WorldWideScience

Sample records for experimental autoimmune encephalomyelitis

  1. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  2. Costimulatory signal blockade in murine relapsing experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Schaub, M; Issazadeh-Navikas, Shohreh; Stadlbauer, T H

    1999-01-01

    Blockade of the CD28-B7 or CD40L-CD40 T cell costimulatory signals prevents induction of experimental autoimmune encephalomyelitis (EAE). However, the effect of simultaneous blockade of these signals in EAE is unknown. We show that administration of either MR1 (to block CD40L) or CTLA4Ig (to block...

  3. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Xin, Junping; Feinstein, Douglas L; Hejna, Matthew J; Lorens, Stanley A; McGuire, Susan O

    2012-06-13

    Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune disease that presents with pathological and clinical features similar to those of multiple sclerosis (MS) including inflammation and neurodegeneration. This study investigated whether blueberries, which possess immunomodulatory, anti-inflammatory, and neuroprotective properties, could provide protection in EAE. Dietary supplementation with 1% whole, freeze-dried blueberries reduced disease incidence by >50% in a chronic EAE model (p blueberries, which are easily administered orally and well-tolerated, may provide benefit to MS patients.

  4. Individual behavioral characteristics of wild-type rats predict susceptibility to experimental autoimmune encephalomyelitis

    NARCIS (Netherlands)

    Kavelaars, A; Heijnen, CJ; Tennekes, R; Bruggink, JE; Koolhaas, JM

    1999-01-01

    Neuroendocrine-immune interactions are thought to be important in determining susceptibility to autoimmune disease. Animal studies have revealed that differences in susceptibility to experimental autoimmune encephalomyelitis (EAE) are related to:reactivity in the hypothalamo-pituitary-adrenal axis.

  5. B-Cell Depletion Attenuates White and Gray Matter Pathology in Marmoset Experimental Autoimmune Encephalomyelitis

    NARCIS (Netherlands)

    Kap, Yolanda S.; Bauer, Jan; van Driel, Nikki; Bleeker, Wim K.; Parren, Paul W. H. I.; Kooi, Evert-Jan; Geurts, Jeroen J. G.; Laman, Jon D.; Craigen, Jenny L.; Blezer, Erwin; 't Hart, Bert A.

    2011-01-01

    This study investigated the effect of CD20-positive B-cell depletion on central nervous system (CNS) white and gray matter pathology in experimental autoimmune encephalomyelitis in common marmosets, a relevant preclinical model of multiple sclerosis. Experimental autoimmune encephalomyelitis was

  6. Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization.

    Science.gov (United States)

    Sewell, Diane; Qing, Zhu; Reinke, Emily; Elliot, David; Weinstock, Joel; Sandor, Matyas; Fabry, Zsuzsa

    2003-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS) characterized by chronic inflammatory demyelination of the central nervous system (CNS). The pathology of EAE involves autoimmune CD4(+) T(h)1 cells. There is a striking inverse correlation between the occurrence of parasitic and autoimmune diseases. We demonstrate that in mice with Schistosoma mansoni ova immunization, the severity of EAE is reduced as measured by decreased clinical scores and CNS cellular infiltrates. Disease suppression is associated with immune deviation in the periphery and the CNS, demonstrated by decreased IFN-gamma and increased IL-4, transforming growth factor-beta and IL-10 levels in the periphery, and increased frequency of IL-4 producing neuroantigen-specific T cells in the brain. S. mansoni helminth ova treatment influenced the course of EAE in wild-type mice, but not in STAT6-deficient animals. This indicates that STAT6 plays a critical role in regulating the ameliorating effect of S. mansoni ova treatment on the autoimmune response, and provides the direct link between helminth treatment, T(h)2 environment and improved EAE. As some intestinal helminthic infections induce minimal pathology, they might offer a safe and inexpensive therapy to prevent and/or ameliorate MS.

  7. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.

    LENUS (Irish Health Repository)

    Fletcher, J M

    2012-02-01

    Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS), which involves autoimmune responses to myelin antigens. Studies in experimental autoimmune encephalomyelitis (EAE), an animal model for MS, have provided convincing evidence that T cells specific for self-antigens mediate pathology in these diseases. Until recently, T helper type 1 (Th1) cells were thought to be the main effector T cells responsible for the autoimmune inflammation. However more recent studies have highlighted an important pathogenic role for CD4(+) T cells that secrete interleukin (IL)-17, termed Th17, but also IL-17-secreting gammadelta T cells in EAE as well as other autoimmune and chronic inflammatory conditions. This has prompted intensive study of the induction, function and regulation of IL-17-producing T cells in MS and EAE. In this paper, we review the contribution of Th1, Th17, gammadelta, CD8(+) and regulatory T cells as well as the possible development of new therapeutic approaches for MS based on manipulating these T cell subtypes.

  8. Experimental autoimmune encephalomyelitis from a tissue energy perspective.

    Science.gov (United States)

    Desai, Roshni A; Smith, Kenneth J

    2017-01-01

    Increasing evidence suggests a key role for tissue energy failure in the pathophysiology of multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE), a commonly used model of MS, have been instrumental in illuminating the mechanisms that may be involved in compromising energy production. In this article, we review recent advances in EAE research focussing on factors that conspire to impair tissue energy metabolism, such as tissue hypoxia, mitochondrial dysfunction, production of reactive oxygen/nitrogen species, and sodium dysregulation, which are directly affected by energy insufficiency, and promote cellular damage. A greater understanding of how inflammation affects tissue energy balance may lead to novel and effective therapeutic strategies that ultimately will benefit not only people affected by MS but also people affected by the wide range of other neurological disorders in which neuroinflammation plays an important role.

  9. Preventive Treatment with Methylprednisolone Paradoxically Exacerbates Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Simone Wüst

    2012-01-01

    Full Text Available Glucocorticoids (GCs represent the standard treatment for acute disease bouts in multiple sclerosis (MS patients, for which methylprednisolone (MP pulse therapy is the most frequently used protocol. Here, we compared the efficacy of therapeutic and preventive MP application in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE in C57Bl/6 mice. When administered briefly after the onset of the disease, MP efficiently ameliorated EAE in a dose-dependent manner. Surprisingly, MP administration around the time of immunization was contraindicated as it even increased leukocyte infiltration into the CNS and worsened the disease symptoms. Our analyses suggest that in the latter case an incomplete depletion of peripheral T cells by MP triggers homeostatic proliferation, which presumably results in an enhanced priming of autoreactive T cells and causes an aggravated disease course. Thus, the timing and selection of a particular GC derivative require careful consideration in MS therapy.

  10. Minocycline effects on the cerebrospinal fluid proteome of experimental autoimmune encephalomyelitis rats

    NARCIS (Netherlands)

    Stoop, M.P.; Rosenling, T.; Attali, A.; Meesters, R.J.; Stingl, C.; Dekker, L.J.; Aken, H. van; Suidgeest, E.; Hintzen, R.Q.; Tuinstra, T.; Gool, A.J. van; Luider, T.M.; Bischoff, R.

    2012-01-01

    To identify response biomarkers for pharmaceutical treatment of multiple sclerosis, we induced experimental autoimmune encephalomyelitis (EAE) in rats and treated symptomatic animals with minocycline. Cerebrospinal fluid (CSF) samples were collected 14 days after EAE induction at the peak of

  11. Minocycline Effects on the Cerebrospinal Fluid Proteome of Experimental Autoimmune Encephalomyelitis Rats

    NARCIS (Netherlands)

    Stoop, Marcel P.; Rosenling, Therese; Attali, Amos; Meesters, Roland J. W.; Stingl, Christoph; Dekker, Lennard J.; van Aken, Hans; Suidgeest, Ernst; Hintzen, Rogier Q.; Tuinstra, Tinka; van Gool, Alain; Luider, Theo M.; Bischoff, Rainer

    2012-01-01

    To identify response biomarkers for pharmaceutical treatment of multiple sclerosis, we induced experimental autoimmune encephalomyelitis (EAE) in rats and treated symptomatic animals with minocycline. Cerebrospinal fluid (CSF) samples were collected 14 days after EAE induction at the peak of

  12. Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Smerjac, Suzanne M.; Bizzozero, Oscar A.

    2013-01-01

    Protein carbonylation, the non-enzymatic addition of aldehydes or ketones to specific amino acid residues, has been implicated in the pathophysiology of multiple sclerosis (MS). In this study we investigated whether protein carbonyls (PCOs) also accumulate in the spinal cord of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE). Western blots analysis after derivatization with dinitrophenyl hydrazine (oxyblot) showed elevated protein carbonylation at the time of maximal clinical disability. During the same period glutathione levels were substantially reduced, suggesting a causal relationship between these two markers. In contrast, lipid peroxidation products accumulated in EAE spinal cord well before the appearance of neurological symptoms. Carbonyl staining was not restricted to inflammatory lesions but present throughout the spinal cord particularly in neuronal cell bodies and axons. By 2-dimensional-oxyblot we identified several cytoskeletal proteins, including β-actin, GFAP and the neurofilament proteins as the major targets of carbonylation. These findings were confirmed by pull-down experiments, which also showed an increase in the number of carbonylated β-actin molecules and a decrease in that of oxidized neurofilament proteins in EAE. These data suggest the possibility that oxidation targets neurofilament proteins for degradation, which may contribute to axonal pathology observed in MS and EAE. PMID:18088377

  13. Lactobacillus helveticus SBT2171 Attenuates Experimental Autoimmune Encephalomyelitis in Mice

    Directory of Open Access Journals (Sweden)

    Maya Yamashita

    2018-01-01

    Full Text Available We recently reported that Lactobacillus helveticus SBT2171 (LH2171 inhibited the proliferation and inflammatory cytokine production of primary immune cells in vitro, and alleviated collagen-induced arthritis (CIA in mice, a model of human rheumatoid arthritis (RA. In this study, we newly investigated whether LH2171 could relieve the severity of experimental autoimmune encephalomyelitis (EAE, a murine model of multiple sclerosis (MS, which is an autoimmune disease, but develop the symptoms by different mechanisms from RA. In MS and EAE, main cause of the disease is the abnormality in CD4+ T cell immunity, whereas in RA and CIA, is that in antibody-mediated immunity. The intraperitoneal administration of LH2171 significantly decreased the incidence and clinical score of EAE in mice. LH2171 also reduced the numbers of pathogenic immune cells, especially Th17 cells, in the spinal cord at the peak stage of disease severity. Interestingly, before the onset of EAE, LH2171 administration remarkably decreased the ratio of Th17 cells to CD4+ T cells in the inguinal lymph nodes (LNs, where pathogenic immune cells are activated to infiltrate the central nervous system, including the spinal cord. Furthermore, the expression of interleukin (IL-6, an inflammatory cytokine essential for Th17 differentiation, decreased in the LNs of LH2171-administered mice. Moreover, LH2171 significantly inhibited IL-6 production in vitro from both DC2.4 and RAW264.7 cells, model cell lines of antigen-presenting cells. These findings suggest that LH2171 might down-regulate IL-6 production and the subsequent Th17 differentiation and spinal cord infiltration, consequently alleviating EAE symptoms.

  14. Metallothionein I+II expression and their role in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2000-01-01

    We examined the expression and roles of neuroprotective metallothionein-I+II (MT-I+II) in the rat CNS in experimental autoimmune encephalomyelitis (EAE), an animal model for the human autoimmune disease, multiple sclerosis (MS). EAE caused significant macrophage activation, T-lymphocyte infiltrat...

  15. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis.

    NARCIS (Netherlands)

    Raijmakers, R.; Vogelzangs, J.H.P.; Croxford, J.L.; Wesseling, P.; Venrooij, W.J.W. van; Pruijn, G.J.M.

    2005-01-01

    Immunization of mammals with central nervous system (CNS)-derived proteins or peptides induces experimental autoimmune encephalomyelitis (EAE), a disease resembling the human autoimmune disease multiple sclerosis (MS). Both diseases are accompanied by destruction of a part of the of the myelin

  16. Modulation of experimental autoimmune encephalomyelitis by endogenous Annexin A1

    Directory of Open Access Journals (Sweden)

    Flower Rod J

    2009-11-01

    Full Text Available Abstract Background Autoimmune diseases, like multiple sclerosis, are triggered by uncontrolled activation of cells of the immune system against self-antigen present, for instance, in the central nervous system. We have reported novel biological functions for Annexin A1, an effector of endogenous anti-inflammation, to produce positive actions on the adaptive immune system by reducing the threshold of T cell activation. In this study, we investigated the potential modulatory role of Annexin A1 in the development of experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Methods Male control C57/BL6 and AnxA1 null mice were immunized subcutaneously with an emulsion consisting of 300 μg of MOG35-55 in PBS combined with an equal volume of CFA. Lymph node cells obtained from mice immunized with MOG33-55 for 14 days were re-stimulated in vitro with MOG33-55 (100 μg/ml for 4 days and the Th1/Th17 cytokine profile measured by ELISA. Spinal cords were processed either to isolate the infiltrated T cells or fixed and stained with haematoxylin and eosin. Statistical analyses were performed using two-tailed, unpaired Student's t tests or ANOVA. Results Our results show a direct correlation between Annexin A1 expression and severity of EAE. Analysis of MOG35-55-induced EAE development in Annexin A1 null mice showed decreased signs of the disease compared to wild type mice. This defect was significant at the peak of the disease and accompanied by reduced infiltration of T cells in the spinal cord. Finally, analysis of the T cell recall response in vitro following stimulation with MOG35-55 showed a decrease proliferation of Annexin A1 null T cells, with a significantly reduced Th1/Th17 phenotype, compared to wild type cells. Conclusion Together these findings suggest that Annexin A1 null mice have an impaired capacity to develop EAE. Furthermore strategies aiming at reducing Annexin A1 functions or expression in T cells might represent a

  17. Suppression of experimental autoimmune encephalomyelitis by ultraviolet light is not mediated by isomerization of urocanic acid.

    Science.gov (United States)

    Irving, Amy A; Marling, Steven J; Plum, Lori A; DeLuca, Hector F

    2017-01-05

    Ultraviolet B irradiation confers strong resistance against experimental autoimmune encephalomyelitis, a model of multiple sclerosis. This protection by ultraviolet B is independent of vitamin D production but causes isomerization of urocanic acid, a naturally occurring immunosuppressant. To determine whether UCA isomerization from trans to cis is responsible for the protection against experimental autoimmune encephalomyelitis afforded by ultraviolet B, trans- or cis-urocanic acid was administered to animals and their disease progression was monitored. Disease incidence was reduced by 74% in animals exposed to ultraviolet B, and skin cis-urocanic acid levels increased greater than 30%. However, increasing skin cis-urocanic acid levels independent of ultraviolet B was unable to alter disease onset or progression. It is unlikely that urocanic acid isomerization is responsible for the ultraviolet B-mediated suppression of experimental autoimmune encephalomyelitis. Additional work is needed to investigate alternative mechanisms by which UVB suppresses disease.

  18. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells,...

  19. The experimental autoimmune encephalomyelitis model for proteomic biomarker studies : From rat to human

    NARCIS (Netherlands)

    Rosenling, Therese; Attali, Amos; Luider, Theo M.; Bischoff, Rainer

    2011-01-01

    Multiple sclerosis (MScl) is defined by central nervous system (CNS) inflammation, demyelination and axonal damage. Some of the disease mechanisms are known but the cause of this complex disorder stays an enigma. Experimental autoimmune encephalomyelitis (EAE) is an animal model mimicking many

  20. Differential effects of B7-1 blockade in the rat experimental autoimmune encephalomyelitis model

    DEFF Research Database (Denmark)

    Gallon, L; Chandraker, A; Issazadeh-Navikas, Shohreh

    1997-01-01

    Blocking the CD28-B7 T cell costimulatory activation pathway protects animals from developing experimental autoimmune encephalomyelitis (EAE). In the mouse EAE model, selective blockade of B7-1 by specific mAbs has been shown to protect animals from EAE. In the Lewis rat model, we have shown that...

  1. Neuroprotection without immunomodulation is not sufficient to reduce first relapse severity in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Hasseldam, Henrik; Johansen, Flemming Fryd

    2010-01-01

    relapse and related this to demyelination, axonal degeneration and relapse severity. METHODS: Experimental autoimmune encephalomyelitis was induced in Dark Agouti rats and treatment with R(+)WIN55,212-2 was initiated at symptom debut. The animals were scored clinically throughout the experiment...

  2. Experimental autoimmune encephalomyelitis in the common marmoset: a novel animal model for multiple sclerosis

    NARCIS (Netherlands)

    H.P.M. Brok (Herbert)

    2002-01-01

    textabstractMultiple sclerosis (MS) is a major cause of disability in young adults affecting approximately 15,000 people in The Netberlands. Critical aspects of the disease have been modeled by experimental autoimmune encephalomyelitis (EAE) in animals. The vast majority of investigators use rats

  3. Bone marrow-derived versus parenchymal sources of inducible nitric oxide synthase in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonniere, Lyne; Hassan-Zahraee, Mina

    2004-01-01

    The role of nitric oxide (NO) in central nervous system (CNS) inflammation is uncertain. Whereas experimental autoimmune encephalomyelitis (EAE) is exacerbated in mice deficient in inducible nitric oxide synthase (iNOS), inhibitor studies have suggested a pro-inflammatory role for NO. These discr...

  4. Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis

    NARCIS (Netherlands)

    Kel, J.; Oldenampsen, J.; Luca, M.; Drijfhout, J.W.; Koning, F.; Nagelkerken, L.

    2007-01-01

    We have previously shown that immunization with a mannosylated myelin peptide in complete adjuvant induces tolerance instead of disease in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis. In this report we demonstrate that treatment with a soluble mannosylated

  5. Teriflunomide Attenuates Immunopathological Changes in the Dark Agouti Rat Model of Experimental Autoimmune Encephalomyelitis

    OpenAIRE

    Ringheim, Garth E.; Lan eLee; Lynn eLaws-Ricker; Thomas eDelohery; Li eLiu; Donghui eZhang; Nicholas eColletti; Soos, Timothy J.; Kendra eSchroeder; Barbara eFanelli; Nian eTian; Arendt, Christopher W; Deborah eIglesias-Bregna; Margaret ePetty; Zhongqi eJi

    2013-01-01

    Teriflunomide is an oral disease-modifying therapy recently approved in several locations for relapsing-remitting multiple sclerosis. To gain insight into the effects of teriflunomide, immunocyte population changes were measured during progression of experimental autoimmune encephalomyelitis in Dark Agouti rats. Treatment with teriflunomide attenuated levels of spinal cord-infiltrating T cells, natural killer cells, macrophages, and neutrophils. Teriflunomide also mitigated the disease-induce...

  6. RGC-32 Promotes Th17 Cell Differentiation and Enhances Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Rus, Violeta; Nguyen, Vinh; Tatomir, Alexandru; Lees, Jason R; Mekala, Armugam P; Boodhoo, Dallas; Tegla, Cosmin A; Luzina, Irina G; Antony, Paul A; Cudrici, Cornelia D; Badea, Tudor C; Rus, Horea G

    2017-05-15

    Th17 cells play a critical role in autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Response gene to complement (RGC)-32 is a cell cycle regulator and a downstream target of TGF-β that mediates its profibrotic activity. In this study, we report that RGC-32 is preferentially upregulated during Th17 cell differentiation. RGC-32(-/-) mice have normal Th1, Th2, and regulatory T cell differentiation but show defective Th17 differentiation in vitro. The impaired Th17 differentiation is associated with defects in IFN regulatory factor 4, B cell-activating transcription factor, retinoic acid-related orphan receptor γt, and SMAD2 activation. In vivo, RGC-32(-/-) mice display an attenuated experimental autoimmune encephalomyelitis phenotype accompanied by decreased CNS inflammation and reduced frequency of IL-17- and GM-CSF-producing CD4(+) T cells. Collectively, our results identify RGC-32 as a novel regulator of Th17 cell differentiation in vitro and in vivo and suggest that RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE)

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human autoimmune disease multiple sclerosis (MS). Proinflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are considered important for induction and pathogenesis of EAE/MS disease...

  8. Minocycline up-regulates the expression of brain-derived neurotrophic factor and nerve growth factor in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Chen, Xiaohong; Ma, Lili; Jiang, Ying; Chen, Shaoqiong; Zhu, Cansheng; Liu, Mei; Ma, Xiaomeng; Zhu, Dongliang; Liu, Yingying; Peng, Fuhua; Wang, Qing; Pi, Rongbiao

    2012-07-05

    Previous evidence demonstrated that minocycline could ameliorate clinical severity of experimental autoimmune encephalomyelitis and exhibit several anti-inflammatory and neuroprotective activities. However, few studies have been carried out to assess its effects on the expression of neurotrophins in experimental autoimmune encephalomyelitis or multiple sclerosis. Here we investigated the alteration of brain-derived neurotrophic factor and nerve growth factor in the sera, cerebral cortex, and lumbar spinal cord of experimental autoimmune encephalomyelitis C57 BL/6 mice in vivo as well as the splenocytes culture supernatants in vitro after minocycline administration. Our results demonstrated that minocycline could up-regulate the expression of brain-derived neurotrophic factor and nerve growth factor both in peripheral (sera and splenocytes culture supernatants) and target organs (cerebral cortex and lumber spinal cord) of mice with experimental autoimmune encephalomyelitis. These data suggest that up-regulation of neurotrophins in experimental autoimmune encephalomyelitis may be a novel neuroprotective mechanism of minocycline. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Teriflunomide attenuates immunopathological changes in the Dark Agouti rat model of experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Garth E. Ringheim

    2013-10-01

    Full Text Available Teriflunomide is an oral disease-modifying therapy recently approved in several locations for relapsing forms of multiple sclerosis. To gain insight into the effects of teriflunomide, immunocyte population changes were measured during progression of experimental autoimmune encephalomyelitis in Dark Agouti rats. Treatment with teriflunomide attenuated levels of spinal cord-infiltrating T cells, natural killer cells, macrophages, and neutrophils. Teriflunomide also mitigated the disease-induced changes in immune cell populations in the blood and spleen suggesting an inhibitory effect on pathogenic immune responses.

  10. Teriflunomide attenuates immunopathological changes in the dark agouti rat model of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Ringheim, Garth E; Lee, Lan; Laws-Ricker, Lynn; Delohery, Tomas; Liu, Li; Zhang, Donghui; Colletti, Nicholas; Soos, Timothy J; Schroeder, Kendra; Fanelli, Barbara; Tian, Nian; Arendt, Christopher W; Iglesias-Bregna, Deborah; Petty, Margaret; Ji, Zhongqi; Qian, George; Gaur, Rajula; Weinstock, Daniel; Cavallo, Jean; Telsinskas, Juventas; McMonagle-Strucko, Kathleen

    2013-01-01

    Teriflunomide is an oral disease-modifying therapy recently approved in several locations for relapsing-remitting multiple sclerosis. To gain insight into the effects of teriflunomide, immunocyte population changes were measured during progression of experimental autoimmune encephalomyelitis in Dark Agouti rats. Treatment with teriflunomide attenuated levels of spinal cord-infiltrating T cells, natural killer cells, macrophages, and neutrophils. Teriflunomide also mitigated the disease-induced changes in immune cell populations in the blood and spleen suggesting an inhibitory effect on pathogenic immune responses.

  11. Therapeutic effect of nucleoside analogs on experimental autoimmune encephalomyelitis in dark agouti rats

    Directory of Open Access Journals (Sweden)

    Stojkov Danijela

    2006-01-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is a commonly used animal model of the human neurological disorder multiple sclerosis. The purpose of the present study was to investigate the effect of combined treatment with two nucleoside analogs, ribavirin and tiazofurin, on development of EAE actively induced in highly susceptible dark agouti rats. The obtained results showed that ribavirin and tiazofurin applied either separately or in combination from the onset of the firstsymptoms of EAE after its induction (therapeutic treatment significantly suppressed EAE’s clinical symptoms. However, the most pronounced effect was gained with combined treatment, probably as a result of synergistic/additive action.

  12. Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Nuttall, Robert K; Edwards, Dylan R

    2004-01-01

    animal model, experimental autoimmune encephalomyelitis (EAE). We used real-time RT-PCR to profile the expression of all 22 known mouse MMPs, seven ADAMs, and all four known TIMPs in spinal cord from SJL/J mice and mice with adoptively transferred myelin basic protein (MBP)-specific EAE. A significant...... and >3-fold alteration in expression was observed for MMP-8, MMP-10, MMP-12, ADAM-12, and TIMP-1, which were up-regulated, and for MMP-15, which was down-regulated. Expression levels correlated with disease course, with all but ADAM-12 returning toward control levels in remission. To examine potential...

  13. Chemokine expression in GKO mice (lacking interferon-gamma) with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Glabinski, A R; Krakowski, M; Han, Y

    1999-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system (CNS) considered to be an animal model for multiple sclerosis (MS). The detailed mechanism that specifies accumulation of inflammatory cells within the CNS in these conditions remains a subject...... in the CNS of mice with an intact IFN-gamma gene and EAE, was strikingly absent. In vitro experiments confirmed that IFNgamma selectively stimulates astrocytes for IP-10 expression. These results indicate that IP-10 is dependent upon IFN-gamma for its upregulation during this model disease, and document...

  14. Immunomodulatory effects of helminths and protozoa in multiple sclerosis and experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Hasseldam, H; Hansen, C S; Johansen, F F

    2013-01-01

    Multiple sclerosis is a chronic inflammatory CNS disease, which affects about 1 in 1000 individuals in the western world. During the last couple of decades, epidemiological data have accumulated, pointing towards increases in incidence. This has been suggested to be linked to the relatively high hygiene standards that exist in the western world, with reduced exposure to various pathogens, including parasites, as a consequence. Parasites are known to employ various immunomodulatory and anti-inflammatory strategies, which enable them to evade destruction by the immune system. This is most likely one of the reasons for the disease-dampening effects, reported in numerous studies investigating parasite infections and autoimmunity. This review will focus on recent advances in the field of parasites as beneficial immunomodulators, in multiple sclerosis and the animal model experimental autoimmune encephalomyelitis. © 2012 Blackwell Publishing Ltd.

  15. Amelioration of Experimental Autoimmune Encephalomyelitis by Isogarcinol Extracted from Garcinia mangostana L. Mangosteen.

    Science.gov (United States)

    Wang, Mengqi; Xie, Yufei; Zhong, Youxiu; Cen, Juren; Wang, Lei; Liu, Yuanyuan; Zhu, Ying; Tong, Li; Wei, Qun

    2016-11-30

    Isogarcinol is a new natural immunosuppressant that was extracted from Garcinia mangostana L. in our laboratory. Knowledge of its effects on treatable diseases and its mechanism of action is still very limited. In this study, we explored the therapeutic effect of isogarcinol in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). Treatment with oral 100 mg/kg isogarcinol markedly ameliorated clinical scores, alleviated inflammation and demyelination of the spinal cord, and reduced intracranial lesions in EAE mice. The percentages of Th cells and macrophages were also strongly reduced. Isogarcinol appeared to act by inhibiting T helper (Th) 1 and Th17 cell differentiation via the janus kinase/signal transducers and activators of transcription pathway and by impairing macrophage function. Our data suggest that isogarcinol has the potential to be an effective therapeutic agent of low toxicity for treating MS and other autoimmune diseases.

  16. Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Ward J. van den Hoogen

    2017-09-01

    Full Text Available Multiple sclerosis (MS is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS, leading to demyelination, axonal damage, and symptoms such as fatigue and disability. Although the cause of MS is not known, the infiltration of peripherally activated immune cells into the CNS has a key pathogenic role. Accumulating evidence supports an important role of diet and gut microbiota in immune-mediated diseases. Preclinical as well as clinical studies suggest a role for gut microbiota and dietary components in MS. Here, we review these recent studies on gut microbiota and dietary interventions in MS and its animal model experimental autoimmune encephalomyelitis. We also propose directions for future research.

  17. Role of passive T-cell death in chronic experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Abdallah, K; Chitnis, T

    2000-01-01

    The mechanisms of chronic disease and recovery from relapses in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, are unknown. Deletion of myelin-specific lymphocytes by apoptosis may play a role in termination of the inflammatory response. One pathway....... We found that mice transgenic for Bcl-x(L) have an earlier onset and a more chronic form of EAE induced by myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 compared with wild-type littermate mice. This was not due to an expanded autoreactive cell repertoire. Primed peripheral lymphocytes from...... that the passive cell death pathway is important in the pathogenesis of chronic EAE. These findings have implications for understanding the pathogenesis of multiple sclerosis and other autoimmune diseases....

  18. Locus coeruleus damage and noradrenaline reductions in multiple sclerosis and experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Polak, Paul E; Kalinin, Sergey; Feinstein, Douglas L

    2011-03-01

    The endogenous neurotransmitter noradrenaline exerts anti-inflammatory and neuroprotective effects in vitro and in vivo. Several studies report that noradrenaline levels are altered in the central nervous system of patients with multiple sclerosis and rodents with experimental autoimmune encephalomyelitis, which could contribute to pathology. Since the major source of noradrenaline are neurons in the locus coeruleus, we hypothesized that alterations in noradrenaline levels are a consequence of stress or damage to locus coeruleus neurons. In C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein peptide 35-55 to develop chronic disease, cortical and spinal cord levels of noradrenaline were significantly reduced versus control mice. Immunohistochemical staining revealed increased astrocyte activation in the ventral portion of the locus coeruleus in immunized mice. The immunized mice showed neuronal damage in the locus coeruleus detected by a reduction of average cell size of tyrosine hydroxylase stained neurons. Analysis of the locus coeruleus of multiple sclerosis and control brains showed a significant increase in astrocyte activation, a reduction in noradrenaline levels, and neuronal stress indicated by hypertrophy of tyrosine hydroxylase stained cell bodies. However, the magnitude of these changes was not correlated with extent of demyelination or of cellular infiltrates. Together these findings demonstrate the presence of inflammation and neuronal stress in multiple sclerosis as well as in experimental autoimmune encephalomyelitis. Since reduced noradrenaline levels could be permissive for increased inflammation and neuronal damage, these results suggest that methods to raise noradrenaline levels or increase locus coeruleus function may be of benefit in treating multiple sclerosis.

  19. Co-delivery of autoantigen and dexamethasone in incomplete Freund's adjuvant ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Northrup, Laura; Griffin, J Daniel; Christopher, Matthew A; Antunez, Lorena R; Hartwell, Brittany L; Pickens, Chad J; Berkland, Cory

    2017-11-28

    Current therapies for autoimmune diseases focus on treating the symptoms rather than the underlying disease cause. A major setback in improving current therapeutics for autoimmunity is the lack of antigen specificity. Successful antigen-specific immunotherapy (ASIT) would allow for improved treatment of autoimmune diseases. In this work, dexamethasone was co-delivered with autoantigen (PLP) in vivo to create effective ASIT for the treatment of experimental autoimmune encephalomyelitis (EAE). Using an emulsion of incomplete Freund's adjuvant (IFA) as a co-delivery vehicle, it was discovered that the controlled release of autoantigen was important for the suppression of clinical disease symptoms. Analysis of the immune response via cytokines revealed that dexamethasone was important for shifting the immune response away from inflammation. Co-delivery of both autoantigen and dexamethasone increased B-cell populations and antibody production, signifying an increased humoral immune response. Overall, this data indicated that the co-delivery of PLP and dexamethasone with a water-in-oil emulsion is effective in treating a murine autoimmune model. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Accelerated Course of Experimental Autoimmune Encephalomyelitis in PD-1-Deficient Central Nervous System Myelin Mutants

    Science.gov (United States)

    Kroner, Antje; Schwab, Nicholas; Ip, Chi Wang; Ortler, Sonja; Göbel, Kerstin; Nave, Klaus-Armin; Mäurer, Mathias; Martini, Rudolf; Wiendl, Heinz

    2009-01-01

    It is assumed that the onset and course of autoimmune inflammatory central nervous system (CNS) disorders (eg, multiple sclerosis) are influenced by factors that afflict immune regulation as well as CNS vulnerability. We challenged this concept experimentally by investigating how genetic alterations that affect myelin (primary oligodendrocyte damage in PLPtg mice) and/or T-cell regulation (deficiency of PD-1) influence both the onset and course of an experimental autoimmune CNS inflammatory disease [MOG35-55-induced experimental autoimmune encephalomyelitis (EAE)]. We observed that double pathology was associated with a significantly earlier onset of disease, a slight increase in the neurological score, an increase in the number of infiltrating cells, and enhanced axonal degeneration compared with wild-type mice and the respective, single mutant controls. Double-mutant PLPtg/PD-1−/− mice showed an increased production of interferon-γ by CNS immune cells at the peak of disease. Neither PD-1 deficiency nor oligodendropathy led to detectable spread of antigenic MHC class I- or class II-restricted epitopes during EAE. However, absence of PD-1 clearly increased the propensity of T lymphocytes to expand, and the number of clonal expansions reliably reflected the severity of the EAE disease course. Our data show that the interplay between immune dysregulation and myelinopathy results in a stable exacerbation of actively induced autoimmune CNS inflammation, suggesting that the combination of several pathological issues contributes significantly to disease susceptibility or relapses in human disease. PMID:19443704

  1. Galectin isolated from parasite inhibits remission of experimental autoimmune encephalomyelitis by up-regulating autoantibody.

    Science.gov (United States)

    Bing, S J; Ha, D; Ahn, G; Cho, J; Kim, A; Park, S K; Yu, H S; Jee, Y

    2015-06-01

    Recently, parasite infections or parasite-derived products have been suggested as a therapeutic strategy with suppression of immunopathology, which involves the induction of regulatory T cells or/and T helper type 2 (Th2) responses. In a recent study, researchers reported that constructed recombinant galectin (rTl-gal) isolated from an adult worm of the gastrointestinal nematode parasite Toxascaris leonina attenuated clinical symptoms of inflammatory bowel disease in mice treated with dextran sulphate sodium. Noting the role of rTl-gal in inflammatory disease, we attempted to investigate the effect of the parasite via its rTl-gal on neuronal autoimmune disease using experimental autoimmune encephalomyelitis (EAE), a mouse inflammatory and demyelinating autoimmune disease model of human multiple sclerosis. In this model, rTl-gal-treated experimental autoimmune encephalomyelitis (EAE) mice failed to recover after the peak of the disease, leading to persistent central nervous system (CNS) damage, such as demyelination, gliosis and axonal damage. Further, rTl-gal-treated EAE mice markedly increased the number of CD45R/B220(+) B cells in both infiltrated inflammation and the periphery, along with the increased production of autoantibody [anti-myelin oligodendrocyte glycoprotein (MOG)35-55 ] in serum at chronic stage. Upon antigen restimulation, rTl-gal treatment affected the release of overall cytokines, especially interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Our results suggest that galectin isolated from a gastrointestinal parasite can deliver a harmful effect to EAE contrary to its beneficial effect on inflammatory bowel disease. © 2015 British Society for Immunology.

  2. Rotarod motor performance and advanced spinal cord lesion image analysis refine assessment of neurodegeneration in experimental autoimmune encephalomyelitis

    NARCIS (Netherlands)

    R. van den Berg (Robert); J.D. Laman (Jon); M. van Meurs (Marjan); R.Q. Hintzen (Rogier); C.C. Hoogenraad (Casper)

    2016-01-01

    markdownabstract_Background_ Experimental autoimmune encephalomyelitis (EAE) is a commonly used experimental model for multiple sclerosis (MS). Experience with this model mainly comes from the field of immunology, while data on its use in studying the neurodegenerative aspects of MS is scarce.

  3. A Nonsecosteroidal Vitamin D Receptor Modulator Ameliorates Experimental Autoimmune Encephalomyelitis without Causing Hypercalcemia

    Directory of Open Access Journals (Sweden)

    Songqing Na

    2011-01-01

    Full Text Available Vitamin D receptor (VDR agonists are currently the agents of choice for the treatment of psoriasis, a skin inflammatory indication that is believed to involve an autoimmune component. 1,25-dihydroxyvitamin D3 [1,25-(OH2D3], the biologically active metabolite of vitamin D, has shown efficacy in animal autoimmune disease models of multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and type I diabetes. However, the side effect of 1,25-(OH2D3 and its synthetic secosteroidal analogs is hypercalcemia, which is a major impediment in their clinical development for autoimmune diseases. Hypercalcemia develops as a result of the action of VDR agonists on the intestine. Here, we describe the identification of a VDR modulator (VDRM compound A that was transcriptionally less active in intestinal cells and as a result exhibited less calcemic activity in vivo than 1,25-(OH2D3. Cytokine analysis indicated that the VDRM not only modulated the T-helper cell balance from Th1 to Th2 effector function but also inhibited Th17 differentiation. Finally, we demonstrate that the oral administration of compound A inhibited the induction and progress of experimental autoimmune encephalomyelitis in mice without causing hypercalcemia.

  4. The cardioprotector dexrazoxane augments therapeutic efficacy of mitoxantrone in experimental autoimmune encephalomyelitis

    Science.gov (United States)

    WEILBACH, F X; CHAN, A; TOYKA, K V; GOLD, R

    2004-01-01

    The present study investigates the immunological effects of a combination treatment of mitoxantrone and the cardioprotector dexrazoxane in experimental autoimmune encephalomyelitis (EAE). Mitoxantrone, an anthracycline-derived immunosuppressive drug has been approved recently for treatment of very active multiple sclerosis (MS). Its prolonged use is limited due to its cardiotoxic properties. Dexrazoxane (DZR (S)-(+)-1,2-bis (3,5.dioxopiperazinyl)propane, ICRF-187) is an iron III chelator which in animal models and in cancer patients reduces anthracycline and mitoxantrone induced cardiotoxicity when given immediately before these agents. We examined the immunological effects of dexrazoxane in combination with mitoxantrone in experimental autoimmune encephalomyelitis (EAE) in Lewis rats. EAE was induced by active immunization with myelin basic protein (MBP) or by adoptive transfer of MBP specific T cells (AT-EAE). The clinical course, spinal cord pathology, activity of metalloproteinases (MMP-2 and MMP-9) and T cell apoptosis were assessed. Monotherapy with DZR ameliorated slightly the course of actively induced EAE and AT-EAE. The combination of DZR and mitoxantrone was superior to mitoxantrone given alone. Clinical amelioration ran in parallel with the marked reduction of inflammatory infiltration which was nearly abolished by the combination treatment. DZR did not affect the activity of metalloproteinase 9 and did not increase the proportion of apoptotic lymph node cells ex vivo or T cells in situ. We conclude that in addition to its cardioprotective role, DZR augments mitoxantrone-mediated immunosuppressive effects in animal models of human central nervous system (CNS) autoimmune disease. Clinical trials in MS patients are warranted to evaluate the unexpected immunosuppressive efficacy of DZR as add-on treatment. PMID:14678264

  5. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Johanna Prinz

    Full Text Available Multiple sclerosis (MS is an autoimmune disease of the central nervous system (CNS characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Lack of human tissue underscores the importance of animal models to study the pathology of MS.Twenty-two female C57BL/6 (B6 mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE and six months after onset of EAE (long-term EAE. The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT of the spinal cord.B6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. Additionally, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation.Our results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse

  6. Treatment with metallothionein prevents demyelination and axonal damage and increases oligodendrocyte precursors and tissue repair during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, Milena; Hidalgo, Juan

    2003-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human demyelinating disease multiple sclerosis (MS). EAE and MS are characterized by significant inflammation, demyelination, neuroglial damage, and cell death. Metallothionein-I and -II (MT-I + II) are antiinflammatory an...

  7. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2001-01-01

    Metallothionein-I+II (MT-I+II) are antioxidant, neuroprotective proteins, and in this report we have examined their roles during experimental autoimmune encephalomyelitis (EAE) by comparing MT-I+II-knock-out (MTKO) and wild-type mice. We herewith show that EAE susceptibility is higher in MTKO mic...

  8. Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Navikas, V; Schaub, M

    1998-01-01

    We studied the kinetics of expression of costimulatory molecules and cytokines in the central nervous system (CNS) in murine relapsing experimental autoimmune encephalomyelitis (EAE). During the natural course of EAE, B7-2 expression in the CNS correlated with clinical signs, while B7-1 was exclu...

  9. Probenecid Application Prevents Clinical Symptoms and Inflammation in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Hainz, Nadine; Wolf, Sandra; Tschernig, Thomas; Meier, Carola

    2016-02-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Neurological impairments are caused by axonal damage due to demyelination and neuroinflammation within the central nervous system. T cells mediate the neuroinflammation. The activation of T cells is induced by the release of adenosine triphosphate and involves purinergic receptors as well as pannexin (Panx) proteins. As Panx1 is expressed on T cells, we here propose that application of probenecid, a known Panx inhibitor, will prevent the onset of clinical symptoms in a mouse model of MS, the experimental autoimmune encephalomyelitis (EAE) model. EAE-induced mice received daily injections of probenecid. Disease scores, T cell numbers, and microglia activation were compared between experimental groups. Probenecid treatment resulted in lower disease scores as compared to EAE animals. Probenecid-treated animals also displayed fewer inflammatory lesions. Microglia activation was not altered by treatment. In conclusion, probenecid prevented the onset of EAE.

  10. Regulatory T Cell Dysfunction Acquiesces to BTLA+ Regulatory B Cells Subsequent Oral Intervention of Experimental Autoimmune Encephalomyelitis

    OpenAIRE

    Huarte, Eduardo; Jun, SangMu; Rynda-Apple, Agnieszka; Golden, Sara; Jackiw, Larissa; Hoffman, Carol; Maddaloni, Massimo; Pascual, David W.

    2016-01-01

    Regulatory T cells (Tregs) induced during autoimmunity often become quiescent and unable to resolve disease, suggesting inadequate activation. Resolution of established experimental autoimmune encephalomyelitis (EAE) can be achieved with myelin oligodendrocyte glycoprotein (MOG) fused to reovirus protein ��1 (MOG-p��1) which activates Tregs, restoring protection, but requiring other regulatory cells to revitalize them. B cells have a dichotomous role in both the pathogenesis and recovery from...

  11. Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Rosetta Pedotti

    2012-11-01

    Full Text Available Mast cells (MCs are best known as key immune players in immunoglobulin E (IgE-dependent allergic reactions. In recent years, several lines of evidence have suggested that MCs might play an important role in several pathological conditions, including autoimmune disorders such as multiple sclerosis (MS and experimental autoimmune encephalomyelitis (EAE, an animal model for MS. Since their first description in MS plaques in the late 1800s, much effort has been put into elucidating the contribution of MCs to the development of central nervous system (CNS autoimmunity. Mouse models of MC-deficiency have provided a valuable experimental tool for dissecting MC involvement in MS and EAE. However, to date there is still major controversy concerning the function of MCs in these diseases. Indeed, although MCs have been classically proposed as having a detrimental and pro-inflammatory role, recent literature has questioned and resized the contribution of MCs to the pathology of MS and EAE. In this review, we will present the main evidence obtained in MS and EAE on this topic, and discuss the critical and controversial aspects of such evidence.

  12. Regulatory T cell induction during Plasmodium chabaudi infection modifies the clinical course of experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Alessandro S Farias

    Full Text Available BACKGROUND: Experimental autoimmune encephalomyelitis (EAE is used as an animal model for human multiple sclerosis (MS, which is an inflammatory demyelinating autoimmune disease of the central nervous system characterized by activation of Th1 and/or Th17 cells. Human autoimmune diseases can be either exacerbated or suppressed by infectious agents. Recent studies have shown that regulatory T cells play a crucial role in the escape mechanism of Plasmodium spp. both in humans and in experimental models. These cells suppress the Th1 response against the parasite and prevent its elimination. Regulatory T cells have been largely associated with protection or amelioration in several autoimmune diseases, mainly by their capacity to suppress proinflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we verified that CD4(+CD25(+ regulatory T cells (T regs generated during malaria infection (6 days after EAE induction interfere with the evolution of EAE. We observed a positive correlation between the reduction of EAE clinical symptoms and an increase of parasitemia levels. Suppression of the disease was also accompanied by a decrease in the expression of IL-17 and IFN-γ and increases in the expression of IL-10 and TGF-β1 relative to EAE control mice. The adoptive transfer of CD4(+CD25(+ cells from P. chabaudi-infected mice reduced the clinical evolution of EAE, confirming the role of these T regs. CONCLUSIONS/SIGNIFICANCE: These data corroborate previous findings showing that infections interfere with the prevalence and evolution of autoimmune diseases by inducing regulatory T cells, which regulate EAE in an apparently non-specific manner.

  13. Major histocompatibility complex-controlled protective influences on experimental autoimmune encephalomyelitis are peptide specific

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Kjellén, P; Olsson, T

    1997-01-01

    The myelin basic protein (MBP) peptide 63-88-induced experimental autoimmune encephalomyelitis (EAE) and its associated T cell cytokine profile are influenced by the rat major histocompatibility complex (MHC). There is an allele-specific protective influence of the MHC class I region, whereas...... the MHC class II region display either disease-protective or -promoting effects. To investigate if the MHC-associated protection is dependent on certain combinations of MBP peptide and MHC molecules, we have now used another peptide (MBP 89-101). A broader and different set of rat MHC alleles were......-101 peptide, except in LEW.1N (RT1 pi) rats which were relatively resistant. Only this strain responded with additional Th2-like and transforming growth factor-beta responses to the peptide in vitro. In vivo depletion of CD8+ cells aggravated the disease in this strain. We conclude that both MHC...

  14. Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ockinger, J; Stridh, P; Beyeen, A D

    2010-01-01

    Multiple sclerosis (MS) is a complex disorder of the central nervous system, causing inflammation, demyelination and axonal damage. A limited number of genetic risk factors for MS have been identified, but the etiology of the disease remains largely unknown. For the identification of genes...... regulating neuroinflammation we used a rat model of MS, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), and carried out a linkage analysis in an advanced intercross line (AIL). We thereby redefine the Eae18b locus to a 0.88 Mb region, including a cluster...... of chemokine genes. Further, we show differential expression of Ccl2, Ccl11 and Ccl11 during EAE in rat strains with opposite susceptibility to EAE, regulated by genotype in Eae18b. The human homologous genes were tested for association to MS in 3841 cases and 4046 controls from four Nordic countries...

  15. Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ockinger, J; Stridh, P; Beyeen, A D

    2010-01-01

    Multiple sclerosis (MS) is a complex disorder of the central nervous system, causing inflammation, demyelination and axonal damage. A limited number of genetic risk factors for MS have been identified, but the etiology of the disease remains largely unknown. For the identification of genes...... regulating neuroinflammation we used a rat model of MS, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), and carried out a linkage analysis in an advanced intercross line (AIL). We thereby redefine the Eae18b locus to a 0.88 Mb region, including a cluster....... A haplotype in CCL2 and rs3136682 in CCL1 show a protective association to MS, whereas a haplotype in CCL13 is disease predisposing. In the HLA-DRB1* 15 positive subgroup, we also identified an association to a risk haplotype in CCL2, suggesting an influence from the human leukocyte antigen (HLA) locus. We...

  16. Microwave and magnetic (M2) proteomics of the experimental autoimmune encephalomyelitis animal model of multiple sclerosis

    Science.gov (United States)

    Raphael, Itay; Mahesula, Swetha; Kalsaria, Karan; Kotagiri, Venkat; Purkar, Anjali B.; Anjanappa, Manjushree; Shah, Darshit; Pericherla, Vidya; Jadhav, Yeshwant Lal Avinash; Raghunathan, Rekha; Vaynberg, Michael; Noriega, David; Grimaldo, Nazul H.; Wenk, Carola; Gelfond, Jonathan A.L.; Forsthuber, Thomas G.; Haskins, William E.

