. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of ^{100}Mo.

  19. First test of an enriched {sup 116}CdWO{sub 4} scintillating bolometer for neutrinoless double-beta-decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, A.S.; Konovalov, S.I.; Umatov, V.I. [ITEP, National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Danevich, F.A. [MSP, Institute for Nuclear Research, Kyiv (Ukraine); Gimbal-Zofka, Y. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); Linnaeus University, Department of Physics and Electrical Engineering, Kalmar (Sweden); Giuliani, A.; Mancuso, M. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); DISAT, Universita dell' Insubria, Como (Italy); Marcillac, P. de; Marnieros, S.; Novati, V.; Olivieri, E. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); Nones, C.; Zolotarova, A.S. [DSM/IRFU, CEA Saclay, Gif-sur-Yvette Cedex (France); Poda, D.V. [MSP, Institute for Nuclear Research, Kyiv (Ukraine); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, CSNSM, Orsay (France); Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, Novosibirsk (Russian Federation); Tretyak, V.I. [MSP, Institute for Nuclear Research, Kyiv (Ukraine); INFN, Sezione di Roma, Rome (Italy)

    2016-09-15

    For the first time, a cadmium tungstate crystal scintillator enriched in {sup 116}Cd has been succesfully tested as a scintillating bolometer. The measurement was performed above ground at a temperature of 18 mK. The crystal mass was 34.5 g and the enrichment level ∝ 82 %. Despite a substantial pile-up effect due to above-ground operation, the detector demonstrated high energy resolution (2-7 keV FWHM in 0.2-2.6 MeV γ energy range and 7.5 keV FWHM at the {sup 116}Cd double-beta decay transition energy of 2813 keV), a powerful particle identification capability and a high level of internal radio-purity. These results prove that cadmium tungstate is a promising detector material for a next-generation neutrinoless double-beta decay bolometric experiment, like that proposed in the CUPID project (CUORE Upgrade with Particle IDentification). (orig.)

  20. Search for an admixture of sterile neutrino in the electron spectrum from tritium $\\beta$-decay

    CERN Document Server

    Abdurashitov, D; Likhovid, N; Lokhov, A; Tkachev, I; Yants, V

    2014-01-01

    We propose an experiment intended for search for an admixture of sterile neutrino with mass m$_s$ in the range of 1-8 keV that may be detected as specific distortion of the electron energy spectrum during tritium decay. The distortion is spread over large part of the spectrum so to reveal it one can use a detector with relatively poor (near 10-15%) energy resolution. A classic proportional counter is a simple natural choice for a tritium $\\beta$-decay detector. The method we are proposing is original in two respects. First, the counter is produced as a whole from fully-fused quartz tube allowing to measure current pulse directly from anode while providing high stability for a long time. Second, a modern digital acquisition technique can be used in measurements at ultrahigh count rate - up to 10$^6$ Hz. As a result an energy spectrum of tritium electrons containing up to 10$^{12}$ counts may be collected in a month of live time measurements. Due to high statistics an upper limit down to 10$^{-3}$..10$^{-5}$ ca...

  1. Search for double beta decay of 106Cd in the TGV-2 experiment

    Science.gov (United States)

    Rukhadze, N. I.; Brudanin, V. B.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Kouba, P.; Piquemal, F.; Rozov, S. V.; Rukhadze, E.; Salamatin, A. V.; Šimkovic, F.; Shitov, Yu A.; Štekl, I.; Timkin, V. V.; Yakushev, E. A.

    2016-05-01

    A new experimental run of searching for double beta decay of 106Cd was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the TGV-2 spectrometer, consisting of 32 planar type HPGe detectors with a total sensitive volume of ~400 cm3. 16 foils of 106Cd with an enrichment of 99.57% and a total mass of ~ 23.2 g were inserted between the entrance windows of face-to-face detectors. The limit on 2vEC/EC decay of 106Cd - T1/2 > 3.7 × 1020 y at 90% C.F was obtained from the preliminary calculation of experimental data accumulated for 8198 h of measurement. The limits on the resonance OvEC/EC decay of 106Cd were obtained from the measurement of ~23.2 g of 106Cd with the low-background HPGe spectrometer Obelix lasted 395 h -T1/2 (KF, 2741 keV) > 0.9 × 1020 y and T1/2 (KK, 2718 keV) > 1.4 × 1020 y at 90% C.L.

  2. (Beta)-decay experiments and the unitarity of the CKM matrix

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, P E

    2005-12-01

    The goal of this project was to perform very precise measurements of super-allowed Fermi {beta} decay in order to investigate a possible non-unitarity in the CKM matrix of the Standard Model of particle physics. Current data from 9 precisely measured {beta} decays indicated that the sum-of-squares of the first row of the CKM matrix differs from 1.0 at the 2.2{sigma} (or 98% confidence) level. If true, it would be the first firm indication of physics beyond the Standard Model--the model that has been the backbone of the worldwide physics community for more than 30 years. The physics goal of the project was to test and constrain the calculated correction factors that must be applied to the experimental data by performing measurements at the TRIUMF radioactive ion beam facility ISAC. Accurate and precise (precision goal >99.9%) half lives and decay branching ratios were measured for nuclei where different sets of calculated corrections give divergent results thereby allowing us to determine which theory, if any, gives the correct result. The LLNL contribution was to design and build the data acquisition system that will enable the experiments, and to provide theoretical calculations necessary for the interpretation of the results. The first planned measurement was {sup 34}Ar, to be followed by {sup 62}Ga and {sup 74}Rb. However, there were major problems in creating a suitable, intense beam of radioactive {sup 34}Ar. The collaboration decided to proceed with measurements on {sup 62}Ga and {sup 18}Ne. These experiments were performed in a series of measurements in the summer and fall of 2004. The LLNL team also is leading the effort to perform measurements on {sup 66}As and {sup 70}Br that are expected during 2006-2008. While the definitive experiments to meet the goals of the LDRD were not conducted during the funding period, the involvement in the radioactive program at TRIUMF has lead to a number of new initiatives, and has attracted new staff to LLNL. This LDRD has

  3. Precision measurement of the radiative $\\beta$ decay of the free neutron

    CERN Document Server

    Bales, M J; Bass, C D; Beise, E J; Breuer, H; Byrne, J; Chupp, T E; Coakley, K J; Cooper, R L; Dewey, M S; Gardner, S; Gentile, T R; He, D; Mumm, H P; Nico, J S; O'Neill, B; Thompson, A K; Wietfeldt, F E

    2016-01-01

    The Standard Model predicts that, in addition to a proton, an electron, and an antineutrino, a continuous spectrum of photons is emitted in the $\\beta$ decay of the free neutron. We report on the RDK II experiment which measured the photon spectrum using two different detector arrays. An annular array of bismuth germanium oxide scintillators detected photons from 14~keV to 782~keV. The spectral shape was consistent with theory, and we determined a branching ratio of 0.00335 $\\pm$ 0.00005 [stat] $\\pm$ 0.00015 [syst]. A second detector array of large area avalanche photodiodes directly detected photons from 0.4~keV to 14~keV. For this array, the spectral shape was consistent with theory, and the branching ratio was determined to be 0.00582 $\\pm$ 0.00023 [stat] $\\pm$ 0.00062 [syst]. We report the first precision test of the shape of the photon energy spectrum from neutron radiative decay and a substantially improved determination of the branching ratio over a broad range of photon energies.

  4. The NEXT-100 experiment for neutrinoless double beta decay searches (Conceptual Design Report)

    CERN Document Server

    Álvarez, V; Batallé, M; Bayarri, J; Borges, F I G; Cárcel, S; Carmona, J M; Castel, J; Catalá, J M; Cebrián, S; Cervera-Villanueva, A; Chan, D; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferrer-Ribas, E; Ferreira, A L; Freitas, E D C; Gil, A; Giomataris, I; Goldschmidt, A; Gómez, E; Gómez, H; Gómez-Cadenas, J J; Gónzález, K; Gutiérrez, R M; Hernando-Morata, J A; Herrera, D C; Herrero, V; Iguaz, F; Irastorza, I G; Kalinnikov, V; Kustov, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Martín-Albo, J; Méndez, A; Miller, T; Moisenko, A; Mols, J P; Monrabal, F; Monteiro, C M B; Monzó, J M; Mora, F J; Muñoz-Vidal, J; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez-Aparicio, J L; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Sofka, C; Sorel, M; Spieler, H; Toledo, J F; Tomás, A; Tsamalaidze, Z; Vázquez, D; Velicheva, E; Veloso, J F C A; Villar, J A; Webb, R; Weber, T; White, J; Yahlali, N

    2011-01-01

    We propose an EASY (Electroluminescent ApparatuS of high Yield) and SOFT (Separated Optimized FuncTion) time-projection chamber for the NEXT experiment, that will search for neutrinoless double beta decay (bb0nu) in Xe-136. Our experiment must be competitive with the new generation of bb0nu searches already in operation or in construction. This requires a detector with very good energy resolution (<1%), very low background con- tamination (1E-4 counts/(keV \\bullet kg \\bullet y)) and large target mass. In addition, it needs to be operational as soon as possible. The design described here optimizes energy resolution thanks to the use of proportional electroluminescent amplification (EL); it is compact, as the Xe gas is under high pressure; and it allows the measurement of the topological signature of the event to further reduce the background contamination. The SOFT design uses different sensors for tracking and calorimetry. We propose the use of SiPMs (MPPCs) coated with a suitable wavelength shifter for th...

  5. Form factors in the beta decay; Factores de forma en la desintegracion Beta

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2007-07-01

    Beta-decay was one of the nuclear physics fields more active in the last century. This book has a didactic objective: to actualize some basic concepts related with form factors in beta-decay. Some accepted points before 1957 are not valid today due to the non conservation of parity and the full acceptation of V-A interaction in beta-decay. To compute theoretically beta-decay observables one has to relate the form factors to transition matrix elements. The form factors are expressed in terms of nuclear matrix elements when some approximations are made. We assume that the nucleon inside the nucleus interact with leptons in the same way as free punctual electrons do. Consequently, the Dirac equation of a free particle is assumed. We compute the shape form factors for several forbidden transitions. A very important part of the book is the 106 examples, fully developed, which clarify the ideas and motivate one to know the different computation methods used in beta-decay and others nuclear and atomic fields. (Author) 50 refs.

  6. Beta decay of {sup 97}Ag: evidence for the Gamow-Teller resonance near {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Hu Zhiqiang

    1999-03-01

    In two complementary measurements, a cube like array of 6 Euroball-Cluster germanium detectors and a total-absorption {gamma}-spectrometer were used to investigate the {beta} decay of {sup 97}Ag, a three proton-hole nucleus with respect to the {sup 100}Sn core. The half-life and Q{sub EC} value of the decay of the 9/2{sup +} ground-state of {sup 97}Ag were determined to be 25.9(4) s and 6.98(11) MeV respectively. A total of 603 {gamma} rays (578 new) was observed, and 151 levels (132 new) in {sup 97}Pd have been identified. An interesting {beta}-delayed {gamma} cascade was observed, which comprises 6 {gamma}-transitions with a de-excitation pattern involving an initial increase of the level spin. The Gamow-Teller (GT) {beta}-decay strength distributions from the two measurements reveal a large GT resonance around 4 MeV with a width of about 1.8 MeV. The hindrance factor for the total GT strength summed from the ground-state up to 6 MeV excitation energy in {sup 97}Pd, amounts to 4.3(6) with reference to a shell-model prediction. This factor is discussed in comparison with a core-polarization and a Monte-Carlo shell-model calculation. (orig.)

  7. Pulse-shape discrimination techniques for the COBRA double beta-decay experiment at LNGS

    Science.gov (United States)

    Zatschler, S.; COBRA Collaboration

    2017-09-01

    In modern elementary particle physics several questions arise from the fact that neutrino oscillation experiments have found neutrinos to be massive. Among them is the so far unknown nature of neutrinos: either they act as so-called Majorana particles, where one cannot distinguish between particle and antiparticle, or they are Dirac particles like all the other fermions in the Standard Model. The study of neutrinoless double beta-decay (0νββ-decay), where the lepton number conservation is violated by two units, could answer the question regarding the underlying nature of neutrinos and might also shed light on the mechanism responsible for the mass generation. So far there is no experimental evidence for the existence of 0νββ-decay, hence, existing experiments have to be improved and novel techniques should be explored. One of the next-generation experiments dedicated to the search for this ultra-rare decay is the COBRA experiment. This article gives an overview of techniques to identify and reject background based on pulse-shape discrimination.

  8. Search for double beta decay of 106Cd in TGV-2 experiment

    Science.gov (United States)

    Rukhadze, N. I.; Briançon, Ch; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Shitov, Yu A.; Štekl, I.; Timkin, V. V.; Vylov, Ts

    2010-01-01

    Search for double beta decay (β+β+, β+/EC, EC/EC) of 106Cd was performed at the Modane underground laboratory (4800 m w.e.) using a spectrometer TGV-2 with 32 HPGe detectors. New limits on the half-lives of 0vEC/EC resonant decay - T1/2 >= 1.6 × 1020 y, and on 2vEC/EC decay of 106Cd - T1/2 >= 4.1 × 1020 y (at 90% CL) were obtained from preliminary calculations of experimental data accumulated for 12900 h of measurement of ~13.6 g of 106Cd with enrichment of 75%. The limits on 2vEC/EC decay of 106Cd to the 2+,512 keV and 0+1,1334 keV excited states of 106Pd and on 2vβ+β+ and 2vβ+/EC decay of 106Cd were improved

  9. Neutrinoless double beta decay in LRSM with natural type-II seesaw dominance

    Energy Technology Data Exchange (ETDEWEB)

    Pritimita, Prativa; Dash, Nitali; Patra, Sudhanwa [Center of Excellence in Theoretical and Mathematical Sciences,Siksha ‘O’ Anusandhan University,Bhubaneswar-751030 (India)

    2016-10-26

    We present a detailed discussion on neutrinoless double beta decay within a class of left-right symmetric models where neutrino mass originates by natural type-II seesaw dominance. The spontaneous symmetry breaking is implemented with doublets, triplets and bidoublet scalars. The fermion sector is extended with an extra sterile neutrino per generation that helps in implementing the seesaw mechanism. The presence of extra particles in the model exactly cancels type-I seesaw and allows large value for Dirac neutrino mass matrix M{sub D}. The key feature of this work is that all the physical masses and mixing are expressed in terms of neutrino oscillation parameters and lightest neutrino mass thereby facilitating to constrain light neutrino masses from 0νββ decay. With this large value of M{sub D} new contributions arise due to; i) purely left-handed current via exchange of heavy right-handed neutrinos as well as sterile neutrinos, ii) the so called λ and η diagrams. New physics contributions also arise from right-handed currents with right-handed gauge boson W{sub R} mass around 3 TeV. From the numerical study, we find that the new contributions to 0νββ decay not only saturate the current experimental bound but also give lower limit on absolute scale of lightest neutrino mass and favor NH pattern of light neutrino mass hierarchy.

  10. Investigations in Experimental and Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Krennrich, Frank [Iowa State University

    2013-07-29

    We report on the work done under DOE grant DE-FG02-01ER41155. The experimental tasks have ongoing efforts at CERN (ATLAS), the Whipple observatory (VERITAS) and R&D work on dual readout calorimetry and neutrino-less double beta decay. The theoretical task emphasizes the weak interaction and in particular CP violation and neutrino physics. The detailed descriptions of the final report on each project are given under the appropriate task section of this report.

  11. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    Science.gov (United States)

    Cebrián, S.; Pérez, J.; Bandac, I.; Labarga, L.; Álvarez, V.; Barrado, A. I.; Bettini, A.; Borges, F. I. G. M.; Camargo, M.; Cárcel, S.; Cervera, A.; Conde, C. A. N.; Conde, E.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Fernández, M.; Ferrario, P.; Freitas, E. D. C.; Fernandes, L. M. P.; Gehman, V. M.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Morata, J. A. Hernando; Herrera, D. C.; Irastorza, I. G.; Laing, A.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Martínez-Lema, G.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Vidal, J. Muñoz; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; de Solórzano, A. Ortiz; Aparicio, J. L. Pérez; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J. T.; Yahlali, N.

    2015-08-01

    The "Neutrino Experiment with a Xenon TPC" (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.

  12. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cebrián, S.; Dafni, T.; González-Díaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzón, G.; Ortiz de Solórzano, A.; Villar, J. A. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza (Spain); Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880 Canfranc Estación, Huesca (Spain); Pérez, J. [Instituto de Física Teórica, UAM/CSIC, Campus de Cantoblanco, 28049 Madrid (Spain); Bandac, I. [Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880 Canfranc Estación, Huesca (Spain); Labarga, L. [Dpto. de Física Teórica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Álvarez, V.; Cárcel, S.; Cervera, A.; Díaz, J.; Ferrario, P.; Gómez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; López-March, N. [Instituto de Física Corpuscular, CSIC & Universitat de València, C/ Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); and others

    2015-08-17

    The ”Neutrino Experiment with a Xenon TPC” (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in {sup 136}Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.

  13. Probing physics beyond the standard model with neutrinoless double beta decay

    Science.gov (United States)

    Hirsch, M.; Klapdor-Kleingrothaus, H. V.

    1997-01-01

    Neutrinoless double beta decay (0νββ) is the most sensitive low-energy probe for physics beyond the standard model. Usually the lower limit of 0νββ decay half-lives is interpreted in terms of an upper limit on the effective Majorana neutrino mass. However, numerous further possible extensions of the standard model can be tested by 0νββ decay. Among the models which can contribute to 0νββ decay are left-right symmetric models of the weak interaction, R-parity violating supersymmetric theories and models of light leptoquarks. We review the constraints on these models which can be derived currently from the non-observation of 0νββ decay and discuss the impacts of these results on accelerator searches and other experiments. Interestingly, it is found that 0νββ decay probes already now the TeV scale on which new physics should manifest itself according to present theoretical expectations.

  14. The potential of discrimination methods in a high pressure xenon TPC for the search of the neutrinoless double-beta decay of Xe-136

    Science.gov (United States)

    Iguaz, F. J.; Aznar, F.; Castel, J. F.; Cebrián, S.; Dafni, T.; Galán, J.; Garza, J. G.; Irastorza, I. G.; Luzón, G.; Mirallas, H.; Ruiz-Choliz, E.

    2017-09-01

    In the search for the neutrinoless double beta decay of 136Xe, a high pressure xenon time projection chamber (HPXe-TPC) has two advantages over liquid xenon TPCs: a better energy resolution and the access to topological features, which may provide extra discrimination from background events. The PandaX-III experiment has recently proposed a 200 kg HPXe-TPC based on Micromegas readout planes, to be located at the Jinping Underground Laboratory in China. Its detection concept is based on two results obtained within the T-REX project: Micromegas readouts can be built with extremely low levels of radioactivity; and the operation in xenon-trimethylamine at 10 bar in realistic experimental conditions has proven an energy resolution of 3% FWHM at the region of interest. In this work, two discrimination methods are applied to simulated signal and background data in a generic 200 kg HPXe-TPC, based on two well-known algorithms of graph theory: the identification of connections and the search for the longest path. Rejection factors greater than 100 are obtained for small pixel sizes and a signal efficiency of 40%. Moreover, a new observable (the blob charge density) rejects better surface contaminations, which makes the use of a trigger signal (T 0) not imperative in this experiment.

  15. Study of octupole deformation in n-rich Ba isotopes populated via $\\beta$-decay

    CERN Multimedia

    We propose to exploit the unique capability of the ISOLDE facility to produce $^{150, 151, 152}$Cs beams to investigate their radioactive $\\beta$-decay to $^{150, 151, 152}$Ba. The interest to study this mass region is twofold: these nuclei are expected to show octupole deformations already in their low-lying state, secondly information on the $\\beta$-decay is needed for the nuclear astrophysical model. The experiment will be performed with the ISOLDE Decay Station (IDS) setup using the fast tape station of K.U.-Leuven, equipped with four Clover Germanium detectors, four LaBr$_{3}$(Ce) detectors and one LEP HPGe detector. Information on the $\\beta$-decay, such as lifetimes and delayed neutron-emission probabilities, will be extracted, together with the detailed spectroscopy of the daughter nuclei, via $\\gamma$-$\\gamma$-coincidences and lifetime measurement of specific states.

  16. Superallowed 0+ → 0+ beta-decay from Tz = -1 sd-shell nuclei

    Science.gov (United States)

    Hardy, J. C.; Towner, I. S.

    2012-09-01

    Superallowed nuclear beta-decay between 0+ analogue states probes the vector part of the weak interaction, with the measured ft-value of each such transition leading to a value for the vector coupling constant, Gv. To date, the ft-values for thirteen 0+ → 0+ transitions have been measured with ~ 0.1% precision or better. The results yield fully consistent values for Gv and an experimental value for Vud, which is the leading diagonal element of the quark mixing matrix, the Cabibbo-Kobayashi-Maskawa (CKM) matrix. With a precise value for Vud established, the unitarity of the CKM matrix can be tested and limits set on the possibility of new physics lying beyond the Standard Model. This work demands high experimental precision and a high degree of reliability in the small theoretical correction terms required to extract Gv and Vud from the experimental data. One of the correction terms must account for isospin symmetry-breaking between the parent and daughter nuclei, and its associated uncertainty contributes significantly to the uncertainty in Vud. The superallowed decays of Tz = -1 sd-shell nuclei, such as 22Mg, 26Si, 34Ar and 38Ca, have so far not played a significant role in the determination of Vud because experimental challenges have made high precision unattainable for these transitions. However, if they were to be measured precisely, they would enable important tests of the calculated isospin symmetry-breaking corrections and potentially reduce the latter's uncertainties. Experiments aimed at characterizing these transitions are described.

  17. ${\\beta}$-decay studies of neutron-rich $^{61-70}$Mn isotopes with the new LISOL ${\\beta}$-decay setup

    CERN Multimedia

    Diriken, J V J

    2008-01-01

    The aim of this proposal is to gather new information that will serve as benchmark to test shell model calculations in the region below $^{68}$Ni, where proper residual interactions are still under development. More specifically, the ${\\beta}$-decay experiment of the $^{61-70}$Mn isotopes will highlight the development of collectivity in the Fe isotopes and its daughters. At ISOLDE, neutron-rich Mn isotopes are produced with a UC$_{x}$ target and selective laser ionization. These beams are particularly pure and reasonable yields are obtained for the neutron-rich short lived $^{61-70}$Mn isotopes. We propose to perform ${\\beta}$-decay studies on $^{61-70}$Mn utilizing the newly-developed "LISOL ${\\beta}$-decay setup", consisting of two MINIBALL cluster Ge detectors and a standard tape station. The use of digital electronics in the readout of these detectors enables us to perform a "slow correlation technique" which should indicate the possible existence of isomers in the daughter nuclei.

  18. Search for neutrinoless double beta decay in {sup 136}Xe with EXO-200

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, Wolfhart

    2015-02-19

    Several properties of neutrinos, such as their absolute mass, their possible Majorana nature or the mechanisms that lead to small neutrino masses, are still unknown. The EXO-200 experiment is trying to answer some of these questions by searching for the hypothetical neutrinoless double beta decay of the isotope {sup 136}Xe. This thesis describes an analysis of two years of detector data, which yields a lower limit on the half-life of neutrinoless double beta decay of {sup 136}Xe of 1.1 x 10{sup 25} years.

  19. Optimization of the Transport Shield for Neutrinoless Double Beta-decay Enriched Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Reid, Douglas J.; Fast, James E.

    2012-04-15

    This document presents results of an investigation of the material and geometry choice for the transport shield of germanium, the active detector material used in 76Ge neutrinoless double beta decay searches. The objective of this work is to select the optimal material and geometry to minimize cosmogenic production of radioactive isotopes in the germanium material. The design of such a shield is based on the calculation of the cosmogenic production rate of isotopes that are known to cause interfering backgrounds in 76Ge neutrinoless double beta decay searches.

  20. Demonstration of Single Barium Ion Sensitivity for Neutrinoless Double Beta Decay using Single Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A.D.; et al.

    2017-11-13

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  1. Data Evaluation for 56Co epsilon + beta+ Decay

    Energy Technology Data Exchange (ETDEWEB)

    Baglin, Coral M.; MacMahon, T. Desmond

    2005-02-28

    Recommended values for nuclear and atomic data pertaining to the {var_epsilon} + {beta}{sup +} decay of {sup 56}Co are provided here, followed by comments on evaluation procedures and a summary of all available experimental data. {sup 56}Co is a radionuclide which is potentially very useful for Ge detector efficiency calibration because it is readily produced via the {sup 56}Fe(p,n) reaction, its half-life of 77.24 days is conveniently long, and it provides a number of relatively strong {gamma} rays with energies up to {approx}3500 keV. The transition intensities recommended here for the strongest lines will be included in the forthcoming International Atomic Energy Agency Coordinated Research Programme document ''Update of X- and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications'', and the analysis for all transitions along with relevant atomic data have been provided to the Decay Data Evaluation Project.

  2. Sensitivity of the NEXT-100 detector to neutrinoless double beta decay

    Science.gov (United States)

    López-March, N.; NEXT Collaboration

    2017-09-01

    A high pressure xenon gas time projection chamber with electroluminescent amplification (EL HPGXe TPC) searching for the neutrinoless double beta (0νββ) decay offers: excellent energy resolution [1, 2] (0.5 - 0.7% FWHM at the Qββ ), by amplifying the ionization signal with electroluminescent light, and tracking capabilities [3], as demonstrated by the NEXT collaboration using two kg-scale prototypes. The NEXT collaboration is building an EL HPGXe TPC capable of holding 100 kg (NEXT-100) of xenon isotopically enriched in 136Xe. The installation and commissioning of the NEXT-100 detector at the Laboratorio Subterráneo de Canfranc (LSC) is planned for 2018. The current estimated background level for the NEXT-100 detector is of 4 × 10-4 counts/keV-kg-yr or less in the energy region of interest [4]. Assuming an energy resolution of 0.75% FWHM at the Qνββ and a 0νββ signal efficiency of about 28%, this gives an expected sensitivity (at 90% CL) to the 0νββ decay half life of {T}1/20ν > 6.0× {10}25 yr for an exposure of 275 kg yr. A first phase of the NEXT experiment, called NEW, is currently being commissioned at the LSC. The NEW detector is a scale 1:2 in size (1:10 in mass) of the NEXT-100 detector using the same materials and photosensors and will be used to perform a characterization of the 0νββ backgrounds and a measurement of the standard double beta decay with neutrinos (2ν ββ). An 8 sigma significance for the 2νββ signal in the NEW detector has been estimated for a 100-day run.

  3. Beta-decay of {sup 103}In: evidence for the Gamow-Teller resonance near {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Karny, M. [Warsaw Univ. (Poland). Inst. of Experimental Physics; Batist, L.; Brown, B.A. [and others

    1998-04-01

    The {beta} decay of the neutron-deficient isotope {sup 103}In was investigated by using total absorption {gamma}-ray spectrometry on mass-separated sources. The measurement reveals a high-lying resonance of the {beta}-decay strength in striking disagreement with high-resolution {gamma}-ray data. The result is discussed in comparison with shell-model predictions. (orig.)

  4. Experimental high energy physics

    CERN Document Server

    De Paula, L

    2004-01-01

    A summary of the contributions on experimental high energy physics to the XXIV Brazilian National Meeting on Particle and Fields is presented. There were 5 invited talks and 32 submitted contributions. The active Brazilian groups are involved in several interesting projects but suffer from the lack of funding and interaction with Brazilian theorists.

  5. Beta decay of medium and high spin isomers in sup 9 sup 4 Ag

    CERN Document Server

    La Commara, M; Döring, J; Galanopoulos, S; Grawe, H; Harissopoulos, S V; Hellström, M; Janas, Z; Kirchner, R; Mazzocchi, C; Ostrowski, A N; Plettner, C; Rainovski, G; Roeckl, E; Schmidt, K

    2002-01-01

    The very neutron-deficient isotope sup 9 sup 4 Ag was produced at the GSI on-line mass separator by using the reaction sup 5 sup 8 Ni( sup 4 sup 0 Ca, p3n). The beta-decay properties of sup 9 sup 4 Ag were studied by detecting for the first time beta-delayed gamma rays and beta-gamma-gamma coincidences. Both the population of excited levels in the daughter nucleus sup 9 sup 4 Pd and the beta-decay half-life of sup 9 sup 4 Ag were investigated. The major part of the feeding was assigned to the decay of an I suppi=(7 sup +) isomer with a half-life of (0.36+-0.03) s. A weak beta-decay branch was found to populate high-spin levels in the sup 9 sup 4 Pd daughter with I>=18. It is tentatively assigned to the decay of a high-spin parent state in sup 9 sup 4 Ag with I>=17 and a half-life (0.3+-0.2) s. The measured beta-decay properties as well as the level structure of sup 9 sup 4 Ag and sup 9 sup 4 Pd are discussed in comparison with shell-model predictions.

  6. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 5. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field. Kaushik Bhattacharya Palash B Pal. Research Articles Volume 62 Issue 5 May 2004 pp 1041-1058. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Beta decay rates for nuclei with 115

    Indian Academy of Sciences (India)

    Beta decay rates for nuclei with 115

  8. Relativistic theory of inverse beta-decay of polarized neutron in ...

    Indian Academy of Sciences (India)

    The relativistic theory of the inverse beta-decay of polarized neutron, + → + -, in strong magnetic field is developed. For the proton wave function we use the exact solution of the Dirac equation in the magnetic filed that enables us to account exactly for effects of the proton momentum quantization in the magnetic ...

  9. Experiment TGV-2 - Search for double beta decay of 106Cd

    Science.gov (United States)

    Rukhadze, N. I.; Briançon, Ch.; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalík, A.; Rukhadze, E. N.; Shitov, Yu. A.; Šimkovic, F.; Štekl, I.; Timkin, V. V.

    2012-08-01

    New limits (at 90% C.L.) on double beta decay of Cd106-T(0νEC/EC)>1.7×1020 yr and T(2νEC/EC)>4.2×1020 yr were obtained in a preliminary calculation of data accumulated for 12900 h on the TGV-2 spectrometer.

  10. Present status and future of the experiment TGV (measurement of double beta decay of48Ca)

    Science.gov (United States)

    Brudanin, V. B.; Egorov, V. G.; Kovalík, A.; Kovalenko, V. E.; Rukhadze, N. I.; Salamatin, A. V.; Sandukovsky, V. G.; Timkin, V. V.; Vylov, Ts.; Zaparov, Ch.; Briancon, Ch.; Janout, Z.; Koníček, J.; Kubašta, J.; Pospíšil, S.; Štekl, I.; Vorobel, V.

    1998-02-01

    A short description of experiment TGV (double beta decay of48Ca) is given. The measurement started in the Modane underground laboratory in August 1996. The first result of T {1/2/0 ν } ≥ 4.6 × 1020 years [90% CL] after 2545 hours is presented.

  11. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2017-02-01

    Full Text Available We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  12. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen, E-mail: liu-zhen@sjtu.edu.cn; Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn

    2017-02-15

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  13. Evidence of a new state in {sup 11}Be observed in the {sup 11}Li {beta}-decay

    Energy Technology Data Exchange (ETDEWEB)

    Madurga, M. [Instituto de Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Borge, M.J.G. [Instituto de Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain)], E-mail: borge@iem.cfmac.csic.es; Alcorta, M. [Instituto de Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Fraile, L.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense, E-28040 Madrid (Spain); Fynbo, H.O.U. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Arhus (Denmark); Jonson, B. [Fundamental Physics, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Kirsebom, O. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Arhus (Denmark); Martinez-Pinedo, G. [Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Nilsson, T.; Nyman, G. [Fundamental Physics, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Perea, A. [Instituto de Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Poves, A. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Riisager, K. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Arhus (Denmark); Tengblad, O. [Instituto de Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Tengborn, E. [Fundamental Physics, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Van der Walle, J. [PH Department, CERN, CH-1211 Geneve (Switzerland)

    2009-06-29

    Coincidences between charged particles emitted in the {beta}-decay of {sup 11}Li were observed using highly segmented detectors. The breakup channels involving three particles were studied in full kinematics allowing for the reconstruction of the excitation energy of the {sup 11}Be states participating in the decay. In particular, the contribution of a previously unobserved state at 16.3 MeV in {sup 11}Be has been identified selecting the {alpha}+{sup 7}He{yields}{alpha}+{sup 6}He+n channel. The angular correlations between the {alpha} particle and the center of mass of the {sup 6}He + n system favors spin and parity assignment of 3/2{sup -} for this state as well as for the previously known state at 18 MeV.

  14. Measurement of the proton recoil spectrum in neutron beta decay with the spectrometer aSPECT. Study of systematic effects

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Gertrud Emilie

    2012-01-24

    Free neutron decay, n{yields}pe anti {nu}{sub e}, is the simplest nuclear beta decay, well described as a purely left-handed, vector minus axial-vector interaction within the framework of the Standard Model (SM) of elementary particles and fields. Due to its highly precise theoretical description, neutron beta decay data can be used to test certain extensions to the SM. Possible extensions require, e.g., new symmetry concepts like left-right symmetry, new particles, leptoquarks, supersymmetry, or the like. Precision measurements of observables in neutron beta decay address important open questions of particle physics and cosmology, and are generally complementary to direct searches for new physics beyond the SM in high-energy physics. In this doctoral thesis, a measurement of the proton recoil spectrum with the neutron decay spectrometer aSPECT is described. From the proton spectrum the antineutrinoelectron angular correlation coefficient a can be derived. In our first beam time at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany (2005-2006), background instabilities due to particle trapping and the electronic noise level of the proton detector prevented us from presenting a new value for a. In the latest beam time at the Institut Laue-Langevin (ILL) in Grenoble, France (2007-2008), the trapped particle background has been reduced sufficiently and the electronic noise problem has essentially been solved. For the first time, a silicon drift detector was used. As a result of the data analysis, we identified and fixed a problem in the detector electronics which caused a significant systematic error. The target figure of the latest beam time was a new value for a with a total relative error well below the present literature value of 4 %. A statistical accuracy of about 1.4% was reached, but we could only set upper limits on the correction of the problem in the detector electronics, which are too high to determine a meaningful result. The present

  15. A measurement of the 2 neutrino double beta decay rate of Te-130 in the CUORICINO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kogler, Laura K. [Univ. of California, Berkeley, CA (United States)

    2011-11-30

    CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2vββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of 10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2vββ rate. The enriched crystals contained a total of 350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals. Residual backgrounds in the subtracted spectrum were fit using spectra generated by Monte-Carlo simulations of natural radioactive contaminants located in and on the crystals. The 2vββ half-life was measured to be T2v1/2 = [9.81± 0.96(stat)± 0.49(syst)] x1020 y.

  16. Measurement of the 2{nu}{beta}{beta} decay of {sup 100}Mo to the excited 0{sub 1}{sup +} state in the NEMO3 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vala, L

    2003-09-01

    The NEMO3 detector was designed for the study of double beta decay and in particular to search for the neutrinoless double beta decay process (0{nu}{beta}{beta}). The intended sensitivity in terms of a half-life limit for the 0{nu}{beta}{beta} decay is of the order of 10{sup 25} y which corresponds to an effective neutrino mass m{sub {nu}} on the level of (0.3 - 0.1) eV. The 0{nu}{beta}{beta} process is today the most promising test of the Majorana nature of the neutrino. The detector was constructed in the Modane Underground Laboratory (LSM) in France by an international collaboration including France, Russia, the Czech Republic, the USA, the UK, Finland, and Japan. The experiment has been taking data since May 2002. The quantity of {sup 100}Mo in the detector (7 kg) allows an efficient measurement of the two-neutrino double beta decay (2{nu}{beta}{beta}) of {sup 100}Mo to the excited 0{sub 1}{sup +} state (eeN{gamma} channel). Monte-Carlo simulations of the effect and of all the relative sources of background have been produced in order to define a set of appropriate selection criteria. Both Monte-Carlo simulations and special runs with sources of {sup 208}Tl and {sup 214}Bi showed that the only significant background in the eeN{gamma} channel comes from radon that penetrated inside the wire chamber of NEMO3. The experimental data acquired from May 2002 to May 2003 have been analysed in order to determine the signal from the 2{nu}{beta}{beta} decay of {sup 100}Mo to the excited 0{sub 1}{sup +} state and the corresponding background level. The physical result, which was obtained at the level of four standard deviations, is given in the form of an interval of half-life values at 95% confidence level: [5.84*10{sup 20}, 2.26*10{sup 21}] y for method A and [5.83*10{sup 20}, 1.71*10{sup 21}] y for method B. (author)

  17. Super-allowed Fermi beta-decay revisited

    CERN Document Server

    Wilkinson, D H

    2002-01-01

    Analysis of J suppi=0 sup +->0 sup + super-allowed Fermi transitions is limited with respect to the precision of its outcome in terms of the Fermi coupling constant neither by the accuracy of the experimental input data nor by the confidence with which the radiative corrections can be applied but rather by knowledge of the nuclear mismatch: the subversion of isospin symmetry along the multiplets. Theoretical estimates of this mismatch differ considerably from to their direct nuclide-by-nuclide application results in an apparent clear violation of the hypothesis of conservation of the vector current and evident inconsistency with unitary of the Cabibbo-Kobayashi-Maskawa matrix. This paper pursues and elaborates the earlier suggestion that, in these unsatisfactory circumstances, the best procedure is to look to the experimental data themselves to determine and eliminate the mismatch by appropriate extrapolation to Z approx 0 where the mismatch falls away. This is done: (i) without any prior correction for misma...

  18. Precision measurement of the half-life and the $\\beta$-decay Q value of the superallowed 0$^{+}\\rightarrow$ 0$^{+}\\beta$-decay of $^{38}$Ca

    CERN Multimedia

    2002-01-01

    We propose to study the $\\beta$-decay of $^{38}$Ca. In a first instance, we intend to perform a high-precision study of the half-life of this nucleus as well as a measurement of its $\\beta$-decay Q-value with ISOLTRAP. At a later stage, we propose to study its decay branches to determine the super-allowed branching ratio with high precision. These measurements are essential to improve our understanding of the theoretical corrections (in particular the $\\delta$c correction factor) needed to calculate the universal Ft value from the ft value determined for individual nuclei. For this nucleus, the correction factor is predicted to increase significantly as compared to the nine well-studied nuclei between $^{10}$C and $^{54}$Co and the model calculations used to determine the corrections, in particular the shell-model calculations, are well under control in this mass region. Therefore, the T$_{Z}$= -1 nuclei between A=18 and A=38 are ideal test cases for the correction factors which limit today the precision on t...

  19. Superallowed Nuclear Beta Decay: A Window on the Weak Interaction

    Science.gov (United States)

    Hardy, J. C.

    2008-01-01

    Measurements on superallowed 0+-->0+ nuclear beta transitions currently provide the most demanding test of the Conserved Vector Current (CVC) hypothesis and the most precise value for the up-down element, Vud, of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Both are sensitive probes for physics beyond the Standard Model. Analysis of the experimental results depends on small radiative and isospin-symmetry-breaking corrections whose uncertainties now dominate those from experiment. Recent experiments have been focusing on tests of these corrections with a view to reducing their uncertainties. An overview is presented together with a description of measurements at Texas A&M on the superallowed decay of 34Ar.

  20. The influence of pairing correlations on the isospin symmetry breaking corrections of superallowed Fermi beta decays

    Energy Technology Data Exchange (ETDEWEB)

    Cal Latin-Small-Letter-Dotless-I k, A. E., E-mail: engincalik@yahoo.com [Dumlupinar University, Department of Physics, Faculty of Arts and Sciences (Turkey); Gerceklioglu, M. [Ege University, Department of Physics, Faculty of Science (Turkey); Selam, C. [Mus Alparslan University, Department of Physics, Faculty of Arts and Sciences (Turkey)

    2013-05-15

    Within the framework of quasi-particle random phase approximation, the isospin breaking correction of superallowed 0{sup +} {yields} 0{sup +} beta decay and unitarity of Cabibbo-Kobayashi-Maskawa mixing matrix have been investigated. The broken isotopic symmetry of nuclear part of Hamiltonian has been restored by Pyatov's method. The isospin symmetry breaking correction with pairing correlations has been compared with the previous results without pairing. The effect of pairing interactions has been examined for nine superallowed Fermi beta decays; their parent nuclei are {sup 26}Al, {sup 34}Cl, {sup 38}K, {sup 42}Sc, {sup 46}V, {sup 50}Mn, {sup 54}Co, {sup 62}Ga, {sup 74}Rb.

  1. Searches for double beta decay of 134Xe with EXO-200

    Science.gov (United States)

    Albert, J. B.; Anton, G.; Badhrees, I.; Barbeau, P. S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Daughhetee, J.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Fairbank, W.; Farine, J.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Hoessl, J.; Hufschmidt, P.; Hughes, M.; Jamil, A.; Jewell, M. J.; Johnson, A.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, S.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Marino, M. G.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Retière, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Vogel, P.; Vuilleumier, J.-L.; Wagenpfeil, M.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.; Zettlemoyer, J.; Ziegler, T.; EXO-200 Collaboration

    2017-11-01

    Searches for double beta decay of 134Xe were performed with EXO-200, a single-phase liquid xenon detector designed to search for neutrinoless double beta decay of 136Xe. Using an exposure of 29.6 kg .yr , the lower limits of T1/2 2 ν β β>8.7 ×1020 yr and T1/2 0 ν β β>1.1 ×1023 yr at 90% confidence level were derived, with corresponding half-life sensitivities of 1.2 ×1021 yr and 1.9 ×1023 yr . These limits exceed those in the literature for 134Xe, improving by factors of nearly 1 05 and 2 for the two antineutrino and neutrinoless modes, respectively.