    2013-01-01

    We hypothesized that quantitative MS/MS-based proteomics at multiple time points, incorporating rapid microwave and magnetic (M2) sample preparation, could enable relative protein expression to be correlated to disease progression in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis. To test our hypothesis, microwave-assisted reduction/alkylation/digestion of proteins from brain tissue lysates bound to C8 magnetic beads and microwave-assisted isobaric chemical labeling were performed of released peptides, in 90 s prior to unbiased proteomic analysis. Disease progression in EAE was assessed by scoring clinical EAE disease severity and confirmed by histopathologic evaluation for central nervous system inflammation. Decoding the expression of 283 top-ranked proteins (p proteomics is a rapid method to quantify putative prognostic/predictive protein biomarkers and therapeutic targets of disease progression in the EAE animal model of multiple sclerosis. PMID:23161666

  17. Microwave and magnetic (M(2) ) proteomics of the experimental autoimmune encephalomyelitis animal model of multiple sclerosis.

    Science.gov (United States)

    Raphael, Itay; Mahesula, Swetha; Kalsaria, Karan; Kotagiri, Venkat; Purkar, Anjali B; Anjanappa, Manjushree; Shah, Darshit; Pericherla, Vidya; Jadhav, Yeshwant Lal Avinash; Raghunathan, Rekha; Vaynberg, Michael; Noriega, David; Grimaldo, Nazul H; Wenk, Carola; Gelfond, Jonathan A L; Forsthuber, Thomas G; Haskins, William E

    2012-12-01

    We hypothesized that quantitative MS/MS-based proteomics at multiple time points, incorporating rapid microwave and magnetic (M(2) ) sample preparation, could enable relative protein expression to be correlated to disease progression in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis. To test our hypothesis, microwave-assisted reduction/alkylation/digestion of proteins from brain tissue lysates bound to C8 magnetic beads and microwave-assisted isobaric chemical labeling were performed of released peptides, in 90 s prior to unbiased proteomic analysis. Disease progression in EAE was assessed by scoring clinical EAE disease severity and confirmed by histopathologic evaluation for central nervous system inflammation. Decoding the expression of 283 top-ranked proteins (p proteomics is a rapid method to quantify putative prognostic/predictive protein biomarkers and therapeutic targets of disease progression in the EAE animal model of multiple sclerosis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. IFN-beta gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Teige, Ingrid; Treschow, Alexandra; Teige, Anna

    2003-01-01

    Since the basic mechanisms behind the beneficial effects of IFN-beta in multiple sclerosis (MS) patients are still obscure, here we have investigated the effects of IFN-beta gene disruption on the commonly used animal model for MS, experimental autoimmune encephalomyelitis (EAE). We show that IFN......-beta knockout (KO) mice are more susceptible to EAE than their wild-type (wt) littermates; they develop more severe and chronic neurological symptoms with more extensive CNS inflammation and demyelination. However, there was no discrepancy observed between wt and KO mice regarding the capacity of T cells...... to proliferate or produce IFN-gamma in response to recall Ag. Consequently, we addressed the effect of IFN-beta on encephalitogenic T cell development and the disease initiation phase by passive transfer of autoreactive T cells from KO or wt littermates to both groups of mice. Interestingly, IFN-beta KO mice...

  19. Rituximab therapy reduces organ-specific T cell responses and ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Monson, Nancy L; Cravens, Petra; Hussain, Rehana; Harp, Christopher T; Cummings, Matthew; de Pilar Martin, Maria; Ben, Li-Hong; Do, Julie; Lyons, Jeri-Anne; Lovette-Racke, Amy; Cross, Anne H; Racke, Michael K; Stüve, Olaf; Shlomchik, Mark; Eagar, Todd N

    2011-02-16

    Recent clinical trials have established B cell depletion by the anti-CD20 chimeric antibody Rituximab as a beneficial therapy for patients with relapsing-remitting multiple sclerosis (MS). The impact of Rituximab on T cell responses remains largely unexplored. In the experimental autoimmune encephalomyelitis (EAE) model of MS in mice that express human CD20, Rituximab administration rapidly depleted peripheral B cells and strongly reduced EAE severity. B cell depletion was also associated with diminished Delayed Type Hypersensitivity (DTH) and a reduction in T cell proliferation and IL-17 production during recall immune response experiments. While Rituximab is not considered a broad immunosuppressant, our results indicate a role for B cells as a therapeutic cellular target in regulating encephalitogenic T cell responses in specific tissues.

  20. Rituximab therapy reduces organ-specific T cell responses and ameliorates experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Nancy L Monson

    Full Text Available Recent clinical trials have established B cell depletion by the anti-CD20 chimeric antibody Rituximab as a beneficial therapy for patients with relapsing-remitting multiple sclerosis (MS. The impact of Rituximab on T cell responses remains largely unexplored. In the experimental autoimmune encephalomyelitis (EAE model of MS in mice that express human CD20, Rituximab administration rapidly depleted peripheral B cells and strongly reduced EAE severity. B cell depletion was also associated with diminished Delayed Type Hypersensitivity (DTH and a reduction in T cell proliferation and IL-17 production during recall immune response experiments. While Rituximab is not considered a broad immunosuppressant, our results indicate a role for B cells as a therapeutic cellular target in regulating encephalitogenic T cell responses in specific tissues.

  1. Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids.

    Science.gov (United States)

    Pryce, Gareth; Riddall, Dieter R; Selwood, David L; Giovannoni, Gavin; Baker, David

    2015-06-01

    Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system. Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms. However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease. Although there is limited evidence that the cannabinoids from cannabis are having significant immunosuppressive activities that will influence relapsing autoimmunity, we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability. Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels. In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans. Although a 3 year, phase III clinical trial did not detect a beneficial effect of oral Δ9-THC in progressive MS, a planned subgroup analysis of people with less disability who progressed more rapidly, demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo. Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.

  2. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Martin M. Herrmann

    2016-10-01

    Full Text Available After encounter with a central nervous system (CNS-derived autoantigen, lymphocytes leave the lymph nodes and enter the CNS. This event leads only rarely to subsequent tissue damage. Genes relevant to CNS pathology after cell infiltration are largely undefined. Myelin-oligodendrocyte-glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis (MS, a chronic autoimmune disease of the CNS that results in disability. To assess genes that are involved in encephalitogenicity and subsequent tissue damage mediated by CNS-infiltrating cells, we performed a DNA microarray analysis from cells derived from lymph nodes and eluted from CNS in LEW.1AV1 (RT1av1 rats immunized with MOG 91-108. The data was compared to immunizations with adjuvant alone or naive rats and to immunizations with the immunogenic but not encephalitogenic MOG 73-90 peptide. Here, we show involvement of Cd38, Cxcr4 and Akt and confirm these findings by the use of Cd38-knockout (B6.129P2-Cd38tm1Lnd/J mice, S1P-receptor modulation during EAE and quantitative expression analysis in individuals with MS. The hereby-defined underlying pathways indicate cellular activation and migration pathways mediated by G-protein-coupled receptors as crucial events in CNS tissue damage. These pathways can be further explored for novel therapeutic interventions.

  3. Treg cell resistance to apoptosis in DNA vaccination for experimental autoimmune encephalomyelitis treatment.

    Directory of Open Access Journals (Sweden)

    Youmin Kang

    Full Text Available BACKGROUND: Regulatory T (Treg cells can be induced with DNA vaccinations and protect mice from the development of experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis (MS. Tacrolimus (FK506 has been shown to have functions on inducing immunosuppression and augmenting apoptosis of pathologic T cells in autoimmune disease. Here we examined the therapeutic effect of DNA vaccine in conjunction with FK506 on EAE. METHODOLOGY/PRINCIPAL FINDINGS: After EAE induction, C57BL/6 mice were treated with DNA vaccine in conjunction with FK506. Functional Treg cells were induced in treated EAE mice and suppressed Th1 and Th17 cell responses. Infiltrated CD4 T cells were reduced while Treg cells were induced in spinal cords of treated EAE mice. Remarkably, the activated CD4 T cells augmented apoptosis, but the induced Treg cells resisted apoptosis in treated EAE mice, resulting in alleviation of clinical EAE severity. CONCLUSIONS/SIGNIFICANCE: DNA vaccine in conjunction with FK506 treatment ameliorates EAE by enhancing apoptosis of CD4 T cells and resisting apoptosis of induced Treg cells. Our findings implicate the potential of tolerogenic DNA vaccines for treating MS.

  4. Ginsenoside Rd ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice.

    Science.gov (United States)

    Zhu, Dongliang; Liu, Mei; Yang, Yaowu; Ma, Lili; Jiang, Ying; Zhou, Linli; Huang, Qiling; Pi, Rongbiao; Chen, Xiaohong

    2014-09-01

    Multiple sclerosis (MS) is a common disabling autoimmune disease without an effective treatment in young adults. Ginsenoside Rd, extracted from Panax notoginseng, has multiple pharmacological effects and potential therapeutic applications in diseases of the central nervous system. In this study, we explore the efficacy of ginsenoside Rd in experimental autoimmune encephalomyelitis (EAE), an established model of MS. EAE was induced by myelin oligodendrocyte glycoprotein 35-55-amino-acid peptide. Ginsenoside Rd (10-80 mg/kg/day) or vehicle was intraperitoneally administered on the disease onset day, and the therapy persisted throughout the experiments. The dose of 40 mg/kg/day of ginsenoside Rd was selected as optimal. Ginsenoside Rd effectively ameliorated the clinical severity in EAE mice, reduced the permeability of the blood-brain barrier, regulated the secretion of interferon-gamma and interleukin-4, promoted the Th2 shift in vivo (cerebral cortex) and in vitro (splenocytes culture supernatants), and prevented the reduction in expression of brain-derived neurotrophic factor and nerve growth factor in both cerebral cortex and lumbar spinal cord of EAE mice. This study establishes the potency of ginsenoside Rd in inhibiting the clinical course of EAE. These findings suggest that ginsenoside Rd could be a promising agent for amelioration of neuroimmune dysfunction diseases such as MS. © 2014 Wiley Periodicals, Inc.

  5. Gestational Hypothyroidism Increases the Severity of Experimental Autoimmune Encephalomyelitis in Adult Offspring

    Science.gov (United States)

    Albornoz, Eduardo A.; Carreño, Leandro J.; Cortes, Claudia M.; Gonzalez, Pablo A.; Cisternas, Pablo A.; Cautivo, Kelly M.; Catalán, Tamara P.; Opazo, M. Cecilia; Eugenin, Eliseo A.; Berman, Joan W.; Bueno, Susan M.; Kalergis, Alexis M.

    2013-01-01

    Background: Maternal thyroid hormones play a fundamental role in appropriate fetal development during gestation. Offspring that have been gestated under maternal hypothyroidism suffer cognitive impairment. Thyroid hormone deficiency during gestation can significantly impact the central nervous system by altering the migration, differentiation, and function of neurons, oligodendrocytes, and astrocytes. Given that gestational hypothyroidism alters the immune cell ratio in offspring, it is possible that this condition could result in higher sensitivity for the development of autoimmune diseases. Methods: Adult mice gestated under hypothyroidism were induced with experimental autoimmune encephalomyelitis (EAE). Twenty-one days after EAE induction, the disease score, myelin content, immune cell infiltration, and oligodendrocyte death were evaluated. Results: We observed that mice gestated under hypothyroidism showed higher EAE scores after disease induction during adulthood compared to mice gestated in euthyroidism. In addition, spinal cord sections of mice gestated under hypothyroidism that suffered EAE in adulthood showed higher demyelination, CD4+ and CD8+ infiltration, and increased oligodendrocyte death. Conclusions: These results show for the first time that a deficiency in maternal thyroid hormones during gestation can influence the outcome of a central nervous system inflammatory disease, such as EAE, in their offspring. These data strongly support evaluating thyroid hormones in pregnant women and treating hypothyroidism during pregnancy to prevent increased susceptibility to inflammatory diseases in the central nervous system of offspring. PMID:23777566

  6. Tuftsin promotes an anti-inflammatory switch and attenuates symptoms in experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Muzhou Wu

    Full Text Available Multiple sclerosis (MS is a demyelinating autoimmune disease mediated by infiltration of T cells into the central nervous system after compromise of the blood-brain barrier. We have previously shown that administration of tuftsin, a macrophage/microglial activator, dramatically improves the clinical course of experimental autoimmune encephalomyelitis (EAE, a well-established animal model for MS. Tuftsin administration correlates with upregulation of the immunosuppressive Helper-2 T cell (Th2 cytokine transcription factor GATA-3. We now show that tuftsin-mediated microglial activation results in shifting microglia to an anti-inflammatory phenotype. Moreover, the T cell phenotype is shifted towards immunoprotection after exposure to tuftsin-treated activated microglia; specifically, downregulation of pro-inflammatory Th1 responses is triggered in conjunction with upregulation of Th2-specific responses and expansion of immunosuppressive regulatory T cells (Tregs. Finally, tuftsin-shifted T cells, delivered into animals via adoptive transfer, reverse the pathology observed in mice with established EAE. Taken together, our findings demonstrate that tuftsin decreases the proinflammatory environment of EAE and may represent a therapeutic opportunity for treatment of MS.

  7. Carboxypeptidase N-deficient mice present with polymorphic disease phenotypes on induction of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Hu, Xianzhen; Wetsel, Rick A; Ramos, Theresa N; Mueller-Ortiz, Stacey L; Schoeb, Trenton R; Barnum, Scott R

    2014-02-01

    Carboxypeptidase N (CPN) is a member of the carboxypeptidase family of enzymes that cleave carboxy-terminal lysine and arginine residues from a large number of biologically active peptides and proteins. These enzymes are best known for their roles in modulating the activity of kinins, complement anaphylatoxins and coagulation proteins. Although CPN makes important contributions to acute inflammatory events, little is known about its role in autoimmune disease. In this study we used CPN(-/-) mice in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Unexpectedly, we observed several EAE disease phenotypes in CPN(-/-) mice compared to wild type mice. The majority of CPN(-/-) mice died within five to seven days after disease induction, before displaying clinical signs of disease. The remaining mice presented with either mild EAE or did not develop EAE. In addition, CPN(-/-) mice injected with complete or incomplete Freund's adjuvant died within the same time frame and in similar numbers as those induced for EAE. Overall, the course of EAE in CPN(-/-) mice was significantly delayed and attenuated compared to wild type mice. Spinal cord histopathology in CPN(-/-) mice revealed meningeal, but not parenchymal leukocyte infiltration, and minimal demyelination. Our results indicate that CPN plays an important role in EAE development and progression and suggests that multiple CPN ligands contribute to the disease phenotypes we observed. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Helminth Products Potently Modulate Experimental Autoimmune Encephalomyelitis by Downregulating Neuroinflammation and Promoting a Suppressive Microenvironment

    Directory of Open Access Journals (Sweden)

    Alberto N. Peón

    2017-01-01

    Full Text Available A negative correlation between the geographical distribution of autoimmune diseases and helminth infections has been largely associated in the last few years with a possible role for such type of parasites in the regulation of inflammatory diseases, suggesting new pathways for drug development. However, few helminth-derived immunomodulators have been tested in experimental autoimmune encephalomyelitis (EAE, an animal model of the human disease multiple sclerosis (MS. The immunomodulatory activities of Taenia crassiceps excreted/secreted products (TcES that may suppress EAE development were sought for. Interestingly, it was discovered that TcES was able to suppress EAE development with more potency than dexamethasone; moreover, TcES treatment was still effective even when inoculated at later stages after the onset of EAE. Importantly, the TcES treatment was able to induce a range of Th2-type cytokines, while suppressing Th1 and Th17 responses. Both the polyclonal and the antigen-specific proliferative responses of lymphocytes were also inhibited in EAE-ill mice receiving TcES in association with a potent recruitment of suppressor cell populations. Peritoneal inoculation of TcES was able to direct the normal inflammatory cell traffic to the site of injection, thus modulating CNS infiltration, which may work along with Th2 immune polarization and lymphocyte activation impairment to downregulate EAE development.

  9. IgG glycan hydrolysis by EndoS inhibits experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Benkhoucha Mahdia

    2012-09-01

    Full Text Available Abstract Studies in experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis, have shown that B cells markedly influence the course of the disease, although whether their effects are protective or pathological is a matter of debate. EndoS hydrolysis of the IgG glycan has profound effects on IgG effector functions, such as complement activation and Fc receptor binding, suggesting that the enzyme could be used as an immunomodulatory therapeutic agent against IgG-mediated diseases. We demonstrate here that EndoS has a protective effect in myelin oligodendrocyte glycoprotein peptide amino acid 35–55 (MOG35-55-induced EAE, a chronic neuroinflammatory demyelinating disorder of the central nervous system (CNS in which humoral immune responses are thought to play only a minor role. EndoS treatment in chronic MOG35-55-EAE did not impair encephalitogenic T cell priming and recruitment into the CNS of mice, consistent with a primary role of EndoS in controlling IgG effector functions. In contrast, reduced EAE severity coincided with poor serum complement activation and deposition within the spinal cord, suggesting that EndoS treatment impairs B cell effector function. These results identify EndoS as a potential therapeutic agent against antibody-mediated CNS autoimmune disorders.

  10. 5-Androstenediol Ameliorates Pleurisy, Septic Shock, and Experimental Autoimmune Encephalomyelitis in Mice

    Directory of Open Access Journals (Sweden)

    Ferdinando Nicoletti

    2010-01-01

    Full Text Available Androstenediol (androst-5-ene-3β,17β-diol; 5-AED, a natural adrenal steroid, has been shown to suppress experimental autoimmune encephalomyelitis (EAE in female SJL/J mice. We here report that 5-AED limits inflammation and proinflammatory cytokines including TNFα in murine models of carrageenan-induced pleurisy and lippopolysaccaride- (LPS induced septic shock. 5-AED binds to and transactivates sex steroid receptors with the same general rank order of potency (ERβ > ERα ≫ AR. 5-AED provides benefit in EAE in a dose-dependent fashion, even when treatment is delayed until onset of disease. The minimally effective dose may be as low as 4 mg/kg in mice. However, benefit was not observed when 5-AED was given in soluble formulation, leading to a short half-life and rapid clearance. These observations suggest that treatment with 5-AED limits the production of pro-inflammatory cytokines in these animal models and, ultimately, when formulated and administered properly, may be beneficial for patients with multiple sclerosis and other Th1-driven autoimmune diseases.

  11. GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease.

    Science.gov (United States)

    Pierson, Emily R; Goverman, Joan M

    2017-04-06

    Experimental autoimmune encephalomyelitis (EAE) has been used as an animal model of multiple sclerosis to identify pathogenic cytokines that could be therapeutic targets. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is the only cytokine reported to be essential for EAE. We investigated the role of GM-CSF in EAE in C3HeB/FeJ mice that uniquely exhibit extensive brain and spinal cord inflammation. Unexpectedly, GM-CSF-deficient C3HeB/FeJ mice were fully susceptible to EAE because IL-17 activity compensated for the loss of GM-CSF during induction of spinal cord-targeted disease. In contrast, both GM-CSF and IL-17 were needed to fully overcome the inhibitory influence of IFN-γ on the induction of inflammation in the brain. Both GM-CSF and IL-17 independently promoted neutrophil accumulation in the brain, which was essential for brain-targeted disease. These results identify a GM-CSF/IL-17/IFN-γ axis that regulates inflammation in the central nervous system and suggest that a combination of cytokine-neutralizing therapies may be needed to dampen central nervous system autoimmunity.

  12. Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-like lesions in relapsing--remitting experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Wang, Yue; Kivisäkk, Pia

    2007-01-01

    Cortical pathology, callosal atrophy and axonal loss are substrates of progression in multiple sclerosis (MS). Here we describe cortical, periventricular subcortical lesions and callosal demyelination in relapsing-remitting experimental autoimmune encephalomyelitis in SJL mice that are similar to...

  13. Disparate Effects of Mesenchymal Stem Cells in Experimental Autoimmune Encephalomyelitis and Cuprizone-Induced Demyelination.

    Directory of Open Access Journals (Sweden)

    Justin D Glenn

    Full Text Available Mesenchymal stem cells (MSCs are pleiotropic cells with potential therapeutic benefits for a wide range of diseases. Because of their immunomodulatory properties they have been utilized to treat autoimmune diseases such as multiple sclerosis (MS, which is characterized by demyelination. The microenvironment surrounding MSCs is thought to affect their differentiation and phenotype, which could in turn affect the efficacy. We thus sought to dissect the potential for differential impact of MSCs on central nervous system (CNS disease in T cell mediated and non-T cell mediated settings using the MOG35-55 experimental autoimmune encephalomyelitis (EAE and cuprizone-mediated demyelination models, respectively. As the pathogeneses of MS and EAE are thought to be mediated by IFNγ-producing (TH1 and IL-17A-producing (TH17 effector CD4+ T cells, we investigated the effect of MSCs on the development of these two key pathogenic cell groups. Although MSCs suppressed the activation and effector function of TH17 cells, they did not affect TH1 activation, but enhanced TH1 effector function and ultimately produced no effect on EAE. In the non- T cell mediated cuprizone model of demyelination, MSC administration had a positive effect, with an overall increase in myelin abundance in the brain of MSC-treated mice compared to controls. These results highlight the potential variability of MSCs as a biologic therapeutic tool in the treatment of autoimmune disease and the need for further investigation into the multifaceted functions of MSCs in diverse microenvironments and the mechanisms behind the diversity.

  14. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells

    Directory of Open Access Journals (Sweden)

    Haikuo Xue

    2016-05-01

    Full Text Available Objective(s: Multiple sclerosis (MS is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E is an important component of human diet with antioxidant activity, which protects the body’s biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE, the animal model of MS, and treated EAE with α-tocopherol (AT which is the main content of Vit E. Materials and Methods:Twenty C57BL/6 adult female mice were used and divided into two groups randomly. EAE was induced with myelin oligodendrocyte glycoprotein (MOG, and one group was treated with AT, at a dose of 100 mg/kg on the 3th day post-immunization with MOG, the other group was treated with 1% alcohol. Mice were euthanized on day 14, post-immunization, spleens were removed for assessing splenocytes proliferation and cytokine profile, and spinal cords were dissected to assess the infiltration of inflammatory cells in spinal cord. Results:AT was able to attenuate the severity of EAE and delay the disease progression. H&E staining and fast blue staining indicated that AT reduced the inflammation and the demyelination reaction in the spinal cord. Treatment with AT significantly decreased the proliferation of splenocytes. AT also inhibited the production of IFN-γ (Th1 cytokine, though the other cytokines were only affected slightly. Conclusion:According to the results, AT ameliorated EAE, through suppressing the proliferation of T cells and the Th1 response. AT may be used as a potential treatment for MS.

  15. Epitope-Specific Tolerance Modes Differentially Specify Susceptibility to Proteolipid Protein-Induced Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available Immunization with myelin components can elicit experimental autoimmune encephalomyelitis (EAE. EAE susceptibility varies between mouse strains, depending on the antigen employed. BL/6 mice are largely resistant to EAE induction with proteolipid protein (PLP, probably a reflection of antigen-specific tolerance. However, the extent and mechanism(s of tolerance to PLP remain unclear. Here, we identified three PLP epitopes in PLP-deficient BL/6 mice. PLP-sufficient mice did not respond against two of these, whereas tolerance was “leaky” for an epitope with weak predicted MHCII binding, and only this epitope was encephalitogenic. In TCR transgenic mice, the “EAE-susceptibility-associated” epitope was “ignored” by specific CD4 T cells, whereas the “resistance-associated” epitope induced clonal deletion and Treg induction in the thymus. Central tolerance was autoimmune regulator dependent and required expression and presentation of PLP by thymic epithelial cells (TECs. TEC-specific ablation of PLP revealed that peripheral tolerance, mediated by dendritic cells through recessive tolerance mechanisms (deletion and anergy, could largely compensate for a lack of central tolerance. However, adoptive EAE was exacerbated in mice lacking PLP in TECs, pointing toward a non-redundant role of the thymus in dominant tolerance to PLP. Our findings reveal multiple layers of tolerance to a central nervous system autoantigen that vary among epitopes and thereby specify disease susceptibility. Understanding how different modalities of tolerance apply to distinct T cell epitopes of a target in autoimmunity has implications for antigen-specific strategies to therapeutically interfere with unwanted immune reactions against self.

  16. Arg deficiency does not influence the course of Myelin Oligodendrocyte Glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Jacobsen, Freja Aksel; Hulst, Camilla; Bäckström, Thomas

    2016-01-01

    extensively studied in immune activation, roles for Arg are incompletely characterized. To investigate the role for Arg in experimental autoimmune encephalomyelitis, we studied disease development in Arg-/- mice. Methods: Arg-/- and Arg+/+ mice were generated from breeding of Arg+/- mice on the C57BL/6...... background. Mice were immunized with the myelin oligodendrocyte glycoprotein (MOG)35-55 peptide and disease development recorded. Lymphocyte phenotypes of wild type Arg+/+ and Arg-/- mice were studied by in vitro stimulation assays and flow cytometry. Results: The breeding of Arg+/+ and Arg-/- mice showed......Background: Inhibition of Abl kinases has an ameliorating effect on the rodent model for multiple sclerosis, experimental autoimmune encephalomyelitis, and arrests lymphocyte activation. The family of Abl kinases consists of the Abl1/Abl and Abl2/Arg tyrosine kinases. While the Abl kinase has been...

  17. Specific and strain-independent effects of dexamethasone in the prevention and treatment of experimental autoimmune encephalomyelitis in rodents

    DEFF Research Database (Denmark)

    Donia, M; Mangano, K; Quattrocchi, C

    2010-01-01

    Experimental autoimmune encephalomyelitis in rodents (EAE) is a generally accepted in vivo model for immunopathogenic mechanisms underlying multiple sclerosis (MS). There are, however, different forms of rodent EAE, and therapeutic regimens may affect these forms differently. We have therefore te...... predictors of drug efficacy in at least some variants of human MS. Better understanding of the clinical and immunopharmacologic features of these models might prove useful when testing new drug candidates for MS treatment....

  18. Inhibitory effects of alprazolam on the development of acute experimental autoimmune encephalomyelitis in stressed rats.

    Science.gov (United States)

    Núñez-Iglesias, María J; Novío, Silvia; Almeida-Dias, Antonio; Freire-Garabal, Manuel

    2010-12-01

    The progression and development of multiple sclerosis (MS) has long been hypothesized to be associated with stress. Benzodiazepines have been observed to reduce negative consequences of stress on the immune system in experimental and clinical models, but there are no data on their effects on MS, or experimental autoimmune encephalomyelitis (EAE), a model for human MS. We designed experiments conducted to ascertain whether alprazolam could modify the clinical, histological and neuroendocrine manifestations of acute EAE in Lewis rats exposed to a chronic auditory stressor. EAE was induced by injection of an emulsion of MBP and complete Freund's adjuvant containing Mycobacterium tuberculosis H37Ra. Stress application and treatment with drugs (placebo or alprazolam) were initiated 5days before inoculation and continued daily for the duration of the experiment (days 14 or 34 postinoculation).Our results show significant increases in the severity of neurological signs, the histological lesions of the spinal cord (inflammation), and the corticosterone plasmatic levels in stressed rats compared to those non-stressed ones. Treatment with alprazolam reversed the adverse effects of stress. These findings could have clinical implications in patients suffering from MS treated with benzodiazepines, so besides the psychopharmacological properties of alprazolam against stress, it has beneficial consequences on EAE. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS)

    Science.gov (United States)

    Constantinescu, Cris S; Farooqi, Nasr; O'Brien, Kate; Gran, Bruno

    2011-01-01

    Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21371012

  20. Continued administration of ciliary neurotrophic factor protects mice from inflammatory pathology in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Kuhlmann, Tanja; Remington, Leah; Cognet, Isabelle

    2006-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a surv......Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described...... as a survival and differentiation factor for neurons and oligodendrocytes, significantly ameliorates the clinical course of a mouse model of multiple sclerosis. In the acute phase of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein peptide 35-55, treatment with CNTF did...... not change the peripheral immune response but did reduce the number of perivascular infiltrates and T cells and the level of diffuse microglial activation in spinal cord. Blood brain barrier permeability was significantly reduced in CNTF-treated animals. Beneficial effects of CNTF did not persist after...

  1. Diazepam Inhibits Proliferation of Lymph Node Cells Isolated from Rats with Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Fernández Hurst, Nicolás; Bibolini, Mario J; Roth, German A

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease with similarities to human multiple sclerosis involving peripheral activation of autoreactive T cells which infiltrate the central nervous system and react to self antigens leading to damage. In previous studies, we have demonstrated that treatment with diazepam decreases the incidence and histological signs associated with the disease and diminishes immunological responses. The aim of the present work was to evaluate direct effects of diazepam on isolated T cells involved in immune responses during the development of EAE. Animals were sensitized with whole myelin to induce EAE and sacrificed during the acute phase of the disease. In mononuclear cells isolated from popliteal lymph nodes, cell viability, apoptosis induction, proliferation and cytokine production were evaluated. Diazepam did not have a toxic or proapoptotic effect on the cells, at least up to the concentration of 25 μM, but proliferation, CD8+ T-cell activation and proinflammatory cytokine production were dose-dependently decreased. Diazepam has a direct inhibitory effect on the proliferation and activation of T lymphocytes isolated from the main lymphoid organ involved in disease onset and this could be one of the mechanisms that contribute to the beneficial effect previously observed with diazepam in vivo during EAE development. © 2015 S. Karger AG, Basel.

  2. Exogenous schwann cells migrate, remyelinate and promote clinical recovery in experimental auto-immune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Violetta Zujovic

    Full Text Available Schwann cell (SC transplantation is currently being discussed as a strategy that may promote functional recovery in patients with multiple sclerosis (MS and other inflammatory demyelinating diseases of the central nervous system (CNS. However this assumes they will not only survive but also remyelinate demyelinated axons in the chronically inflamed CNS. To address this question we investigated the fate of transplanted SCs in myelin oligodendrocyte glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE in the Dark Agouti rat; an animal model that reproduces the complex inflammatory demyelinating immunopathology of MS. We now report that SCs expressing green fluorescent protein (GFP-SCs allografted after disease onset not only survive but also migrate to remyelinate lesions in the inflamed CNS. GFP-SCs were detected more frequently in the parenchyma after direct injection into the spinal cord, than via intra-thecal delivery into the cerebrospinal fluid. In both cases the transplanted cells intermingled with astrocytes in demyelinated lesions, aligned with axons and by twenty one days post transplantation had formed Pzero protein immunoreactive internodes. Strikingly, GFP-SCs transplantation was associated with marked decrease in clinical disease severity in terms of mortality; all GFP-SCs transplanted animals survived whilst 80% of controls died within 40 days of disease.

  3. Exogenous Schwann Cells Migrate, Remyelinate and Promote Clinical Recovery in Experimental Auto-Immune Encephalomyelitis

    Science.gov (United States)

    Zujovic, Violetta; Doucerain, Cédric; Hidalgo, Antoine; Bachelin, Corinne; Lachapelle, François; Weissert, Robert; Stadelmann, Christine; Linington, Chris; Evercooren, Anne Baron-Van

    2012-01-01

    Schwann cell (SC) transplantation is currently being discussed as a strategy that may promote functional recovery in patients with multiple sclerosis (MS) and other inflammatory demyelinating diseases of the central nervous system (CNS). However this assumes they will not only survive but also remyelinate demyelinated axons in the chronically inflamed CNS. To address this question we investigated the fate of transplanted SCs in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in the Dark Agouti rat; an animal model that reproduces the complex inflammatory demyelinating immunopathology of MS. We now report that SCs expressing green fluorescent protein (GFP-SCs) allografted after disease onset not only survive but also migrate to remyelinate lesions in the inflamed CNS. GFP-SCs were detected more frequently in the parenchyma after direct injection into the spinal cord, than via intra-thecal delivery into the cerebrospinal fluid. In both cases the transplanted cells intermingled with astrocytes in demyelinated lesions, aligned with axons and by twenty one days post transplantation had formed Pzero protein immunoreactive internodes. Strikingly, GFP-SCs transplantation was associated with marked decrease in clinical disease severity in terms of mortality; all GFP-SCs transplanted animals survived whilst 80% of controls died within 40 days of disease. PMID:22984406

  4. Lingo-1 inhibited by RNA interference promotes functional recovery of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Wang, Chun-Juan; Qu, Chuan-Qiang; Zhang, Jie; Fu, Pei-Cai; Guo, Shou-Gang; Tang, Rong-Hua

    2014-12-01

    Lingo-1 is a negative regulator of myelination. Repairment of demyelinating diseases, such as multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE), requires activation of the myelination program. In this study, we observed the effect of RNA interference on Lingo-1 expression, and the impact of Lingo-1 suppression on functional recovery and myelination/remyelination in EAE mice. Lentiviral vectors encoding Lingo-1 short hairpin RNA (LV/Lingo-1-shRNA) were constructed to inhibit Lingo-1 expression. LV/Lingo-1-shRNA of different titers were transferred into myelin oligodendrocyte glycoprotein-induced EAE mice by intracerebroventricular (ICV) injection. Meanwhile, lentiviral vectors carrying nonsense gene sequence (LVCON053) were used as negative control. The Lingo-1 expression was detected and locomotor function was evaluated at different time points (on days 1,3,7,14,21, and 30 after ICV injection). Myelination was investigated by luxol fast blue (LFB) staining.LV/Lingo-1-shRNA administration via ICV injection could efficiently down-regulate the Lingo-1 mRNA and protein expression in EAE mice on days 7,14,21, and 30 (P RNA interference is, therefore, a promising approach for the treatment of demyelinating diseases, such as MS/EAE. © 2014 Wiley Periodicals, Inc.

  5. [Features of pathological changes in the non-myelin sheath of rats with experimental autoimmune encephalomyelitis].

    Science.gov (United States)

    Zhang, Jin-Feng; Huang, Rong; Yang, Yu-Jia; Xu, Jun; Jin, Shi-Jie

    2012-04-01

    To study the pathological changes in the non-myelin sheath by observing histological damages to the neurofilament protein and apoptosis of neurons in rats with experimental autoimmune encephalomyelitis (EAE). Forty-eight Wistar rats were randomly divided into two groups: control and EAE (24 rats in each group). Behavioral changes were observed. Inflammation reactions and demyelination were observed by hematoxylin eosin staining and LOYEZ staining.The level of neurofilament was detected by immunohistochemistry. Apoptosis of the neuron in the spinal cord was detected by TUNEL. Behavioral and histological results confirmed that the model of EAE rats was prepared successfully. In the EAE group, typical morphological features of axonal damage (sparsed axonal density, axonal distortion, axonal transection and even axonal disappearance) were found from the seventh day after immunization and the morphological changes were the most obvious on the fourteenth day. Neurofilament density in the EAE group was significantly lower than in the control group (P<0.01) at 7, 14 and 21 days after immunization. The neuronal apoptosis index in the EAE group at 7, 14 and 21 days after immunization was significantly higher than in the control group (P<0.01). In addition to inflammatory demyelination, axonal damage and neuronal apoptosis can be observed in the early stage of EAE. Pathological changes may be associated with neurological dysfunction.

  6. Protective influences on experimental autoimmune encephalomyelitis by MHC class I and class II alleles

    DEFF Research Database (Denmark)

    Mustafa, M; Vingsbo, C; Olsson, T

    1994-01-01

    Experimental autoimmune encephalomyelitis (EAE) is influenced by polymorphism of the MHC. We have previously found that Lewis rats with certain MHC haplotypes are susceptible to disease induced with the myelin basic protein (MBP) peptide 63-88, whereas Lewis rats with other MHC haplotypes...... are resistant. Interestingly, rats with the MHC u haplotype develop an immune response to the MBP 63-88, but do not get EAE. In this study we have used intra-MHC recombinant rat strains to compare the influences of the MHC u with the a haplotype. We discovered the following: 1) The class II region of the MHC...... a haplotype permits EAE and a Th1 type of immune response as measured by IFN-gamma production after in vitro challenge of in vivo-primed T cells with MBP 63-88. 2) The class II region of the u haplotype is associated with a disease-protective immune response characterized by production of not only IFN...

  7. Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models.

    Science.gov (United States)

    Kaneko, Shinjiro; Wang, Jing; Kaneko, Marie; Yiu, Glenn; Hurrell, Joanna M; Chitnis, Tanuja; Khoury, Samia J; He, Zhigang

    2006-09-20

    Axonal damage is a major morphological alteration in the CNS of patients with multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the underlying mechanism for the axonal damage associated with MS/EAE and its contribution to the clinical symptoms remain unclear. The expression of a fusion protein, named "Wallerian degeneration slow" (Wld(S)), can protect axons from degeneration, likely through a beta-nicotinamide adenine dinucleotide (NAD)-dependent mechanism. In this study, we find that, when induced with EAE, Wld(S) mice showed a modest attenuation of behavioral deficits and axon loss, suggesting that EAE-associated axon damage may occur by a mechanism similar to Wallerian degeneration. Furthermore, nicotinamide (NAm), an NAD biosynthesis precursor, profoundly prevents the degeneration of demyelinated axons and improves the behavioral deficits in EAE models. Finally, we demonstrate that delayed NAm treatment is also beneficial to EAE models, pointing to the therapeutic potential of NAm as a protective agent for EAE and perhaps MS patients.

  8. A study of experimental autoimmune encephalomyelitis in dogs as a disease model for canine necrotizing encephalitis

    Science.gov (United States)

    Moon, Jong-Hyun; Jung, Hae-Won; Lee, Hee-Chun; Jeon, Joon-Hyeok; Kim, Na-Hyun; Sur, Jung-Hyang; Ha, Jeongim

    2015-01-01

    In the present study, the use of dogs with experimental autoimmune encephalomyelitis (EAE) as a disease model for necrotizing encephalitis (NE) was assessed. Twelve healthy dogs were included in this study. Canine forebrain tissues (8 g), including white and grey matter, were homogenized with 4 mL of phosphate-buffered saline for 5 min in an ice bath. The suspension was emulsified with the same volume of Freund's complete adjuvant containing 1 mg/mL of killed Mycobacterium tuberculosis H37Ra. Under sedation, each dog was injected subcutaneously with canine brain homogenate at four sites: two in the inguinal and two in the axillary regions. A second injection (booster) was administered to all the dogs using the same procedure 7 days after the first injection. Clinical assessment, magnetic resonance imaging, cerebrospinal fluid analyses, necropsies, and histopathological and immunohistochemical examinations were performed for the dogs with EAE. Out of the 12 animals, seven (58%) developed clinically manifest EAE at various times after immunization. Characteristics of canine EAE models were very similar to canine NE, suggesting that canine EAE can be a disease model for NE in dogs. PMID:25269720

  9. Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Wijmenga Sybren S

    2011-06-01

    Full Text Available Abstract Background Analysis of Cerebrospinal Fluid (CSF samples holds great promise to diagnose neurological pathologies and gain insight into the molecular background of these pathologies. Proteomics and metabolomics methods provide invaluable information on the biomolecular content of CSF and thereby on the possible status of the central nervous system, including neurological pathologies. The combined information provides a more complete description of CSF content. Extracting the full combined information requires a combined analysis of different datasets i.e. fusion of the data. Results A novel fusion method is presented and applied to proteomics and metabolomics data from a pre-clinical model of multiple sclerosis: an Experimental Autoimmune Encephalomyelitis (EAE model in rats. The method follows a mid-level fusion architecture. The relevant information is extracted per platform using extended canonical variates analysis. The results are subsequently merged in order to be analyzed jointly. We find that the combined proteome and metabolome data allow for the efficient and reliable discrimination between healthy, peripherally inflamed rats, and rats at the onset of the EAE. The predicted accuracy reaches 89% on a test set. The important variables (metabolites and proteins in this model are known to be linked to EAE and/or multiple sclerosis. Conclusions Fusion of proteomics and metabolomics data is possible. The main issues of high-dimensionality and missing values are overcome. The outcome leads to higher accuracy in prediction and more exhaustive description of the disease profile. The biological interpretation of the involved variables validates our fusion approach.

  10. Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler's virus-induced demyelinating disease.

    Science.gov (United States)

    McCarthy, Derrick P; Richards, Maureen H; Miller, Stephen D

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) and Theiler's Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD) are two clinically relevant murine models of multiple sclerosis (MS). Like MS, both are characterized by mononuclear cell infiltration into the CNS and demyelination. EAE is induced by either the administration of myelin protein or peptide in adjuvant or by the adoptive transfer of encephalitogenic T cell blasts into naïve recipients. The relative merits of each of these protocols are compared. Depending on the type of question being asked, different mouse strains and peptides are used. Different disease courses are observed with different strains and different peptides in active EAE. These variations are also addressed. Additionally, issues relevant to clinical grading of EAE in mice are discussed. In addition to EAE induction, useful references for other disease indicators such as DTH, in vitro proliferation, and immunohistochemistry are provided. TMEV-IDD is a useful model for understanding the possible viral etiology of MS. This section provides detailed information on the preparation of viral stocks and subsequent intracerebral infection of mice. Additionally, virus plaque assay and clinical disease assessment are discussed. Recently, recombinant TMEV strains have been created for the study of molecular mimicry which incorporate various 30 amino acid myelin epitopes within the leader region of TMEV.

  11. Modulation of fibronectin expression in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    De-Carvalho M.C.A.

    1999-01-01

    Full Text Available Fibronectin (FN, a large family of plasma and extracellular matrix (ECM glycoproteins, plays an important role in leukocyte migration. In normal central nervous system (CNS, a fine and delicate mesh of FN is virtually restricted to the basal membrane of cerebral blood vessels and to the glial limitans externa. Experimental autoimmune encephalomyelitis (EAE, an inflammatory CNS demyelinating disease, was induced in Lewis rats with a spinal cord homogenate. During the preclinical phase and the onset of the disease, marked immunolabelling was observed on the endothelial luminal surface and basal lamina of spinal cord and brainstem microvasculature. In the paralytic phase, a discrete labelling was evident in blood vessels of spinal cord and brainstem associated or not with an inflammatory infiltrate. Conversely, intense immunolabelling was present in cerebral and cerebellar blood vessels, which were still free from inflammatory cuffs. Shortly after clinical recovery minimal labelling was observed in a few blood vessels. Brainstem and spinal cord returned to normal, but numerous inflammatory foci and demyelination were still evident near the ventricle walls, in the cerebral cortex and in the cerebellum. Intense expression of FN in brain vessels ascending from the spinal cord towards the encephalon preceded the appearance of inflammatory cells but faded away after the establishment of the inflammatory cuff. These results indicate an important role for FN in the pathogenesis of CNS inflammatory demyelinating events occurring during EAE.

  12. Combined treatment with ribavirin and tiazofurin attenuates response of glial cells in experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Nedeljković Nadežda

    2012-01-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis (MS, a human inflammatory and demyelinating disease. Microglia and astrocytes are glial cells of the central nervous system (CNS that play a dual role in MS and EAE pathology. The aim of this study was to examine the effect of combined treatment with two nucleoside analogues, ribavirin and tiazofurin, on microglia and astrocytes in actively induced EAE. Therapeutic treatment with a combination of these two nucleoside analogues reduced disease severity, mononuclear cell infiltration and demyelination. The obtained histological results indicate that ribavirin and tiazofurin changed activated microglia into an inactive type and attenuated astrocyte reactivity at the end of the treatment period. Since reduction of reactive microgliosis and astrogliosis correlated with EAE suppression, the present study also suggests that the obtained beneficial effect of ribavirin and tiazofurin could be a consequence of their action inside as well as outside the CNS. [Acknowledgments. This work was supported by the Serbian Ministry of Education and Science, Project No: III41014.

  13. Treatment with Anti-EGF Ab Ameliorates Experimental Autoimmune Encephalomyelitis via Induction of Neurogenesis and Oligodendrogenesis

    Directory of Open Access Journals (Sweden)

    Yifat Amir-Levy

    2014-01-01

    Full Text Available Background. The neural stem cells (NSCs migrate to the damaged sites in multiple sclerosis (MS and in experimental autoimmune encephalomyelitis (EAE. However, the differentiation into neurons or oligodendrocytes is blocked. Epidermal growth factor (EGF stimulates NSC proliferation and mobilization to demyelinated lesions but also induces astrogenesis and glial scar. Objective. To examine the clinical and histopathological effects of EGF neutralization on EAE. Methods. EAE-induced SJL mice were intravenously treated with either anti-EGF neutralizing antibody (Ab or isotype control or PBS. On day 9 after immunization, 3 mice of each group were daily treated for 9 days with BrdU and then sacrificed for immunohistochemical analysis. Results. Treatment with anti-EGF Ab significantly ameliorated EAE symptoms during the second relapse. Anti-EGF Ab induced a shift from BrdU+GFAP+ NSCs to BrdU+DCX+ neuroblasts in the subventricular zone (SVZ, increased BrdU+NeuN+ neurons in the granular cell layer of the dentate gyrus, and increased BrdU+O4+ oligodendrocytes in the SVZ. There was no change in the inflammatory infiltrates in response to anti-EGF Ab. Conclusions. Therapy with anti-EGF Ab ameliorates EAE via induction of neurogenesis and oligodendrogenesis. No immunosuppressive effect was found. Further investigation is needed to support these notions of beneficial effect of anti-EGF Ab in MS.

  14. Treatment with Vitamin D/MOG Association Suppresses Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Fernanda Chiuso-Minicucci

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an animal model to study multiple sclerosis (MS. Considering the tolerogenic effects of active vitamin D, we evaluated the therapeutic effect of myelin oligodendrocyte glycoprotein (MOG associated with active vitamin D in EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG emulsified with Complete Freund's Adjuvant plus Mycobacterium tuberculosis. Animals also received two intraperitoneal doses of Bordetella pertussis toxin. One day after immunization, mice were treated with 0,1 μg of 1α,25-dihydroxyvitamin D3 (1,25(OH2D3 every other day during 15 days (on days 1, 3, 5, 7, 9, 11, 13 and 15. MOG (150 μg was co-administered on days 3 and 11. The administration of 1,25(OH2D3 or MOG determined significant reduction in EAE incidence and in clinical scores. When MOG was associated with 1,25(OH2D3 the animals did not develop EAE. Spleen and central nervous system (CNS cell cultures from this group produced less IL-6 and IL-17 upon stimulation with MOG in comparison to the EAE control group. In addition, this treatment inhibited dendritic cells maturation in the spleen and reduced inflammatory infiltration in the CNS. The association of MOG with 1,25(OH2D3 was able to control EAE development.

  15. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    Science.gov (United States)

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  16. Serum Neuroinflammatory Disease-Induced Central Nervous System Proteins Predict Clinical Onset of Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Itay Raphael

    2017-07-01

    Full Text Available There is an urgent need in multiple sclerosis (MS patients to develop biomarkers and laboratory tests to improve early diagnosis, predict clinical relapses, and optimize treatment responses. In healthy individuals, the transport of proteins across the blood–brain barrier (BBB is tightly regulated, whereas, in MS, central nervous system (CNS inflammation results in damage to neuronal tissues, disruption of BBB integrity, and potential release of neuroinflammatory disease-induced CNS proteins (NDICPs into CSF and serum. Therefore, changes in serum NDICP abundance could serve as biomarkers of MS. Here, we sought to determine if changes in serum NDICPs are detectable prior to clinical onset of experimental autoimmune encephalomyelitis (EAE and, therefore, enable prediction of disease onset. Importantly, we show in longitudinal serum specimens from individual mice with EAE that pre-onset expression waves of synapsin-2, glutamine synthetase, enolase-2, and synaptotagmin-1 enable the prediction of clinical disease with high sensitivity and specificity. Moreover, we observed differences in serum NDICPs between active and passive immunization in EAE, suggesting hitherto not appreciated differences for disease induction mechanisms. Our studies provide the first evidence for enabling the prediction of clinical disease using serum NDICPs. The results provide proof-of-concept for the development of high-confidence serum NDICP expression waves and protein biomarker candidates for MS.