  2. SNO+ status and plans for double beta decay search and other neutrino studies

    Science.gov (United States)

    Andringa, S.; SNO+ Collaboration

    2016-01-01

    SNO+ is a multi-purpose Neutrino Physics experiment, succeeding to the Sudbury Neutrino Observatory by replacing heavy water with liquid scintillator, which can also be loaded with large quantities of double-beta decaying isotope. The scientific goals of SNO+ are the search for neutrinoless double-beta decay, the study of solar neutrinos and of anti-neutrinos from nuclear reactors and the Earth's natural radioactivity, as well as supernovae neutrinos. The installation of the detector at SNOLAB is being completed and commissioning has already started with a dry run. The detector will soon be filled with water and, later, with scintillator. Here we highlight the main detector developments and address the several Physics analysis being prepared for the several planned SNO+ runs.

  3. Simulation of double beta decay in the 'SeXe' TPC

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, F [LPC Caen and University of Caen, ENSICAEN, 6 Bd Marechal Juin, 14050 CAEN CEDEX 4 (France)

    2007-04-15

    In 2004, the NEMO collaboration has started some preliminary studies for a next-generation double beta decay experiment: SuperNEMO. The possibility to use a large gaseous TPC has been investigated using simulation and extrapolation of former experiments. In this talk, I report on the reasons why such techniques have not been selected in 2004 and led the NEMO collaboration to reuse the techniques implemented within the NEMO3 detector.

  4. Simulation of double beta decay in the ''SeXe'' TPC

    Science.gov (United States)

    Mauger, F.

    2007-04-01

    In 2004, the NEMO collaboration has started some preliminary studies for a next-generation double beta decay experiment: SuperNEMO. The possibility to use a large gaseous TPC has been investigated using simulation and extrapolation of former experiments. In this talk, I report on the reasons why such techniques have not been selected in 2004 and led the NEMO collaboration to reuse the techniques implemented within the NEMO3 detector.

  5. A calorimetric search on double beta decay of {sup 130}Te

    Energy Technology Data Exchange (ETDEWEB)

    Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Pobes, C.; Previtali, E.; Sisti, M.; Vanzini, M

    2003-04-03

    We report on the final results of a series of experiments on double beta decay of {sup 130}Te carried out with an array of twenty cryogenic detectors. The set-up is made with crystals of TeO{sub 2} with a total mass of 6.8 kg, the largest operating one for a cryogenic experiment. Four crystals are made with isotopically enriched materials: two in {sup 128}Te and two others in {sup 130}Te. The remaining ones are made with natural tellurium, which contains 31.7% and 33.8% {sup 128}Te and {sup 130}Te, respectively. The array was run under a heavy shield in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. By recording the pulses of each detector in anticoincidence with the others a lower limit of 2.1x10{sup 23} years has been obtained at the 90% C.L. on the lifetime for neutrinoless double beta decay of {sup 130}Te. In terms of effective neutrino mass this leads to the most restrictive limit in direct experiments, after those obtained with Ge diodes. Limits on other lepton violating decays of {sup 130}Te and on the neutrinoless double beta decay of {sup 128}Te to the ground state of {sup 128}Xe are also reported and discussed. An indication is presented for the two neutrino double beta decay of {sup 130}Te. Some consequences of the present results in the interpretation of geochemical experiments are discussed.

  6. Isomer and beta decay spectroscopy in the 132Sn region with EURICA

    Directory of Open Access Journals (Sweden)

    Jungclaus A.

    2014-03-01

    Full Text Available The first EURICA campaign with high intensity Uranium beams took place at RIKEN in November/December 2012. Within this campaign experiment NP1112-RIBF85 was performed dedicated to the study of the isomeric and beta decays of neutronrich Cd, In, Sn and Sb isotopes towards and beyond the N=82 neutron shell closure. In this contribution we present a first status report of the analysis of the extensive data set obtained in this experiment.

  7. Isomer and beta decay spectroscopy in the 132Sn region with EURICA

    Science.gov (United States)

    Jungclaus, A.; Simpson, G. S.; Gey, G.; Taprogge, J.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Söderström, P.-A.; Sumikama, T.; Xu, Z.; Baba, H.; Browne, F.; Fukuda, N.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Suzuki, H.; Takeda, H.; Vajta, Z.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Bönig, S.; Daugas, J.-M.; Drouet, F.; Gernhäuser, R.; Ilieva, S.; Kröll, T.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Nishibata, H.; Orlandi, R.; Steiger, K.; Wendt, A.

    2014-03-01

    The first EURICA campaign with high intensity Uranium beams took place at RIKEN in November/December 2012. Within this campaign experiment NP1112-RIBF85 was performed dedicated to the study of the isomeric and beta decays of neutronrich Cd, In, Sn and Sb isotopes towards and beyond the N=82 neutron shell closure. In this contribution we present a first status report of the analysis of the extensive data set obtained in this experiment.

  8. The low background spectrometer TGV II for double beta decay measurements

    Science.gov (United States)

    Beneš, P.; Čermák, P.; Gusev, K. N.; Klimenko, A. A.; Kovalenko, V. E.; Kovalík, A.; Rukhadze, N. I.; Salamatin, A. V.; Šimkovic, F.; Štekl, I.; Timkin, V. V.; Vylov, Ts.

    2006-12-01

    The low-background multi-HPGe spectrometer TGV II installed in the Modane Underground Laboratory (France) is described in detail and the results of the background measurements are reported. The spectrometer is focused on the double beta decay measurements with two isotopes— 106Cd ( 2νEC/EC mode) and 48Ca ( ββ mode). A basic summary of the physics of ββ decay (especially EC/EC mode) is also given.

  9. Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, S.; Carlson, J.; Cirigliano, V.; Dekens, W.; Mereghetti, E.; Wiringa, R. B.

    2018-01-17

    We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such as those corresponding to different orders in chiral effective theory.

  10. Beta-decay studies of neutron-rich Sc-Cr nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L.; Sorlin, O.; Donzaud, C.; Azaiez, F.; Bourgeois, C.; Chiste, V.; Guillemaud-Mueller, D.; Ibrahim, F.; Pougheon, F.; Stanoiu, M. [IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Angelique, J.C.; Grevy, S. [LPC, ISMRA, Caen Cedex (France); Dlouhy, Z.; Mrasek, J. [AS CR, Nuclear Physics Institute, Rez (Czech Republic); Kratz, K.-L.; Pfeiffer, B. [Universitaet Mainz, Institut fuer Kernchemie, Mainz (Germany); Lewitowicz, M.; Matea, I.; De Oliveira Santos, F.; Saint-Laurent, M.G. [GANIL, B.P. 5027, Caen Cedex (France); Lukyanov, S.M. [FLNR, JINR, Dubna, Moscow region (Russian Federation); Nowacki, F.; Penionzhkevich, Yu.-E. [Universite Louis Pasteur, IReS, IN2P3-CNRS, BP 28, Strasbourg Cedex (France)

    2005-01-01

    The neutron-rich nuclei{sup 57,58}{sub 21}Sc,{sup 58-60}{sub 22}Ti,{sup 60-63}{sub 23}V,{sup 62-66}{sub 24}Cr have been produced at Ganil via interactions of a 61.8A MeV {sup 76}Ge beam with a {sup 58}Ni target. Beta-decay studies have been performed using combined {beta}- and {gamma}-ray spectroscopy. Half-lives have been determined and {beta}-decay schemes are proposed for {sup 58}Ti, {sup 61}V and {sup 62}Cr. From these studies, new hints for the existence of {beta}-decaying isomers in {sup 60}V and in {sup 62}Mn are provided. These results are compared to shell model calculations. The role of the {pi}f{sub 7/2}- {nu}f{sub 5/2} proton-neutron interaction is examined through its influence on the lifetime values. (orig.)

  11. Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay

    Science.gov (United States)

    Jones, B. J. P.; McDonald, A. D.; Nygren, D. R.

    2016-12-01

    Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of ~ 1028 years, backgrounds must be controlled to better than 0.1 count per ton per year, beyond the reach of any present technology. In this paper we propose a new method to identify the birth of the barium daughter ion in the neutrinoless double beta decay of 136Xe. The method adapts Single Molecule Fluorescent Imaging, a technique from biochemistry research with demonstrated single ion sensitivity. We explore possible SMFI dyes suitable for the problem of barium ion detection in high pressure xenon gas, and develop a fiber-coupled sensing system with which we can detect the presence of bulk Ba++ ions remotely. We show that our sensor produces signal-to-background ratios as high as 85 in response to Ba++ ions when operated in aqueous solution. We then describe the next stage of this R&D program, which will be to demonstrate chelation and fluorescence in xenon gas. If a successful barium ion tag can be developed using SMFI adapted for high pressure xenon gas detectors, the first essentially zero background, ton-scale neutrinoless double beta decay technology could be realized.

  12. Performance of the drift chamber beta-ray momentum analyzer for double beta decay experiments

    Science.gov (United States)

    Ishihara, N.; Ohama, T.; Yamada, Y.; Kato, Y.; Inagaki, T.; Iwai, G.; Iwase, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Takahashi, K.; Ujiie, N.; Tanaka, K.; Tonooka, M.; Hamatsu, R.; Ishikawa, T.; Igarashi, H.; Ito, T.; Kakizaki, M.; Kakuno, H.; Kitamura, S.; Sumiyoshi, T.; Yoshioka, T.; Ishizuka, T.; Tamura, N.; Sakamoto, Y.; Nagasaka, Y.; Ito, R.

    2017-07-01

    One of the most important problems in neutrino physics is whether neutrinos are Majorana particles or Dirac ones. If a neutrino has a Majorana nature, neutrinoless double beta decay (0ν2β) certainly takes place. On the other hand, there is a theory in which neutrinoless quadruple beta decay (0ν4β) is possible, allowing for lepton number violation by four units, even if a neutrino has a Dirac nature. Since the half-lives of both 0ν2β and 0ν4β are theoretically expected to be very long, detectors have to have an excellent capability to eliminate backgrounds. We have been developing a series of electron momentum analyzers called the drift chamber beta-ray analyzer (DCBA) at KEK for double beta decay experiments. DCBA consists of drift chambers detecting charged particle tracks, and a superconducting solenoid serving a uniform magnetic field. Since the momentum acceptance is in the region of 0.5-3.5 MeV/c, it is easy to eliminate background particles like alpha particles, protons, and muons, which have much higher momenta because of their large masses. The particle identification property and the 3D position determination capability are powerful tools to search for 0ν2β and 0ν4β events. In this article, we describe the performance of DCBA as well as the details of the detector construction processes.

  13. Results from the Cuoricino (Zero-Neutrino Double Beta) Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arnaboldi, C; Artusa, D R; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Brofferio, C; Bucci, C; Capelli, S; Carbone, L; Cebrian, S; Clemenza, M; Cremonesi, O; Creswick, R J; de Ward, A; Didomizio, S D; Dolinski, M J; Farach, H A; Fiorini, E; Frossati, G; Giachero, A; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Maruyama, R H; McDonald, R J; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Olivieri, E; Pallavicini, M; Palmieri, E; Pasca, E; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Sangiorgio, S; Sisti, M; Smith, A R; Torres, L; Ventura, G; Vignati, M

    2007-12-20

    Recent results from the CUORICINO {sup 130}Te zero-neutrino double-beta (0v{beta}{beta}) decay experiment are reported. CUORICINO is an array of 62 tellurium oxide (TeO{sub 2}) bolometers with an active mass of 40.7 kg. It is cooled to {approx}8 mK by a dilution refrigerator shielded from environmental radioactivity and energetic neutrons. It is running in the Laboratori Nazionali del Gran Sasso (LNGS) in Assergi, Italy. These data represent 11.83 kg y or 90.77 mole-years of {sup 130}Te. No evidence for 0v{beta}{beta}-decay was observed and a limit of T{sub 1/2}{sup 0v} ({sup 130}Te) {ge} 3.0 x 10{sup 24} y (90% C.L.) is set. This corresponds to upper limits on the effective mass, , between 0.19 and 0.68eV when analyzed with the many published nuclear structure calculations. In the context of these nuclear models, the values fall within the range corresponding to the claim of evidence of 0v{beta}{beta}-decay by H.V. Klapdor-Kleingrothaus and his co-workers. The experiment continues to acquire data.

  14. Warm Dark Matter Sterile Neutrinos in Electron Capture and Beta Decay Spectra

    Directory of Open Access Journals (Sweden)

    O. Moreno

    2016-01-01

    Full Text Available We briefly review the motivation to search for sterile neutrinos in the keV mass scale, as dark matter candidates, and the prospects to find them in beta decay or electron capture spectra, with a global perspective. We describe the fundamentals of the neutrino flavor-mass eigenstate mismatch that opens the possibility of detecting sterile neutrinos in such ordinary nuclear processes. Results are shown and discussed for the effect of heavy neutrino emission in electron capture in Holmium 163 and in two isotopes of Lead, 202 and 205, as well as in the beta decay of Tritium. We study the deexcitation spectrum in the considered cases of electron capture and the charged lepton spectrum in the case of Tritium beta decay. For each of these cases, we define ratios of integrated transition rates over different regions of the spectrum under study and give new results that may guide and facilitate the analysis of possible future measurements, paying particular attention to forbidden transitions in Lead isotopes.

  15. Fireball as a Macroscopic Manifestation of the beta-Decay of the Radioactive Phosphor into Bound States

    CERN Document Server

    Ratis, Yu L

    2004-01-01

    This paper substantiates a hypothesis that the natural fireball represents an area of space where the chain nuclear reaction of the bound state beta-decay of radioactive phosphorus nuclei takes place.

  16. New Technique for Barium Daughter Ion Identification in a Liquid Xe-136 Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fairbank, William [Colorado State Univ., Fort Collins, CO (United States)

    2016-06-08

    This work addresses long-standing issues of fundamental interest in elementary particle physics. The most important outcome of this work is a new limit on neutrinoless double beta decay. This is an extremely rare and long-sought-after type of radioactive decay. If discovered, it would require changes in the standard model of the elementary constituents of matter, and would prove that neutrinos and antineutrinos are the same, a revolutionary concept in particle physics. Neutrinos are major components of the matter in the universe that are so small and so weakly interacting with other matter that their masses have not yet been discovered. A discovery of neutrinoless double beta decay could help determine the neutrino masses. An important outcome of the work on this project was the Colorado State University role in operating the EXO-200 neutrinoless double beta decay experiment and in analysis of the data from this experiment. One type of double beta decay of the isotope 136Xe, the two-neutrino variety, was discovered in this work. Although the other type of double beta decay, the neutrinoless variety, was not yet discovered in this work, a world’s best sensitivity of 1.9x1025 year half-life was obtained. This result rules out a previous claim of a positive result in a different isotope. This work also establishes that the masses of the neutrinos are less than one millionth of that of electrons. A unique EXO-200 analysis, in which the CSU group had a leading role, has established for the first time ever in a liquid noble gas the fraction of daughter atoms from alpha and beta decay that are ionized. This result has important impact on other pending studies, including nucleon decay and barium tagging. Novel additional discoveries include multiphoton ionization of liquid xenon with UV pulsed lasers, which may find application in calibration of future noble liquid detectors, and studies of association and dissociation reactions of Ba

  17. Inelastic neutron scattering studies of Ge-76 and Se-76: relevance to neutrinoless double-beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Crider, Ben [University of Kentucky, Lexington; Peters, Erin [University of Kentucky, Lexington; Ross, T.J. [University of Kentucky, Lexington; McEllistrem, M [University of Kentucky, Lexington; Prados-Estevez, F. [University of Kentucky, Lexington; Allmond, James M [ORNL; Vanhoy, J.R. [U.S. Naval Academy, Annapolis; Yates, S.W. [University of Kentucky, Lexington

    2015-01-01

    Inelastic neutron scattering measurements were performed at the University of Kentucky Accelerator Laboratory on enriched Ge-76 and Se-76 scattering samples. From measurements at incident neutron energies from 2.0 to 4.0 MeV, many new levels were identified and characterized in each nucleus; level lifetimes, transition probabilities, multipole mixing ratios, and other properties were determined. In addition, gamma-ray cross sections for the Ge-76(n,n'gamma) reaction were measured at neutron energies up to 5.0 MeV, with the goal of determining the cross sections of gamma rays in 2040-keV region, which corresponds to the region of interest in the neutrinoless double beta decay of Ge-76. Gamma rays from the three strongest branches from the 3952-keV level were observed, but the previously reported 2041-keV gamma ray was not. Population cross sections across the range of incident neutron energies were determined for the 3952-keV level, resulting in a cross section of similar to 0.1 mb for the 2041-keV branch using the previously determined branching ratios. Beyond this, the data from these experiments indicate that previously unreported gamma rays from levels in Ge-76 can be found in the 2039-keV region.

  18. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  19. $\\beta$ - decay of the M$_{T}$=-1 nucleus $^{58}$Zn studied by selective laser ionization

    CERN Document Server

    Jokinen, A; Äystö, J; Baumann, P; Dendooven, P; Didierjean, François; Fedosseev, V; Huck, A; Yading, Y; Knipper, A; Koizumi, M; Köster, U; Lettry, Jacques; Lipas, P O; Liu, W; Mishin, V I; Ramdhane, M; Ravn, H L; Roeckl, E; Sebastian, V; Walter, G

    1998-01-01

    $\\beta$ - decay of $^{58}$Zn has been studied for the first time. A new laser ion-source concept has been used to produce mass-separated sources for $\\beta$ and $\\gamma$ - spectroscopy. The half-life of $^{58}$Zn was determined to be 86(18) ms. Comparisons are made with previous data from charge-exchange reactions. Our Gamow-Teller strength to the 1$^{+}$ state at 1051 keV excitation in $^{58}$Cu agrees well with the value extracted from a recent ($^{3}$He, t) study. Extensive shell-model calculations are presented.

  20. Beta decay and isomer spectroscopy in the 132Sn region: New results from EURICA

    Science.gov (United States)

    Jungclaus, A.; Taprogge, J.; Simpson, G. S.; Gey, G.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Söderström, P.-A.; Sumikama, T.; Xu, Z.; Baba, H.; Browne, F.; Fukuda, N.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Suzuki, H.; Takeda, H.; Vajta, Z.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Bönig, S.; Daugas, J.-M.; Drouet, F.; Gernhäuser, R.; Ilieva, S.; Kröll, T.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Nishibata, H.; Orlandi, R.; Steiger, K.; Wendt, A.

    2014-09-01

    The first EURICA campaign with high intensity Uranium beams took place at RIKEN in November/December 2012. Within this campaign experiment NP1112-RIBF85 was performed dedicated to the study of the isomeric and beta decays of neutron-rich Cd, In, Sn and Sb isotopes towards and beyond the N=82 neutron shell closure. In this contribution we will first provide information about the status of the analysis of the extensive data set obtained in this experiment and close with a short outlook.

  1. Beta-decay half-lives at the N=28 shell closure

    Energy Technology Data Exchange (ETDEWEB)

    Grevy, S.; Angelique, J.C.; Baumann, P.; Borcea, C.; Buta, A.; Canchel, G.; Catford, W.N.; Courtin, S.; Daugas, J.M.; Oliveira, F. de; Dessagne, P.; Dlouhy, Z.; Knipper, A.; Kratz, K.L.; Lecolley, F.R.; Lecouey, J.L.; Lehrsenneau, G.; Lewitowicz, M.; Lienard, E.; Lukyanov, S.; Marechal, F.; Miehe, C.; Mrazek, J.; Negoita, F.; Orr, N.A.; Pantelica, D.; Penionzhkevich, Y.; Peter, J.; Pfeiffer, B.; Pietri, S.; Poirier, E.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Stodel, C.; Timis, C

    2004-08-05

    Measurements of the beta-decay half-lives of neutron-rich nuclei (Mg-Ar) in the vicinity of the N=28 shell closure are reported. Some 22 half-lives have been determined, 12 of which for the first time. Particular emphasis is placed on the results for the Si isotopes, the half-lives of which have been extended from N=25 to 28. Comparison with QRPA calculations suggests that {sup 42}Si is strongly deformed. This is discussed in the light of a possible weakening of the spin-orbit potential.

  2. An Investigation into the 113-Cd Beta Decay Spectrum using a CdZnTe Array

    CERN Document Server

    Dawson, J V; Wilson, J R; Zuber, K; Junker, M; Gössling, C; Köttig, T; Münstermann, D; Rajek, S; Schulz, O

    2009-01-01

    We present 11 independent measurements of the half-life and spectral shape of the 4-fold forbidden beta decay of 113-Cd using CdZnTe semiconductors with a total combined lifetime of 6.58 kg days. Our overall result gives a half-life of (8.00 +/- 0.11(stat) +/- 0.24(sys)) x 10^15 years and a Q value of 322.2 +/- 0.3(stat) +/- 0.9(sys) keV. For the first time half-lives well beyond 10^10 years have been deduced with a statistically representative sample of independent measurements.

  3. Evolution of the nuclear structure approaching $^{78}$Ni: $\\beta$ decay of $^{74-78}$Cu

    CERN Document Server

    Van Roosbroeck, J; De Maesschalck, A; De Witte, H; Fedorov, D; Fedosseev, V; Franchoo, S; Fynbo, H O U; Georg, U; Górska, M; Heyde, Kris L G; Huyse, M; Jonsson, O; Köster, U; Kruglov, K; Mishin, V I; Müller, W F; Pauwels, D; Smirnova, N A; Thomas, J C; Van Duppen, P; Van de Vel, K; Weissman, L

    2005-01-01

    A beta -decay study of the even mass /sup 74,76,78/Cu isotopes toward levels in /sup 74,76,78/Zn was performed at the ISOLDE mass separator. The copper isotopes were produced in proton- or neutron- induced fission reactions on /sup 238/U, laser ionized, mass separated, and sent to a beta - gamma detection system. Half-lives, decay schemes, and possible spin configurations were obtained for the copper isotopes. The results are compared with calculations using schematic forces as well as large-scale shell-model calculations with realistic forces.

  4. Majorana phases, CP violation, sterile neutrinos and neutrinoless double-beta decay

    Science.gov (United States)

    Babič, Andrej; Šimkovic, Fedor

    2013-12-01

    CP violation plays a crucial role in the generation of the baryon asymmetry in the Universe. Within this context we investigate the possibility of CP violation in the lepton sector caused by Majorana neutrino mixing. Focus is put on the model including 1 sterile neutrino. Both cases of normal and inverted neutrino mass spectrum are considered. We address the question whether the Majorana phases can be measured in the neutrinoless double-beta decay experiments with sensitivity to the effective Majorana neutrino mass of the order of 10-2 eV.

  5. Nuclear Matrix Elements for the $\\beta\\beta$ Decay of the $^{76}$Ge

    CERN Document Server

    Brown, B A; Horoi, M

    2015-01-01

    The nuclear matrix elements for two-neutrino double-beta (2 n$\\beta\\beta$ ) and zero-neutrino double-beta (0 n$\\beta\\beta$) decay of 76 Ge are evaluated in terms of the configuration interaction (CI), quasiparticle random phase approximation (QRPA) and interacting boson model (IBM) methods. We show that the decomposition of the matrix elements in terms of interemediate states in 74 Ge is dominated by ground state of this nucleus. We consider corrections to the CI results that arise from configurations admixtures involving orbitals out-side of the CI configuration space by using results from QRPA, many-body-perturbation theory, and the connections to related observables. The CI two-neutrino matrix element is reduced due to the inclusion of spin-orbit partners, and to many-body correlations connected with Gamow-Teller beta decay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced due to particle-particle correlations that are connected with the odd-even oscillations in the nuclear masse...

  6. Status Update of the Majorana Demonstrator Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gruzko, Julieta [Univ. of Washington, Seattle, WA (United States); Rielage, Keith Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Xu, Wenqin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Elliott, Steven Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Massarczyk, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goett, John Jerome III [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Pinghan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Neutrinoless double beta decay searches play a major role in determining neutrino properties, in particular the Majorana or Dirac nature of the neutrino and the absolute scale of the neutrino mass. The consequences of these searches go beyond neutrino physics, with implications for Grand Unification and leptogenesis. The Majorana Collaboration is assembling a low-background array of high purity Germanium (HPGe) detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, which is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota, will contain 44 kg (30 kg enriched in 76Ge) of HPGe detectors. Its primary goal is to demonstrate the scalability and background required for a tonne-scale Ge experiment. This is accomplished via a modular design and projected background of less than 3 cnts/tonne-yr in the region of interest. The experiment is currently taking data with the first of its enriched detectors.

  7. Purification of telluric acid for SNO+ neutrinoless double-beta decay search

    Science.gov (United States)

    Hans, S.; Rosero, R.; Hu, L.; Chkvorets, O.; Chan, W. T.; Guan, S.; Beriguete, W.; Wright, A.; Ford, R.; Chen, M. C.; Biller, S.; Yeh, M.

    2015-09-01

    Tellurium-130 has the highest natural abundance of any double-beta decay isotopes. Recently it has been developed as a promising candidate for loading in liquid scintillator to explore the Majorana or Dirac nature of the neutrino through a search for neutrinoless double beta decay (0νββ). To this end, procedures have been developed to transfer tellurium ions into the organic liquid by a water-based loading technology. However, traces of naturally occurring radioactivity and cosmic-ray induced isotopes introduced into the scintillator with tellurium could produce undesirable contaminations in the 130Te 0νββ region. Measurements using various elemental spikes prepared from different chemical forms indicate that the uses of self-scavenging as well as acid and thermal recrystallization prior to the preparation of a tellurium-loaded liquid scintillator can deplete U and Th and several cosmic-activated isotopes from Te feedstock by a factor of 102-103 in a single pass. The process is also found to improve the optical transmission in the blue region, sensible to the photomultiplier tube, by removing traces of colored impurities. In addition to the scintillator-based experiments, this cleansing scheme has potential applications to the production of radiopure tellurium crystals for other rare-event experiments.

  8. The Majorana Demonstrator: A search for neutrinoless double-beta decay of germanium-76

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S. R.; Boswell, M.; Goett, J.; Rielage, K.; Ronquest, M. C.; Xu, W. [Los Alamos National Laboratory, Los Alamos, NM (United States); Abgrall, N.; Chan, Y-D.; Hegai, A.; Martin, R. D.; Mertens, S.; Poon, A. W. P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Overman, N. R.; Soin, A. [Pacific Northwest National Laboratory, Richland, WA (United States); and others

    2013-12-30

    The MAJORANA collaboration is searching for neutrinoless double beta decay using {sup 76}Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 15 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of ∼1 count/t-y or lower in the region of the signal. The MAJORANA collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the DEMONSTRATOR, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which ∼30 kg will be enriched to 87% in {sup 76}Ge. The DEMONSTRATOR is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the DEMONSTRATOR is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.

  9. GT SD and high multipole nuclear matrix elements for double beta decays and astro neutrino nuclear interactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2017-10-01

    Nuclear matrix elements (NMEs) for GT (Gamow Teller), spin dipole (SD) and higher multipole transitions are associated with double beta decays and astro neutrino nuclear interactions. They are reduced with respect to quasi-particle (QP) NMEs by a factor k ≈ 0.2-0.3. The reduction coefficient k is discussed in terms of the nucleonic spin isospin correlations and the non-nucleonic nuclear medium effects. The latter may be incorporated by the effective (quenching) factor gAe f f/gAf r e e . The SD NMEs derived from the (3He,t) charge exchange reactions (CERs) are consistent with the empirical NMEs M(S D) based on the quasi-particle model with the empirical effective SD coupling constant k. The SD NMEs derived from CERs are reduced uniformly in the wide momentum range of q ≈20-100 MeV/c. Impacts of the universal reduction(quenching) on NMEs for neutrino-less DBDs and low and medium energy astro neutrinos are discussed.

  10. Direct dark matter detection and neutrinoless double beta decay with an array of 40 kg of `naked' natural Ge and 11 kg of enriched 76Ge detectors in liquid nitrogen

    Science.gov (United States)

    Baudis, L.; Dietz, A.; Heusser, G.; Majorovits, B.; Strecker, H.; Klapdor-Kleingrothaus, H. V.

    2002-06-01

    Detection of the recoil energy deposited by a weakly interacting massive particle (WIMP) scattering off a nucleus or of the neutrinoless double beta decay signature in a `naked' (natural or enriched) Ge crystal immersed in liquid nitrogen provides a new, yet simple implementation of a well know technology to the fields of direct dark matter and double beta decay searches. We show that an array with a total mass of 40 kg of natural Ge and 11 kg of enriched 76Ge detectors operated in liquid nitrogen in a compact setup could yield important physics results by directly looking for a WIMP signature and testing the Majorana neutrino mass down to 0.1 eV. The method could be easily extended to much larger masses and, by increasing the amount of liquid nitrogen surrounding the detectors, to much lower backgrounds.

  11. First direct observation of bound-state beta-decay. Measurements of branching and lifetime of {sup 207}Tl{sup 81+} fragments

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, D.

    2005-08-01

    The first experimental observation of bound-state beta-decay showed, that due solely to the electron stripping, a stable nuclide, e.g. {sup 163}Dy, became unstable. Also a drastic modification of the half-life of bare {sup 187}Re, from 4.12(2) x 10{sup 10} years down to 32.9(20) years, could be observed. It was mainly due to the possibility for the mother nuclide to decay into a previously inaccessible nuclear level of the daughter nuclide. It was proposed to study a nuclide where this decay mode was competing with continuum-state beta-decay, in order to measure their respective branchings. The ratio {beta}{sub b}/{beta}{sub c} could also be evaluated for the first time. {sup 207}Tl was chosen due to its high atomic number, and Q-value of about 1.4 MeV, small enough to enhance the {beta}{sub b} probability and large enough to allow the use of time-resolved Schottky Mass Spectrometry (SMS) to study the evolution of mother and bound-state beta-decay daughter ions. The decay properties of the ground state and isomeric state of {sup 207}Tl{sup 81+} have been investigated at the GSI accelerator facility in two separate experiments. For the first time {beta}-decay where the electron could go either to a bound state (atomic orbitals) and lead to {sup 207}Pb{sup 81+} as a daughter nuclide, or to a continuum state and lead to {sup 207}Pb{sup 82+}, has been observed. The respective branchings of these two processes could be measured as well. The deduced total nuclear half-life of 255(17) s for {sup 207}Tl{sup 81+}, was slightly modified with respect to the half-life of the neutral atom of 286(2) s. It was nevertheless in very good agreement with calculations based on the assumption that the beta-decay was following an allowed type of transition. The branching {beta}{sub b}/{beta}{sub c}=0.192(20), was also in very good agreement with the same calculations. The application of stochastic precooling allowed to observe in addition the 1348 keV short-lived isomeric state of {sup

  12. Shapes of the $^{192,190}$Pb ground states from beta decay studies using the total absorption technique

    CERN Document Server

    Estevez Aguado, M.E.; Agramunt, J.; Rubio, B.; Tain, J.L.; Jordan, D.; Fraile, L.M.; Gelletly, W.; Frank, A.; Csatlos, M.; Csige, L.; Dombradi, Zs.; Krasznahorkay, A.; Nacher, E.; Sarriguren, P.; Borge, M.J.G.; Briz, J.A.; Tengblad, O.; Molina, F.; Moreno, O.; Kowalska, M.; Fedosseev, V.N.; Marsh, B.A.; Fedorov, D.V.; Molkanov, P.L.; Andreyev, A.N.; Seliverstov, M.D.; Burkard, K.; Huller, W.

    2015-01-01

    The beta decay of $^{192,190}$Pb has been studied using the total absorption technique at the ISOLDE(CERN) facility. The beta-decay strength deduced from the measurements, combined with QRPA theoretical calculations, allow us to infer that the ground states of the $^{192,190}$Pb isotopes are spherical. These results represent the first application of the shape determination method using the total absorption technique for heavy nuclei and in a region where there is considerable interest in nuclear shapes and shape effects.

  13. Background constrains of the SuperNEMO experiment for neutrinoless double beta-decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, Pavel P.

    2017-02-11

    The SuperNEMO experiment is a new generation of experiments dedicated to the search for neutrinoless double beta-decay, which if observed, would confirm the existence of physics beyond the Standard Model. It is based on the tracking and calorimetry techniques, which allow the reconstruction of the final state topology, including timing and kinematics of the double beta-decay transition events, offering a powerful tool for background rejection. While the basic detection strategy of the SuperNEMO detector remains the same as of the NEMO-3 detector, a number of improvements were accomplished for each of detector main components. Upgrades of the detector technologies and development of low-level counting techniques ensure radiopurity control of construction parts of the SuperNEMO detector. A reference material made of glass pellets has been developed to assure quality management and quality control of radiopurity measurements. The first module of the SuperNEMO detector (Demonstrator) is currently under construction in the Modane underground laboratory. No background event is expected in the neutrinoless double beta-decay region in 2.5 years of its operation using 7 kg of {sup 82}Se. The half-life sensitivity of the Demonstrator is expected to be >6.5·10{sup 24} y, corresponding to an effective Majorana neutrino mass sensitivity of |0.2−0.4| eV (90% C.L.). The full SuperNEMO experiment comprising of 20 modules with 100 kg of {sup 82}Se source should reach an effective Majorana neutrino mass sensitivity of |0.04−0.1| eV, and a half-life limit 1·10{sup 26} y. - Highlights: • SuperNEMO detector for 2β0ν-decay of {sup 82}Se should reach half-life limit of 10{sup 26} y. • Radiopurity of the SuperNEMO internal detector parts was checked down to 0.1 mBq/kg. • Reference material of glass pellets was developed for underground γ-spectrometry.

  14. High-pressure xenon time projection Titanium chamber: a methodology for detecting background radiation in neutrinoless double-beta decay experiments

    Science.gov (United States)

    Bachri, A.; Elmhamdi, A.; Hawron, M.; Grant, P.; Zazoum, B.; Martin, C.

    2017-10-01

    The xenon time projection chamber (TPC) promises a novel detection method for neutrinoless double-beta decay (0ν β β ) experiments. The TPC is capable of discovering the rare 0ν β β ionization signal of a distinct topological signature, with a decay energy Qββ = 2.458 MeV . However, more frequent internal (within TPC) and external events are also capable of depositing energy in the range of the Qβ β -value inside the chamber, thus mimicking 0ν β β or interfering with its direct observation. In the following paper, we illustrate a methodology for background radiation evaluation, assuming a basic cylindrical design for a toy titanium TPC that is capable of containing 100 kg of xenon gas at 20 atm pressure; we estimate the background budget and analyze the most prominent problematic events via theoretical calculation. Gamma rays emitted from nuclei of 214Bi and 208Tl present in the outer-shell titanium housing of the TPC are an example of such events for which we calculate probabilities of occurrences. We also study the effect of alpha-neutron (α-n)-induced neutrons and calculate their rate. Alpha particles which are created by the decay of naturally occurring uranium and thorium present in most materials, can react with the nucleus of low Z elements, prompting the release of neutrons and leading to thermal neutron capture. Our calculations suggest that the typical polytetrafluoroethylene (PTFE) inner coating of the chamber would constitute the primary material for neutron production, specifically; we find that the fluorine component of Teflon is much more likely to undergo an (α-n) reaction. From known contamination, we calculate an alpha production rate to be 5.5 × 107 alpha/year for the highest-purity titanium vessel with a Teflon lining. Lastly, using measurements of neutron flux from alpha bombardment, we estimate the expected neutron flux from the materials of the proposed toy TPC and identify all gamma rays (prompt or delayed, of energies

  15. Multi-layer scintillation detector for the MOON double beta decay experiment: Scintillation photon responses studied by a prototype detector MOON-1

    CERN Document Server

    Nakamura, H; Ejiri, H; Elliott, S R; Engel, J; Finger, Miroslav H; Fushimi, K; Gehman, V; Gorin, A; Greenfield, M; Hai, V H; Hazama, R; Higa, K; Higashiguchi, T; Ichihara, K; Ikegami, Y; Imoto, J; Ishii, H; Itahashi, T; Kaneko, H; Kavitov, P; Kawasuso, H; Kekelidze, V D; Matsuoka, K; Mizuhashi, T; Noda, D; Nomachi, M; Ogama, T; Onishi, K; Para, A; Robertson, R G H; Sakamoto, M; Sakiuchi, T; Samejima, Y; Shichijo, Y; Shima, T; Shimada, Y; Shirkov, G; Sissakian, A N; Slunecka, M; Sugaya, Y; Titov, A; Uenoyama, M; Umehara, S; Urano, A; Vatulin, V; Voronov, V; Wilkerson, J F; Will, D I; Yasuda, K; Yoshida, S; Yoshihuku, M

    2006-01-01

    An ensemble of multi-layer scintillators is discussed as an option of the high-sensitivity detector Mo Observatory Of Neutrinos (MOON) for spectroscopic measurements of neutrino-less double beta decays. A prototype detector MOON-1, which consists of 6 layer plastic-scintillator plates, was built to study the sensitivity of the MOON-type detector. The scintillation photon collection and the energy resolution, which are key elements for the high-sensitivity experiments, are found to be 1835+/-30 photo-electrons for 976 keV electrons and sigma = 2.9+/-0.1% (dE/E = 6.8+/-0.3 % in FWHM) at the Qbb ~ 3 MeV region, respectively. The multi-layer plastic-scintillator structure with good energy resolution as well as good background suppression of beta-gamma rays is crucial for the MOON-type detector to achieve the inverted hierarchy neutrino mass sensitivity.

  16. Evolution of single-particle structure and beta-decay near 78Ni

    Directory of Open Access Journals (Sweden)

    Borzov I. N.

    2012-12-01

    Full Text Available The extended self-consistent beta-decay model has been applied for bet-decay rates and delayed neutron emission probabilities of spherical neutron-rich isotopes near the r-process paths. Unlike a popular global FRDM+RPA model, in our fully microscopic approach, the Gamow-Teller and first-forbidden decays are treated on the same footing. The model has been augmented by blocking of the odd particle in order to account for important ground-state spin-parity inversion effect which has been shown to exist in the region of the most neutron-rich doubly-magic nucleus 78Ni. Finally, a newly developed form of density functional DF3a has been employed which gives a better spin-orbit splitting due to the modified tensor components of the density functional.

  17. Superallowed Fermi Beta Decay and the Unitarity of the Cabibbo-Kobayashi-Maskawa Matrix

    Science.gov (United States)

    Çalık, Abdullah Engin; Gerçeklioğlu, Murat; Salamov, Djevad Irfan

    2009-12-01

    In this work, the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix has been investigated by studying the eleven well-known superallowed Fermi Beta decays; their parent nuclei are 10C, 14O, 26Al, 34Cl, 38K, 42Sc, 46V, 50Mn, 54Co, 62Ga, and 74Rb. The numerical value of the Vud element of the CKM mixing matrix has been calculated following the standart procedure. Using a different method from those of the previous studies, the effect of the isospin breaking due to the Coulomb forces has been evaluated more accurately. Here, the shell model has been modified by Pyatov's restoration because of the isospin breaking and the transition matrix elements have been found by means of the random phase approximation (RPA)

  18. Study of the Beta-Decay Properties of Extremely Proton-Rich Nuclei

    CERN Multimedia

    2002-01-01

    The most proton-rich nuclei known to date have isospin projections $ T _{Z} $ ~=~-3/2, -2 and -5/2. \\\\ \\\\ We propose to carry out a study of their superallowed beta decays, a phenomenon that can only be studied in this region of the nuclear chart. The main aim is to determine the ``effective charge'' in nuclei of the axial vector coupling, the quantity $ ( g'_{A} / g _{A} ) ^{2} $ , which in a recent first experiment on a ~~ $ T _{Z} $~~=~-2 nucleus was determined to be 0.49~$\\pm$~0.05. \\\\ \\\\ Because of the problems connected with the production and acceleration of radioactive ions, our proposal aims at selected elements: neon, argon and rubidium (production runs), magnesium (test and production runs) and calcium (test). Data have so far been taken for $^1

  19. $\\beta$-decay study of neutron-rich Tl and Pb isotopes

    CERN Multimedia

    It is proposed to study the structure of neutron-rich nuclei beyond $^{208}$Pb. The one-proton hole $^{211-215}$Tl and the semi magic $^{213}$Pb will be produced and studied via nuclear and atomic spectroscopy searching for long-lived isomers and investigating the $\\beta$-delayed $\\gamma$- emission to build level schemes. Information on the single particle structure in $^{211-215}$Pb, especially the position of the g$_{9/2}$ and i$_{11/2}$ neutron orbitals, will be extracted along with lifetimes. The $\\beta$-decay will be complemented with the higher spin selectivity that can be obtained by resonant laser ionization to single-out the decay properties of long-living isomers in $^{211,213}$Tl and $^{213}$Pb.

  20. Correlated emission of three alpha -particles in the beta -decay of $^{12}$/N

    CERN Document Server

    Fynbo, H O U; Äystö, J; Bergmann, U C; García-Borge, M J; Dendooven, P; Huang, W; Huikari, J; Jeppesen, H B; Jones, P; Jonson, B; Meister, M; Nyman, G H; Oinonen, M; Riisager, K; Tengblad, O; Vogelius, I S; Wang, Y; Weissman, L; Rolanders, K W

    2002-01-01

    The beta -decay of /sup 12/N is used to populate alpha -emitting excited states in /sup 12/C. The alpha -particles from the break-up of both the 10.3 MeV and 12.71 MeV states were measured in coincidence with an efficient detector setup consisting of two double-sided Si strip detectors. The break-up of the 12.71 MeV 1/sup +/ state is an interesting testing ground for the different descriptions of multi-particle break-up, whereas the properties of the 10.3 MeV state, which under some astrophysical conditions is relevant for the production of /sup 12/C in stars, are poorly known. First results from the analysis of the data is presented and compared with Monte Carlo simulations. (13 refs).

  1. Measurements of beta-decay half-lives of short-lived nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T.; Tsurita, Y.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Iida, T.; Takahashi, A.; Kasugai, Y.; Ikeda, Y.

    1997-03-01

    The {beta}-decay half-lives of short-lived nuclei produced by 14 MeV neutron bombardments were measured with Ge detectors, a High-rate spectroscopy amplifier (EG and G ORTEC model 973) and a Spectrum multi-scaler (Laboratory equipment corporation SMS-48) in the multi-scaling mode. The adequate corrections for pile-up and dead-time losses were made by applying source and pulser methods. The half-lives of {sup 53}V, {sup 53g}Fe, {sup 89m}Y and {sup 162}Tb were determined with uncertainties of 0.13-0.65%. It has been shown that previous values shorter than 10 min were systematically longer than the present ones. (author)

  2. Experiment TGV-2. Search for double beta decay of 106Cd

    Science.gov (United States)

    Rukhadze, N. I.; Bakalyarov, A. M.; Briançon, Ch; Brudanin, V. B.; Čermák, P.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Lebedev, V. I.; Rukhadze, E. N.; Mamedov, F.; Shitov, Yu A.; Šimkovic, F.; Štekl, I.; Timkin, V. V.; Zhukov, S. V.

    2012-07-01

    The search for double beta decay of 106Cd was performed at the Modane underground laboratory (France, 4800 m.w.e.) using the multi-detector spectrometer TGV-2. 16 samples (~13.6 g) of 106Cd with an enrichment of 75% were installed between neighbouring HPGe detectors and measured during 12900 h. New half-life limits (at 90% CL) were obtained for 2νEC/EC decay of 106Cd to the ground state of 106Pd - T1/2 > 4.2 × 1020 y, and for OνEC/EC resonant decay of 106Cd to 2741 keV and 2718 keV excited states of 106Pd - T1/2 > 1.8 × 1020y and T1/2 > 1.6 × 1020y respectively.

  3. Double beta decay nuclear matrix elements in extended shell model spaces

    Science.gov (United States)

    Horoi, Mihai

    2017-09-01

    In a recent publication we concluded that the shell model double beta decay nuclear matrix elements may be affected to certain degrees by the lack of pairing correlations with orbitals outside the typical shell model spaces. Here we report results of calculations for 48Ca that includes 21 spherical orbitals for both protons and neutrons. We are using a realistic Hamiltonian inside the fp model space, thus maintaining a good description of the nuclear structure properties of the nuclei of interest. We are only allowing pairing interactions between the fp orbitals and the remaining 17 orbitals, and up to two particle excitations in and out of the fp model space. This approach could be also extended to the case of 82Se. Support from U.S. NSF Grant PHY-1404442 and DOE Grants DE-SC0008529 and DE-SC0015376 is acknowledged.

  4. The Majorana Zero-Neutrino Double-Beta Decay Experiment White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Gaitskell, R.; Barabash, A.; Konovalov, S.; Stekhanov, V.; Umatov,, V.; Brudanin, V.; Egorov, S.; Webb, J.; Miley, Harry S.; Aalseth, Craig E.; Anderson, Dale N.; Bowyer, Ted W.; Brodzinski, Ronald L.; Jordan, David B.; Kouzes, Richard T.; Smith, Leon E.; Thompson, Robert C.; Warner, Ray A.; Tornow, W.; Young, A.; Collar, J. I.; Avignone, Frank T.; Palms, John M.; Doe, P. J.; Elliott, Steven R.; Kazkaz, K.; Robertson, Hamish; Wilkerson, John

    2002-03-07

    The goal of the Majorana Experiment is to determine the effective Majorana masss of the eletron neutrino. Detection of the neutrino mass implied by oscillation results in within our grasp. This exciting physics goal is best pursued using double-beta decay of germanium because of the historical and emerging advances in eliminating competing signals from radioactive backgrounds. The Majorana Experiment will consist of a large mass of 76Ge in the form of high-resolution detectors deep underground, searching for a sharp peak at the BB endpoint. We present here an overview of the entire project in order to help put in perspective the scope, the level and technial risk, and the readiness of the Collaboration to begin the undertaking.

  5. Experimental tests of vacuum energy

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    While the current vacuum energy of the Universe is very small, in our standard cosmological picture it has been much larger at earlier epochs. We try to address the question of what are possible ways to try to experimentally verify this. One direction is to look for systems where vacuum energy constitutes a non-negligible fraction of the total energy, and study the properties of those. Another possibility is to focus on the epochs around cosmic phase transitions, when the vacuum energy is of the same order as the total energy. Along these lines we investigate properties of neutron stars and the imprint of phase transitions on primordial gravitational waves.

  6. Double Beta Decay in Xenon-136. Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes

    Energy Technology Data Exchange (ETDEWEB)

    Herrin, Steven [Stanford Univ., CA (United States)

    2013-06-01

    Observations of neutrino flavor oscillations have demonstrated that neutrinos have mass. Since the discovery of these oscillations, much progress has been made at mea- suring the neutrino mass-squared differences and lepton mixing angles that character- ize them. However, the origin and absolute scale of neutrino masses remain unknown. Unique among fermions, neutrinos can be Majorana particles, which could provide an explanation for neutrino masses. Discovery of a hypothetical process known as neutrinoless double beta decay would show that neutrinos are Majorana particles and determine the mass scale for neutrinos. The Enriched Xenon Observatory (EXO) is a series of experiments searching for the neutrinoless double beta decay of 136Xe. The first experiment, EXO-200, began operation in 2011 and makes use of 200 kg of xenon enriched to 80.6% in 136Xe. The analysis presented here makes use of data from EXO-200 to obtain a more precise measurement of the half-life for the two-neutrino-emitting mode of double beta decay than previously reported. The analysis also sets limits on the half-lives for exotic, Majoron-emitting modes of neutrinoless double beta decay. Data from EXO-200 is also used to produce a measurement of the cosmic muon flux at the WIPP under- ground site where EXO-200 is located.

  7. Beta-decay half-lives of sup 7 sup 0 Kr and sup 7 sup 4 Rb

    CERN Document Server

    Oinonen, M; Köster, U; Huikari, J; Jokinen, A; Nieminen, A; Peraejaervi, K; Baumann, P; Didierjean, François; Huck, A; Knipper, A; Ramdhane, M; Walter, G; Huyse, M; Van Duppen, P; Marguier, G; Novikov, Y; Popov, A; Seliverstov, D M; Schatz, H

    2002-01-01

    Beta-decay half-lives of two nuclei close to N=Z line, sup 7 sup 0 Kr and sup 7 sup 4 Rb, have been measured at the ISOLDE mass-separator facility at CERN. Importance of these half-lives on two ingredients explaining existence and development of the Universe, the astrophysical nucleosynthesis and the Standard Model, are discussed.

  8. The Gerda experiment for the search of 0{nu}{beta}{beta} decay in {sup 76}Ge

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, K.H.; Altmann, M.; Becerici-Schmidt, N.; Caldwell, A.; Cossavella, F.; Lenz, D.; Liao, H.; Majorovits, B.; Mayer, S.; O' Shaughnessy, C.; Schubert, J.; Schulz, O.; Seitz, H.; Stelzer, F.; Vogt, S.; Volynets, O. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Nisi, S.; Pandola, L. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Denisov, A.; Gurentsov, V.; Kianovsky, S.; Kusminov, V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barnabe Heider, M. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); CEGEP St-Hyacinthe, Quebec (Canada); Baudis, L.; Benato, G.; Ferella, A.; Froborg, F.; Guthikonda, K.K.; Tarka, M.; Walter, M. [Physik Institut der Universitaet Zuerich, Zuerich (Switzerland); Bauer, C.; Hampel, W.; Heisel, M.; Heusser, G.; Hofmann, W.; Kankanyan, R.; Kihm, T.; Kiko, J.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Lubashevskiy, A.; Machado, A.A.; Maneschg, W.; Oehm, J.; Salathe, M.; Schreiner, J.; Schwan, U.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milano (Italy); INFN Milano Bicocca, Milano (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C. [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padova (Italy); INFN Padova, Padova (Italy); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C. [INFN Milano Bicocca, Milano (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chkvorets, O. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Laurentian University, Sudbury (Canada); D' Andragora, A. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Brookhaven National Laboratory, Upton, NY (United States); Di Vacri, A. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); University ' ' G. d' Annunzio' ' di Chieti-Pescara, Department of Neurosciences and Imaging, Chieti (Italy); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Niedermeier, L.; Schmitt, C.; Sturm, K. von [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gasparro, J. [Institute for Reference Materials and Measurements, Geel (Belgium); National Physical Laboratory, Teddigton (United Kingdom); Gazzana, S. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Gonzalez de Orduna, R.; Hult, M.; Marissens, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Kroeninger, K. [Max-Planck-Institut fuer Physik, Muenchen (Germany); U. Goettingen, II. Physikalisches Institut, Goettingen (Germany); U. Siegen, Department Physik, Siegen (Germany); Lippi, I.; Rossi Alvarez, C.; Stanco, L.; Ur, C.A. [INFN Padova, Padova (Italy); Liu, J. [Max-Planck-Institut fuer Physik, Muenchen (Germany); University of Tokyo, Kavli IPMU, Tokyo (Japan); Liu, X. [Shanghai Jiaotong University, Shanghai (China); Meierhofer, G. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); TUeV-SUeD, Muenchen (Germany); Peiffer, P. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano (Italy); INFN Milano, Dipartimento di Fisica, Milano (Italy); Ritter, F. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Robert Bosch GmbH, Reutlingen (Germany); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Trunk, U. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); DESY, Photon-Science Detector Group, Hamburg (Germany); Zavarise, P. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); University of L' Aquila, Dipartimento di Fisica, L' Aquila (Italy)

    2013-03-15

    The Gerda collaboration is performing a search for neutrinoless double beta decay of {sup 76}Ge with the eponymous detector. The experiment has been installed and commissioned at the Laboratori Nazionali del Gran Sasso and has started operation in November 2011. The design, construction and first operational results are described, along with detailed information from the R and D phase. (orig.)

  9. Fast-timing studies of nuclei below $^{68}$Ni populated in the $\\beta$-decay of Mn isotopes

    CERN Multimedia

    Jokinen, A; Simpson, G S; Garcia borge, M J; Koester, U H; Georgiev, G P; Fraile prieto, L M; Aprahamian, A

    2008-01-01

    We intend to investigate structure of nuclei populated in the $\\beta$-decay of Mn isotopes via the ATD $\\beta\\gamma\\gamma$(t) technique. With this method we will measure dynamic moments in Fe isotopes and their daughters in order to characterize the role of particle-hole excitation across the ${N}$=40 sub-shell closure and the development of collectivity.

  10. First observation of the beta decay of neutron-rich $^{218}Bi$ by the pulsed-release technique and resonant laser ionization

    CERN Document Server

    De Witte, H; Borzov, I N; Caurier, E; Cederkäll, J; De Smet, A; Eckhaudt, S; Fedorov, D V; Fedosseev, V; Franchoo, S; Górska, M; Grawe, H; Huber, G; Huyse, M; Janas, Z; Köster, U; Kurcewicz, W; Kurpeta, J; Plochocki, A; Van Duppen, P; Van de Vel, K; Weissman, L

    2004-01-01

    The neutron-rich isotope /sup 218/Bi has been produced in proton- induced spallation of a uranium carbide target at the ISOLDE facility at CERN, extracted from the ion source by the pulsed-release technique and resonant laser ionization, and its beta decay is studied for the first time. A half-life of 33(1)s was measured and is discussed in the self-consistent continuum-quasi particle-random- phase approximation framework that includes Gamow-Teller and first- forbidden transitions. A level scheme was constructed for /sup 218 /Po, and a deexcitation pattern of stretched E2 transitions 8/sup +/ to 6/sup +/ to 4/sup +/ to 2/sup +/ to 0/sup +/ to the ground state is suggested. Shell-model calculations based on the Kuo-Herling interaction reproduce the experimental results satisfactorily. (28 refs).

  11. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  12. Characterization of a broad-energy germanium detector for its use in CJPL

    National Research Council Canada - National Science Library

    Zhi Zeng;Yu-Hao Mi;Ming Zeng;Hao Ma;Qian Yue;Jian-Ping Cheng;Jun-Li Li;Rui Qiu;Hui Zhang

    2017-01-01

    The broad-energy germanium (BEGe) detector,with the ability of background discrimination using pulseshape discrimination, is a competitive candidate for neutrinolessdouble beta decay (0mbb) experiments...

  13. Precision long-term measurements of beta-decay-rate ratios in a controlled environment

    Directory of Open Access Journals (Sweden)

    S.D. Bergeson

    2017-04-01

    Full Text Available We report on measurements of relative beta-decay rates of Na-22, Cl-36, Co-60, Sr-90, Cs-137 monitored for more than one year. The radioactive samples are mounted in an automated sample changer that sequentially positions the five samples in turn, with high spatial precision, in front of each of four Geiger–Müller tubes. The sample wheel, detectors, and associated electronics are housed inside a sealed chamber held at constant absolute pressure, humidity, and temperature to isolate the experiment from environmental variations. The statistical uncertainty in the count rate approaches a few times 0.01% with two weeks of averaging. Other sources of error are on a similar scale. The data are analyzed in variety of ways, comparing count rates of the various samples on one or more detectors, and comparing count rates of a particular sample across multiple detectors. We observe no statistically significant variations in the ratios of decay rates, either annual or at higher-frequency, at a level above 0.01%.

  14. On the Claim of Modulations in 36Cl Beta Decay and Their Association with Solar Rotation

    Science.gov (United States)

    Pommé, S.; Kossert, K.; Nähle, O.

    2017-11-01

    Recently, claims were made by Sturrock et al. ( Astropart. Phys. 42, 62, 2013), Sturrock, Fischbach, and Scargle ( Solar Phys. 291, 3467, 2016; arXiv http://arxiv.org/abs/arXiv:1705.03010, 2017) that beta decay can be induced by interaction of the nucleus with solar neutrinos and that cyclic modulations in decay rates are indicative of the dynamics of the solar interior. Transient modulations in residuals from a purely exponential decay curve were observed at frequencies near 11 a^{-1} and 12.7 a^{-1} in repeated activity measurements of a 36Cl source by Alburger, Harbottle, and Norton ( Earth Planet Sci. Lett. 78, 168, 1986) at Brookhaven National Laboratory in a period from 1984 to 1985. Sturrock et al. have speculatively associated them with rotational influence on the solar neutrino flux. In this work, more accurate 36Cl decay-rate measurements - performed at the Physikalisch-Technische Bundesanstalt Braunschweig in the period 2010 - 2013 by means of the triple-to-double coincidence ratio measurement technique - are scrutinised. The residuals from an exponential decay curve were analysed by a weighted Lomb-Scargle periodogram. The existence of modulations in the frequency range between 0.2 a^{-1} and 20 a^{-1} could be excluded down to an amplitude of about 0.0016%. The invariability of the 36Cl decay constant contradicts the speculations made about the deep solar interior on the basis of instabilities in former activity measurements.

  15. Precision long-term measurements of beta-decay-rate ratios in a controlled environment

    Energy Technology Data Exchange (ETDEWEB)

    Bergeson, S.D., E-mail: scott_bergeson@byu.edu; Peatross, J.; Ware, M.J.

    2017-04-10

    We report on measurements of relative beta-decay rates of Na-22, Cl-36, Co-60, Sr-90, Cs-137 monitored for more than one year. The radioactive samples are mounted in an automated sample changer that sequentially positions the five samples in turn, with high spatial precision, in front of each of four Geiger–Müller tubes. The sample wheel, detectors, and associated electronics are housed inside a sealed chamber held at constant absolute pressure, humidity, and temperature to isolate the experiment from environmental variations. The statistical uncertainty in the count rate approaches a few times 0.01% with two weeks of averaging. Other sources of error are on a similar scale. The data are analyzed in variety of ways, comparing count rates of the various samples on one or more detectors, and comparing count rates of a particular sample across multiple detectors. We observe no statistically significant variations in the ratios of decay rates, either annual or at higher-frequency, at a level above 0.01%.

  16. The COBRA experiment - Status and prospects on the search of neutrinoless double beta-decay

    Science.gov (United States)

    Zatschler, S.

    2015-10-01

    The Cadmium-Zinc-Telluride 0-ν Double Beta Research Apparatus (COBRA) [1] is a next-generation experiment searching for the existence of neutrinoless double beta-decay (0νββ-decay). The observation of 0νββ-decay would be an unambiguous sign for physics beyond the Standard Model such as lepton number violating processes and would prove the Majorana character of neutrinos. Furthermore, the study of 0νββ-decay could probe the absolute neutrino mass and allows for the identification of the neutrino mass hierarchy realized in nature assuming light Majorana neutrino exchange. Currently a demonstrator setup at the underground facility LNGS (Italy) built of 4×4×4 coplanar grid (CPG) detectors collects high quality low background physics data with FADC pulse shape sampling. The detectors are made of natural abundant CdZnTe (CZT), which is a commercially available room temperature semiconductor. It contains several double beta isotopes, the most promising of which is 116Cd with a Q-value of 2813.5 keV - which is well above the highest naturally occurring prominent γ-lines.

  17. The COBRA experiment – Status and prospects on the search of neutrinoless double beta-decay

    Energy Technology Data Exchange (ETDEWEB)

    Zatschler, S. [Institute of Nuclear and Particle Physics, TU Dresden, Zellescher Weg 19, Germany stefan.zatschler@tu-dresden.de (Germany)

    2015-10-28

    The Cadmium-Zinc-Telluride 0-ν Double Beta Research Apparatus (COBRA) [1] is a next-generation experiment searching for the existence of neutrinoless double beta-decay (0νββ-decay). The observation of 0νββ-decay would be an unambiguous sign for physics beyond the Standard Model such as lepton number violating processes and would prove the Majorana character of neutrinos. Furthermore, the study of 0νββ-decay could probe the absolute neutrino mass and allows for the identification of the neutrino mass hierarchy realized in nature assuming light Majorana neutrino exchange. Currently a demonstrator setup at the underground facility LNGS (Italy) built of 4×4×4 coplanar grid (CPG) detectors collects high quality low background physics data with FADC pulse shape sampling. The detectors are made of natural abundant CdZnTe (CZT), which is a commercially available room temperature semiconductor. It contains several double beta isotopes, the most promising of which is {sup 116}Cd with a Q-value of 2813.5 keV – which is well above the highest naturally occurring prominent γ-lines.

  18. Results of a search for neutrinoless double-beta decay using the COBRA demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Quante, Thomas; Goessling, Claus; Kroeninger, Kevin [TU Dortmund, Exp. Physik IV, Dortmund (Germany)

    2016-07-01

    COBRA is an experiment aiming to search for neutrinoless double-beta-decay (0νββ-decay) using CdZnTe semiconductor detectors. The main focus is on {sup 116}Cd, with a Q-value of 2813.5 keV well above the highest dominant naturally occurring gamma lines. By measuring the half-life of the 0νββ-decay, it is possible to clarify the nature of the neutrino as either Dirac or Majorana particle and furthermore to determine its effective Majorana mass. The COBRA collaboration operates a demonstrator to search for these decays at the Laboratori Nazionali del Gran Sasso in Italy. The exposure of 234.7 kg d considered in this analysis was collected between September 2011 and February 2015. The analysis focuses on the decay of the nuclides {sup 114}Cd, {sup 128}Te, {sup 70}Zn, {sup 130}Te and {sup 116}Cd. A Bayesian analysis is performed to estimate the signal strength of 0νββ-decay.

  19. $\\beta$-asymmetry measurements in nuclear $\\beta$-decay as a probe for non-standard model physics

    CERN Multimedia

    Roccia, S

    2002-01-01

    We propose to perform a series of measurements of the $\\beta$-asymmetry parameter in the decay of selected nuclei, in order to investigate the presence of possible time reversal invariant tensor contributions to the weak interaction. The measurements have the potential to improve by a factor of about four on the present limits for such non-standard model contributions in nuclear $\\beta$-decay.

  20. Search for 2{\\beta} decay of 116Cd with the help of enriched 116CdWO4 crystal scintillators

    CERN Document Server

    Poda, D V; Belli, P; Bernabei, R; Cappella, F; Caracciolo, V; Castellano, S; Chernyak, D M; Cerulli, R; Danevich, F A; d'Angelo, S; Incicchitti, A; Kobychev, V V; Konovalov, S I; Laubenstein, M; Podviyanuk, R B; Polischuk, O G; Shlegel, V N; Tretyak, V I; Umatov, V I; Vasiliev, Ya V

    2014-01-01

    Cadmium tungstate crystal scintillators enriched in $^{116}$Cd to 82% ($^{116}$CdWO$_4$, total mass of $\\approx$1.2 kg) are used to search for 2$\\beta$ decay of $^{116}$Cd deep underground at the Gran Sasso National Laboratory of the INFN (Italy). The radioactive contamination of the $^{116}$CdWO$_4$ crystals has been studied carefully to reconstruct the background of the detector. The measured half-life of $^{116}$Cd relatively to 2$\

  1. Novel field cage design for the PandaX III double beta decay experiment

    Science.gov (United States)

    Chaiyabin, P.; Giboni, K. L.; Han, K.; Ji, X.; Juyal, P.; Kobdaj, C.; Liu, J.; Lomon, J.; Pasaja, N.; Poolcharuansin, P.; Rujirawat, S.; Songsiriritthigul, P.; Yan, Y.; Zhao, L.

    2017-10-01

    PandaX III is a High Pressure gaseous xenon Time Projection Chamber for Double Beta Decay detection. It will be installed deep underground in the JinPing Laboratory in Szechuan province, China. During its first phase the detector will operate with 200 kg of enriched 136Xe. The detector consists of a mesh cathode in the center of a cylindrical vessel and Micro-Bulk Micro-Megas at both ends to read out the drifting charges. The active volume is surrounded by an array of electrodes to shape the homogeneous drift field, the so called field cage. Gaseous xenon, however, is a poor dielectric. It would require in excess of 10 cm to safely stand off the HV between these electrodes and the grounded detector walls. Nearly a quarter of our available xenon would be wasted in this dead space. In a new design the electric field outside the field shaping is totally contained in a cylinder 1.6 m diameter and 2 m long. For manufacturing two 50 mm thick Acrylic plates are bend into half cylinders and bonded together. The outside surface of the cylinder is covered with a copper mesh as ground plane. The gap between field cage and detector vessel can be now reduced to 1 mm, and this gap is field free. The amount of wasted xenon is reduced by a factor 100. The field shaping electrodes and the resistive divider network are mounted on 5 mm thick Acrylic panels suspended on the inside of the field cage. This design is realized with low radioactivity materials.

  2. Double-beta decay investigation with highly pure enriched [Formula: see text]Se for the LUCIFER experiment.

    Science.gov (United States)

    Beeman, J W; Bellini, F; Benetti, P; Cardani, L; Casali, N; Chiesa, D; Clemenza, M; Dafinei, I; Domizio, S Di; Ferroni, F; Gironi, L; Giuliani, A; Gotti, C; Laubenstein, M; Maino, M; Nagorny, S; Nisi, S; Nones, C; Orio, F; Pagnanini, L; Pattavina, L; Pessina, G; Piperno, G; Pirro, S; Previtali, E; Rusconi, C; Schäffner, K; Tomei, C; Vignati, M

    The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of [Formula: see text]Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched [Formula: see text]Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched [Formula: see text]Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of [Formula: see text]Th, [Formula: see text]U and [Formula: see text]U are respectively: [Formula: see text]61, [Formula: see text]110 and [Formula: see text]74 [Formula: see text]Bq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the [Formula: see text]Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of [Formula: see text]Se to 0[Formula: see text], 2[Formula: see text] and 2[Formula: see text] excited states of [Formula: see text]Kr of 3.4[Formula: see text]10[Formula: see text], 1.3[Formula: see text]10[Formula: see text] and 1.0[Formula: see text]10[Formula: see text] y, respectively, with a 90 % C.L.

  3. 'aspect' - a new spectrometer for the measurement of the angular correlation coefficient a in neutron beta decay

    CERN Document Server

    Zimmer, O; Grinten, M G D; Heil, W; Glück, F

    2000-01-01

    The combination of the coefficient a of the antineutrino/electron angular correlation with the beta asymmetry of the neutron provides a sensitive test for scalar and tensor contributions to the electroweak Lagrangian, as well as for right-handed currents. A method is given for measuring a with high sensitivity from the proton recoil spectrum. The method is based on a magnetic spectrometer with electrostatic retardation potentials such as used for searches of the neutrino mass in tritium beta decay. The spectrometer can also be used for similar studies using radioactive nuclei.

  4. Search for Majoron-emitting modes of double-beta decay of $^{136}$Xe with EXO-200

    CERN Document Server

    :,; Auty, D J; Barbeau, P S; Beauchamp, E; Beck, D; Belov, V; Benitez-Medina, C; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Chaves, J; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, C G; Davis, J; DeVoe, R; Delaquis, S; Didberidze, T; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feldmeier, W; Fierlinger, P; Fudenberg, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Hall, C; Herrin, S; Hughes, M; Jewell, M J; Jiang, X S; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Kuchenkov, A; Kumar, K S; Leonard, D S; Leonard, F; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Nelson, R; Odian, A; Ostrovskiy, I; Ouellet, C; Piepke, A; Pocar, A; Prescott, C Y; Rivas, A; Rowson, P C; Rozo, M P; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tosi, D; Tsang, R; Twelker, K; Vogel, P; Vuilleumier, J -L; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2014-01-01

    EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless double-beta decay of $^{136}$Xe. Here we report on a search for various Majoron-emitting modes based on 100 kg$\\cdot$yr exposure of $^{136}$Xe. A lower limit of $T^{^{136}Xe}_{1/2} >1.2...10^{24}$ yr at 90% C.L. on the half-life of the spectral index = 1 Majoron decay was obtained, corresponding to a constraint on the Majoron-neutrino coupling constant of $||<$ (0.8-1.7)...10$^{-5}$.

  5. A method for an improved measurement of the electron-antineutrino correlation in free neutron beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Wietfeldt, F.E. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States)]. E-mail: few@tulane.edu; Fisher, B.M. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Trull, C. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Jones, G.L. [Physics Department, Hamilton College, Clinton, NY 13323 (United States); Collet, B. [Physics Department, Hamilton College, Clinton, NY 13323 (United States); Goldin, L. [Physics Department, Harvard University, Cambridge, MA 02139 (United States); Yerozolimsky, B.G. [Physics Department, Harvard University, Cambridge, MA 02139 (United States); Wilson, R. [Physics Department, Harvard University, Cambridge, MA 02139 (United States); Balashov, S. [Kurchatov Institute, Moscow (Russian Federation); Kurchatov Institute, Moscow (Russian Federation); Mostovoy, Yu. [Kurchatov Institute, Moscow (Russian Federation); Komives, A. [Physics Department, DePauw University, Greencastle, IN 46135 (United States); Leuschner, M. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); Byrne, J. [University of Sussex (United Kingdom); Bateman, F.B. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Dewey, M.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2005-06-11

    The angular correlation between the beta electron and antineutrino in nuclear beta decay is characterized by the dimensionless parameter a. The value of a for free neutron decay, when combined with other neutron decay parameters, can be used to determine the weak vector and axial vector coupling constants g{sub V} and g{sub A} and test the validity and self-consistency of the Electroweak Standard Model. Previous experiments that measured a in neutron decay relied on precise proton spectroscopy and were limited by systematic effects at about the 5% level. We present a new approach to measuring a for which systematic uncertainties promise to be much smaller.

  6. Beta decay and magnetic moments as tools to probe nuclear structure. Study of neutron-rich nuclei around N=40; Decroissance beta et moments magnetiques comme outils pour sonder la structure nucleaire. Etude des noyaux riches en neutrons autour de N=40

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I

    2003-12-01

    The evolution of nuclear structure in nuclei far from the {beta} stability line is one of the 'hot topics' in modern experimental and theoretical nuclear physics. The present thesis is devoted to the study of structure of neutron-rich nuclei around N=40. The evolution of the neutron g9/2 orbital with increasing number of neutrons is one of the key points defining the structure of these nuclei at low excitation energy. We used for this investigation as experimental tools the magnetic dipole moments measurements and the {beta} decay spectroscopy. For the measurement of the gyromagnetic factor of the 9/2{sup +} isomeric state in Fe{sup 61} we have applied the TDPAD method. This method (like most of measurements of nuclear moments) requires an oriented ensemble of nuclei. The orientation of Fe{sup 61m} was achieved via the fragmentation of Ni{sup 64} at 55 MeV/u and the selection of the fragment momentum with the LISE spectrometer at GANIL. The experimental device was specially conceived to preserve the alignment up to the implantation point. The measured value of the g factor was compared with large-scale shell model and Hartree-Fock-Bogoliubov model predictions. The nuclei studied via {beta} decay were produced by the fragmentation of Kr{sup 86} at 58 MeV/u. For the selection of reaction products we used for the first time the LISE2000 spectrometer and for the detection of {gamma} rays four EXOGAM clover detectors. We measured 5 new lifetimes and 4 lifetimes with a higher precision. From the prompt {beta}{gamma} coincidences we identified new states in the daughter nuclei, as it is the case of the first 2{sup +} excited states in Fe{sup 68} and Ni{sup 72}. The results were compared with the predictions of the large-scale shell model. Other transitions were observed for the first time in {beta}{gamma} decay of Ti{sup 60}, Fe{sup 70} and Co{sup 71,73}. (author)

  7. Nd loaded liquid scintillator to search for {sup 150}Nd neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Barabanov, I; Bezrukov, L; Yanovich, E [NR-RAS, Moscow (Russian Federation); Cattadori, C [INFN-Milano Bicocca, Milano (Italy); Danilov, N [IPC-RAS, Moscow (Russian Federation); Di Vacri, A; Ianni, A; Nisi, S [INFN-LNGS, L' Aquila (Italy); Ortica, F; Romani, A [Universita di Perugia and INFN Perugia, Perugia (Italy); Salvo, C [INFN-Genova, Genova (Italy); Smirnov, O [JINR, Dubna (Russian Federation)], E-mail: assunta.divacri@lngs.infn.it

    2008-11-01

    The {sup 150}Nd is considered one of the most attractive candidate for searching neutrinoless double beta (0{nu}{beta}{beta}-) decay, thanks to its high Q-value (3.367 MeV), that makes the external background issue less significative respect to other isotopes, and favorable computed matrix elements. The isotopic abundance of this isotope in natural neodimium is only 5.6% and up to now, it has been investigated only in low mass experiments. The next step is to increase the sensitivity of the experiments using larger mass of neodymium (10 ton-1 kton). This could be possible with a Nd loaded liquid scintillator (LS). At the Gran Sasso National Laboratory (LNGS), a joint INFN (Istituto Nazionale di Fisica Nucleare) and INR (Institute for Nuclear Research of Moscow) working group has been carrying out since 2001 an R and D activity aiming to develop organic liquid scintillators (LS) doped with metals. The achieved know-how and the satisfactory results obtained both with In and Gd allowed to face the development and production of Nd doped LS. The development of metal doped LS is challenging because the metal has to be embedded in a proper organic system that makes it soluble in an organic solvent minimizing the impact of the metal-organic compound on the optical and scintillation properties of the LS. A further challenge in the case of Nd is the presence of absorption bands of this element in the optical region with a transparent region around 400 nm, which is about at the maximum of the scintillator emission spectrum. A 2.5 1 Nd loaded LS has been produced diluting an originally developed Nd-Carboxylic (Nd-CBX) salt in pseudocumene (PC), the solvent of the Borexino liquid scintillator. The measured light yield, at [Nd] = 6.5 g/1 and [PPO] = 1.5 g/1, is {approx} 75% of pure PC at the same fluor concentration ({approx} 10000 ph/MeV). The Nd doped LS has been tested in a 2 1 quartz cell (wrapped by VM2000 reflector film) having dimensions 5x5x100 cm{sup 3}. The light

  8. Measurements of the ion fraction and mobility of alpha and beta decay products in liquid xenon using EXO-200

    CERN Document Server

    Albert, J B; Barbeau, P S; Beck, D; Belov, V; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, C G; Davis, J; Delaquis, S; Der Mesrobian-Kabakian, A; DeVoe, R; Didberidze, T; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feldmeier, W; Fierlinger, P; Fudenberg, D; Gornea, R; Graham, K; Gratta, G; Hall, C; Hughes, M; Jewell, M J; Jiang, X S; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Kuchenkov, A; Kumar, K S; Leonard, D S; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Nelson, R; O'Sullivan, K; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Prescott, C Y; Robinson, A; Rowson, P C; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tsang, R; Twelker, K; Vuilleumier, J -L; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Wright, J D; Wood, J; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2015-01-01

    Alpha decays in the EXO-200 detector are used to measure the fraction of charged $^{218}\\mathrm{Po}$ and $^{214}\\mathrm{Bi}$ daughters created from alpha and beta decays, respectively. $^{222}\\mathrm{Rn}$ alpha decays in liquid xenon (LXe) are found to produce $^{218}\\mathrm{Po}^{+}$ ions $50.3 \\pm 3.0\\%$ of the time, while the remainder of the $^{218}\\mathrm{Po}$ atoms are neutral. The fraction of $^{214}\\mathrm{Bi}^{+}$ from $^{214}\\mathrm{Pb}$ beta decays in LXe is found to be $76.4 \\pm 5.7\\%$, inferred from the relative rates of $^{218}\\mathrm{Po}$ and $^{214}\\mathrm{Po}$ alpha decays in the LXe. The average velocity of $^{218}\\mathrm{Po}$ ions is observed to decrease for longer drift times. Initially the ions have a mobility of $0.390 \\pm 0.006~\\mathrm{cm}^2/(\\mathrm{kV}~\\mathrm{s})$, and at long drift times the mobility is $0.219 \\pm 0.004~\\mathrm{cm}^2/(\\mathrm{kV}~\\mathrm{s})$. Time constants associated with the change in mobility during drift of the $^{218}\\mathrm{Po}^{+}$ ions are found to be propor...

  9. Maximum-likelihood analysis and goodness-of-fit estimation in low count-rate experiments: {sup 85}Kr {beta} activity in the test facility of the Borexino detector and double-beta decay of {sup 76}Ge in the Heidelberg-Moscow experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ianni, A. E-mail: aldo.ianni@lngs.infn.it

    2004-01-01

    Statistical methods for low count-rate experiments are reviewed and applied to two samples of experimental data. In one case the {beta} activity of {sup 85}Kr in the test facility of the Borexino detector is determined. In another case a data sample from the Heidelberg-Moscow experiment used to claim the discovery of the neutrinoless double-beta decay of {sup 76}Ge is analyzed. Exploiting a Bayesian technique a conservative upper limit on the half-life of the 0{nu}2{beta} decay of {sup 76}Ge is found at T{sub 1/2}{sup 0{nu}}{>=}1.2x10{sup 25} yr (90% CL) in the window (2000-2080) keV.

  10. Nuclear structure of tellurium 133 via beta decay and shell model calculations in the doubly magic tin 132 region. [J,. pi. , transition probabilities, neutron and proton separation, g factors

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S.M.

    1979-08-01

    An experimental investigation of the level structure of /sup 133/Te was performed by spectroscopy of gamma-rays following the beta-decay of 2.7 min /sup 133/Sb. Multiscaled gamma-ray singles spectra and 2.5 x 10/sup 7/ gamma-gamma coincidence events were used in the assignment of 105 of the approximately 400 observed gamma-rays to /sup 133/Sb decay and in the construction of the /sup 133/Te level scheme with 29 excited levels. One hundred twenty-two gamma-rays were identified as originating in the decay of other isotopes of Sb or their daughter products. The remaining gamma-rays were associated with the decay of impurity atoms or have as yet not been identified. A new computer program based on the Lanczos tridiagonalization algorithm using an uncoupled m-scheme basis and vector manipulations was written. It was used to calculate energy levels, parities, spins, model wavefunctions, neutron and proton separation energies, and some electromagnetic transition probabilities for the following nuclei in the /sup 132/Sn region: /sup 128/Sn, /sup 129/Sn, /sup 130/Sn, /sup 131/Sn, /sup 130/Sb, /sup 131/Sb, /sup 132/Sb, /sup 133/Sb, /sup 132/Te, /sup 133/Te, /sup 134/Te, /sup 134/I, /sup 135/I, /sup 135/Xe, and /sup 136/Xe. The results are compared with experiment and the agreement is generally good. For non-magic nuclei: the lg/sub 7/2/, 2d/sub 5/2/, 2d/sub 3/2/, 1h/sub 11/2/, and 3s/sub 1/2/ orbitals are available to valence protons and the 2d/sub 5/2/, 2d/sub 3/2/, 1h/sub 11/2/, and 3s/sub 1/2/ orbitals are available to valence neutron holes. The present CDC7600 computer code can accommodate 59 single particle states and vectors comprised of 30,000 Slater determinants. The effective interaction used was that of Petrovich, McManus, and Madsen, a modification of the Kallio-Kolltveit realistic force. Single particle energies, effective charges and effective g-factors were determined from experimental data for nuclei in the /sup 132/Sn region. 116 references.

  11. BETA DECAY HALF-LIVES AND RATES OF 134-136SN NUCLEI

    Directory of Open Access Journals (Sweden)

    M KHITER

    2015-12-01

    Full Text Available In astrophysical environment, allowed Gamow-Teller (GT transitions and space phase factors play an important role in determination of transition rates and half-lives, particularly for β-decay in presupernova evolution of massive stars. The estimation of these half-lives in neutron rich nuclei is needed in astrophysics for the understanding of supernovae explosions and the processes of nucleosynthesis, principally the r-process, and in the experimental exploration of the nuclear landscape. Their determination in agreement with experimental results is a challenging problem for nuclear theorists. In this work, the total β-decay half-lives and rates of 134-136Sn nuclei at different temperatures are calculated using various interactions developed in the light of recently available information on experimental binding energies and low-lying spectra of Sn, Sb and Te isotopes in 132Sn mass region. The calculation has been realized using Oxbash code in the frame work of the nuclear shell model. With these interactions, one can observe that the effective half-lives increase and the total decay rates decrease with increasing temperature. A deviation of half-lives starts at around 0.2 MeV and satures above 10 MeV, but the half-lives limit values are slightly different for all interactions.

  12. Double beta radioactivity and physics of the neutrino. Study of the background noise at 3 MeV in the search of {sup 100}Mo beta beta decay; Double radioactivite beta et physique du neutrino. Etude du bruit de fond a 3 MeV dans la recherche de la desintegration beta beta du {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal, F.

    1994-05-01

    Double beta decay without neutrino emission provides a test of the mass and nature of neutrinos (Majorana or Dirac). Experimental proof would be the observation of a peak at the transition energy in the spectrum of the two emitted electrons. The expected half-life of the process is extremely long (about 10{sup 25} years for {sup 100}Mo). So, being thus, it is very important to get a good knowledge of the origins and contributions of background noise in the region where the signal could occur. The main origins of the background noise in the region where the signal could occur. The main origins of the background noise are found to be e{sup +} - e{sup -} pairs induced by heavy energy gamma rays. These gamma rays follow the thermal neutron capture by the components of the detector. Another factor in the production of background noise is natural radio-activity. For example, the presence of Radon in the laboratory has been observed to produce deposits of {sup 214}Bi on the sides of the detector. Data taken with the NEMO 2 prototype and an enriched molybdenum source foil indicates that the background limit reached is of the order of 1 event per year in the 3 MeV region. Results of this work have proven the necessity to have a magnetic field in NEMO 3 in order to reject e{sup +} - e{sup -}pairs. (author).

  13. Beta-decay half-lives and beta-delayed neutron emisison probabilities of nuclei in the region A. 110, relevant for the r-process

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Peter [Los Alamos National Laboratory; Pereira, J [MSU; Hennrich, S [MSU; Aprahamian, A [UNIV OF NOTRE DAME; Arndt, O [GERMANY; Becerril, A [MSU; Elliot, T [MSU; Estrade, A [MSU; Galaviz, D [MSU; Kessler, R [UNIV MAINZ; Kratz, K - L [GERMANY; Lorusso, G [MSU; Mantica, P F [MSU; Matos, M [MSU; Montes, F [MSU; Pfeiffer, B [UNIV MAINZ; Schatz, F [MSU; Schnorrenberger, L [GERMANY; Smith, E [MSU; Stolz, A [MSU; Quinn, M [UNIV OF NOTRE DAME; Walters, W B [UNIV OF MARYLAND; Wohr, A [UNIV OF NOTRE DAME

    2009-01-01

    Measurements of the {beta}-decay properties of A {approx}< 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr and {sup 108,111}Mo, along with ,B-delayed neutron emission probabilities of 104Y, 109,11OMo and upper limits for 105Y, 103-107Zr and 108,111 Mo have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.

  14. Measurement of the two-neutrino double-beta decay half-life of ^{130}Te with the CUORE-0 experiment

    Science.gov (United States)

    Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; Dafinei, I.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Feintzeig, J.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Napolitano, T.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.