  17. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    Science.gov (United States)

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  18. Leukemia inhibitory factor protects axons in experimental autoimmune encephalomyelitis via an oligodendrocyte-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Melissa M Gresle

    Full Text Available Leukemia inhibitory factor (LIF and Ciliary Neurotrophic factor (CNTF are members of the interleukin-6 family of cytokines, defined by use of the gp130 molecule as an obligate receptor. In the murine experimental autoimmune encephalomyelitis (EAE model, antagonism of LIF and genetic deletion of CNTF worsen disease. The potential mechanism of action of these cytokines in EAE is complex, as gp130 is expressed by all neural cells, and could involve immuno-modulation, reduction of oligodendrocyte injury, neuronal protection, or a combination of these actions. In this study we aim to investigate whether the beneficial effects of CNTF/LIF signalling in EAE are associated with axonal protection; and whether this requires signalling through oligodendrocytes. We induced MOG₃₅₋₅₅ EAE in CNTF, LIF and double knockout mice. On a CNTF null background, LIF knockout was associated with increased EAE severity (EAE grade 2.1±0.14 vs 2.6±0.19; P<0.05. These mice also showed increased axonal damage relative to LIF heterozygous mice, as indicated by decreased optic nerve parallel diffusivity on MRI (1540±207 µm²-/s vs 1310±175 µm²-/s; P<0.05, and optic nerve (-12.5% and spinal cord (-16% axon densities; and increased serum neurofilament-H levels (2.5 fold increase. No differences in inflammatory cell numbers or peripheral auto-immune T-cell priming were evident. Oligodendrocyte-targeted gp130 knockout mice showed that disruption of CNTF/LIF signalling in these cells has no effect on acute EAE severity. These studies demonstrate that endogenous CNTF and LIF act centrally to protect axons from acute inflammatory destruction via an oligodendrocyte-independent mechanism.

  19. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    Directory of Open Access Journals (Sweden)

    Yixin He

    Full Text Available Multiple sclerosis (MS is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI, a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  20. Correlation of gut microbiota composition with resistance to experimental autoimmune encephalomyelitis in rats

    Directory of Open Access Journals (Sweden)

    Suzana Stanisavljevic

    2016-12-01

    Full Text Available Multiple sclerosis is a chronic inflammatory disease of the central nervous system (CNS. It is widely accepted that autoimmune response against the antigens of the CNS is the essential pathogenic force in the disease. It has recently become increasingly appreciated that activated encephalitogenic cells tend to migrate towards gut associated lymphoid tissues (GALT and that interrupted balance between regulatory and inflammatory immunity within the GALT might have decisive role in the initiation and propagation of the CNS autoimmunity. Gut microbiota composition and function has the major impact on the balance in the GALT. Thus, our aim was to perform analyses of gut microbiota in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis. Albino Oxford (AO rats that are highly resistant to EAE induction and Dark Agouti (DA rats that develop EAE after mild immunization were compared for gut microbiota composition in different phases after EAE induction. Microbial analyses of the genus Lactobacillus and related lactic acid bacteria showed higher diversity of Lactobacillus spp. in EAE-resistant AO rats, while some members of Firmicutes and Proteobacteria (Undibacterium oligocarboniphilum were detected only in faeces of DA rats at the peak of the disease (between 13 and 16 days after induction. Interestingly, Turicibacter sp. that was found exclusively in non-immunized AO, but not in DA rats in our previous study was detected in DA rats that remained healthy 16 days after induction. Similar observation was obtained for the members of Lachnospiraceae. As dominant presence of the members of Lachnospiraceae family in gut microbial community has been linked with mild symptoms of various diseases, it is tempting to assume that Turicibacter sp. and Lachnospiraceae contribute to the prevention of EAE development and the alleviation of the disease symptoms. Further, production of a typical regulatory cytokine interleukin-10 was

  1. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Francisco J Carrillo-Salinas

    Full Text Available Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS. Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE was induced by myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅ immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the

  2. MS14, a Marine Herbal Medicine, an Immunosuppressive Drug in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Ebrahimi Kalan, Abbas; Soleimani Rad, Jafar; Kafami, Laya; Mohamadnezhad, Daryoush; Khaki, Amir Afshin; Mohammadi Roushandeh, Amaneh

    2014-07-01

    Cytokines are secreted signaling proteins which play essential roles in immune responses during experimental autoimmune encephalomyelitis (EAE), a demyelinating model that mimics many features of multiple sclerosis (MS). Interleukin 6 (IL-6) is a multifunctional cytokine produced by different cells, mediating inflammatory reactions and immune-mediated processes. Several studies have described immunosuppressive potentials of several herbal medicines. MS14 as an Iranian marine herbal medicine has anti-inflammatory and immunomodulatory activities. The present study investigated the immunosuppressive potential of MS14 as an herbal drug as well as the IL-6 level in EAE model. We hope it will be a new approach for neurologic diseases and autoimmune originated diseases therapy. The present experimental study was a collaboration between Department of Anatomical Sciences of Tabriz University of Medical Sciences and Shefa Neuroscience Research Center of Tehran. We used 30 C57BL/6 mice. The animals were immunized with myelin oligodendrocyte glycoprotein (MOG) to induce EAE and treated with MS14-containing (30%) diets. Subjects were selected by simple random sampling and then they were randomly allocated to two groups. EAE symptoms were assessed using the standard 10-point EAE scoring system from the seventh to the 35th day after immunization. Afterwards, the spleen was removed and its cells were cultured with or without MOG 35-55; then, the IL-6 level was analyzed by ELISA. In addition, histopathological studies were carried out for demyelination lesion evaluation in the spinal cord. MS14 significantly improved clinical symptoms of EAE compared with the control (P < 0.05). It also suppressed proliferative responses of T cells and decreased IL-6 expression (16.93 ± 2.7 vs. 21.4 ± 3.33) (P < 0.05). Our results strongly suggested that IL-6 as a potential molecule could have a role in neuroimmunology and neuroinflammation, which is in congruent with previous studies. Therefore

  3. Resistance to experimental autoimmune encephalomyelitis development in Lewis rats from a conventional animal facility

    Directory of Open Access Journals (Sweden)

    Sofia Fernanda Gonçalves Zorzella

    2007-12-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an inflammatory disease of the brain and spinal cord that is mediated by CD4+ T lymphocytes specific to myelin components. In this study we compared development of EAE in Lewis rats from two colonies, one kept in pathogen-free conditions (CEMIB colony and the other (Botucatu colony kept in a conventional animal facility. Female Lewis rats were immunized with 100 µl of an emulsion containing 50 µg of myelin, associated with incomplete Freund's adjuvant plus Mycobacterium butyricum. Animals were daily evaluated for clinical score and weight. CEMIB colony presented high EAE incidence with clinical scores that varied from three to four along with significant weight losses. A variable disease incidence was observed in the Botucatu colony with clinical scores not higher than one and no weight loss. Immunological and histopathological characteristics were also compared after 20 days of immunization. Significant amounts of IFN-gamma, TNF-alpha and IL-10 were induced by myelin in cultures from CEMIB animals but not from the Botucatu colony. Significantly higher levels of anti-myelin IgG1 were detected in the CEMIB colony. Clear histopathological differences were also found. Cervical spinal cord sections from CEMIB animals showed typical perivascular inflammatory foci whereas samples from the Botucatu colony showed a scanty inflammatory infiltration. Helminths were found in animals from Botucatu colony but not, as expected, in the CEMIB pathogen-free animals. As the animals maintained in a conventional animal facility developed a very discrete clinical, and histopathological EAE in comparison to the rats kept in pathogen-free conditions, we believe that environmental factors such as intestinal parasites could underlie this resistance to EAE development, supporting the applicability of the hygiene hypothesis to EAE.

  4. Mechanisms of action of cannabidiol in adoptively transferred experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    González-García, Coral; Torres, Irene Moreno; García-Hernández, Ruth; Campos-Ruíz, Lucía; Esparragoza, Luis Rodríguez; Coronado, María José; Grande, Aranzazu García; García-Merino, Antonio; Sánchez López, Antonio J

    2017-12-01

    Cannabidiol (CBD) is one of the most important compounds in Cannabis sativa, lacks psychotropic effects, and possesses a high number of therapeutic properties including the amelioration of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyse the relative efficacy of CBD in adoptively transferred EAE (at-EAE), a model that allows better delineation of the effector phase of EAE. Splenocytes and lymph nodes from mice with actively induced EAE were cultured in the presence of MOG 35-55 and IL-12 and inoculated intraperitoneally in recipient female C57BL/6J mice. The effects of CBD were evaluated using clinical scores and magnetic resonance imaging (MRI). In the central nervous system, the extent of cell infiltration, axonal damage, demyelination, microglial activation and cannabinoid receptors expression was assessed by immunohistochemistry. Lymph cell viability, apoptosis, oxidative stress and IL-6 production were measured in vitro. Preventive intraperitoneal treatment with CBD ameliorated the clinical signs of at-EAE, and this improvement was accompanied by a reduction of the apparent diffusion coefficient in the subiculum area of the brain. Inflammatory infiltration, axonal damage, and demyelination were reduced, and cannabinoid receptor expression was modulated. Incubation with CBD decreased encephalitogenic cell viability, increasing early apoptosis and reactive oxygen species (ROS) and decreasing IL-6 production. The reduction in viability was not mediated by CB 1 , CB 2 or GPR55 receptors. CBD markedly improved the clinical signs of at-EAE and reduced infiltration, demyelination and axonal damage. The CBD-mediated decrease in the viability of encephalitogenic cells involves ROS generation, apoptosis and a decrease in IL-6 production and may contribute to the therapeutic effect of this compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of ether glycerol lipids on interleukin-1β release and experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Boomkamp, Stephanie D; Byun, Hoe-Sup; Ubhi, Satvir; Jiang, Hui-Rong; Pyne, Susan; Bittman, Robert; Pyne, Nigel J

    2016-01-01

    We have assessed the effect of two ether glycerol lipids, 77-6 ((2S, 3R)-4-(Tetradecyloxy)-2-amino-1,3-butanediol) and 56-5 ((S)-2-Amino-3-O-hexadecyl-1-propanol), which are substrates for sphingosine kinases, on inflammatory responses. Treatment of differentiated U937 macrophage-like cells with 77-6 but not 56-5 enhanced IL-1β release; either alone or in the presence of LPS. The stimulatory effect of sphingosine or 77-6 on LPS-stimulated IL-1β release was reduced by pretreatment of cells with the caspase-1 inhibitor, Ac-YVAD-CHO, thereby indicating a role for the inflammasome. The enhancement of LPS-stimulated IL-1β release in response to sphingosine, but not 77-6, was reduced by pretreatment of cells with the cathepsin B inhibitor, CA074Me, indicating a role for lysosomal destabilization in the effect of sphingosine. Administration of 56-5 to mice increased disease progression in an experimental autoimmune encephalomyelitis model and this was associated with a considerable increase in the infiltration of CD4(+) T-cells, CD11b(+) monocytes and F4/80(+) macrophages in the spinal cord. 56-5 and 77-6 were without effect on the degradation of myc-tagged sphingosine 1-phosphate 1 receptor in CCL39 cells. Therefore, the effect of 56-5 on EAE disease progression is likely to be independent of the inflammasome or the sphingosine 1-phosphate 1 receptor. However, 56-5 is chemically similar to platelet activating factor and the exacerbation of EAE disease progression might be linked to platelet activating factor receptor signaling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Cerebral biochemical pathways in experimental autoimmune encephalomyelitis and adjuvant arthritis: a comparative metabolomic study.

    Directory of Open Access Journals (Sweden)

    Norbert W Lutz

    Full Text Available Many diseases, including brain disorders, are associated with perturbations of tissue metabolism. However, an often overlooked issue is the impact that inflammations outside the brain may have on brain metabolism. Our main goal was to study similarities and differences between brain metabolite profiles of animals suffering from experimental autoimmune encephalomyelitis (EAE and adjuvant arthritis (AA in Lewis rat models. Our principal objective was the determination of molecular protagonists involved in the metabolism underlying these diseases. EAE was induced by intraplantar injection of complete Freund's adjuvant (CFA and spinal-cord homogenate (SC-H, whereas AA was induced by CFA only. Naive rats served as controls (n = 9 for each group. Two weeks after inoculation, animals were sacrificed, and brains were removed and processed for metabolomic analysis by NMR spectroscopy or for immunohistochemistry. Interestingly, both inflammatory diseases caused similar, though not identical, changes in metabolites involved in regulation of brain cell size and membrane production: among the osmolytes, taurine and the neuronal marker, N-acetylaspartate, were decreased, and the astrocyte marker, myo-inositol, slightly increased in both inoculated groups compared with controls. Also ethanolamine-containing phospholipids, sources of inflammatory agents, and several glycolytic metabolites were increased in both inoculated groups. By contrast, the amino acids, aspartate and isoleucine, were less concentrated in CFA/SC-H and control vs. CFA rats. Our results suggest that inflammatory brain metabolite profiles may indicate the existence of either cerebral (EAE or extra-cerebral (AA inflammation. These inflammatory processes may act through distinct pathways that converge toward similar brain metabolic profiles. Our findings open new avenues for future studies aimed at demonstrating whether brain metabolic effects provoked by AA are pain/stress-mediated and

  7. Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice.

    Science.gov (United States)

    Wang, Dong; Li, Shi-Ping; Fu, Jin-Sheng; Zhang, Sheng; Bai, Lin; Guo, Li

    2016-11-01

    The mouse autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS), is primarily characterized as dysfunction of the blood-brain barrier (BBB). Resveratrol exhibits anti-inflammatory, antioxidative, and neuroprotective activities. We investigated the beneficial effects of resveratrol in protecting the integrity of the BBB in EAE mice and observed improved clinical outcome in the EAE mice after resveratrol treatment. Evans blue (EB) extravasation was used to detect the disruption of BBB. Western blot were used to detected the tight junction proteins and adhesion molecules zonula occludens-1 (ZO-1), occludin, ICAM-1, and VCAM-1. Inflammatory factors inducible nitric oxide synthase (iNOS), IL-1β, and arginase 1 were evaluated by quantitative RT-PCR (qPCR) and IL-10 by ELISA. NADPH oxidase (NOX) levels were evaluated by qPCR, and its activity was analyzed by lucigenin-derived chemiluminescence. Resveratrol at doses of 25 and 50 mg/kg produced a dose-dependent decrease in EAE paralysis and EB leakage, ameliorated EAE-induced loss of tight junction proteins ZO-1, occludin, and claudin-5, as well as repressed the EAE-induced increase in adhesion proteins ICAM-1 and VCAM-1. In addition, resveratrol suppressed the EAE-induced overexpression of proinflammatory transcripts iNOS and IL-1β and upregulated the expression of anti-inflammatory transcripts arginase 1 and IL-10 cytokine in the brain. Furthermore, resveratrol downregulated the overexpressed NOX2 and NOX4 in the brain and suppressed NADPH activity. Resveratrol ameliorates the clinical severity of MS through maintaining the BBB integrity in EAE mice. Copyright © 2016 the American Physiological Society.

  8. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Andreas Billich

    Full Text Available BACKGROUND: Sphingosine-1-phosphate (S1P regulates the egress of T cells from lymphoid organs; levels of S1P in the tissues are controlled by S1P lyase (Sgpl1. Hence, Sgpl1 offers a target to block T cell-dependent inflammatory processes. However, the involvement of Sgpl1 in models of disease has not been fully elucidated yet, since Sgpl1 KO mice have a short life-span. METHODOLOGY: We generated inducible Sgpl1 KO mice featuring partial reduction of Sgpl1 activity and analyzed them with respect to sphingolipid levels, T-cell distribution, and response in models of inflammation. PRINCIPAL FINDINGS: The partially Sgpl1 deficient mice are viable but feature profound reduction of peripheral T cells, similar to the constitutive KO mice. While thymic T cell development in these mice appears normal, mature T cells are retained in thymus and lymph nodes, leading to reduced T cell numbers in spleen and blood, with a skewing towards increased proportions of memory T cells and T regulatory cells. The therapeutic relevance of Sgpl1 is demonstrated by the fact that the inducible KO mice are protected in experimental autoimmune encephalomyelitis (EAE. T cell immigration into the CNS was found to be profoundly reduced. Since S1P levels in the brain of the animals are unchanged, we conclude that protection in EAE is due to the peripheral effect on T cells, leading to reduced CNS immigration, rather than on local effects in the CNS. SIGNIFICANCE: The data suggest Sgpl1 as a novel therapeutic target for the treatment of multiple sclerosis.

  9. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  10. Immunomodulation of Experimental Autoimmune Encephalomyelitis by Oral Administration of Copolymer 1

    Science.gov (United States)

    Teitelbaum, Dvora; Arnon, Ruth; Sela, Michael

    1999-03-01

    The activity of copolymer 1 (Cop 1, Copax-one, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β , but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.

  11. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  12. Raloxifene suppresses experimental autoimmune encephalomyelitis and NF-κB-dependent CCL20 expression in reactive astrocytes.

    Directory of Open Access Journals (Sweden)

    Rui Li

    Full Text Available Recent clinical data have led to the consideration of sexual steroids as new potential therapeutic tools for multiple sclerosis. Selective estrogen receptor modulators can exhibit neuroprotective effects like estrogen, with fewer systemic estrogen side effects than estrogen, offering a more promising therapeutic modality for multiple sclerosis. The important role of astrocytes in a proinflammatory effect mediated by CCL20 signaling on inflammatory cells has been documented. Their potential contribution to selective estrogen receptor modulator-mediated protection is still unknown. Using a mouse model of chronic neuroinflammation, we report that raloxifene, a selective estrogen receptor modulator, alleviated experimental autoimmune encephalomyelitis-an animal model of multiple sclerosis-and decreased astrocytic production of CCL20. Enzyme-linked immunosorbent assay, immunohistochemistry imaging and transwell migration assays revealed that reactive astrocytes express CCL20, which promotes Th17 cell migration. In cultured rodent astrocytes, raloxifene inhibited IL-1β-induced CCL20 expression and chemotaxis ability for Th17 migration, whereas the estrogen receptor antagonist ICI 182,780 blocked this effect. Western blotting further indicated that raloxifene suppresses IL-1β-induced NF-κB activation (phosphorylation of p65 and translocation but does not affect phosphorylation of IκB. In conclusion, these data demonstrate that raloxifene provides robust neuroprotection against experimental autoimmune encephalomyelitis, partially via an inhibitory action on CCL20 expression and NF-κB pathways in reactive astrocytes. Our results contribute to a better understanding of the critical roles of raloxifene in treating experimental autoimmune encephalomyelitis and uncover reactive astrocytes as a new target for the inhibitory action of estrogen receptors on chemokine CCL20 expression.

  13. Genetic analysis of inflammation, cytokine mRNA expression and disease course of relapsing experimental autoimmune encephalomyelitis in DA rats

    DEFF Research Database (Denmark)

    Lorentzen, J C; Andersson, M; Issazadeh-Navikas, Shohreh

    1997-01-01

    -MHC genes were decisive since a high incidence of SPR-EAE only occurred in rats with DA non-MHC genes. Analysis of cytokine mRNA expression and infiltrating cells in the spinal cords of congenic strains revealed that the av1 haplotype associated with a high CD4/CD8 ratio and expression of m......Genetic analysis of experimental autoimmune encephalomyelitis (EAE) can provide clues to the etiology of multiple sclerosis (MS). Identifying the susceptibility genes of DA rats may be particularly rewarding since they are prone to develop a remarkably MS-like chronic and demyelinating disease...

  14. Immunomodulatory effects of helminths and protozoa in multiple sclerosis and experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Hasseldam, Henrik; Hansen, C S; Johansen, F F

    2013-01-01

    one of the reasons for the disease-dampening effects, reported in numerous studies investigating parasite infections and autoimmunity. This review will focus on recent advances in the field of parasites as beneficial immunomodulators, in multiple sclerosis and the animal model experimental autoimmune...

  15. Role of Anti-Osteopontin Antibodies in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    Science.gov (United States)

    Clemente, Nausicaa; Comi, Cristoforo; Raineri, Davide; Cappellano, Giuseppe; Vecchio, Domizia; Orilieri, Elisabetta; Gigliotti, Casimiro L.; Boggio, Elena; Dianzani, Chiara; Sorosina, Melissa; Martinelli-Boneschi, Filippo; Caldano, Marzia; Bertolotto, Antonio; Ambrogio, Luca; Sblattero, Daniele; Cena, Tiziana; Leone, Maurizio; Dianzani, Umberto; Chiocchetti, Annalisa

    2017-01-01

    Osteopontin (OPN) is highly expressed in demyelinating lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). OPN is cleaved by thrombin into N- (OPN-N) and C-terminal (OPN-C) fragments with different ligands and functions. In EAE, administering recombinant OPN induces relapses, whereas treatment with anti-OPN antibodies ameliorates the disease. Anti-OPN autoantibodies (autoAbs) are spontaneously produced during EAE but have never been detected in MS. The aim of the study was to evaluate anti-OPN autoAbs in the serum of MS patients, correlate them with disease course, and recapitulate the human findings in EAE. We performed ELISA in the serum of 122 patients collected cross-sectionally, and 50 patients with relapsing–remitting (RR) disease collected at diagnosis and followed longitudinally for 10 years. In the cross-sectional patients, the autoAb levels were higher in the RR patients than in the primary- and secondary-progressive MS and healthy control groups, and they were highest in the initial stages of the disease. In the longitudinal group, the levels at diagnosis directly correlated with the number of relapses during the following 10 years. Moreover, in patients with active disease, who underwent disease-modifying treatments, autoAbs were higher than in untreated patients and were associated with low MS severity score. The autoAb displayed neutralizing activity and mainly recognized OPN-C rather than OPN-N. To confirm the clinical effect of these autoAbs in vivo, EAE was induced using myelin oligodendrocyte glycoprotein MOG35–55 in C57BL/6 mice pre-vaccinated with ovalbumin (OVA)-linked OPN or OVA alone. We then evaluated the titer of antibodies to OPN, the clinical scores and in vitro cytokine secretion by spleen lymphocytes. Vaccination significantly induced antibodies against OPN during EAE, decreased disease severity, and the protective effect was correlated with decreased T cell secretion of interleukin 17 and

  16. Phosphodiesterase 5 inhibition at disease onset prevents experimental autoimmune encephalomyelitis progression through immunoregulatory and neuroprotective actions.

    Science.gov (United States)

    Pifarré, Paula; Gutierrez-Mecinas, María; Prado, Judith; Usero, Lorena; Roura-Mir, Carme; Giralt, Mercedes; Hidalgo, Juan; García, Agustina

    2014-01-01

    In addition to detrimental inflammation, widespread axon degeneration is an important feature of multiple sclerosis (MS) pathology and a major correlate for permanent clinical deficits. Thus, treatments that combine immunomodulatory and neuroprotective effects are beneficial for MS. Using myelin oligodendrocyte glycoprotein peptide 35-55 (MOG)-induced experimental autoimmune encephalomyelitis (EAE) as a model of MS, we recently showed that daily treatment with the phosphodiesterase 5 (PDE5) inhibitor sildenafil at peak disease rapidly ameliorates clinical symptoms and neuropathology (Pifarre et al., 2011). We have now investigated the immunomodulatory and neuroprotective actions of sildenafil treatment from the onset of EAE when the immune response prevails and show that early administration of the drug prevents disease progression. Ultrastructural analysis of spinal cord evidenced that sildenafil treatment preserves axons and myelin and increases the number of remyelinating axons. Immunostaining of oligodendrocytes at different stages of differentiation showed that sildenafil protects immature and mature myelinating oligodendrocytes. Brain-derived neurotrophic factor (BDNF), a recognized neuroprotectant in EAE, was up-regulated by sildenafil in immune and neural cells suggesting its implication in the beneficial effects of the drug. RNA microarray analysis of spinal cord revealed that sildenafil up-regulates YM-1, a marker of the alternative macrophage/microglial M2 phenotype that has neuroprotective and regenerative properties. Immunostaining confirmed up-regulation of YM-1 while the classical macrophage/microglial activation marker Iba-1 was down-regulated. Microarray analysis also showed a notable up-regulation of several members of the granzyme B cluster (GrBs). Immunostaining revealed expression of GrBs in Foxp3+-T regulatory cells (Tregs) suggesting a role for these proteases in sildenafil-induced suppression of T effector cells (Teffs). In vitro analysis of

  17. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms

  18. Copaiba Oil Suppresses Inflammatory Cytokines in Splenocytes of C57Bl/6 Mice Induced with Experimental Autoimmune Encephalomyelitis (EAE

    Directory of Open Access Journals (Sweden)

    Débora S. Dias

    2014-08-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is a murine autoimmune disease used to study multiple sclerosis. We have investigated the immunomodulatory effects of copaiba oil (100, 50 and 25 µg/mL on NO, H2O2, TNF-α, IFN-γ and IL-17 production in cultured cells from EAE-mice. Copaiba oil (100 µg/mL inhibited H2O2, NO, IFN-γ TNF-α and IL-17 production spontaneously or after ConA and MOG35–55 stimulation. It is suggested that copaiba oil acts on the mechanism of development of EAE by IFN-γ, IL-17 and TNF-α inhibition, modulating the immune response on both Th1 and Th17 cells.

  19. Raloxifene Suppresses Experimental Autoimmune Encephalomyelitis and NF-κB-Dependent CCL20 Expression in Reactive Astrocytes

    Science.gov (United States)

    Qiu, Wei; Shu, Yaqing; Wu, Aimin; Dai, Yongqiang; Bao, Jian; Lu, Zhengqi; Hu, Xueqiang

    2014-01-01

    Recent clinical data have led to the consideration of sexual steroids as new potential therapeutic tools for multiple sclerosis. Selective estrogen receptor modulators can exhibit neuroprotective effects like estrogen, with fewer systemic estrogen side effects than estrogen, offering a more promising therapeutic modality for multiple sclerosis. The important role of astrocytes in a proinflammatory effect mediated by CCL20 signaling on inflammatory cells has been documented. Their potential contribution to selective estrogen receptor modulator-mediated protection is still unknown. Using a mouse model of chronic neuroinflammation, we report that raloxifene, a selective estrogen receptor modulator, alleviated experimental autoimmune encephalomyelitis–an animal model of multiple sclerosis–and decreased astrocytic production of CCL20. Enzyme-linked immunosorbent assay, immunohistochemistry imaging and transwell migration assays revealed that reactive astrocytes express CCL20, which promotes Th17 cell migration. In cultured rodent astrocytes, raloxifene inhibited IL-1β-induced CCL20 expression and chemotaxis ability for Th17 migration, whereas the estrogen receptor antagonist ICI 182,780 blocked this effect. Western blotting further indicated that raloxifene suppresses IL-1β-induced NF-κB activation (phosphorylation of p65) and translocation but does not affect phosphorylation of IκB. In conclusion, these data demonstrate that raloxifene provides robust neuroprotection against experimental autoimmune encephalomyelitis, partially via an inhibitory action on CCL20 expression and NF-κB pathways in reactive astrocytes. Our results contribute to a better understanding of the critical roles of raloxifene in treating experimental autoimmune encephalomyelitis and uncover reactive astrocytes as a new target for the inhibitory action of estrogen receptors on chemokine CCL20 expression. PMID:24722370

  20. Elevated interferon gamma expression in the central nervous system of tumour necrosis factor receptor 1-deficient mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Wheeler, Rachel D; Zehntner, Simone P; Kelly, Lisa M

    2006-01-01

    Inflammation in the central nervous system (CNS) can be studied in experimental autoimmune encephalomyelitis (EAE). The proinflammatory cytokines interferon-gamma (IFN-gamma) and tumour necrosis factor (TNF) are implicated in EAE pathogenesis. Signals through the type 1 TNF receptor (TNFR1) are r...

  1. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Vowinckel, E; Reutens, D; Becher, B

    1997-01-01

    Activated glial cells are implicated in regulating and effecting the immune response that occurs within the CNS as part of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). The peripheral benzodiazepine receptor (PBR) is expressed in glial cells. We...

  2. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Silva, Gleidy A A; Pradella, Fernando; Moraes, Adriel; Farias, Alessandro; dos Santos, Leonilda M B; de Oliveira, Alexandre L R

    2014-01-01

    Background Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. Aims The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. Methods and results The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Conclusions Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction. PMID:25365796

  3. Reg-2, a downstream signaling protein in the ciliary neurotrophic factor survival pathway, alleviates experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Hong eJiang

    2016-05-01

    Full Text Available Ciliary neurotrophic factor (CNTF, originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE. However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2. Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis.

  4. Diazepam treatment reduces inflammatory cells and mediators in the central nervous system of rats with experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Fernández Hurst, Nicolás; Zanetti, Samanta R; Báez, Natalia S; Bibolini, Mario J; Bouzat, Cecilia; Roth, German A

    2017-12-15

    Benzodiazepines are psychoactive drugs and some of them also affect immune cells. We here characterized the inflammatory and infiltrating immune cells in the central nervous system (CNS) during the acute phase of experimental autoimmune encephalomyelitis (EAE) in animals treated with Diazepam. Also, we evaluated the expression of Translocator Protein (18kDa) (TSPO), which is a biomarker of neuroinflammatory diseases. The results indicate that Diazepam exerts protective effects on EAE development, decreasing the incidence of the disease and reducing the number of inflammatory cells in CNS, with a concomitant decrease of TSPO levels in brain tissue and CNS inflammatory CD11b + cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Suppression of murine experimental autoimmune encephalomyelitis development by 1,25-dihydroxyvitamin D3 with autophagy modulation.

    Science.gov (United States)

    Zhen, Chao; Feng, Xuedan; Li, Zhe; Wang, Yabo; Li, Bin; Li, Lin; Quan, Moyuan; Wang, Gaoning; Guo, Li

    2015-03-15

    Multiple sclerosis (MS) has been associated with a history of sub-optimal exposure to ultraviolet light, implicating vitamin D3 as a possible protective agent. We evaluated whether 1,25(OH)2D3 attenuates the progression of experimental autoimmune encephalomyelitis (EAE), and explored its potential mechanisms. EAE was induced in C57BL/6 mice via immunization with MOG35-55, and some mice received 1,25(OH)2D3. 1,25(OH)2D3 inhibited EAE progression. Additionally, 1,25(OH)2D3 reduced inflammation, demyelination, and neuron loss in the spinal cord. The protective effect of 1,25(OH)2D3 was associated with significantly elevated expression of Beclin1, increased Bcl-2/Bax ratio, and decreased LC3-II accumulation. Thus, 1,25(OH)2D3 may represent a promising new MS treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    Science.gov (United States)

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  7. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    Directory of Open Access Journals (Sweden)

    Dae-Kwon Bae

    2016-01-01

    Full Text Available Since multiple sclerosis (MS is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG- induced experimental autoimmune encephalomyelitis (EAE model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP. The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, ciliary neurotrophic factor (CNTF, and leukemia inhibitory factor (LIF. In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS.

  8. Dendritic cells tip the balance towards induction of regulatory T cells upon priming in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Paterka, Magdalena; Voss, Jan Oliver; Werr, Johannes; Reuter, Eva; Franck, Sophia; Leuenberger, Tina; Herz, Josephine; Radbruch, Helena; Bopp, Tobias; Siffrin, Volker; Zipp, Frauke

    2017-01-01

    Counter-balancing regulatory mechanisms, such as the induction of regulatory T cells (Treg), limit the effects of autoimmune attack in neuroinflammation. However, the role of dendritic cells (DCs) as the most powerful antigen-presenting cells, which are intriguing therapeutic targets in this context, is not fully understood. Here, we demonstrate that conditional ablation of DCs during the priming phase of myelin-specific T cells in experimental autoimmune encephalomyelitis (EAE) selectively aborts inducible Treg (iTreg) induction, whereas generation of T helper (Th)1/17 cells is unaltered. DCs facilitate iTreg induction by creating a milieu with high levels of interleukin (IL)-2 due to a strong proliferative response. In the absence of DCs, B220 + B cells take over priming of Th17 cells in the place of antigen-presenting cells (APCs), but not the induction of iTreg, thus leading to unregulated, severe autoimmunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  10. Oriental Medicine Samhwangsasim-tang Alleviates Experimental Autoimmune Encephalomyelitis by Suppressing Th1 Cell Responses and Upregulating Treg Cell Responses.

    Science.gov (United States)

    Lee, Min J; Choi, Jong H; Lee, Sung J; Cho, Ik-Hyun

    2017-01-01

    Oriental medicine Samhwangsasim-tang (SHSST) has traditionally been used in East Asia to treat hypertension and its complications. However, little is known about its potential value regarding the treatment of chronic inflammatory diseases such as multiple sclerosis (MS). In this study, we investigated whether SHSST has a beneficial effect in treating myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE). Onset-treatment with SHSST was found to alleviate neurological symptoms as well as demyelination and glial activation in the spinal cords from the EAE mice. The SHSST also attenuated the mRNA or protein expression of pro-inflammatory cytokines (interleukin-1beta and tumor necrotic factor-alpha); chemokines (RANTES, monocyte chemotactic protein-1, and macrophage inflammatory protein-1alpha); inducible nitric oxide synthase; and cyclooxygenase-2 in correspondence with the down-regulation of the nuclear factor-kappa B and mitogen-activated protein kinases signal pathways in the spinal cords from EAE mice. Interestingly, the protective effect of the SHSST was related to a decreased number of Th1 cells and an increased number of Treg cells in spinal cords from EAE mice. Taken together, our finding firstly suggested that SHSST could delay or mitigate EAE with a wide therapeutic time-window by suppressing Th1 cell responses and upregulating Treg cell responses. Also, our findings are strong enough to warrant further investigation of SHSST as a treatment for chronic autoimmune diseases including MS.

  11. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    Science.gov (United States)

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. IL2-caspase3 chimeric protein controls lymphocyte reactivity by targeted apoptosis, leading to amelioration of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Irony-Tur-Sinai, Michal; Lichtenstein, Michal; Brenner, Talma; Lorberboum-Galski, Haya

    2009-09-01

    IL2-caspase3 chimeric protein was designed to target and kill cells expressing the high affinity IL-2 receptor. Its effects on lymphocyte reactivity and on experimental autoimmune encephalomyelitis (EAE), a T-cell mediated disease, were tested in this study. Our data show that IL2-caspase3 promoted cell specific apoptosis both in vitro and in vivo. Cell lines preferentially expressing the IL-2R alpha chain and encephalitogenic lymphocytes derived from EAE-induced mice were highly sensitive to the chimeras' activity. This was demonstrated by increased DNA fragmentation and annexin labeling together with reduced specific T-cell proliferation in response to IL2-casepase3 treatment. Furthermore, IL2-caspase3 treatment of EAE-induced mice caused a significant delay in disease onset together with a reduction in disease burden. The efficacy of IL2-caspase3 treatment was dependent on the time at which treatment begun, with the chimera ameliorating EAE only when administered at maximal activation of peripheral lymphocytes. According to our findings we suggest that the chimeric protein IL2-caspase3 may provide a novel approach for the treatment of a variety of autoimmune disorders, such as multiple sclerosis, as well as for other pathological conditions that involve uncontrolled expansion of activated T cells.

  13. Treatment of Experimental Autoimmune Encephalomyelitis by Codelivery of Disease Associated Peptide and Dexamethasone in Acetalated Dextran Microparticles

    Science.gov (United States)

    2015-01-01

    Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system that can cause loss of motor function and is thought to result, in part, from chronic inflammation due to an antigen-specific T cell immune response. Current treatments suppress the immune system without antigen specificity, increasing the risks of cancer, chronic infection, and other long-term side effects. In this study, we show treatment of experimental autoimmune encephalomyelitis (EAE), a model of MS, by coencapsulating the immunodominant peptide of myelin oligodendrocyte glycoprotein (MOG) with dexamethasone (DXM) into acetalated dextran (Ac-DEX) microparticles (DXM/MOG/MPs) and administering the microparticles subcutaneously. The clinical score of the mice was reduced from 3.4 to 1.6 after 3 injections 3 days apart with the coencapsulated microparticulate formulation (MOG 17.6 μg and DXM 8 μg). This change in clinical score was significantly greater than observed with phosphate-buffered saline (PBS), empty MPs, free DXM and MOG, DXM/MPs, and MOG/MPs. Additionally, treatment with DXM/MOG/MPs significantly inhibited disease-associated cytokine (e.g., IL-17, GM-CSF) expression in splenocytes isolated in treated mice. Here we show a promising approach for the therapeutic treatment of MS using a polymer-based microparticle delivery platform. PMID:24433027

  14. Discordant effects of anti–VLA-4 treatment before and after onset of relapsing experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Theien, Bradley E.; Vanderlugt, Carol L.; Eagar, Todd N.; Nickerson-Nutter, Cheryl; Nazareno, Remederios; Kuchroo, Vijay K.; Miller, Stephen D.

    2001-01-01

    Initial migration of encephalitogenic T cells to the central nervous system (CNS) in relapsing experimental autoimmune encephalomyelitis (R-EAE), an animal model of multiple sclerosis (MS), depends on the interaction of the α4 integrin (VLA-4) expressed on activated T cells with VCAM-1 expressed on activated cerebrovascular endothelial cells. Alternate homing mechanisms may be employed by infiltrating inflammatory cells after disease onset. We thus compared the ability of anti–VLA-4 to regulate proteolipid protein (PLP) 139-151–induced R-EAE when administered either before or after disease onset. Preclinical administration of anti–VLA-4 either to naive recipients of primed encephalitogenic T cells or to mice 1 week after peptide priming, i.e., before clinical disease onset, inhibited the onset and severity of clinical disease. In contrast, Ab treatment either at the peak of acute disease or during remission exacerbated disease relapses and increased the accumulation of CD4+ T cells in the CNS. Most significantly, anti–VLA-4 treatment either before or during ongoing R-EAE enhanced Th1 responses to both the priming peptide and endogenous myelin epitopes released secondary to acute tissue damage. Collectively, these results suggest that treatment with anti–VLA-4 Ab has multiple effects on the immune system and may be problematic in treating established autoimmune diseases such as MS. PMID:11306603

  15. Treatment with the Antipsychotic Agent, Risperidone, Reduces Disease Severity in Experimental Autoimmune Encephalomyelitis

    Science.gov (United States)

    Stone, Sarrabeth; Zareie, Pirooz; Kharkrang, Marie; Fong, Dahna; Connor, Bronwen; La Flamme, Anne Camille

    2014-01-01

    Recent studies have demonstrated that atypical antipsychotic agents, which are known to antagonize dopamine D2 and serotonin 5-HT2a receptors, have immunomodulatory properties. Given the potential of these drugs to modulate the immune system both peripherally and within the central nervous system, we investigated the ability of the atypical anti-psychotic agent, risperidone, to modify disease in the animal model of multiple sclerosis (MS)4, experimental autoimune encephalomyelitis (EAE). We found that chronic oral administration of risperidone dose-dependently reduced the severity of disease and decreased both the size and number of spinal cord lesions. Furthermore, risperidone treatment substantially reduced antigen-specific interleukin (IL)-17a, IL-2, and IL-4 but not interferon (IFN)-γ production by splenocytes at peak disease and using an in vitro model, we show that treatment of macrophages with risperidone alters their ability to bias naïve T cells. Another atypical antipsychotic agent, clozapine, showed a similar ability to modify macrophages in vitro and to reduce disease in the EAE model but this effect was not due to antagonism of the type 1 or type 2 dopamine receptors alone. Finally, we found that while risperidone treatment had little effect on the in vivo activation of splenic macrophages during EAE, it significantly reduced the activation of microglia and macrophages in the central nervous system. Together these studies indicate that atypical antipsychotic agents like risperidone are effective immunomodulatory agents with the potential to treat immune-mediated diseases such as MS. PMID:25116424

  16. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Das Sarma, Jayasri; Ciric, Bogoljub; Marek, Ryan; Sadhukhan, Sanjoy; Caruso, Michael L; Shafagh, Jasmine; Fitzgerald, Denise C; Shindler, Kenneth S; Rostami, Am

    2009-04-28

    Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions.

  17. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Shafagh Jasmine

    2009-04-01

    Full Text Available Abstract Background Interleukin-17A (IL-17A is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS and its animal model, experimental autoimmune encephalomyelitis (EAE. IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS and its role in CNS inflammation are not well understood. Methods EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Results Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. Conclusion IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions.

  18. Bystander-mediated stimulation of proteolipid protein-specific regulatory T (Treg) cells confers protection against experimental autoimmune encephalomyelitis (EAE) via TGF-β

    OpenAIRE

    Jun, SangMu; Ochoa-Repáraz, Javier; Zlotkowska, Dagmara; Hoyt, Teri; Pascual, David W.

    2012-01-01

    To assess the potency of regulatory T (Treg) cells induced against an irrelevant Ag, mice were orally vaccinated with Salmonella expressing E. coli colonization factor antigen I fimbriae. Isolated CD25+ and CD25− CD4+ T cells were adoptively transferred to naive mice, and Treg cells effectively protected against experimental autoimmune encephalomyelitis (EAE), unlike Treg cells from Salmonella vector-immunized mice. This protection was abrogated upon in vivo neutralization of TGF-β, resulting...

  19. Inhibitory Effect of Matrine on Blood-Brain Barrier Disruption for the Treatment of Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Su Zhang

    2013-01-01

    Full Text Available Dysfunction of the blood-brain barrier (BBB is a primary characteristic of experimental autoimmune encephalomyelitis (EAE, an experimental model of multiple sclerosis (MS. Matrine (MAT, a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has been recently found to suppress clinical EAE and CNS inflammation. However, whether this effect of MAT is through protecting the integrity and function of the BBB is not known. In the present study, we show that MAT treatment had a therapeutic effect comparable to dexamethasone (DEX in EAE rats, with reduced Evans Blue extravasation, increased expression of collagen IV, the major component of the basement membrane, and the structure of tight junction (TJ adaptor protein Zonula occludens-1 (ZO-1. Furthermore, MAT treatment attenuated expression of matrix metalloproteinase-9 and -2 (MMP-9/-2, while it increased the expression of tissue inhibitors of metalloproteinase-1 and -2 (TIMP-1/-2. Our findings demonstrate that MAT reduces BBB leakage by strengthening basement membrane, inhibiting activities of MMP-2 and -9, and upregulating their inhibitors. Taken together, our results identify a novel mechanism underlying the effect of MAT, a natural compound that could be a novel therapy for MS.

  20. A Mushroom Extract Piwep from Phellinus igniarius Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord

    Directory of Open Access Journals (Sweden)

    Lan Li

    2014-01-01

    Full Text Available The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55 in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1 in the spinal cord and integrin-α4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression.

  1. Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Annelies Vanheel

    Full Text Available A more detailed insight into disease mechanisms of multiple sclerosis (MS is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE, a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA. The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4, a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1, involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and

  2. Bystander-mediated stimulation of proteolipid protein-specific regulatory T (Treg) cells confers protection against experimental autoimmune encephalomyelitis (EAE) via TGF-β

    Science.gov (United States)

    Jun, SangMu; Ochoa-Repáraz, Javier; Zlotkowska, Dagmara; Hoyt, Teri; Pascual, David W.

    2012-01-01

    To assess the potency of regulatory T (Treg) cells induced against an irrelevant Ag, mice were orally vaccinated with Salmonella expressing E. coli colonization factor antigen I fimbriae. Isolated CD25+ and CD25− CD4+ T cells were adoptively transferred to naive mice, and Treg cells effectively protected against experimental autoimmune encephalomyelitis (EAE), unlike Treg cells from Salmonella vector-immunized mice. This protection was abrogated upon in vivo neutralization of TGF-β, resulting in elevated IL-17 and loss of IL-4 and IL-10 production. Thus, Treg cells induced to irrelevant Ags offer a novel approach to treat autoimmune diseases independent of auto-Ag. PMID:22418032

  3. Teriflunomide reduces behavioral, electrophysiological, and histopathological deficits in the Dark Agouti rat model of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Merrill, Jean E; Hanak, Susan; Pu, Su-Fen; Liang, Jinjun; Dang, Chelsea; Iglesias-Bregna, Deborah; Harvey, Brian; Zhu, Bin; McMonagle-Strucko, Kathleen

    2009-01-01

    Teriflunomide is an orally available anti-inflammatory drug that prevents T and B cell proliferation and function by inhibition of dihydroorotate dehydrogenase. It is currently being developed for the treatment of multiple sclerosis (MS). We report here for the first time the anti-inflammatory effects of teriflunomide in the Dark Agouti rat model of experimental autoimmune encephalomyelitis (EAE). Neurological evaluation demonstrated that prophylactic dosing of teriflunomide at 3 and 10 mg/kg delayed disease onset and reduced maximal and cumulative scores. Therapeutic administration of teriflunomide at doses of 3 or 10 mg/kg at disease onset significantly reduced maximal and cumulative disease scores as compared to vehicle treated rats. Dosing teriflunomide at disease remission, at 3 and 10 mg/kg, reduced the cumulative scores for the remaining course of the disease. Teriflunomide at 10 mg/kg significantly reduced inflammation, demyelination, and axonal loss when dosed prophylactically or therapeutically. In electrophysiological somatosensory evoked potential studies, therapeutic administration of teriflunomide, at the onset of disease, prevented both a decrease in waveform amplitude and an increase in the latency to waveform initiation in EAE animals compared to vehicle. Therapeutic dosing with teriflunomide at disease remission prevented a decrease in evoked potential amplitude, prevented an increase in latency, and enhanced recovery time within the CNS.

  4. S-Allylmercapto-N-acetylcysteine (ASSNAC) protects cultured nerve cells from oxidative stress and attenuates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Savion, Naphtali; Izigov, Nira; Morein, Milana; Pri-Chen, Sarah; Kotev-Emeth, Shlomo

    2014-11-07

    Oxidative stress and/or low cellular glutathione are associated with development and progression of neurodegenerative diseases. We have shown that S-allylmercapto-N-acetylcysteine (ASSNAC) up-regulates the level of glutathione and phase II detoxifying enzymes in cultured vascular endothelial cells. The present study demonstrates that exposure of nerve cell lines to ASSNAC significantly increases the cellular level of glutathione probably via activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and protects the cells from tBuOOH-induced cytotoxicity. Furthermore, ASSNAC increases the level of mice spinal cord and brain glutathione (by 54% and 47%, respectively) and attenuates the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in mice. In conclusion, these data implicate ASSNAC to protect nerve cells, both in vitro and in vivo, from oxidative stress and thereby to attenuate the clinical symptoms of EAE, suggesting its potential use for the treatment of neurodegenerative diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. The leukotriene B{sub 4} receptor, BLT1, is required for the induction of experimental autoimmune encephalomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, Yasuyuki, E-mail: kihara-yasuyuki@umin.net [Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yokomizo, Takehiko [Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Core Research for Embryonic Science and Technology (CREST), Japan Science and Technology Agency (Japan); Kunita, Akiko; Morishita, Yasuyuki; Fukayama, Masashi [Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033 (Japan); Ishii, Satoshi; Shimizu, Takao [Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2010-04-09

    Leukotriene B{sub 4} (LTB{sub 4}) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB{sub 4}. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and T{sub H}1/T{sub H}17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1{sup -/-} mice had delayed onset and less severe symptoms of EAE than BLT1{sup +/+} mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1{sup +/+}, but not BLT1{sup -/-} mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-{gamma}, TNF-{alpha}, IL-17 and IL-6 were impaired in BLT1{sup -/-} cells, as compared with BLT1{sup +/+} cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and T{sub H}1/T{sub H}17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other T{sub H}17-mediated diseases.

  6. Tolerogenic Dendritic Cells Generated with Tofacitinib Ameliorate Experimental Autoimmune Encephalomyelitis through Modulation of Th17/Treg Balance

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2016-01-01

    Full Text Available It is well known that dendritic cells (DCs play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs, a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG- specific experimental autoimmune encephalomyelitis (EAE model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS. Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs. Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS.

  7. Periplocoside A prevents experimental autoimmune encephalomyelitis by suppressing IL-17 production and inhibits differentiation of Th17 cells.

    Science.gov (United States)

    Zhang, Jing; Ni, Jia; Chen, Zhen-hua; Li, Xin; Zhang, Ru-jun; Tang, Wei; Zhao, Wei-min; Yang, Yi-fu; Zuo, Jian-ping

    2009-08-01

    The aim of this study was to determine the therapeutic effect of Periplocoside A (PSA), a natural product isolated from the traditional Chinese herbal medicine Periploca sepium Bge, in MOG(35-55) (myelin oligodendrocyte glycoprotein 35-55)-induced experimental autoimmune encephalomyelitis (EAE). Female C57BL/6 mice immunized with MOG(35-55) were treated with (50 mg/kg or 25 mg/kg) or without PSA following immunization and continuously throughout the study. The degree of CNS inflammation was evaluated by H&E staining. Anti-MOG-specific recall responses were analyzed by [3H]-Thymidine incorporation, ELISA, and RT-PCR. The proportion of IL-17-producing T cells was measured by flow cytometry. Oral administration of PSA significantly reduced the incidence and severity of EAE, which closely paralleled the inhibition of MOG(35-55)-specific IL-17 production. Importantly, PSA inhibited the transcription of IL-17 mRNA and RORgammat. Further studies examining intracellular staining and adoptive transfer EAE validated the direct suppressive effect of PSA on Th17 cells. In vitro studies also showed that PSA significantly inhibited the differentiation of Th17 cells from murine purified CD4+ T cells in a dose-dependent manner. PSA ameliorated EAE by suppressing IL-17 production and inhibited the differentiation of Th17 cells in vitro. Our results provide new insight into the potential mechanisms underlying the immunosuppressive and anti-inflammatory effects of PSA.

  8. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  9. Absence of PAF receptor alters cellular infiltrate but not rolling and adhesion of leukocytes in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Rodrigues, David Henrique; Lacerda-Queiroz, Norinne; de Miranda, Aline Silva; Fagundes, Caio Tavares; Campos, Roberta Dayrell de Lima; Arantes, Rosa Esteves; Vilela, Márcia de Carvalho; Rachid, Milene Alvarenga; Teixeira, Mauro Martins; Teixeira, Antônio Lúcio

    2011-04-18

    Experimental autoimmune encephalomyelitis (EAE) is a condition induced in some susceptible species to the study of multiple sclerosis (MS). The platelet activating factor (PAF) is an important mediator of immune responses and seems to be involved in MS. However, the participation of PAF in EAE and MS remains controversial. Thus, in this study, we aimed to evaluate the role of PAF receptor in the pathogenesis of EAE. EAE was induced using an emulsion containing MOG(35-55). EAE-induced PAF receptor knock out (PAFR(-/-)) mice presented milder disease when compared to C57BL/6 wild type (WT) animals. PAFR(-/-) animals had lower inflammatory infiltrates in central nervous system (CNS) tissue when compared to WT mice. However, intravital microscopy in cerebral microvasculature revealed similar levels of rolling and adhering leukocytes in both WT and PAFR(-/-) mice. Interleukine (IL)-17 and chemokines C-C motif legends (CCL)2 and CCL5 were significantly lower in PAFR(-/-) mice when compared to WT mice. Brain infiltrating cluster of differentiation (CD)4(+) leukocytes and IL-17(+) leukocytes was diminished in PAFR(-/-) when compared to WT mice. Taken together, our results suggest that PAF receptor is important in the induction and development of EAE, although it has no influence in rolling and adhesion steps of cell recruitment. The absence of PAF receptor results in milder disease by altering the type of inflammatory mediators and cells that are present in CNS tissue. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease.

    Science.gov (United States)

    Tripathi, Richa B; Rivers, Leanne E; Young, Kaylene M; Jamen, Francoise; Richardson, William D

    2010-12-01

    The adult mammalian brain and spinal cord contain glial precursors that express platelet-derived growth factor receptor α subunit (PDGFRA) and the NG2 proteoglycan. These "NG2 cells" descend from oligodendrocyte precursors in the perinatal CNS and continue to generate myelinating oligodendrocytes in the gray and white matter of the postnatal brain. It has been proposed that NG2 cells can also generate reactive astrocytes at sites of CNS injury or demyelination. To test this we examined the fates of PDGFRA/NG2 cells in the mouse spinal cord during experimental autoimmune encephalomyelitis (EAE)--a demyelinating condition that models some aspects of multiple sclerosis in humans. We administered tamoxifen to Pdgfra-CreER(T2):Rosa26R-YFP mice to induce yellow fluorescent protein (YFP) expression in PDGFRA/NG2 cells and their differentiated progeny. We subsequently induced EAE and observed a large (>4-fold) increase in the local density of YFP(+) cells, >90% of which were oligodendrocyte lineage cells. Many of these became CC1-positive, NG2-negative differentiated oligodendrocytes that expressed myelin markers CNP and Tmem10/Opalin. PDGFRA/NG2 cells generated very few GFAP(+)-reactive astrocytes (1-2% of all YFP(+) cells) or NeuN(+) neurons (demyelinated spinal cord.

  11. Mouse Models of Multiple Sclerosis: Experimental Autoimmune Encephalomyelitis and Theiler’s Virus-Induced Demyelinating Disease

    Science.gov (United States)

    McCarthy, Derrick P.; Richards, Maureen H.; Miller, Stephen D.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) and Theiler’s Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD) are two clinically relevant murine models of multiple sclerosis (MS). Like MS, both are characterized by mononuclear cell infiltration into the CNS and demyelination. EAE is induced by either the administration of myelin protein or peptide in adjuvant or by the adoptive transfer of encephalitogenic T cell blasts into naïve recipients. The relative merits of each of these protocols are compared. Depending on the type of question being asked, different mouse strains and peptides are used. Different disease courses are observed with different strains and different peptides in active EAE. These variations are also addressed. Additionally, issues relevant to clinical grading of EAE in mice are discussed. In addition to EAE induction, useful references for other disease indicators such as DTH, in vitro proliferation, and immunohistochemistry are provided. TMEV-IDD is a useful model for understanding the possible viral etiology of MS. This section provides detailed information on the preparation of viral stocks and subsequent intracerebral infection of mice. Additionally, virus plaque assay and clinical disease assessment are discussed. Recently, recombinant TMEV strains have been created for the study of molecular mimicry which incorporate various 30 amino acid myelin epitopes within the leader region of TMEV. PMID:22933080

  12. Treatment with anti-interferon-gamma monoclonal antibodies modifies experimental autoimmune encephalomyelitis in interferon-gamma receptor knockout mice

    DEFF Research Database (Denmark)

    Espejo, C; Penkowa, M; Sáez-Torres, I

    2001-01-01

    antibodies (mAb) on day 8 postimmunization. Clinical scoring and both histological and immunohistochemical studies were undertaken for all groups. We hereby show that treatment with anti-IFN-gamma mAb worsened the disease course of 129Sv wild-type mice. However, it decreased the mean daily score in IFN......-gamma R(-/-) 129Sv and the incidence of the disease down to 50% in C57Bl/6x129Sv IFN-gamma R(-/-) mice. Moreover, after anti-IFN-gamma mAb treatment, oxidative stress levels, metallothionein I and II antioxidant protein expression, and apoptoticneuronal death were increased in wild-type mice while......The role of interferon-gamma (IFN-gamma) in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still controversial. We have studied the function of IFN-gamma and its receptor in the EAE model using two different IFN-gamma receptor knockout (IFN-gamma R...

  13. Prenatal Vitamin D Deficiency Induces an Early and More Severe Experimental Autoimmune Encephalomyelitis in the Second Generation

    Directory of Open Access Journals (Sweden)

    Francois Feron

    2012-08-01

    Full Text Available In a previous study, we demonstrated that mouse adult F1 offspring, exposed to a vitamin D deficiency during pregnancy, developed a less severe and delayed Experimental Autoimmune Encephalomyelitis (EAE, when compared with control offspring. We then wondered whether a similar response was observed in the subsequent generation. To answer this question, we assessed F2 females whose F1 parents (males or females were vitamin D-deprived when developing in the uterus of F0 females. Unexpectedly, we observed that the vitamin D deficiency affecting the F0 pregnant mice induced a precocious and more severe EAE in the F2 generation. This paradoxical finding led us to assess its implications for the epidemiology of Multiple Sclerosis (MS in humans. Using the REFGENSEP database for MS trios (the patient and his/her parents, we collected the parents’ dates of birth and assessed a potential season of birth effect that could potentially be indicative of the vitamin D status of the pregnant grandmothers. A trend for a reduced number of births in the Fall for the parents of MS patients was observed but statistical significance was not reached. Further well powered studies are warranted to validate the latter finding.

  14. PI3Kγ drives priming and survival of autoreactive CD4(+ T cells during experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Iain Comerford

    Full Text Available The class IB phosphoinositide 3-kinase gamma enzyme complex (PI3Kγ functions in multiple signaling pathways involved in leukocyte activation and migration, making it an attractive target in complex human inflammatory diseases including MS. Here, using pik3cg(-/- mice and a selective PI3Kγ inhibitor, we show that PI3Kγ promotes development of experimental autoimmune encephalomyelitis (EAE. In pik3cg(-/- mice, EAE is markedly suppressed and fewer leukocytes including CD4(+ and CD8(+ T cells, granulocytes and mononuclear phagocytes infiltrate the CNS. CD4(+ T cell priming in secondary lymphoid organs is reduced in pik3cg(-/- mice following immunisation. This is attributable to defects in DC migration concomitant with a failure of full T cell activation following TCR ligation in the absence of p110γ. Together, this results in suppressed autoreactive T cell responses in pik3cg(-/- mice, with more CD4(+ T cells undergoing apoptosis and fewer cytokine-producing Th1 and Th17 cells in lymphoid organs and the CNS. When administered from onset of EAE, the orally active PI3Kγ inhibitor AS605240 caused inhibition and reversal of clinical disease, and demyelination and cellular pathology in the CNS was reduced. These results strongly suggest that inhibitors of PI3Kγ may be useful therapeutics for MS.

  15. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Mi, Sha; Hu, Bing; Hahm, Kyungmin; Luo, Yi; Kam Hui, Edward Sai; Yuan, Qiuju; Wong, Wai Man; Wang, Li; Su, Huanxing; Chu, Tak-Ho; Guo, Jiasong; Zhang, Wenming; So, Kwok-Fai; Pepinsky, Blake; Shao, Zhaohui; Graff, Christilyn; Garber, Ellen; Jung, Vincent; Wu, Ed Xuekui; Wu, Wutian

    2007-10-01

    Demyelinating diseases, such as multiple sclerosis, are characterized by the loss of the myelin sheath around neurons, owing to inflammation and gliosis in the central nervous system (CNS). Current treatments therefore target anti-inflammatory mechanisms to impede or slow disease progression. The identification of a means to enhance axon myelination would present new therapeutic approaches to inhibit and possibly reverse disease progression. Previously, LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) has been identified as an in vitro and in vivo negative regulator of oligodendrocyte differentiation and myelination. Here we show that loss of LINGO-1 function by Lingo1 gene knockout or by treatment with an antibody antagonist of LINGO-1 function leads to functional recovery from experimental autoimmune encephalomyelitis. This is reflected biologically by improved axonal integrity, as confirmed by magnetic resonance diffusion tensor imaging, and by newly formed myelin sheaths, as determined by electron microscopy. Antagonism of LINGO-1 or its pathway is therefore a promising approach for the treatment of demyelinating diseases of the CNS.

  16. Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Mørch, Marlene Thorsen; Holm, Thomas Hellesøe

    2015-01-01

    The Type I interferons (IFN), beta (IFN-β) and the alpha family (IFN-α), act through a common receptor and have anti-inflammatory effects. IFN-β is used to treat multiple sclerosis (MS) and is effective against experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mice with EAE......-endogenous Type I IFN influences EAE. Using IFN-β reporter mice, we showed that direct administration of polyinosinic-polycytidylic acid (poly I:C), a potent inducer of IFN-β, into the cerebrospinal fluid induced increased leukocyte numbers and transient upregulation of IFN-β in CD45/CD11b-positive cells located...... in the meninges and choroid plexus, as well as enhanced IFN-β expression by parenchymal microglial cells. Intrathecal injection of poly I:C to mice showing first symptoms of EAE substantially increased the normal disease-associated expression of IFN-α, IFN-β, interferon regulatory factor-7 and IL-10 in CNS...

  17. Zinc aspartate suppresses T cell activation in vitro and relapsing experimental autoimmune encephalomyelitis in SJL/J mice.

    Science.gov (United States)

    Stoye, Diana; Schubert, Claudia; Goihl, Alexander; Guttek, Karina; Reinhold, Annegret; Brocke, Stefan; Grüngreiff, Kurt; Reinhold, Dirk

    2012-06-01

    Zinc is an essential trace element with a critical role in normal growth and development and in immune homeostasis. Zinc deficiency impairs both the innate and the adaptive immune system and can be normalized by zinc supplementation. On the other end of the spectrum, high dosages of zinc diminish immune cell functions similar to zinc deficiency. Here, we investigated the influence of zinc aspartate on proliferation and cytokine production of stimulated human T cells and mouse splenocytes in vitro. Furthermore, the effect of zinc aspartate was examined in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of Multiple Sclerosis (MS) with a Th1/Th17 T cell-mediated immunopathogenesis. Zinc aspartate suppressed proliferation as well as IL-2, IL-10 and IL-17 production in stimulated human T cells and mouse splenocytes. Importantly, administration of a medium range dose of 30 μg/day zinc aspartate [1.5 mg/kg body weight (BW)] in a therapeutic manner led to a significant reduction of the clinical severity of the EAE during the first relapse of the disease. A lower zinc aspartate dose (6 μg/day, 0.3 mg/kg BW) had no significant therapeutic effect on the severity of the EAE, while administration of higher zinc aspartate amounts (120 μg/day, 6 mg/kg BW) led to more severe disease. Taken together, our data suggest that zinc aspartate can modulate activation, proliferation and cytokine production of effector T cells in vitro and in vivo and that activated autoreactive T cells may be potential therapeutic targets of tightly controlled zinc supplementation in autoimmune diseases like MS.

  18. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis

    KAUST Repository

    Zeitelhofer, Manuel

    2017-02-15

    Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.

  19. Regulatory T Cell Dysfunction Acquiesces to BTLA+ Regulatory B Cells Subsequent Oral Intervention of Experimental Autoimmune Encephalomyelitis

    Science.gov (United States)

    Huarte, Eduardo; Jun, SangMu; Rynda-Apple, Agnieszka; Golden, Sara; Jackiw, Larissa; Hoffman, Carol; Maddaloni, Massimo; Pascual, David W.

    2016-01-01

    Regulatory T cells (Tregs) induced during autoimmunity often become quiescent and unable to resolve disease, suggesting inadequate activation. Resolution of established experimental autoimmune encephalomyelitis (EAE) can be achieved with myelin oligodendrocyte glycoprotein (MOG) fused to reovirus protein σ1 (MOG-pσ1) which activates Tregs, restoring protection, but requiring other regulatory cells to revitalize them. B cells have a dichotomous role in both the pathogenesis and recovery from EAE. While inflammatory B cells contribute to EAE’s pathogenesis, treatment of EAE mice with MOG-pσ1, but not OVA-pσ1, resulted in an influx of IL-10-producing B220+CD5+ B regulatory cells (Bregs) enabling Tregs to recover their inhibitory activity, and in turn, leading to the rapid amelioration of EAE. These findings implicate direct interactions between Bregs and Tregs to facilitate this recovery. Adoptive transfer of B220+CD5− B cells from MOG-pσ1-treated EAE or Bregs from PBS-treated EAE mice did not resolve disease while the adoptive transfer of MOG-pσ1-induced B220+CD5+ Bregs greatly ameliorated EAE. MOG-pσ1-, but not OVA-pσ1-induced IL-10-producing Bregs, expressed elevated levels of BTLA relative to CD5− B cells, as opposed to Tregs or effector T (Teff) cells, whose BTLA expression was not affected. These induced Bregs restored EAE Treg function in a BTLA-dependent manner. BTLA−/− mice showed more pronounced EAE with fewer Tregs but, upon adoptive transfer of MOG-pσ1-induced BTLA+ Bregs, BTLA−/− mice were protected against EAE. Hence, this evidence shows the importance of BTLA in activating Tregs to facilitate recovery from EAE. PMID:27194787

  20. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system

    DEFF Research Database (Denmark)

    Taupin, V; Renno, T; Bourbonnière, L

    1997-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is an inflammatory cytokine implicated in a number of autoimmune diseases. Apoptotic cell death is induced by TNF-alpha in vitro, and has been suggested as one cause of autoimmune pathology, including autoimmune demyelinating diseases where oligodendrocytes...... and showed no spontaneous pathology, but they developed experimental autoimmune encephalomyelitis (EAE) with greater severity than nontransgenic controls when immunized with MBP in adjuvant. Unlike nontransgenic controls, EAE then progressed to a nonabating demyelinating disease. Macrophage....../microglial reactivity was evident in demyelinating lesions in spinal cord, but T cells were not detected during chronic disease. The participation of TNF-alpha in the demyelinating process is thus more probably due to the perpetuation of macrophage/microglial activation than to direct cytotoxicity of myelin...

  1. Sex Difference in Oxidative Stress Parameters in Spinal Cord of Rats with Experimental Autoimmune Encephalomyelitis: Relation to Neurological Deficit.

    Science.gov (United States)

    Dimitrijević, Mirjana; Kotur-Stevuljević, Jelena; Stojić-Vukanić, Zorica; Vujnović, Ivana; Pilipović, Ivan; Nacka-Aleksić, Mirjana; Leposavić, Gordana

    2017-02-01

    The study examined (a) whether there is sex difference in spinal cord and plasma oxidative stress profiles in Dark Agouti rats immunised for experimental autoimmune encephalomyelitis (EAE), the principal experimental model of multiple sclerosis, and (b) whether there is correlation between the oxidative stress in spinal cord and neurological deficit. Regardless of rat sex, with the disease development xanthine oxidase (XO) activity and inducible nitric oxide synthase (iNOS) mRNA expression increased in spinal cord, whereas glutathione levels decreased. This was accompanied by the rise in spinal cord malondialdehyde level. On the other hand, with EAE development superoxide dismutase (SOD) activity decreased, while O2(-) concentration increased only in spinal cord of male rats. Consequently, SOD activity was lower, whereas O2(-) concentration was higher in spinal cord of male rats with clinically manifested EAE. XO activity and iNOS mRNA expression were also elevated in their spinal cord. Consistently, in the effector phase of EAE the concentration of advanced oxidation protein product (AOPP) was higher in spinal cord of male rats, which exhibit more severe neurological deficit than their female counterparts. In as much as data obtained in the experimental models could be translated to humans, the findings may be relevant for designing sex-specific antioxidant therapeutic strategies. Furthermore, the study indicated that the increased pro-oxidant-antioxidant balance in plasma may be an early indicator of EAE development. Moreover, it showed that plasma AOPP level may indicate not only actual activity of the disease, but also serve to predict severity of its course.

  2. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T cell subsets

    Science.gov (United States)

    Studies suggest that green tea component epigallocatechin-3-gallate (EGCG) may have a beneficial effect in reducing the pathogenesis of autoimmune diseases; however, the underlying mechanism(s) are not well understood. In this study, we determined the effect of EGCG on the development of experiment...

  3. Modulation of Multiple Sclerosis and its Animal Model experimental Autoimmune encephalomyelitis by Food and Gut Microbiota

    NARCIS (Netherlands)

    van den Hoogen, Ward J.; Laman, Jon D.; 't Hart, Bert A.

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination, axonal damage, and symptoms such as fatigue and disability. Although the cause of MS is not known, the infiltration of peripherally

  4. Synergistic and Superimposed Effect of Bone Marrow-Derived Mesenchymal Stem Cells Combined with Fasudil in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Yu, Jing-Wen; Li, Yan-Hua; Song, Guo-Bin; Yu, Jie-Zhong; Liu, Chun-Yun; Liu, Jian-Chun; Zhang, Hai-Fei; Yang, Wan-Fang; Wang, Qing; Yan, Ya-Ping; Xiao, Bao-Guo; Ma, Cun-Gen

    2016-12-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are the ideal transplanted cells of cellular therapy for promoting neuroprotection and neurorestoration. However, the optimization of transplanted cells and the improvement of microenvironment around implanted cells are still two critical challenges for enhancing therapeutic effect. In the current study, we observed the therapeutic potential of MSCs combined with Fasudil in mouse model of experimental autoimmune encephalomyelitis (EAE) and explored possible mechanisms of action. The results clearly show that combined intervention of MSCs and Fasudil further reduced the severity of EAE compared with MSCs or Fasudil alone, indicating a synergistic and superimposed effect in treating EAE. The addition of Fasudil inhibited MSC-induced inflammatory signaling TLR-4/MyD88 and inflammatory molecule IFN-γ, IL-1β, and TNF-α but did not convert M1 microglia to M2 phenotype. The delivery of MSCs enhanced the expression of glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) compared with that of Fasudil. Importantly, combined intervention of MSCs and Fasudil further increased the expression of BDNF and GDNF compared with the delivery of MSCs alone, indicating that combined intervention of MSCs and Fasudil synergistically contributes to the expression of neurotrophic factors which should be related to the expression of increased galactocerebroside (GalC) compared with mice treated with Fasudil and MSCs alone. However, a lot of investigation is warranted to further elucidate the cross talk of MSCs and Fasudil in the therapeutic potential of EAE/multiple sclerosis.

  5. Melatonin exacerbates acute experimental autoimmune encephalomyelitis by enhancing the serum levels of lactate: A potential biomarker of multiple sclerosis progression.

    Science.gov (United States)

    Ghareghani, Majid; Dokoohaki, Shima; Ghanbari, Amir; Farhadi, Naser; Zibara, Kazem; Khodadoust, Saeid; Parishani, Mohammad; Ghavamizadeh, Mehdi; Sadeghi, Heibatollah

    2017-01-01

    Melatonin has a beneficial role in adult rat models of multiple sclerosis (MS). In this study, melatonin treatment (10 mg/kg/d) was investigated in young age (5-6 weeks old) Lewis rat model of acute experimental autoimmune encephalomyelitis (EAE) followed by assessing serum levels of lactate and melatonin. Results showed that clinical outcomes were exacerbated in melatonin- (neurological score = 6) vs PBS-treated EAE rats (score = 5). Melatonin caused a significant increase in serum IFN-γ, in comparison to PBS-treated EAE rats whereas no considerable change in IL-4 levels were found, although they were significantly lower than those of controls. The ratio of IFN-γ/IL-4, an indicator of Th-1/Th-2, was significantly higher in PBS- and melatonin- treated EAE rats, in comparison to controls. Moreover, results showed increased lymphocyte infiltration, activated astrocytes (GFAP+ cells) but also higher demyelinated plaques (MBP-deficient areas) in the lumbar spinal cord of melatonin-treated EAE rats. Finally, serum levels of lactate, but not melatonin, significantly increased in the melatonin group, compared to untreated EAE and normal rats. In conclusion, our results indicated a relationship between age and the development of EAE since a negative impact was found for melatonin on EAE recovery of young rats by enhancing IFN-γ, the ratio of Th1/Th2 cells, and astrocyte activation, which seems to delay the remyelination process. While melatonin levels decline in MS patients, lactate might be a potential diagnostic biomarker for prediction of disease progression. Early administration of melatonin in the acute phase of MS might be harmful and needs further investigations. © 2016 John Wiley & Sons Australia, Ltd.

  6. Experimental autoimmune encephalomyelitis (EAE): lesion visualization on a 3 tesla Clinical whole-body system after intraperitoneal contrast injection

    Energy Technology Data Exchange (ETDEWEB)

    Heckl, S.; Naegele, T.; Klose, U. [Dept. of Neuroradiology, Medical School, Univ. of Tuebingen (Germany); Herrmann, M.; Gaertner, S.; Weissert, R. [Dept. of Neurology, Medical School, Univ. of Tuebingen (Germany); Schick, F. [Dept. of Radiology, Medical School, Univ. of Tuebingen (Germany); Kueker, W. [Dept. of Neuroradiology, Medical School, Univ. of Tuebingen (Germany); Dept. of Neuroradiology, Radcliffe Infirmary, Oxford, England (United Kingdom)

    2004-11-01

    Purpose: To investigate the intravital visibility of CNS lesions in rats with experimental autoimmune encephalomyelitis (EAE), the animal correlate of multiple sclerosis, using a 3-Tesla (T) wholebody MR system. Materials and Methods: Three healthy Dark Agouti (DA) rats and 16 DA rats with clinical signs of EAE were examined on a 3T whole body-system using a normal wrist coil. In total, 25 examinations were preformed using T2- and T1-weighted images in transverse and sagittal orientation with a slice thickness of 2 mm or 1 mm (voxel size up to 0.2 x 0.2 x 1 mm). Sedation was achieved by intraperitoneal injection of ketamine and xylazine. In addition, T1-weighted images were obtained after the instillation of 1.0 ml of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) (0.5 mmol/ml) into the peritoneal cavity. Results: T2- and T1-weighted images of the brain and spinal cord with high spatial and contrast resolution could be obtained in all animals. The anatomical details of the olfactory bulb glomeruli, cerebellum foliae, ventricles and corpus callosum were clearly visible. The EAE lesions presented as hyperintense area in T2-weighted images and could be demonstrated in all clinically affected animals by MRI and histologically verified. In total, the 16 affected rats had 28 cerebral and 2 spinal cord lesions (range 1 to 4, median 2). Contrast enhancement was noted in 12 animals and ranked as severe in ten and moderate in two cases. No adverse effects were noted due to sedation or intraperitoneal contrast injection. Conclusions: The intravital demonstration of cerebral and spinal cord EAE lesions in rats is possible on a 3T whole-body MR scanner using a normal wrist coil. Intraperitoneal injection of ketamine/xylazine and contrast agent is an easy, safe and effective procedure in rats. (orig.)

  7. Gene expression in the spinal cord in female lewis rats with experimental autoimmune encephalomyelitis induced with myelin basic protein.

    Directory of Open Access Journals (Sweden)

    Hayley R Inglis

    Full Text Available BACKGROUND: Experimental autoimmune encephalomyelitis (EAE, the best available model of multiple sclerosis, can be induced in different animal strains using immunization with central nervous system antigens. EAE is associated with inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model. METHODOLOGY/PRINCIPAL FINDINGS: MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays. Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was regulation of pathways involved with immune function and nervous system function. For selected genes the change in expression was confirmed with real-time PCR. CONCLUSIONS/SIGNIFICANCE: EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at the peak of disease.

  8. The anti-inflammatory effect of donepezil on experimental autoimmune encephalomyelitis in C57 BL/6 mice.

    Science.gov (United States)

    Jiang, Ying; Zou, Yan; Chen, Shaoqiong; Zhu, Cansheng; Wu, Aimin; Liu, Yingying; Ma, Lili; Zhu, Dongliang; Ma, Xiaomeng; Liu, Mei; Kang, Zhuang; Pi, Rongbiao; Peng, Fuhua; Wang, Qing; Chen, Xiaohong

    2013-10-01

    Donepezil is a potent and selective acetylcholinesterase inhibitor. It has been reported to restore cognitive performance in multiple sclerosis (MS) patients and experimental autoimmune encephalomyelitis (EAE) mice, an established model of MS. However, there are no reports about the anti-inflammatory effects of donepezil on EAE. In this study, the donepezil treatments on EAE mice were initiated at day 7 post immunization (7 p.i., subclinical periods, early donepezil treatment) and day 13 p.i. (clinical periods, late donepezil treatment) with the dosage of 1, 2 and 4 mg/kg/d respectively and the treatments persisted throughout the experiments. Blood-brain barrier (BBB) permeability was detected by Evan's blue content, the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9, Akt and phosphorylated Akt (p-Akt) as well as nerve growth factor (NGF) and its precursor form (proNGF) in the brains of EAE mice were detected by Western blot, and the levels of interferon-γ and interleukin-4 in the splenocytes culture supernatants and brains of EAE mice were evaluated by ELISA. The results showed that the 2 mg/kg/d late donepezil treatment was the optimal dosage and could ameliorate clinical and pathological parameters, improve magnetic resonance imaging outcomes, reduce the permeability of BBB, inhibit the production of MMP-2 and MMP-9, modulate the expression of NGF and proNGF, increase Th2 bias and the phosphorylation of Akt in the brains of EAE mice. Our data suggested that the anti-inflammatory effects of donepezil may be a novel mechanism on treating EAE and provided further insights to understand the donepezil's neuroprotective activities in MS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The extracellular domain of myelin oligodendrocyte glycoprotein elicits atypical experimental autoimmune encephalomyelitis in rat and Macaque species.

    Directory of Open Access Journals (Sweden)

    Alan D Curtis

    Full Text Available Atypical models of experimental autoimmune encephalomyelitis (EAE are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS. Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG in complete Freund's adjuvant (CFA followed by one or more injections of rat IgV-MOG in incomplete Freund's adjuvant (IFA. The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6-7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in

  10. The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice.

    Directory of Open Access Journals (Sweden)

    Rafael C Dutra

    Full Text Available BACKGROUND: Multiple sclerosis (MS is a demyelinating and neuroinflammatory disease of the human central nervous system (CNS. The expression of kinins is increased in MS patients, but the underlying mechanisms by which the kinin receptor regulates MS development have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Experimental autoimmune encephalomyelitis (EAE was induced in female C57BL/6 mice by immunization with MOG(35-55 peptide emulsified in complete Freund's adjuvant and injected with pertussis toxin on day 0 and day 2. Here, we report that blockade of the B(1R in the induction phase of EAE markedly suppressed its progression by interfering with the onset of the immune response. Furthermore, B(1R antagonist suppressed the production/expression of antigen-specific T(H1 and T(H17 cytokines and transcription factors, both in the periphery and in the CNS. In the chronic phase of EAE, the blockade of B(1R consistently impaired the clinical progression of EAE. Conversely, administration of the B(1R agonist in the acute phase of EAE suppressed disease progression and inhibited the increase in permeability of the blood-brain barrier (BBB and any further CNS inflammation. Of note, blockade of the B(2R only showed a moderate impact on all of the studied parameters of EAE progression. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest that kinin receptors, mainly the B(1R subtype, play a dual role in EAE progression depending on the phase of treatment through the lymphocytes and glial cell-dependent pathways.

  11. EphA4 receptor tyrosine kinase is a modulator of onset and disease severity of experimental autoimmune encephalomyelitis (EAE.

    Directory of Open Access Journals (Sweden)

    Kathryn M Munro

    Full Text Available The EphA4 receptor tyrosine kinase is a major regulator of axonal growth and astrocyte reactivity and is a possible inflammatory mediator. Given that multiple sclerosis (MS is primarily an inflammatory demyelinating disease and in mouse models of MS, such as experimental autoimmune encephalomyelitis (EAE, axonal degeneration and reactive gliosis are prominent clinical features, we hypothesised that endogenous EphA4 could play a role in modulating EAE. EAE was induced in EphA4 knockout and wildtype mice using MOG peptide immunisation and clinical severity and histological features of the disease were then compared in lumbar spinal cord sections. EphA4 knockout mice exhibited a markedly less severe clinical course than wildtype mice, with a lower maximum disease grade and a slightly later onset of clinical symptoms. Numbers of infiltrating T cells and macrophages, the number and size of the lesions, and the extent of astrocytic gliosis were similar in both genotypes; however, EphA4 knockout mice appeared to have decreased axonal pathology. Blocking of EphA4 in wildtype mice by administration of soluble EphA4 (EphA4-Fc as a decoy receptor following induction of EAE produced a delay in onset of clinical symptoms; however, most mice had clinical symptoms of similar severity by 22 days, indicating that EphA4 blocking treatment slowed early EAE disease evolution. Again there were no apparent differences in histopathology. To determine whether the role of EphA4 in modulating EAE was CNS mediated or due to an altered immune response, MOG primed T cells from wildtype and EphA4 knockout mice were passively transferred into naive recipient mice and both were shown to induce disease of equivalent severity. These results are consistent with a non-inflammatory, CNS specific, deleterious effect of EphA4 during neuroinflammation that results in axonal pathology.

  12. LINGO-1-Fc-Transduced Neural Stem Cells Are Effective Therapy for Chronic Stage Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Li, Xing; Zhang, Yuan; Yan, Yaping; Ciric, Bogoljub; Ma, Cun-Gen; Chin, Jeannie; Curtis, Mark; Rostami, Abdolmohamad; Zhang, Guang-Xian

    2017-08-01

    The chronic stage multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), remains refractory to current treatments. This refractory nature may be due to the fact that current treatments are primarily immunomodulatory, which prevent further demyelination but lack the capacity to promote remyelination. Several approaches, including transplantation of neural stem cells (NSCs) or antagonists to LINGO-1, a key part of the receptor complex for neuroregeneration inhibitors, have been effective in suppressing the acute stage of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, their effect on the chronic stage EAE is not known. Here, we show that transplantation of NSCs had only a slight therapeutic effect when treatment started at the chronic stage of EAE (e.g., injected at day 40 postimmunization). However, NSCs engineered to produce LINGO-1-Fc, a soluble LINGO-1 antagonist, significantly promoted neurological recovery as demonstrated by amelioration of clinical signs, improvement in axonal integrity, and enhancement of oligodendrocyte maturation and neuron repopulation. Significantly enhanced NAD production and Sirt2 expression were also found in the CNS of mice treated with LINGO-1-Fc-producing NSC. Moreover, differentiation of LINGO-1-Fc-producing NSCs into oligodendrocytes in vitro was largely diminished by an NAMPT inhibitor, indicating that LINGO-1-Fc enhances the NAMPT/NAD/Sirt2 pathway. Together, our study establishes a CNS-targeted, novel LINGO-1-Fc delivery system using NSCs, which represents a novel and effective NSC-based gene therapy approach for the chronic stage of MS.

  13. The Extracellular Domain of Myelin Oligodendrocyte Glycoprotein Elicits Atypical Experimental Autoimmune Encephalomyelitis in Rat and Macaque Species

    Science.gov (United States)

    Curtis, Alan D.; Taslim, Najla; Reece, Shaun P.; Grebenciucova, Elena; Ray, Richard H.; Rosenbaum, Matthew D.; Wardle, Robert L.; Van Scott, Michael R.; Mannie, Mark D.

    2014-01-01

    Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord

  14. The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Gharagozloo, Marjan; Mahvelati, Tara M; Imbeault, Emilie; Gris, Pavel; Zerif, Echarki; Bobbala, Diwakar; Ilangumaran, Subburaj; Amrani, Abdelaziz; Gris, Denis

    2015-10-31

    Multiple sclerosis (MS) is an organ-specific autoimmune disease resulting in demyelinating plaques throughout the central nervous system. In MS, the exact role of microglia remains unknown. On one hand, they can present antigens, skew T cell responses, and upregulate the expression of pro-inflammatory molecules. On the other hand, microglia may express anti-inflammatory molecules and inhibit inflammation. Microglia express a wide variety of immune receptors such as nod-like receptors (NLRs). NLRs are intracellular receptors capable of regulating both innate and adaptive immune responses. Among NLRs, Nlrp12 is largely expressed in cells of myeloid origins. It plays a role in immune inflammatory responses by negatively regulating the nuclear factor-kappa B (NF-κB) pathway. Thus, we hypothesize that Nlrp12 suppresses inflammation and ameliorates the course of MS. We used experimental autoimmune encephalomyelitis (EAE), a well-characterized mouse model of MS. EAE was induced in wild-type (WT) and Nlrp12 (-/-) mice with myelin oligodendrocyte glycoprotein (MOG):complete Freud's adjuvant (CFA). The spinal cords of healthy and immunized mice were extracted for immunofluorescence and pro-inflammatory gene analysis. Primary murine cortical microglia cell cultures of WT and Nlrp12 (-/-) were prepared with cortices of 1-day-old pups. The cells were stimulated with lipopolysaccharide (LPS) and analyzed for the expression of pro-inflammatory genes as well as pro-inflammatory molecule secretions. Over the course of 9 weeks, the Nlrp12 (-/-) mice demonstrated increased severity in the disease state, where they developed the disease earlier and reached significantly higher clinical scores compared to the WT mice. The spinal cords of immunized WT mice relative to healthy WT mice revealed a significant increase in Nlrp12 messenger ribonucleic acid (mRNA) expression at 1, 3, and 5 weeks post injection. A significant increase in the expression of pro-inflammatory genes Ccr5, Cox2

  15. Selective enrichment of Th1 CD45RBlow CD4+ T cells in autoimmune infiltrates in experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Renno, T; Zeine, R; Girard, J M

    1994-01-01

    The cytokine effector status of CD4+ T cells from lymph nodes (LN) and the central nervous system (CNS) of SJL/J mice immunized with autoantigen in adjuvant for the induction of experimental allergic encephalomyelitis (EAE) was compared. CD4+ T cells were FACS sorted based on the levels of expres......The cytokine effector status of CD4+ T cells from lymph nodes (LN) and the central nervous system (CNS) of SJL/J mice immunized with autoantigen in adjuvant for the induction of experimental allergic encephalomyelitis (EAE) was compared. CD4+ T cells were FACS sorted based on the levels...... of expression of the activation marker CD45RB. Low levels of expression of this surface marker are induced by antigen recognition and are associated with 'effector' T cell function. Reverse transcriptase polymerase chain reaction (PCR) was used to analyze the expression of different T cell cytokine genes...

  16. A new formulation of cannabidiol in cream shows therapeutic effects in a mouse model of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Giacoppo, Sabrina; Galuppo, Maria; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela

    2015-10-21

    The present study was designed to investigate the efficacy of a new formulation of alone, purified cannabidiol (CBD) (>98 %), the main non-psychotropic cannabinoid of Cannabis sativa, as a topical treatment in an experimental model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS). Particularly, we evaluated whether administration of a topical 1 % CBD-cream, given at the time of symptomatic disease onset, could affect the EAE progression and if this treatment could also recover paralysis of hind limbs, qualifying topical-CBD for the symptomatic treatment of MS. In order to have a preparation of 1 % of CBD-cream, pure CBD have been solubilized in propylene glycoland basic dense cream O/A. EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG35-55) in C57BL/6 mice. After EAE onset, mice were allocated into several experimental groups (Naïve, EAE, EAE-1 % CBD-cream, EAE-vehicle cream, CTRL-1 % CBD-cream, CTRL-vehicle cream). Mice were observed daily for signs of EAE and weight loss. At the sacrifice of the animals, which occurred at the 28(th) day from EAE-induction, spinal cord and spleen tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results surprisingly show that daily treatment with topical 1 % CBD-cream may exert neuroprotective effects against EAE, diminishing clinical disease score (mean of 5.0 in EAE mice vs 1.5 in EAE + CBD-cream), by recovering of paralysis of hind limbs and by ameliorating histological score typical of disease (lymphocytic infiltration and demyelination) in spinal cord tissues. Also, 1 % CBD-cream is able to counteract the EAE-induced damage reducing release of CD4 and CD8α T cells (spleen tissue localization was quantified about 10,69 % and 35,96 % of positive staining respectively in EAE mice) and expression of the main pro-inflammatory cytokines as well as several other

  17. Distinctive Roles for α7*- and α9*-Nicotinic Acetylcholine Receptors in Inflammatory and Autoimmune Responses in the Murine Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis.

    Science.gov (United States)

    Liu, Qiang; Whiteaker, Paul; Morley, Barbara J; Shi, Fu-Dong; Lukas, Ronald J

    2017-01-01

    Previous studies have demonstrated immunosuppressive and anti-inflammatory effects of nicotine, including in the experimental autoimmune encephalomyelitis (EAE) model in mice of some forms of multiple sclerosis (MS). Other studies using knock-out (KO) mice have implicated nicotinic acetylcholine (ACh) receptors containing α7, α9, or β2 subunits (α7*-, α9*- or β2*-nAChR) in different, disease-exacerbating or disease-ameliorating processes. These outcomes are in harmony with gene expression analyses showing nAChR subunit mRNA in many classes of immune system cell types. Consistent with influences on disease status, predictable effects of nAChR subunit (and subtype) KO, or of nicotine exposure, are seen on immune cell numbers and distribution and on cytokine levels or other markers of immunity, inflammation, demyelination, and axonal degradation. Providing support for our hypotheses about distinctive roles for nAChR subtypes in EAE, here we have used direct and adoptive EAE induction and a nAChR subunit gene double knock-out (DKO) strategy. Immune cell expression of nAChR α9 subunits as protein is demonstrated by immunostaining of isolated CD4+, CD8+, CD11b+ and CD11c+ cells from wild-type (WT) mice, but not in cells from nAChR α9 subunit KO animals. Nicotine exposure is protective against directly-induced EAE in WT or α7/α9 DKO animals relative to effects seen in WT/vehicle-treated mice, but, remarkably, EAE is exacerbated in vehicle-treated α7/α9 DKO mice. Brain lesion volume and intra-cranial inflammatory activity similarly are higher in DKO/vehicle than in WT/vehicle-treated animals, although nicotine's protective effects are seen in each instance. By contrast, in adoptive transfer studies, disease severity is attenuated and disease onset is delayed in recipients of splenocytes from WT animals treated with nicotine rather than with vehicle. Moreover, protection as seen in nicotine-treated WT animals is the same in recipients of splenocytes from nAChR

  18. Distinctive Roles for α7*- and α9*-Nicotinic Acetylcholine Receptors in Inflammatory and Autoimmune Responses in the Murine Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2017-09-01

    Full Text Available Previous studies have demonstrated immunosuppressive and anti-inflammatory effects of nicotine, including in the experimental autoimmune encephalomyelitis (EAE model in mice of some forms of multiple sclerosis (MS. Other studies using knock-out (KO mice have implicated nicotinic acetylcholine (ACh receptors containing α7, α9, or β2 subunits (α7*-, α9*- or β2*-nAChR in different, disease-exacerbating or disease-ameliorating processes. These outcomes are in harmony with gene expression analyses showing nAChR subunit mRNA in many classes of immune system cell types. Consistent with influences on disease status, predictable effects of nAChR subunit (and subtype KO, or of nicotine exposure, are seen on immune cell numbers and distribution and on cytokine levels or other markers of immunity, inflammation, demyelination, and axonal degradation. Providing support for our hypotheses about distinctive roles for nAChR subtypes in EAE, here we have used direct and adoptive EAE induction and a nAChR subunit gene double knock-out (DKO strategy. Immune cell expression of nAChR α9 subunits as protein is demonstrated by immunostaining of isolated CD4+, CD8+, CD11b+ and CD11c+ cells from wild-type (WT mice, but not in cells from nAChR α9 subunit KO animals. Nicotine exposure is protective against directly-induced EAE in WT or α7/α9 DKO animals relative to effects seen in WT/vehicle-treated mice, but, remarkably, EAE is exacerbated in vehicle-treated α7/α9 DKO mice. Brain lesion volume and intra-cranial inflammatory activity similarly are higher in DKO/vehicle than in WT/vehicle-treated animals, although nicotine’s protective effects are seen in each instance. By contrast, in adoptive transfer studies, disease severity is attenuated and disease onset is delayed in recipients of splenocytes from WT animals treated with nicotine rather than with vehicle. Moreover, protection as seen in nicotine-treated WT animals is the same in recipients of

  19. ZSTK474, a novel PI3K inhibitor, modulates human CD14+ monocyte-derived dendritic cell functions and suppresses experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Xue, Zhenyi; Li, Wen; Wang, Huafeng; Huang, Biao; Ge, Zhenzhen; Gu, Chao; Liu, Ying; Zhang, Kai; Yang, Juhong; Han, Rong; Peng, Meiyu; Li, Yan; Zhang, Da; Da, Yurong; Yao, Zhi; Zhang, Rongxin

    2014-10-01

    ZSTK474 [2-(2-difluoromethylbenzimidazol-1-yl)-4,6-dimorpholino-1,3,5-triazine] is a novel phosphatidylinositol 3-kinase (PI3K) inhibitor that exhibits potent antitumor effects. Recent studies have shown that ZSTK474 is also with anti-inflammatory properties in collagen-induced arthritis. However, the effects of ZSTK474 on dendritic cells and inflammatory Th17 cell-mediated autoimmune central nervous system inflammation are not understood. In this study, we demonstrated that ZSTK474 suppressed human CD14(+) monocyte-derived dendritic cell differentiation, maturation, and endocytosis, and further inhibited the stimulatory function of mature dendritic cell on allogeneic T cell proliferation. In addition, ZSTK474 inhibited the expression of dendritic cell-derived Th1 and Th17 cells polarizing cytokines interferon-γ/interleukin (IL)-12 and IL-6/IL-23. Furthermore, our results indicated that the in vivo administration of ZSTK474, which targets the dendritic cell and inflammatory Th1 and Th17 cell, led to a reduction of clinical score, central nervous system inflammation, and demyelination of mouse experimental autoimmune encephalomyelitis. Therefore, ZSTK474 significantly suppressed the human CD14(+) monocyte-derived dendritic cell functions and ameliorated mouse experimental autoimmune encephalomyelitis. We further found that ZSTK474 inhibited the phosphorylation of PI3K downstream signaling Akt and glycogen synthase kinase 3 beta in the dendritic cell. These data suggested that ZSTK474 exerted potent anti-inflammatory and immunosuppressive properties via PI3K signaling and may serve as a potential therapeutic drug for multiple sclerosis and other autoimmune inflammatory diseases. Key messages: STK474 inhibits dendritic cell (DC) differentiation and maturation. ZSTK474 inhibits DC-derived Th1 and Th17-polarizing cytokines. ZSTK474 ameliorates EAE and suppresses DCs, Th1, and Th17 cells in EAE. ZSTK474 reduces CNS inflammation and demyelination of EAE mice. ZSTK474

  20. Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption.

    Science.gov (United States)

    Souza, Priscila S; Gonçalves, Elaine D; Pedroso, Giulia S; Farias, Hemelin R; Junqueira, Stella C; Marcon, Rodrigo; Tuon, Talita; Cola, Maíra; Silveira, Paulo C L; Santos, Adair R; Calixto, João B; Souza, Cláudio T; de Pinho, Ricardo A; Dutra, Rafael C

    2017-08-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) caused by demyelination, immune cell infiltration, and axonal damage. Herein, we sought to investigate the influence of physical exercise on mice experimental autoimmune encephalomyelitis (EAE), a reported MS model. Data show that both strength and endurance training protocols consistently prevented clinical signs of EAE and decreased oxidative stress, an effect which was likely due to improving genomic antioxidant defense-nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response elements (ARE) pathway-in the CNS. In addition, physical exercise inhibited the production of pro-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-17, and IL-1β in the spinal cord of mice with EAE. Of note, spleen cells obtained from strength training group incubated with MOG 35-55 showed a significant upregulation of CD25 and IL-10 levels, with a decrease of IL-6, MCP-1, and tumor necrosis factor (TNF)-α production, mainly, during acute and chronic phase of EAE. Moreover, these immunomodulatory effects of exercise were associated with reduced expression of adhesion molecules, especially of platelet and endothelial cell adhesion molecule 1 (PECAM-1). Finally, physical exercise also restored the expression of tight junctions in spinal cord. Together, these results demonstrate that mild/moderate physical exercise, when performed regularly in mice, consistently attenuates the progression and pathological hallmarks of EAE, thereby representing an important non-pharmacological intervention for the improvement of immune-mediated diseases such as MS. Graphical Abstract Schematic diagram illustrating the beneficial effects of physical exercise during experimental model of MS. Physical exercise, especially strength (ST) and endurance (ET) training protocols, inhibits the development and progression of disease, measured by the mean maximal clinical score (1.5 and 1.0, respectively

  1. Vitamin D3 and Monomethyl Fumarate Enhance Natural Killer Cell Lysis of Dendritic Cells and Ameliorate the Clinical Score in Mice Suffering from Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Zaidoon Al-Jaderi

    2015-11-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is a CD4+ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139–151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D3 (vitamin D3, or with monomethyl fumarate (MMF was then examined. We observed that both vitamin D3 and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK cells from vitamin D3-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS is to enhance NK cell lysis of dendritic cells.