    2017-01-01

    We report on the measurement of the two-neutrino double-beta decay half-life of ^{130}Te with the CUORE-0 detector. From an exposure of 33.4 kg year of TeO_2, the half-life is determined to be T_{1/2}^{2ν } = [8.2 ± 0.2 (stat.) ± 0.6 (syst.)] × 10^{20} year. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the ^{130}Te neutrinoless double-beta decay region of interest.

  15. Experimental Observations of Nuclear Activity in Deuterated Materials Subjected to a Low-Energy Photon Beam

    Science.gov (United States)

    Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.; hide

    2017-01-01

    Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.

  16. Searching for Neutrinoless Double-Beta Decay of 130Te with CUORE

    Directory of Open Access Journals (Sweden)

    D. R. Artusa

    2015-01-01

    Full Text Available Neutrinoless double-beta (0νββ decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE is an upcoming experiment designed to search for 0νββ decay of 130Te using an array of 988 TeO2 crystal bolometers operated at 10 mK. The detector will contain 206 kg of 130Te and have an average energy resolution of 5 keV; the projected 0νββ decay half-life sensitivity after five years of livetime is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level, which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV. In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.

  17. Precision theoretical analysis of neutron radiative beta decay to order O (α2/π2)

    Science.gov (United States)

    Ivanov, A. N.; Höllwieser, R.; Troitskaya, N. I.; Wellenzohn, M.; Berdnikov, Ya. A.

    2017-06-01

    In the Standard Model (SM) we calculate the decay rate of the neutron radiative β- decay to order O (α2/π2˜10-5), where α is the fine-structure constant, and radiative corrections to order O (α /π ˜10-3). The obtained results together with the recent analysis of the neutron radiative β- decay to next-to-leading order in the large proton-mass expansion, performed by Ivanov et al. [Phys. Rev. D 95, 033007 (2017), 10.1103/PhysRevD.95.033007], describe recent experimental data by the RDK II Collaboration [Bales et al., Phys. Rev. Lett. 116, 242501 (2016), 10.1103/PhysRevLett.116.242501] within 1.5 standard deviations. We argue a substantial influence of strong low-energy interactions of hadrons coupled to photons on the properties of the amplitude of the neutron radiative β- decay under gauge transformations of real and virtual photons.

  18. The Nd-150(He-3,t) and Sm-150(t,He-3) reactions with applications to beta beta decay of Nd-150

    NARCIS (Netherlands)

    Guess, C. J.; Adachi, T.; Akimune, H.; Algora, A.; Austin, Sam M.; Bazin, D.; Brown, B. A.; Caesar, C.; Deaven, J. M.; Ejiri, H.; Estevez, E.; Fang, D.; Faessler, A.; Frekers, D.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Grinyer, G. F.; Harakeh, M. N.; Hatanaka, K.; Herlitzius, C.; Hirota, K.; Hitt, G. W.; Ishikawa, D.; Matsubara, H.; Meharchand, R.; Molina, F.; Okamura, H.; Ong, H. J.; Perdikakis, G.; Rodin, V.; Rubio, B.; Shimbara, Y.; Suesoy, G.; Suzuki, T.; Tamii, A.; Thies, J. H.; Tur, C.; Verhanovitz, N.; Yosoi, M.; Yurkon, J.; Zegers, R. G. T.; Zenihiro, J.

    2011-01-01

    The Nd-150(3He,t) reaction at 140 MeV/u and Sm-150(t,He-3) reaction at 115 MeV/u were measured, populating excited states in Pm-150. The transitions studied populate intermediate states of importance for the (neutrinoless) beta beta decay of Nd-150 to Sm-150. Monopole and dipole contributions to the

  19. The strength of the analog and Gamow-Teller giant resonances and hindrance of 2 nu beta beta-decay rate

    NARCIS (Netherlands)

    Rumyantsev, OA; Urin, MH

    1998-01-01

    An approach for describing the hindrance of the nuclear 2 upsilon beta beta-decay amplitude is proposed. The approach is based on a new formula obtained by a model-independent transformation of the initial expression for the amplitude. This formula takes explicitly into account the hindrance of the

  20. Nuclear deformation and the two-neutrino double- {beta} decay in {sup 124,126}Xe, {sup 128,130}Te, {sup 130,132}Ba and {sup 150}Nd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Chandra, R.; Rath, P.K. [University of Lucknow, Department of Physics, Lucknow (India); Raina, P.K. [IIT, Department of Physics and Meteorology, Kharagpur (India); Hirsch, J.G. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, A.P. 70-543, Mexico (Mexico)

    2007-09-15

    The two-neutrino double-beta decay of {sup 124,126}Xe, {sup 128,} {sup 130}Te,{sup 130,132}Ba and {sup 150}Nd isotopes is studied in the Projected Hartree-Fock-Bogoliubov (PHFB) model. Theoretical 2 {nu} {beta}{sup -}{beta}{sup -} half-lives of {sup 128,130}Te, and {sup 150}Nd isotopes, and 2{nu}{beta}{sup +}{beta}{sup +}, 2 {nu} {beta}{sup +}EC and 2{nu}ECEC for {sup 124,126}Xe and {sup 130,132}Ba nuclei are presented. Calculated quadrupolar transition probabilities B(E2:0{sup +}{yields}2{sup +}), static quadrupole moments and g-factors in the parent and daughter nuclei reproduce the experimental information, validating the reliability of the model wave functions. The anticorrelation between nuclear deformation and the nuclear transition matrix element M{sub 2{nu}} is confirmed. (orig.)

  1. Refinement of the gross theory of nuclear {beta}-decay, and hindrance of the first-forbidden transition of rank 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hidehiko [Waseda Univ., Tokyo (Japan). Dept. of Physics; Tachibana, Takahiro; Yamada, Masami

    1997-03-01

    Recently the gross theory of nuclear {beta}-decay was refined for odd-odd nuclei. In this refinement, the effect of the selection rule of {beta}-transitions from the ground states of odd-odd nuclei to those of even-even nuclei was taken into account based on a statistical consideration. The transitions to the first 2{sup +} excited states in even-even nuclei were also taken into account according to the selection rule approximately. In that study, it was found that the transitions between 1{sup -} ground states of the odd-odd nuclei and 0{sup +} ground states of even-even nuclei, belonging to the first-forbidden transitions of rank 1, are strongly hindered. A reduction factor was introduced for the transitions to the ground states of even-even nuclei to take into account this hindrance. It was also found that the strength functions of the Gamow-Teller transitions obtained from the conventional gross theory are underestimated by a factor of about 3. In order to improve this underestimation, the Lorentz-type function was adopted for the one-particle strength function in the model instead of the hyperbolic-secant-type function. In the present study we have newly analyzed the experimental ft-values of odd-A nuclei, and found that the first-forbidden transitions of rank 1 are also considerably hindered between the ground states. Following the above refinement we have calculated the {beta}-ray spectra of some odd-odd short-lived fission products with the use of the refined gross theory. These results are compared not only with the experiments by Rudstam et al. but also with the conventional gross theory. (author)

  2. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  3. Nuclear symmetry energy: An experimental overview

    Indian Academy of Sciences (India)

    Abstract. The nuclear symmetry energy is a fundamental quantity important for study- ing the structure of systems as diverse as the atomic nucleus and the neutron star. Con- siderable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article ...

  4. Nuclear symmetry energy: An experimental overview

    Indian Academy of Sciences (India)

    The nuclear symmetry energy is a fundamental quantity important for studying the structure of systems as diverse as the atomic nucleus and the neutron star. Considerable efforts are being made to experimentally extract the symmetry energy and its dependence on nuclear density and temperature. In this article, the ...

  5. Relativistic theory of inverse beta-decay of polarized neutron in ...

    Indian Academy of Sciences (India)

    of the Dirac equation in a magnetic field, and also on different spin operators that ... functions of order n, e is the absolute value of the elec- tron charge, p0,p2 and p3 are the electron energy and momentum components, respectively. The energy spectrum ..... The partially polarized neutron matter can be characterized by.

  6. The Search for Neutrino-less Double-Beta Decay: A Decade of Discovery or Despair?

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The search for "neutrino-less double-bete decay" decay in candidate nuclear isotopes remains a central focus in contemporary particle physics, with the main goal of establishing whether the neutrino is its own anti-particle. A positive detection would also establish the presence of lepton number violation in this decay, and suggest the existence of processes beyond the Standard Model and reach of terrestrial accelerators. With the discovery and quantitative assessment of neutrino flavor oscillation, guaranteeing the presence of a non-zero neutrino mass – a requirement for "neutrino-less double-bete decay" decay to occur – motivation has surged. In a review of the present diverse and vigorous current experimental situation, I must focus on just a few approaches and candidate isotopes, in particular on 136Xe and a new experimental effort, NEXT, exploiting the unfamiliar phenomenon of electroluminescence. But, even if the neutrino is its own anti-particle, experiments may see no decays! Stil...

  7. Production of 82Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay

    Science.gov (United States)

    Dafinei, I.; Nagorny, S.; Pirro, S.; Cardani, L.; Clemenza, M.; Ferroni, F.; Laubenstein, M.; Nisi, S.; Pattavina, L.; Schaeffner, K.; di Vacri, M. L.; Boyarintsev, A.; Breslavskii, I.; Galkin, S.; Lalayants, A.; Rybalka, I.; Zvereva, V.; Enculescu, M.

    2017-10-01

    High purity Zinc Selenide (ZnSe) crystals are produced starting from elemental Zn and Se to be used for the search of the neutrinoless double beta decay (0νDBD) of 82Se. In order to increase the number of emitting nuclides, enriched 82Se is used. Dedicated production lines for the synthesis and conditioning of the Zn82Se powder in order to make it suitable for crystal growth were assembled compliant with radio-purity constraints specific to rare event physics experiments. Besides routine check of impurities concentration, high sensitivity measurements are made for radio-isotope concentrations in raw materials, reactants, consumables, ancillaries and intermediary products used for ZnSe crystals production. Indications are given on the crystals perfection and how it is achieved. Since very expensive isotopically enriched material (82Se) is used, a special attention is given for acquiring the maximum yield in the mass balance of all production stages. Production and certification protocols are presented and resulting ready-to-use Zn82Se crystals are described.

  8. Progress in Barium Tagging on a Cryogenic Probe for the nEXO Neutrinoless Double Beta Decay Experiment

    Science.gov (United States)

    Craycraft, Adam; Walton, Timothy; Chambers, Christopher; Fairbank, William; nEXO Collaboration

    2015-10-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of the isotope Xe-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the nature of the neutrino to be a Majorana particle. Detecting the presence of the daughter Ba-136 at a decay site (called ``barium tagging'') provides strong rejection of backgrounds. Barium tagging may be available for a second phase of nEXO operation, allowing neutrino mass sensitivity beyond the inverted mass hierarchy. Here we present progress on a barium tagging method that involves trapping the barium ion/atom in solid xenon (SXe) at the end of a cold probe, and then detecting the ion/atom by its fluorescence in the SXe. Recent results on imaging small numbers of Ba atoms in SXe on a sapphire window, and progress toward capture of Ba atoms/ions on a cold probe and extraction from LXe, will be presented.

  9. A realistic model of neutrino masses with a large neutrinoless double beta decay rate

    Science.gov (United States)

    del Aguila, Francisco; Aparici, Alberto; Bhattacharya, Subhaditya; Santamaria, Arcadi; Wudka, Jose

    2012-05-01

    The minimal Standard Model extension with the Weinberg operator does accommodate the observed neutrino masses and mixing, but predicts a neutrinoless double beta (0 νββ) decay rate proportional to the effective electron neutrino mass, which can be then arbitrarily small within present experimental limits. However, in general 0 νββ decay can have an independent origin and be near its present experimental bound; whereas neutrino masses are generated radiatively, contributing negligibly to 0 νββ decay. We provide a realization of this scenario in a simple, well defined and testable model, with potential LHC effects and calculable neutrino masses, whose two-loop expression we derive exactly. We also discuss the connection of this model to others that have appeared in the literature, and remark on the significant differences that result from various choices of quantum number assignments and symmetry assumptions. In this type of models lepton flavor violating rates are also preferred to be relatively large, at the reach of foreseen experiments. Interestingly enough, in our model this stands for a large third mixing angle, {{si}}{{{n}}^{{2}}}{θ_{{{13}}}}{˜}}}{ > }}0.00{8} , when μ→ eee is required to lie below its present experimental limit.

  10. Study of neutron-rich argon isotopes in {beta}-decay

    Energy Technology Data Exchange (ETDEWEB)

    Mrazek, J.; Grevy, S.; Iulian, S.; Buta, A.; Negoita, F.; Angelique, J.C.; Baumann, P.; Borcea, C.; Canchel, G.; Catford, W.; Courtin, S.; Daugas, J.M.; Dlouhy, Z.; Dessagne, P.; Knipper, A.; Lehrsenneau, G.; Lecolley, F.R.; Lecouey, J.L.; Lewitowicz, M.; Lienard, E.; Lukyanov, S.; Marechal, F.; Miehe, C.; Oliveira, F. de; Orr, N.A.; Pantelica, D.; Penionzhkevich, Y.; Peter, J.; Pietri, S.; Poirier, E.; Sorlin, O.; Stanoiu, M.; Stodel, O.; Tarasov, O.; Timis, C

    2004-04-05

    The study [Nucl. Phys. A 722 (2003) 424c] of the neutron rich nuclei near the N=28 magic number was performed at GANIL-France. This letter reports on preliminary results concerning isotopes {sup 44,45,46}Ar. Schemes of excited levels were deduced from the {gamma}- {gamma}coincidences. Levels above S{sub n} energy were suggested from the {gamma}- n coincidences for {sup 46}Ar.

  11. Determination of the Electron Neutrino Mass from Experiments on Electron-Capture Beta-Decay (EC)

    CERN Multimedia

    2002-01-01

    The aim of the programme is to measure the electron-neutrino mass, for which at present an upper limit of 500~eV is known. \\\\ \\\\ The experiment studies the shape of the internal bremsstrahlung spectrum in electron-capture near its upper end-point and deduces a mass from small shape changes completely analogous to those in the well-known determination of the electron antineutrino mass in the tritium beta-minus decay. \\\\ \\\\ In a low-energy bremsstrahlung process, the capture takes place from a virtual S state associated with a radiative P~@A~S electromagnetic transition, and the resonant nature of the process leads to important enhancements of the photon intensities at low energy, in particular near the resonance energies co (X-rays). This effect gives this type of experiment a chance to compete with experiments on continuous beta spectra. \\\\ \\\\ The programme concentrates on two long-lived isotopes: \\\\ \\\\ 1)~~|1|6|3Ho. The Q value for this isotope has been found to be 2.6-2.7 keV. A detector specially construct...

  12. First measurement of beta decay half-lives in neutron-rich Tl and Bi isotopes

    Science.gov (United States)

    Benzoni, G.; Morales, A. I.; Valiente-Dobón, J. J.; Gottardo, A.; Bracco, A.; Camera, F.; Crespi, F. C. L.; Corsi, A. M.; Leoni, S.; Million, B.; Nicolini, R.; Wieland, O.; Gadea, A.; Lunardi, S.; Boutachkov, P.; Bruce, A. M.; Górska, M.; Grebosz, J.; Pietri, S.; Podolyak, Zs.; Pfützner, M.; Regan, P. H.; Weick, H.; Alcántara Núñez, J.; Algora, A.; Al-Dahan, N.; de Angelis, G.; Ayyad, Y.; Alkhomashi, N.; Allegro, P. R. P.; Bazzacco, D.; Benlliure, J.; Bowry, M.; Bunce, M.; Casarejos, E.; Cortes, M. L.; Denis Bacelar, A. M.; Deo, A. Y.; Domingo-Pardo, C.; Doncel, M.; Dombradi, Zs.; Engert, T.; Eppinger, K.; Farrelly, G. F.; Farinon, F.; Farnea, E.; Geissel, H.; Gerl, J.; Goel, N.; Gregor, E.; Habermann, T.; Hoischen, R.; Janik, R.; Klupp, S.; Kojouharov, I.; Kurz, N.; Mandal, S.; Menegazzo, R.; Mengoni, D.; Napoli, D. R.; Naqvi, F.; Nociforo, C.; Prochazka, A.; Prokopowicz, W.; Recchia, F.; Ribas, R. V.; Reed, M. W.; Rudolph, D.; Sahin, E.; Schaffner, H.; Sharma, A.; Sitar, B.; Siwal, D.; Steiger, K.; Strmen, P.; Swan, T. P. D.; Szarka, I.; Ur, C. A.; Walker, P. M.; Wollersheim, H.-J.

    2012-09-01

    Neutron-rich isotopes around lead, beyond N = 126, have been studied exploiting the fragmentation of an uranium primary beam at the FRS-RISING setup at GSI. For the first time β-decay half-lives of 219Bi and 211,212,213Tl isotopes have been derived. The half-lives have been extracted using a numerical simulation developed for experiments in high-background conditions. Comparison with state of the art models used in r-process calculations is given, showing a systematic underestimation of the experimental values, at variance from close-lying nuclei.

  13. Superallowed Nuclear Beta Decay:. Recent Results and Their Impact on Vud

    Science.gov (United States)

    Hardy, J. C.; Towner, I. S.

    2009-01-01

    Measurements on superallowed 0+ → 0+ nuclear beta transitions currently provide the most demanding test of the Conserved Vector Current (CVC) hypothesis and the most precise value for the up-down element, Vud, of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Both are sensitive probes for physics beyond the Standard Model. Analysis of the experimental results depends on small radiative and isospin-symmetry-breaking corrections, the validity of which is being probed by current measurements. We report on the current status of world data in light of recent improvements in both measurement and theory.

  14. Experimental measurement of energy harvesting with backpack

    Science.gov (United States)

    Pavelkova, Radka; Vala, David; Suranek, Pavel; Mahdal, Miroslav

    2017-08-01

    This article deals with the energy harvesting systems, especially the energy harvesting backpack, which appears as a convenient means for energy harvesting for mobile sensors power. Before starting the experiment, it was necessary to verify whether this energy will be sufficient to get acquainted with the human kinematics and analyze problematics itself. For this purpose there was used motion capture technology from Xsens. Measured data on the position of a particle moving man and back when walking, these data were then used for experimental realization of energy harvesting backpack and as input data to the simulation in Simulink, which brought us a comparison between theoretical assumptions and practical implementation. When measuring characteristics of energy harvesting system we have a problem with measurements on backpack solved when redoing of the hydraulic cylinder as a source of a suitable movement corresponding to the amplitude and frequency of human walk.

  15. Measurement of the two-neutrino double-beta decay half-life of {sup 130}Te with the CUORE-0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alduino, C.; Avignone, F.T.; Chott, N.; Creswick, R.J.; Rosenfeld, C.; Wilson, J. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Alfonso, K.; Hickerson, K.P.; Huang, H.Z.; Liu, X.; Trentalange, S.; Zhu, B.X. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Artusa, D.R. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Azzolini, O.; Camacho, A.; Keppel, G.; Palmieri, V.; Pira, C. [INFN-Laboratori Nazionali di Legnaro, Legnaro, Padova (Italy); Banks, T.I.; Drobizhev, A.; Freedman, S.J.; Hennings-Yeomans, R.; O' Donnell, T.; Wagaarachchi, S.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bari, G.; Deninno, M.M. [INFN-Sezione di Bologna, Bologna (Italy); Beeman, J.W. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); Bellini, F.; Cardani, L.; Casali, N.; Cosmelli, C.; Ferroni, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Bersani, A.; Caminata, A. [INFN-Sezione di Genova, Genova (Italy); Biassoni, M.; Carbone, L.; Cremonesi, O.; Ferri, E.; Giachero, A.; Pessina, G.; Previtali, E.; Rusconi, C. [INFN-Sezione di Milano Bicocca, Milan (Italy); Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Fiorini, E.; Gironi, L.; Gotti, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sisti, M.; Terranova, F.; Zanotti, L. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN-Sezione di Milano Bicocca, Milan (Italy); Bucci, C.; Cappelli, L.; D' Addabbo, A.; Di Vacri, M.L.; Gorla, P.; Pattavina, L.; Pirro, S. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Canonica, L. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Massachusetts Institute of Technology, Cambridge, MA (United States); Cao, X.G.; Fang, D.Q.; Ma, Y.G.; Wang, H.W.; Zhang, G.Q. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); Copello, S.; Di Domizio, S.; Fernandes, G.; Marini, L.; Pallavicini, M. [INFN-Sezione di Genova, Genova (Italy); Universita di Genova, Dipartimento di Fisica, Genova (Italy); Cushman, J.S.; Davis, C.J.; Heeger, K.M.; Lim, K.E.; Maruyama, R.H. [Yale University, Department of Physics, New Haven, CT (United States); Dafinei, I.; Morganti, S.; Mosteiro, P.J.; Orio, F.; Pettinacci, V.; Tomei, C.; Vignati, M. [INFN-Sezione di Roma, Rome (Italy); Dell' Oro, S. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); INFN-Gran Sasso Science Institute, L' Aquila (Italy); Feintzeig, J.; Fujikawa, B.K.; Mei, Y.; Smith, A.R. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Franceschi, M.A.; Ligi, C.; Napolitano, T.; Piperno, G. [INFN-Laboratori Nazionali di Frascati, Frascati, Rome (Italy); Giuliani, A.; Tenconi, M. [Universite Paris-Saclay, CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Orsay (France); Gladstone, L.; Leder, A.; Winslow, L.A. [Massachusetts Institute of Technology, Cambridge, MA (United States); Gutierrez, T.D. [California Polytechnic State University, Physics Department, San Luis Obispo, CA (United States); Haller, E.E. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); University of California, Department of Materials Science and Engineering, Berkeley, CA (United States); Han, K. [Yale University, Department of Physics, New Haven, CT (United States); Shanghai Jiao Tong University, Department of Physics and Astronomy, Shanghai (China); Hansen, E. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Kadel, R. [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Kolomensky, Yu.G. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Martinez, M. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Moggi, N. [INFN-Sezione di Bologna, Bologna (Italy); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Scienze per la Qualita della Vita, Bologna (Italy); Nones, C. [Service de Physique des Particules, CEA/Saclay, Gif-sur-Yvette (France); Norman, E.B.; Wang, B.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Ouellet, J.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Pagliarone, C.E. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Universita degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, Cassino (Italy); Sangiorgio, S.; Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Santone, D. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, L' Aquila (Italy); Singh, V. [University of California, Department of Physics, Berkeley, CA (US); Taffarello, L. [INFN-Sezione di Padova, Padova (IT); Wise, T. [Yale University, Department of Physics, New Haven, CT (US); University of Wisconsin, Department of Physics, Madison, WI (US); Woodcraft, A. [University of Edinburgh, SUPA, Institute for Astronomy, Edinburgh (GB); Zimmermann, S. [Lawrence Berkeley National Laboratory, Engineering Division, Berkeley, CA (US); Zucchelli, S. [INFN-Sezione di Bologna, Bologna (IT); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (IT)

    2017-01-15

    We report on the measurement of the two-neutrino double-beta decay half-life of {sup 130}Te with the CUORE-0 detector. From an exposure of 33.4 kg year of TeO{sub 2}, the half-life is determined to be T{sub 1/2}{sup 2ν} = [8.2 ± 0.2 (stat.) ± 0.6 (syst.)] x 10{sup 20} year. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the {sup 130}Te neutrinoless double-beta decay region of interest. (orig.)

  16. Study of neutron-rich $^{51−53}$ Ca isotopes via $\\beta$-decay

    CERN Multimedia

    The high Q$_\\beta$ values in certain neutron-rich regions of the chart of nuclides opens up the possibility to study states in the daughter nuclei which lie at high excitation energy, above the neutron separation threshold. We propose to perform spectroscopy of the $\\beta$-delayed neutron emission of the $^{51-53}$K isotopes to study the population of single-particle or particle-hole states both below and above the neutron separation threshold. The VANDLE neutron detector will be used in combination with the IDS tape station setup and Ge detectors.

  17. {beta}-decay studies at the N=28 shell closure: indications for a weakening of the spin-orbit force far from stability?

    Energy Technology Data Exchange (ETDEWEB)

    Grevy, S. [Laboratoire de Physique Corpusculaire de Caen, IN2P3-CNRS, ENSICAEN et Universite de Caen, F-14050 Caen Cedex (France)]. E-mail: grevy@in2p3.fr; Angelique, J.C.; Baumann, P.; Borcea, C.; Buta, A.; Canchel, G.; Catford, W.N.; Courtin, S.; Daugas, J.M.; Oliveira, F. de; Dessagne, P.; Dlouhy, Z.; Knipper, A.; Kratz, K.L.; Lecolley, F.R.; Lecouey, J.L.; Lehrsenneau, G.; Lewitowicz, M.; Lienard, E.; Lukyanov, S.; Marechal, F.; Miehe, C.; Mrazek, J.; Negoita, F.; Orr, N.A.; Pantelica, D.; Penionzhkevich, Y.; Peter, J.; Pfeiffer, B.; Pietri, S.; Poirier, E.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Stodel, C.; Timis, C

    2004-12-27

    A {beta}-decay experiment on nuclei in the region of N=28 has been performed at the GANIL facility. New measured half-lives for the Si isotopes from N=25 to N=28 are reported and discussed in the light of the deformation occurring in this region. Comparison with QRPA calculations suggests that a weakening of the spin-orbit force occurs for the very neutron-rich Si isotopes.

  18. Shape effects in the vicinity of the Z=82 line: study of the $\\beta$-decay of $^{182,184,186}$Hg

    CERN Multimedia

    This proposal is aimed at the study of the $\\beta$-decay of the neutron-­deficient $^{182,184,186}$Hg nuclei using the total absorption technique. Recent theoretical results show that, from measurements of the Gamow-­Teller strength distribution, the shapes of the ground states of the decaying Hg nuclei can be inferred. This study offers an independent way to study the phenomenon of shape coexistence in a region of particular interest.

  19. Constraints of beyond Standard Model parameters from the study of neutrinoless double beta decay

    Directory of Open Access Journals (Sweden)

    Stoica Sabin

    2017-01-01

    Full Text Available Neutrinoless double beta (0νββ decay is a beyond Standard Model (BSM process whose discovery would clarify if the lepton number is conserved, decide on the neutrinos character (are they Dirac or Majorana particles? and give a hint on the scale of their absolute masses. Also, from the study of 0νββ one can constrain other BSM parameters related to different scenarios by which this process can occur. In this paper I make first a short review on the actual challenges to calculate precisely the phase space factors and nuclear matrix elements entering the 0νββ decay lifetimes, and I report results of our group for these quantities. Then, taking advance of the most recent experimental limits for 0νββ lifetimes, I present new constraints of the neutrino mass parameters associated with different mechanisms of occurrence of the 0νββ decay mode.

  20. Superallowed Beta Decay: the Role of Nuclear Structure in Standard-Model Tests

    Science.gov (United States)

    Hardy, J. C.; Towner, I. S.

    2009-03-01

    Measurements on superallowed 0+ rightarrow 0+ nuclear beta transitions currently provide the most demanding test of the Conserved Vector Current (CVC) hypothesis and the most precise value for the up-down element, Vud, of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Both are sensitive probes for physics beyond the Standard Model. Analysis of the experimental results depends on small radiative and isospin-symmetry-breaking corrections, some of which depend on the specific structure of the parent and daughter nuclei involved. These calculated corrections affect the precision of the results, and experiments are currently focused on reducing their uncertainties. Although nuclear structure only contributes to rather small corrections, it plays a crucial role in these fundamental tests.

  1. Final report: Accelerated beta decay for disposal of fission fragment wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, Howard R.

    2000-03-06

    The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory.

  2. Progress in the use of pixel detectors in double beta decay experiment TGV

    Science.gov (United States)

    Jose, J. M.; TGV Collaboration

    2013-12-01

    The TGV collaboration has been investigating two neutrino double electron capture (2νEC/EC) in 106Cd since 2000. The double beta experiments would answer some of the puzzling problems about neutrinos (e.g. nature and mass) but one of the main challenges is the background events. The collaboration is investigating the use of pixel detectors in such rare decay experiments. Pixel detector gives spatial information along with energy of the particle, thus provides useful information to reduce the background. The collaboration has proposed a Silicon Pixel Telescope (SPT) for the next generation experiment; where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. A prototype unit of SPT has been constructed and results of preliminary background measurements performed on the surface and in the underground laboratories are presented.

  3. Progress in the use of pixel detectors in double beta decay experiment TGV

    Energy Technology Data Exchange (ETDEWEB)

    Jose, J. M. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 12800 Prague 2 (Czech Republic); Collaboration: TGV Collaboration

    2013-12-30

    The TGV collaboration has been investigating two neutrino double electron capture (2νEC/EC) in {sup 106}Cd since 2000. The double beta experiments would answer some of the puzzling problems about neutrinos (e.g. nature and mass) but one of the main challenges is the background events. The collaboration is investigating the use of pixel detectors in such rare decay experiments. Pixel detector gives spatial information along with energy of the particle, thus provides useful information to reduce the background. The collaboration has proposed a Silicon Pixel Telescope (SPT) for the next generation experiment; where a pair of Si pixel detectors with enriched Cd foil in the middle forms the detection unit. A prototype unit of SPT has been constructed and results of preliminary background measurements performed on the surface and in the underground laboratories are presented.

  4. Shape coexistence in $^{180}$Hg studied through the $\\beta$ decay of $^{180}$Tl

    CERN Document Server

    Elseviers, J; Diriken, J; Patronis, N; Koster, U; Franchoo, S; Vermote, S; Bree, N; Veselsky, M; Huyse, M; Cocolios, T E; Seliverstov, M; Barzakh, A; Van Duppen, P; Venhart, M; Van den Bergh, P; Page, R D; Marsh, B A; Wagemans, C; Heredia, J A; Ivanov, O; Comas, V F; Van De Walle, J; Antalic, S; Fedosseyev, V N; Fedorov, D; Andreyev, A N

    2011-01-01

    The beta(+)/EC decay of (180)Tl and excited states in the daughter nucleus (180)Hg have been investigated at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. Many new low-lying energy levels were observed in (180)Hg, of which the most significant are the 0(2)(+) at 419.6 keV and the 2(2)(+) at 601.3 keV. The former is the bandhead of an excited band in (180)Hg assumed originally to be of prolate nature. From the beta feeding to the different states in (180)Hg, the ground-state spin of (180)Tl was deduced to be (4(-),5(-)).

  5. Experimental setup and commissioning baseline study in search of time-variations in beta-decay half-lives

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Braden, E-mail: goddard.braden@gmail.com [Department of Nuclear Engineering, Khalifa University of Science, Technology & Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Hitt, George W. [Department of Nuclear Engineering, Khalifa University of Science, Technology & Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Department of Applied Mathematics and Science, Khalifa University of Science, Technology & Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Solodov, Alexander A. [Department of Nuclear Engineering, Khalifa University of Science, Technology & Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Bridi, Dorian; Isakovic, A.F. [Department of Applied Mathematics and Science, Khalifa University of Science, Technology & Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); El-Khazali, Reyad [Department of Electrical and Computer Engineering, Khalifa University of Science, Technology & Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates); Abulail, Ayman, E-mail: aabulail@pi.ac.ae [Department of Applied Mathematics and Science, Khalifa University of Science, Technology & Research, P.O. Box 127788, Abu Dhabi (United Arab Emirates)

    2016-03-11

    Recently there have been a number of investigations into whether the decay constant of a radioactive isotope can be influenced by external factors, such as the Earth–Sun distance or Solar flare activity. Positive claims suggest that annual oscillations of ~0.1% and accelerations of ~0.4% in the relative activity of beta-emitters coincide with the Earth–Sun distance and solar flare activity, respectively. Results from replication experiments have so far been conflicting. The main criticism of the measurements used to trace and quantify these effects is that the data is of poor quality or limited in scope. Data have often been collected as part of short duration weekly calibration measurements, measured with a single type of low precision detector, only using one isotope, and having no environmental conditions information (temperature, pressure, humidity) accompanying the radiation measurements. This paper describes the setup of a series of counting experiments commissioned for addressing these criticisms. Six dedicated detector systems (four different types) measuring six different isotopes ({sup 14}C, {sup 54}Mn, {sup 60}Co, {sup 90}Sr, {sup 204}Tl, and {sup 226}Ra) have been continuously collecting source activity synchronously with environmental data for a period of one month (April 2014). The results of this baseline commissioning study show that there are correlations between activity and environmental conditions for some detector types which are then quantified. The results also show that the one sigma counting uncertainties in all the detectors are less than 0.024% for a given 24 h period. After accounting for propagated uncertainties from corrections against correlations with environmental data, the ability to resolve 0.1% activity changes varies, from 8 min to 1.6 days, depending on the specific detector. All six experiments therefore, will have sufficient precision over the upcoming year to scrutinize claims of both annual activity oscillations and solar flare activity changes.

  6. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  7. Measurement of the Neutron Beta Decay Lifetime using Magnetically Trapped Ultracold Neutrons

    Science.gov (United States)

    Adamek, Evan Robert

    The neutron lifetime is an important parameter in the Standard Model of particle physics, with influences on the electroweak interaction and on Big Bang nucleosynthesis. Measurements of this quantity in cold beam experiments and in experiments using ultracold neutrons (UCN) disagree; this discrepancy may indicate that these measurements possess unaccounted-for systematic errors. The UCNtau experiment at Los Alamos Neutron Science Center (LANSCe) utilizes an asymmetrical magneto-gravitational storage volume with an in-situ vanadium detector. This setup is designed to either avoid or control many of the weaknesses that reduce systematic precision in other UCN lifetime experiments. Controlling for the many measurable errors requires detailed calculation and simulation, aided, for example, by the Geant4 Monte Carlo particle transport toolkit, which has been used to create a high fidelity model of the UCNtau experiment for modeling UCN transport, storage, and detection. Through the course of running the experiment, improvements in knowledge of particle measurement have led to improvements to the transport and to the detectors used in various parts of the experiment. With the experimental setup optimized to account for the subtleties of the measurement, the 2014-2015 beam period at LANSCe generated 85 measurement runs from which we could calculate the storage lifetime. Careful analysis of the effects of background on the vanadium detector assembly allowed for elimination of undesired signal and allowed for the extraction of a preliminary value for the neutron lifetime and the determination of areas to improve for the following run cycle.

  8. Branching ratio for the superallowed beta-decay of 10C

    Science.gov (United States)

    Eronen, Tommi; Bencomo, M.; Chen, L.; Hardy, J. C.; Horvat, V.; Iacob, V.; Nica, N.; Park, H. I.; Roeder, B.; Saastamoinen, A.

    2016-03-01

    Superallowed β decays play a key role in testing the Standard Model of Particle Physics. These decays occur between nuclear analog states having spin-parity of 0+ and isospin T = 1 . Currently, and in the foreseeable future, they offer the most accurate value for the Vud matrix element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. Each superallowed transition is characterized with an Ft value combining both experimental and theoretical quantities. We have just made a preliminary new measurement of the 10C branching ratio, which currently is the least precisely known quantity for any of the ``traditional nine'' superallowed transitions. Furthermore, 10C is the only case that appears to have its corrected Ft value outside the world average value, which could be explained with the existence of a scalar current. We performed the branching-ratio measurement with a β- γ coincidence setup using a scintillator for β and an HPGe with +/-0.15% calibrated relative efficiency for γ detection. Since the branching ratio is obtained from the ratio of intensities of 718 keV and 1022 keV γ lines, most systematic uncertainties cancel out. I will show an overview of the experiment and preliminary results.

  9. Quest for Neutrinoless Double Beta Decay of 130Te with the CUORE Detector

    Science.gov (United States)

    O'Donnell, Thomas; Cuore Collaboration

    2013-10-01

    The CUORE experiment, in the advanced stages of construction at Laboratori Nazionali del Gran Sasso (LNGS), aims to search for 0 νββ decay of 130Te with unprecedented sensitivity: T1/ 2 0 ν = 9 . 5 ×1025 yr at 90 % C.L. The detector will consist of 19 towers, each comprising 13 planes of four, 125 cm3, cubic TeO2 crystals. This amounts to a total mass of 206 kg of 130Te. When cooled to an operating temperature of ~ 10 mK such crystals function as highly sensitive bolometers with energy resolution better than 5 keV demonstrated near the 0 νββ decay Q-value (2527.518 +/- 0.013 keV). In this talk I will describe the expected reach of CUORE considering the rigorous cleaning, materials handling, and ultra-pure assembly techniques developed by the collaboration. I will also report on the status of CUORE-0, a single CUORE-like tower where many of these background mitigation techniques were deployed during assembly. CUORE-0 represents a new 0 νββ experiment which is already operating at LNGS and will surpass the sensitivity of the previous generation experiment (Cuoricino) before CUORE begins operating.

  10. Majorana neutrino masses from neutrinoless double-beta decays and lepton-number-violating meson decays

    Directory of Open Access Journals (Sweden)

    Jun-Hao Liu

    2016-09-01

    Full Text Available The Schechter–Valle theorem states that a positive observation of neutrinoless double-beta (0νββ decays implies a finite Majorana mass term for neutrinos when any unlikely fine-tuning or cancellation is absent. In this note, we reexamine the quantitative impact of the Schechter–Valle theorem, and find that current experimental lower limits on the half-lives of 0νββ-decaying nuclei have placed a restrictive upper bound on the Majorana neutrino mass |δmνee|<7.43×10−29 eV radiatively generated at the four-loop level. Furthermore, we generalize this quantitative analysis of 0νββ decays to that of the lepton-number-violating (LNV meson decays M−→M′++ℓα−+ℓβ− (for α,β=e or μ. Given the present upper limits on these rare LNV decays, we have derived the loop-induced Majorana neutrino masses |δmνee|<9.7×10−18 eV, |δmνeμ|<1.6×10−15 eV and |δmνμμ|<1.0×10−12 eV from K−→π++e−+e−, K−→π++e−+μ− and K−→π++μ−+μ−, respectively. A partial list of radiative neutrino masses from the LNV decays of D, Ds and B mesons is also given.

  11. Experimental Seminar on Nuclear Energy for Teachers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    `Experimental Seminar on Nuclear Energy for Teachers` was conducted and sponsored by the Science and Technology Agency. And in order to understand nuclear energy properly through lectures and experiments with good results inclass, the seminar carried out for teachers of high schools and junior high schools by the Nuclear Technology and Education Center (NuTEC), Japan Atomic Energy Research Institute in 1990 FY to 1997 FY. In this report, details of the seminars in the above period are described and No.1 to 17 of Communication Letters of Experimental Seminar on Nuclear Energy` started at 1992 FY are described also. These letters were prepared for attendant follow-up program. And programs of recent seminars, future`s seminars, impressions and comments from attendants, reports from actual classes and others are described in these letters and they are very useful for educational classes on nuclear energy by other teachers. Therefore contents of the letters are listed and easy to refer. A part of this educational task was transferred to the Radiation Application Development Association in 1997 FY and other parts were transferred in 1998 FY. (author)

  12. Preliminary work on the measurement of the {beta} - {nu} angular correlation in the {sup 6}He beta decay by means of a Paul's trap; Etudes et tests preliminaires a une mesure de la correlation angulaire {beta} - {nu} dans la desintegration du noyau {sup 6}He a l'aide d'un piege de Paul

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, P

    2002-03-01

    The subject of this thesis is the preparation of a measurement of the {beta} - {nu} angular correlation coefficient, in {sup 6}He nuclear {beta} - decay, using a Paul trap. Its principle consists in studying the decay of radioactive ions trapped in a small volume, practically at rest in the center of a transparent electric trap. The trajectories of the particles emitted in the decay are weakly disturbed. The detection in coincidence of the electron and the recoil ion in each decay allows the measurement of 3 observables: the energies of the particles and their relative angle. The {beta} - {nu} angular correlation parameter deduced from the coincidence spectrum is sensitive to the existence of exotic interactions excluded by the V - A theory of the weak interactions. In the case of {sup 6}He decay a deviation observed on the predicted value would imply the existence of tensor type interactions, which might be due to the exchange of leptoquarks. These are gauge bosons present in many extensions of the Standard Model. The work presented here concerns the tests of a transparent Paul trap. The performance of the trap has been tested with ions created in a laser plasma source (Mo{sup +}, Fe{sup +}, Al{sup +}), and also with ions delivered by an ionization source ({sup 4}He{sup +} ions). These experiments were carried out in parallel with their simulations which required the development of a computer code of the electrical potential in various geometries, and of a code of ions transport in the associated fields. These simulations showed a good agreement with the experiment. A Monte Carlo simulation of the experimental setup, for the {beta} - {nu} angular correlation measurement, was then carried out. The distortions of the spectra associated with the varying electric fields in the vicinity of the trap and with the ion cloud size were estimated for various geometries. The statistical needs for the experiment were evaluated in order to reach the required precision. (author)

  13. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  14. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  15. $\\beta$-decay study of neutron-rich Tl, Pb, and Bi by means of the pulsed-release technique and resonant laser ionisation

    CERN Multimedia

    Lettry, J

    2002-01-01

    It is proposed to study new neutron-rich nuclei around the Z = 82 magic shell closure, with major relevance for understanding the evolution of nuclear structure at extreme isospin values. Following the IS354 experiment, $\\beta$-decay studies of neutron-rich thallium, lead and bismuth isotopes will be performed for 215 $\\leqslant$ A $\\leqslant$ 219. To this purpose the pulsed-release technique, which was pioneered at ISOLDE, will be optimised. It will be complemented with the higher element selectivity that can be obtained by the unique features of resonant laser ionisation, available at ISOLDE from the RILIS source.