  2. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    Macrophage inflammatory protein (MIP)-1alpha is a chemokine that is associated with Th1 cytokine responses. Expression and antibody blocking studies have implicated MIP-1alpha in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). We examined the role of MIP-1alpha...... and its CCR5 receptor in the induction of EAE by immunizing C57BL / 6 mice deficient in either MIP-1alpha or CCR5 with myelin oligodendrocyte glycoprotein (MOG). We found that MIP-1alpha-deficient mice were fully susceptible to MOG-induced EAE. These knockout animals were indistinguishable from wild-type...... mice in Th1 cytokine gene expression, the kinetics and severity of disease, and infiltration of the central nervous system by lymphocytes, macrophages and granulocytes. RNase protection assays showed comparable accumulation of mRNA for the chemokines interferon-inducible protein-10, RANTES, macrophage...

  3. Inosine, an Endogenous Purine Nucleoside, Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis: a Role for A2A Adenosine Receptor.

    Science.gov (United States)

    Junqueira, Stella Célio; Dos Santos Coelho, Igor; Lieberknecht, Vicente; Cunha, Mauricio Peña; Calixto, João B; Rodrigues, Ana Lúcia S; Santos, Adair Roberto Soares; Dutra, Rafael Cypriano

    2017-07-01

    Multiple sclerosis (MS) is a T cell autoimmune, inflammatory, and demyelinating disease of the central nervous system (CNS). Currently available therapies have partially effective actions and numerous side reactions. Inosine, an endogenous purine nucleoside, has immunomodulatory, neuroprotective, and analgesic properties. Herein, we evaluated the effect of inosine on the development and progression of experimental autoimmune encephalomyelitis (EAE), an experimental model of MS. Inosine (1 or 10 mg/kg, i.p.) was administrated twice a day for 40 days. Immunological and inflammatory responses were evaluated by behavioral, histological, immunohistochemical, ELISA, RT-PCR, and Western blotting analysis. The administration of inosine exerted neuroprotective effects against EAE by diminishing clinical signs, including thermal and mechanical hyperalgesia, as well as weight loss typical of the disease. These beneficial effects of inosine seem to be associated with the blockade of inflammatory cell entry into the CNS, especially lymphocytes, thus delaying the demyelinating process and astrocytes activation. In particular, up-regulation of IL-17 levels in the secondary lymphoid tissues, a result of EAE, was prevented by inosine treatment in EAE mice. Additionally, inosine consistently prevented A2AR up-regulation in the spinal cord, likely, through an ERK1-independent pathway. Altogether, these results allow us to propose that this endogenous purine might be a putative novel and helpful tool for the prevention of autoimmune and neurodegenerative diseases, such as MS. Thus, inosine could have considerable implications for future therapies of MS, and this study may represent the starting point for further investigation into the role of inosine and adenosinergic receptors in neuroinflammation processes. Graphical Abstract Preventive treatment with inosine inhibits the development and progression of EAE in C57Bl/6 mice. Furthermore, neuroinflammation and demyelinating processes

  4. Antineuroinflammatory and neurotrophic effects of CNTF and C16 peptide in an acute experimental autoimmune encephalomyelitis rat model

    Directory of Open Access Journals (Sweden)

    Marong eFang

    2013-12-01

    Full Text Available Experimentalallergic encephalomyelitis (EAE is an animal model for inflammatory demyelinating autoimmune disease, i.e., multiple sclerosis (MS. In the present study, we investigated the antineuroinflammatory/neuroprotective effects of C16, an ανβ3 integrin-binding peptide, and recombinant rat ciliary neurotrophic factor (CNTF, a cytokine that was originally identified as a survival factor for neurons, in an acute rodent EAE model. In this model, C16 peptide was injected intravenously every day for 2 weeks, and CNTF was delivered into the cerebral ventricles with Alzet miniosmotic pumps. Disease severity was assessed weekly using a scale ranging from 0 to 5. Multiple histological and molecular biological assays were employed to assess inflammation, axonal loss, neuronal apoptosis, white matter demyelination, and gliosis in the brain and spinal cord of different groups. Our results showed that the EAE induced rats revealed a significant increase in inflammatory cells infiltration, while C16 treatment could inhibit the infiltration of leukocytes and macrophages down to 2/3-1/3 of vehicle treated EAE control (P<0.05. The delayed onset of disease, reduced clinical score (P<0.01 in peak stage and more rapid recovery also were achieved in C16 treated group. Besides impairing inflammation, CNTF treatment also exerted direct neuroprotective effects, decreasing demyelination and axon loss score (P<0.05 Vs vehicle treated EAE control, and reducing the neuronal death from 40%-50% to 10%-20% (P<0.05. Both treatments suppressed the expression of cytokine tumor necrosis factor-α and interferon-when compared with the vehicle control (P<0.05. Combined treatment with C16 and CNTF produced more obvious functional recovery and neuroprotective effects than individually treatment (P<0.05. These results suggested that combination treatment with C16 and CNTF, which target different neuroprotection pathways, may be an effective therapeutic alternative to

  5. Elevated serum [Met(5)]-enkephalin levels correlate with improved clinical and behavioral outcomes in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Ludwig, Michael D; Zagon, Ian S; McLaughlin, Patricia J

    2017-09-01

    Methionine enkephalin ([Met(5)]-enkephalin, Opioid growth factor (OGF)) is a small neuropeptide with growth-related as well as immunomodulatory properties. OGF is distributed widely throughout the body, is both autocrine and paracrine produced, and has a very short half-life in serum. In addition to its neurotransmitter functions, OGF inhibits cell replication of a wide variety of cells involved in the autoimmune process. In this preclinical study, mice were immunized with myelin oligodendrocytic glycoprotein (MOG35-55) to establish a chronic progressive form of autoimmune encephalomyelitis (EAE), and serum enkephalin levels were assessed throughout the disease as well as in response to OGF therapy in order to determine whether OGF may be a biological marker for EAE and multiple sclerosis. Immunized mice were randomly assigned to groups receiving daily 10mg/kg OGF (n=24) or saline (n=25) beginning at the time of established disease and clinical behavior. Open field activity, rearing, forced swimming, and novel object tests were monitored. Serum levels of peptide were measured prior to immunization, before clinical symptoms were observed, and at the onset and peak period of disease. Spinal cord neuropathology was evaluated 40days after immunization. EAE disease onset occurred on day 9 post immunization when the mean clinical score was 1.5. Peak disease scores for saline-injected EAE mice reached a mean of 5.7 on day 18, whereas mice receiving OGF had a peak clinical score of 2.5. Behavioral tests conducted 5days post-immunization (and before clinical signs of EAE) revealed that EAE mice had reduced serum enkephalin levels related to elevated clinical disease scores. Serum levels of enkephalin collected at peak disease and after 40days correlated with clinical scores. Disease status was associated with activity in the open field, rearing, time associating with a novel object, and pain sensitivity. Clinical signs of EAE correlated with levels of enkephalins such that

  6. Treatment with tanshinone IIA suppresses disruption of the blood-brain barrier and reduces expression of adhesion molecules and chemokines in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Yang, Xue; Yan, Jun; Feng, Juan

    2016-01-15

    Tanshinone IIA (TSIIA), one of the major bioactive components of the traditional Chinese herb Salvia miltiorrhiza, has been reported to have both anti-inflammatory and immunoregulatory effects. The effect of treatment with TSIIA in multiple sclerosis, an autoimmune inflammatory neurodegenerative disease, however, remains poorly understood. In the present study, experimental autoimmune encephalomyelitis (EAE), a classical experimental model of MS, was used to investigate the therapeutic effect of TSIIA. TSIIA attenuated motor dysfunction and improved inflammation and demyelination associated with EAE in a dose-dependent manner. TSIIA also significantly reduced the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule-1 (Iba-1), and protected the integrity of the blood-brain barrier (BBB) by increasing the expression of critical endothelial tight junction (TJ) proteins. TSIIA also inhibited the expression of some adhesion molecules and chemokines, which are considered to be critical for adhesion of immune cells and migration across the BBB. TSIIA was thus shown to be effective in the treatment of EAE through preventing the infiltration of immune cells into the CNS, strengthening the integrity of the BBB and decreasing the numbers of adhesion molecules and chemokines. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease

    Directory of Open Access Journals (Sweden)

    Steinman Lawrence

    2008-02-01

    Full Text Available Abstract Background Experimental autoimmune encephalomyelitis is a widely used animal model to understand not only multiple sclerosis but also basic principles of immunity. The disease is scored typically by observing signs of paralysis, which do not always correspond with pathological changes. Methods Experimental autoimmune encephalomyelitis was induced in transgenic mice expressing an injury responsive luciferase reporter in astrocytes (GFAP-luc. Bioluminescence in the brain and spinal cord was measured non-invasively in living mice. Mice were sacrificed at different time points to evaluate clinical and pathological changes. The correlation between bioluminescence and clinical and pathological EAE was statistically analyzed by Pearson correlation analysis. Results Bioluminescence from the brain and spinal cord correlates strongly with severity of clinical disease and a number of pathological changes in the brain in EAE. Bioluminescence at early time points also predicts severity of disease. Conclusion These results highlight the potential use of bioluminescence imaging to monitor neuroinflammation for rapid drug screening and immunological studies in EAE and suggest that similar approaches could be applied to other animal models of autoimmune and inflammatory disorders.

  8. Absence of Notch1 in murine myeloid cells attenuates the development of experimental autoimmune encephalomyelitis by affecting Th1 and Th17 priming.

    Science.gov (United States)

    Fernández, Miriam; Monsalve, Eva M; López-López, Susana; Ruiz-García, Almudena; Mellado, Susana; Caminos, Elena; García-Ramírez, José Javier; Laborda, Jorge; Tranque, Pedro; Díaz-Guerra, María José M

    2017-12-01

    Inhibition of Notch signalling in T cells attenuates the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Growing evidence indicates that myeloid cells are also key players in autoimmune processes. Thus, the present study evaluates the role of the Notch1 receptor in myeloid cells on the progression of myelin oligodendrocyte glycoprotein (MOG) 35-55 -induced EAE, using mice with a myeloid-specific deletion of the Notch1 gene (MyeNotch1KO). We found that EAE progression was less severe in the absence of Notch1 in myeloid cells. Thus, histopathological analysis revealed reduced pathology in the spinal cord of MyeNotch1KO mice, with decreased microglia/astrocyte activation, demyelination and infiltration of CD4 + T cells. Moreover, these mice showed lower Th1 and Th17 cell infiltration and expression of IFN-γ and IL-17 mRNA in the spinal cord. Accordingly, splenocytes from MyeNotch1KO mice reactivated in vitro presented reduced Th1 and Th17 activation, and lower expression of IL-12, IL-23, TNF-α, IL-6, and CD86. Moreover, reactivated wild-type splenocytes showed increased Notch1 expression, arguing for a specific involvement of this receptor in autoimmune T cell activation in secondary lymphoid tissues. In summary, our results reveal a key role of the Notch1 receptor in myeloid cells for the initiation and progression of EAE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reversal of paralysis and reduced inflammation from peripheral administration of β-amyloid in TH1 and TH17 versions of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Grant, Jacqueline L; Ghosn, Eliver Eid Bou; Axtell, Robert C; Herges, Katja; Kuipers, Hedwich F; Woodling, Nathan S; Andreasson, Katrin; Herzenberg, Leonard A; Herzenberg, Leonore A; Steinman, Lawrence

    2012-08-01

    β-Amyloid 42 (Aβ42) and β-amyloid 40 (Aβ40), major components of senile plaque deposits in Alzheimer's disease, are considered neurotoxic and proinflammatory. In multiple sclerosis, Aβ42 is up-regulated in brain lesions and damaged axons. We found, unexpectedly, that treatment with either Aβ42 or Aβ40 peptides reduced motor paralysis and brain inflammation in four different models of experimental autoimmune encephalomyelitis (EAE) with attenuation of motor paralysis, reduction of inflammatory lesions in the central nervous system (CNS), and suppression of lymphocyte activation. Aβ42 and Aβ40 treatments were effective in reducing ongoing paralysis induced with adoptive transfer of either autoreactive T helper 1 (T(H)1) or T(H)17 cells. High-dimensional 14-parameter flow cytometry of peripheral immune cell populations after in vivo Aβ42 and Aβ40 treatment revealed substantial modulations in the percentage of lymphoid and myeloid subsets during EAE. Major proinflammatory cytokines and chemokines were reduced in the blood after Aβ peptide treatment. Protection conferred by Aβ treatment did not require its delivery to the brain: Adoptive transfer with lymphocytes from donors treated with Aβ42 attenuated EAE in wild-type recipient mice, and Aβ deposition in the brain was not detected in treated EAE mice by immunohistochemical analysis. In contrast to the improvement in EAE with Aβ treatment, EAE was worse in mice with genetic deletion of the amyloid precursor protein. Therefore, in the absence of Aβ, there is exacerbated clinical EAE disease progression. Because Aβ42 and Aβ40 ameliorate experimental autoimmune inflammation targeting the CNS, we might now consider its potential anti-inflammatory role in other neuropathological conditions.

  10. 1,25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H17 cells to protect against experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Chang

    Full Text Available BACKGROUND: Vitamin D(3, the most physiologically relevant form of vitamin D, is an essential organic compound that has been shown to have a crucial effect on the immune responses. Vitamin D(3 ameliorates the onset of the experimental autoimmune encephalomyelitis (EAE; however, the direct effect of vitamin D(3 on T cells is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In an in vitro system using cells from mice, the active form of vitamin D(3 (1,25-dihydroxyvitamin D(3 suppresses both interleukin (IL-17-producing T cells (T(H17 and regulatory T cells (Treg differentiation via a vitamin D receptor signal. The ability of 1,25-dihydroxyvitamin D(3 (1,25(OH(2D(3 to reduce the amount of IL-2 regulates the generation of Treg cells, but not T(H17 cells. Under T(H17-polarizing conditions, 1,25(OH(2D(3 helps to increase the numbers of IL-10-producing T cells, but 1,25(OH(2D(3's negative regulation of T(H17 development is still defined in the IL-10(-/- T cells. Although the STAT1 signal reciprocally affects the secretion of IL-10 and IL-17, 1,25(OH(2D(3 inhibits IL-17 production in STAT1(-/- T cells. Most interestingly, 1,25(OH(2D(3 negatively regulates CCR6 expression which might be essential for T(H17 cells to enter the central nervous system and initiate EAE. CONCLUSIONS/SIGNIFICANCE: Our present results in an experimental murine model suggest that 1,25(OH(2D(3 can directly regulate T cell differentiation and could be applied in preventive and therapeutic strategies for T(H17-mediated autoimmune diseases.

  11. Effect of ethanol extract of saffron (Crocus sativus L.) on the inhibition of experimental autoimmune encephalomyelitis in C57bl/6 mice.

    Science.gov (United States)

    Ghazavi, A; Mosayebi, G; Salehi, H; Abtahi, H

    2009-05-01

    In this study, effect of ethanol extract of Saffron (Crocus sativus L.) in the treatment of Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6 mice was evaluated. EAE was induced by immunization of 8 week old mice with MOG(35-55) with complete Freunds adjuvant. Therapy with saffron was started on day the immunization. Total Antioxidant Capacity (TAC) was assessed by Ferric Reducing-Antioxidant Power (FRAP) method. Nitric oxide (NO) production was also estimated by Griess reaction. For histological analysis, mice brain was harvested and sections were stained with Hematoxylin-Eosin. After daily oral dosage the saffron significantly reduced the clinical symptoms in C57BL/6 mice with EAE. Also, treated mice displayed a delayed disease onset compared with control mice. TAC production was significantly elevated in saffron treated mice. Effect of saffron on serum NO production was not significant. Typical spinal cord leukocyte infiltration was observed in control mice compared with saffron treated mice. These results suggest for the first time that saffron is effective in the prevention of symptomatic EAE by inhibition of oxidative stress and leukocyte infiltration to CNS and may be potentially useful for the treatment of Multiple Sclerosis (MS).

  12. Effects of prophylactic and therapeutic teriflunomide in transcranial magnetic stimulation-induced motor-evoked potentials in the dark agouti rat model of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Iglesias-Bregna, Deborah; Hanak, Susan; Ji, Zhongqi; Petty, Margaret; Liu, Li; Zhang, Donghui; McMonagle-Strucko, Kathleen

    2013-10-01

    Teriflunomide is a once-daily oral immunomodulatory agent recently approved in the United States for the treatment of relapsing multiple sclerosis (RMS). This study investigated neurophysiological deficits in descending spinal cord motor tracts during experimental autoimmune encephalomyelitis (EAE; a model of multiple sclerosis) and the functional effectiveness of prophylactic or therapeutic teriflunomide treatment in preventing the debilitating paralysis observed in this model. Relapsing-remitting EAE was induced in Dark Agouti rats using rat spinal cord homogenate. Animals were treated with oral teriflunomide (10 mg/kg daily) prophylactically, therapeutically, or with vehicle (control). Transcranial magnetic motor-evoked potentials were measured throughout the disease to provide quantitative assessment of the neurophysiological status of descending motor tracts. Axonal damage was quantified histologically by silver staining. Both prophylactic and therapeutic teriflunomide treatment significantly reduced maximum EAE disease scores (P teriflunomide treatment regimens prevented a delay in wave-form latency and a decrease in wave-form amplitude compared with that observed in vehicle-treated animals. A significant reduction in axonal loss was observed with both teriflunomide treatment regimens compared with vehicle (P teriflunomide can prevent the deficits observed in this animal model in descending spinal cord motor tracts. The mechanism behind reduced axonal loss and improved motor function may be primarily the reduced inflammation and consequent demyelination observed in these animals through the known effects of teriflunomide on impairing proliferation of stimulated T cells. These findings may have significant implications for patients with RMS.

  13. Progression of experimental autoimmune encephalomyelitis is associated with up-regulation of major sodium transporters in the mouse kidney cortex under a normal salt diet.

    Science.gov (United States)

    Zhou, Xiaoming; Packialakshmi, Balamurugan; Xiao, Yao; Nurmukhambetova, Saule; Lees, Jason R

    2017-07-01

    Recent demonstrations of exacerbation of experimental autoimmune encephalomyelitis (EAE) by high salt diets prompted us to study whether EAE stimulated Na absorption by the renal cortex, a primary regulatory site for Na balance, even under a normal NaCl diet. We found that as EAE progressed from mild to severe symptoms, there were parallel increases in the protein abundance of NHE3 and αENaC and the Na,K-ATPase activity with an affiliated elevation of its β1-subunit protein. These effects are associated with increases in the protein levels of the well-known regulators SGK1 and scaffold NHERF2, and phosphorylation of ERK1/2. These effects of EAE could not be explained by reduction in water or food intake. We conclude that EAE progression is associated with up-regulation of major Na transporters, which is most likely driven by increased expression of SGK1 and NHERF2 and activation of ERK1/2. These data suggest that EAE progression increases Na absorption by the renal cortex. Copyright © 2017. Published by Elsevier Inc.

  14. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease.

    Science.gov (United States)

    Jafarzadeh, A; Mohammadi-Kordkhayli, M; Ahangar-Parvin, R; Azizi, V; Khoramdel-Azad, H; Shamsizadeh, A; Ayoobi, A; Nemati, M; Hassan, Z M; Moazeni, S M; Khaksari, M

    2014-11-15

    The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model

    Science.gov (United States)

    Al-Ghobashy, Medhat A.; Elmeshad, Aliaa N.; Abdelsalam, Rania M.; Nooh, Mohammed M.; Al-Shorbagy, Muhammad; Laible, Götz

    2017-04-01

    Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ε-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. In conclusion: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.

  16. A Novel Cervical Spinal Cord Window Preparation Allows for Two-Photon Imaging of T-Cell Interactions with the Cervical Spinal Cord Microvasculature during Experimental Autoimmune Encephalomyelitis

    Science.gov (United States)

    Haghayegh Jahromi, Neda; Tardent, Heidi; Enzmann, Gaby; Deutsch, Urban; Kawakami, Naoto; Bittner, Stefan; Vestweber, Dietmar; Zipp, Frauke; Stein, Jens V.; Engelhardt, Britta

    2017-01-01

    T-cell migration across the blood–brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Two-photon intravital microscopy (2P-IVM) has been established as a powerful tool to study cell–cell interactions in inflammatory EAE lesions in living animals. In EAE, central nervous system inflammation is strongly pronounced in the spinal cord, an organ in which 2P-IVM imaging is technically very challenging and has been limited to the lumbar spinal cord. Here, we describe a novel spinal cord window preparation allowing to use 2P-IVM to image immune cell interactions with the cervical spinal cord microvascular endothelium during EAE. We describe differences in the angioarchitecture of the cervical spinal cord versus the lumbar spinal cord, which will entail different hemodynamic parameters in these different vascular beds. Using T cells as an example, we demonstrate the suitability of this novel methodology in imaging the post-arrest multistep T-cell extravasation across the cervical spinal cord microvessels. The novel methodology includes an outlook to the analysis of the cellular pathway of T-cell diapedesis across the BBB by establishing visualization of endothelial junctions in this vascular bed. PMID:28443093

  17. Oral Administration of the Probiotic Strain Escherichia coli Nissle 1917 Reduces Susceptibility to Neuroinflammation and Repairs Experimental Autoimmune Encephalomyelitis-Induced Intestinal Barrier Dysfunction

    Directory of Open Access Journals (Sweden)

    Thomas Secher

    2017-09-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disease of the central nervous system (CNS with an increasing incidence in developed countries. Recent reports suggest that modulation of the gut microbiota might be one promising therapy for MS. Here, we investigated whether the probiotic Escherichia coli strain Nissle 1917 (ECN could modulate the outcome of experimental autoimmune encephalomyelitis (EAE, a murine model of MS. We evidenced that daily oral treatment with ECN, but not with the archetypal K12 E. coli strain MG1655, reduced the severity of EAE induced by immunization with the MOG35–55 peptide. This beneficial effect was associated with a decreased secretion of inflammatory cytokines and an increased production of the anti-inflammatory cytokine IL-10 by autoreactive CD4 T cells, both in peripheral lymph nodes and CNS. Interestingly, ECN-treated mice exhibited increased numbers of MOG-specific CD4+ T cells in the periphery contrasting with severely reduced numbers in the CNS, suggesting that ECN might affect T cell migration from the periphery to the CNS through a modulation of their activation and/or differentiation. In addition, we demonstrated that EAE is associated with a profound defect in the intestinal barrier function and that treatment with ECN, but not with MG1655, repaired intestinal permeability dysfunction. Collectively, our data reveal that EAE induces a disruption of the intestinal homeostasis and that ECN protects from disease and restores the intestinal barrier function.

  18. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-11-04

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  19. GM-CSF Promotes Chronic Disability in Experimental Autoimmune Encephalomyelitis by Altering the Composition of Central Nervous System-Infiltrating Cells, but Is Dispensable for Disease Induction.

    Science.gov (United States)

    Duncker, Patrick C; Stoolman, Joshua S; Huber, Amanda K; Segal, Benjamin M

    2017-12-29

    GM-CSF has been portrayed as a critical cytokine in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and, ostensibly, in multiple sclerosis. C57BL/6 mice deficient in GM-CSF are resistant to EAE induced by immunization with myelin oligodendrocyte glycoprotein (MOG)35-55 The mechanism of action of GM-CSF in EAE is poorly understood. In this study, we show that GM-CSF augments the accumulation of MOG35-55-specific T cells in the skin draining lymph nodes of primed mice, but it is not required for the development of encephalitogenic T cells. Abrogation of GM-CSF receptor signaling in adoptive transfer recipients of MOG35-55-specific T cells did not alter the incidence of EAE or the trajectory of its initial clinical course, but it limited the extent of chronic CNS tissue damage and neurologic disability. The attenuated clinical course was associated with a relative dearth of MOG35-55-specific T cells, myeloid dendritic cells, and neutrophils, as well as an abundance of B cells, within CNS infiltrates. Our data indicate that GM-CSF drives chronic tissue damage and disability in EAE via pleiotropic pathways, but it is dispensable during early lesion formation and the onset of neurologic deficits. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Evaluation of the co-registration capabilities of a MRI/PET compatible bed in an Experimental autoimmune encephalomyelitis (EAE) model

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Giovanna, E-mail: giovanna.esposito@unito.it [Molecular and Preclinical Imaging Center, University of Torino (Italy); D' angeli, Luca; Bartoli, Antonietta [Molecular and Preclinical Imaging Center, University of Torino (Italy); Chaabane, Linda [INSPE-Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milano (Italy); Terreno, Enzo [Molecular and Preclinical Imaging Center, University of Torino (Italy)

    2013-02-21

    Positron Emission Tomography (PET) with {sup 18}F-FDG is a promising tool for the detection and evaluation of active inflammation in animal models of neuroinflammation. MRI is a complementary imaging technique with high resolution and contrast suitable to obtain the anatomical data required to analyze PET data. To combine PET and MRI modalities, we developed a support bed system compatible for both scanners that allowed to perform imaging exams without animal repositioning. With this approach, MRI and PET data were acquired in mice with Experimental autoimmune encephalomyelitis (EAE). In this model, it was possible to measure a variation of {sup 18}F-FDG uptake proportional to the degree of disease severity which is mainly related to Central Nervous System (CNS) inflammation. Against the low resolved PET images, the co-registered MRI/PET images allowed to distinguish the different brain structures and to obtain a more accurate tracer evaluation. This is essential in particular for brain regions whose size is of the order of the spatial resolution of PET.

  1. Treatment with a recombinant human IgM that recognizes PSA-NCAM preserves brain pathology in MOG-induced experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Lemus, Hernan Nicolas; Warrington, Arthur E; Denic, Aleksandar; Wootla, Bharath; Rodriguez, Moses

    2017-01-01

    A single peripheral dose of CNS-binding IgMs promote remyelination and preserve axons in a number of animal models of neurologic disease. A myelin-binding recombinant human IgM (rHIgM22) is presently in a safety trial in MS patients following an acute MS exacerbation. rHIgM22 (directed against oligodendrocytes) or rHIgM12 (directed against neurons) were administered to mice with MOG-induced experimental autoimmune encephalomyelitis (EAE) with study endpoints: clinical deficits and brain and spinal cord pathology. IgMs were administered at a therapeutic dose of 100 μ g intra peritoneal at the time of immunization (day -1, 0, +$1), disease onset (15 days) or peak of the disease (28 days). Disease course was not worsened by either human IgM regardless of the time of treatment. Of note, the human IgM that recognizes a carbohydrate epitope on gangliosides and NCAM, rHIgM12, reduced brain pathology when given at time of immunization or at onset of disease, but did not reduce clinical deficits or spinal cord disease burden. Hence, treatment with rHIgM12 resulted in marked reduction in meningeal inflammation. Data consistent with the hypothesis that in the EAE model this molecule has an immune-modulatory effect. Treatment with an anti-CD4 blocking IgG prevented both clinical course and CNS pathology. This pre-clinical study further supports the safety of therapeutic CNS-binding human IgMs in the presence of autoimmunity and clearly differentiates them from IgGs directed against MOG or aquaporin-4 that worsen neurologic disease.

  2. Parent-of-origin effects implicate epigenetic regulation of experimental autoimmune encephalomyelitis and identify imprinted Dlk1 as a novel risk gene.

    Directory of Open Access Journals (Sweden)

    Pernilla Stridh

    2014-03-01

    Full Text Available Parent-of-origin effects comprise a range of genetic and epigenetic mechanisms of inheritance. Recently, detection of such effects implicated epigenetic mechanisms in the etiology of multiple sclerosis (MS, a chronic inflammatory disease of the central nervous system. We here sought to dissect the magnitude and the type of parent-of-origin effects in the pathogenesis of experimental neuroinflammation under controlled environmental conditions. We investigated inheritance of an MS-like disease in rat, experimental autoimmune encephalomyelitis (EAE, using a backcross strategy designed to identify the parental origin of disease-predisposing alleles. A striking 37-54% of all detected disease-predisposing loci depended on parental transmission. Additionally, the Y chromosome from the susceptible strain contributed to disease susceptibility. Accounting for parent-of-origin enabled more powerful and precise identification of novel risk factors and increased the disease variance explained by the identified factors by 2-4-fold. The majority of loci displayed an imprinting-like pattern whereby a gene expressed only from the maternal or paternal copy exerts an effect. In particular, a locus on chromosome 6 comprises a well-known cluster of imprinted genes including the paternally expressed Dlk1, an atypical Notch ligand. Disease-predisposing alleles at the locus conferred lower Dlk1 expression in rats and, together with data from transgenic overexpressing Dlk1 mice, demonstrate that reduced Dlk1 drives more severe disease and modulates adaptive immune reactions in EAE. Our findings suggest a significant epigenetic contribution to the etiology of EAE. Incorporating these effects enables more powerful and precise identification of novel risk factors with diagnostic and prognostic implications for complex disease.

  3. Parent-of-Origin Effects Implicate Epigenetic Regulation of Experimental Autoimmune Encephalomyelitis and Identify Imprinted Dlk1 as a Novel Risk Gene

    Science.gov (United States)

    Bergman, Petra; Thessén Hedreul, Mélanie; Flytzani, Sevasti; Beyeen, Amennai Daniel; Gillett, Alan; Krivosija, Nina; Öckinger, Johan; Ferguson-Smith, Anne C.; Jagodic, Maja

    2014-01-01

    Parent-of-origin effects comprise a range of genetic and epigenetic mechanisms of inheritance. Recently, detection of such effects implicated epigenetic mechanisms in the etiology of multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. We here sought to dissect the magnitude and the type of parent-of-origin effects in the pathogenesis of experimental neuroinflammation under controlled environmental conditions. We investigated inheritance of an MS-like disease in rat, experimental autoimmune encephalomyelitis (EAE), using a backcross strategy designed to identify the parental origin of disease-predisposing alleles. A striking 37–54% of all detected disease-predisposing loci depended on parental transmission. Additionally, the Y chromosome from the susceptible strain contributed to disease susceptibility. Accounting for parent-of-origin enabled more powerful and precise identification of novel risk factors and increased the disease variance explained by the identified factors by 2-4-fold. The majority of loci displayed an imprinting–like pattern whereby a gene expressed only from the maternal or paternal copy exerts an effect. In particular, a locus on chromosome 6 comprises a well-known cluster of imprinted genes including the paternally expressed Dlk1, an atypical Notch ligand. Disease-predisposing alleles at the locus conferred lower Dlk1 expression in rats and, together with data from transgenic overexpressing Dlk1 mice, demonstrate that reduced Dlk1 drives more severe disease and modulates adaptive immune reactions in EAE. Our findings suggest a significant epigenetic contribution to the etiology of EAE. Incorporating these effects enables more powerful and precise identification of novel risk factors with diagnostic and prognostic implications for complex disease. PMID:24676147

  4. Transient decomplementation of mice delays onset of experimental autoimmune encephalomyelitis and impairs MOG-specific T cell response and autoantibody production.

    Science.gov (United States)

    Terényi, Nóra; Nagy, Nándor; Papp, Krisztián; Prechl, József; Oláh, Imre; Erdei, Anna

    2009-11-01

    Multiple sclerosis (MS) is the most common inflammatory and demyelinating disease of the central nervous system. In both MS and its animal model experimental autoimmune encephalomyelitis (EAE), it is thought that infiltrating CD4(+) T cells initiate an inflammatory process and collect other immune effectors to mediate tissue damage. The pathophysiology of the disease however remains unclear. Here we focus on the role of the complement system in the pathomechanism of EAE, employing mice with transiently depleted complement activity achieved by a single injection of cobra venom factor (CVF) 2 days before the induction of the disease. Our results show that in decomplemented C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55, the onset of the disease is significantly delayed. In SJL/J mice which develop a relapsing-remitting form of EAE after injection with proteolipid protein (PLP) peptide 139-151, the attenuation of both phases could be observed in CVF-treated animals. In C57BL/6 mice the level of MOG specific autoantibodies and their complement activating capacity evaluated on day 21 were found significantly reduced in animals transiently decomplemented before induction of the disease. The in vitro response of T cells isolated from the lymph nodes of MOG-immunized animals at the onset of EAE was also investigated. We found that the proliferative capacity of MOG-specific T lymphocytes derived from CVF treated animals is significantly reduced, in agreement with the histology of the spinal cords showing a decreased infiltration of CD4(+) T cells in these mice. Our data suggest, that lack of systemic complement at the time of induction of EAE delays the onset and attenuates the course of the disease most probably via diminishing the response of MOG-specific T cells and production of autoantibodies.

  5. Murine experimental autoimmune encephalomyelitis is diminished by treatment with the angiogenesis inhibitors B20-4.1.1 and angiostatin (K1-3.

    Directory of Open Access Journals (Sweden)

    Carolyn J MacMillan

    Full Text Available Angiogenesis is the formation of new blood vessels form pre-existing vasculature whose contribution to inflammatory conditions of the Central Nervous System is being studied in order to generate novel therapeutic targets. This study is the first to investigate the impact of two particular angiogenesis inhibitors on murine Experimental Autoimmune Encephalomyelitis (EAE, an inflammatory disease that mimics aspects of the human disease Multiple Sclerosis. The inhibitors were chosen to reduce angiogenesis by complimentary means. Extrinsic factors were targeted with B20-4.1.1 through its ability to bind to murine Vascular Endothelial Growth Factor (VEGF. Vascular processes connected to angiogenesis were targeted directly with K(1-3, the first three kringle domains of angiostatin. Mice treated with B20-4.1.1 and K(1-3 from onset of signs had reduced clinical scores 18-21 days after EAE induction. Both agents suppressed spinal cord angiogenesis without effect on local VEGF expression. B20-4.1.1 reduced spinal cord vascular permeability while K(1-3 had no effect. T cell infiltration into the spinal cord at day 21 was unaffected by either treatment. B20-4.1.1 reduced peripheral T cell proliferation while K(1-3 had no effect. Lymphoid cells from treated mice produced reduced levels of the T helper-17 (Th-17 cell cytokine interleukin (IL-17 with no effect on the Th-1 cytokine interferon (IFN-γ or Th-2 cytokine IL-4. However, when both drugs were added in vitro to naive T cells or to antigen stimulated T cells from mice with untreated EAE they had no effect on proliferation or levels of IL-17 or IFN-γ. We conclude that these angiogenesis inhibitors mitigate EAE by both suppressing spinal cord angiogenesis and reducing peripheral T cell activation.

  6. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  7. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Prieto Anne L

    2011-05-01

    Full Text Available Abstract Background Axl, together with Tyro3 and Mer, constitute the TAM family of receptor tyrosine kinases. In the nervous system, Axl and its ligand Growth-arrest-specific protein 6 (Gas6 are expressed on multiple cell types. Axl functions in dampening the immune response, regulating cytokine secretion, clearing apoptotic cells and debris, and maintaining cell survival. Axl is upregulated in various disease states, such as in the cuprizone toxicity-induced model of demyelination and in multiple sclerosis (MS lesions, suggesting that it plays a role in disease pathogenesis. To test for this, we studied the susceptibility of Axl-/- mice to experimental autoimmune encephalomyelitis (EAE, an animal model for multiple sclerosis. Methods WT and Axl-/- mice were immunized with myelin oligodendrocyte glycoprotein (MOG35-55 peptide emulsified in complete Freund's adjuvant and injected with pertussis toxin on day 0 and day 2. Mice were monitored daily for clinical signs of disease and analyzed for pathology during the acute phase of disease. Immunological responses were monitored by flow cytometry, cytokine analysis and proliferation assays. Results Axl-/- mice had a significantly more severe acute phase of EAE than WT mice. Axl-/- mice had more spinal cord lesions with larger inflammatory cuffs, more demyelination, and more axonal damage than WT mice during EAE. Strikingly, lesions in Axl-/- mice had more intense Oil-Red-O staining indicative of inefficient clearance of myelin debris. Fewer activated microglia/macrophages (Iba1+ were found in and/or surrounding lesions in Axl-/- mice relative to WT mice. In contrast, no significant differences were noted in immune cell responses between naïve and sensitized animals. Conclusions These data show that Axl alleviates EAE disease progression and suggests that in EAE Axl functions in the recruitment of microglia/macrophages and in the clearance of debris following demyelination. In addition, these data

  8. A Cyclic Altered Peptide Analogue Based on Myelin Basic Protein 87–99 Provides Lasting Prophylactic and Therapeutic Protection Against Acute Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Mary Emmanouil

    2018-01-01

    Full Text Available In this report, amide-linked cyclic peptide analogues of the 87–99 myelin basic protein (MBP epitope, a candidate autoantigen in multiple sclerosis (MS, are tested for therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE. Cyclic altered peptide analogues of MBP87–99 with substitutions at positions 91 and/or 96 were tested for protective effects when administered using prophylactic or early therapeutic protocols in MBP72–85-induced EAE in Lewis rats. The Lys91 and Pro96 of MBP87–99 are crucial T-cell receptor (TCR anchors and participate in the formation of trimolecular complex between the TCR-antigen (peptide-MHC (major histocompability complex for the stimulation of encephalitogenic T cells that are necessary for EAE induction and are implicated in MS. The cyclic peptides were synthesized using Solid Phase Peptide Synthesis (SPPS applied on the 9-fluorenylmethyloxycarboxyl/tert-butyl Fmoc/tBu methodology and combined with the 2-chlorotrityl chloride resin (CLTR-Cl. Cyclo(91–99[Ala96]MBP87–99, cyclo(87–99[Ala91,96]MBP87–99 and cyclo(87–99[Arg91, Ala96]MBP87–99, but not wild-type linear MBP87–99, strongly inhibited MBP72–85-induced EAE in Lewis rats when administered using prophylactic and early therapeutic vaccination protocols. In particular, cyclo(87–99[Arg91, Ala96]MBP87–99 was highly effective in preventing the onset and development of clinical symptoms and spinal cord pathology and providing lasting protection against EAE induction.

  9. Modulation of Neurological Deficits and Expression of Glutamate Receptors during Experimental Autoimmune Encephalomyelitis after Treatment with Selected Antagonists of Glutamate Receptors

    Directory of Open Access Journals (Sweden)

    Grzegorz Sulkowski

    2013-01-01

    Full Text Available The aim of our investigation was to characterize the role of group I mGluRs and NMDA receptors in pathomechanisms of experimental autoimmune encephalomyelitis (EAE, the rodent model of MS. We tested the effects of LY 367385 (S-2-methyl-4-carboxyphenylglycine, a competitive antagonist of mGluR1, MPEP (2-methyl-6-(phenylethynyl-pyridine, an antagonist of mGluR5, and the uncompetitive NMDA receptor antagonists amantadine and memantine on modulation of neurological deficits observed in rats with EAE. The neurological symptoms of EAE started at 10-11 days post-injection (d.p.i. and peaked after 12-13 d.p.i. The protein levels of mGluRs and NMDA did not increase in early phases of EAE (4 d.p.i., but starting from 8 d.p.i. to 25 d.p.i., we observed a significant elevation of mGluR1 and mGluR5 protein expression by about 20% and NMDA protein expression by about 10% over the control at 25 d.p.i. The changes in protein levels were accompanied by changes in mRNA expression of group I mGluRs and NMDARs. During the late disease phase (20–25 d.p.i., the mRNA expression levels reached 300% of control values. In contrast, treatment with individual receptor antagonists resulted in a reduction of mRNA levels relative to untreated animals.

  10. ASP4058, a novel agonist for sphingosine 1-phosphate receptors 1 and 5, ameliorates rodent experimental autoimmune encephalomyelitis with a favorable safety profile.

    Directory of Open Access Journals (Sweden)

    Rie Yamamoto

    Full Text Available Sphingosine-1-phosphate (S1P is a biologically active sphingolipid that acts through the members of a family of five G protein-coupled receptors (S1P1-S1P5. S1P1 is a major regulator of lymphocyte trafficking, and fingolimod, whose active metabolite fingolimod phosphate acts as a nonselective S1P receptor agonist, exerts its immunomodulatory effect, at least in part, by regulating the lymphocyte trafficking by inducing down regulation of lymphocyte S1P1. Here, we detail the pharmacological profile of 5-{5-[3-(trifluoromethyl-4-{[(2S-1,1,1-trifluoropropan-2-yl]oxy}phenyl]-1,2,4-oxadiazol-3-yl}-1H-benzimidazole (ASP4058, a novel next-generation S1P receptor agonist selective for S1P1 and S1P5. ASP4058 preferentially activates S1P1 and S1P5 compared with S1P2, 3, 4 in GTPγS binding assays in vitro. Oral administration of ASP4058 reduced the number of peripheral lymphocytes and inhibited the development of experimental autoimmune encephalomyelitis (EAE in Lewis rats. Further, ASP4058 prevented relapse of disease in a mouse model of relapsing-remitting EAE. Although these immunomodulatory effects were comparable to those of fingolimod, ASP4058 showed a wider safety margin than fingolimod for bradycardia and bronchoconstriction in rodents. These observations suggest that ASP4058 represents a new therapeutic option for treating multiple sclerosis that is safer than nonselective S1P receptor agonists such as fingolimod.

  11. Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Pennelope K. Blakely

    2015-10-01

    Full Text Available The matricellular proteins, secreted protein acidic and rich in cysteine (SPARC and SPARC-like 1 (SPARCL1, are produced by astrocytes and control excitatory synaptogenesis in the central nervous system. While SPARCL1 directly promotes excitatory synapse formation in vitro and in the developing nervous system in vivo, SPARC specifically antagonizes the synaptogenic actions of SPARCL1. We hypothesized these proteins also help maintain existing excitatory synapses in adult hosts, and that local inflammation in the spinal cord alters their production in a way that dynamically modulates motor synapses and impacts the severity of paralysis during experimental autoimmune encephalomyelitis (EAE in mice. Using a spontaneously remitting EAE model, paralysis severity correlated inversely with both expression of synaptic proteins and the number of synapses in direct contact with the perikarya of motor neurons in spinal grey matter. In both remitting and non-remitting EAE models, paralysis severity also correlated inversely with sparcl1:sparc transcript and SPARCL1:SPARC protein ratios directly in lumbar spinal cord tissue. In vitro, astrocyte production of both SPARCL1 and SPARC was regulated by T cell-derived cytokines, causing dynamic modulation of the SPARCL1:SPARC expression ratio. Taken together, these data support a model whereby proinflammatory cytokines inhibit SPARCL1 and/or augment SPARC expression by astrocytes in spinal grey matter that, in turn, cause either transient or sustained synaptic retraction from lumbar spinal motor neurons thereby regulating hind limb paralysis during EAE. Ongoing studies seek ways to alter this SPARCL1:SPARC expression ratio in favor of synapse reformation/maintenance and thus help to modulate neurologic deficits during times of inflammation. This could identify new astrocyte-targeted therapies for diseases such as multiple sclerosis.

  12. The disease-ameliorating function of autoregulatory CD8 T cells is mediated by targeting of encephalitogenic CD4 T cells in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Ortega, Sterling B; Kashi, Venkatesh P; Tyler, Andrew F; Cunnusamy, Khrishen; Mendoza, Jason P; Karandikar, Nitin J

    2013-07-01

    Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the CNS, and CD8 T cells are the predominant T cell population in MS lesions. Given that transfer of CNS-specific CD8 T cells results in an attenuated clinical demyelinating disease in C57BL/6 mice with immunization-induced experimental autoimmune encephalomyelitis (EAE), we investigated the cellular targets and mechanisms of autoreactive regulatory CD8 T cells. In this study we report that myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced CD8 T cells could also attenuate adoptively transferred, CD4 T cell-mediated EAE. Whereas CD8(-/-) mice exhibited more severe EAE associated with increased autoreactivity and inflammatory cytokine production by myelin-specific CD4 T cells, this was reversed by adoptive transfer of MOG-specific CD8 T cells. These autoregulatory CD8 T cells required in vivo MHC class Ia (K(b)D(b)) presentation. Interestingly, MOG-specific CD8 T cells could also suppress adoptively induced disease using wild-type MOG35-55-specific CD4 T cells transferred into K(b)D(b-/-) recipient mice, suggesting direct targeting of encephalitogenic CD4 T cells. In vivo trafficking analysis revealed that autoregulatory CD8 T cells are dependent on neuroinflammation for CNS infiltration, and their suppression/cytotoxicity of MOG-specific CD4 T cells is observed both in the periphery and in the CNS. These studies provide important insights into the mechanism of disease suppression mediated by autoreactive CD8 T cells in EAE.

  13. In Vivo Quantification of Inflammation in Experimental Autoimmune Encephalomyelitis Rats Using Fluorine-19 Magnetic Resonance Imaging Reveals Immune Cell Recruitment outside the Nervous System.

    Directory of Open Access Journals (Sweden)

    Jia Zhong

    Full Text Available Progress in identifying new therapies for multiple sclerosis (MS can be accelerated by using imaging biomarkers of disease progression or abatement in model systems. In this study, we evaluate the ability to noninvasively image and quantitate disease pathology using emerging "hot-spot" 19F MRI methods in an experimental autoimmune encephalomyelitis (EAE rat, a model of MS. Rats with clinical symptoms of EAE were compared to control rats without EAE, as well as to EAE rats that received daily prophylactic treatments with cyclophosphamide. Perfluorocarbon (PFC nanoemulsion was injected intravenously, which labels predominately monocytes and macrophages in situ. Analysis of the spin-density weighted 19F MRI data enabled quantification of the apparent macrophage burden in the central nervous system and other tissues. The in vivo MRI results were confirmed by extremely high-resolution 19F/1H magnetic resonance microscopy in excised tissue samples and histopathologic analyses. Additionally, 19F nuclear magnetic resonance spectroscopy of intact tissue samples was used to assay the PFC biodistribution in EAE and control rats. In vivo hot-spot 19F signals were detected predominantly in the EAE spinal cord, consistent with the presence of inflammatory infiltrates. Surprising, prominent 19F hot-spots were observed in bone-marrow cavities adjacent to spinal cord lesions; these were not observed in control animals. Quantitative evaluation of cohorts receiving cyclophosphamide treatment displayed significant reduction in 19F signal within the spinal cord and bone marrow of EAE rats. Overall, 19F MRI can be used to quantitatively monitored EAE disease burden, discover unexpected sites of inflammatory activity, and may serve as a sensitive biomarker for the discovery and preclinical assessment of novel MS therapeutic interventions.

  14. The suppressive effect of IL-27 on encephalitogenic Th17 cells induced by multiwalled carbon nanotubes reduces the severity of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Moraes, Adriel S; Paula, Rosemeire F O; Pradella, Fernando; Santos, Mariana P A; Oliveira, Elaine C; von Glehn, Felipe; Camilo, Daniela S; Ceragioli, Helder; Peterlevitz, Alfredo; Baranauskas, Vitor; Volpini, Walkyria; Farias, Alessandro S; Santos, Leonilda M B

    2013-09-01

    Both Th1 and Th17 cells specific for neuroantigen are described as encephalitogenic in the experimental autoimmune encephalomyelitis (EAE) model. The proposal of this study was to investigate how carbon nanotubes internalized by antigen-presenting cells (APCs) affect the development of encephalitogenic CD4(+) T cells. Therefore, we stimulated encephalitogenic T cells in the presence or not of multiwalled carbon nanotube (MWCNT). After the incubation, we analyzed the expression profile of the encephalitogenic T cells and their capacity to induce EAE. Encephalitogenic CD4(+) T cells cultured with APCs that were previously incubated with MWCNTs do not express IL-17. The adoptive transfer of these cells causes less severe EAE than the transfer of both Th1 and Th17 cells that are not incubated with MWCNTs. These results suggest that the increased IL-27 level produced by the APCs incubated with the carbon nanotubes inhibits the development of Th17 cells. This observation is confirmed by the concomitant reduction in the level of RORγt, which is a transcription factor essential for the development of Th17 cells. Moreover, the incubation of encephalitogenic T cells devoid of Th17 cells with neutralizing anti-IL-27 antibodies restored the production of IL-17. This finding confirms the suppressive effect of IL-27 on encephalitogenic Th17 cells. The results presented suggest that the stimulation of APCs with carbon nanoparticles prior to neuroantigen presentation affects the development of the Th17 subset of encephalitogenic CD4(+) T lymphocytes and results in less severe EAE. © 2013 John Wiley & Sons Ltd.