  16. Search for $2\\beta$ decay of $^{106}$Cd with enriched $^{106}$CdWO$_4$ crystal scintillator in coincidence with four HPGe detectors

    CERN Document Server

    Belli, P; Brudanin, V B; Cappella, F; Caracciolo, V; Cerulli, R; Chernyak, D M; Danevich, F A; d'Angelo, S; Di Marco, A; Incicchitti, A; Laubenstein, M; Mokina, V M; Poda, D V; Polischuk, O G; Tretyak, V I; Tupitsyna, I A

    2016-01-01

    A radiopure cadmium tungstate crystal scintillator, enriched in $^{106}$Cd to 66%, with mass of 216 g ($^{106}$CdWO$_4$), was used to search for double beta decay processes in $^{106}$Cd in coincidence with four ultra-low background high purity germanium detectors in a single cryostat. New improved limits on the double beta processes in $^{106}$Cd have been set on the level of $10^{20}- 10^{21}$ yr after 13085 h of data taking. In particular, the half-life limit on the two neutrino electron capture with positron emission, $T_{1/2}^{2\

  17. Development of low background CdZnTe detectors for detection of double beta decays of sup 6 sup 4 Zn

    CERN Document Server

    Watanabe, T; Takahisa, K; Tanikawa, M; Ito, Y

    1999-01-01

    Development of low background CdZnTe detectors is in progress to study neutrino-less double beta decay. The mu tau product (mobility times lifetime) for holes was measured in a set of CdZnTe detectors at various temperatures between +22 deg. C and -40 deg. C in order to investigate charge collection efficiencies for holes. The sensitivity of CdZnTe detectors to neutrino-less beta sup + EC decays of sup 6 sup 4 Zn ( sup 6 sup 4 Zn+EC-> sup 6 sup 4 Ni+beta sup +) is estimated from these data.

  18. Shape effects along the Z=82 line: study of the $\\beta$- decay of $^{188,190,192}$Pb using total absorption spectroscopy

    CERN Multimedia

    Caballero ontanaya, L; Garcia borge, M J; Malbrunot, S

    2002-01-01

    This proposal is aimed at the study of the $\\beta$- decay of the neutron-deficient $^{188,190,192}$Pb nuclei. The main motivation of the proposed experiment is to determine the Gamow-Teller strength distribution in the daughter nuclei using the Total Absorption Spectrometer "Lucrecia". Recent theoretical results show that from this measurement the shapes of the ground states of the decaying Pb nuclei can be inferred. This study offers an independent way to study the phenomenon of shape co-existence in a region of particular interest.

  19. 'Shake-off' account of effects from a Beta-decay at determination of internal conversion coefficients due to secondary electron radiation

    CERN Document Server

    Mitrokhovich, N F

    2002-01-01

    By means of selection coincidence of gamma-quantum with the secondary electrons (e sub o -electrons) and beta-particles (gamma beta e sub 0 -coincidences) and special geometry of measurements the formation of e sub o -electrons from electrons of 'shake-off' accompanying beta-decay is chosen and its output is determined. Influence of this additional source of e sub o -electrons formation on the accuracy of the internal conversion coefficient determination is estimated, when the output of e sub o -electrons from electrons of conversion is defined on the output of e sub o -electrons from beta-particles.

  20. Beta-decay of polarized $\\Lambda$ hyperons III Correlations in the $\\Lambda$ centre-of-mass system and the proton recoil spectrum

    CERN Document Server

    Althoff, K H; Freytag, D; Heard, K S; Heintze, J; Mundhenke, R; Rieseberg, H; Soergel, Volker; Stelzer, H; Wagner, A

    1973-01-01

    For pt. II see abstr. A14705 of 1972. From the analysis of 817 kinematically reconstructed beta decay events of polarized Lambda hyperons for the coefficient alpha /sub nu / of the neutrino correlation with respect to the Lambda spin, alpha /sub nu /=0,89+or-0.08, for the coefficient alpha /sub T/ of the T-odd correlation sigma /sub Lambda /(p/sub e/*p/sub nu /), alpha /sub T /=-0.14+or-0.13. The proton recoil spectrum yields mod g/sub 1//f/sub 1/ mod =0.64+or-0.06. (5 refs).

  1. The 0{sup +}{yields} 0{sup +} positron double- {beta} decay with emission of two neutrinos in the nuclei {sup 96}Ru, {sup 102}Pd, {sup 106}Cd and {sup 108}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Raina, P.K.; Shukla, A. [IIT, Department of Physics and Meteorology, Kharagpur (India); Singh, S.; Rath, P.K. [University of Lucknow, Department of Physics, Lucknow (India); Hirsch, J.G. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, A.P. 70-543, Mexico 04510 D.F. (Mexico)

    2006-04-15

    Theoretical results for two neutrinos in the nuclei {sup 96}Ru, {sup 102}Pd, {sup 106}Cd and {sup 108}Cd are presented. The study employs the Hartree-Fock-Bogoliubov model to obtain the wave functions of the parent and daughter nuclei, in conjunction with the summation method to estimate the double-beta decay nuclear matrix elements. The reliability of the intrinsic wave functions of {sup 96,} {sup 102}Ru, {sup 96}Mo, {sup 102,} {sup 106,} {sup 108}Pd and {sup 106,} {sup 108}Cd nuclei is tested by comparing the theoretically calculated spectroscopic properties with the available experimental data. The calculated half-lives T{sub 1/2}{sup 2{nu}} of {sup 96}Ru, {sup 102}Pd, {sup 106}Cd and {sup 108}Cd nuclei for 2{nu}{beta}{sup +}{beta}{sup +}, 2{nu}{beta}{sup +}EC and 2{nu}ECEC modes are presented. The effect of deformation on the nuclear transition matrix element M{sub 2{nu}} is also studied. (orig.)

  2. Precision measurement of the half-life and branching ratio of the T=1/2 mirror $\\beta$-decay of $^{37}$K

    CERN Multimedia

    We propose to study the T=1/2 mirror $\\beta$-decay of $^{37}$K. Nuclear mirror $\\beta$-decay is a competitive means to test the electroweak model by means of the high-precision measurement of V$_{ud}$ element of the CKM quark mixing matrix. One key ingredient to obtain V$_{ud}$ is the force of the transition, Ft, which has to be determined with a relative precision below 10$^{−3}$. This quantity is related to the half-life T$_{1/2}$ of the decaying nucleus, the branching ratio BR for this decay and the mass difference between the mother and daughter nucleus (Q value). Another important feature is the mixing ratio $\\rho$ between the Fermi and the Gamow-Teller character of the transition. In most cases, $\\rho$ is the major contributor to the uncertainty on Ft. Available data concerning T$_{1/2}$ and BR of $^{37}$K suffer from a lack of precision that will be easily reduced by a dedicated experiment.

  3. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mary Anderson [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21Na to the experiment. Efficient manipulation of the 21Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21Na. She measured the 3S1/2(F=1,m=0)-3S1/2(F=2,m=0) atomic level splitting of 21Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  4. Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils

    Energy Technology Data Exchange (ETDEWEB)

    Argyriades, J. [LAL, Universite Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Arnold, R. [IPHC, Universite de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg (France); Augier, C. [LAL, Universite Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Baker, J. [INL, Idaho Falls, ID 83415 (United States); Barabash, A.S. [Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Basharina-Freshville, A. [University College London, WC1E 6BT London (United Kingdom); Bongrand, M.; Bourgeois, C.; Breton, D.; Briere, M.; Broudin-Bay, G. [LAL, Universite Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Brudanin, V.B. [Joint Institute for Neear Research, 141980 Dubna (Russian Federation); Caffrey, A.J. [INL, Idaho Falls, ID 83415 (United States); Carcel, S. [Instituto de Fisica Corpuscular, CSIC, Universidad de Valencia, Valencia (Spain); Cebrian, S. [Instituto de Fisica Nuclear y Altas Energias, Universidad de Zaragoza, Zaragoza (Spain); Chapon, A. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, F-14032 Caen (France); Chauveau, E. [CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, F-33175 Gradignan (France); Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, F-33175 Gradignan (France); Dafni, Th. [Instituto de Fisica Nuclear y Altas Energias, Universidad de Zaragoza, Zaragoza (Spain); Diaz, J. [Instituto de Fisica Corpuscular, CSIC, Universidad de Valencia, Valencia (Spain); Durand, D. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, F-14032 Caen (France)

    2010-10-01

    The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in {sup 208}Tl and {sup 214}Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m{sup 2} of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in {sup 208}Tl. After more than one year of background measurement, a surface activity of the scintillators of A({sup 208}Tl)=1.5{mu}Bq/m{sup 2} is reported here. Given this level of background, a larger BiPo detector having 12 m{sup 2} of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A({sup 208}Tl)<2{mu}Bq/kg (90% C.L.) with a six month measurement.

  5. Selected problems in experimental intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1990-09-01

    The objectives of this research program are to: investigate forefront problems in experimental intermediate energy physics; educate students in this field of research; and, develop the instrumentation necessary to undertake this experimental program. Generally, the research is designed to search for physical processes which cannot be explained by conventional models of elementary interactions. This includes the use of nuclear targets where the nucleus provides a many body environment of strongly perturbation of a known interaction by this environment. Unfortunately, such effects may be masked by the complexity of the many body problem and may be difficult to observe. Therefore, experiments must be carefully chosen and analyzed for deviations from the more conventional models. There were three major thrusts of the program; strange particle physics, where a strange quark is embedded in the nuclear medium; muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and measurement of the spin dependent structure function of the neutron.

  6. Study of excited states of 31S through beta-decay of 31Cl for nucleosynthesis in ONe novae

    Science.gov (United States)

    Saastamoinen, A.; Trache, L.; Banu, A.; Bentley, M. A.; Davinson, T.; Hardy, J. C.; Iacob, V. E.; Jokinen, A.; McCleskey, M.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Woods, P. J.; ńystö, J.

    2011-11-01

    We have produced an intense and pure beam of 31Cl with the MARS Separator at the Texas A&M University and studied β-decay of 31Cl by implanting the beam into a novel detector setup, capable of measuring β-delayed protons and γ-rays simultaneously. From our data, we have established decay scheme of 31Cl, found resonance energies with 1 keV precision, have measured its half-life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.

  7. Comparative study of {beta} decays and of the model of the layers for the nucleus with odd a; Etude comparee des desintegrations {beta} et du modele des couches pour les noyaux de a impair

    Energy Technology Data Exchange (ETDEWEB)

    Trocheris, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1953-07-01

    The systematic comparison of {beta} decays of the cores of number of odd mass with the predictions of the modal of Mrs. Mayer on spins and parities, has already been made by several authors. It is taken in the present work with more recent experimental data and with a method of classification of the {beta} transitions. A simultaneous comparison to the experience of the model of the layers and the theory of the {beta} transitions can serve to verify one and the other too. In the present work, it appeared more fruitful to try to verify the model of the layers with the help of the very established theory of the {beta} transitions. One will look to verify and perfect the models of the layers for transitions between fundamental states or isomers of the cores. (M.B.) [French] La comparaison systematique des desintegrations {beta} des noyaux de nombre de masse impair avec les predictions du modale de Mme MAYER sur les spins et les parites, a deja ete faite par plusieurs auteurs. Elle est reprise dans le present travail avec des donnees experimentales plus recentes et avec une methode de classification des transitions {beta}. Une comparaison simultanee a l'experience du modele des couches et de la theorie des transitions {beta} peut, a priori, servir a verifier egalement l'un et l'autre. Dans le present travail, il a paru plus fructueux de chercher a verifier le modele des couches a l'aide de la theorie bien etablie des transitions {beta}. On cherchera de verifier et de perfectionner le modele des couches pour les transitions entre etats fondamentaux ou isomeres des noyaux. (M.B.)

  8. Medical waste to energy: experimental study.

    Science.gov (United States)

    Arcuri, C; Luciani, F; Piva, P; Bartuli, F N; Ottria, L; Mecheri, B; Licoccia, S

    2013-04-01

    Although waste is traditionally assessed as a pollutant which needs to be reduced or lessened, its management is certainly necessary. Nowadays, biological fuel cells, through the direct conversion of organic matter to electricity using biocatalysts, represent a technology able to produce sustainable energy by means of waste treatment. This study aims to propose a mean to generate energy from blood and saliva, that are common risk-infectious medical waste. Material employed (purchased by Sigma-Aldrich) were: Glucose oxidase (GOx), Nafion perfluorinated resin solution at 5% in a mixture of lower aliphatic alcohols and water, Polyethylene oxide. Stock solutions of D (+) glucose were prepared in a 0.1 M phosphate buffer solution and stored at 4 °C for at least 24 h before use. Carbon cloth electrode ELAT HT 140 E-W with a platinum loading of 5 gm-2 was purchased by E-Tek. Electrospun Nafion fibers were obtained as follows. Scanning electron microscopy was used to characterize the electrode morphologies. In order to develop an effective immobilization strategy of GOx on the electrode surface, Nafion fibers (a fully fluorinated ion conducting polymer used as a membrane material in enzymatic fuel cells - EFC) were selected as immobilizing polymer matrix. In this work, exploiting the nafion fibers capability of being able to cathalize Gox activity, we have tried to produce an enzymatic fuel cell which could produce energy from the blood and the saliva within medical-dental waste. Medical waste refers to all those materials produced by the interaction among doctor and patient, such as blood and saliva. During our research we will try to complete an EFC prototype able to produce energy from blood and saliva inside the risk-infectious medical waste in order to contribute to the energy requirements of a consulting room.

  9. Energy management of DSL systems: Experimental findings

    KAUST Repository

    Guenach, Mamoun

    2013-12-01

    We present a measurement study of the energy consumption of an operator-side digital subscriber line (DSL) board under various conditions of data rate and power spectral density, with and without vectoring. The results highlight practical opportunities and challenges for optimizing rate-power-stability tradeoffs in DSL access systems, complementing simulation-based studies focused on energy reduction through spectral optimization. We validate models for line board consumption that can be tied with line driver consumption based on the aggregate transmit power of each line, and demonstrate that near-optimal rate-power-stability tradeoffs can be obtained through external line management of data rate, Signal-to-Noise-Ratio margin and power spectral density parameters. © 2013 IEEE.

  10. Another look at the impact of an eV-mass sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays

    Science.gov (United States)

    Liu, Jun-Hao; Zhou, Shun

    2018-01-01

    The possible existence of an eV-mass sterile neutrino, slightly mixing with ordinary active neutrinos, is not yet excluded by neutrino oscillation experiments. Assuming neutrinos to be Majorana particles, we explore the impact of such a sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays 〈m〉ee‧≡ m 1|V e1|2eiρ + m 2|V e2|2 + m 3|V e3|2eiσ + m 4|V e4|2eiω, where mi and Vei (for i = 1, 2, 3, 4) denote respectively the absolute masses and the first-row elements of the 4 × 4 neutrino flavor mixing matrix V, for which a full parametrization involves three Majorana-type CP-violating phases {ρ,σ,ω}. A zero effective neutrino mass |〈m〉ee‧| = 0 is possible, no matter whether three active neutrinos take the normal or inverted mass ordering, and its implications for the parameter space are examined in great detail. In particular, given the best-fit values of m4 ≈ 1.3eV and |Ve4|2 ≈ 0.019 from the latest global analysis of neutrino oscillation data, a three-dimensional view of |〈m〉ee‧| in the (mlightest,ρ)-plane is presented and further compared with that of the counterpart |〈m〉ee| in the absence of any sterile neutrino.

  11. High-resolution measurement of the time-modulated orbital electron capture and of the $\\beta^+$ decay of hydrogen-like $^{142}$Pm$^{60+}$ ions

    CERN Document Server

    Kienle, P; Bosch, F; Boutin, D; Brandau, C; Bühler, P; Dillmann, I; Dimopoulou, Ch; Faestermann, T; Geissel, H; Hess, R; Hillebrand, P M; Ivanova, V; Izumikawa, T; Knöbel, R; Kurcewicz, J; Kuzminchuk, N; Lestinsky, M; Litvinov, S A; Litvinov, Yu A; Maier, L; Ma, X X W; Mazzocco, M; Mukha, I; Nociforo, C; Nolden, F; Ohtsubo. T; Sanjari, M S; Scheidenberger, Ch; Shubina, D B; Spillmann, U; Steck, M; Stöhlker, Th; Sun, B H; Suzaki, F; Suzuki, T; Torilov, S.Yu; Trassinelli, M; Tu, X L; Wang, M; Weick, H; Winckler, N; Winters, D F F A; Winters, N; Woods, P P J; Yamaguchi, T; Yan, X L; Zhang, G G L

    2013-01-01

    The periodic time modulations, found recently in the two-body orbital electron-capture (EC) decay of both, hydrogen-like $^{140}$Pr$^{58+}$ and $^{142}$Pm$^{60+}$ ions, with periods near to 7s and amplitudes of about 20%, were re-investigated for the case of $^{142}$Pm$^{60+}$ by using a 245 MHz resonator cavity with a much improved sensitivity and time resolution. We observed that the exponential EC decay is modulated with a period $T = 7.11(11)$s, in accordance with a modulation period $T = 7.12(11)$ s as obtained from simultaneous observations with a capacitive pick-up, employed also in the previous experiments. The modulation amplitudes amount to $a_R = 0.107(24)$ and $a_P = 0.134(27)$ for the 245 MHz resonator and the capacitive pick-up, respectively. These new results corroborate for both detectors {\\it exactly} our previous findings of modulation periods near to 7s, though with {\\it distinctly smaller} amplitudes. Also the three-body $\\beta^+$ decays have been analyzed. For a supposed modulation period...

  12. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010.......This report concerns the experimental study of the 1:20 scale model of the Langlee Wave Energy Converter (WEC) carried out at Aalborg University’s wave basin during the summer of 2010....

  13. $\\beta$-decay study of very neutron-rich Cd isotopes with a chemically selective laser ion source

    CERN Multimedia

    2002-01-01

    Following our test measurements of N=82-84 Cd isotopes with a specifically developed laser ion source (CERN/ISC 97-16, ISC/I 22), we now propose detailed spectroscopic studies of the decay of $^{130}$Cd to $\\,^{132}\\!$Cd, and at least the determination of some gross properties of the new N=85-86 nuclides $^{133}\\!$Cd and $\\,^{134}\\!$Cd. The main nuclear-structure objective of this experiment is the identification of the energies of the single-hole (SH) proton states in $^{131}$In. Nearly all of the other single-nucleon shell-model basis energies around doubly magic $^{132}$Sn are known by now, except those $\\pi$SH in Z=49 $\\,^{131}$In. Theoretical agreement on these values has not been achieved so far. Of particular interest is the depth of the $\\pi$f$_{5/3}$ hole and the p$_{3/2}$ - p$_{1/2}$ spin-orbit splitting. A second important goal is the determination of the position of the lowest-energy 1$^+\\,$ level in $^{130}$In predominantly populated in the Gamow-Teller (GT) decay of N=82 $^{130}\\!$Cd. Apart from...

  14. Energy transfer in photosynthesis: experimental insights and quantitative models

    NARCIS (Netherlands)

    van Grondelle, R.; Novoderezhkin, V.

    2006-01-01

    We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic

  15. Searches for double beta decay of Xe134 with EXO-200

    Energy Technology Data Exchange (ETDEWEB)

    Albert, J. B.; Anton, G.; Badhrees, I.; Barbeau, P. S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Daughhetee, J.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Fairbank, W.; Farine, J.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Hoessl, J.; Hufschmidt, P.; Hughes, M.; Jamil, A.; Jewell, M. J.; Johnson, A.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, S.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Marino, M. G.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Retière, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Vogel, P.; Vuilleumier, J. -L.; Wagenpfeil, M.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Yang, L.; Yen, Y. -R.; Zeldovich, O. Ya.; Zettlemoyer, J.; Ziegler, T.

    2017-11-01

    Searches for double beta decay of 134Xe were performed with EXO-200, a single-phase liquid xenon detector designed to search for neutrinoless double beta decay of 136Xe. Using an exposure of 29.6 kg · yr, the lower limits of T2νββ 1=2 > 8.7 × 1020 yr and T0νββ 1=2 > 1.1 × 1023 yr at 90% confidence level were derived, with corresponding half-life sensitivities of 1.2 × 1021 yr and 1.9 × 1023 yr. These limits exceed those in the literature for 134Xe, improving by factors of nearly 105 and 2 for the two antineutrino and neutrinoless modes, respectively.

  16. Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

    Science.gov (United States)

    Minato, Futoshi

    2016-06-01

    Nuclear β-decay and delayed neutron (DN) emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA) and the Hauser-Feshbach statistical model (HFSM). In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.

  17. Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

    Directory of Open Access Journals (Sweden)

    Minato Futoshi

    2016-01-01

    Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.

  18. The Green Lab : Experimentation in Software Energy Efficiency

    NARCIS (Netherlands)

    Procaccianti, Giuseppe; Lago, Patricia; Vetrò, Antonio; Méndez Fernández, Daniel; Wieringa, Roel

    2015-01-01

    Software energy efficiency is a research topic where experimentation is widely adopted. Nevertheless, current studies and research approaches struggle to find generalizable findings that can be used to build a consistent knowledge base for energy-efficient software. To this end, we will discuss how

  19. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, G.

    2007-08-29

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  20. Beta-decay of proton-rich ^31Cl and its relevance for explosive H-burning

    Science.gov (United States)

    Trache, L.; Banu, A.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Davinson, T.; Lotay, G.; Woods, P. J.; Saastamoinen, A.; Jokinen, A.; Aysto, J.

    2009-10-01

    We produced and separated proton-rich nucleus ^31Cl with the MARS recoil separator at TAMU. Then studied its beta-gamma and beta-delayed proton-decay using techniques designed for low-intensity, short-lived sources. The states populated in the daughter nucleus ^31S above the proton threshold at Sp=6133 keV are resonances in the proton capture reaction ^30P(p,γ)^31S, crucially important for the explosive H-burning novae. The setup consisted of a telescope made of a thin double sided Si strip detector (p-detector) BB2-45 and a thick Si detector (β-detector). A HpGe detector outside the chamber detected γ-rays. The source nuclei produced at about 32 MeV/u were slowed down and implanted in the middle of the thin Si strip detector. The technique allowed us to measure very low proton energies (down to 2-300 keV), has shown a remarkable selectivity to β-delayed charged particle emission, and would work even at radioactive beam rates of a few pps. Furthermore, the half-life of ^31Cl was measured with under 1% accuracy, its Isobar Analog State was located and from IMME its mass excess better determined.

  1. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Allmond, James M [ORNL

    2016-01-01

    The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  2. Experimental evaluation of the primary damage process: neutron energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1979-01-01

    Experimental evaluation of the neutron energy dependnece of the primary damage stage depends upon a number of theoretical concepts. This state can only be observed after low- or perhaps ambient-temperature, low-fluence irradiations. The primary recoil energy spectrum, which determines the character of the displacement cascades, can be calculated if dosimetry has provided an accurate neutron spectrum. A review of experimental results relating neutron-energy effects shows that damage energy or damage energy cross section has often been a reliable correlation parameter for primary damage state experiments. However, the forthcoming emphasis on higher irradiation temperatures, more complex alloys and microstructural evolution has fostered a search for additional meaningful correlation parameters.

  3. Indexed compilation of experimental high energy physics literature. [Synopsis

    Energy Technology Data Exchange (ETDEWEB)

    Horne, C.P.; Yost, G.P.; Rittenberg, A.

    1978-09-01

    An indexed compilation of approximately 12,000 experimental high energy physics documents is presented. A synopsis of each document is presented, and the documenta are indexed according to beam/target/momentum, reaction/momentum, final-state-particle, particle/particle-property, accelerator/detector, and (for a limited set of the documents) experiment. No data are given.

  4. Experimental Study on a Rotor for WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study of the power conversion capabilities of one single rotor of the WEPTOS wave energy converter. The investigation focuses mainly on defining the optimal weight distribution in the rotor in order to improve the hydraulic performance through...

  5. Experimental autoimmune encephalomyelitis from a tissue energy perspective.

    Science.gov (United States)

    Desai, Roshni A; Smith, Kenneth J

    2017-01-01

    Increasing evidence suggests a key role for tissue energy failure in the pathophysiology of multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE), a commonly used model of MS, have been instrumental in illuminating the mechanisms that may be involved in compromising energy production. In this article, we review recent advances in EAE research focussing on factors that conspire to impair tissue energy metabolism, such as tissue hypoxia, mitochondrial dysfunction, production of reactive oxygen/nitrogen species, and sodium dysregulation, which are directly affected by energy insufficiency, and promote cellular damage. A greater understanding of how inflammation affects tissue energy balance may lead to novel and effective therapeutic strategies that ultimately will benefit not only people affected by MS but also people affected by the wide range of other neurological disorders in which neuroinflammation plays an important role.

  6. Experimental Study of the Weptos Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Larsen, Tommy

    2012-01-01

    This paper presents the power performance results of the experimental study of the WEPTOS wave energy converter (WEC). This novel device combines an established and efficient wave energy absorbing mechanism with an adjustable structure that can regulate the amount of incoming wave energy and reduce...... loads in extreme wave conditions. This A-shaped floating structure absorbs the energy in the waves through a multitude of rotors, the shape of which is based on the renowned Salter’s Duck. These rotors pivot around a common axle, one for each leg of the structure, to which the rotors transfer...... the absorbed wave energy and which is connected to a common power take off system (one for each leg). The study investigates the performance of the device in a large range of wave states and estimates the performance in terms of mechanical power available to the power take off system of the WEPTOS WEC for two...

  7. An experimental characterisation of a Broad Energy Germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Harkness-Brennan, L.J., E-mail: ljh@ns.ph.liv.ac.uk [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Judson, D.S.; Boston, A.J.; Boston, H.C.; Colosimo, S.J.; Cresswell, J.R.; Nolan, P.J. [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Adekola, A.S.; Colaresi, J.; Cocks, J.F.C.; Mueller, W.F. [CANBERRA Industries Inc., 800 Research Parkway, Meriden, CT 06450 (United States)

    2014-10-01

    The spectroscopic and charge collection performance of a BE2825 Broad Energy Germanium (BEGe) detector has been experimentally investigated. The efficiency and energy resolution of the detector have been measured as a function of energy and the noise contributions to the preamplifier signal have been determined. Collimated gamma-ray sources mounted on an automated 3-axis scanning table have been used to study the variation in preamplifier signal shape with gamma-ray interaction position in the detector, so that the position-dependent charge collection process could be characterised. A suite of experimental measurements have also been undertaken to investigate the performance of the detector as a function of bias voltage and we report on anomalous behaviour observed when the detector was operating close to the depletion voltage.

  8. Amplified energy harvester from footsteps: design, modeling, and experimental analysis

    Science.gov (United States)

    Wang, Ya; Chen, Wusi; Guzman, Plinio; Zuo, Lei

    2014-04-01

    This paper presents the design, modeling and experimental analysis of an amplified footstep energy harvester. With the unique design of amplified piezoelectric stack harvester the kinetic energy generated by footsteps can be effectively captured and converted into usable DC power that could potentially be used to power many electric devices, such as smart phones, sensors, monitoring cameras, etc. This doormat-like energy harvester can be used in crowded places such as train stations, malls, concerts, airport escalator/elevator/stairs entrances, or anywhere large group of people walk. The harvested energy provides an alternative renewable green power to replace power requirement from grids, which run on highly polluting and global-warming-inducing fossil fuels. In this paper, two modeling approaches are compared to calculate power output. The first method is derived from the single degree of freedom (SDOF) constitutive equations, and then a correction factor is applied onto the resulting electromechanically coupled equations of motion. The second approach is to derive the coupled equations of motion with Hamilton's principle and the constitutive equations, and then formulate it with the finite element method (FEM). Experimental testing results are presented to validate modeling approaches. Simulation results from both approaches agree very well with experimental results where percentage errors are 2.09% for FEM and 4.31% for SDOF.

  9. Experimental study on energy performance of clean air heat pump

    DEFF Research Database (Denmark)

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo......An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...

  10. Numerical and experimental design of coaxial shallow geothermal energy systems

    Science.gov (United States)

    Raghavan, Niranjan

    Geothermal Energy has emerged as one of the front runners in the energy race because of its performance efficiency, abundance and production competitiveness. Today, geothermal energy is used in many regions of the world as a sustainable solution for decreasing dependence on fossil fuels and reducing health hazards. However, projects related to geothermal energy have not received their deserved recognition due to lack of computational tools associated with them and economic misconceptions related to their installation and functioning. This research focuses on numerical and experimental system design analysis of vertical shallow geothermal energy systems. The driving force is the temperature difference between a finite depth beneath the earth and its surface stimulates continuous exchange of thermal energy from sub-surface to the surface (a geothermal gradient is set up). This heat gradient is captured by the circulating refrigerant and thus, tapping the geothermal energy from shallow depths. Traditionally, U-bend systems, which consist of two one-inch pipes with a U-bend connector at the bottom, have been widely used in geothermal applications. Alternative systems include coaxial pipes (pipe-in-pipe) that are the main focus of this research. It has been studied that coaxial pipes have significantly higher thermal performance characteristics than U-bend pipes, with comparative production and installation costs. This makes them a viable design upgrade to the traditional piping systems. Analytical and numerical heat transfer analysis of the coaxial system is carried out with the help of ABAQUS software. It is tested by varying independent parameters such as materials, soil conditions and effect of thermal contact conductance on heat transfer characteristics. With the above information, this research aims at formulating a preliminary theoretical design setup for an experimental study to quantify and compare the heat transfer characteristics of U-bend and coaxial

  11. Optimization of Experimental Model Parameter Identification for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Rosario Morello

    2013-09-01

    Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.

  12. Experimental conformational energy maps of proteins and peptides.

    Science.gov (United States)

    Balaji, Govardhan A; Nagendra, H G; Balaji, Vitukudi N; Rao, Shashidhar N

    2017-06-01

    We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X-ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (ϕ, ψ) plots in which global minima are predominantly observed either in the right-handed α-helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (ϕ,ψ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol -1 ) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X-ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017; 85:979-1001. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Experimental Validation of a Wave Energy Converter Array Hydrodynamics Tool

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    This paper uses experimental data to validate a wave energy converter (WEC) array hydrodynamics tool developed within the context of linearized potential flow theory. To this end, wave forces and power absorption by an array of five-point absorber WECs in monochromatic and panchromatic waves were...... measured from a set of deep-water wave basin experimental tests. Unlike the few other examples of WEC array experimental campaigns, the power take-off (PTO) system of each WEC was simulated by means of advanced equipment capable of accurately reproducing linear control strategies and, thereby, reducing......, wave forces and power absorption with less than 17.5% and 23.0% error, respectively, for more than 68% of the predictions....

  14. An Experimental and Theoretical High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Shipsey, Ian

    2012-07-31

    The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

  15. Energy efficiency of lighting installations: Software application and experimental validation

    Directory of Open Access Journals (Sweden)

    J.A. Lobão

    2015-11-01

    Full Text Available The rational use of energy and energy-efficient environmental public street lighting is an important topic. In the design of new public lighting installations, national regulations containing energy-efficient guidelines are already used. Nevertheless, either in new installations or in reconstructions of existing lighting, designers do not generally consider all the available means to save energy. In installations of street lighting, energy consumption can be reduced by reducing the losses in the conductors, associated with the efficiency of the equipment, allowing better use of the available energy. The losses in the conductors must be analysed in conjunction with all the loads that contribute to the current in the sections of the installed street lighting. When opting for more efficient lamps and luminaires or lighting control systems, the current decreases in the sections covered with the most significant power loss due to proportionality with the square of the current. This decrease, often forgotten, is considered in this work in the investment analysis of efficiency and sustainable street lighting via simulation and experimental results. This analysis, combined with the features and operating parameters of the electrical installation, accounts for all the gains that can make a difference in the choice of efficient street lighting.

  16. Experimental And Theoretical High Energy Physics Research At UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Robert D. [University of California Los Angeles

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  17. Experimental investigation of rubble mound breakwaters for wave energy conversion

    DEFF Research Database (Denmark)

    Luppa, C.; Contestabile, P.; Cavallaro, L.

    2015-01-01

    The paper describes recent laboratory investigation on the breakwater integrated device named “OBREC” (Overtopping BReakwater for Energy Conversion). This technology recently appeared on the wave energy converter scene as an executive outcome of improving composite seawalls by including overtopping...... type wave energy converters [1]. Two complementary experimental campaigns were carried out, in 2012 and in 2014. Several geometries and wave conditions were examined. Preliminary comparison of hydraulic behaviour has been summarized, focusing on reflection analysis and overtopping flow rate....... Preliminary design formulae are presented to predict overtopping at the rear side of the structure and in to the front reservoir based on both datasets. Moreover, some important results have been presented on hydraulic behaviour of OBREC with saturated reservoir. Particularly attention is paid to wave...

  18. Experimental model of a wind energy conversion system

    Science.gov (United States)

    Vasar, C.; Rat, C. L.; Prostean, O.

    2018-01-01

    The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.

  19. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    Directory of Open Access Journals (Sweden)

    Kampert Karl-Heinz

    2013-06-01

    Full Text Available The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  20. Experimental Study of Hysteretic Steel Damper for Energy Dissipation Capacity

    Directory of Open Access Journals (Sweden)

    Daniel R. Teruna

    2015-01-01

    Full Text Available This study aims to evaluate energy absorption capacity of hysteretic steel damper for earthquake protection of structures. These types of steel dampers are fabricated from mild steel plate with different geometrical shapes on the side part, namely, straight, concave, and convex shapes. The performance of the proposed device was verified experimentally by a series of tests under increasing in-plane cyclic load. The overall test results indicated that the proposed steel dampers have similar hysteretic curves, but the specimen with convex-shaped side not only showed stable hysteretic behavior but also showed excellent energy dissipation capabilities and ductility factor. Furthermore, the load-deformation relation of these steel dampers can be decomposed into three parts, namely, skeleton curve, Bauschinger part, and elastic unloading part. The skeleton curve is commonly used to obtain the main parameters, which describe the behavior of steel damper, namely, yield strength, elastic stiffness, and postyield stiffness ratio. Moreover, the effective stiffness, effective damping ratio, cumulative plastic strain energy, and cumulative ductility factor were also derived from the results. Finally, an approximation trilinear hysteretic model was developed based on skeleton curve obtained from experimental results.

  1. Study of halo nuclei breakup on light targets at intermediate and high energies

    CERN Document Server

    Parfenova, Ioulia

    2002-01-01

    The study of exotic nuclei is one of the most important topics in modern nuclear physics. It allows general understanding of the structure and nature of light nuclear systems in the vicinity of the driplines. Most of the leading facilities in the world, CERN, GANIL, GSI in Europe, RIKEN in Japan, and NSCL(MSU) in USA, are involved in these investigations. Recently, new experimental data on the properties of light halo nuclei such as extremely large interaction cross sections, huge electromagnetic dissociation cross sections, narrow momentum distribution of fragments from breakup reactions, unusual modes of the beta-decay of these nuclei on the borders of the stability, were obtained. This Thesis is based on a series of articles devoted to theoretical investigations of nuclear breakup reactions with light halo nuclei at intermediate energies impinging on light target nuclei. Special attention is paid to the question of sensitivity of the calculated breakup cross sections and longitudinal momentum distributions...

  2. Investigating the nuclear structure of the neutron-rich odd-mass Fe isotopes, in the $\\beta$-decay of their parent - Mn

    CERN Document Server

    AUTHOR|(CDS)2079133; Van Duppen, Piet

    For many years the shell structure of the nucleus, originally proposed by Mayer and Haxel, predicting certain energy gaps at specific proton and/or neutron numbers, has been consistent with the experimental findings at or near the line of stability. These nuclei exhibit a sequence of magic numbers – 2, 8, 20, 28, 50, 82, which is different from the one calculated using only a Harmonic Oscillator potential: 2, 8, 20, 40, 70... The strong spin-orbit term, added to the latter potential by Mayer and Haxel, is a necessary requirement for a successful description of these quantum systems, which lowers the energy orbitals with higher spins directly affecting the l = 4 (1$g_{9/2}$) orbit by reducing the gap at N = 40 and creating the N = 50 one. With the development of more exotic radioactive beams, however, it has been observed that for nuclei away from the stability line the traditional shell gaps have weakened, while new energy gaps have emerged instead. It has been further realized that the residual nucleon- nu...

  3. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  4. Experimental temperature measurements for the energy amplifier test

    Energy Technology Data Exchange (ETDEWEB)

    Calero, J. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Cennini, P. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland); Gallego, E. [Universidad Politecnica de Madrid (UPM), E-28040 Madrid (Spain); Galvez, J. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland)]|[Universidad Autonoma de Madrid (UAM), E-28049 Madrid (Spain); Garcia Tabares, L. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Gonzalez, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), E-28040 Madrid (Spain); Jaren, J. [Universidad Autonoma de Madrid (UAM), E-28049 Madrid (Spain); Lopez, C. [Universidad Autonoma de Madrid (UAM), E-28049 Madrid (Spain); Lorente, A. [Universidad Politecnica de Madrid (UPM), E-28040 Madrid (Spain); Martinez Val, J.M. [Universidad Politecnica de Madrid (UPM), E-28040 Madrid (Spain); Oropesa, J. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland); Rubbia, C. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland); Rubio, J.A. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland)]|[Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), E-28040 Madrid (Spain); Saldana, F. [European Laboratory for Particle Physics, CH-1211 Geneva 23 (Switzerland); Tamarit, J. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Vieira, S. [Universidad Autonoma de Madrid (UAM), E-28049 Madrid (Spain)

    1996-06-21

    A uranium thermometer has been designed and built in order to make local power measurements in the first energy amplifier test (FEAT). Due to the experimental conditions power measurements of tens to hundreds of nW were required, implying a sensitivity in the temperature change measurements of the order of 1 mK. A uranium thermometer accurate enough to match that sensitivity has been built. The thermometer is able to determine the absolute energetic gain obtained in a tiny subcritical uranium assembly exposed to a proton beam of kinetic energies between 600 MeV and 2.75 GeV. In addition, the thermometer measurements have provided information about the spatial power distribution and the shape of the neutron spallation cascade. (orig.).

  5. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  6. Experimental investigations on energy harvesting performance of dielectric elastomers

    Science.gov (United States)

    Wang, Yongquan; Liu, Xuejing; Xue, Huanhuan; Chen, Hualing; Jia, Shuhai

    2014-03-01

    In this paper, the emerging technology of energy harvesting based on dielectric elastomers (DE), a new type of functional materials belonging to the family of Electroactive Polymers (EAPs), is presented with emphasis on its performance characteristics and some key influencing factors. At first, on the basic principle of DE energy harvesting, the effects of some control parameters are theoretically analyzed under certain mechanical and electrical constraints. Then, a type of annular DE generator using the commercial elastomers of VHB 4910 (3M, USA), is specially designed and fabricated. A series of experimental tests for the device's energy harvesting performance are implemented at different pre-stretch ratios, stretch amplitudes (displacements), and bias voltages in the constant charge (open-circuit) condition. The experiment results demonstrate the associated influence laws of the above control parameters on the performance of the DE generator, and have good consistent with those obtained from the theoretical analysis. This study is expected to provide a helpful guidance for the design and operation of practical DE energy harvesting devices/systems.

  7. Experimental studies of pion-nucleus interactions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.

  8. Experimental High Energy Physics Brandeis University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Blocker, Craig A. [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Bensinger, James [Brandeis Univ., Waltham, MA (United States); Sciolla, Gabriella [Brandeis Univ., Waltham, MA (United States); Wellenstein, Hermann [Brandeis Univ., Waltham, MA (United States)

    2013-07-26

    During the past three years, the Brandeis experimental particle physics group was comprised of four faculty (Bensinger, Blocker, Sciolla, and Wellenstein), one research scientist, one post doc, and ten graduate students. The group focused on the ATLAS experiment at LHC. In 2011, the LHC delivered 5/fb-1 of pp colliding beam data at a center-of-mass energy of 7 TeV. In 2012, the center-of-mass energy was increased to 8 TeV, and 20/fb-1 were delivered. The Brandeis group focused on two aspects of the ATLAS experiment $-$ the muon detection system and physics analysis. Since data taking began at the LHC in 2009, our group actively worked on ATLAS physics analysis, with an emphasis on exploiting the new energy regime of the LHC to search for indications of physics beyond the Standard Model. The topics investigated were Z' → ll, Higgs → ZZ* -. 4l, lepton flavor violation, muon compositeness, left-right symmetric theories, and a search for Higgs → ee. The Brandeis group has for many years been a leader in the endcap muon system, making important contributions to every aspect of its design and production. During the past three years, the group continued to work on commissioning the muon detector and alignment system, development of alignment software, and installation of remaining chambers.