  15. The epigenetic drug Trichostatin A ameliorates experimental autoimmune encephalomyelitis via T cell tolerance induction and impaired influx of T cells into the spinal cord.

    Science.gov (United States)

    Jayaraman, Arathi; Soni, Advait; Prabhakar, Bellur S; Holterman, Mark; Jayaraman, Sundararajan

    2017-12-01

    Multiple sclerosis is a T cell mediated chronic demyelinating disease of the central nervous system. Although currently available therapies reduce relapses, they do not facilitate tolerization of myelin antigen-specific T lymphocytes to ensure prolonged protection against multiple sclerosis. Here, we show that treatment of NOD mice with the histone deacetylase inhibitor, Trichostatin A affords robust protection against myelin peptide induced experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Protection was accompanied by histone hyperacetylation, and reduced inflammation and axonal damage in the spinal cord. Drug treatment diminished the generation of CD4+ memory T cells and induced tolerance in CD4+ T cells recognizing the immunizing myelin peptide. During the early immunization period, CD4+ T cells producing GM-CSF+IFN-γ, GM-CSF+IL-17A, as well as those expressing both IL-17A+IFN-γ (double-producers) were detected in the secondary lymphoid organs followed by the appearance of cells producing IFN-γ and GM-CSF. On the other hand, IFN-γ producing Th1 cells appear first in the spinal cord followed by cells producing IL-17A and GM-CSF. Treatment with Trichostatin A substantially reduced the frequencies of all T cells secreting various lymphokines both in the periphery and in the spinal cord. These data indicate that epigenetic modifications induced by histone hyperacetylation facilitates T cell tolerance induction in the periphery leading to reduced migration of T cells to the spinal cord and mitigation of neuronal damage and improved clinical outcome. These results suggest that epigenetic modulation of the genome may similarly offer benefits to multiple sclerosis patients via abrogating the function of encephalitogenic T lymphocytes without exerting severe side effects associated with currently used disease-modifying therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Experimental autoimmune encephalomyelitis: Association with mutual regulation of RelA (p65)/NF-{kappa}B and phospho-I{kappa}B in the CNS

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Insun; Ha, Danbee [College of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University, Jeju 690-756 (Korea, Republic of); Ahn, Ginnae [Department of Marine Life Science, Jeju National University, Jeju 690-756 (Korea, Republic of); Park, Eunjin; Joo, Haejin [College of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University, Jeju 690-756 (Korea, Republic of); Jee, Youngheun, E-mail: yhjee@jejunu.ac.kr [College of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University, Jeju 690-756 (Korea, Republic of)

    2011-07-29

    Highlights: {yields} The phosphorylation of RelA's inhibitory factor I{kappa}B and subsequent RelA activation are important to the disease process of EAE. {yields} The expression of RelA and phospho-I{kappa}B was markedly increased in the initiation and during the progression of EAE. {yields} TPCK-treated EAE mice showed lower incidence of EAE with less severe symptoms and quicker recovery than vehicle-treated EAE mice. {yields} TPCK significantly suppressed the MOG{sub 35-55}-specific T cell proliferation by reducing the production of IFN-{gamma} and IL-17 cytokines in EAE. {yields} The NF-{kappa}B cascade's activity increased gradually with the development of symptoms and brain pathology of EAE. -- Abstract: Recently emerging evidence that the NF-{kappa}B family plays an important role in autoimmune disease has produced very broad and sometimes paradoxical conclusions. In the present study, we elucidated that the activation of RelA (p65) of NF-{kappa}B and I{kappa}B dissociation assumes a distinct role in experimental autoimmune encephalomyelitis (EAE) progression by altering I{kappa}B phosphorylation and/or degradation. In the present study of factors that govern EAE, the presence and immunoreactivity of nuclear RelA and phospho-I{kappa}B were recorded at the initiation and peak stage, and degradation of I{kappa}B{alpha} progressed rapidly at an early stage then stabilized during recovery. The immunoreactivity to RelA and phospho-I{kappa}B occurred mainly in inflammatory cells and microglial cells but only slightly in astrocytes. Subsequently, the blockade of I{kappa}B dissociation from NF-{kappa}B reduced the severity of disease by decreasing antigen-specific T cell response and production of IL-17 in EAE. Thus, blocking the dissociation of I{kappa}B from NF-{kappa}B can be utilized as a strategy to inhibit the NF-{kappa}B signal pathway thereby to reduce the initiation, progression, and severity of EAE.

  17. 1,25-Dihydroxyvitamin D3 suppresses TLR8 expression and TLR8-mediated inflammatory responses in monocytes in vitro and experimental autoimmune encephalomyelitis in vivo.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available 1,25-Dihydroxyvitamin D3 (1,25(OH2D3 suppresses autoimmunity and inflammation; however, the mechanism of its action has not been fully understood. We sought in this study to determine whether the anti-immune/anti-inflammatory action of 1,25(OH2D3 is in part mediated through an interplay between 1,25(OH2D3 and toll-like receptor (TLR7/8 signaling. 1,25(OH2D3 treatment prior to and/or following experimental autoimmune encephalomyelitis (EAE induction effectively reduced inflammatory cytokine expression in the spinal cord and ameliorated EAE. These effects were accompanied with a reduction in expression of several TLRs with the most profound effect observed for TLR8. The expression of TLR8 adaptor protein MyD88 was also significantly reduced by 1,25(OH2D3. To determine the molecular mechanism by which 1,25(OH2D3 suppresses EAE induction of TLR8 and inflammatory cytokine expression, we evaluated whether 1,25(OH2D3 can directly inhibit TLR8 signaling and the resulting inflammatory responses in human THP-1 monocytes. 1,25(OH2D3 treatment not only significantly reduced TLR8 expression but also the expression or activity of MyD88, IRF-4, IRF-7 and NF-kB in monocytes challenged with TLR8 ligands. TLR8 promoter-luciferase reporter assays indicated that 1,25(OH2D3 decreases TLR8 mRNA level in part via inhibiting TLR8 gene transcription activity. As a result of inhibition on TLR8 signaling cascade at various stages, 1,25(OH2D3 significantly diminished the TLR8 target gene expression (TNF-α and IL-1β. In summary, our novel findings suggest that TLR8 is a new target of 1,25(OH2D3 and may mediate the anti-inflammatory action of 1,25(OH2D3. Our findings also point to a destructive role of TLR8 in EAE and shed lights on pathogenesis of multiple sclerosis.

  18. Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc-null mice: evidence for a critical role of the central nervous system

    Directory of Open Access Journals (Sweden)

    Gourdain Pauline

    2012-01-01

    Full Text Available Abstract Background The cellular prion protein (PrPc is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered. Method To better discriminate the contribution of immune cells versus neural cells, reciprocal bone marrow chimeras with differential expression of PrPc in the lymphoid or in the central nervous system (CNS were generated. Mice were subsequently challenged with MOG35-55 peptide and clinical disease as well as histopathology were compared in both groups. Furthermore, to test directly the T cell hypothesis, we compared the encephalitogenicity of adoptively transferred PrPc-deficient versus PrPc-sufficient, anti-MOG T cells. Results First, EAE exacerbation in PrPc-deficient mice was confirmed. Irradiation exacerbated EAE in all the chimeras and controls, but disease was more severe in mice with a PrPc-deleted CNS and a normal immune system than in the reciprocal construction. Moreover, there was no indication that anti-MOG responses were different in PrPc-sufficient and PrPc-deficient mice. Paradoxically, PrPc-deficient anti-MOG 2D2 T cells were less pathogenic than PrPc-expressing 2D2 T cells. Conclusions In view of the present data, it can be concluded that the origin of EAE exacerbation in PrPc-ablated mice resides in the absence of the prion protein in the CNS. Furthermore, the absence of PrPc on both neural and immune cells does not

  19. Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus

    Directory of Open Access Journals (Sweden)

    Murugesan Nivetha

    2012-08-01

    Full Text Available Abstract Background There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP might be a key regulator of immune activity in the central nervous system (CNS during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS and its animal model experimental autoimmune encephalomyelitis (EAE. As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood–brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process. Methods To discern responses of the respective CP stromal capillary and choroidal epithelial tissues during evolving neuroinflammation, we investigated morphology and in situ expression of 93 immune-related genes during early stages of EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55. Specifically, 3-D immunofluorescent imaging was employed to gauge morphological changes, and laser capture microdissection was coupled to an Immune Panel TaqMan Low Density Array to detail alterations in gene expression patterns at these separate CP sites on days 9 and 15 post-immunization (p.i.. To resolve CP effects due to autoimmunity against MOG peptide, from those due to complete Freund’s adjuvant (CFA and pertussis toxin (PTX included in the immunization, analysis was performed on MOG-CFA/PTX-treated, CFA/PTX-treated, and naïve cohorts. Results The CP became swollen and displayed significant molecular changes in response to MOG-CFA/PTX immunization. Both stromal capillary and choroidal epithelial tissues mounted vigorous, yet different, changes in expression of numerous genes over the time course analyzed - including those encoding adhesion

  20. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  1. Cerebellar white matter inflammation and demyelination in chronic relapsing experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Wanscher, B.; Sørensen, P. S.; Juhler, M.

    1993-01-01

    Experimental allergic encephalomyelitis, demyelination, inflammation, immunology, neuropathology......Experimental allergic encephalomyelitis, demyelination, inflammation, immunology, neuropathology...

  2. IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Jin Kyeong Choi

    2017-10-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE, the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

  3. IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci

    Directory of Open Access Journals (Sweden)

    Lee Eunyoung

    2012-01-01

    Full Text Available Abstract Background Murine experimental autoimmune encephalomyelitis (EAE, a model for multiple sclerosis, presents typically as ascending paralysis. However, in mice in which interferon-gamma (IFNγ signaling is disrupted by genetic deletion, limb paralysis is accompanied by atypical deficits, including head tilt, postural imbalance, and circling, consistent with cerebellar/vestibular dysfunction. This was previously attributed to intense cerebellar and brainstem infiltration by peripheral immune cells and formation of neutrophil-rich foci within the CNS. However, the exact mechanism by which IFNγ signaling prohibits the development of vestibular deficits, and whether the distribution and composition of inflammatory foci within the CNS affects the course of atypical EAE remains elusive. Methods We induced EAE in IFNγ-/- mice and bone marrow chimeric mice in which IFNγR is not expressed in the CNS but is intact in the periphery (IFNγRCNSKO and vice versa (IFNγRperiKO. Blood-brain barrier permeability was determined by Evans blue intravenous administration at disease onset. Populations of immune cell subsets in the periphery and the CNS were quantified by flow cytometry. CNS tissues isolated at various time points after EAE induction, were analyzed by immunohistochemistry for composition of inflammatory foci and patterns of axonal degeneration. Results Incidence and severity of atypical EAE were more pronounced in IFNγRCNSKO as compared to IFNγRperiKO mice. Contrary to what we anticipated, cerebella/brainstems of IFNγRCNSKO mice were only minimally infiltrated, while the same areas of IFNγRperiKO mice were extensively populated by peripheral immune cells. Furthermore, the CNS of IFNγRperiKO mice was characterized by persistent neutrophil-rich foci as compared to IFNγRCNSKO. Immunohistochemical analysis of the CNS of IFNγ-/- and IFNγR chimeric mice revealed that IFNγ protective actions are exerted through microglial STAT1

  4. The effect of omeprazole on the development of experimental autoimmune encephalomyelitis in C57BL/6J and SJL/J mice.

    Science.gov (United States)

    Sands, Scott A; Tsau, Sheila; Yankee, Thomas M; Parker, Brooks L; Ericsson, Aaron C; LeVine, Steven M

    2014-09-04

    Gastric disturbances such as dyspepsia are routinely encountered by multiple sclerosis (MS) patients, and these conditions are often treated with gastric acid suppressors such as proton pump inhibitors, histamine H2 receptor antagonists, or antacids. The proton pump inhibitor omeprazole can alter the gut flora and immune responses, both of which can influence the course of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The objective of the current study was to examine the effect of omeprazole treatment on the development of EAE. Bacterial microbiome analysis of mouse fecal pellets was determined in C57BL/6J EAE mice chronically treated with omeprazole, and spleen immune cell content, clinical scores, weight, rotarod latency, and histopathology were used as outcome measures in C57BL/6J and SJL/J mice with EAE. Omeprazole treatment resulted in decreases in Akkermansia muciniphila and Coprococcus sp. and an increase in unidentified bacteria in the family S24-7 (order Bacteroidales) in C57BL/6J mice with EAE. Omeprazole did not alter spleen immune cell content compared to vehicle in EAE mice, but differences independent of treatment were observed in subsets of T cells between early and advanced disease in C57BL/6J mice as well as between the two strains of mice at an advanced disease stage. Omeprazole caused no difference in clinical scores in either strain, but significantly lowered weight gain compared to vehicle in the C57BL/6J mice with EAE. Omeprazole also did not alter rotarod behavior or hindbrain inflammatory cell infiltration compared to vehicle in both strains of mice with EAE. Rotarod latency did reveal a negative correlation with clinical scores during active disease in both mouse strains, but not during clinical remission in SJL/J mice, suggesting that rotarod can detect disability not reflected in the clinical scores. Despite alterations in the gut microbiota and weight gain in the C57BL/6J EAE model, omeprazole had no effect on

  5. Mesenchymal stem cells (MSC) derived from mice with experimental autoimmune encephalomyelitis (EAE) suppress EAE and have similar biological properties with MSC from healthy donors.

    Science.gov (United States)

    Kassis, Ibrahim; Petrou, Panayiota; Halimi, Michelle; Karussis, Dimitrios

    2013-01-01

    Several animal studies and few pilot clinical trials have tested the therapeutic potential of mesenchymal stem cells (MSC) in experimental autoimmune encephalomyelitis (EAE) and in multiple sclerosis (MS). In almost all of the preclinical studies, healthy animals (or humans) served as donors of the MSCs. This setting does not accurately simulate the clinical situation of autologous transplantation in patients with MS. In the current research we used MSC isolated from mice with EAE in order to mimic human autologous transplantation and to test if the inflammatory process affects the functional properties of MSC. MSC(EAE) were found to retain their mesodermal features (as evidenced by the expression of surface cell markers and their ability to differentiate toward cells of the mesodermal lineage). Moreover, MSC(EAE) were able to support neurite outgrowth in the N2A cell line and to suppress the proliferation of lymphocytes induced by the mitogen phytohaemagglutinin (PHA). Intravenous administration of MSC(EAE) suppressed the clinical course of EAE (0% mortality, disease score 1.09±0.22 vs. 40% mortality and 2.95±0.31 EAE score in saline-treated controls), paralleled by a strong reduction of CNS inflammation and demyelination (9.7±2.79 perivascular cuffs in the treated mice, as compared to 25.8±7.4 in the controls; demyelination area: 1.73±0.3 in MSC(EAE)-treated animals vs. 3.8±0.26 in the controls) and by a significant protection of the axons (axonal density: 1.26±0.24 in the MSC(EAE)-treated animals vs. 3.06±0.38 in the control group). All these beneficial effects were indistinguishable from the effects induced by MSC obtained from healthy syngeneic donors. These data demonstrate that the inflammatory process in EAE does not exert any deleterious effect on the functional/biological properties of the MSC and provide additional support for the use of autologous MSC that are obtained from MS-patients, in future clinical applications. Copyright © 2013 Elsevier

  6. Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Mattner, F.; Katsifis, A.; Ballantyne, P. [ANSTO, Radiopharmaceuticals Division, Lucas Heights (Australia); Staykova, M.; Willenborg, D.O. [Australian National University Medical School, The Canberra Hospital, Neurosciences Research Unit, Woden, Canberra (Australia)

    2005-04-01

    Peripheral benzodiazepine receptors (PBRs) are upregulated on macrophages and activated microglia, and radioligands for the PBRs can be used to detect in vivo neuroinflammatory changes in a variety of neurological insults, including multiple sclerosis. Substituted 2-phenyl imidazopyridine-3-acetamides with high affinity and selectivity for PBRs have been prepared that are suitable for radiolabelling with a number of positron emission tomography and single-photon emission computed tomography (SPECT) isotopes. In this investigation, the newly developed high-affinity PBR ligand 6-chloro-2-(4'-iodophenyl)-3-(N,N-diethyl)imidazo[1,2-a]pyridine-3-acetamide, or CLINDE, was radiolabelled with{sup 123}I and its biodistribution in the central nervous system (CNS) of rats with experimental autoimmune encephalomyelitis (EAE) evaluated. EAE was induced in male Lewis rats by injection of an emulsion of myelin basic protein and incomplete Freund's adjuvant containing Mycobacterium butyricum. Biodistribution studies with{sup 123}I-CLINDE were undertaken on EAE rats exhibiting different clinical disease severity and compared with results in controls. Disease severity was confirmed by histopathology in the spinal cord of rats. The relationship between inflammatory lesions and PBR ligand binding was investigated using ex vivo autoradiography and immunohistochemistry on rats with various clinical scores. {sup 123}I-CLINDE uptake was enhanced in the CNS of all rats exhibiting EAE when compared to controls. Binding reflected the ascending nature of EAE inflammation, with lumbar/sacral cord > thoracic cord > cervical cord > medulla. The amount of ligand binding also reflected the clinical severity of disease. Ex vivo autoradiography and immunohistochemistry revealed a good spatial correspondence between radioligand signal and foci of inflammation and in particular ED-1{sup +} cells representing macrophages and microglia. These results demonstrate the ability of {sup 123}I

  7. Induction of Experimental Autoimmune Encephalomyelitis With Recombinant Human Myelin Oligodendrocyte Glycoprotein in Incomplete Freund's Adjuvant in Three Non-human Primate Species

    NARCIS (Netherlands)

    Haanstra, Krista G.; Jagessar, S. Anwar; Bauchet, Anne-Laure; Doussau, Mireille; Fovet, Claire-Maelle; Heijmans, Nicole; Hofman, Sam O.; van Lubeek-Veth, Jennifer; Bajramovic, Jeffrey J.; Kap, Yolanda S.; Laman, Jon D.; Touin, Helene; Watroba, Laurent; Bauer, Jan; Lachapelle, Francois; Serguera, Che; 't Hart, Bert A.

    2013-01-01

    The experimental autoimmune encephalitis (EAE) model is used for preclinical research into the pathogenesis of multiple sclerosis (MS), mostly in inbred, specific pathogen free (SPF)-raised laboratory mice. However, the naive state of the laboratory mouse immune system is considered a major hurdle

  8. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Ljungdahl, A; Höjeberg, B

    1995-01-01

    The kinetics of mRNA expression in the central nervous system (CNS) for a series of putatively disease-promoting and disease-limiting cytokines during the course of experimental autoimmune encephalomyelitis (EAE) in Lewis rats were studied. Cytokine mRNA-expressing cells were detected...... proliferation and activation of T helper 1 (Th1) type cells producing IFN-gamma. The TNF-beta mRNA expression prior to onset of clinical signs favours a role for this cytokine in disease initiation. A pathogenic effector role of TNF-alpha was suggested from these observations that TNF-alpha mRNA expression...... of putative disease-promoting and -limiting cytokines in the CNS during acute monophasic EAE....

  9. Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in incomplete freund adjuvant.

    Science.gov (United States)

    Jagessar, S Anwar; Kap, Yolanda S; Heijmans, Nicole; van Driel, Nikki; van Straalen, Linda; Bajramovic, Jeffrey J; Brok, Herbert P M; Blezer, Erwin L A; Bauer, Jan; Laman, Jon D; 't Hart, Bert A

    2010-04-01

    Experimental autoimmune encephalomyelitis in the neotropical primate common marmoset (Callithrix jacchus) is a relevant autoimmune animal model of multiple sclerosis. T cells specific for peptide 34 to 56 of myelin/oligodendrocyte glycoprotein (MOG34-56) have a central pathogenic role in this model. The aim of this study was to assess the requirement for innate immune stimulation for activation of this core pathogenic autoimmune mechanism. Marmoset monkeys were sensitized against synthetic MOG34-56 peptide alone or in combination with the nonencephalitogenic peptide MOG74-96 formulated in incomplete Freund adjuvant, which lacks microbial components. Experimental autoimmune encephalomyelitis development was recorded by monitoring neurological signs, brain magnetic resonance imaging, and longitudinal profiling of cellular and humoral immune parameters. All monkeys developed autoimmune inflammatory/demyelinating central nervous system disease characterized by massive brain and spinal cord demyelinating white matter lesions with activated macrophages and CD3+ T cells. Immune profiling ex vivo demonstrated the activation of mainly CD3+CD4+/8+CD56+ T cells against MOG34-56. Upon ex vivo stimulation, these T cells produced more interleukin 17A compared with TH1 cytokines (e.g. interferon-gamma) and displayed peptide-specific cytolytic activity. These results indicate that the full spectrum of marmoset experimental autoimmune encephalomyelitis can be induced by sensitization against a single MOG peptide in incomplete Freund adjuvant lacking microbial compounds for innate immune activation and by eliciting antigen-specific T-cell cytolytic activity.

  10. Interleukin-17 (IL-17)-induced MicroRNA 873 (miR-873) Contributes to the Pathogenesis of Experimental Autoimmune Encephalomyelitis by Targeting A20 Ubiquitin-editing Enzyme*

    Science.gov (United States)

    Liu, Xiaomei; He, Fengxia; Pang, Rongrong; Zhao, Dan; Qiu, Wen; Shan, Kai; Zhang, Jing; Lu, Yanlai; Li, Yan; Wang, Yingwei

    2014-01-01

    Interleukin 17 (IL-17), produced mainly by T helper 17 (Th17) cells, is increasingly recognized as a key regulator in various autoimmune diseases, including human multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although several microRNAs (miRNAs) with aberrant expression have been shown to contribute to the pathogenesis of MS and EAE, the mechanisms underlying the regulation of abnormal miRNA expression in astrocytes upon IL-17 stimulation remain unclear. In the present study, we detected the changes of miRNA expression profiles both in the brain tissue of EAE mice and in cultured mouse primary astrocytes stimulated with IL-17 and identified miR-873 as one of the co-up-regulated miRNAs in vivo and in vitro. The overexpression of miR-873, demonstrated by targeting A20 (TNFα-induced protein 3, TNFAIP3), remarkably reduced the A20 level and promoted NF-κB activation in vivo and in vitro as well as increasing the production of inflammatory cytokines and chemokines (i.e. IL-6, TNF-α, MIP-2, and MCP-1/5). More importantly, silencing the endogenous miR-873 or A20 gene with lentiviral vector of miR-873 sponge (LV-miR-873 sponge) or short hairpin RNA (shRNA) of A20 (LV-A20 shRNA) in vivo significantly lessened or aggravated inflammation and demyelination in the central nervous system (CNS) of EAE mice, respectively. Taken together, these findings indicate that miR-873 induced by IL-17 stimulation promotes the production of inflammatory cytokines and aggravates the pathological process of EAE mice through the A20/NF-κB pathway, which provides a new insight into the mechanism of inflammatory damage in MS. PMID:25183005

  11. Interleukin-17 (IL-17)-induced microRNA 873 (miR-873) contributes to the pathogenesis of experimental autoimmune encephalomyelitis by targeting A20 ubiquitin-editing enzyme.

    Science.gov (United States)

    Liu, Xiaomei; He, Fengxia; Pang, Rongrong; Zhao, Dan; Qiu, Wen; Shan, Kai; Zhang, Jing; Lu, Yanlai; Li, Yan; Wang, Yingwei

    2014-10-17

    Interleukin 17 (IL-17), produced mainly by T helper 17 (Th17) cells, is increasingly recognized as a key regulator in various autoimmune diseases, including human multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although several microRNAs (miRNAs) with aberrant expression have been shown to contribute to the pathogenesis of MS and EAE, the mechanisms underlying the regulation of abnormal miRNA expression in astrocytes upon IL-17 stimulation remain unclear. In the present study, we detected the changes of miRNA expression profiles both in the brain tissue of EAE mice and in cultured mouse primary astrocytes stimulated with IL-17 and identified miR-873 as one of the co-up-regulated miRNAs in vivo and in vitro. The overexpression of miR-873, demonstrated by targeting A20 (TNFα-induced protein 3, TNFAIP3), remarkably reduced the A20 level and promoted NF-κB activation in vivo and in vitro as well as increasing the production of inflammatory cytokines and chemokines (i.e. IL-6, TNF-α, MIP-2, and MCP-1/5). More importantly, silencing the endogenous miR-873 or A20 gene with lentiviral vector of miR-873 sponge (LV-miR-873 sponge) or short hairpin RNA (shRNA) of A20 (LV-A20 shRNA) in vivo significantly lessened or aggravated inflammation and demyelination in the central nervous system (CNS) of EAE mice, respectively. Taken together, these findings indicate that miR-873 induced by IL-17 stimulation promotes the production of inflammatory cytokines and aggravates the pathological process of EAE mice through the A20/NF-κB pathway, which provides a new insight into the mechanism of inflammatory damage in MS. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Harris, Nicholas; Koppel, Juraj; Zsila, Ferenc; Juhas, Stefan; Il'kova, Gabriela; Kogan, Faina Yurgenzon; Lahmy, Orly; Wildbaum, Gizi; Karin, Nathan; Zhuk, Regina; Gregor, Paul

    2016-04-01

    Elucidate the mechanism of action of the small molecule inhibitor of protein binding to glycosaminoglycans, RX-111 and assay its anti-inflammatory activity in animal models of inflammatory disease. The glycosaminoglycan, heparin, was used in the mechanism of action study of RX-111. Human T lymphocytes and umbilical vein endothelial cells were used to assay the in vitro activity of RX-111. Mouse and rat models of disease were used to assay the anti-inflammatory activity of RX-111 in vivo. Circular dichroism and UV/Vis absorption spectroscopy were used to study the binding of RX-111 to the glycosaminoglycan, heparin. T lymphocyte rolling on endothelial cells under shear flow was used to assay RX-111 activity in vitro. Delayed-type hypersensitivity (DTH) and tri-nitrobenzene sulfonic acid (TNBS)-induced colitis in mice and experimental autoimmune encephalomyelitis (EAE) in rats were used to assay anti-inflammatory activity of RX-111 in vivo. RX-111 was shown to bind directly to heparin. It inhibited leukocyte rolling on endothelial cells under shear flow and reduced inflammation in the mouse model of DTH. RX-111 was efficacious in the mouse model of inflammatory bowel disease, TNBS-induced colitis and the rat model of multiple sclerosis, EAE. RX-111 exercises its broad spectrum anti-inflammatory activity by a singular mechanism of action, inhibition of protein binding to the cell surface GAG, heparan sulfate. RX-111 and related thieno[2,3-c]pyridine derivatives are potential therapeutics for the treatment of inflammatory and autoimmune diseases.

  13. Ctla-4 modulates the differentiation of inducible Foxp3+ Treg cells but IL-10 mediates their function in experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Johan Verhagen

    Full Text Available In vitro induced Foxp3+ T regulatory (iTreg cells form a novel and promising target for therapeutic tolerance induction. However, the potential of these cells as a target for the treatment of various immune diseases, as well as the factors involved in their development and function, remain debated. Here, we demonstrate in a myelin basic protein (MBP-specific murine model of CNS autoimmune disease that adoptive transfer of antigen-specific iTreg cells ameliorates disease progression. Moreover, we show that the co-stimulatory molecule CTLA-4 mediates in vitro differentiation of iTreg cells. Finally, we demonstrate that the secreted, immunosuppressive cytokine IL-10 controls the ability of antigen-specific iTreg cells to suppress autoimmune disease. Overall, we conclude that antigen-specific iTreg cells, which depend on various immune regulatory molecules for their differentiation and function, represent a major target for effective immunotherapy of autoimmune disease.

  14. The effect of 1, 25(OH)2 D3 (calcitriol) alone and in combination with all-trans retinoic acid on ROR-γt, IL-17, TGF-β, and FOXP3 gene expression in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Parastouei, Karim; Mirshafiey, Abbas; Eshraghian, Mohammad Reza; Shiri-Shahsavar, Mohammad Reza; Solaymani-Mohammadi, Farid; Chahardoli, Reza; Alvandi, Ehsan; Saboor-Yaraghi, Ali Akbar

    2016-12-20

    It has been shown that calcitriol and all-trans retinoic acid (ATRA) have modulatory effects on the immune system. The present study investigates the synergistic effects of combination treatment of calcitriol and ATRA in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). The mice were allocated to four preventive groups, each consisting of eight animals, ATRA (250 μg/mouse), calcitriol (100 ng/mouse), combination of ATRA and calcitriol (125  μg/mouse and 50 ng/mouse) and vehicle groups. EAE was induced by MOG35-55 peptide in female C57BL/6 mice. Treatments were initiated at day 1 before immunization and continued every other day throughout the study until the day 21 post-immunization. Splenocytes were isolated from EAE-induced mice and the expression of retinoic acid receptor-related orphan receptor gamma t (ROR-γt), Interleukin-17 (IL-17), transforming growth factor beta (TGF-β), and forkhead box P3 (FOXP3) genes was measured using real-time polymerase chain reaction. The expression of FOXP3 and TGF-β genes in the splenocytes of combination-treated and calcitriol alone-treated mice was significantly increased compared to vehicle group (P ROR-γt and IL-17 genes in the splenocytes of ATRA, calcitriol and combination- treated mice was significantly reduced compared to those of vehicle- treated mice (P ROR-γt was significantly (P < 0.05) lower in the combination group than in the mice treated by ATRA or calcitriol alone. This study demonstrated that treatment with combination of calcitriol and ATRA can be considered as a new strategy for MS prevention and treatment.

  15. Direct angiotensin AT2-receptor stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice

    DEFF Research Database (Denmark)

    Valero-Esquitino, Verónica; Lucht, Kristin; Namsolleck, Pawel

    2015-01-01

    , accelerated re-myelination and reduced the number of microglia. Cytokine synthesis and NO production by microglia in vitro were significantly reduced after C21 treatment. These results suggest that AT2R-stimulation protects the myelin sheaths in autoimmune CNS inflammation by inhibiting the T-cell response...... immunised with myelin-oligodendrocyte-peptide (MOG) and treated for 4 weeks with C21 (0.3mg/kg/day i.p.). Potential effects on myelination, microglia and T-cell composition were estimated by immunostaining and FACS analyses of lumbar spinal cords. The in vivo study was complemented by experiments...... in aggregating brain cell cultures and microglia in vitro. In the EAE model, treatment with C21 ameliorated microglia activation and decreased the number of total T-cells and CD4+ T-cells in the spinal cord. Fluorescent myelin staining of spinal cords further revealed a significant reduction of EAE...

  16. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Per Anderson

    2017-01-01

    Full Text Available Multipotent mesenchymal stromal cells (MSCs have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS. Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS and cyclooxygenase- (COX- 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS- induced maturation of dendritic cells (DCs in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG E2 in this process. In vivo, early administration of murine and human ASCs (hASCs ameliorated myelin oligodendrocyte protein- (MOG35-55- induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+ DCs in draining lymph nodes (DLNs. In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.

  17. Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet

    Directory of Open Access Journals (Sweden)

    Lambracht-Washington Doris

    2011-06-01

    Full Text Available Abstract Experimental autoimmune encephalomyelitis (EAE is a relevant animal model for the human demyelinating inflammatory disorder of the central nervous system (CNS, multiple sclerosis (MS. Induction of EAE by adoptive transfer allows studying the role of the donor T lymphocyte in disease pathogenesis. It has been challenging to reliably induce adoptive transfer EAE in C57BL/6 (H-2b mice. The goal of this study was to develop a reproducible and high yield protocol for adoptive transfer EAE in C57BL/6 mice. A step-wise experimental approach permitted us to develop a protocol that resulted in a consistent relatively high disease incidence of ~70% in recipient mice. Donor mice were immunized with myelin oligodendrocyte glycoprotein (MOGp35-55 in complete Freund's adjuvant (CFA followed by pertussis toxin (PT. Only lymph node cells (LNC isolated at day 12 post immunization, and restimulated in vitro for 72 hours with 10 μg/mL of MOGp35-55 and 0.5 ng/mL of interleukin-12 (IL-12 were able to transfer disease. The ability of LNC to transfer disease was associated with the presence of inflammatory infiltrates in the CNS at day 12. Interferon gamma (IFNγ was produced at comparable levels in cell cultures prepared from mice at both day 6 and day 12 post immunization. By contrast, there was a trend towards a negative association between IL-17 and disease susceptibility in our EAE model. The amount of GM-CSF secreted was significantly increased in the culture supernatants from cells collected at day 12 post immunization versus those collected at day 6 post-immunization. Activated CD4+ T cells present in the day 12 LNC cultures maintained expression of the transcription factor T-bet, which has been shown to regulate the expression of the IL-23 receptor. Also, there was an increased prevalence of MOGp35-55-specific CD4+ T cells in day 12 LNC after in vitro re-stimulation. In summary, encephalitogenic LNC that adoptively transfer EAE in C57BL/6 mice were

  18. Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet.

    Science.gov (United States)

    Cravens, Petra D; Hussain, Rehana Z; Zacharias, Tresa E; Ben, Li-Hong; Herndon, Emily; Vinnakota, Ramya; Lambracht-Washington, Doris; Nessler, Stefan; Zamvil, Scott S; Eagar, Todd N; Stüve, Olaf

    2011-06-24

    Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model for the human demyelinating inflammatory disorder of the central nervous system (CNS), multiple sclerosis (MS). Induction of EAE by adoptive transfer allows studying the role of the donor T lymphocyte in disease pathogenesis. It has been challenging to reliably induce adoptive transfer EAE in C57BL/6 (H-2b) mice. The goal of this study was to develop a reproducible and high yield protocol for adoptive transfer EAE in C57BL/6 mice. A step-wise experimental approach permitted us to develop a protocol that resulted in a consistent relatively high disease incidence of ~70% in recipient mice. Donor mice were immunized with myelin oligodendrocyte glycoprotein (MOG)p35-55 in complete Freund's adjuvant (CFA) followed by pertussis toxin (PT). Only lymph node cells (LNC) isolated at day 12 post immunization, and restimulated in vitro for 72 hours with 10 μg/mL of MOGp35-55 and 0.5 ng/mL of interleukin-12 (IL-12) were able to transfer disease. The ability of LNC to transfer disease was associated with the presence of inflammatory infiltrates in the CNS at day 12. Interferon gamma (IFNγ) was produced at comparable levels in cell cultures prepared from mice at both day 6 and day 12 post immunization. By contrast, there was a trend towards a negative association between IL-17 and disease susceptibility in our EAE model. The amount of GM-CSF secreted was significantly increased in the culture supernatants from cells collected at day 12 post immunization versus those collected at day 6 post-immunization. Activated CD4+ T cells present in the day 12 LNC cultures maintained expression of the transcription factor T-bet, which has been shown to regulate the expression of the IL-23 receptor. Also, there was an increased prevalence of MOGp35-55-specific CD4+ T cells in day 12 LNC after in vitro re-stimulation. In summary, encephalitogenic LNC that adoptively transfer EAE in C57BL/6 mice were not characterized

  19. Genetic analysis of experimental allergic encephalomyelitis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.; Rosenwasser, O.A.; O`Neill, J.K.; Turk, J.L. [Royal College of Surgeons of England, London (United Kingdom)

    1995-10-15

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system that exhibits many pathologic similarities with multiple sclerosis. While products of the MHC are known to control the development of EAE, it is clear that non-MHC products also influence susceptibility. The chromosomal locations of these were investigated in selective crosses between MHC class II-compatible, EAE-susceptible Biozzi ABH, and low responder nonobese diabetic (NOD) mice. The disease was dominant and highly influenced by gender in the backcross one (BC{sub 1}) generation. Female mice were significantly more susceptible than male mice. Segregation of disease frequency of female animals in this cross suggested that EAE was controlled by a major locus. Although microsatellite-based exclusion mapping indicated that a number of regions on chromosomes 5, 6, 7, 8, 9, 10, 11, 12, 13, and 18 showed evidence of linkage (p<0.05) compared with expected random distributions of alleles, disease susceptibility was most strongly linked (p<0.05) to chromosome 7. However, by selectively analyzing animals that were either severely affected or almost normal, additional susceptibility loci were mapped on chromosomes 18 and 11 that were linked (p<0.001) to resistance and the development of severe disease, respectively. The data indicate a major locus on chromosome 7, affecting initiation and severity of EAE that is probably modified by several other unlinked loci. These localizations may provide candidate loci for the analysis of human autoimmune-demyelinating disease. 30 refs., 5 tabs.

  20. Acute disseminated encephalomyelitis in a case of autoimmune haemolytic anaemia: a rare association.

    Science.gov (United States)

    Hajra, Adrija; Bandyopadhyay, Dhrubajyoti

    2016-06-07

    Acute disseminated encephalomyelitis (ADEM) is a demyelinating disease that may occur in a postvaccination condition or as a parainfectious encephalomyelitis. It is almost always monophasic. The underlying pathogenesis of ADEM may include perivascular inflammation, oedema and demyelination in the central nervous system. We present a case of a 15-year-old girl who was diagnosed as having ADEM, as well as detected to be a follow-up case of autoimmune haemolytic anaemia on steroid treatment. She presented with progressive weakness of the right lower limb for the past 4 days. MRI showed multiple subcortical lesions of varying size showing hyperintensities in T2 fluid-attenuated inversion recovery (FLAIR). The patient responded well to steroid therapy. No residual lesion was found on follow-up. Very few cases have been found with this rare association in the literature. 2016 BMJ Publishing Group Ltd.

  1. NMR and molecular dynamics studies of an autoimmune myelin basic protein peptide and its antagonist : structural implications for the MHC II (I-Au)–peptide complex from docking calculations

    NARCIS (Netherlands)

    Tzakos, A.G.; Fuchs, P.; van Nuland, N.A.J.; Troganis, A.; Tselios, T.; Deraos, S.; Gerothanassis, I.P.; Bonvin, A.M.J.J.

    2004-01-01

    Experimental autoimmune encephalomyelitis can be induced in susceptible animals by immunodominant determinants of myelin basic protein (MBP). To characterize the molecular features of antigenic sites important for designing experimental autoimmune encephalomyelitis suppressing molecules, we report

  2. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs).

    Science.gov (United States)

    Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Maes, Michael

    2014-04-01

    The World Health Organization classifies myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) as a nervous system disease. Together with other diseases under the G93 heading, ME/cfs shares a triad of abnormalities involving elevated oxidative and nitrosative stress (O&NS), activation of immuno-inflammatory pathways, and mitochondrial dysfunctions with depleted levels of adenosine triphosphate (ATP) synthesis. There is also abundant evidence that many patients with ME/cfs (up to around 60 %) may suffer from autoimmune responses. A wide range of reported abnormalities in ME/cfs are highly pertinent to the generation of autoimmunity. Here we review the potential sources of autoimmunity which are observed in people with ME/cfs. The increased levels of pro-inflammatory cytokines, e.g., interleukin-1 and tumor necrosis factor-α, and increased levels of nuclear factor-κB predispose to an autoimmune environment. Many cytokine abnormalities conspire to produce a predominance of effector B cells and autoreactive T cells. The common observation of reduced natural killer cell function in ME/cfs is a source of disrupted homeostasis and prolonged effector T cell survival. B cells may be pathogenic by playing a role in autoimmunity independent of their ability to produce antibodies. The chronic or recurrent viral infections seen in many patients with ME/cfs can induce autoimmunity by mechanisms involving molecular mimicry and bystander activation. Increased bacterial translocation, as observed in ME/cfs, is known to induce chronic inflammation and autoimmunity. Low ATP production and mitochondrial dysfunction is a source of autoimmunity by inhibiting apoptosis and stimulating necrotic cell death. Self-epitopes may be damaged by exposure to prolonged O&NS, altering their immunogenic profile and become a target for the host's immune system. Nitric oxide may induce many faces of autoimmunity stemming from elevated mitochondrial membrane hyperpolarization and blockade of the

  3. Interferon-gamma confers resistance to experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Krakowski, M; Owens, T

    1996-01-01

    In experimental allergic encephalomyelitis (EAE), T cells infiltrate the central nervous system (CNS) and induce inflammation. These CD4+ T cells secrete interferon (IFN)-gamma, levels of which correlate with disease severity, and which is proposed to play a key role in disease induction. Many...

  4. Experimental Models of Autoimmune Demyelinating Diseases in Nonhuman Primates.

    Science.gov (United States)

    Stimmer, Lev; Fovet, Claire-Maëlle; Serguera, Ché

    2017-01-01

    Human idiopathic inflammatory demyelinating diseases (IIDD) are a heterogeneous group of autoimmune inflammatory and demyelinating disorders of the central nervous system (CNS). These include multiple sclerosis (MS), the most common chronic IIDD, but also rarer disorders such as acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO). Great efforts have been made to understand the pathophysiology of MS, leading to the development of a few effective treatments. Nonetheless, IIDD still require a better understanding of the causes and underlying mechanisms to implement more effective therapies and diagnostic methods. Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model to study the pathophysiology of IIDD. EAE is principally induced through immunization with myelin antigens combined with immune-activating adjuvants. Nonhuman primates (NHP), the phylogenetically closest relatives of humans, challenged by similar microorganisms as other primates may recapitulate comparable immune responses to that of humans. In this review, the authors describe EAE models in 3 NHP species: rhesus macaques ( Macaca mulatta), cynomolgus macaques ( Macaca fascicularis), and common marmosets ( Callithrix jacchus), evaluating their respective contribution to the understanding of human IIDD. EAE in NHP is a heterogeneous disease, including acute monophasic and chronic polyphasic forms. This diversity makes it a versatile model to use in translational research. This clinical variability also creates an opportunity to explore multiple facets of immune-mediated mechanisms of neuro-inflammation and demyelination as well as intrinsic protective mechanisms. Here, the authors review current insights into the pathogenesis and immunopathological mechanisms implicated in the development of EAE in NHP.

  5. Alleviation of experimental allergic encephalomyelitis in C57BL/6 mice by soy daidzein.

    OpenAIRE

    Soodeh Razeghi Jahromi; Seyed Rafi Arrefhosseini; Amir Ghaemi; Akram Alizadeh; Hedieh Moradi Tabriz; Mansoureh Togha

    2014-01-01

    Experimental allergic encephalomyelitis (EAE) is considered as the murine model of multiple sclerosis. Daidzein a phytostrogenic compound of soy is known to impose immunomodulatory and antioxidative effects. We conducted this study to assess the potential protective and therapeutic effects of daidzein on allergic encephalomyelitis.C57BL/6 mice were induced with allergic encephalomyelitis using myelin oligodendrocyte glycoprotein (35-55) and received daidzein or dimethyl sulfoxide as the vehic...

  6. Interferon gamma, interleukin 4 and transforming growth factor beta in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Mustafa, M; Ljungdahl, A

    1995-01-01

    The potential role of certain important immunoregulatory and effector cytokines in autoimmune neuroinflammation have been studied. We have examined the expression of mRNA, with in situ hybridization, of interferon gamma (IFN-gamma), interleukin 4 (IL-4) and transforming growth factor beta (TGF...

  7. Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis

    Czech Academy of Sciences Publication Activity Database

    Harris, N.; Koppel, J.; Zsila, F.; Juhás, Štefan; Ilková, G.; Kogan, F. Y.; Lahmy, O.; Wildbaum, G.; Karin, N.; Zhuk, R.; Gregor, P.

    2016-01-01

    Roč. 65, č. 4 (2016), s. 285-294 ISSN 1023-3830 Institutional support: RVO:67985904 Keywords : small molecule drug * glycosaminoglycan * heparin binding protein * heparan sulfate * inflammation * autoimmune disease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.659, year: 2016

  8. Human Endogenous Retrovirus Protein Activates Innate Immunity and Promotes Experimental Allergic Encephalomyelitis in Mice

    Science.gov (United States)

    Perron, Hervé; Dougier-Reynaud, Hei-Lanne; Lomparski, Christina; Popa, Iuliana; Firouzi, Reza; Bertrand, Jean-Baptiste; Marusic, Suzana; Portoukalian, Jacques; Jouvin-Marche, Evelyne; Villiers, Christian L.; Touraine, Jean-Louis; Marche, Patrice N.

    2013-01-01

    Multiple sclerosis (MS) is a complex multifactorial disease of the central nervous system (CNS) for which animal models have mainly addressed downstream immunopathology but not potential inducers of autoimmunity. In the absence of a pathogen known to cause neuroinflammation in MS, Mycobacterial lysate is commonly used in the form of complete Freund's adjuvant to induce autoimmunity to myelin proteins in Experimental Allergic Encephalomyelitis (EAE), an animal model for MS. The present study demonstrates that a protein from the human endogenous retrovirus HERV-W family (MSRV-Env) can be used instead of mycobacterial lysate to induce autoimmunity and EAE in mice injected with MOG, with typical anti-myelin response and CNS lesions normally seen in this model. MSRV-Env was shown to induce proinflammatory response in human macrophage cells through TLR4 activation pathway. The present results demonstrate a similar activation of murine dendritic cells and show the ability of MSRV-Env to trigger EAE in mice. In previous studies, MSRV-Env protein was reproducibly detected in MS brain lesions within microglia and perivascular macrophages. The present results are therefore likely to provide a model for MS, in which the upstream adjuvant triggering neuroinflammation is the one detected in MS active lesions. This model now allows pre-clinical studies with therapeutic agents targeting this endogenous retroviral protein in MS. PMID:24324591

  9. Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice.

    Directory of Open Access Journals (Sweden)

    Hervé Perron

    Full Text Available Multiple sclerosis (MS is a complex multifactorial disease of the central nervous system (CNS for which animal models have mainly addressed downstream immunopathology but not potential inducers of autoimmunity. In the absence of a pathogen known to cause neuroinflammation in MS, Mycobacterial lysate is commonly used in the form of complete Freund's adjuvant to induce autoimmunity to myelin proteins in Experimental Allergic Encephalomyelitis (EAE, an animal model for MS. The present study demonstrates that a protein from the human endogenous retrovirus HERV-W family (MSRV-Env can be used instead of mycobacterial lysate to induce autoimmunity and EAE in mice injected with MOG, with typical anti-myelin response and CNS lesions normally seen in this model. MSRV-Env was shown to induce proinflammatory response in human macrophage cells through TLR4 activation pathway. The present results demonstrate a similar activation of murine dendritic cells and show the ability of MSRV-Env to trigger EAE in mice. In previous studies, MSRV-Env protein was reproducibly detected in MS brain lesions within microglia and perivascular macrophages. The present results are therefore likely to provide a model for MS, in which the upstream adjuvant triggering neuroinflammation is the one detected in MS active lesions. This model now allows pre-clinical studies with therapeutic agents targeting this endogenous retroviral protein in MS.

  10. Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis

    Science.gov (United States)

    Pareek, Tej K.; Belkadi, Abdelmadjid; Kesavapany, Sashi; Zaremba, Anita; Loh, Sook L.; Bai, Lianhua; Cohen, Mark L.; Meyer, Colin; Liby, Karen T.; Miller, Robert H.; Sporn, Michael B.; Letterio, John J.