  9. Experimental analysis of a new retarding field energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yu-Xiang [Shanghai Institute of Mechanical and Electrical Engineering, No. 3888, Yuanjiang Road, Minhang District, Shanghai 201109 (China); Institute of Electronics, Chinese Academy of Sciences, No. 19, North 4th Ring Road West, Haidian District, Beijing 100190 (China); Liu, Shu-Qing; Li, Xian-Xia; Shen, Hong-Li; Huang, Ming-Guang [Institute of Electronics, Chinese Academy of Sciences, No. 19, North 4th Ring Road West, Haidian District, Beijing 100190 (China); Liu, Pu-Kun, E-mail: pkliu@pku.edu.cn [School of Electronics Engineering and Computer Science, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing 100871 (China)

    2015-06-11

    In this paper, a new compact retarding field energy analyzer (RFEA) is designed for diagnosing electron beams of a K-band space travelling-wave tube (TWT). This analyzer has an aperture plate to sample electron beams and a cylindrical electrode to overcome the defocusing effects. The front end of the analyzer constructed as a multistage depression collector (MDC) structure is intended to shape the field to prevent electrons from being accelerated to escape. The direct-current (DC) beams of the K-band space TWTs with the removing MDC can be investigated on the beam measurement system. The current density distribution of DC beams is determined by the analyzer, while the anode voltage and helix voltage of the TWTs are 7000 V and 6850 V, respectively. The current curve’s slope effect due to the reflection of secondary electrons on the copper collector of the analyzer is discussed. The experimental analysis shows this RFEA has a good energy resolution to satisfy the requirement of beam measurement. - Highlights: • A new retarding field energy analyzer (RFEA) is designed to diagnose the electron beam of a K-band space TWT. • The current density distribution of direct-current beam is determined. • The reflection effect of secondary electrons on the copper collector of the analyzer is discussed.

  10. Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Groza, Voicu; Isleifsson, Fridrik Rafn

    2012-01-01

    Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads......Experimental Testing for Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads...

  11. Experimental studies with low transition energy optics in the SPS

    CERN Document Server

    Bartosik, H; Bohl, T; Cettour Cave, S; Esteban Muller, J; Cornelis, K; Papaphilippou, Y; Rumolo, G; Salvant, B; Shaposhnikova, E; Wenninger, J

    2011-01-01

    The optics of the SPS can be tuned to lower transition energy such that the slippage factor at injection is raised by a factor of almost 3. From theory, an increase of the intensity thresholds for transverse mode coupling, longitudinal coupled bunch and longitudinal instabilities due to the loss of Landau damping can be expected. In this paper, experimental studies in the SPS with single bunches of protons with intensities of up to 3.5e11 p/b on the flat bottom and at 450 GeV/c are presented. Longitudinal instabilities were studied with LHC-type beams with 50 ns spacing and injected intensities up to 1.8e11 p/b. The measurements address the increase of intensity thresholds and the achievable transverse emittances in the new low gamma transition optics with respect to the nominal SPS optics. The obtained results are compared with numerical simulations.

  12. Experimental Study of the WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study on the power conversion capabilities and structural loads of the WEPTOS wave energy converter. The investigation focuses mainly at identifying the performance of the WEPTOS prototype in a wide range of production wave states...... and at the mooring forces and structural bending moments in extreme wave conditions, in order to estimate the performance and structural loads of larger WEPTOS machines being located at various offshore locations of interest. The following aspects were the main subjects of investigation: Performance of the prototype...... under a constant and linear PTO loading, the opening angle of the device, the effect of alterations to the wave conditions, and mooring forces and structural bending moments in production and extreme wave states. During the study, a highly realistic scale model was supplied by the client, WEPTOS, which...

  13. First experimentally determined thermodynamic values of francium: hydration energy, energy of partitioning, and thermodynamic radius.

    Science.gov (United States)

    Delmau, Lætitia H; Moine, Jérôme; Mirzadeh, Saed; Moyer, Bruce A

    2013-08-08

    The Gibbs energy of partitioning of Fr(+) ion between water and nitrobenzene has been determined to be 14.5 ± 0.6 kJ/mol at 25 °C, the first ever Gibbs energy of partitioning for francium in particular and the first ever solution thermodynamic quantity for francium in general. This value enabled the ionic radius and standard Gibbs energy of hydration for Fr(+) to be estimated as 173 pm and -251 kJ/mol, respectively, the former value being significantly smaller than previously thought. A new experimental method was established using a cesium dicarbollide as a cation-exchange agent, overcoming problems inherent to the trace-level concentrations of francium. The methodology opens the door to the study of the partitioning behavior of francium to other water-immiscible solvents and the determination of complexation constants for francium binding by receptor molecules.

  14. Experimental electron binding energies for thulium in different matrices

    Energy Technology Data Exchange (ETDEWEB)

    Inoyatov, A.Kh., E-mail: inoyatov@jinr.ru [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Institute of Applied Physics, National University, Tashkent (Uzbekistan); Kovalík, A. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Filosofov, D.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Ryšavý, M. [Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague (Czech Republic); Perevoshchikov, L.L.; Yushkevich, Yu.V. [Laboratory of Nuclear Problems, JINR, Dubna, Moscow Region (Russian Federation); Zbořil, M. [Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster (Germany)

    2015-07-15

    Highlights: • The thulium L, M, N, O, and P subshell electron binding energies determined. • Five different matrices of the radioactive {sup 169}Yb atoms used in the investigation. • The greatest difference of 4.5 ± 0.1 eV in the average observed between the matrices. • The published N{sub 1}, N{sub 3}, and O{sub 2,3} values found to be higher by about 3 eV. • Natural widths of the thulium K, L, M, N, and O subshells also determined. - Abstract: The L{sub 1}, L{sub 2}, L{sub 3}, M{sub 1}, M{sub 2}, N{sub 1}, N{sub 3}, O{sub 1}, O{sub 2}, O{sub 3}, and P{sub 1} subshell electron binding energies (related to the Fermi level) in thulium generated by the electron capture decay of radioactive {sup 169}Yb atoms implanted at 30 keV into polycrystalline platinum and aluminum foils and deposited by vacuum evaporation on surfaces of polycrystalline platinum, carbon, and aluminum foils were determined by the internal conversion electron spectroscopy. The greatest differences in the electron binding energies (4.5 ± 0.1 eV in the average without the P{sub 1} shell and 7.0 ± 0.5 eV for the P{sub 1} shell alone) were found between the matrices of the evaporated ytterbium layer on the aluminum foil and the bulk of the high purity polycrystalline platinum. The thulium electron binding energies in the matrices of the evaporated ytterbium layers on both the platinum and carbon foils and in the aluminum bulk were observed to be the same within the experimental uncertainties. The N{sub 1}, N{sub 3}, and O{sub 2,3} electron binding energies most frequently presented in data compilations were found to be higher by about 3 eV. Natural widths of most of the K, L{sub 1}, L{sub 2}, L{sub 3}, M{sub 1}, M{sub 2}, M{sub 3}, N{sub 1}, N{sub 3}, and O{sub 1} subshells in Tm in the investigated matrices were also determined. No significant differences in the natural widths were found among the matrices. The results obtained demonstrate that the physicochemical surrounding of the

  15. Study and conception of the decay ring of a neutrino facility using the {beta} decays of the helium 6 and neon 18 nuclei produced by an intense beam of protons hitting various targets; Etude et conception de l'anneau de desintegration d'une usine a neutrinos utilisant les decroissances {beta} des noyaux helium 6 et neon 18 produits par un faisceau intense de protons frappant diverses cibles

    Energy Technology Data Exchange (ETDEWEB)

    Chance, A

    2007-09-15

    The study of the neutrino oscillation between its different flavours needs pure and very intense flux of energetic, well collimated neutrinos with a well determined energy spectrum. So, a dedicated machine seems necessary nowadays. Among the different concepts of neutrino facilities, the one which will be studied here, called Beta-Beams, lies on the neutrino production by beta decay of radioactive ions after their acceleration. More precisely, the thesis is focused on the study and the design of the race-track-shaped storage ring of the high energy ions. Its aim is to store the ions until decaying. After a brief description of the neutrino oscillation mechanism and a review of the different experiments, an introduction to the neutrino facility concept and more precisely to the Beta-Beams will be given. Then, the issues linked to the Beta-Beams will be presented. After a description of the beam transport formalism, a first design and the optical properties of the ring will be then given. The effects of the misalignment and of the field errors in the dipoles have been studied. The dynamic aperture optimization is then realized. Handling of the decay losses or the energy collimation scheme will be developed. The off-momentum injection needed in presence of a circulating beam will be explained. Finally, the specific radiofrequency program needed by the beam merging will be presented. (author)

  16. Development of the front-end board of a Xenon gas Time Projection Chamber at the AXEL neutrinoless double beta decay search experiment

    Science.gov (United States)

    Tanaka, Shunsuke; AXEL Collaboration

    2017-09-01

    AXEL is a project to search for 0νββ using a High pressure Xenon gas TPC. AXEL uses SiPM’s to measure the energies and the tracks of 0νββ events. About 50,000 SiPM’s are required for final 0νββ searching version, so developing Front-End Boards (FEB) are necessary. We develop FEB that has high energy resolution and wide dynamic range.

  17. Numerical Modeling and Experimental Testing of a Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Kramer, Morten; Ferri, Francesco

    numerical values for comparison with the experimental test results which were carried out in the same time. It is for this reason why Chapter 4 does consist exclusively of numerical values. Experimental values and measured time series of wave elevations have been used throughout the report in order to a...

  18. Toward an Experimental Quantum Chemistry: Exploring a New Energy Partitioning.

    Science.gov (United States)

    Rahm, Martin; Hoffmann, Roald

    2015-08-19

    Following the work of L. C. Allen, this work begins by relating the central chemical concept of electronegativity with the average binding energy of electrons in a system. The average electron binding energy, χ̅, is in principle accessible from experiment, through photoelectron and X-ray spectroscopy. It can also be estimated theoretically. χ̅ has a rigorous and understandable connection to the total energy. That connection defines a new kind of energy decomposition scheme. The changing total energy in a reaction has three primary contributions to it: the average electron binding energy, the nuclear-nuclear repulsion, and multielectron interactions. This partitioning allows one to gain insight into the predominant factors behind a particular energetic preference. We can conclude whether an energy change in a transformation is favored or resisted by collective changes to the binding energy of electrons, the movement of nuclei, or multielectron interactions. For example, in the classical formation of H2 from atoms, orbital interactions dominate nearly canceling nuclear-nuclear repulsion and two-electron interactions. While in electron attachment to an H atom, the multielectron interactions drive the reaction. Looking at the balance of average electron binding energy, multielectron, and nuclear-nuclear contributions one can judge when more traditional electronegativity arguments can be justifiably invoked in the rationalization of a particular chemical event.

  19. Determination of the electron-antineutrino correlation coefficient a in neutron beta-decay by measurement of the integrated proton spectrum

    CERN Document Server

    Dawber, P G; Grinten, M G D; Habeck, C; Shaikh, F; Spain, J A; Baker, C A; Green, K; Scott, R D; Zimmer, O

    2000-01-01

    The principle is discussed and some preliminary results are given of an experiment in progress at ILL, which aims to determine the electron-antineutrino correlation coefficient, a, from a measurement of the integrated proton energy spectrum following neutron decay in an electromagnetic trap.

  20. Promoting renewable energy: Lessons learned from 20 years of experimentation

    DEFF Research Database (Denmark)

    Haas, Reinhard; Meyer, Niels I; Held, Anne

    2008-01-01

    Currently, the promotion of electricity generated from Renewable Energy Sources (RES-E) has gained high priority in the energy policy strategies of many countries world-wide. Since RES-E contribute to climate protection and security of electricity supply their market deployment has been supported...... can not work and it is necessary to adapt the instruments and the policies to each national case, taking into account the overall regulation of the energy sector, the attitude towards market rules and the historical approach to RES-E....... policies. The core objective of this chapter is to summarize and evaluate the lessons learned to identify the most successful policy examples applied in the last 20 years. Recommendations for the design of future renewable energy policies are deduced, in particular with regard to the harmonisation...

  1. Experimentation with a reverse osmosis plant powered by renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Segura, L.; Gomez, A. [Las Palmas de Gran Canaria Univ., Las Palmas (Spain). Dept. of Process Engineering; Nuez, I. [Las Palmas de Gran Canaria Univ., Las Palmas (Spain). Dept. of Electronic and Automatic Engineering

    2006-07-01

    This paper described a set of tests conducted in a reverse osmosis plant powered by renewable energy sources. Variations on feed flow, reject flow, recovery and power consumption were investigated. The plant has a production of over 115 m{sup 3} per day. During the experiments, the plant was required to operate at variable loading conditions. An energy recovery system was then developed to operate effectively with the observed variable load conditions. The system was incorporated within the reject flow system and was comprised of a Pelton turbine matched to the axis of an asynchronous energy generator. The system was designed to avoid making changes to the actual hydraulic circuit of the plant. Recovery system failures did not necessitate plant stoppages during the testing period. Simulations conducted to assess the energy system showed that optimal performance of the plant was between 16 and 18 kW with a working pressure of between 57 to 67 bars. Results also suggested that installing the system in the evacuation brine line would maximize the use of kinetic energy. It was concluded that energy recovery systems are ideal for use in seawater installations where functioning pressure levels are high. 14 refs., 1 tab., 5 figs.

  2. First measurements in search for keV sterile neutrino in tritium beta-decay in the Troitsk nu-mass experiment

    Science.gov (United States)

    Abdurashitov, J. N.; Belesev, A. I.; Chernov, V. G.; Geraskin, E. V.; Golubev, A. A.; Grigorieva, P. V.; Koroteev, G. A.; Likhovid, N. A.; Nozik, A. A.; Pantuev, V. S.; Parfenov, V. I.; Skasyrskaya, A. K.; Tkachev, I. I.; Zadorozhny, S. V.

    2017-06-01

    We present the first results of precision measurements of tritium -decay spectrum in the electron energy range 16-18.6 keV by the Troitsk nu-mass experiment. The goal is to find distortions that may be caused by the existence of heavy sterile neutrinos. A signature would correspond to a kink in the spectrum with characteristic shape and end point shifted by the value of a heavy neutrino mass. We set new upper limits to the neutrino mixing matrix element U e4 2 , which improve existing limits by a factor of 2 to 5 in the mass range of 0.1-2 keV.

  3. Overview of recent experimental works on high energy neutron shielding

    CERN Document Server

    Nakamura, T; Yashima, H; Yonai, S

    2004-01-01

    Several experiments on high energy neutron shielding have recently been performed using medium to high energy accelerators of energies above 20 MeV. Below 100 MeV, the benchmark experiments have been done using 25 and 35 MeV p-Li quasi-monoenergetic neutrons at the Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Japan, 43 and 68 MeV p-Li quasi-monoenergetic neutrons at the Azimuthally Varying Field (AVF) cyclotron facility, TIARA of Japan Atomic Energy Research Institute (JAERI). Above 100 MeV, the neutron shielding experiments have been done using 800 MeV protons at ISIS, Rutherford Appleton laboratory (RAL), England, 400 MeV/nucleon carbon ions at the heavy ion medical accelerator facility, HIMAC of National Institute of Radiological Sciences (NIRS), Japan, 500 MeV protons at the spallation neutron source facility, KEK spallation neutron source facility (KENS) of High Energy Accelerator Research Organization (KEK), Japan, 500 MeV protons at the accelerator facility, TRIUMF, Canada, 1.6 to 24 G...

  4. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis

    NARCIS (Netherlands)

    Daniilidis, Alexander; Vermaas, David; Herber, Rien; Nijmeijer, Dorothea C.

    2014-01-01

    Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power

  5. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis

    NARCIS (Netherlands)

    Daniilidis, Alexandros; Vermaas, David A.; Herber, Rien; Nijmeijer, Kitty

    Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power

  6. Experimental testing of moorings for large floating wave energy converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    2016-01-01

    This paper presents the outcome of a test campaign, which investigates the behaviour of a synthetic mooring system applied to the Floating Power Plant wave energy converter. The study investigates the motion and tension response under operational and extreme sea states expected at the deployment...

  7. Experimental Investigation on an Energy Efficient Solar Tunnel Dryer

    OpenAIRE

    M. R. Seshan Ram

    2012-01-01

    The research determines the effectiveness of the solar tunnel dryer developed and the product dried in the device is superior in quality and also it is compatible with branded products available in the market. The study also determines Acetamide as Phase Key words: Solar Tunnel Dryer, Acetamide as Phase Change Materials, Conversion into Thermal Energy, Thermocouple, and Pyranometer

  8. Experimental analysis of Hybridised Energy Storage Systems for automotive applications

    Science.gov (United States)

    Sarwar, Wasim; Engstrom, Timothy; Marinescu, Monica; Green, Nick; Taylor, Nigel; Offer, Gregory J.

    2016-08-01

    The requirements of the Energy Storage System (ESS) for an electrified vehicle portfolio consisting of a range of vehicles from micro Hybrid Electric Vehicle (mHEV) to a Battery Electric Vehicle (BEV) vary considerably. To reduce development cost of an electrified powertrain portfolio, a modular system would ideally be scaled across each vehicle; however, the conflicting requirements of a mHEV and BEV prevent this. This study investigates whether it is possible to combine supercapacitors suitable for an mHEV with high-energy batteries suitable for use in a BEV to create a Hybridised Energy Storage System (HESS) suitable for use in a HEV. A passive HESS is found to be capable of meeting the electrical demands of a HEV drive cycle; the operating principles of HESSs are discussed and factors limiting system performance are explored. The performance of the HESS is found to be significantly less temperature dependent than battery-only systems, however the heat generated suggests a requirement for thermal management. As the HESS degrades (at a similar rate to a specialised high-power-battery), battery resistance rises faster than supercapacitor resistance; as a result, the supercapacitor provides a greater current contribution, therefore the energy throughput, temperature rise and degradation of the batteries is reduced.

  9. The PERC spectrometer for the study of the neutron beta decay; Das Spektrometer PERC zur Untersuchung des Neutron-Beta-Zerfalls

    Energy Technology Data Exchange (ETDEWEB)

    Ziener, Carmen Regina

    2014-12-17

    The precise investigation of the weak interaction in free neutron decay allows to intensively test the Standard Modell and find physics beyond. In this work, the magnet system of the bright and clean proton- and electron source PERC (Proton-Electron-Radiation-Channel) was developed. It will be installed in 2016 at the research reactor FRM II. Due to improvements in systematics and statistics in comparison to its predecessor PERKEO III, observables of free neutron decay can be determined with the worldwide best precision of 10{sup -4}. In this thesis, the technical and physical properties of the magnet system will be discussed. As a major part of this work, an efficient geometry for a back-scatter detector was developed. Undetected back-scatter events for electrons would disturb the spectra in the order of 10{sup -3} for a plastic scintillator. Here, the geometry will be introduced and back-scatter events will be analyzed by simulations. For the experimental part of the present work, titanium sublimation pumps and ion getter pumps were constructed and tested. As components of the over 12 m long ultra-high vacuum system of PERC they can effectively reduce the pressure to the order of 10{sup -9} mbar over the complete length. Therefore collisions of electrons and protons with gas particles will be strongly suppressed.

  10. Status of LUMINEU program to search for neutrinoless double beta decay of 100Mo with cryogenic ZnMoO4 scintillating bolometers

    Science.gov (United States)

    Danevich, F. A.; Bergé, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gray, D.; Gros, M.; Hervé, S.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kobychev, V. V.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Navick, X.-F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Shlegel, V. N.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.

    2015-10-01

    The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (˜ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ˜ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.

  11. Excitation of the isomeric states 1h sub 1 sub 1 sub / sub 2 in the nuclear reactions with gamma-quanta, neutrons and at beta decay

    CERN Document Server

    Belov, A G; Melnikova, L M; Ponomarev, V Yu; Tsoneva, N; Stoyanov, C; Balabanov, N P; Tonchev, A P

    2001-01-01

    The isomeric ratios (IR) were measured in the isotones with N = 81 ( sup 1 sup 3 sup 5 Xe, sup 1 sup 3 sup 7 Ba, sup 1 sup 3 sup 9 Ce, sup 1 sup 4 sup 1 Nd, and sup 1 sup 4 sup 3 Sm). Isomers with J suppi 11/2 sup - were excited in the reactions (n, gamma), (gamma, n), and beta sup + decay of sup 1 sup 3 sup 9 Pr and sup 1 sup 4 sup 1 Pm. The activation methods of gamma-spectrum measurement of reaction products was used. The marked difference of IR was observed in the isotones with the different atomic numbers Z but in the same reactions. The calculations of IR using low-level spectrum of final nuclei and probability of radiation transitions on the base of the quasiparticle phonon model were performed. The satisfactory agreement of the measured and calculated IR was obtained for all studied isotopes. The dependence of IR on Z is explained by the different energy of reaction and different probability levels population of the activation

  12. Advanced Time-Delayed Coincidence Studies of $^{31,32}$Mg from the $\\beta$-decays of $^{31,32}$Na

    CERN Multimedia

    Marechal, F; Plociennik, W A

    2002-01-01

    It is proposed to study the lifetime of the 2$_{1}^{+}$ 885.4 keV state in $^{32}$Mg by means of Advanced Time-Delayed $\\beta \\gamma \\gamma$(t) method with the precision in the half-life value of about $\\pm$ 1.5 ps. This would be an independent verification of the B(E2; 0$_{1}^{+} \\rightarrow$ 2$_{1}^{+}$) values obtained so far in a few studies using Coulomb excitations at intermediate beam energies. The advantage of time-delayed coincidence measurements is that they are free of corrections used in the Coulex studies, which strongly affect the deduced B(E2) results. In addition, we propose to study the lifetimes or lifetime limits of other states in nuclei populated in the decays of $^{31}$Na and $^{32}$Na, specifically focusing on the intruder negative parity band in $^{31}$Mg. As a side benefit to this investigation we expect high-quality $\\gamma \\gamma$ coincidences to reveal new excited states in both $^{31}$Mg and $^{32}$Mg. Our results from a brief test-measurement yield a lifetime of T$_{1/2}$ = 10.5(...

  13. Experimental and theoretical high energy physics research. [UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Charles D.; Cline, David B.; Byers, N.; Ferrara, S.; Peccei, R.; Hauser, Jay; Muller, Thomas; Atac, Muzaffer; Slater, William; Cousins, Robert; Arisaka, Katsushi

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.

  14. A Rule Based Energy Management System of Experimental Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Qiao Zhang

    2016-01-01

    Full Text Available In this paper, a simple and efficient rule based energy management system for battery and supercapacitor hybrid energy storage system (HESS used in electric vehicles is presented. The objective of the proposed energy management system is to focus on exploiting the supercapacitor characteristics and on increasing the battery lifetime and system efficiency. The role of the energy management system is to yield battery reference current, which is subsequently used by the controller of the DC/DC converter. First, a current controller is designed to realize load current distribution between battery and supercapacitor. Then a voltage controller is designed to ensure the supercapacitor SOC to fluctuate within a preset reasonable variation range. Finally, a commercial experimental platform is developed to verify the proposed control strategy. In addition, the energy efficiency and the cost analysis of the hybrid system are carried out based on the experimental results to explore the most cost-effective tradeoff.

  15. Experimental ocean acidification alters the allocation of metabolic energy.

    Science.gov (United States)

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

  16. Experimental Magnetohydrodynamic Energy Extraction from a Pulsed Detonation

    Science.gov (United States)

    2015-03-01

    Mårtensson-Pendrill, “ Isotope shift in the electron affinity of chlorine ,” Phys. Rev. A, vol. 51, pp. 231–238, Jan 1995. 26. H. Hotop and W. Lineberger...is of particular importance when discussing MHD power extraction because it is directly related to the amount of energy that can be extracted using an...in Table 5 for the three fuel-oxidizer mixtures at φ = 1 were calculated from the mass fractions given by CEA[4]. It is important to note that for

  17. Experimental Validation of Energy Resources Integration in Microgrids via Distributed Predictive Control

    DEFF Research Database (Denmark)

    Mantovani, Giancarlo; Costanzo, Giuseppe Tommaso; Marinelli, Mattia

    2014-01-01

    This paper presents an innovative control scheme for the management of energy consumption in commercial build- ings with local energy production, such as photovoltaic panels or wind turbine and an energy storage unit. The presented scheme is based on distributed model predictive controllers, which...... manage the storage system and the building space heating and cooling. The proposed approach is implemented and tested in SYSLAB, the experimental facility for distributed energy systems at the Techni- cal University of Denmark, Risø Campus. The experimental setup consists of wind and solar renewable...

  18. Study of tracking detector of NEMO3 experiment - simulation of the measurement of the ultra low {sup 208}Tl radioactivity in the source foils used as neutrinoless double beta decay emitters in NEMO3 experiment; Etude du detecteur de traces de l'experience NEMO3. Simulation de la mesure de l'ultra-faible radioactivite en {sup 208}Tl des sources de l'experience NEMO3 candidates a la double desintegration {beta} sans emission de neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Errahmane, K

    2001-04-01

    The purpose of NEMO3 experiment is the research of the neutrinoless double beta decay. This low energy process can sign the massive and Majorana nature of neutrino. This experiment, with a very low radioactive background and containing 10 kg of enriched isotopes, studies mainly {sup 100}Mo. Installed at the Frejus underground laboratory, NEMO3 is a cylindrical detector, which consists in very thin central source foils, in a tracking detector made up of vertical drift cells operating in Geiger mode, in a calorimeter and in a suitable shielding. This thesis is divided in two different parts. The first part is a full study of the features of the tracking detector. With a prototype composed of 9 drift cells, we characterised the longitudinal and transverse reconstruction of position of the ionisation created by a LASER. With the first 3 modules under operation, we used radioactive external neutron sources to measure the transverse resolution of ionisation position in a drift cell for high energy electrons. To study the vertex reconstruction on the source foil, sources of {sup 207}Bi, which produced conversion electrons, were used inside the 3 modules. The second part of this thesis, we show, with simulations, that we can measure, with NEMO3 detector itself, the ultra low level of contamination in {sup 208}Tl of the source foil, which comes from the natural radioactive chain of thorium. Using electron-photons channels, we can obtain the {sup 208}Tl activity in the sources. With an analysis on the energy and on the time of flight of particles, NEMO3 is able to reach a sensitivity of 20{mu}Bq/kg after only 2 months of measurement. This sensitivity is the maximum {sup 208}Tl activity, which we accepted for the sources in the NEMO3 proposal. (author)

  19. Experimental study of energy performance in low-temperature hydronic heating systems

    DEFF Research Database (Denmark)

    Hesaraki, Arefeh; Bourdakis, Eleftherios; Ploskić, Adnan

    2015-01-01

    Energy consumption, thermal environment and environmental impacts were analytically and experimentally studied for different types of heat emitters. The heat emitters studied were conventional radiator, ventilation radiator, and floor heating with medium-, low-, and very-low-temperature supply, r...

  20. Experimental Testing of the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2011-01-01

    Aalborg University carried out wave tank testing a 1:20 scale model of Langlee, an oscillating wave-surge type of Wave Energy Converter (WEC). Langlee is designed to operate in deep water, with the hinged flaps attached to a, moored, semi-submerged reference frame. Langlee has a novel flap...... arrangement, with the flaps placed symmetrically opposing each other on a floating reference structure. This minimises the net force on the reference frame and increases the stability of the reference frame under optimal wave conditions. This paper presents the results and analysis from the wave tanks, which...... addressed the following: The Power Take Offs (PTOs) were simulated using a motor to resist the motion of the wings, according to the damping profile. Torque and velocity measurements were used to predict the wave- to mechanical-power conversion efficiency of the device. A number of wing types...

  1. Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies

    Science.gov (United States)

    Jacquemot, S.

    2017-10-01

    This paper provides an overview of the results presented at the 26th IAEA Fusion Energy Conference in the field of inertial confinement fusion for energy, covering its various experimental, numerical/theoretical and technological facets, as well as the different paths towards ignition that are currently followed worldwide.

  2. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    Energy Technology Data Exchange (ETDEWEB)

    Pasca, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); ' ' Babes-Bolyai' ' Univ., Cluj-Napoca (Romania); Andreev, A.V.; Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic Univ. (Russian Federation). Mathematical Physics Dept.

    2016-12-15

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed. (orig.)

  3. Results of an Experimental Study of the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Espedal, J.

    2010-01-01

    This paper presents the results of the first experimental study of the Langlee wave energy converter (WEC), a semi-submerged oscillating wave surge converter. Its design extracts the energy from the surge motion of the waves through two pairs of working flaps, called water wings, which are placed...

  4. Neutrinoless double beta decay and nuclear environment

    Science.gov (United States)

    Šimkovic, F.; Krivoruchenko, M. I.; Kovalenko, S.

    2017-09-01

    We show that the presence in the nuclear medium of lepton number violating four-fermion interactions of neutrinos with quarks from a decaying nucleus could account for an apparent incompatibility among the 0 νββ searches in the laboratory, the direct neutrino mass measurement with the nuclear β-decay and cosmological data.

  5. Penguins and cp violation in {beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    He, X.C.

    1996-11-01

    The measurement of the {epsilon}-parameter in the K{sup 0} - K-bar{sup 0} meson system is the only direct evidence for CP violation in the laboratory. The Standard Model (SM) of three generations with the source for CP violation arising from the phases in the Cabibbo-Kobayashi-Maskawa (CKM) matrix is consistent with the experiment. An unique feature of this model is that the CKM matrix is a 3 x 3 unitary matrix. (author). 19 refs., 3 figs.

  6. SU(3) breaking in hyperon beta decays

    Energy Technology Data Exchange (ETDEWEB)

    Roos, M. (Helsinki Univ. (Finland). Dept. of High Energy Physics)

    1990-08-23

    The symmetry breaking in the hyperon semi-leptonic decays is analyzed with the constraint that vertical strokeV{sub us}vertical stroke is given by K{sub e3}. The mechanism of symmetry breaking of Donoghue, Holstein and Klimt and the one-loop corrected vector form factors of Krause are compared with data. (orig.).

  7. SU(3) breaking in hyperon beta decays

    Science.gov (United States)

    Roos, M.

    1990-08-01

    The symmetry breaking in the hyperon semi-leptonic decays is analyzed with the constraint the | us| is given by K e3. The mechanisms of symmetry breaking of Donoghue, Holstein and Klimt and the one-loop corrected vector form factors of Krause are compared with data.

  8. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter

    Science.gov (United States)

    Akimchenko, Alina; Chepurnov, Victor; Dolgopolov, Mikhail; Gurskaya, Albina; Kuznetsov, Oleg; Mashnin, Alikhan; Radenko, Vitaliy; Radenko, Alexander; Surnin, Oleg; Zanin, George

    2017-10-01

    The miniature and low-power devices with long service life in hard operating conditions like the Carbon-14 beta-decay energy converters indeed as eternal resource for integrated MEMS and NEMS are considered. Authors discuss how to create the power supply for MEMS/NEMS devices, based on porous SiC/Si structure, which are tested to be used as the beta-decay energy converters of radioactive C-14 into electrical energy. This is based on the silicon carbide obtaining by self-organizing mono 3C-SiC endotaxy on the Si substrate. The new idea is the C-14 atoms including in molecules in the silicon carbide porous structure by this technology, which will increase the efficiency of the converter due to the greater intensity of electron-hole pairs generation rate in the space charge region. The synthesis of C-14 can be also performed by using the electronically controlled magneto-optic chamber.

  9. Frequency response function of motors for switching noise energy with a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsu [Ensemble Center for Automotive Research, Seoul (Korea, Republic of); Yoon, Jong-Yun [Incheon National University, Incheon (Korea, Republic of)

    2017-06-15

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor.

  10. Experimental investigation on the hydrodynamic performance of a wave energy converter

    Science.gov (United States)

    Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu

    2017-06-01

    Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.

  11. From eV to EeV: Neutrino cross sections across energy scales

    Energy Technology Data Exchange (ETDEWEB)

    Formaggio, J. A.; Zeller, G. P.

    2012-09-01

    Since its original postulation by Wolfgang Pauli in 1930, the neutrino has played a prominent role in our understanding of nuclear and particle physics. In the intervening 80 years, scientists have detected and measured neutrinos from a variety of sources, both man-made and natural. Underlying all of these observations, and any inferences we may have made from them, is an understanding of how neutrinos interact with matter. Knowledge of neutrino interaction cross sections is an important and necessary ingredient in any neutrino measurement. With the advent of new precision experiments, the demands on our understanding of neutrino interactions is becoming even greater. The purpose of this article is to survey our current knowledge of neutrino cross sections across all known energy scales: from the very lowest energies to the highest that we hope to observe. The article covers a wide range of neutrino interactions including coherent scattering, neutrino capture, inverse beta decay, low energy nuclear interactions, quasi-elastic scattering, resonant pion production, kaon production, deep inelastic scattering and ultra-high energy interactions. Strong emphasis is placed on experimental data whenever such measurements are available.

  12. Modeling a photovoltaic energy storage system based on super capacitor, simulation and evaluation of experimental performance

    Science.gov (United States)

    Ben Fathallah, Mohamed Ali; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    Photovoltaic energy is very important to meet the consumption needs of electrical energy in remote areas and for other applications. Energy storage systems are essential to avoid the intermittent production of photovoltaic energy and to cover peaks in energy demand. The super capacitor, also known as electrochemical double layer capacitor, is a storage device which has a very high power density compared to conventional battery and is capable of storing a large amount of electrical energy in short time periods, which reflects its interest to be used for the storage of photovoltaic energy. From this principle, this paper represents a three-branch RC model of super capacitor to describe its different dynamics of operation during the charging, discharging and rest phases. After having validated the good functioning of this model with the experimental study of Zubieta, The super capacitor performance has been demonstrated and compared with a conventional battery in a photovoltaic converter chain to power AC machine.

  13. Experimental studies of systematic multiple-energy operation at HIMAC synchrotron

    Science.gov (United States)

    Mizushima, K.; Katagiri, K.; Iwata, Y.; Furukawa, T.; Fujimoto, T.; Sato, S.; Hara, Y.; Shirai, T.; Noda, K.

    2014-07-01

    Multiple-energy synchrotron operation providing carbon-ion beams with various energies has been used for scanned particle therapy at NIRS. An energy range from 430 to 56 MeV/u and about 200 steps within this range are required to vary the Bragg peak position for effective treatment. The treatment also demands the slow extraction of beam with highly reliable properties, such as spill, position and size, for all energies. We propose an approach to generating multiple-energy operation meeting these requirements within a short time. In this approach, the device settings at most energy steps are determined without manual adjustments by using systematic parameter tuning depending on the beam energy. Experimental verification was carried out at the HIMAC synchrotron, and its results proved that this approach can greatly reduce the adjustment period.

  14. Experimental investigation of zero energy office under natural and forced ventilation

    Directory of Open Access Journals (Sweden)

    Al-Kayiem Hussain H.

    2017-01-01

    Full Text Available With the rapid rise of energy consumption in the world, lowering the energy needs of houses and buildings can have a significant effect on future of energy demand and consumption. This paper presents experimental investigation results on the effectiveness of the natural and forced ventilation in prototype of zero-energy office. The main aim of the different ventilation systems is to improve the thermal comfort within the office. The installed forced ventilation system achieved a 6°C drop in maximum temperature within the office and improved the thermal comfort by 46%.

  15. Experimental Validation of a Novel Compact Focusing Scheme for Future Energy-Frontier Linear Lepton Colliders

    Science.gov (United States)

    White, G. R.; Ainsworth, R.; Akagi, T.; Alabau-Gonzalvo, J.; Angal-Kalinin, D.; Araki, S.; Aryshev, A.; Bai, S.; Bambade, P.; Bett, D. R.; Blair, G.; Blanch, C.; Blanco, O.; Blaskovic-Kraljevic, N.; Bolzon, B.; Boogert, S.; Burrows, P. N.; Christian, G.; Corner, L.; Davis, M. R.; Faus-Golfe, A.; Fukuda, M.; Gao, J.; García-Morales, H.; Geffroy, N.; Hayano, H.; Heo, A. Y.; Hildreth, M.; Honda, Y.; Huang, J. Y.; Hwang, W. H.; Iwashita, Y.; Jang, S.; Jeremie, A.; Kamiya, Y.; Karataev, P.; Kim, E. S.; Kim, H. S.; Kim, S. H.; Kim, Y. I.; Komamiya, S.; Kubo, K.; Kume, T.; Kuroda, S.; Lam, B.; Lekomtsev, K.; Liu, S.; Lyapin, A.; Marin, E.; Masuzawa, M.; McCormick, D.; Naito, T.; Nelson, J.; Nevay, L. J.; Okugi, T.; Omori, T.; Oroku, M.; Park, H.; Park, Y. J.; Perry, C.; Pfingstner, J.; Phinney, N.; Rawankar, A.; Renier, Y.; Resta-López, J.; Ross, M.; Sanuki, T.; Schulte, D.; Seryi, A.; Shevelev, M.; Shimizu, H.; Snuverink, J.; Spencer, C.; Suehara, T.; Sugahara, R.; Takahashi, T.; Tanaka, R.; Tauchi, T.; Terunuma, N.; Tomás, R.; Urakawa, J.; Wang, D.; Warden, M.; Wendt, M.; Wolski, A.; Woodley, M.; Yamaguchi, Y.; Yamanaka, T.; Yan, J.; Yokoya, K.; Zimmermann, F.; ATF2 Collaboration

    2014-01-01

    A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [P. Raimondi and A. Seryi, Phys. Rev. Lett. 86, 3779 (2001)]. This scheme has many advantageous properties over previously studied focusing schemes, including being significantly shorter for a given energy and having a significantly better energy bandwidth. Experimental results from the ATF2 accelerator at KEK are presented that validate the operating principle of such a scheme by demonstrating the demagnification of a 1.3 GeV electron beam down to below 65 nm in height using an energy-scaled version of the compact focusing optics designed for the ILC collider.

  16. Analysis method for the search for neutrinoless double beta decay in the NEMO3 experiment: study of the background and first results; Methode d'analyse pour la recherche de la double desintegration {beta} sans emission de neutrinos dans l'experience NEMO3. Etude du bruit de fond et premiers resultats

    Energy Technology Data Exchange (ETDEWEB)

    Etienvre, A.I

    2003-04-15

    The NEMO3 detector, installed in the Frejus Underground Laboratory, is dedicated to the study of neutrinoless double beta decay: the observation of this process would sign the massive and Majorana nature of neutrino. The experiment consists in very thin central source foils (the total mass is equal to 10 kg), a tracking detector made of drift cells operating in Geiger mode, a calorimeter made of plastic scintillators associated to photomultipliers, a coil producing a 30 gauss magnetic field and two shields, dedicated to the reduction of the {gamma}-ray and neutron fluxes. In the first part, I describe the implications of several mechanisms, related to trilinear R-parity violation, on double beta decay. The second part is dedicated to a detailed study of the tracking detector of the experiment: after a description of the different working tests, I present the determination of the characteristics of the tracking reconstruction (transverse and longitudinal resolution, by Geiger cell and precision on vertex determination, charge recognition). The last part corresponds to the analysis of the data taken by the experiment. On the one hand, an upper limit on the Tl{sup 208} activity of the sources has been determined: it is lower than 68 mBq/kg, at 90% of confidence level. On the other hand, I have developed and tested on these data a method in order to analyse the neutrinoless double beta decay signal; this method is based on a maximum of likelihood using all the available information. Using this method, I could determine a first and very preliminary upper limit on the effective mass of the neutrino. (author)

  17. Energy dependence of isotopic spectra from spallation residues; Dependance en energie des spectres isotopiques de residus de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to {beta} decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  18. Experimental Validation of Energy Resources Integration in Microgrids via Distributed Predictive Control

    DEFF Research Database (Denmark)

    Mantovani, Giancarlo; Costanzo, Giuseppe Tommaso; Marinelli, Mattia

    2014-01-01

    manage the storage system and the building space heating and cooling. The proposed approach is implemented and tested in SYSLAB, the experimental facility for distributed energy systems at the Techni- cal University of Denmark, Risø Campus. The experimental setup consists of wind and solar renewable...... sources, a vanadium redox battery system, resistive load, and a point of common coupling to the national grid. Several experiments are carried to assess the performance of the control scheme in managing local energy pro- duction and consumption....

  19. Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Logerais

    2013-01-01

    Full Text Available The storage of photovoltaic energy by supercapacitors is studied by using two approaches. An overview on the integration of supercapacitors in solar energy conversion systems is previously provided. First, a realized experimental setup of charge/discharge of supercapacitors fed by a photovoltaic array has been operated with fine data acquisition. The second approach consists in simulating photovoltaic energy storage by supercapacitors with a faithful and accessible model composed of solar irradiance evaluation, equivalent electrical circuit for photovoltaic conversion, and a multibranch circuit for supercapacitor. Both the experimental and calculated results are confronted, and an error of 1% on the stored energy is found with a correction largely within ±10% of the transmission line capacitance according to temperature.

  20. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  1. Freezing vibrational energy flow: a fitness function for interchangeable computational and experimental control.

    Science.gov (United States)

    Weidinger, D; Engel, M F; Gruebele, M

    2009-04-23

    We develop a fitness functional for freezing molecular energy flow that relies only on experimental observables. The functional allows us to implement a modular control algorithm where simulation data and experimental data can be used interchangeably. This interchangeability could be useful as a spectroscopic tool and for reactive control because the controllability of the experimental system and its model can be compared directly. The fitness functional performs as well as functionals based on complete knowledge of the wave function. We compare our simulation results with an analytical theory of control, and find good agreement between the simulated and predicted times over which the system can be controlled.

  2. Online Energy Management Systems for Microgrids: Experimental Validation and Assessment Framework

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Meng, Lexuan; Aldana, Nelson Leonardo Diaz

    2018-01-01

    framework for quantitatively assess the enhancement attained by different online energy management strategies. The proposed architecture allows the interaction of measurement, forecasting and optimization modules, in which a generic generation-side mathematical problem is modeled, aiming to minimize...... applicable for specific case studies rather than in generic architectures that can deal with the uncertainties of the renewable energy sources. This paper contributes a design and experimental validation of an adaptable energy management system implemented in an online scheme, as well as an evaluation...