    2011-01-01

    Inflammatory cytokines and endogenous anti-oxidants are variables affecting disease progression in multiple sclerosis (MS). Here we demonstrate the dual capacity of triterpenoids to simultaneously repress production of IL-17 and other pro-inflammatory mediators while exerting neuroprotective effects directly through Nrf2-dependent induction of anti-oxidant genes. Derivatives of the natural triterpene oleanolic acid, namely CDDO-trifluoroethyl-amide (CDDO-TFEA), completely suppressed disease in a murine model of MS, experimental autoimmune encephalomyelitis (EAE), by inhibiting Th1 and Th17 mRNA and cytokine production. Encephalitogenic T cells recovered from treated mice were hypo-responsive to myelin antigen and failed to adoptively transfer the disease. Microarray analyses showed significant suppression of pro-inflammatory transcripts with concomitant induction of anti-inflammatory genes including Ptgds and Hsd11b1. Finally, triterpenoids induced oligodendrocyte maturation in vitro and enhanced myelin repair in an LPC-induced non-inflammatory model of demyelination in vivo. These results demonstrate the unique potential of triterpenoid derivatives for the treatment of neuroinflammatory disorders such as MS. PMID:22355716

  11. Differential induction of IgE-mediated anaphylaxis after soluble vs. cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis.

    Science.gov (United States)

    Smith, Cassandra E; Eagar, Todd N; Strominger, Jack L; Miller, Stephen D

    2005-07-05

    The ability of different forms of myelin peptides to induce tolerance for the treatment of preestablished murine experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, was evaluated. i.v. administration of myelin peptide-pulsed, ethylene carbodiimide-fixed syngeneic splenocytes, but not soluble myelin peptide monomers or oligomers, proved exceedingly effective at treating preestablished EAE, resulting in amelioration of disease progression. In addition to the lack of therapeutic efficacy of soluble peptide and peptide oligomer, administering them i.v. after the onset of clinical symptoms in many but not all peptide-induced EAE models led to a rapid-onset anaphylactic reaction characterized by respiratory distress, erythema, decreased body temperature, unresponsiveness, and, often, death. By using anti-IgE antibody treatments and mice with targeted mutations of the FcgammaRIII alpha-chain or the common gamma-chain of FcepsilonRI and FcgammaRI/III, we demonstrate that IgE crosslinking of FcepsilonRI appears to be necessary and sufficient for myelin peptide-induced anaphylaxis. The implications of these findings to myelin peptide/protein tolerance strategies for the treatment of multiple sclerosis are discussed.

  12. Absence of IFN-γ increases brain pathology in experimental autoimmune encephalomyelitis-susceptible DRB1*0301.DQ8 HLA transgenic mice through secretion of proinflammatory cytokine IL-17 and induction of pathogenic monocytes/microglia into the central nervous system.

    Science.gov (United States)

    Mangalam, Ashutosh K; Luo, Ningling; Luckey, David; Papke, Louisa; Hubbard, Alyssa; Wussow, Arika; Smart, Michele; Giri, Shailendra; Rodriguez, Moses; David, Chella

    2014-11-15

    Multiple sclerosis is an inflammatory, demyelinating disease of the CNS of presumed autoimmune origin. Of all the genetic factors linked with multiple sclerosis, MHC class II molecules have the strongest association. Generation of HLA class II transgenic (Tg) mice has helped to elucidate the role of HLA class II genes in chronic inflammatory and demyelinating diseases. We have shown that the human HLA-DRB1*0301 gene predisposes to proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE), whereas HLA-DQβ1*0601 (DQ6) was resistant. We also showed that the DQ6 molecule protects from EAE in DRB1*0301.DQ6 double-Tg mice by producing anti-inflammatory IFN-γ. HLA-DQβ1*0302 (DQ8) Tg mice were also resistant to PLP(91-110)-induced EAE, but production of proinflammatory IL-17 exacerbated disease in DRB1*0301.DQ8 mice. To further confirm the role of IFN-γ in protection, we generated DRB1*0301.DQ8 mice lacking IFN-γ (DRB1*0301.DQ8.IFN-γ(-/-)). Immunization with PLP(91-110) peptide caused atypical EAE in DRB1*0301.DQ8.IFN-γ(-/-) mice characterized by ataxia, spasticity, and dystonia, hallmarks of brain-specific disease. Severe brain-specific inflammation and demyelination in DRB1*0301.DQ8.IFN-γ(-/-) mice with minimal spinal cord pathology further confirmed brain-specific pathology. Atypical EAE in DRB1*0301.DQ8.IFN-γ(-/-) mice was associated with increased encephalitogenicity of CD4 T cells and their ability to produce greater levels of IL-17 and GM-CSF compared with DRB1*0301.DQ8 mice. Further, areas with demyelination showed increased presence of CD68(+) inflammatory cells, suggesting an important role for monocytes/microglia in causing brain pathology. Thus, our study supports a protective role for IFN-γ in the demyelination of brain through downregulation of IL-17/GM-CSF and induction of neuroprotective factors in the brain by monocytes/microglial cells. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. pVAXhsp65 Vaccination Primes for High IL-10 Production and Decreases Experimental Encephalomyelitis Severity

    Directory of Open Access Journals (Sweden)

    Sofia Fernanda Gonçalves Zorzella-Pezavento

    2017-01-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is a demyelinating pathology of the central nervous system (CNS used as a model to study multiple sclerosis immunopathology. EAE has also been extensively employed to evaluate potentially therapeutic schemes. Considering the presence of an immune response directed to heat shock proteins (hsps in autoimmune diseases and the immunoregulatory potential of these molecules, we evaluated the effect of a previous immunization with a genetic vaccine containing the mycobacterial hsp65 gene on EAE development. C57BL/6 mice were immunized with 4 pVAXhsp65 doses and 14 days later were submitted to EAE induction by immunization with myelin oligodendrocyte glycoprotein (MOG35–55 emulsified in Complete Freund’s Adjuvant. Vaccinated mice presented significant lower clinical scores and lost less body weight. MOG35–55 immunization also determined less inflammation in lumbar spinal cord but did not change CD4+CD25+Foxp3+ T cells frequency in spleen and CNS. Infiltrating cells from the CNS stimulated with rhsp65 produced significantly higher levels of IL-10. These results suggest that the ability of pVAXhsp65 vaccination to control EAE development is associated with IL-10 induction.

  14. Interferon regulatory factor-7 modulates experimental autoimmune encephalomyelitis in mice

    DEFF Research Database (Denmark)

    Salem, Mohammad; Mony, Jyothi T; Lobner, Morten

    2011-01-01

    the spinal cord was altered. Analysis of cytokine and chemokine gene expression by quantitative real-time PCR showed significantly greater increases in CCL2, CXCL10, IL-1beta and IL17 gene expression in IRF7-deficient mice compared with WT mice. CONCLUSION: Together, our findings suggest that IRF7 signaling...

  15. Interferon-gamma regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, Carmen; Penkowa, Milena; Sáez-Torres, Irene

    2002-01-01

    disease eliciting secretion of proinflammatory cytokines like IFN-gamma or TNF-alpha, and it has been suggested that cytokine-induced oxidative stress could have a role in EAE neuropathology. However, the individual roles of these and other cytokines in the pathogenesis of the disease are still uncertain....... Here we analyze the role of IFN-gamma during EAE by using both IFN-gamma receptor-knockout (IFN-gamma R(-/-)) and wild-type mice, both strains immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. The levels of oxidative stress were determined through the analysis...... of immunoreactivity for inducible NO synthase, nitrotyrosine, and malondialdehyde, as well as through the expression of the tissue-protective antioxidant factors metallothionein I+II (MT-I+II). We also examined the number of cells undergoing apoptosis as judged by using the TUNEL technique. The levels of oxidative...

  16. Conventional housing conditions attenuate the development of experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Andreas Arndt

    Full Text Available BACKGROUND: The etiology of multiple sclerosis (MS has remained unclear, but a causative contribution of factors outside the central nervous system (CNS is conceivable. It was recently suggested that gut bacteria trigger the activation of CNS-reactive T cells and the development of demyelinative disease. METHODS: C57BL/6 (B6 mice were kept either under specific pathogen free or conventional housing conditions, immunized with the myelin basic protein (MBP-proteolipid protein (PLP fusion protein MP4 and the development of EAE was clinically monitored. The germinal center size of the Peyer's patches was determined by immunohistochemistry in addition to the level of total IgG secretion which was assessed by ELISPOT. ELISPOT assays were also used to measure MP4-specific T cell and B cell responses in the Peyer's patches and the spleen. Ear swelling assays were performed to determine the extent of delayed-type hypersensitivity reactions in specific pathogen free and conventionally housed mice. RESULTS: In B6 mice that were actively immunized with MP4 and kept under conventional housing conditions clinical disease was significantly attenuated compared to specific pathogen free mice. Conventionally housed mice displayed increased levels of IgG secretion in the Peyer's patches, while the germinal center formation in the gut and the MP4-specific TH17 response in the spleen were diminished after immunization. Accordingly, these mice displayed an attenuated delayed type hypersensitivity (DTH reaction in ear swelling assays. CONCLUSIONS: The data corroborate the notion that housing conditions play a substantial role in the induction of murine EAE and suggest that the presence of gut bacteria might be associated with a decreased immune response to antigens of lower affinity. This concept could be of importance for MS and calls for caution when considering the therapeutic approach to treat patients with antibiotics.

  17. Effects of Intermittent Fasting on Experimental Autoimune Encephalomyelitis in C57BL/6 Mice.

    Science.gov (United States)

    Razeghi Jahromi, Soodeh; Ghaemi, Amir; Alizadeh, Akram; Sabetghadam, Fatemeh; Moradi Tabriz, Hedieh; Togha, Mansoureh

    2016-06-01

    Several religions recommend periods of fasting. One of the most frequently asked questions of MS patients before the holy month of Ramadan is weather fasting might have an unfavorable effect on their disease course. This debate became more challenging after the publication of experimental studies suggesting that calorie restriction prior to disease induction attenuates disease severity. We conducted this study to assess early and late effects of fasting on the animal model of MS, known as autoimmune encephalomyelitis. EAE was induced in the C57BL/6 mice, using Myelin Oligodendrocyte Glycopeptide  (MOG) 35-55 and they fasted every other day either after the appearance of the first clinical sign or 30 days after disease induction for ten days. Thereafter, the mice were sacrificed for further histological and immunological evaluations. Intermittent fasting after the establishment of EAE did not have any unfavorable effect on the course of disease. Moreover, fasting at the early phase of disease alleviated EAE severity by ameliorating spinal cord demyelination. Fasting suppressed the secretion of IFN-γ, TNF-α and raised IL-10 production in splenocytes. Fasting was also associated with a lower percent of cytotoxicity. Intermittent fasting not only had no unfavorable effect on EAE but also reduced EAE severity if started at early phase of disease.

  18. Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T cells: implications for multiple sclerosis therapy.

    Science.gov (United States)

    Mondal, Susanta; Pahan, Kalipada

    2015-01-01

    Upregulation and/or maintenance of regulatory T cells (Tregs) during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experimental allergic encephalomyelitis (EAE), an animal model of MS. Oral feeding of cinnamon (Cinnamonum verum) powder suppresses clinical symptoms of relapsing-remitting EAE in female PLP-TCR transgenic mice and adoptive transfer mouse model. Cinnamon also inhibited clinical symptoms of chronic EAE in male C57/BL6 mice. Dose-dependent study shows that cinnamon powder at a dose of 50 mg/kg body wt/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, oral administration of cinnamon also inhibited perivascular cuffing, maintained the integrity of blood-brain barrier and blood-spinal cord barrier, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the central nervous system of EAE mice. Interestingly, cinnamon treatment upregulated Tregs via reduction of nitric oxide production. Furthermore, we demonstrate that blocking of Tregs by neutralizing antibodies against CD25 abrogates cinnamon-mediated protection of EAE. Taken together, our results suggest that oral administration of cinnamon powder may be beneficial in MS patients and that no other existing anti-MS therapies could be so economical and trouble-free as this approach.

  19. Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T cells: implications for multiple sclerosis therapy.

    Directory of Open Access Journals (Sweden)

    Susanta Mondal

    Full Text Available Upregulation and/or maintenance of regulatory T cells (Tregs during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experimental allergic encephalomyelitis (EAE, an animal model of MS. Oral feeding of cinnamon (Cinnamonum verum powder suppresses clinical symptoms of relapsing-remitting EAE in female PLP-TCR transgenic mice and adoptive transfer mouse model. Cinnamon also inhibited clinical symptoms of chronic EAE in male C57/BL6 mice. Dose-dependent study shows that cinnamon powder at a dose of 50 mg/kg body wt/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, oral administration of cinnamon also inhibited perivascular cuffing, maintained the integrity of blood-brain barrier and blood-spinal cord barrier, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the central nervous system of EAE mice. Interestingly, cinnamon treatment upregulated Tregs via reduction of nitric oxide production. Furthermore, we demonstrate that blocking of Tregs by neutralizing antibodies against CD25 abrogates cinnamon-mediated protection of EAE. Taken together, our results suggest that oral administration of cinnamon powder may be beneficial in MS patients and that no other existing anti-MS therapies could be so economical and trouble-free as this approach.

  20. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis

    Science.gov (United States)

    Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...

  1. Experimental models of autoimmune inflammatory ocular diseases

    Directory of Open Access Journals (Sweden)

    Fabio Gasparin

    2012-04-01

    Full Text Available Ocular inflammation is one of the leading causes of blindness and loss of vision. Human uveitis is a complex and heterogeneous group of diseases characterized by inflammation of intraocular tissues. The eye may be the only organ involved, or uveitis may be part of a systemic disease. A significant number of cases are of unknown etiology and are labeled idiopathic. Animal models have been developed to the study of the physiopathogenesis of autoimmune uveitis due to the difficulty in obtaining human eye inflamed tissues for experiments. Most of those models are induced by injection of specific photoreceptors proteins (e.g., S-antigen, interphotoreceptor retinoid-binding protein, rhodopsin, recoverin, phosducin. Non-retinal antigens, including melanin-associated proteins and myelin basic protein, are also good inducers of uveitis in animals. Understanding the basic mechanisms and pathogenesis of autoimmune ocular diseases are essential for the development of new treatment approaches and therapeutic agents. The present review describes the main experimental models of autoimmune ocular inflammatory diseases.

  2. Toll-Like Receptor 2 mediates in vivo pro- and anti-inflammatory effects of Mycobacterium tuberculosis and modulates autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Alessia ePiermattei

    2016-05-01

    Full Text Available Mycobacteria display pro- and anti-inflammatory effects in human and experimental pathology. We show here that both effects are mediated by Toll like receptor 2 (Tlr2, by exploiting a previously characterized Tlr2 variant (Met82Ile. Tlr2 82ile promoted self-specific pro-inflammatory polarization as well as expansion of ag-specific FoxP3+ Tregs, while Tlr2 82met impairs the expansion of Tregs and reduces the production of IFN-γ and IL-17 pro-inflammatory cytokines. Preferential dimerization with Tlr1 or Tlr6 could not explain these differences. In silico, we showed that Tlr2 variant Met82Ile modified the binding pocket for peptidoglycans and participate directly to a putative binding pocket for sugars and Cadherins. The distinct pro- and anti-inflammatory actions impacted on severity, extent of remission and distribution of the lesions within the Central Nervous System of Experimental Autoimmune Encephalomyelitis. Thus, Tlr2 has a janus function in vivo as mediator of the role of bacterial products in balancing pro- and anti-inflammatory immune responses.

  3. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Tran, E H; Hardin-Pouzet, H; Verge, G

    1997-01-01

    Nitric oxide (NO), produced by inducible NO synthase (iNOS), may play a role in inflammatory demyelinating diseases of the central nervous system (CNS). We show upregulation of iNOS mRNA in CNS of SJL/J mice with experimental allergic encephalomyelitis (EAE). Using antibodies against mouse i...

  4. Cytokine production by cells in cerebrospinal fluid during experimental allergic encephalomyelitis in SJL/J mice

    DEFF Research Database (Denmark)

    Renno, T; Lin, J Y; Piccirillo, C

    1994-01-01

    Cytokine production by T cells in the cerebrospinal fluid (CSF) and central nervous system (CNS) of SJL/J mice during myelin basic protein (MBP)-induced experimental allergic encephalomyelitis (EAE) was examined. Reverse transcriptase/polymerase chain reaction (RT/PCR) was used to measure...

  5. Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Hardin-Pouzet, H; Krakowski, M; Bourbonnière, L

    1997-01-01

    Experimental allergic encephalomyelitis (EAE) was induced in SJL/J mice by adoptive transfer of MBP-reactive T cells in order to investigate the role of astrocytes in pathology. GFAP protein and mRNA expression (analyzed using semiquantitative Western blot and RT-PCR techniques) were upregulated...

  6. Changes in characteristics of rat skeletal muscle after experimental allergic encephalomyelitis.

    NARCIS (Netherlands)

    de Haan, A.; van der Vliet, M.R.; Hendriks, JJ; Heijnen, DA; Dijkstra, C.D.

    2004-01-01

    Experimental allergic encephalomyelitis (EAE) serves as an animal model for certain neuroinflammatory diseases of the central nervous system, in particular multiple sclerosis (MS). EAE is accompanied by transient weakness or paralysis of hind limbs. We have investigated the effect of partial and

  7. Effect of honey bee venom on lewis rats with experimental allergic encephalomyelitis, a model for multiple sclerosis.

    Science.gov (United States)

    Karimi, Akbar; Ahmadi, Farhad; Parivar, Kazem; Nabiuni, Mohammad; Haghighi, Saied; Imani, Sohrab; Afrouzi, Hossein

    2012-01-01

    Multiple sclerosis (MS) is a progressive and autoimmune neurodegenerative disease of the central nervous system (CNS). This disease is recognized through symptoms like inflammation, demyelination and the destruction of neurological actions. Experimental allergic encephalomyelitis (EAE) is a widely accepted animal model for MS. EAE is created in animals by injecting the tissue of myelin basic protein (MBP), CNS, or myelin oligodendrocyte glycoprotein (MOG) along with the adjuvant. EAE and MS are similar diseases. Honey Bee venom (Apis mellifera) contains a variety of low and high molecular weight peptides and proteins, including melittin, apamin, adolapin, mast cell degranulating peptide and phospholipase A2. Bee venom (BV) could exert anti-inflammatory and antinociceptive effects on the inflammatory reactions. The guinea pig spinal cord homogenate (GPSCH) is with the Complete Freund's Adjuvant (CFA), consisting of 1 mg/mL Mycobacterium tuberculosis. It was used for inducting EAE in Lewis rats for creating the MS model. The hematoxylin and eosin and luxol fast blue methods were used respectively in analyses of inflammation and detection of demyelination in the central nervous system. Furthermore, the ELISA and the high performance liquid chromatography (HPLC) were used for the assessment of tumor necrosis factor alpha (TNF-α) and nitrate in rats serum. In this study, we indicated that the treatment of EAE with Bee venom decreased the symptoms of clinical disorder, pathological changes, inflammatory cell infiltration, demyelination in the central nervous system, level of serum TNF-α, and the serum nitrates in rat EAE induced through GPSCH.

  8. Calf thymus extract attenuates severity of experimental encephalomyelitis in Lewis rats.

    Science.gov (United States)

    Zimecki, Michał; Artym, Jolanta; Kocięba, Maciej; Kuryszko, Jan; Kaleta-Kuratewicz, Katarzyna; Marycz, Krzysztof

    2010-01-01

    The aim of this study was to evaluate the efficacy of treatment of Lewis rats with calf thymus extract (TFX®) and its six-peptide fraction on the course of experimental allergic encephalomyelitis (EAE). Interferon- ß served as a reference drug. We found that intramuscular administration of the thymus extract fraction significantly reduced clinical, immunological, histological, and ultrastructural alterations inherent in the disease. We suggest that TFX® or TFX®-derived fractions have potential as therapeutics in treatment of neurodegenerative diseases such as multiple sclerosis.

  9. In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation.

    Science.gov (United States)

    Maes, Michael; Ringel, Karl; Kubera, Marta; Anderson, George; Morris, Gerwyn; Galecki, Piotr; Geffard, Michel

    2013-09-05

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is accompanied by activation of immuno-inflammatory pathways, increased bacterial translocation and autoimmune responses to serotonin (5-HT). Inflammation is known to damage 5-HT neurons while bacterial translocation may drive autoimmune responses. This study has been carried out to examine the autoimmune responses to 5-HT in ME/CFS in relation to inflammation and bacterial translocation. We examined 5-HT antibodies in 117 patients with ME/CFS (diagnosed according to the centers for disease control and prevention criteria, CDC) as compared with 43 patients suffering from chronic fatigue (CF) but not fulfilling the CDC criteria and 35 normal controls. Plasma interleukin-1 (IL-1), tumor necrosis factor (TNF)α, neopterin and the IgA responses to Gram-negative bacteria were measured. Severity of physio-somatic symptoms was measured using the fibromyalgia and chronic fatigue syndrome rating scale (FF scale). The incidence of positive autoimmune activity against 5-HT was significantly higher (pME/CFS (61.5%) than in patients with CF (13.9%) and controls (5.7%). ME/CFS patients with 5-HT autoimmune activity displayed higher TNFα, IL-1 and neopterin and increased IgA responses against LPS of commensal bacteria than those without 5-HT autoimmune activity. Anti-5-HT antibody positivity was significantly associated with increased scores on hyperalgesia, fatigue, neurocognitive and autonomic symptoms, sadness and a flu-like malaise. The results show that, in ME/CFS, increased 5-HT autoimmune activity is associated with activation of immuno-inflammatory pathways and increased bacterial translocation, factors which are known to play a role in the onset of autoimmune reactions. 5-HT autoimmune activity could play a role in the pathophysiology of ME/CFS and the onset of physio-somatic symptoms. These results provide mechanistic support for the notion that ME/CFS is a neuro-immune disorder. Copyright © 2013 Elsevier B

  10. Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome.

    Science.gov (United States)

    Maes, Michael; Leunis, Jean-Claude

    2014-01-01

    There is evidence that inflammatory, oxidative and nitrosative stress (IO&NS) pathways participate in the pathophysiology of a subgroup of patients with Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Increased IgM-related autoimmune responses to oxidative specific epitopes (OSEs), including malondialdehyde (MDA), oleic acid and phosphatidyl inositol (Pi), and nitroso-(NO)-adducts, including NO-tryptophan (NOW), NO-arginine and NO-cysteinyl, are frequently observed in ME/CFS. Autoimmune responses in ME/CFS may be driven by increased bacterial translocation as measured by IgM and IgA responses to LPS of gram negative bacteria. The aim of this study is to examine whether IgM responses to OSEs and NO-adducts are related to a better outcome as measured by the Fibromyalgia and Fatigue Rating Scale (FF). 76 ME/CFS patients with initially abnormal autoimmune responses were treated with care-as-usual, including nutraceuticals with anti-IO&NS effects (NAIOS), such as L-carnitine, coenzyme Q10, taurine + lipoic acid, with or without curcumine + quercitine or N-acetyl-cysteine, zinc + glutamine. We found that use of these NAIOS was associated with highly significant reductions in initially increased IgM-mediated autoimmune responses to OSEs and NO-adducts. A greater reduction in autoimmune responses to OSEs during intake of these NAIOS was associated with a lower FF score. Reductions in IgM responses to oleic acid, MDA and Pi, but not in any of the NO-adducts, were associated with reductions in severity of illness. These associations remained significant after adjusting for possible effects of increased bacterial translocation (leaky gut). Our results show that autoimmune responses to OSEs are involved in the pathophysiology of ME/CFS and that these pathways are a new drug target in a subgroup of ME/CFS patients. Although hypernitrosylation and nitrosative stress play a role in ME/CFS, reductions in these pathways are not associated with lowered severity of

  11. [CHANGES IN THE QUALITATIVE AND QUANTITATIVE COMPOSITION OF GUT MICROBIOTA IN RATS DURING EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS].

    Science.gov (United States)

    Abdurasulova, I N; Tarasova, E A; Matsulevich, A V; Eliseev, A V; Ermolenko, E I; Suvorov, A N; Klimenko, V M

    2015-11-01

    In this study, on the model of multiple sclerosis - experimental allergic encephalomyelitis (EAE), the dynamics of changes in the qualitative and quantitative composition of the intestinal microbiota in rats with symptoms of the disease and asymptomatic course were compared. It was found that the composition of the intestinal microbiota in rats with the clinical symptoms of EAE is shifted towards gram-negative opportunistic microorganisms of the genus Citrobacter, Prote- us, Klebsiella and enteropathogenic Escherichia coli. It has been shown that rats without clinical signs of EAE have higher levels of Faecalibacteriumprausnitzii. The significance of the complex changes in the composition of the intestinal microbiota, indicating long-lasting dysbiosis in rats during the development of EAE is discussing.

  12. IgM-mediated autoimmune responses directed against anchorage epitopes are greater in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) than in major depression.

    Science.gov (United States)

    Maes, Michael; Mihaylova, Ivana; Kubera, Marta; Leunis, Jean-Claude; Twisk, Frank N M; Geffard, Michel

    2012-12-01

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and depression are considered to be neuro-immune disorders (Maes and Twisk, BMC Medicine 8:35, 2010). There is also evidence that depression and ME/CFS are accompanied by oxidative and nitrosative stress (O&NS) and by increased autoantibodies to a number of self-epitopes some of which have become immunogenic due to damage by O&NS. The aim of this study is to examine IgM-mediated autoimmune responses to different self-epitopes in ME/CFS versus depression. We examined serum IgM antibodies to three anchorage molecules (palmitic and myristic acid and S-farnesyl-L-cysteine); acetylcholine; and conjugated NO-modified adducts in 26 patients with major depression; 16 patients with ME/CFS, 15 with chronic fatigue; and 17 normal controls. Severity of fatigue and physio-somatic (F&S) symptoms was measured with the Fibromyalgia and Chronic Fatigue Syndrome Rating Scale. Serum IgM antibodies to the three anchorage molecules and NO-phenylalanine were significantly higher in ME/CFS than in depression. The autoimmune responses to oxidatively, but not nitrosatively, modified self-epitopes were significantly higher in ME/CFS than in depression and were associated with F&S symptoms. The autoimmune activity directed against conjugated acetylcholine did not differ significantly between ME/CFS and depression, but was greater in the patients than controls. Partially overlapping pathways, i.e. increased IgM antibodies to a multitude of neo-epitopes, underpin both ME/CFS and depression, while greater autoimmune responses directed against anchorage molecules and oxidatively modified neo-epitopes discriminate patients with ME/CFS from those with depression. These autoimmune responses directed against neoantigenic determinants may play a role in the dysregulation of key cellular functions in both disorders, e.g. intracellular signal transduction, cellular differentiation and apoptosis, but their impact may be more important in ME

  13. Experimental Transmission of Venezuelan Equine Encephalomyelitis Virus by a Strain of Aedes albopictus (Diptera: Culicidae) from New Orleans, Louisiana

    Science.gov (United States)

    1992-09-01

    2). However, the strains of Aedes albopictus (Diptera: Culicidae) col- greater susceptibility of the Brazilian strains than lected in North and South...AD-A259 565 Experimental Transmission of Venezuelan Equine Encephalomyelitis Virus by a Strain of Aedes albopictus (Diptera: Culicidae) S1 ls from... susceptibility of’ selected strains of’ Ecuador and Peru in northern South America Ac. albopictus for VEE and CHIK viruses to de- and as far north as southern

  14. Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis: effect of a neurotrophic treatment on cortical lesion development

    Energy Technology Data Exchange (ETDEWEB)

    Gispen, W.H. [Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University Utrecht (Netherlands); Nicolay, K. [Department of in vivo NMR, Bijvoet Center, Utrecht University Utrecht (Netherlands); Verhaagen, J. [Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University Utrecht (Netherlands); Muller, H.J. [Department of in vivo NMR, Bijvoet Center, Utrecht University Utrecht (Netherlands); Duckers, H.J. [Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University Utrecht (Netherlands)

    1997-02-14

    Proton magnetic resonance imaging enables non-invasive monitoring of lesion formation in multiple sclerosis and has an important role in assessing the potential effects of therapy. T2-weighted and short {tau} inversion recovery magnetic resonance imaging were used to assess the effect of a neurotrophic adrenocorticotrophic hormone{sub 4-9} analogue [H-Met(O{sub 2})-Glu-His-Phe-d-Lys-Phe-OH] on the volume of lesions in the brains of rats suffering from chronic experimental allergic encephalomyelitis, an animal equivalent of multiple sclerosis. Lesion volume was monitored during a five-month period. Magnetic resonance imaging indicated that treatment with the adrenocorticotrophic hormone{sub 4-9} analogue significantly reduced the lesion volume by 84 and 85% 10 and 20 weeks after lesion induction, respectively. Furthermore, peptide treatment significantly reduced chronic experimental allergic encephalomyelitis-related neurological symptoms during the chronic phase of the disease (week 3 until week 20 after lesion induction). Both functional and morphological recovery were considerably advanced by peptide treatment. Twenty weeks after lesion induction rats with chronic experimental allergic encephalomyelitis were killed for histological analysis, to correlate magnetic resonance imaging findings with morphological changes. The regions of abnormally high signal intensities on T2-weighted magnetic resonance images coincided with areas of demyelination and concomitant widespread inflammatory infiltration, oedema formation and enlarged ventricles.The improved neurological status and the 84% reduction in the lesion volume in the cerebrum of rats chronic experimental allergic encephalomyelitis point to the potential value of trophic peptides in the development of strategies for limiting the damage caused by central demyelinating lesions in syndromes such as multiple sclerosis. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Detection of antibodies against Theiler's murine encephalomyelitis virus GDVII strain in experimental guinea pigs.

    Science.gov (United States)

    Häger, C; Glage, S; Held, N; Bleich, E M; Burghard, A; Mähler, M; Bleich, André

    2016-10-01

    A disease affecting guinea pigs called 'guinea pig lameness' characterized by clinical signs of depression, lameness of limbs, flaccid paralysis, weight loss and death within a few weeks was first described by Römer in 1911. After a research group in our facility kept laboratory guinea pigs from two different origins together in one room, lameness was observed in two animals. Further investigations revealed a serological immune response against Theiler's murine encephalomyelitis virus (TMEV; GDVII strain) in these animals. Histopathology of the lumbar spinal cord of these animals showed mononuclear cell infiltration and necrotic neurons in the anterior horn. Therefore, all guinea pigs from this contaminated animal unit, from other units in our facility, as well as from different European institutions and breeding centres were screened for antibodies directed against GDVII. Our investigations showed that approximately 80% of all guinea pigs from the contaminated animal unit were seropositive for GDVII, whereas animals from other separate units were completely negative. In addition, 43% of tested sera from the different European institutions and breeding centres contained antibodies against GDVII. The present data confirm that an unknown viral infection causes an immune response in experimental guinea pigs leading to seroconversion against GDVII and that guinea pigs from a commercial breeder are the source of the infection. © The Author(s) 2015.

  16. An Iranian herbal-marine medicine, MS14, ameliorates experimental allergic encephalomyelitis.

    Science.gov (United States)

    Tafreshi, Azita Parvaneh; Ahmadi, Amrollah; Ghaffarpur, Majid; Mostafavi, Hossein; Rezaeizadeh, Hossein; Minaie, Bagher; Faghihzadeh, Soghrat; Naseri, Mohsen

    2008-08-01

    Multiple sclerosis is an inflammatory and demyelinating disease of the central nervous system which mainly affects young adults. To overcome wide spectrum troublesome symptoms of multiple sclerosis which affects the quality of life both in patients and their families, new drugs and remedies have been examined and offered. The preclinical beneficial effects of different medicines have mostly been examined in an animal model of multiple sclerosis called experimental allergic encephalomyelitis (EAE). In this study we have tested a traditionally used natural (herbal-marine) product called MS(14) in EAE mice. EAE mice were fed with MS(14) containing diet (30%) on the immunization day and monitored for 20 days. The results show that while clinical scores and therefore severity of the disease was progressive in normal-fed EAE mice, the disease was slowed down in MS(14)-fed EAE mice. Moreover, while there were moderate to severe neuropathological changes in normal fed mice, milder changes were seen in MS(14) fed mice.

  17. A herpes simplex virus-derived replicative vector expressing LIF limits experimental demyelinating disease and modulates autoimmunity.

    Science.gov (United States)

    Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17(+))-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE.

  18. Introducing Autoimmunity at the Synapse by a Novel Animal Model of Experimental Autoimmune Myasthenia Gravis.

    Science.gov (United States)

    Wang, Jianwen; Xiao, Yatao; Zhang, Kejing; Luo, Benyan; Shen, Chengyong

    2018-02-06

    The neuromuscular junction (NMJ) is a peripheral synapse between motor neurons and skeletal muscle fibers that controls muscle contraction. The NMJ is the target of various disorders including myasthenia gravis (MG), an autoimmune disease in which auto-antibodies (auto-Abs) attack the synapse, and thus cause muscle weakness in patients. There are multiple auto-Abs in the MG patient sera, but not all the Abs are proven to be pathogenic, which increases the difficulties in clinical diagnoses and treatments. To establish the causative roles of auto-Abs in MG pathogenesis, the experimental autoimmune MG (EAMG) induced by the active immunization of auto-antigens (auto-Ags) or the passive transfer of auto-Abs is required. These models simulate many features of the human disease. To date, there are three kinds of EAMG models reported, of which AChR-EAMG and MuSK-EAMG are well characterized, while the recent LRP4-EAMG is much less studied. Here, we report a current summary of LRP4-EAMG and its pathogenic mechanisms. The features of LRP4-EAMG are more similar to those of AChR-EAMG, indicating a similar clinical treatment for LRP4- and AChR-positive MG patients, compared to MuSK-positive MG patients. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. STUDIES ON ACUTE DISSEMINATED ENCEPHALOMYELITIS PRODUCED EXPERIMENTALLY IN RHESUS MONKEYS. III

    Science.gov (United States)

    Kabat, Elvin A.; Wolf, Abner; Bezer, Ada E.

    1948-01-01

    The factor in brain tissue which induces acute disseminated encephalomyelitis, when injected into rhesus monkeys as an emulsion with adjuvants, has been found in human, monkey, rabbit, and chicken brain but is absent from frog and fish brain. It is unaffected by fixation of the brain in formalin, by boiling, and by treatment with ultrasound. It is present in the spinal cord of 3 day old rabbits but does not appear in the rabbit cerebrum until about the 12th day of life; in this respect it parallels the laying down of myelin. Attempts to produce the encephalomyelitis passively with large quantities of serum or of cell exudates, and suspensions of cells from spleen and lymph node from monkeys with encephalomyelitis, were unsuccessful. PMID:18884901

  20. Pain in experimental autoimmune encephalitis: a comparative study between different mouse models

    Directory of Open Access Journals (Sweden)

    Lu Jianning

    2012-10-01

    Full Text Available Abstract Background Pain can be one of the most severe symptoms associated with multiple sclerosis (MS and develops with varying levels and time courses. MS-related pain is difficult to treat, since very little is known about the mechanisms underlying its development. Animal models of experimental autoimmune encephalomyelitis (EAE mimic many aspects of MS and are well-suited to study underlying pathophysiological mechanisms. Yet, to date very little is known about the sensory abnormalities in different EAE models. We therefore aimed to thoroughly characterize pain behavior of the hindpaw in SJL and C57BL/6 mice immunized with PLP139-151 peptide or MOG35-55 peptide respectively. Moreover, we studied the activity of pain-related molecules and plasticity-related genes in the spinal cord and investigated functional changes in the peripheral nerves using electrophysiology. Methods We analyzed thermal and mechanical sensitivity of the hindpaw in both EAE models during the whole disease course. Qualitative and quantitative immunohistochemical analysis of pain-related molecules and plasticity-related genes was performed on spinal cord sections at different timepoints during the disease course. Moreover, we investigated functional changes in the peripheral nerves using electrophysiology. Results Mice in both EAE models developed thermal hyperalgesia during the chronic phase of the disease. However, whereas SJL mice developed marked mechanical allodynia over the chronic phase of the disease, C57BL/6 mice developed only minor mechanical allodynia over the onset and peak phase of the disease. Interestingly, the magnitude of glial changes in the spinal cord was stronger in SJL mice than in C57BL/6 mice and their time course matched the temporal profile of mechanical hypersensitivity. Conclusions Diverse EAE models bearing genetic, clinical and histopathological heterogeneity, show different profiles of sensory and pathological changes and thereby enable

  1. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP.

    Directory of Open Access Journals (Sweden)

    Stephen F Murphy

    Full Text Available Chronic pelvic pain syndrome (CPPS is the most common form of prostatitis, accounting for 90-95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17's role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS.

  2. Effect of dimethyl fumarate on heme oxygenase-1 expression in experimental allergic encephalomyelitis in rats.

    Science.gov (United States)

    Kasarełło, Kaja; Jesion, Anika; Tyszkowska, Karolina; Matusik, Katarzyna; Czarzasta, Katarzyna; Wrzesień, Robert; Cudnoch-Jedrzejewska, Agnieszka

    2017-01-01

    Multiple sclerosis (MS) is an autoimmunological disease leading to neurodegeneration. The etiology of the disease remains unknown, which strongly impedes the development of effective therapy. Most MS treatments focus on modulating the activity of the immune system. Dimethyl fumarate (DMF) exerts a broad spectrum of action, such as modulating immune cell differentiation towards anti-inflammatory subtypes, influencing cytokine production, regulating immune cell migration into the central nervous system, and activating intracellular antioxidant mechanisms. It is well established that activation of the nuclear factor E2 (Nrf2)-dependent pathway, leading to expression of the second-phase antioxidant enzymes, is influenced by DMF. In our experiments we used female Lewis rats in an animal model of MS - experimental allergic encephalomyelitis (EAE). The rats were fed with dimethyl fumarate to test the expression of heme oxygenase-1 (HO-1), one of the second-phase antioxidant enzymes, at specific time points of the symptomatic phases of the disease: on the first day of the occurrence of clinical symptoms (10th day post immunization, DPI); at the peak of clinical symptoms (14th DPI); and at the end of the relapse (21st DPI). The results showed that HO-1 expression, at both the mRNA and protein level, is influenced by DMF administration only at the very beginning of the symptomatic phase of EAE, and not at the peak of clinical symptoms, nor at the end of the relapse. This indicates that the regulation of the Nrf2-dependent antioxidant pathway by DMF occurs at a certain time interval (early EAE/MS) and strongly underlines the importance of the earliest introduction of the therapy to the patient. .

  3. Effect of dimethyl fumarate on heme oxygenase-1 expression in experimental allergic encephalomyelitis in rats

    Directory of Open Access Journals (Sweden)

    Kaja Kasarełło

    2017-12-01

    Full Text Available Multiple sclerosis (MS is an autoimmunological disease leading to neurodegeneration. The etiology of the disease remains unknown, which strongly impedes the development of effective therapy. Most MS treatments focus on modulating the activity of the immune system. Dimethyl fumarate (DMF exerts a broad spectrum of action, such as modulating immune cell differentiation towards anti-inflammatory subtypes, influencing cytokine production, regulating immune cell migration into the central nervous system, and activating intracellular antioxidant mechanisms. It is well established that activation of the nuclear factor E2 (Nrf2-dependent pathway, leading to expression of the second-phase antioxidant enzymes, is influenced by DMF. In our experiments we used female Lewis rats in an animal model of MS – experimental allergic encephalomyelitis (EAE. The rats were fed with dimethyl fumarate to test the expression of heme oxygenase-1 (HO-1, one of the second-phase antioxidant enzymes, at specific time points of the symptomatic phases of the disease: on the first day of the occurrence of clinical symptoms (10th day post immunization, DPI; at the peak of clinical symptoms (14th DPI; and at the end of the relapse (21st DPI. The results showed that HO-1 expression, at both the mRNA and protein level, is influenced by DMF administration only at the very beginning of the symptomatic phase of EAE, and not at the peak of clinical symptoms, nor at the end of the relapse. This indicates that the regulation of the Nrf2-dependent antioxidant pathway by DMF occurs at a certain time interval (early EAE/MS and strongly underlines the importance of the earliest introduction of the therapy to the patient.

  4. Direct demonstration of the infiltration of murine central nervous system by Pgp-1/CD44high CD45RB(low) CD4+ T cells that induce experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Zeine, R; Owens, T

    1992-01-01

    In experimental allergic encephalomyelitis (EAE), autoimmune T cells infiltrate the central nervous system (CNS) and initiate demyelinating pathology. We have used flow cytometry to directly analyse the migration to the CNS of MBP-reactive CD4+ T cells labelled with a lipophilic fluorescent dye (...... detected in CNS, but there were very few blasts, and these remained CD45RBhigh. These results argue for induction of the memory/effector phenotype of CD4+ T cells, and their selective retention in the CNS, as a consequence of antigen recognition....... were CD45RBhigh. The CD44high CD45RB(low) phenotype is characteristic of memory/effector T cells that have been activated by antigen recognition. The difference in CD45RB expression between CNS and LN could therefore reflect differential exposure and/or response to antigen. Consistent with this, PKH2...

  5. Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis

    NARCIS (Netherlands)

    Dunham, Jordon; Lee, Li-Fen; van Driel, Nikki; Laman, Jon D.; Ni, Irene; Zhai, Wenwu; Tu, Guang-Huan; Lin, John C.; Bauer, Jan; 't Hart, Bert A.; Kap, Yolanda S.

    Non-human primate models of human disease have an important role in the translation of a new scientific finding in lower species into an effective treatment. In this study, we tested a new therapeutic antibody against the IL-7 receptor alpha chain (CD127), which in a C57BL/6 mouse model of

  6. Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Carrasco, J; Hidalgo, J

    2001-01-01

    Multiple sclerosis is an inflammatory, demyelinating disease of the CNS. Metallothioneins-I+II are antioxidant proteins induced in the CNS by immobilisation stress, trauma or degenerative diseases which have been postulated to play a neuroprotective role, while the CNS isoform metallothionein-III...

  7. Cannabinoid treatment renders neurons less vulnerable than oligodendrocytes in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Hasseldam, Henrik; Johansen, Flemming Fryd

    2011-01-01

    and demyelination. Furthermore, the cytokines IL-2, IL-6, IL-10, RANTES, and TGF-ß were significantly reduced as were the cellular infiltration with regulatory T cells. We suggest that cannabinoids in low doses are neuroprotective through a reduction in calpain 1 expression. Our study implies that long-term low-dose...... cannabinoid administration to multiple sclerosis (MS) patients could result in some degree of neuroprotection, and thereby slow down the atrophy associated with this disease....

  8. Fusion of metabolomics and proteomics data for biomarkers discovery: Case study on the experimental autoimmune encephalomyelitis

    NARCIS (Netherlands)

    L. Blanchet (Lionel); A. Smolinska (Agnieszka); A. Attali (Amos); M.P. Stoop (Marcel); K.A.M. Ampt (Kirsten); H. van Aken (Hugo); E. Suidgeest (Ernst); T. Tuinstra (Tinka); S.S. Wijmenga (Sybren); T.M. Luider (Theo); L.M.C. Buydens (Lutgarde M.C.)

    2011-01-01

    textabstractBackground: Analysis of Cerebrospinal Fluid (CSF) samples holds great promise to diagnose neurological pathologies and gain insight into the molecular background of these pathologies. Proteomics and metabolomics methods provide invaluable information on the biomolecular content of CSF

  9. Prolonged stimulation of a brainstem raphe region attenuates experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Madsen, Pernille M.; Sloley, Stephanie S.; Vitores, Alberto A.

    2017-01-01

    of myelinated axons. It additionally lowered genetic expression of some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising expression of myelin basic protein. Studies of restorative...... expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19–25 that stimulation for >16 days eliminated. Prolonged stimulation also reduced numbers of infiltrating immune cells and increased numbers...

  10. [LINGO-1 expression of brain tissue in experimental autoimmune encephalomyelitis mouse].

    Science.gov (United States)

    Wang, Chunjuan; Guo, Shougang; Qu, Chuanqiang; Zhang, Jie; Fu, Peicai; Tang, Ronghua

    2014-04-22

    To observe the changes of LINGO-1 expression with time after onset in EAE mouse. C57/BL6 mice were completely randomly divided into EAE model group (n = 15) , adjuvant group (n = 15) and control group (n = 15) .LINGO-1 expression of brain tissue was detected on day 1, 7, 14, 21 and 30 after onset by RT-PCR and Western blot.RhoA and p-RhoA expression of brain tissue was analysed by Western blot. The LINGO-1mRNA levels in EAE model group were markedly higher than control group on day 1, 7and 14 after onset (4.63 ± 0.25, 2.72 ± 0.12, 1.98 ± 0.16, P Lingo-1 mRNA was close to control group.Expression levels of Lingo-1 protein on day 1, 7, 14, 21, 30 were higher than control group (2.11 ± 0.15, 3.15 ± 0.09, 2.45 ± 0.12, 1.89 ± 0.17, 1.21 ± 0.05, P LINGO-1 expression of brain tissue of EAE mouse upregulates and changes with time after onset, which may inhibit myelination by RhoA activation.In clinic, the antagonist of LINGO-1 for MS should be applied as soon as possible.

  11. CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Teige, Anna; Teige, Ingrid; Lavasani, Shahram

    2004-01-01

    (s). When immunized with CFA before T cell transfer, the CD1-/- mice again developed an augmented EAE compared with CD1+/+ mice. We suggest that CD1 exerts its function during CFA-mediated activation, regulating development of EAE both through enhancing TGF-beta1 production and through limiting autoreactive...

  12. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis

    OpenAIRE

    Kouakou, Koffi; Schepetkin, Igor A.; Jun, SangMu; Kirpotina, Liliya N.; Yapi, Ahoua; Khramova, Daria S; Pascual, David W.; Ovodov, Yury S; Jutila, Mark A.; Quinn, Mark T.

    2013-01-01

    Background Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Methods Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, a...

  13. The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/BL6 mice

    Science.gov (United States)

    Fakharzadeh, Saideh; Sahraian, Mohammad Ali; Hafizi, Maryam; Kalanaky, Somayeh; Masoumi, Zahra; Mahdavi, Mehdi; Kamalian, Nasser; Minagar, Alireza; Nazaran, Mohammad Hassan

    2014-01-01

    Purpose Currently approved therapies for multiple sclerosis (MS) at best only slow down its progression. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In the present study, for the first time we evaluated the therapeutic potential of MSc1 nanocomplex, which was designed based on novel nanochelating technology. Materials and methods MSc1 cell-protection capacity, with and without iron bond, was evaluated against hydrogen peroxide (H2O2)-induced oxidative stress in cultured rat pheochromocytoma-12 cells. The ability of MSc1 to maintain iron bond at pH ranges of 1–7 was evaluated. Nanocomplex toxicity was examined by estimating the intraperitoneal median lethal dose (LD50). Experimental autoimmune encephalomyelitic mice were injected with MSc1 14 days after disease induction, when the clinical symptoms appeared. The clinical score, body weight, and disease-induced mortality were monitored until day 54. In the end, after collecting blood samples for assessing hemoglobin and red blood cell count, the brains and livers of the mice were isolated for hematoxylin and eosin staining and analysis of iron content, respectively. Results The results showed that MSc1 prevented H2O2-induced cell death even after binding with iron, and it preserved its bond with iron constant at pH ranges 1–7. The nanocomplex intraperitoneal LD50 was 1,776.59 mg/kg. MSc1 prompted therapeutic behavior and improved the disabling features of experimental autoimmune encephalomyelitis, which was confirmed by decreased clinical scores versus increased body mass and 100% survival probability. It did not cause any adverse effects on hemoglobin or red blood cell count. Histopathological studies showed no neural loss or lymphocyte infiltration in MSc1-treated mice, while the hepatic iron content was also normal. Conclusion These results demonstrate that MSc1 could be a promising beneficial novel agent and has the capacity to be evaluated

  14. Lapachol, a compound targeting pyrimidine metabolism, ameliorates experimental autoimmune arthritis.

    Science.gov (United States)

    Peres, Raphael S; Santos, Gabriela B; Cecilio, Nerry T; Jabor, Valquíria A P; Niehues, Michael; Torres, Bruna G S; Buqui, Gabriela; Silva, Carlos H T P; Costa, Teresa Dalla; Lopes, Norberto P; Nonato, Maria C; Ramalho, Fernando S; Louzada-Júnior, Paulo; Cunha, Thiago M; Cunha, Fernando Q; Emery, Flavio S; Alves-Filho, Jose C

    2017-03-07

    The inhibition of pyrimidine biosynthesis by blocking the dihydroorotate dehydrogenase (DHODH) activity, the prime target of leflunomide (LEF), has been proven to be an effective strategy for rheumatoid arthritis (RA) treatment. However, a considerable proportion of RA patients are refractory to LEF. Here, we investigated lapachol (LAP), a natural naphthoquinone, as a potential DHODH inhibitor and addressed its immunosuppressive properties. Molecular flexible docking studies and bioactivity assays were performed to determine the ability of LAP to interact and inhibit DHODH. In vitro studies were conducted to assess the antiproliferative effect of LAP using isolated lymphocytes. Finally, collagen-induced arthritis (CIA) and antigen-induced arthritis (AIA) models were employed to address the anti-arthritic effects of LAP. We found that LAP is a potent DHODH inhibitor which had a remarkable ability to inhibit both human and murine lymphocyte proliferation in vitro. Importantly, uridine supplementation abrogated the antiproliferative effect of LAP, supporting that the pyrimidine metabolic pathway is the target of LAP. In vivo, LAP treatment markedly reduced CIA and AIA progression as evidenced by the reduction in clinical score, articular tissue damage, and inflammation. Our findings propose a binding model of interaction and support the ability of LAP to inhibit DHODH, decreasing lymphocyte proliferation and attenuating the severity of experimental autoimmune arthritis. Therefore, LAP could be considered as a potential immunosuppressive lead candidate with potential therapeutic implications for RA.