  3. Experimental studies of the vibroacoustic characteristics of a large-scale energy pump

    Energy Technology Data Exchange (ETDEWEB)

    Gaev, G.P.; Kail, I.I.; Kinski, D.; Koban, I.; Zhileiko, P.G.

    1986-06-01

    The results are given from experimental studies of the vibroacoustic characteristics of a large-scale energy (velocity) pump for the purpose of diagnosing its state under various service operating conditions. Recommendations are given for measuring the statistical characteristics of vibroacoustic pump noise.

  4. Experimental parameterization of an energy function for the simulation of unfolded proteins

    DEFF Research Database (Denmark)

    Norgaard, A.B.; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, K.

    2008-01-01

    and employs a fast and efficient gradient descent method to find the set of parameters of the energy function that best explain the experimental data. We first validate the method by using synthetic reference data, and subsequently apply the algorithms to data from nuclear magnetic resonance spin...

  5. Comparison Between Cerebral Tissue Oxygen Tension and Energy Metabolism in Experimental Subdural Hematoma

    DEFF Research Database (Denmark)

    Nielsen, Troels Halfeld; Engell, Susanne I; Johnsen, Rikke Aagaard

    2011-01-01

    BACKGROUND: An experimental swine model (n = 7) simulating an acute subdural hematoma (ASDH) was employed (1) to explore the relation between the brain tissue oxygenation (PbtO(2)) and the regional cerebral energy metabolism as obtained by microdialysis, and (2) to define the lowest level of PbtO...

  6. Experimental Hydraulic Optimization of the Wave Energy Converter Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    This report presents the results of a experimental hydraulic optimization of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed...

  7. Design and Experimental Characterization of a Vibration Energy Harvesting Device for Rotational Systems

    Directory of Open Access Journals (Sweden)

    Lutao Yan

    2013-01-01

    Full Text Available This paper presents a new vibration based electromagnetic power generator to transfer energy from stationary to rotating equipment, which can be a new attempt to substitute slip ring in rotational systems. The natural frequencies and modes are simulated in order to have a maximum and steady power output from the device. Parameters such as piezoelectric disk location and relative motion direction of the magnet are theoretically and experimentally analyzed. The results show that the position that is close to the fixed end of the cantilever and the relative motion along the long side gives higher power output. Moreover, the capability of the energy harvester to extract power from lower energy environment is experimentally validated. The voltage and power output are measured at different excitation frequencies.

  8. Energy Transfer with Hydrogen and Superconductivity - The Review of the First Experimental Results

    Science.gov (United States)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    The transfer of massive amounts of both electrical and chemical power over long distances will present a major challenge for the global energy enterprise in future. Attraction of hydrogen is apparent as a chemical energy agent, possessing among the highest energy density content of various common fuels, whose combustive "waste" is simply water. The usage of "gratis" cold to cool a superconducting cable made of proper superconductor permits to deliver extra electrical power with the same line. This, rather old theoretical idea recently found its experimental realization. The team of Russian institutes and organizations with using Italian-produced MgB2 wire has made and successfully tested two hybrid energy transfer lines with liquid hydrogen as a chemical source of power and superconducting cable as a source of electricity. The first line has been tested in 2011. It has length ∼10 m, maximum liquid hydrogen flow ∼250 g/s and maximum current of MgB2 superconducting cable 2600 A @ 20K. This test was the first experimental proof of conception of the hybrid energy transfer line. The second line has been tested in October 2013. It has length ∼30 m. The new MgB2 cable has critical current at 21 K ∼3500 A and successfully passed high voltage DC test of 50 kV. New hydrogen cryostat has three sections with different types of thermal insulation in each section. The idea of hybrid energy transfer is formulated and details of first experiments are reviewed.

  9. Experimental verification of an energy consumption signal tool for operational decision support in an office building

    Energy Technology Data Exchange (ETDEWEB)

    Pavlak, Gregory S.; Henze, Gregor P.; Hirsch, Adam I.; Florita, Anthony R.; Dodier, Robert H.

    2016-12-01

    This paper demonstrates an energy signal tool to assess the system-level and whole-building energy use of an office building in downtown Denver, Colorado. The energy signal tool uses a traffic light visualization to alert a building operator to energy use which is substantially different from expected. The tool selects which light to display for a given energy end-use by comparing measured energy use to expected energy use, accounting for uncertainty. A red light is only displayed when a fault is likely enough, and abnormal operation costly enough, that taking action will yield the lowest cost result. While the theoretical advances and tool development were reported previously, it has only been tested using a basic building model and has not, until now, been experimentally verified. Expected energy use for the field demonstration is provided by a compact reduced-order representation of the Alliance Center, generated from a detailed DOE-2.2 energy model. Actual building energy consumption data is taken from the summer of 2014 for the office building immediately after a significant renovation project. The purpose of this paper is to demonstrate a first look at the building following its major renovation compared to the design intent. The tool indicated strong under-consumption in lighting and plug loads and strong over-consumption in HVAC energy consumption, which prompted several focused actions for follow-up investigation. In addition, this paper illustrates the application of Bayesian inference to the estimation of posterior parameter probability distributions to measured data. Practical discussion of the application is provided, along with additional findings from further investigating the significant difference between expected and actual energy consumption.

  10. Lowering the CUORE energy threshold

    Science.gov (United States)

    Copello, S.; Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T., III.; Azzolini, O.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; Dafinei, I.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Napolitano, T.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, c. C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.

    2017-09-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale double beta decay experiment based on TeO2 cryogenic bolometers and is currently in the last construction stage at the Gran Sasso National Laboratory (LNGS). Its primary goal is to observe neutrino-less double beta decay of 130Te, however thanks to the ultra-low background and large projected exposure it could also be suitable for other rare event searches, as the detection of solar axions, neutrinos from type II supernovae or direct detection of dark matter. The sensitivity for these searches will depend on the performance achieved at the low energy threshold. For this reason a trigger algorithm based on continuous data filtering has been developed which will allow lowering the threshold down to the few keV region. The new trigger has been tested in CUORE-0, a single-tower CUORE prototype consisting of 52 TeO2 bolometers and recently concluded, and here we present the results in terms of trigger efficiency, data selection and low-energy calibration.

  11. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    Science.gov (United States)

    Thomas, R. L.; Sholes, J. E.

    1975-01-01

    A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.

  12. Calculation of the ultracold neutron upscattering loss probability in fluid walled storage bottles using experimental measurements of the liquid thermomechanical properties of fomblin

    Science.gov (United States)

    Lamoreaux, S. K.; Golub, R.

    2002-10-01

    Presently, the most accurate values of the free neutron beta-decay lifetime result from measurements using fluid-coated ultacold neutron (UCN) storage bottles. The purpose of this work is to investigate the temperature-dependent UCN loss rate from these storage systems. To verify that the surface properites of fomblin films are the same as the bulk properties, we present experimental measurements of the properties of a liquid ``fomblin'' surface obtained by the quasielastic scattering of laser light. The properties include the surface tension and viscosity as functions of temperature. The results are compared to measurements of the bulk fluid properties. We then calculate the upscattering rate of UCNs from thermally excited surface capillary waves on the liquid surface and compare the results to experimental measurements of the UCN lifetime in fomblin-fluid-walled UCN storage bottles, and show that the excess storage loss rate for UCN energies near the fomblin potential can be explained. The rapid temperature dependence of the fomblin storage lifetime is explained by our analysis.

  13. Experimental Research of High-Energy Capabilities of Material Recognition by Dual-Energy Method for the Low- Dose Radiation

    Science.gov (United States)

    Abashkin, A.; Osipov, S.; Chakhlov, S.; Shteyn, A.

    2016-06-01

    The algorithm to produce primary radiographs, its transformation by dual energy method and recognition of the object materials were enhanced based on the analysis of experimental results. The experiments were carried out at the inspection complex with high X- ray source - betatron MIB 4/9 in Tomsk Polytechnic University. For the reduced X -ray dose rate, the possibility of recognition of the object materials with thickness from 20 to 120 g/cm2 was proved under the condition that as the dose rate is reduced by the defined number of times, the segment of the image fragment with the reliably identified material will increase by the same number of times.

  14. Finite element analysis of vibration-driven electro-active paper energy harvester with experimental verification

    Directory of Open Access Journals (Sweden)

    Zafar Abas

    2015-02-01

    Full Text Available In this research work, a coupled-field finite element model of electro-active paper energy harvester is presented, and the results are verified experimentally. Electro-active paper is a smart form of cellulose coated with electrodes on both sides. A finite element model was developed, and harmonic and transient analyses were performed using a commercial finite element analysis package. Two 80 mm × 50 mm and 100 mm × 50 mm aluminum cantilever benders bonded with electro-active paper were tested to validate the finite element model results. Displacement and voltage generated by the energy harvester at the electrode surfaces were measured. The electro-active paper energy harvesters were excited at their fundamental resonance frequencies by a sinusoidal force located 18 mm from the free end. The voltage obtained from the 80 mm × 50 mm and 100 mm × 50 mm electro-active paper energy harvester finite element model was 3.7 and 7 mV, respectively. Experimental results have shown good agreement with the finite element model. The direct piezoelectric effect of electro-active paper shows potential for a cellulose-based eco-friendly energy harvester.

  15. Experimental and empirical technique to estimate energy decreasing at heating in an oval furnace

    Directory of Open Access Journals (Sweden)

    A. A. Minea

    2012-10-01

    Full Text Available In this paper an experimental and empirical methods are proposed to estimate the heat transfer enhancement in industrial heating processes in oval furnaces. An investigation was conducted to study the suitability of inserting radiant panels of different positions and radiation surface. Two case studies were considered. The maximum energy saving was obtained for case 5: 32,89 % off from the standard experiment (with no panels. The minimum energy saving was obtained for case 10: 11,72 % off from the standard experiment (with no panels. Finally, based on the results of this study, a correlation was developed to predict the inner configuration of an oval furnace.

  16. Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Paul-Scherrer-Institute Wuerenlingen and Villigen, Villigen (Switzerland); Arbuzov, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Balossini, G. [Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; INFN, Pavia (IT)] (and others)

    2009-12-15

    We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e{sup +}e{sup -} colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on {tau} decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and {tau} decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed. (orig.)

  17. Kinetic energy in the collective quadrupole Hamiltonian from the experimental data

    Directory of Open Access Journals (Sweden)

    R.V. Jolos

    2017-06-01

    Full Text Available Dependence of the kinetic energy term of the collective nuclear Hamiltonian on collective momentum is considered. It is shown that the fourth order in collective momentum term of the collective quadrupole Hamiltonian generates a sizable effect on the excitation energies and the matrix elements of the quadrupole moment operator. It is demonstrated that the results of calculation are sensitive to the values of some matrix elements of the quadrupole moment. It stresses the importance for a concrete nucleus to have the experimental data for the reduced matrix elements of the quadrupole moment operator taken between all low lying states with the angular momenta not exceeding 4.

  18. Resolving solvophobic interactions inferred from experimental solvation free energies and evaluated from molecular simulations

    Science.gov (United States)

    Barnett, J. Wesley; Bhutta, Amna; Bierbrier, Sarah C.; da Silva Moura, Natalia; Ashbaugh, Henry S.

    2017-01-01

    Ben-Naim estimated the solvent-mediated interaction between methanes based on experimental solvation free energy differences between chemically similar hydrocarbons. Interactions were predicted to be strongest in water, dominated by characteristic entropic gains. We use molecular simulations in combination with an empirical interpolation procedure that bridges interactions from outside methane's excluded volume down to overlap to test Ben-Naim's estimates. While Ben-Naim's approach captures many distinctive trends, the alchemical differences between methane and a methyl unit play a non-trivial role on the predicted association strength and the sign of enthalpic and entropic components of the interaction free energy in water and ethanol.

  19. Experimental analysis of energy harvesting from self-induced flutter of a composite beam

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Mohamed Y., E-mail: zakaria@vt.edu; Al-Haik, Mohammad Y.; Hajj, Muhammad R. [Virginia Tech, Norris Hall, Blacksburg, Virginia 24061 (United States)

    2015-07-13

    Previous attempts to harvest energy from aeroelastic vibrations have been based on attaching a beam to a moving wing or structure. Here, we exploit self-excited oscillations of a fluttering composite beam to harvest energy using piezoelectric transduction. Details of the beam properties and experimental setup are presented. The effects of preset angle of attack, wind speed, and load resistance on the levels of harvested power are determined. The results point to a complex relation between the aerodynamic loading and its impact on the static deflection and amplitudes of the limit cycle oscillations on one hand and the load resistance and level of power harvested on the other hand.

  20. Experimental and phenomenological investigations of QCD matter in high-energy nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, Anton

    2014-07-15

    This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.

  1. Design of an experimental setup for hydro-kinetic energy conversion

    OpenAIRE

    Grabbe, Mårten; Yuen, Katarina; Goude, Anders; Lalander, Emilia; Leijon, Mats

    2009-01-01

    A hydro-kinetic energy project has been underway in Sweden since 2000, and an in-stream prototype setup for experiments at a site in a Swedish river is now in progress. The system comprises a vertical axis turbine and a directly driven permanent magnet generator. Methods and choices used in designing the system are described here. The turbine and generator are evaluated based on measurements and CFD simulations of conditions at the site for the experimental setup.

  2. [Experimental and theoretical high energy physics program]. [Purdue Univ. , West Lafayette, Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac[endash]Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e[sup +]e[sup [minus

  3. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence

    Directory of Open Access Journals (Sweden)

    Xiaofeng Pang

    2016-07-01

    Full Text Available The influences of electromagnetic fields (EMFs on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole–dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge–Kutta method and Pang’s soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the

  4. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence.

    Science.gov (United States)

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-07-25

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole-dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge-Kutta method and Pang's soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are

  5. Electrical Supply System for the Experimental Zero-Energy Building (of 300 m2 Based on Renewable and Alternative Energy Sources

    Directory of Open Access Journals (Sweden)

    Basok, B.I.

    2015-11-01

    Full Text Available The results of the development and implementation of the power supply system of the experimental zero-energy building based on renewable and alternative energy sources are presented. CDF-model to determine the optimal conditions for the deployment of wind energy installations within the building limits is developed.

  6. Design, modeling and experimental investigation of a magnetically coupled flextensional rotation energy harvester

    Science.gov (United States)

    Zou, Hong-Xiang; Zhang, Wen-Ming; Li, Wen-Bo; Gao, Qiu-Hua; Wei, Ke-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-11-01

    Energy can be harvested from rotational motion for powering wireless autonomous electronic devices. In this paper, a novel magnetically coupled flextensional rotation energy harvester (MF-REH) is designed, with the advantages of high equivalent piezoelectric constant and high reliability. The coupled dynamical model is developed to describe the electromechanical transition. Effects of design parameters on rotation energy harvesting are analyzed. Simulations and experiments are carried out to evaluate the performances of the harvesters with various configurations under different rotating speeds. The experimental results verify that the developed mathematical model can be used to accurately characterize the MF-REHs with various configurations, in different conditions under various excitation. The experimental results indicate more excitation magnets and smaller excitation distance can significantly increase the harvested energy. For the harvester with one magnetically coupled flextensional transducer and two rotating magnets which produce repulsive forces, the maximum instantaneous power is 3.1 mW and the average power is 0.22 mW at 1000 rpm.

  7. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers

    Science.gov (United States)

    Ansari, M. H.; Karami, M. Amin

    2017-06-01

    This paper studies the fabrication and testing of a magnet free piezoelectric energy harvester (EH) for powering biomedical devices and sensors inside the body. The design for the EH is a fan-folded structure consisting of bimorph piezoelectric beams folding on top of each other. An actual size experimental prototype is fabricated to verify the developed analytical models. The model is verified by matching the analytical results of the tip acceleration frequency response functions (FRF) and voltage FRF with the experimental results. The generated electricity is measured when the EH is excited by the heartbeat. A closed loop shaker system is utilized to reproduce the heartbeat vibrations. Achieving low fundamental natural frequency is a key factor to generate sufficient energy for pacemakers using heartbeat vibrations. It is shown that the natural frequency of the small-scale device is less than 20 {{Hz}} due to its unique fan-folded design. The experimental results show that the small-scale EH generates sufficient power for state of the art pacemakers. The 1 cm3 EH with 18.4 {{g}}{{r}} tip mass generates more than 16 μ {{W}} of power from a normal heartbeat waveform. The robustness of the device to the heart rate is also studied by measuring the relation between the power output and the heart rate.

  8. Design and experimental study of a velocity amplified electromagnetic vibration energy harvester

    Science.gov (United States)

    Klein, Jackson A.; Zuo, Lei

    2017-04-01

    Dedicated sensors are widely used throughout many industries to monitor everyday operations, maintain safety and report performance characteristics. In order to adopt a more sustainable solution, intensive research is being conducted for self-powered sensing. To enable sensors to power themselves, harvesting energy from environmental vibration has been widely studied, however, its overall effectiveness remains questionable due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester in which a metal compliant mechanism frame is used to house both a linear electromagnetic generator and proof mass. Due to the compliant mechanism, the proposed energy harvester is capable of amplifying machine vibration velocity for a dedicated electromagnetic generator, largely increasing the energy density. The harvester prototype is also fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 in (25.4μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. In addition, a mathematical model is created based on the pseudo-rigid-body dynamics and the analysis matches closely with experiments. The proposed harvester was designed using vibration data from nuclear power plants. Further steps for improving such a design are given for broader applications.

  9. Experimental Optimization of Direct-Drive Implosions with Cross-Beam Energy Transfer

    Science.gov (United States)

    Froula, D. H.; Igumenshchev, I. V.; Seka, W.; Edgell, D. H.; Goncharov, V. N.

    2011-10-01

    Cross-beam energy transfer (CBET) in direct-drive implosions is measured to reduce the hydrodynamic efficiency of the laser drive. The outer rays of each beam interact through the ion-acoustic waves to extract energy from the central rays of each beam. This accounts for an ~10% loss of absorption, which results in an ~20% reduction in hydro-efficiency as measured by the scattered light and x-ray bang time. Experiments that reduce the laser energy in the outer rays by reducing the ratio of the laser spot size to target diameter by Rbeam/Rtarget = 60% are shown to eliminate CBET and significantly increase the hydrodynamic coupling; however, the reduction in laser spot size leads to irradiation nonuniformities. An optimum laser spot size is experimentally determined that maximizes neutron yield by balancing the reduced CBET with the illumination nonuniformities. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  10. Quantum memories with zero-energy Majorana modes and experimental constraints

    Science.gov (United States)

    Ippoliti, Matteo; Rizzi, Matteo; Giovannetti, Vittorio; Mazza, Leonardo

    2016-06-01

    In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the memory fidelity achievable via a read-out of the zero modes decays exponentially in time, independent from system size. We argue, however, that even in the presence of said experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.

  11. Unfolding linac photon spectra and incident electron energies from experimental transmission data, with direct independent validation.

    Science.gov (United States)

    Ali, E S M; McEwen, M R; Rogers, D W O

    2012-11-01

    In a recent computational study, an improved physics-based approach was proposed for unfolding linac photon spectra and incident electron energies from transmission data. In this approach, energy differentiation is improved by simultaneously using transmission data for multiple attenuators and detectors, and the unfolding robustness is improved by using a four-parameter functional form to describe the photon spectrum. The purpose of the current study is to validate this approach experimentally, and to demonstrate its application on a typical clinical linac. The validation makes use of the recent transmission measurements performed on the Vickers research linac of National Research Council Canada. For this linac, the photon spectra were previously measured using a NaI detector, and the incident electron parameters are independently known. The transmission data are for eight beams in the range 10-30 MV using thick Be, Al and Pb bremsstrahlung targets. To demonstrate the approach on a typical clinical linac, new measurements are performed on an Elekta Precise linac for 6, 10 and 25 MV beams. The different experimental setups are modeled using EGSnrc, with the newly added photonuclear attenuation included. For the validation on the research linac, the 95% confidence bounds of the unfolded spectra fall within the noise of the NaI data. The unfolded spectra agree with the EGSnrc spectra (calculated using independently known electron parameters) with RMS energy fluence deviations of 4.5%. The accuracy of unfolding the incident electron energy is shown to be ∼3%. A transmission cutoff of only 10% is suitable for accurate unfolding, provided that the other components of the proposed approach are implemented. For the demonstration on a clinical linac, the unfolded incident electron energies and their 68% confidence bounds for the 6, 10 and 25 MV beams are 6.1 ± 0.1, 9.3 ± 0.1, and 19.3 ± 0.2 MeV, respectively. The unfolded spectra for the clinical linac agree with the

  12. Experimental verification and optimization of a linear electromagnetic energy harvesting device

    Science.gov (United States)

    Mullen, Christopher; Lee, Soobum

    2017-04-01

    Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with a case study including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.

  13. Experimental and numerical investigation of a packed-bed thermal energy storage device

    Science.gov (United States)

    Yang, Bei; Wang, Yan; Bai, Fengwu; Wang, Zhifeng

    2017-06-01

    This paper presents a pilot-scale setup built to study a packed bed thermal energy storage device based on ceramic balls randomly poured into a cylindrical tank while using air as heat transfer fluid. Temperature distribution of ceramic balls throughout the packed bed is investigated both experimentally and numerically. Method of characteristic is adopted to improve the numerical computing efficiency, and mesh independence is verified to guarantee the accuracy of numerical solutions and the economy of computing time cost at the same time. Temperature in tests is as high as over 600 °C, and modeling prediction shows good agreements with experimental results under various testing conditions when heat loss is included and thermal properties of air are considered as temperature dependent.

  14. Design and experimental study of a multi-modal piezoelectric energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xing Yu [School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing (China); Oyadiji, S. Olutunde [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester (United States)

    2017-01-15

    A multi-modal piezoelectric vibration energy harvester is designed in this article. It consists of a cantilevered base beam and some upper and lower layer beams with rigid masses bonded between the beams as spacers. For a four-layer harvester subjected to random base excitations, relocating the mass positions leads to the generation of up to four close resonance frequencies over the frequency range from 10 Hz to 100 Hz with relative large power output. The harvesters are connected with a resistance decade box and the frequency response functions of the voltage and power on resistive loads are determined. The experimental results are validated with the simulation results using the finite element method. On a certain level of power output, the experimental results show that the multi-modal harvesters can generate a frequency band that is more than two times greater than the frequency band produced by a cantilevered beam harvester.

  15. Mechanism and Experimental Observability of Global Switching Between Reactive and Nonreactive Coordinates at High Total Energies.

    Science.gov (United States)

    Teramoto, Hiroshi; Toda, Mikito; Takahashi, Masahiko; Kono, Hirohiko; Komatsuzaki, Tamiki

    2015-08-28

    We present a mechanism of global reaction coordinate switching, namely, a phenomenon in which the reaction coordinate dynamically switches to another coordinate as the total energy of the system increases. The mechanism is based on global changes in the underlying phase space geometry caused by a switching of dominant unstable modes from the original reactive mode to another nonreactive mode in systems with more than 2 degrees of freedom. We demonstrate an experimental observability to detect a reaction coordinate switching in an ionization reaction of a hydrogen atom in crossed electric and magnetic fields. For this reaction, the reaction coordinate is a coordinate along which electrons escape and its switching changes the escaping direction from the direction of the electric field to that of the magnetic field and, thus, the switching can be detected experimentally by measuring the angle-resolved momentum distribution of escaping electrons.

  16. Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events

    Directory of Open Access Journals (Sweden)

    Mohsen Besharat

    2017-01-01

    Full Text Available An experimental assessment of an air pocket (AP, confined in a compressed air vessel (CAV, has been investigated under several different water hammer (WH events to better define the use of protection devices or compressed air energy storage (CAES systems. This research focuses on the size of an AP within an air vessel and tries to describe how it affects important parameters of the system, i.e., the pressure in the pipe, stored pressure, flow velocity, displaced volume of water and water level in the CAV. Results present a specific range of air pockets based on a dimensionless parameter extractable for other real systems.

  17. Experimental and Simulative Study on Accumulator Function in The Process of Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2016-09-01

    Full Text Available In this paper, a floating-buoy wave energy converter using hydrostatic transmission system is studied. The entire work progress of wave energy power generation device is introduced, and the hydraulic transmission principles are emphasized through the simulation to verify the feasibility of design principle of hydraulic transmission system. The mathematical model of the accumulator is established and applied in the AMEsim simulation. The simulation results show that the accumulator plays an important role in the wave power hydraulic transmission system and that the correct configuration of accumulator parameters can improve the rapidity and stability of the system work. Experimental results are compared with the simulation results to validate the correctness of the simulation results. This would provide a valuable reference to the optimal design of wave power generation.

  18. Improved morphed potentials for Ar-HBr including scaling to the experimentally determined dissociation energy.

    Science.gov (United States)

    Wang, Z; McIntosh, A L; McElmurry, B A; Walton, J R; Lucchese, R R; Bevan, J W

    2005-09-15

    A lead salt diode infrared laser spectrometer has been employed to investigate the rotational predissociation in Ar-HBr for transitions up to J' = 79 in the v(1) HBr stretching vibration of the complex using a slit jet and static gas phase. Line-shape analysis and modeling of the predissociation lifetimes have been used to determine a ground-state dissociation energy D(0) of 130(1) cm(-1). In addition, potential energy surfaces based on ab initio calculations are scaled, shifted, and dilated to generate three-dimensional morphed potentials for Ar-HBr that reproduce the measured value of D(0) and that have predictive capabilities for spectroscopic data with nearly experimental uncertainty. Such calculations also provide a basis for making a comprehensive comparison of the different morphed potentials generated using the methodologies applied.

  19. Experimental and Numerical Studies of Solar Chimney for Ventilation in Low Energy Buildings

    DEFF Research Database (Denmark)

    Zha, Xinyu; Zhang, Jun; Qin, Menghao

    2017-01-01

    As an effective way to protect environment and save energy in buildings, passive ventilation method has generated intense interest for improving indoor thermal environment in recent years. Among these passive ventilation solutions, design of solar chimney in buildings is a promising approach...... the performance of a full-scale solar chimney in a real building in East-ern China. The measured performance is compared with theoretical calculation and numerical simulation. In a solar chimney of 6.2m length, 2.8m width and 0.35m air gap, the experimental results show that air flow rate of 70.6 m3/h~1887.6 m3/h...... can be achieved during the daytime in the testing day. Comparing measured value with theoretical value, the flow rate is generally lower than the theoretical value. By data analysis, the suggested discharge coefficient Cd of solar energy in real engineering project is 0.51. With the use...

  20. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  1. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.

    2014-01-01

    A time domain model is applied to a three-dimensional point absorber wave energy converter. The dynamical properties of a semi-submerged hemisphere oscillating around a pivot point where the vertical height of this point is above the mean water level are investigated. The numerical model includes.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping......-linear effect is investigated by a simplified formulation proportional to the quadratic velocity. Results from experiments are shown in order to validate the numerical calculations. All the experimental results are in good agreement with the linear potential theory as long as the waves are sufficiently mild i...

  2. Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics

    DEFF Research Database (Denmark)

    García-Chocano, Victor M.; Christensen, Johan; Sánchez-Dehesa, José

    2014-01-01

    . Our demonstrations foresee interesting developments based on both phenomena. Acoustic imaging with subwavelength resolution and spot-size converters that harvest and squeeze sound waves irradiating from many directions into a collimated beam are just two possible applications among many.......This Letter reports the design, fabrication, and experimental characterization of hyperbolic materials showing negative refraction and energy funneling of airborne sound. Negative refraction is demonstrated using a stack of five holey Plexiglas plates where their thicknesses, layer separation, hole...... diameters, and lattice periodicity have been determined to show hyperbolic dispersion around 40 kHz. The resulting hyperbolic material shows a flat band profile in the equifrequency contour allowing the gathering of acoustic energy in a broad range of incident angles and its funneling through the material...

  3. A utility piezoelectric energy harvester with low frequency and high-output voltage: Theoretical model, experimental verification and energy storage

    Directory of Open Access Journals (Sweden)

    Guangyi Zhang

    2016-09-01

    Full Text Available In this paper, a utility piezoelectric energy harvester with low frequency and high-output voltage is presented. Firstly, the harvester’s three theoretical models are presented, namely the static model, the quasi static model and the dynamic vibration model. By analyzing the influence of the mass ratio of the mass block to the beam on output characteristics of the harvester, we compare the quasi static model and the dynamic vibration model and then define their applicable ranges. Secondly, simulation and experiments are done to verify the models, using the harvester with PZT-5H piezoelectric material, which are proved to be consistent with each other. The experimental results show that the output open-circuit voltage and the output power can reach up to 86.36V and 27.5mW respectively. The experiments are conducted when this harvester system is excited by the first modal frequency (58.90Hz with the acceleration 10m/s2. In this low frequency vibration case, it is easy to capture the energy in the daily environment. In addition, LTC 3588-1 chip (Linear Technology Corporation is used as the medium energy circuit to transfer charges from the PZT-5H electrode to the 0.22F 5V super capacitor and ML621 rechargeable button battery. For this super-capacitor, it takes about 100min for the capacitor voltage to rise from 0V to 3.6V. For this button battery, it takes about 200min to increase the battery voltage from 2.5V to 3.48V.

  4. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  5. Theoretical and experimental evidence for a nodal energy gap in MgB2

    Science.gov (United States)

    Agassi, Y. Dan; Oates, Daniel E.

    2017-11-01

    We present a phenomenological model that strongly suggests that the smaller of the two energy gaps in MgB2, the so-called π gap, contains nodal lines with a six-fold symmetry (i-wave). The model also indicates that the larger gap, the so-called σ gap, is conventional s-wave. The model is an extension of the BCS gap equation that accounts for the elastic anisotropy in MgB2 and the Coulomb repulsion. It is based on a phononic pairing mechanism and assumes no coupling between the two energy gaps in MgB2 at zero temperature. All of the parameters of the model, such as sound velocities and masses, are independently determined material constants. The results agree with a previous ad-hoc hypothesis that the π energy gap has six nodal lines. That hypothesis was motivated by low-temperature measurements of the surface impedance and intermodulation distortion in high-quality thin films. We briefly review experimental evidence in the literature that is relevant to the energy-gap symmetry. We find that the evidence from the literature for s-wave is inconclusive. Our finding is that the π gap has six nodal lines.

  6. Damping Characterization of Friction Energy Dissipation for Particle Systems Based on Powder Mechanics and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Wangqiang XIAO

    2014-04-01

    Full Text Available We established a friction energy dissipation model for particle damping based on powder mechanics. We investigated the influence of geometric features of the damper on damping characteristics; and the geometric feature studied was the depth and length of the rectangular particle container. The work done by the frictional force between the particle layer and the effect of particle filling rate on the vibration damping characteristics was also explored. We analyzed the friction energy dissipation model, and the relationship between the particle filling rate and the vibration damping. The experimental results show good agreement with the friction energy dissipation model, which verifies the proposed simulation prediction. The results have shown that the particle damping technology can greatly consume the structure kinetic energy, and the vibration reduction effect of particle damping depends mainly on the interaction of the particles near the top. A proper filling rate of particle systems can result in an optimal effect on vibration reduction, which will provide the engineering applications with the theoretical guidance and design criteria.

  7. Analytical, FEA, and Experimental Comparisons of Piezoelectric Energy Harvesting Using Engine Vibrations

    Directory of Open Access Journals (Sweden)

    Abhay Khalatkar

    2014-01-01

    Full Text Available Piezoelectric elements can be used as sensors and actuators in flexible structures. In this paper, using the most basic concepts of piezoelectric micropower generators, all useful mathematical equations for getting analytical output are discussed and derived for different piezo positions on cantilever beam and then 3D finite element modeling and simulation of generalized piezoelectric laminated beam problem with proper specifications and properties are done in ANSYS12.0. Experimental analysis is also done on the very practical problem to harvest energy (to get electric energy by applying some deflection (mechanical energy on piezo-bonded aluminum beam, that is, to harvest energy (at microlevel at least by using vibrations of 4-stroke car diesel engine with mounting of piezo cantilever beam. Here piezoelectric beam is used to measure the charge generated from the engine vibrations. The vibration amplitudes are measured with a Laser Vibrometer with considerations of maximum number of power cycles is to be covered for analysis. The vibration response data of displacement of the cantilever at free end measured from Vibrometer are considered for harmonic and analytical analyses as mean displacement amplitude of 3.98 mm at free end. The study further carried out for effect of different piezo positions and various engine speeds also. Then comparison is also done among obtained results from these three analyses to get validation of all derived mathematical equations.

  8. Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Louise O’Boyle

    2017-01-01

    Full Text Available Wave energy converters (WECs inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

  9. Experimental Research of Machineless Energy Separation Effect Influenced by Shock Waves

    Directory of Open Access Journals (Sweden)

    S. S. Popovich

    2016-01-01

    Full Text Available The paper presents experimental research results of machineless energy separation effect with transversal ribs in supersonic channel. The energy separation effect assumes a physical division of the inlet flow into two or more flows, each having different stagnation temperature. Among well-known energy separation effects noted there are Ranque-Hilsch vortex tubes, Hartmann-Sprenger resonance tubes, pulsating tubes and some others.A working principle of device under study is based on thermal interaction between subsonic and supersonic gas flows through a heat-conducting division wall. This energy separation method was proposed by academician Leontiev and was patented in 1998. A number of references for PhD theses, articles, and conference proceedings devoted to the research of “Leontiev tube” have been mentioned in the paper. Efficiency factors for energy separation device performability have been analyzed in detail. The main attention was focused on the phenomenon of shock waves generation in supersonic channel of Leontiev tube.Experiment was carried out in the air prototype of energy separation device with supersonic flow Mach numbers 1.9 and 2.5, stagnation temperatures 40°С and 70°С, and for uni-flow and counter-flow air moving direction in subsonic and supersonic channels. Shock waves have been generated by means of circular ribs in supersonic channel of energy separation device. The research was carried out by means of infrared thermal imaging, thermocouples, total and static pressure probes, and modern National Insturments automation equipment. The work shows that shock waves have no negative influence on energy separation effect. A conclusion is made that unexpected shock wave generation in supersonic channel will not cause operability loss. It was gained that counter-flow regime is more efficient than uni-flow. Energy separation effect also appears to be higher with the rise of Mach number and flow initial stagnation temperature

  10. Distributed parameter model and experimental validation of a compressive-mode energy harvester under harmonic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.T. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xian (China); Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario (Canada); Yang, Z.; Zu, J. [Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario (Canada); Qin, W. Y., E-mail: qinweiyang67@gmail.com [Department of Engineering Mechanics, Northwestern Polytechnical University, Xian (China)

    2016-08-15

    This paper presents the modeling and parametric analysis of the recently proposed nonlinear compressive-mode energy harvester (HC-PEH) under harmonic excitation. Both theoretical and experimental investigations are performed in this study over a range of excitation frequencies. Specially, a distributed parameter electro-elastic model is analytically developed by means of the energy-based method and the extended Hamilton’s principle. An analytical formulation of bending and stretching forces are derived to gain insight on the source of nonlinearity. Furthermore, the analytical model is validated against with experimental data and a good agreement is achieved. Both numerical simulations and experiment illustrate that the harvester exhibits a hardening nonlinearity and hence a broad frequency bandwidth, multiple coexisting solutions and a large-amplitude voltage response. Using the derived model, a parametric study is carried out to examine the effect of various parameters on the harvester voltage response. It is also shown from parametric analysis that the harvester’s performance can be further improved by selecting the proper length of elastic beams, proof mass and reducing the mechanical damping.

  11. Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study.

    Science.gov (United States)

    Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F

    2012-07-01

    Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.

  12. Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.

  13. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: andreas.best@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-03-11

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  14. Experimental validation of the buildings energy performance (PEC assessment methods with reference to occupied spaces heating

    Directory of Open Access Journals (Sweden)

    Cristian PETCU

    2010-01-01

    Full Text Available This paper is part of the series of pre-standardization research aimed to analyze the existing methods of calculating the Buildings Energy Performance (PEC in view of their correction of completing. The entire research activity aims to experimentally validate the PEC Calculation Algorithm as well as the comparative application, on the support of several case studies focused on representative buildings of the stock of buildings in Romania, of the PEC calculation methodology for buildings equipped with occupied spaces heating systems. The targets of the report are the experimental testing of the calculation models so far known (NP 048-2000, Mc 001-2006, SR EN 13790:2009, on the support provided by the CE INCERC Bucharest experimental building, together with the complex calculation algorithms specific to the dynamic modeling, for the evaluation of the occupied spaces heat demand in the cold season, specific to the traditional buildings and to modern buildings equipped with solar radiation passive systems, of the ventilated solar space type. The schedule of the measurements performed in the 2008-2009 cold season is presented as well as the primary processing of the measured data and the experimental validation of the heat demand monthly calculation methods, on the support of CE INCERC Bucharest. The calculation error per heating season (153 days of measurements between the measured heat demand and the calculated one was of 0.61%, an exceptional value confirming the phenomenological nature of the INCERC method, NP 048-2006. The mathematical model specific to the hourly thermal balance is recurrent – decisional with alternating paces. The experimental validation of the theoretical model is based on the measurements performed on the CE INCERC Bucharest building, within a time lag of 57 days (06.01-04.03.2009. The measurements performed on the CE INCERC Bucharest building confirm the accuracy of the hourly calculation model by comparison to the values

  15. Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses

    NARCIS (Netherlands)

    Entrop, Alexis Gerardus; Brouwers, Jos; Reinders, Angelina H.M.E.

    2011-01-01

    In this paper an experimental research is presented on a new use of Phase Change Materials (PCMs) in concrete floors, in which thermal energy provided by the sun is stored in a mix of concrete and PCMs. When this thermal energy is being released – in moderate sea climates during the evening and

  16. Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac

    Science.gov (United States)

    Konoplev, I. V.; Metodiev, K.; Lancaster, A. J.; Burt, G.; Ainsworth, R.; Seryi, A.

    2017-10-01

    High average current, transportable energy recovery linacs (ERLs) can be very attractive tools for a number of applications including next generation high-luminosity, compact light sources. Conventional ERLs are based on an electron beam circulating through the same set of rf cavity cells. This leads to an accumulation of high-order modes inside the cavity cells, resulting in the development of a beam breakup (BBU) instability, unless the beam current is kept below the BBU start current. This limits the maximum current which can be transported through the ERL and hence the intensity of the photon beam generated. It has recently been proposed that splitting the accelerating and decelerating stages, tuning them separately and coupling them via a resonance coupler can increase the BBU start current. The paper presents the first experimental rf studies of a dual axis 7-cell asymmetric cavity and confirms the properties predicted by the theoretical model. The field structures of the symmetric and asymmetric modes are measured and good agreement with the numerical predictions is demonstrated. The operating mode field flatness was also measured and discussed. A novel approach based on the coupled mode (Fano-like) model has been developed for the description of the cavity eigenmode spectrum and good agreement between analytical theory, numerical predictions and experimental data is shown. Numerical and experimental results observed are analyzed, discussed and a good agreement between theory and experiment is demonstrated.

  17. Opportunities and requirements for experimentation at high energy e/sup +/e/sup /minus// collider

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, C.; Baltay, C.; Barklow, T.L.; Burchat, P.R.; Burke, D.L.; Cooper, A.R.; Dib, C.; Feldman, G.J.; Gunion, J.F.; Haber, H.E.

    1988-05-01

    Over the past fifteen years of high-energy physics, electron-positron annihilation has been the most productive of all reactions probing the fundamental interactions. The e/sup +/e/sup /minus// annihilation process is unique in offering at the same time copious production of novel particles, low backgrounds from more conventional physics, and the most efficient use of the energy which an accelerator provides. These features have allowed the detailed characterization of the charm and bottom quark-antiquark systems and the unambiguous discovery of gluon jets---the crucial ingredients in the establishment of Quantum Chromodynamics as the correct theory of the strong interactions---as well as the discovery of the tau lepton and confirmation of the weak and electromagnetic properties of all the quarks and leptons at high energy. Over the past few years, experiments will begin at SLC and LEP, and we anticipate new discoveries from the detailed study of the Z/sup 0/ resonance. It is time, then to begin to think out how one might continue this mode experimentation to still higher energies. This document is the report of a committee convened by the Director of SLAC, Burton Richter, to set out the major physics goals of an e/sup +/e/sup /minus// collider in the energy range 600 GeV-1 TeV, corresponding to the next feasible step in accelerator technology. The committee was charged with the task of outlining the main experiments that such a collider might carry out and the requirements which those experiments place on the accelerator design. 106 refs., 105 figs., 13 tabs.

  18. Experimental energy consumption of Frame Slotted ALOHA and Distributed Queuing for data collection scenarios.

    Science.gov (United States)

    Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis; Vilajosana, Xavier

    2014-07-24

    Data collection is a key scenario for the Internet of Things because it enables gathering sensor data from distributed nodes that use low-power and long-range wireless technologies to communicate in a single-hop approach. In this kind of scenario, the network is composed of one coordinator that covers a particular area and a large number of nodes, typically hundreds or thousands, that transmit data to the coordinator upon request. Considering this scenario, in this paper we experimentally validate the energy consumption of two Medium Access Control (MAC) protocols, Frame Slotted ALOHA (FSA) and Distributed Queuing (DQ). We model both protocols as a state machine and conduct experiments to measure the average energy consumption in each state and the average number of times that a node has to be in each state in order to transmit a data packet to the coordinator. The results show that FSA is more energy efficient than DQ if the number of nodes is known a priori because the number of slots per frame can be adjusted accordingly. However, in such scenarios the number of nodes cannot be easily anticipated, leading to additional packet collisions and a higher energy consumption due to retransmissions. Contrarily, DQ does not require to know the number of nodes in advance because it is able to efficiently construct an ad hoc network schedule for each collection round. This kind of a schedule ensures that there are no packet collisions during data transmission, thus leading to an energy consumption reduction above 10% compared to FSA.

  19. Experimental Energy Consumption of Frame Slotted ALOHA and Distributed Queuing for Data Collection Scenarios

    Directory of Open Access Journals (Sweden)

    Pere Tuset-Peiro

    2014-07-01

    Full Text Available Data collection is a key scenario for the Internet of Things because it enables gathering sensor data from distributed nodes that use low-power and long-range wireless technologies to communicate in a single-hop approach. In this kind of scenario, the network is composed of one coordinator that covers a particular area and a large number of nodes, typically hundreds or thousands, that transmit data to the coordinator upon request. Considering this scenario, in this paper we experimentally validate the energy consumption of two Medium Access Control (MAC protocols, Frame Slotted ALOHA (FSA and Distributed Queuing (DQ. We model both protocols as a state machine and conduct experiments to measure the average energy consumption in each state and the average number of times that a node has to be in each state in order to transmit a data packet to the coordinator. The results show that FSA is more energy efficient than DQ if the number of nodes is known a priori because the number of slots per frame can be adjusted accordingly. However, in such scenarios the number of nodes cannot be easily anticipated, leading to additional packet collisions and a higher energy consumption due to retransmissions. Contrarily, DQ does not require to know the number of nodes in advance because it is able to efficiently construct an ad hoc network schedule for each collection round. This kind of a schedule ensures that there are no packet collisions during data transmission, thus leading to an energy consumption reduction above 10% compared to FSA.

  20. An experimental study on mechanical properties of fiber-reinforced concrete of energy piles

    Directory of Open Access Journals (Sweden)

    Songying Zhao

    2017-07-01

    Full Text Available The technology of energy piles for heat storage involves turning the concrete piles buried beneath the ground into a part of the ground-source heat pump system and burying the heat-transfer tubes in the foundation piles, which are regarded as heat transfer wells. The heat transfer tubes are embedded in the concrete foundation piles, destroying the mechanical bearing capacity of the piles and damaging the safety of the buildings. Thus, considering the structural stability and the degree of heat transfer of concrete piles, as well as the selection of material for the foundation piles, the mixing ratio of the material of the energy piles is experimentally studied by the orthogonal method. The optimum mixing ratio of the energy pile is thus obtained. A concrete test block is used to conduct a static load test and splitting test to verify the mixing ratio of the concrete of the energy pile. The results show that steel fiber can be used to enhance the bearing capacity of the storage pile as a reinforcement material. Under a reasonable ratio, the reinforced pile can absolutely meet the original design requirements. Ordinary Portland cement or composite Portland cement can be used as cementitious materials for energy piles. Through an experiment, it is proved that the composite Portland cement can better meet the requirements of the concrete foundation piles than the cementitious material. As thermal conductivity materials, the addition of industrial graphite and scrap copper slag can improve the thermal conductivity of the pile, but it can also reduce the mechanical properties of the pile. It is necessary to control it in a certain range and not to add a large amount of graphite just to improve the thermal conductivity.

  1. Calculated and experimental low-loss electron energy loss spectra of dislocations in diamond and GaN

    CERN Document Server

    Jones, R; Gutiérrez-Sosa, A; Bangert, U; Heggie, M I; Blumenau, A T; Frauenheim, T; Briddon, P R

    2002-01-01

    First-principles calculations of electron energy loss (EEL) spectra for bulk GaN and diamond are compared with experimental spectra acquired with a scanning tunnelling electron microscope offering ultra-high-energy resolution in low-loss energy spectroscopy. The theoretical bulk low-loss EEL spectra, in the E sub g to 10 eV range, are in good agreement with experimental data. Spatially resolved spectra from dislocated regions in both materials are distinct from bulk spectra. The main effects are, however, confined to energy losses lying above the band edge. The calculated spectra for low-energy dislocations in diamond are consistent with the experimental observations, but difficulties remain in understanding the spectra of threading dislocations in GaN.

  2. Experimental measurement of 12C+16O fusion at stellar energies

    Science.gov (United States)

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; deSouza, R. T.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2017-10-01

    The total cross section of the 12C+16O fusion reaction has been measured at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam, produced by the 5 MV pelletron accelerator at the University of Notre Dame, impinged on a thick, ultrapure graphite target. Protons and γ rays were simultaneously measured in the center-of-mass energy range from 3.64 to 5.01 MeV for singles and from 3.73 to 4.84 MeV for coincidence events, using silicon and Ge detectors. Statistical model calculations were employed to interpret the experimental results. The emergence of a new resonance-like broad structure and a decreasing trend in the S -factor data towards lower energies (opposite to previous data) are found for the 12C+16O fusion reaction. Based on these results the uncertainty range of the reaction rate within the temperature range of late stellar burning environments is discussed.

  3. Distributions of experimental protein structures on coarse-grained free energy landscapes

    Science.gov (United States)

    Sankar, Kannan; Liu, Jie; Wang, Yuan; Jernigan, Robert L.

    2015-12-01

    Predicting conformational changes of proteins is needed in order to fully comprehend functional mechanisms. With the large number of available structures in sets of related proteins, it is now possible to directly visualize the clusters of conformations and their conformational transitions through the use of principal component analysis. The most striking observation about the distributions of the structures along the principal components is their highly non-uniform distributions. In this work, we use principal component analysis of experimental structures of 50 diverse proteins to extract the most important directions of their motions, sample structures along these directions, and estimate their free energy landscapes by combining knowledge-based potentials and entropy computed from elastic network models. When these resulting motions are visualized upon their coarse-grained free energy landscapes, the basis for conformational pathways becomes readily apparent. Using three well-studied proteins, T4 lysozyme, serum albumin, and sarco-endoplasmic reticular Ca2+ adenosine triphosphatase (SERCA), as examples, we show that such free energy landscapes of conformational changes provide meaningful insights into the functional dynamics and suggest transition pathways between different conformational states. As a further example, we also show that Monte Carlo simulations on the coarse-grained landscape of HIV-1 protease can directly yield pathways for force-driven conformational changes.

  4. Experimental and theoretical investigations of rotational energy transfer in HBr + He collisions.

    Science.gov (United States)

    Kabir, Md Humayun; Antonov, Ivan O; Merritt, Jeremy M; Heaven, Michael C

    2010-10-28

    Rotational relaxation rates for HBr(v = 1) colliding with helium atoms at room temperature have been measured using a time-resolved optical-optical double resonance technique. Rotational state selective excitation of v = 1 for rotational levels in the range J = 1-9 was achieved by stimulated Raman pumping. The population decay in the prepared states and the transfer of population to nearby rotational states was monitored via 2 + 1 resonance-enhanced multiphoton ionization (REMPI) spectroscopy using the g(3)Σ(-)-X(1)Σ(+) (0-1) band. Collision-induced population evolution for transfer events with |ΔJ| ≤ 8 was observed at pressures near 0.7 Torr. The experimental data were analyzed using fitting and scaling functions to generate state-to-state rotational energy transfer rate constant matrices. Total depopulation rate constants were found to be in the range (1.3 to 2.0) × 10(-10) cm(3) s(-1). As a test of current computational methods, state-to-state rotational energy transfer rate constants were calculated using ab initio theory. The total removal rate constants were in good agreement with the measured values, but the transfer probabilities for events with |ΔJ| ≥ 3 were underestimated. Inspection of the anisotropic characteristics of the potential energy surface did not yield an obvious explanation for the discrepancies, but it is most likely that the problem stems from inaccuracies in the potential surface.

  5. Experimental research of shock wave processes influence on machineless gas flow energy separation effect

    Science.gov (United States)

    Vinogradov, Y. A.; Zditovets, A. G.; Leontiev, A. I.; Popovich, S. S.; Strongin, M. M.

    2017-11-01

    Experimental results for artificially initiated shock wave influence on machineless gas flow energy separation effect are presented. The working principle of the technique is based on interaction of supersonic and subsonic flows through the heat-conducting wall. In result at output there are two flows with different temperature – heated supersonic air flow and cooled subsonic one. Shock waves were initiated by conic ribs placed along the supersonic channel. During the research varied parameters included uni-flow and counter-flow air moving direction in subsonic and supersonic channels, subsonic flow rate divided by supersonic one (from 0 to 0.9), stagnation flow temperature (298, 313 and 343K) and initial Mach number (1.9, 2.5). The research was carried out with the use of infrared thermal imaging, thermocouples, total and static pressure probes, National Instruments automation equipment. Energy separation effect is increasing with the growth of Mach number and stagnation flow temperature. Rib placement in supersonic channel causes rise of static pressure and wall temperature and results in decreasing of energy separation effect at output of the device by less than 12%. Operability of the device with shock wave generation is remained.

  6. THEORETICAL AND EXPERIMENTAL STUDIES OF ENERGY-EFFICIENT GRINDING PROCESS OF CEMENT CLINKER IN A BALL MILL

    Directory of Open Access Journals (Sweden)

    Kuznetsova M.M.

    2014-08-01

    Full Text Available The article presents results of theoretical and experimental research of grinding process of bulk materials in a ball mill. The new method of determination of energy efficiently mode of operation of ball mills in a process of a cement clinker grinding is proposed and experimentally tested.

  7. Invisible decays of ultra-high energy neutrinos

    Directory of Open Access Journals (Sweden)

    Luis eDorame

    2013-12-01

    Full Text Available Gamma-ray bursts (GRBs are expected to provide a source of ultra high energy cosmic rays, accompanied with potentially detectable neutrinos at neutrino telescopes. Recently, IceCube has set an upper bound on this neutrino flux well below theoretical expectation. We investigate whether this mismatch between expectation and observation can be due to neutrino decay. We demosntrate the phenomenological consistency and theoretical plausibility of the neutrino decay hypothesis. A potential implication is the observability of majoron-emitting neutrinoless double beta decay.

  8. First-Principles Modeling and Experimental Investigation of Novel Materials for Energy Storage

    Science.gov (United States)

    Markus, Isaac M.

    ,2-dimethoxyethane (DME) is investigated in order to identify different contributions to the failure mechanism of this class of battery. Combined experimental and computational results indicated that the TFSI anion was susceptible to decomposition, which contributed to cathode passivation in cells employing saturated electrolyte, and to kinetic limitations in cells using dilute electrolytes. The combined work of this dissertation serves to demonstrate the capabilities of a combined experimental and computational approach to understanding and solving the challenges revolving energy storage and conversion materials. The ability to provide atomistic insights to experimental results allows the creation of design criteria for next generation materials, that leverage the insights gained from this combined approach.

  9. Gadolinium cation (Gd+) reaction with O2: Potential energy surface mapped experimentally and with theory

    Science.gov (United States)

    Demireva, Maria; Armentrout, P. B.

    2017-05-01

    Guided ion beam tandem mass spectrometry is used to measure the kinetic energy dependent cross sections for reactions of the lanthanide metal gadolinium cation (Gd+) and GdO+ with O2 and for collision-induced dissociation (CID) of GdO2+ with Xe. Gd+ reacts with O2 in an exothermic and barrierless reaction to form GdO+ and O. GdO2+ is also formed in this reaction, but this product ion is formed in a sequential reaction, as verified by pressure dependent measurements and comparison with the results for the reaction of GdO+ with O2. The CID experiments of GdO2+ indicate the presence of two GdO2+ precursor ion populations, assigned to a weakly bound oxygen molecule adduct (Gd+-O2) and an inserted cyclic Gd+ dioxide species (O-Gd+-O). Analysis of the resulting product ion cross sections yields bond dissociation energies (BDEs, D0) for Gd+-O2 and OGd+-O, where the latter BDE is also independently measured in an exchange reaction between GdO+ and O2. The CID experiments also provide the energy of the barrier for the rearrangement of the Gd+-O2 adduct to the inserted O-Gd+-O structure (as identified by loss of a single oxygen atom). The thermochemistry measured here yields D0(OGd+-O) = 2.86 ± 0.08 eV, D0(Gd+-O2) = 0.75 ± 0.11 eV, and a barrier height relative to Gd+-O2 of 0.31 ± 0.07 eV. These data are sufficient to characterize in some detail the potential energy surface of the Gd+ reaction with O2 entirely from experiment. Theoretical calculations are performed for comparison with the experimental energetics and for further insight into the reaction mechanisms.

  10. Gadolinium cation (Gd(+)) reaction with O2: Potential energy surface mapped experimentally and with theory.

    Science.gov (United States)

    Demireva, Maria; Armentrout, P B

    2017-05-07

    Guided ion beam tandem mass spectrometry is used to measure the kinetic energy dependent cross sections for reactions of the lanthanide metal gadolinium cation (Gd(+)) and GdO(+) with O2 and for collision-induced dissociation (CID) of GdO2(+) with Xe. Gd(+) reacts with O2 in an exothermic and barrierless reaction to form GdO(+) and O. GdO2(+) is also formed in this reaction, but this product ion is formed in a sequential reaction, as verified by pressure dependent measurements and comparison with the results for the reaction of GdO(+) with O2. The CID experiments of GdO2(+) indicate the presence of two GdO2(+) precursor ion populations, assigned to a weakly bound oxygen molecule adduct (Gd(+)-O2) and an inserted cyclic Gd(+) dioxide species (O-Gd(+)-O). Analysis of the resulting product ion cross sections yields bond dissociation energies (BDEs, D0) for Gd(+)-O2 and OGd(+)-O, where the latter BDE is also independently measured in an exchange reaction between GdO(+) and O2. The CID experiments also provide the energy of the barrier for the rearrangement of the Gd(+)-O2 adduct to the inserted O-Gd(+)-O structure (as identified by loss of a single oxygen atom). The thermochemistry measured here yields D0(OGd(+)-O) = 2.86 ± 0.08 eV, D0(Gd(+)-O2) = 0.75 ± 0.11 eV, and a barrier height relative to Gd(+)-O2 of 0.31 ± 0.07 eV. These data are sufficient to characterize in some detail the potential energy surface of the Gd(+) reaction with O2 entirely from experiment. Theoretical calculations are performed for comparison with the experimental energetics and for further insight into the reaction mechanisms.

  11. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes

    Science.gov (United States)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2015-06-01

    In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.

  12. Experimental Approach to the QCD Phase Diagram - Beam Energy Scan at RHIC

    Science.gov (United States)

    Odyniec, G.

    2009-04-01

    The QCD phase diagram appears to be the most important single figure of our field. While recent progress in Lattice QCD (LQCD) and model calculations is impressive, the location of phase boundaries and the exact position of the hypothetical critical point (CP) remains unknown. The available theoretical estimates, however, indicate that the critical point might be in the region of the phase diagram probed by current heavy ion experiments. The Beam Energy Scan (BES) program at RHIC, described in this paper, was launched to expand the experimental study where theory cannot yet reach. Both large RHIC experiments, STAR and PHENIX, are in the process of preparing for the first run. Particularly STAR with its large, uniform acceptance and excellent particle identification capabilities, is uniquely positioned to cover this physics in unprecedented depth and detail.

  13. Actinides sorption onto hematite. Experimental data, surface complexation modeling and linear free energy relationship

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, Anna Y.; Kalmykov, Stephan N. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry

    2014-07-01

    The sorption of actinides in different valence states - Am(III), Th(IV), Np(V) and U(VI) onto hematite have been revisited with the special emphasis on the equilibrium constants of formation of surface species. The experimental sorption data have been treated using surface complexation modeling from which the set of new values of equilibrium constants were obtained. Formation of inner sphere monodentate surface species adequately describes the pH-sorption edges for actinide ions indicative the ionic electrostatic nature of bonding with small or no covalency contribution. The linear free energy relationship representing the correlation between the hydrolysis constants and surface complexation constants has been developed for various cations including K(I), Li(I), Na(I), Ag(I), Tl(I), Sr(II), Cu(II), Co(II), La(III), Eu(III), Ga(III), Am(III), Th(IV), Np(V), U(VI). (orig.)

  14. Experimental basis for parameters contributing to energy dissipation in piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, P.; Ware, A.G.

    1985-01-01

    The paper reviews several pipe testing programs to suggest the phenomena causing energy dissipation in piping systems. Such phenomena include material damping, plasticity, collision in gaps and between pipes, water dynamics, insulation straining, coupling slippage, restraints (snubbers, struts, etc.), and pipe/structure interaction. These observations are supported by a large experimental data base. Data are available from in-situ and laboratory tests (pipe diameters up to about 20 inches, response levels from milli-g's to responses causing yielding, and from excitation wave forms including sinusoid, snapback, random, and seismic). A variety of pipe configurations have been tested, including simple, bare, straight sections and complex lines with bends, snubbers, struts, and insulation. Tests have been performed with and without water and at zero to operating pressure. Both light water reactor and LMFBR piping have been tested.

  15. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  16. Experimental Determination of Third Derivative of the Gibbs Free Energy, G II

    DEFF Research Database (Denmark)

    Koga, Yoshikata; Westh, Peter; Inaba, Akira

    2010-01-01

    We have been evaluating third derivative quantities of the Gibbs free energy, G, by graphically differentiating the second derivatives that are accessible experimentally, and demonstrated their power in elucidating the mixing schemes in aqueous solutions. Here we determine directly one of the third...... derivatives of G, the partial molar entropy-volume cross fluctuation density of 2-butoxyethanol (BE) in the BE–H2O system, SV δ BE . The difference of the heats of compression were directly determined using two identical cells and applying the same pressure change to both cells concurrently. Both cells...... of 0.01%, the method provides the required results to within 0.1% without the thermal expansivity data. This success opens a possibility of evaluating the fourth derivative graphically, which is expected to provide much more detailed information about the molecular processes in aqueous solutions....

  17. Low energy weak interactions and decays. [Partial summary of presentations at XXth International Conf. on High Energy Physics, Madison, Wisc. , July 17-23, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Trilling, G.H.

    1980-09-01

    Results presented during sessions B5 to 7 at the XXth International Conference on High Energy Physics (University of Wisconsin, Madison, July 17 to 23, 1980) are discussed. Essentially all the material presented is summarized. The sessions covered various aspects of low-energy weak interactions. The following topics are addressed: CP-invariance violation, high-statistics study of ..lambda.. beta decay, parity violation in proton-nucleus scattering at 6 GeV/c, new results on the tau, charm particle decays (direct lifetime determinations, semileptonic branching ratios, comparison of semileptonic rate with theoretical expectations, further study of charm meson decays, F decays), and neutrino oscillations. 6 figures, 9 tables. (RWR)

  18. Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage

    Science.gov (United States)

    Richter, Scott W.

    1993-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  19. Numerical and Experimental Investigation on a Thermo-Photovoltaic Module for Higher Efficiency Energy Generation

    Science.gov (United States)

    Karami-Lakeh, Hossein; Hosseini-Abardeh, Reza; Kaatuzian, Hassan

    2017-05-01

    One major problem of solar cells is the decrease in efficiency due to an increase in temperature when operating under constant irradiation of solar energy. The combination of solar cell and a thermoelectric generator is one of the methods proposed to solve this problem. In this paper, the performance of thermo-photovoltaic system is studied experimentally as well as through numerical simulation. In the experimental part, design, manufacture and test of a novel thermo-photovoltaic system assembly are presented. Results of the assembled system showed that with reduction of one degree (Centigrade) in the temperature of solar cell under investigation, and about 0.2 % increase in the efficiency will be obtained in comparison with given efficiency at that specified temperature. The solar cell in a hybrid-assembled system under two cooling conditions (air cooling and water cooling) obtained an efficiency of 8 % and 9.5 %, respectively, while the efficiency of a single cell under the same radiation condition was 6 %. In numerical simulation part, photo-thermoelectric performance of system was analyzed. Two methods for evaluation of thermoelectric performance were used: average properties and finite element method. Results of simulation also demonstrate an increase in solar cell efficiency in the combined system in comparison with that of the single cell configuration.

  20. Experimental verification of a bridge-shaped, nonlinear vibration energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Gafforelli, Giacomo, E-mail: giacomo.gafforelli@polimi.it; Corigliano, Alberto [Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, 20133 (Italy); Xu, Ruize; Kim, Sang-Gook [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-11-17

    This paper reports a comprehensive modeling and experimental characterization of a bridge shaped nonlinear energy harvester. A doubly clamped beam at large deflection requires stretching strain in addition to the bending strain to be geometrically compatible, which stiffens the beam as the beam deflects and transforms the dynamics to a nonlinear regime. The Duffing mode non-linear resonance widens the frequency bandwidth significantly at higher frequencies than the linear resonant frequency. The modeling includes a nonlinear measure of strain coupled with piezoelectric constitutive equations which end up in nonlinear coupling terms in the equations of motion. The main result supports that the power generation is bounded by the mechanical damping for both linear and nonlinear harvesters. Modeling also shows the power generation is over a wider bandwidth in the nonlinear case. A prototype is manufactured and tested to measure the power generation at different load resistances and acceleration amplitudes. The prototype shows a nonlinear behavior with well-matched experimental data to the modeling.

  1. Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit.

    Science.gov (United States)

    Peterson, J P S; Sarthour, R S; Souza, A M; Oliveira, I S; Goold, J; Modi, K; Soares-Pinto, D O; Céleri, L C

    2016-04-01

    Landauer's principle sets fundamental thermodynamical constraints for classical and quantum information processing, thus affecting not only various branches of physics, but also of computer science and engineering. Despite its importance, this principle was only recently experimentally considered for classical systems. Here we employ a nuclear magnetic resonance set-up to experimentally address the information to energy conversion in a quantum system. Specifically, we consider a three nuclear spins [Formula: see text] (qubits) molecule-the system, the reservoir and the ancilla-to measure the heat dissipated during the implementation of a global system-reservoir unitary interaction that changes the information content of the system. By employing an interferometric technique, we were able to reconstruct the heat distribution associated with the unitary interaction. Then, through quantum state tomography, we measured the relative change in the entropy of the system. In this way, we were able to verify that an operation that changes the information content of the system must necessarily generate heat in the reservoir, exactly as predicted by Landauer's principle. The scheme presented here allows for the detailed study of irreversible entropy production in quantum information processors.

  2. Experimental investigation of low aspect ratio, large amplitude, aeroelastic energy harvesting systems

    Science.gov (United States)

    Kirschmeier, Benjamin; Summerour, Jacob; Bryant, Matthew

    2017-04-01

    Interest in clean, stable, and renewable energy harvesting devices has increased dramatically with the volatility of petroleum markets. Specifically, research in aero/hydro kinetic devices has created numerous new horizontal and vertical axis wind turbines, and oscillating wing turbines. Oscillating wing turbines (OWTs) differ from their wind turbine cousins by having a rectangular swept area compared to a circular swept area. The OWT systems also possess a lower tip speed that reduces the overall noise produced by the system. OWTs have undergone significant computational analysis to uncover the underlying flow physics that can drive the system to high efficiencies for single wing oscillations. When two of these devices are placed in tandem configuration, i.e. one placed downstream of the other, they either can constructively or destructively interact. When constructive interactions occurred, they enhance the system efficiency to greater than that of two devices on their own. A new experimental design investigates the dependency of interaction modes on the pitch stiffness of the downstream wing. The experimental results demonstrated that interaction modes are functions of convective time scale and downstream wing pitch stiffness. Heterogeneous combinations of pitch stiffness exhibited constructive and destructive lock-in phenomena whereas the homogeneous combination exhibited only destructive interactions.

  3. Experimental study on load characteristics in a floating type pendulum wave energy converter

    Science.gov (United States)

    Murakami, Tengen; Imai, Yasutaka; Nagata, Shuichi

    2014-10-01

    A floating type pendulum wave energy converter (FPWEC) with a rotary vane pump as the power take-off system was proposed by Watabe et al. in 1998. They showed that this device had high energy conversion efficiency. In the previous research, the authors conducted 2D wave tank tests in regular waves to evaluate the generating efficiency of FPWEC with a power take-off system composed of pulleys, belts and a generator. As a result, the influence of the electrical load on the generating efficiency was shown. Continuously, the load characteristics of FPWEC are pursued experimentally by using the servo motors to change the damping coefficient in this paper. In a later part of this paper, the motions of the model with the servo motors are compared with that of the case with the same power take-off system as the previous research. From the above experiment, it may be concluded that the maximum primary conversion efficiency is achieved as high as 98% at the optimal load.

  4. Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes

    Science.gov (United States)

    Yu, Mian; Wei, Hui-Ling; Song, Yi-Dan; Ma, Chun-Wang

    2017-09-01

    A method is proposed to determine the one-neutron Sn or two-neutron S2n separation energy of neutron-rich isotopes. Relationships between Sn (S2n) and isotopic cross sections have been deduced from an empirical formula, i.e., the cross section of an isotope exponentially depends on the average binding energy per nucleon B/A. The proposed relationships have been verified using the neutron-rich copper isotopes measured in the 64A MeV 86Kr + 9Be reaction. Sn, S2n, and B/A for the very neutron-rich 77,78,79Cu isotopes are determined from the proposed correlations. It is also proposed that the correlations between Sn, S2n and isotopic cross sections can be used to find the location of neutron drip line isotopes. Supported by Program for Science and Technology Innovation Talents at Universities of Henan Province (13HASTIT046), Natural and Science Foundation in Henan Province (162300410179), Program for the Excellent Youth at Henan Normal University (154100510007) and Y-D Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017)

  5. November 2013 Analysis of High Energy Electrons on the Japan Experimental Module (JEM: Kibo)

    Science.gov (United States)

    Badavi, Francis F.; Matsumoto, Haruhisa; Koga, Kiyokazu; Mertens, Christopher J.; Slaba, Tony C.; Norbury, John W.

    2015-01-01

    Albedo (precipitating/splash) electrons, created by galactic cosmic rays (GCR) interaction with the upper atmosphere move upwards away from the surface of the earth. In the past validation work these particles were often considered to have negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Estimates of astronaut exposure based on the available Computer Aided Design (CAD) models of ISS consistently underestimated measurements onboard ISS when the contribution of albedo particles to exposure were neglected. Recent measurements of high energy electrons outside ISS Japan Experimental Module (JEM) using Exposed Facility (EF), Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP) and Standard DOse Monitor (SDOM), indicates the presence of high energy electrons at ISS altitude. In this presentation the status of these energetic electrons is reviewed and mechanism for the creation of these particles inside/outside South Atlantic Anomaly (SAA) region explained. In addition, limited dosimetric evaluation of these electrons at 600 MeV and 10 GeV is presented.

  6. Theoretical and Experimental Approaches to the Dark Energy and the Cosmological Constant Problem

    CERN Document Server

    Borzou, Ahmad

    2016-01-01

    Theoretical and Experimental Approaches to the Dark Energy and theCosmological Constant ProblemAhmad Borzou, Ph.D.Advisor: Kenichi Hatakeyama, Ph.D.The cosmological constant problem is one of the most pressing problems ofphysics at this time. In this dissertation the problem and a set of widely-discussedtheoretical solutions to this problem are reviewed. It is shown that a recently developed Lorentz gauge theory of gravity can provide a natural solution. In this theorypresented here, the metric is not dynamical and it is shown that the Schwartzschildmetric is an exact solution. Also, it is proven that the de Sitter space is an exactvacuum solution and as a result the theory is able to explain the expansion of theuniverse with no need for dark energy. Renormalizability of the theory is studied aswell. It is also shown that, under a certain condition, the theory is power-countingrenormalizable.Supersymmetry provides an alternative solution to the cosmological problem aswell. The idea behind supersymmetry is rev...

  7. Numerical and experimental investigation on novel systems for harvesting tidal current energy

    Energy Technology Data Exchange (ETDEWEB)

    Coiro, D.P. [Naples Univ., Naples (Italy). Dept. of Aerospace Engineering

    2008-07-01

    Theoretical and experimental tidal current energy investigations currently being conducted at an aerospace engineering department in Italy were presented. The department has set up a test site to harness marine and river current energy in the Messina Strait. A vertical axis hydro turbine developed by the department has been installed at the site. This presentation provided details of unsteady viscous numerical studies conducted to examine flow curvature effects on the turbine's airfoils and rotor design. Numerical studies were also conducted to develop a new generator and optimize the hydrodynamic efficiency of the turbine's rotor. The use of flow increasers to double output power was also examined. The aim of the study was to prove that the vertical axis turbine is capable of reaching the same efficiency levels as horizontal axis turbines. The department is also designing a 300 kW horizontal axis turbine that operates as an underwater ocean kite anchored at the bottom with a winched chain. Details of studies conducted to measure rotational speed, rotor torque, and thrust were presented, as well as details of tests performed at various depths and velocities in order to obtain cavitation numbers for the full-scale turbine. Details of computational fluid dynamics (CFD) studies of the turbine modelled as an actuator disk were also included. tabs., figs.

  8. An Experimental Study of Energy Consumption in Buildings Providing Ancillary Services

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yashen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Afshari, Sina [University of Michigan; Wolfe, John [University of Michigan; Nazir, Md Salman [University of Michigan; Hiskens, Ian A. [University of Michigan; Johnson, Jeremiah X. [University of Michigan; Mathieu, Johanna L. [University of Michigan; Barnes, Arthur K. [Los Alamos National Laboratory; Geller, Drew A. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

    2017-10-03

    Heating, ventilation, and air conditioning (HVAC) systems in commercial buildings can provide ancillary services (AS) to the power grid, but by providing AS their energy consumption may increase. This inefficiency is evaluated using round-trip efficiency (RTE), which is defined as the ratio between the decrease and the increase in the HVAC system's energy consumption compared to the baseline consumption as a result of providing AS. This paper evaluates the RTE of a 30,000 m2 commercial building providing AS. We propose two methods to estimate the HVAC system's settling time after an AS event based on temperature and the air flow measurements from the building. Experimental data gathered over a 4-month period are used to calculate the RTE for AS signals of various waveforms, magnitudes, durations, and polarities. The results indicate that the settling time estimation algorithm based on the air flow measurements obtains more accurate results compared to the temperature-based algorithm. Further, we study the impact of the AS signal shape parameters on the RTE and discuss the practical implications of our findings.

  9. Experimental Studies of Light-Ion Nuclear Reactions Using Low-Energy RI Beams

    Science.gov (United States)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Abe, K.; Shimuzu, H.; Wakabayashi, Y.; Hashimoto, T.; Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; La Cognata, M.; Lamia, L.; Romano, S.; Kubono, S.; Iwasa, N.; Teranishi, T.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. N.; Kato, S.; Komatsubara, T.; Coc, A.; de Sereville, N.; Hammache, F.; Kiss, G.; Bishop, S.

    CRIB (CNS Radio-Isotope Beam separator) is a low-energy RI beam separator of Center for Nuclear Study (CNS), the University of Tokyo. Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the RI beams at CRIB, forming international collaborations. A striking method to study astrophyiscal reactions involving radioactive nuclei is the thick-target method in inverse kinematics. Several astrophysical alpha-induced reactions have been be studied with that method at CRIB. A recent example is on the α resonant scattering with a radioactive 7Be beam. This study is related to the astrophysical 7Be(α , γ ) reactions, important at hot p-p chain and ν p-process in supernovae. There have been measurements based on several indirect methods, such as the asymptotic normalization coefficient (ANC) and Trojan horse method (THM). The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α )15O reaction at astrophysical energies via the three body reaction 2H(18F, α 15O)n. The 18F(p, α )15O reaction rate is crucial to understand the 511-keV γ -ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  10. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei.

  11. Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M.; Macolino, C.; Zavarise, P. [LNGS, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barros, N. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA (United States); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Medinaceli, E.; Sada, C.; Sturm, K. von [Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Krakow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Krakow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); International University for Nature, Society and Man ' ' Dubna' ' , Dubna (Russian Federation); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN, Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-06-15

    An optimized digital shaping filter has been developed for the Gerda experiment which searches for neutrinoless double beta decay in {sup 76}Ge. The GERDA Phase I energy calibration data have been reprocessed and an average improvement of 0.3 keV in energy resolution (FWHM) corresponding to 10% at the Q value for 0νββ decay in {sup 76}Ge is obtained. This is possible thanks to the enhanced low-frequency noise rejection of this Zero Area Cusp (ZAC) signal shaping filter. (orig.)

  12. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  13. Theoretical and Experimental Approaches to the Dark Energy and the Cosmological Constant Problem

    Science.gov (United States)

    Borzou, Ahmad

    The cosmological constant problem is one of the most pressing problems of physics at this time. In this dissertation the problem and a set of widely-discussed theoretical solutions to this problem are reviewed. It is shown that a recently developed Lorentz gauge theory of gravity can provide a natural solution. In this theory presented here, the metric is not dynamical and it is shown that the Schwartzschild metric is an exact solution. Also, it is proven that the de Sitter space is an exact vacuum solution and as a result the theory is able to explain the expansion of the universe with no need for dark energy. Renormalizability of the theory is studied as well. It is also shown that, under a certain condition, the theory is power-counting renormalizable. Supersymmetry provides an alternative solution to the cosmological problem as well. The idea behind supersymmetry is reviewed and an experimental search for supersymmetry is presented. The experimental search discussed in this dissertation is based on all-hadronic events with large missing transverse momentum produced in proton-proton collisions at √s = 13TeV. The data sample, corresponding to an integrated luminosity of 2.3fb -1, was collected with the CMS detector at the CERN LHC in 2015. The data are examined in search regions defined with jet multiplicity, tagged bottom quark jet multiplicity, missing transverse momentum, and the scalar sum of jet transverse momenta. The observed numbers of events in all search regions are found to be consistent with the expectations from standard model processes. Exclusion limits are presented for simplified supersymmetric models for pair production of gluinos, supersymmetric partners of gluons. Depending on the assumed gluino decay mechanism, and for a massless, weakly interacting, lightest neutralino, lower limits on the gluino mass from 1440 to 1600\\GeV are obtained, significantly extending previous limits.

  14. Experimental investigation on the energy deposition and expansion rate under the electrical explosion of aluminum wire in vacuum

    Science.gov (United States)

    Shi, Zongqian; Wang, Kun; Shi, Yuanjie; Wu, Jian; Han, Ruoyu

    2015-12-01

    Experimental investigations on the electrical explosion of aluminum wire using negative polarity current in vacuum are presented. Current pulses with rise rates of 40 A/ns, 80 A/ns, and 120 A/ns are generated for investigating the influence of current rise rate on energy deposition. Experimental results show a significant increase of energy deposition into the wire before the voltage breakdown with the increase of current rise rate. The influence of wire dimension on energy deposition is investigated as well. Decreasing the wire length allows more energy to be deposited into the wire. The energy deposition of a 0.5 cm-long wire explosion is ˜2.5 times higher than the energy deposition of a 2 cm-long wire explosion. The dependence of the energy deposition on wire diameter demonstrates a maximum energy deposition of 2.7 eV/atom with a diameter of ˜18 μm. Substantial increase in energy deposition is observed in the electrical explosion of aluminum wire with polyimide coating. A laser probe is applied to construct the shadowgraphy, schlieren, and interferometry diagnostics. The morphology and expansion trajectory of exploding products are analyzed based on the shadowgram. The interference phase shift is reconstructed from the interferogram. Parallel dual wires are exploded to estimate the expansion velocity of the plasma shell.

  15. Resolving Key Uncertainties in Subsurface Energy Recovery: One Role of In Situ Experimentation and URLs (Invited)

    Science.gov (United States)

    Elsworth, D.

    2013-12-01

    Significant uncertainties remain and influence the recovery of energy from the subsurface. These uncertainties include the fate and transport of long-lived radioactive wastes that result from the generation of nuclear power and have been the focus of an active network of international underground research laboratories dating back at least 35 years. However, other nascent carbon-free energy technologies including conventional and EGS geothermal methods, carbon-neutral methods such as carbon capture and sequestration and the utilization of reduced-carbon resources such as unconventional gas reservoirs offer significant challenges in their effective deployment. We illustrate the important role that in situ experiments may play in resolving behaviors at extended length- and time-scales for issues related to chemical-mechanical interactions. Significantly, these include the evolution of transport and mechanical characteristics of stress-sensitive fractured media and their influence of the long-term behavior of the system. Importantly, these interests typically relate to either creating reservoirs (hydroshearing in EGS reservoirs, artificial fractures in shales and coals) or maintaining seals at depth where the permeating fluids may include mixed brines, CO2, methane and other hydrocarbons. Critical questions relate to the interaction of these various fluid mixtures and compositions with the fractured substrate. Important needs are in understanding the roles of key processes (transmission, dissolution, precipitation, sorption and dynamic stressing) on the modification of effective stresses and their influence on the evolution of permeability, strength and induced seismicity on the resulting development of either wanted or unwanted fluid pathways. In situ experimentation has already contributed to addressing some crucial issues of these complex interactions at field scale. Important contributions are noted in understanding the fate and transport of long-lived wastes

  16. Experimental Study of 6LoPLC for Home Energy Management Systems

    Directory of Open Access Journals (Sweden)

    Augustine Ikpehai

    2016-12-01

    Full Text Available Ubiquitous connectivity is already transforming residential dwellings into smart homes. As citizens continue to embrace the smart home paradigm, a new generation of low-rate and low-power communication systems is required to leverage the mass market presented by energy management in homes. Although Power Line Communication (PLC technology has evolved in the last decade, the adaptation of PLC for constrained networks is not fully charted. By adapting some features of IEEE 802.15.4 and IPv6 over Low-power Wireless Personal Area Network (6LoWPAN into power lines, this paper demonstrates a low-rate, low-power PLC system over the IPv6 network (referred to as 6LoPLC, for Home Energy Management System (HEMS applications. The overall idea is to provide a framework for assessing various scenarios that cannot be easily investigated with the limited number of evaluation hardware available. In this respect, a network model is developed in NS-3 (Version 21 to measure several important characteristics of the designed system and then validated with experimental results obtained using the Hanadu evaluation kits. Following the good agreement between the two, the NS-3 model is utilised to investigate more complex scenarios and various use-cases, such as the effects of impulsive noise, the number of nodes and packet size on the latency and Bit Error Rate (BER performances. We further demonstrate that for different network and application configurations, optimal data sizes exist. For instance, the results reveal that in order to guarantee 99% system reliability, the HEMS application data must not exceed 64 bytes. Finally, it is shown that with impulsive noise in a HEMS network comprising 50 appliances, provided the size of the payload does not exceed 64 bytes, monitoring and control applications incur a maximum latency of 238.117 ms and 248.959 ms, respectively; both of which are within acceptable limits.

  17. Experimental characterization of a grid-connected hydrogen energy buffer: Hydrogen production

    OpenAIRE

    Sánchez Díaz, Carlos; González,Domingo

    2013-01-01

    Energy storage becomes a necessity when a high penetration of renewable energy sources is desirable. Variability in the energy production from these types of energy sources can make the utility grid unstable, if the percentage of production is important. In order to minimize this problem, the HiDRENER project was designed to study the effect of combining different renewable energy sources with energy storage on grid stability. The system has a wind generator, a gasifying biomass power plant w...

  18. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Zhu, Y. B. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  19. Electromechanical modeling and experimental analysis of a compression-based piezoelectric vibration energy harvester

    Directory of Open Access Journals (Sweden)

    X.Z. Jiang

    2014-07-01

    Full Text Available Over the past few decades, wireless sensor networks have been widely used in the field of structure health monitoring of civil, mechanical, and aerospace systems. Currently, most wireless sensor networks are battery-powered and it is costly and unsustainable for maintenance because of the requirement for frequent battery replacements. As an attempt to address such issue, this article theoretically and experimentally studies a compression-based piezoelectric energy harvester using a multilayer stack configuration, which is suitable for civil infrastructure system applications where large compressive loads occur, such as heavily vehicular loading acting on pavements. In this article, we firstly present analytical and numerical modeling of the piezoelectric multilayer stack under axial compressive loading, which is based on the linear theory of piezoelectricity. A two-degree-of-freedom electromechanical model, considering both the mechanical and electrical aspects of the proposed harvester, was developed to characterize the harvested electrical power under the external electrical load. Exact closed-form expressions of the electromechanical models have been derived to analyze the mechanical and electrical properties of the proposed harvester. The theoretical analyses are validated through several experiments for a test prototype under harmonic excitations. The test results exhibit very good agreement with the analytical analyses and numerical simulations for a range of resistive loads and input excitation levels.

  20. Experimental Verification of a Battery Energy Storage System for Integration with Photovoltaic Generators

    Directory of Open Access Journals (Sweden)

    Rajkiran Singh

    2017-01-01

    Full Text Available This paper presents the experimental verification of a 2 kW battery energy storage system (BESS. The BESS comprises a full-bridge bidirectional isolated dc-dc converter and a PWM converter that is intended for integration with a photovoltaic (PV generator, resulting in leveling of the intermittent output power from the PV generator at the utility side. A phase-shift controller is also employed to manage the charging and discharging operations of the BESS based on PV output power and battery voltage. Moreover, a current controller that uses the d-q synchronous reference frame is proposed to regulate the dc voltage at the high-voltage side (HVS to ensure that the voltage ratio of the HVS with low-voltage side (LVS is equivalent to the transformer turns ratio. The proposed controllers allow fast response to changes in real power requirements and results in unity power factor current injection at the utility side. In addition, the efficient active power injection is achieved as the switching losses are minimized. The peak efficiency of the bidirectional isolated dc-dc converter is measured up to 95.4% during battery charging and 95.1% for battery discharging.