  15. Beneficial role of rapamycin in experimental autoimmune myositis.

    Directory of Open Access Journals (Sweden)

    Nicolas Prevel

    Full Text Available We developed an experimental autoimmune myositis (EAM mouse model of polymyositis where we outlined the role of regulatory T (Treg cells. Rapamycin, this immunosuppressant drug used to prevent rejection in organ transplantation, is known to spare Treg. Our aim was to test the efficacy of rapamycin in vivo in this EAM model and to investigate the effects of the drug on different immune cell sub-populations.EAM is induced by 3 injections of myosin emulsified in CFA. Mice received rapamycin during 25 days starting one day before myosin immunization (preventive treatment, or during 10 days following the last myosin immunization (curative treatment.Under preventive or curative treatment, an increase of muscle strength was observed with a parallel decrease of muscle inflammation, both being well correlated (R(2 = -0.645, p<0.0001. Rapamycin induced a general decrease in muscle of CD4 and CD8 T cells in lymphoid tissues, but spared B cells. Among T cells, the frequency of Treg was increased in rapamycin treated mice in draining lymph nodes (16.9 ± 2.2% vs. 9.3 ± 1.4%, p<0.001, which were mostly activated regulatory T cells (CD62L(lowCD44(high: 58.1 ± 5.78% vs. 33.1 ± 7%, treated vs. untreated, p<0.001. In rapamycin treated mice, inhibition of proliferation (Ki-67(+ is more important in effector T cells compared to Tregs cells (p<0.05. Furthermore, during preventive treatment, rapamycin increased the levels of KLF2 transcript in CD44(low CD62L(high naive T cell and in CD62L(low CD44(high activated T cell.Rapamycin showed efficacy both as curative and preventive treatment in our murine model of experimental myositis, in which it induced an increase of muscle strength with a parallel decrease in muscle inflammation. Rapamycin administration was also associated with a decrease in the frequency of effector T cells, an increase in Tregs, and, when administered as preventive treatment, an upregulation of KFL2 in naive and activated T cells.

  16. The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Owens, T; Sriram, S

    1995-01-01

    unanswerable for the present, and it should be kept in mind that the same question also would be unanswerable by observation of EAE. The major postulate therefore remains unfulfilled. Diagnosis of MS as an autoimmune disease requires definitive identification of the autoantigen; otherwise, the possibility...

  17. Genetic dissection of experimental autoimmune neuroinflammatory diseases in rats

    OpenAIRE

    Dahlman, Ingrid

    1999-01-01

    Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system (CNS) causing neurological deficits. The disease has a complex etiology comprising multiple unidentified susceptibility genes and environmental influences. Certain human leukocyte antigen (HLA) class 11 alleles are associated with an increased risk of developing MS, which provides important circumstantial evidence for a T-cell mediated autoimmune pathogenesis of the dise...

  18. Fulminant Acute Disseminated Encephalomyelitis

    National Research Council Canada - National Science Library

    Hassan A Alayafi; Faisal R Jahangiri; Mukki Almuntashri

    2014-01-01

      Acute disseminated encephalomyelitis, or post infectious encephalomyelitis is an immunologically mediated demyelinating disorder affecting the central nervous system after infection or vaccination...

  19. Prevention of murine experimental autoimmune orchitis by recombinant human interleukin-6

    DEFF Research Database (Denmark)

    Li, Lu; Itoh, Masahiro; Ablake, Maila

    2002-01-01

    We studied the effect of exogenously administered recombinant human interleukin (IL)-6 on the development of experimental autoimmune orchitis (EAO) in C3H/Hej mice. IL-6 significantly reduced histological signs of EAO and appearance of delayed type hypersensitivity against the immunizing testicul...

  20. Prevention of murine experimental autoimmune orchitis by recombinant human interleukin-6

    DEFF Research Database (Denmark)

    Li, Lu; Itoh, Masahiro; Ablake, Maila

    2002-01-01

    We studied the effect of exogenously administered recombinant human interleukin (IL)-6 on the development of experimental autoimmune orchitis (EAO) in C3H/Hej mice. IL-6 significantly reduced histological signs of EAO and appearance of delayed type hypersensitivity against the immunizing testicular...

  1. IgG1 deficiency exacerbates experimental autoimmune myasthenia gravis in BALB/c mice

    OpenAIRE

    Huda, Ruksana; Strait, Richard T.; Tüzün, Erdem; Finkelman, Fred D.; Christadoss, Premkumar

    2015-01-01

    Myasthenia gravis is an autoimmune disease characterized by muscle weakness due to neuromuscular junction (NMJ) damage by anti-acetylcholine receptor (AChR) auto-antibodies and complement. In experimental autoimmune myasthenia gravis (EAMG), which is induced by immunization with Torpedo AChR in CFA, anti-AChR IgG2b and IgG1 are the predominant isotypes in the circulation. Complement activation by isotypes such as IgG2b plays a crucial role in EAMG pathogenesis; this suggested the possibility ...

  2. Treatment with N-acetyl-seryl-aspartyl-lysyl-proline prevents experimental autoimmune myocarditis in rats.

    Science.gov (United States)

    Nakagawa, Pablo; Liu, Yunhe; Liao, Tang-Dong; Chen, Xiaojuan; González, Germán E; Bobbitt, Kevin R; Smolarek, Derek; Peterson, Ed L; Kedl, Ross; Yang, Xiao-Ping; Rhaleb, Nour-Eddine; Carretero, Oscar A

    2012-11-01

    Myocarditis is commonly associated with cardiotropic infections and has been linked to development of autoimmunity. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetrapeptide that prevents inflammation and fibrosis in hypertension and other cardiovascular diseases; however, its effect on autoimmune-mediated cardiac diseases remains unknown. We studied the effects of Ac-SDKP in experimental autoimmune myocarditis (EAM), a model of T cell-mediated autoimmune disease. This study was conducted to test the hypothesis that Ac-SDKP prevents autoimmune myocardial injury by modulating the immune responses. Lewis rats were immunized with porcine cardiac myosin and treated with Ac-SDKP or vehicle. In EAM, Ac-SDKP prevented both systolic and diastolic cardiac dysfunction, remodeling as shown by hypertrophy and fibrosis, and cell-mediated immune responses without affecting myosin-specific autoantibodies or antigen-specific T cell responses. In addition, Ac-SDKP reduced cardiac infiltration by macrophages, dendritic cells, and T cells, pro-inflammatory cytokines [interleukin (IL)-1α, tumor necrosis factor-α, IL-2, IL-17] and chemokines (cytokine-induced neutrophil chemoattractant-1, interferon-γ-induced protein 10), cell adhesion molecules (intercellular adhesion molecule-1, L-selectin), and matrix metalloproteinases (MMP). Ac-SDKP prevents autoimmune cardiac dysfunction and remodeling without reducing the production of autoantibodies or T cell responses to cardiac myosin. The protective effects of Ac-SDKP in autoimmune myocardial injury are most likely mediated by inhibition of 1) innate and adaptive immune cell infiltration and 2) expression of proinflammatory mediators such as cytokines, chemokines, adhesion molecules, and MMPs.

  3. Proteasome inhibitors as experimental therapeutics of autoimmune diseases

    NARCIS (Netherlands)

    Verbrugge, C.S.E.; Scheper, R.J.; Lems, W.F.; de Gruijl, T.D.; Jansen, G.

    2015-01-01

    Current treatment strategies for rheumatoid arthritis (RA) consisting of disease-modifying anti-rheumatic drugs or biological agents are not always effective, hence driving the demand for new experimental therapeutics. The antiproliferative capacity of proteasome inhibitors (PIs) has received

  4. Pain hypersensitivity in rats with experimental autoimmune neuritis, an animal model of human inflammatory demyelinating neuropathy.

    Science.gov (United States)

    Moalem-Taylor, Gila; Allbutt, Haydn N; Iordanova, Mihaela D; Tracey, David J

    2007-07-01

    Experimental autoimmune neuritis (EAN) is a T cell mediated autoimmune disease of the peripheral nervous system that serves as an animal model of the acute inflammatory demyelinating polyradiculoneuropathy in Guillain-Barre syndrome (GBS). Although pain is a common symptom of GBS occurring in 55-85% of cases, it is often overlooked and the underlying mechanisms are poorly understood. Here we examined whether animals with EAN exhibit signs of neuropathic pain including hyperalgesia and allodynia, and assessed their peripheral nerve autoimmune inflammation. We immunized Lewis rats with peripheral myelin P2 peptide (amino acids 57-81) emulsified with complete Freund's adjuvant, or with adjuvant only as control. P2-immunized rats developed mild to modest monophasic EAN with disease onset at day 8, peak at days 15-17, and full recovery by day 28 following immunization. Rats with EAN showed a significant decrease in withdrawal latency to thermal stimuli and withdrawal threshold to mechanical stimuli, in both hindpaws and forepaws, during the course of the disease. We observed a significant infiltration of T cells bearing alphabeta receptors, and a significant increase in antigen-presenting cells expressing MHC class II as well as macrophages, in EAN-affected rats. Our results demonstrate that animals with active EAN develop significant thermal hyperalgesia and mechanical allodynia, accompanied by pronounced autoimmune inflammation in peripheral nerves. These findings suggest that EAN is a useful model for the pain seen in many GBS patients, and may facilitate study of neuroimmune mechanisms underlying pain in autoimmune neuropathies.

  5. Acquired thymic tolerance: role of CTLA4 in the initiation and maintenance of tolerance in a clinically relevant autoimmune disease model

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Zhang, M; Sayegh, M H

    1999-01-01

    (CTLA4) engagement. The role of CTLA4 in the induction and maintenance of tolerance was then investigated in the murine experimental autoimmune encephalomyelitis model. CTLA4 blockade abrogated the induction but not the maintenance phase of acquired thymic tolerance induced by intrathymic injection...... for the maintenance of acquired thymic tolerance. This is the first report documenting the role of a CTLA4 negative signaling pathway in the induction of tolerance in an autoimmune disease model....

  6. Dimethyl Fumarate Ameliorates Lewis Rat Experimental Autoimmune Neuritis and Mediates Axonal Protection

    Science.gov (United States)

    Pitarokoili, Kalliopi; Ambrosius, Björn; Meyer, Daniela; Schrewe, Lisa; Gold, Ralf

    2015-01-01

    Background Dimethyl fumarate is an immunomodulatory and neuroprotective drug, approved recently for the treatment of relapsing-remitting multiple sclerosis. In view of the limited therapeutic options for human acute and chronic polyneuritis, we used the animal model of experimental autoimmune neuritis in the Lewis rat to study the effects of dimethyl fumarate on autoimmune inflammation and neuroprotection in the peripheral nervous system. Methods and Findings Experimental autoimmune neuritis was induced by immunization with the neuritogenic peptide (amino acids 53–78) of P2 myelin protein. Preventive treatment with dimethyl fumarate given at 45 mg/kg twice daily by oral gavage significantly ameliorated clinical neuritis by reducing demyelination and axonal degeneration in the nerve conduction studies. Histology revealed a significantly lower degree of inflammatory infiltrates in the sciatic nerves. In addition, we detected a reduction of early signs of axonal degeneration through a reduction of amyloid precursor protein expressed in axons of the peripheral nerves. This reduction correlated with an increase of nuclear factor (erythroid derived 2)-related factor 2 positive axons, supporting the neuroprotective potential of dimethyl fumarate. Furthermore, nuclear factor (erythroid derived 2)-related factor 2 expression in Schwann cells was only rarely detected and there was no increase of Schwann cells death during EAN. Conclusions We conclude that immunmodulatory and neuroprotective dimethyl fumarate may represent an innovative therapeutic option in human autoimmune neuropathies. PMID:26618510

  7. Dimethyl Fumarate Ameliorates Lewis Rat Experimental Autoimmune Neuritis and Mediates Axonal Protection.

    Directory of Open Access Journals (Sweden)

    Kalliopi Pitarokoili

    Full Text Available Dimethyl fumarate is an immunomodulatory and neuroprotective drug, approved recently for the treatment of relapsing-remitting multiple sclerosis. In view of the limited therapeutic options for human acute and chronic polyneuritis, we used the animal model of experimental autoimmune neuritis in the Lewis rat to study the effects of dimethyl fumarate on autoimmune inflammation and neuroprotection in the peripheral nervous system.Experimental autoimmune neuritis was induced by immunization with the neuritogenic peptide (amino acids 53-78 of P2 myelin protein. Preventive treatment with dimethyl fumarate given at 45 mg/kg twice daily by oral gavage significantly ameliorated clinical neuritis by reducing demyelination and axonal degeneration in the nerve conduction studies. Histology revealed a significantly lower degree of inflammatory infiltrates in the sciatic nerves. In addition, we detected a reduction of early signs of axonal degeneration through a reduction of amyloid precursor protein expressed in axons of the peripheral nerves. This reduction correlated with an increase of nuclear factor (erythroid derived 2-related factor 2 positive axons, supporting the neuroprotective potential of dimethyl fumarate. Furthermore, nuclear factor (erythroid derived 2-related factor 2 expression in Schwann cells was only rarely detected and there was no increase of Schwann cells death during EAN.We conclude that immunomodulatory and neuroprotective dimethyl fumarate may represent an innovative therapeutic option in human autoimmune neuropathies.

  8. A modified vaccination technique for the prevention and treatment of an experimental autoimmune kidney disease.

    Science.gov (United States)

    Barabas, Arpad Zsigmond; Cole, Chad Douglas; Barabas, Arpad David; Lafreniere, Rene

    2007-09-01

    The main purpose of this article is to introduce a promising new vaccination technique and to outline its efficacy and safety as demonstrated in an experimental autoimmune kidney disease. We have found that antigen (AG)-specific downregulation and/or upregulation of immune responses can be achieved by injections of immune complexes (ICs) which contain prepackaged information. This result is attained with the new vaccination method, a method developed in our laboratory which we have called "modified vaccination technique" (MVT). This MVT not only enables the prevention of pathogenic autoimmune events leading to the development of an experimental autoimmune kidney disease; it also allows, with equal effectiveness, therapeutic intervention to terminate the disease. With an injected IC containing predetermined immune response-inducing components, the process effectuates a specific antibody information transfer conferring advantages that go beyond its prophylactic and therapeutic applicability. Its specificity can induce a precise immune response to correct mishaps, for example, in conditions where the immune system overreacts to an autologous antigen or fails to recognize unwanted self (as in autoimmune disorders, cancer, etc.) Preformed ICs are nontoxic and nonirritant, evoke a predetermined antibody response without the use of adjuvants, cause no disturbance in the overall regulatory function of the immune system, and produce no side effects. We firmly believe that proper implementation of the MVT will be able to induce and maintain specific preventive and/or curative responses in a way that is both natural and more effective in patients with chronic ailments presently treatable only with drugs.

  9. Synergistic effect of rapamycin and cyclosporin A in the treatment of experimental autoimmune uveoretinitis.

    Science.gov (United States)

    Martin, D F; DeBarge, L R; Nussenblatt, R B; Chan, C C; Roberge, F G

    1995-01-15

    Immunosuppressive drugs currently available for the treatment of autoimmune diseases display a narrow therapeutic window between efficacy and toxic side effects. The use of combinations of drugs that have a synergistic effect may expand this window and reduce the risk of toxicity. We evaluated the combination effect of rapamycin (Rapa) and cyclosporin A (CsA) in an autoimmune disease model of the eye. The dose-effect relationship of Rapa with CsA was measured in vitro on the inhibition of proliferation of retinal S-Ag-primed lymphocytes. A median effect analysis was performed and a combination index (CI) calculated for 50% inhibition of proliferation. Rapa and CsA were markedly synergistic over a wide dose range (lowest CI = 0.31). Calculated dose reduction factors indicated that Rapa could be reduced nine-fold and CsA reduced five-fold when these drugs were used in combination. These reduced doses were tested in vivo for the treatment of experimental autoimmune uveoretinitis (EAU). Twelve of 15 rats treated with CsA, 2 mg/kg/day, developed EAU with a median severity of 2.5. Fourteen of 15 rats treated with Rapa, 0.01 mg/kg/day, developed EAU with a median severity of 3.25. Complete inhibition of EAU was achieved in all 15 animals treated with the combination of Rapa and CsA (combined vs CsA alone, p toxicity of these drugs for the treatment of autoimmune uveitis.

  10. Proinflammatory effects of exogenously administered IL-10 in experimental autoimmune orchitis

    DEFF Research Database (Denmark)

    Kaneko, Tetsushi; Itoh, Masahiro; Nakamura, Yoichi

    2003-01-01

    We studied the effects of exogenously administered recombinant murine interleukin (IL)-10 on the development of experimental autoimmune orchitis (EAO) in C3H/He mice. IL-10 significantly augments histological signs of EAO when administered for 6 consecutive days from days 15 to 20 after primary i...... immunisations with testicular germ cells. These data demonstrate that IL-10, in addition to its well-known antiinflammatory property, also has proinflammatory functions capable of up-regulating testicular immunoinflammatory processes in vivo....

  11. Proinflammatory effects of exogenously administered IL-10 in experimental autoimmune orchitis

    DEFF Research Database (Denmark)

    Kaneko, Tetsushi; Itoh, Masahiro; Nakamura, Yoichi

    2003-01-01

    We studied the effects of exogenously administered recombinant murine interleukin (IL)-10 on the development of experimental autoimmune orchitis (EAO) in C3H/He mice. IL-10 significantly augments histological signs of EAO when administered for 6 consecutive days from days 15 to 20 after primary...... immunisations with testicular germ cells. These data demonstrate that IL-10, in addition to its well-known antiinflammatory property, also has proinflammatory functions capable of up-regulating testicular immunoinflammatory processes in vivo....

  12. Experimental allergic encephalomyelitis: peculiarities of pain-relieving therapy and place of anticonvulsants as analgetics

    Directory of Open Access Journals (Sweden)

    Nefyodov O.O.

    2015-11-01

    Full Text Available Multiple sclerosis (MS is the most common demyelinating disease affecting mainly young people of the working age (16-45 years and quickly leading to disability. Available data constitute that up to 80% of MS patients suffer from pain at different disease periods. Pain management and the analgesic drug choice in MS patients may be difficult. Anticonvulsant drugs possess an analgesic activity and are widely used in patients presenting painful neuropathic symptoms. Based on that, we aimed to investigate the nociceptive potential changes as well as the research-oriented behavior using the "open field" test in rat. An experimental animal equivalent of multiple sclerosis has been modeled, based on the methylprednisolone (M administration. Animals were also administered anticonvulsants (carbamazepine, topiramate, sodium volproat, pregabalin and gabapentin. The stu­dy showed advantages of gabapentin and pregabalin use in simulated disease treatment. This statement is based on the "open field" test results, where the motor-oriented rats’ behavior was evaluated. Administration of M+gabapentin and M+pregabalin showed positive dynamics of the motor activity: the number of squares crossed increased by 80.86% (p<0.05 and 81.73% (р<0.05 respectively. Maximum recovery of the research activity (peeking in "mink" was re­gis­tered in animals administered M+pregabalin: the increase rate was 300% (r<0.05 comparing with the 12th day of ex­periment. It was shown, that 5-days administration of M+gabapentin and M+pregabalin caused muscle tone impro­ve­ment by 190% (p<0.05 and 200% (p<0.05 respectively, comparing with animals with untreated multiple sclerosis. A sig­ni­fi­cant increase of analgesic activity of M+pregabalin and M+gabapentin combinations used together with me­thyl­pred­nisolone by 4.1 (p<0.05 and 3.6 (p<0.05 times was registered comparing with the initial methylprednisolone background.

  13. RGMA and IL21R show association with experimental inflammation and multiple sclerosis

    DEFF Research Database (Denmark)

    Nohra, R; Beyeen, A D; Guo, J P

    2010-01-01

    Rat chromosome 1 harbors overlapping quantitative trait loci (QTL) for cytokine production and experimental models of inflammatory diseases. We fine-dissected this region that regulated cytokine production, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyeliti...... biomarkers and therapeutic targets....

  14. Effect of Cordyceps sinensis on the Treatment of Experimental Autoimmune Encephalomyelitis: A Pilot Study on Mice Model

    Directory of Open Access Journals (Sweden)

    Shan-Shan Zhong

    2017-01-01

    Conclusions: Our preliminary study demonstrated that CS efficiently alleviated EAE severity and EAE-related pathology damage and decreased the number of Th1s in the periphery, indicating its effectiveness in the treatment of murine EAE. Thus, our findings strongly support the therapeutic potential of this agent as a new traditional Chinese medicine approach in MS treatment.

  15. Oligodendroglial fibroblast growth factor receptor 1 gene targeting protects mice from experimental autoimmune encephalomyelitis through ERK/AKT phosphorylation.

    Science.gov (United States)

    Rajendran, Ranjithkumar; Giraldo-Velásquez, Mario; Stadelmann, Christine; Berghoff, Martin

    2017-01-24

    Fibroblast growth factors (FGFs) exert diverse biological effects by binding and activation of specific fibroblast growth factor receptors (FGFRs). FGFs and FGFRs have been implicated in demyelinating pathologies including multiple sclerosis. In vitro activation of the FGF2/FGFR1 pathway results in downregulation of myelin proteins. FGF1, 2 and 9 have been shown to be involved in the pathology of multiple sclerosis. Recent studies on the function of oligodendroglial FGFR1 in a model of toxic demyelination showed that deletion of FGFR1 led to increased remyelination and preservation of axonal density and an increased number of mature oligodendrocytes. In the present study the in vivo function of oligodendroglial FGFR1 was characterized using an oligodendrocyte-specific genetic approach in the most frequently used model of multiple sclerosis the MOG 35-55 -induced EAE. Oligodendroglial FGFR1 deficient mice (referred to as Fgfr1 ind-/- ) showed a significantly ameliorated disease course in MOG 35-55 -induced EAE. Less myelin and axonal loss, and reduced lymphocyte and macrophage/microglia infiltration were found in Fgfr1 ind-/- mice. The reduction in disease severity in Fgfr1 ind-/- mice was accompanied by ERK/AKT phosphorylation, and increased expression of BDNF and TrkB. Reduced proinflammatory cytokine and chemokine expression was seen in Fgfr1 ind-/- mice compared with control mice. Considering that FGFR inhibitors are used in cancer trials, the oligodendroglial FGFR1 pathway may provide a new target for therapy in multiple sclerosis. © 2017 International Society of Neuropathology.

  16. Treatment of Chronic Experimental Autoimmune Encephalomyelitis with Epigallocatechin-3-Gallate and Glatiramer Acetate Alters Expression of Heme-Oxygenase-1.

    Directory of Open Access Journals (Sweden)

    Antonia Janssen

    Full Text Available We previously demonstrated that epigallocatechin-3-gallate (EGCG synergizes with the immunomodulatory agent glatiramer acetate (GA in eliciting anti-inflammatory and neuroprotective effects in the relapsing-remitting EAE model. Thus, we hypothesized that mice with chronic EAE may also benefit from this combination therapy. We first assessed how a treatment with a single dose of GA together with daily application of EGCG may modulate EAE. Although single therapies with a suboptimal dose of GA or EGCG led to disease amelioration and reduced CNS inflammation, the combination therapy had no effects. While EGCG appeared to preserve axons and myelin, the single GA dose did not improve axonal damage or demyelination. Interestingly, the neuroprotective effect of EGCG was abolished when GA was applied in combination. To elucidate how a single dose of GA may interfere with EGCG, we focused on the anti-inflammatory, iron chelating and anti-oxidant properties of EGCG. Surprisingly, we observed that while EGCG induced a downregulation of the gene expression of heme oxygenase-1 (HO-1 in affected CNS areas, the combined therapy of GA+EGCG seems to promote an increased HO-1 expression. These data suggest that upregulation of HO-1 may contribute to diminish the neuroprotective benefits of EGCG alone in this EAE model. Altogether, our data indicate that neuroprotection by EGCG in chronic EAE may involve regulation of oxidative processes, including downmodulation of HO-1. Further investigation of the re-dox balance in chronic neuroinflammation and in particular functional studies on HO-1 are warranted to understand its role in disease progression.

  17. Specific and strain-independent effects of dexamethasone in the prevention and treatment of experimental autoimmune encephalomyelitis in rodents

    DEFF Research Database (Denmark)

    Donia, M; Mangano, K; Quattrocchi, C

    2010-01-01

    tested the effects of dexamethasone (Dex) and found that both prophylactic and early therapeutic regimens were effective in suppressing the development of monophasic EAE in myelin basic protein-immunized Lewis rats, the relapsing-remitting forms of EAE induced in SJL mice by proteolipid protein and in DA...... rats by syngeneic spinal cord homogenate, and the progressive forms induced in C57BL/6 and DBA/1 mice by immunization with myelin oligodendrocyte glycoprotein. In addition, prophylactically administered Dex suppressed histological and immunological features of EAE such as spinal cord infiltration...

  18. Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund's adjuvant

    DEFF Research Database (Denmark)

    Lorentzen, J C; Issazadeh-Navikas, Shohreh; Storch, M

    1995-01-01

    , protracted and relapsing EAE (SPR-EAE) after a subcutaneous immunization at the tail base with syngeneic spinal cord and incomplete Freund's adjuvant (IFA). The neurological deficits were accompanied by demyelinating inflammatory lesions in the spinal cord, with infiltrating T lymphocytes and perivascular...... deposition of immunoglobulins and complement. The induction of SPR-EAE was associated with humoral autoreactivity to myelin oligodendrocyte glycoprotein (MOG) and cellular autoreactivity to the rat myelin basic protein (MBP) peptides 69-87 and 87-101. These two peptides, as well as whole rat MBP, were...

  19. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity.

    Science.gov (United States)

    Herrada, Andrés A; Contreras, Francisco J; Marini, Natacha P; Amador, Cristian A; González, Pablo A; Cortés, Claudia M; Riedel, Claudia A; Carvajal, Cristián A; Figueroa, Fernando; Michea, Luis F; Fardella, Carlos E; Kalergis, Alexis M

    2010-01-01

    Excessive production of aldosterone leads to the development of hypertension and cardiovascular disease by generating an inflammatory state that can be promoted by T cell immunity. Because nature and intensity of T cell responses is controlled by dendritic cells (DCs), it is important to evaluate whether the function of these cells can be modulated by aldosterone. In this study we show that aldosterone augmented the activation of CD8(+) T cells in a DC-dependent fashion. Consistently, the mineralocorticoid receptor was expressed by DCs, which showed activation of MAPK pathway and secreted IL-6 and TGF-beta in response to aldosterone. In addition, DCs stimulated with aldosterone impose a Th17 phenotype to CD4(+) T cells, which have recently been associated with the promotion of inflammatory and autoimmune diseases. Accordingly, we observed that aldosterone enhances the progression of experimental autoimmune encephalomyelitis, an autoimmune disease promoted by Th17 cells. In addition, blockade of the mineralocorticoid receptor prevented all aldosterone effects on DCs and attenuated experimental autoimmune encephalomyelitis development in aldosterone-treated mice. Our data suggest that modulation of DC function by aldosterone enhances CD8(+) T cell activation and promotes Th17-polarized immune responses, which might contribute to the inflammatory damage leading to hypertension and cardiovascular disease.

  20. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms

    OpenAIRE

    Choi, In Young; Piccio, Laura; Childress, Patra; Bollman, Bryan; Ghosh, Arko; Brandhorst, Sebastian; Suarez, Jorge; Michalsen, Andreas; Cross, Anne H.; Morgan, Todd E.; Wei, Min; Paul, Friedemann; Bock, Markus; Longo, Valter D.

    2016-01-01

    Dietary interventions have not been effective in the treatment of multiple sclerosis (MS). Here, we show that periodic 3-day cycles of a fasting mimicking diet (FMD) are effective in ameliorating demyelination and symptoms in a murine experimental autoimmune encephalomyelitis (EAE) model. The FMD reduced clinical severity in all mice and completely reversed symptoms in 20% of animals. These improvements were associated with increased corticosterone levels and regulatory T (Treg) cell numbers ...

  1. Th17 cells in autoimmune demyelinating disease.

    Science.gov (United States)

    Segal, Benjamin Matthew

    2010-03-01

    Recently published studies in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) have demonstrated an association between the development of demyelinating plaques and the accumulation of Th17 cells in the central nervous system and periphery. However, a causal relationship has been difficult to establish. In fact, in reports published thus far, interleukin (IL)-17A deficiency or neutralization in vivo attenuates, but does not completely abrogate, EAE. There is growing evidence that clinically similar forms of autoimmune demyelinating disease can be driven by myelin-specific T cells of distinct lineages with different degrees of dependence on IL-17A production to achieve their pathological effects. While such observations cast doubts about the potential therapeutic efficacy of Th17 blocking agents in MS, the collective data suggest that IL-17A expression in peripheral blood mononuclear cells could serve as a surrogate biomarker of neuroinflammation and plaque formation and be a useful outcome measure for future clinical trials.

  2. Intraperitoneal Infusion of Mesenchymal Stem/Stromal Cells Prevents Experimental Autoimmune Uveitis in Mice

    Directory of Open Access Journals (Sweden)

    Joo Youn Oh

    2014-01-01

    Full Text Available Autoimmune uveitis is one of the leading causes of blindness. We here investigated whether intraperitoneal administration of human mesenchymal stem/stromal cells (hMSCs might prevent development of experimental autoimmune uveitis (EAU in mice. Time course study showed that the number of IFN-γ- or IL-17-expressing CD4+ T cells was increased in draining lymph nodes (DLNs on the postimmunization day 7 and decreased thereafter. The retinal structure was severely disrupted on day 21. An intraperitoneal injection of hMSCs at the time of immunization protected the retina from damage and suppressed the levels of proinflammatory cytokines in the eye. Analysis of DLNs on day 7 showed that hMSCs decreased the number of Th1 and Th17 cells. The hMSCs did not reduce the levels of IL-1β, IL-6, IL-12, and IL-23 which are the cytokines that drive Th1/Th17 differentiation. Also, hMSCs did not induce CD4+CD25+Foxp3+ cells. However, hMSCs increased the level of an immunoregulatory cytokine IL-10 and the population of IL-10-expressing B220+CD19+ cells. Together, data demonstrate that hMSCs attenuate EAU by suppressing Th1/Th17 cells and induce IL-10-expressing B220+CD19+ cells. Our results support suggestions that hMSCs may offer a therapy for autoimmune diseases mediated by Th1/Th17 responses.

  3. Administration of Mycobacterium leprae rHsp65 aggravates experimental autoimmune uveitis in mice.

    Directory of Open Access Journals (Sweden)

    Eliana B Marengo

    Full Text Available The 60 kDa heat shock protein family, Hsp60, constitutes an abundant and highly conserved class of molecules that are highly expressed in chronic-inflammatory and autoimmune processes. Experimental autoimmune uveitis [EAU] is a T cell mediated intraocular inflammatory disease that resembles human uveitis. Mycobacterial and homologous Hsp60 peptides induces uveitis in rats, however their participation in aggravating the disease is poorly known. We here evaluate the effects of the Mycobacterium leprae Hsp65 in the development/progression of EAU and the autoimmune response against the eye through the induction of the endogenous disequilibrium by enhancing the entropy of the immunobiological system with the addition of homologous Hsp. B10.RIII mice were immunized subcutaneously with interphotoreceptor retinoid-binding protein [IRBP], followed by intraperitoneally inoculation of M. leprae recombinant Hsp65 [rHsp65]. We evaluated the proliferative response, cytokine production and the percentage of CD4(+IL-17(+, CD4(+IFN-gamma(+ and CD4(+Foxp3(+ cells ex vivo, by flow cytometry. Disease severity was determined by eye histological examination and serum levels of anti-IRBP and anti-Hsp60/65 measured by ELISA. EAU scores increased in the Hsp65 group and were associated with an expansion of CD4(+IFN-gamma(+ and CD4(+IL-17(+ T cells, corroborating with higher levels of IFN-gamma. Our data indicate that rHsp65 is one of the managers with a significant impact over the immune response during autoimmunity, skewing it to a pathogenic state, promoting both Th1 and Th17 commitment. It seems comprehensible that the specificity and primary function of Hsp60 molecules can be considered as a potential pathogenic factor acting as a whistleblower announcing chronic-inflammatory diseases progression.

  4. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Thiruppathi, Muthusamy; Sheng, Jian Rong; Li, Liangcheng; Prabhakar, Bellur S; Meriggioli, Matthew N

    2014-08-01

    Myasthenia gravis (MG) is an autoimmune disorder caused by target-specific pathogenic antibodies directed toward postsynaptic neuromuscular junction (NMJ) proteins, most commonly the skeletal muscle nicotinic acetylcholine receptor (AChR). In MG, high-affinity anti-AChR Abs binding to the NMJ lead to loss of functional AChRs, culminating in neuromuscular transmission failure and myasthenic symptoms. Intravenous immune globulin (IVIg) has broad therapeutic application in the treatment of a range of autoimmune diseases, including MG, although its mechanism of action is not clear. Recently, the anti-inflammatory and anti-autoimmune activities of IVIg have been attributed to the IgG Fc domains. Soluble immune aggregates bearing intact Fc fragments have been shown to be effective treatment for a number of autoimmune disorders in mice, and fully recombinant multimeric Fc molecules have been shown to be effective in treating collagen-induced arthritis, murine immune thrombocytopenic purpura, and experimental inflammatory neuritis. In this study, a murine model of MG (EAMG) was used to study the effectiveness of this novel recombinant polyvalent IgG2a Fc (M045) in treating established myasthenia, with a direct comparison to treatment with IVIg. M045 treatment had profound effects on the clinical course of EAMG, accompanied by down-modulation of pathogenic antibody responses. These effects were associated with reduced B cell activation and T cell proliferative responses to AChR, an expansion in the population of FoxP3(+) regulatory T cells, and enhanced production of suppressive cytokines, such as IL-10. Treatment was at least as effective as IVIg in suppressing EAMG, even at doses 25-30 fold lower. Multimeric Fc molecules offer the advantages of being recombinant, homogenous, available in unlimited quantity, free of risk from infection and effective at significantly reduced protein loads, and may represent a viable therapeutic alternative to polyclonal IVIg. Copyright

  5. Enhanced response to antigen within lymph nodes of SJL/J mice that were protected against experimental allergic encephalomyelitis by T cell vaccination

    DEFF Research Database (Denmark)

    Zeine, R; Heath, D; Owens, T

    1993-01-01

    . The number of central nervous system (CNS) infiltrates and mean clinical EAE scores were significantly reduced. This is the first report demonstrating T cell vaccination in the SJL/J mouse, a strain in which PLP is the predominant encephalitogen in RSCH. The vaccinating cells were of the memory/effector (CD......The effects of T cell vaccination on peripheral immune responsiveness are not yet fully understood. We have induced resistance to rat spinal cord homogenate (RSCH)-induced experimental allergic encephalomyelitis (EAE) in SJL/J mice by vaccination with four T cell lines (RZ8, RZ15, RZ16, and A51......) which were reactive to myelin basic protein (MBP) but not to proteolipid protein (PLP). The effect was relatively neuroantigen-specific since vaccination with ovalbumin (OVA)-reactive and alloantigen-specific cells did not prevent EAE induction. Alloantigen-reactive cells reduced the rate of relapse...

  6. Dendritic cells, engineered to overexpress 25-hydroxyvitamin D 1α-hydroxylase and pulsed with a myelin antigen, provide myelin-specific suppression of ongoing experimental allergic encephalomyelitis.

    Science.gov (United States)

    Li, Chih-Huang; Zhang, Jintao; Baylink, David J; Wang, Xiaohua; Goparaju, Naga Bharani; Xu, Yi; Wasnik, Samiksha; Cheng, Yanmei; Berumen, Edmundo Carreon; Qin, Xuezhong; Lau, Kin-Hing William; Tang, Xiaolei

    2017-07-01

    Multiple sclerosis (MS) is caused by immune-mediated damage of myelin sheath. Current therapies aim to block such immune responses. However, this blocking is not sufficiently specific and hence compromises immunity, leading to severe side effects. In addition, blocking medications usually provide transient effects and require frequent administration, which further increases the chance to compromise immunity. In this regard, myelin-specific therapy may provide the desired specificity and a long-lasting therapeutic effect by inducing myelin-specific regulatory T (T reg ) cells. Tolerogenic dendritic cells (TolDCs) are one such therapy. However, ex vivo generated TolDCs may be converted into immunogenic DCs in a proinflammatory environment. In this study, we identified a potential novel myelin-specific therapy that works with immunogenic DCs, hence without the in vivo conversion concern. We showed that immunization with DCs, engineered to overexpress 25-hydroxyvitamin D 1α-hydroxylase for de novo synthesis of a focally high 1,25-dihydroxyvitamin D concentration in the peripheral lymphoid tissues, induced T reg cells. In addition, such engineered DCs, when pulsed with a myelin antigen, led to myelin-specific suppression of ongoing experimental allergic encephalomyelitis (an MS animal model), and the disease suppression depended on forkhead-box-protein-P3(foxp3) + T reg cells. Our data support a novel concept that immunogenic DCs can be engineered for myelin-specific therapy for MS.-Li, C.-H., Zhang, J., Baylink, D. J., Wang, X., Goparaju, N. B., Xu, Y., Wasnik, S., Cheng, Y., Berumen, E. C., Qin, X., Lau, K.-H. W., Tang, X. Dendritic cells, engineered to overexpress 25-hydroxyvitamin D 1α-hydroxylase and pulsed with a myelin antigen, provide myelin-specific suppression of ongoing experimental allergic encephalomyelitis. © The Author(s).

  7. Prophylactic effect of probiotics on the development of experimental autoimmune myasthenia gravis.

    Directory of Open Access Journals (Sweden)

    Chang-Suk Chae

    Full Text Available Probiotics are live bacteria that confer health benefits to the host physiology. Although protective role of probiotics have been reported in diverse diseases, no information is available whether probiotics can modulate neuromuscular immune disorders. We have recently demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental disorders in mice model. In this study we further investigated whether IRT5 probiotics could modulate the progression of experimental autoimmune myasthenia gravis (EAMG. Myasthenia gravis (MG is a T cell dependent antibody mediated autoimmune disorder in which acetylcholine receptor (AChR at the neuromuscular junction is the major auto-antigen. Oral administration of IRT5 probiotics significantly reduced clinical symptoms of EAMG such as weight loss, body trembling and grip strength. Prophylactic effect of IRT5 probiotics on EMAG is mediated by down-regulation of effector function of AChR-reactive T cells and B cells. Administration of IRT5 probiotics decreased AChR-reactive lymphocyte proliferation, anti-AChR reactive IgG levels and inflammatory cytokine levels such as IFN-γ, TNF-α, IL-6 and IL-17. Down-regulation of inflammatory mediators in AChR-reactive lymphocytes by IRT5 probiotics is mediated by the generation of regulatory dendritic cells (rDCs that express increased levels of IL-10, TGF-β, arginase 1 and aldh1a2. Furthermore, DCs isolated from IRT5 probiotics-fed group effectively converted CD4(+ T cells into CD4(+Foxp3(+ regulatory T cells compared with control DCs. Our data suggest that IRT5 probiotics could be applicable to modulate antibody mediated autoimmune diseases including myasthenia gravis.

  8. Prophylactic Effect of Probiotics on the Development of Experimental Autoimmune Myasthenia Gravis

    Science.gov (United States)

    Chae, Chang-Suk; Kwon, Ho-Keun; Hwang, Ji-Sun; Kim, Jung-Eun; Im, Sin-Hyeog

    2012-01-01

    Probiotics are live bacteria that confer health benefits to the host physiology. Although protective role of probiotics have been reported in diverse diseases, no information is available whether probiotics can modulate neuromuscular immune disorders. We have recently demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental disorders in mice model. In this study we further investigated whether IRT5 probiotics could modulate the progression of experimental autoimmune myasthenia gravis (EAMG). Myasthenia gravis (MG) is a T cell dependent antibody mediated autoimmune disorder in which acetylcholine receptor (AChR) at the neuromuscular junction is the major auto-antigen. Oral administration of IRT5 probiotics significantly reduced clinical symptoms of EAMG such as weight loss, body trembling and grip strength. Prophylactic effect of IRT5 probiotics on EMAG is mediated by down-regulation of effector function of AChR-reactive T cells and B cells. Administration of IRT5 probiotics decreased AChR-reactive lymphocyte proliferation, anti-AChR reactive IgG levels and inflammatory cytokine levels such as IFN-γ, TNF-α, IL-6 and IL-17. Down-regulation of inflammatory mediators in AChR-reactive lymphocytes by IRT5 probiotics is mediated by the generation of regulatory dendritic cells (rDCs) that express increased levels of IL-10, TGF-β, arginase 1 and aldh1a2. Furthermore, DCs isolated from IRT5 probiotics-fed group effectively converted CD4+ T cells into CD4+Foxp3+ regulatory T cells compared with control DCs. Our data suggest that IRT5 probiotics could be applicable to modulate antibody mediated autoimmune diseases including myasthenia gravis. PMID:23284891

  9. Prophylactic effect of probiotics on the development of experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Chae, Chang-Suk; Kwon, Ho-Keun; Hwang, Ji-Sun; Kim, Jung-Eun; Im, Sin-Hyeog

    2012-01-01

    Probiotics are live bacteria that confer health benefits to the host physiology. Although protective role of probiotics have been reported in diverse diseases, no information is available whether probiotics can modulate neuromuscular immune disorders. We have recently demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental disorders in mice model. In this study we further investigated whether IRT5 probiotics could modulate the progression of experimental autoimmune myasthenia gravis (EAMG). Myasthenia gravis (MG) is a T cell dependent antibody mediated autoimmune disorder in which acetylcholine receptor (AChR) at the neuromuscular junction is the major auto-antigen. Oral administration of IRT5 probiotics significantly reduced clinical symptoms of EAMG such as weight loss, body trembling and grip strength. Prophylactic effect of IRT5 probiotics on EMAG is mediated by down-regulation of effector function of AChR-reactive T cells and B cells. Administration of IRT5 probiotics decreased AChR-reactive lymphocyte proliferation, anti-AChR reactive IgG levels and inflammatory cytokine levels such as IFN-γ, TNF-α, IL-6 and IL-17. Down-regulation of inflammatory mediators in AChR-reactive lymphocytes by IRT5 probiotics is mediated by the generation of regulatory dendritic cells (rDCs) that express increased levels of IL-10, TGF-β, arginase 1 and aldh1a2. Furthermore, DCs isolated from IRT5 probiotics-fed group effectively converted CD4(+) T cells into CD4(+)Foxp3(+) regulatory T cells compared with control DCs. Our data suggest that IRT5 probiotics could be applicable to modulate antibody mediated autoimmune diseases including myasthenia gravis.

  10. Enlargement of cerebral ventricles as an early indicator of encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Stefano Lepore

    Full Text Available Inflammatory disorders of the central nervous system such as multiple sclerosis and acute disseminated encephalomyelitis involve an invasion of immune cells that ultimately leads to white matter demyelination, neurodegeneration and development of neurological symptoms. A clinical diagnosis is often made when neurodegenerative processes are already ongoing. In an attempt to seek early indicators of disease, we studied the temporal and spatial distribution of brain modifications in experimental autoimmune encephalomyelitis (EAE. In a thorough magnetic resonance imaging study performed with EAE mice, we observed significant enlargement of the ventricles prior to disease clinical manifestation and an increase in free water content within the cerebrospinal fluid as demonstrated by changes in T2 relaxation times. The increase in ventricle size was seen in the lateral, third and fourth ventricles. In some EAE mice the ventricle size started returning to normal values during disease remission. In parallel to this macroscopic phenomenon, we studied the temporal evolution of microscopic lesions commonly observed in the cerebellum also starting prior to disease onset. Our data suggest that changes in ventricle size during the early stages of brain inflammation could be an early indicator of the events preceding neurological disease and warrant further exploration in preclinical and clinical studies.

  11. A GPBAR1 (TGR5 small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE in vivo.

    Directory of Open Access Journals (Sweden)

    Nuruddeen D Lewis

    Full Text Available GPBAR1 is a G protein-coupled receptor that is activated by certain bile acids and plays an important role in the regulation of bile acid synthesis, lipid metabolism, and energy homeostasis. Recent evidence suggests that GPBAR1 may also have important effects in reducing the inflammatory response through its expression on monocytes and macrophages. To further understand the role of GPBAR1 in inflammation, we generated a novel, selective, proprietary GPBAR1 agonist and tested its effectiveness at reducing monocyte and macrophage activation in vitro and in vivo. We have used this agonist, together with previously described agonists to study agonism of GPBAR1, and shown that they can all induce cAMP and reduce TLR activation-induced cytokine production in human monocytes and monocyte-derived macrophages in vitro. Additionally, through the usage of RNA sequencing (RNA-Seq, we identified a select set of genes that are regulated by GPBAR1 agonism during LPS activation. To further define the in vivo role of GPBAR1 in inflammation, we assessed GPBAR1 expression and found high levels on circulating mouse monocytes. Agonism of GPBAR1 reduced LPS-induced cytokine production in mouse monocytes ex vivo and serum cytokine levels in vivo. Agonism of GPBAR1 also had profound effects in the experimental autoimmune encephalomyelitis (EAE mouse model of multiple sclerosis, where monocytes play an important role. Mice treated with the GPBAR1 agonist exhibited a significant reduction in the EAE clinical score which correlated with reduced monocyte and microglial activation and reduced trafficking of monocytes and T cells into the CNS. These data confirm the importance of GPBAR1 in controlling monocyte and macrophage activation in vivo and support the rationale for selective agonists of GPBAR1 in the treatment of inflammatory diseases.

  12. A GPBAR1 (TGR5) Small Molecule Agonist Shows Specific Inhibitory Effects on Myeloid Cell Activation In Vitro and Reduces Experimental Autoimmune Encephalitis (EAE) In Vivo

    Science.gov (United States)

    Lewis, Nuruddeen D.; Patnaude, Lori A.; Pelletier, Josephine; Souza, Donald J.; Lukas, Susan M.; King, F. James; Hill, Jonathan D.; Stefanopoulos, Dimitria E.; Ryan, Kelli; Desai, Sudha; Skow, Donna; Kauschke, Stefan G.; Broermann, Andre; Kuzmich, Daniel; Harcken, Christian; Hickey, Eugene R.; Modis, Louise K.

    2014-01-01

    GPBAR1 is a G protein-coupled receptor that is activated by certain bile acids and plays an important role in the regulation of bile acid synthesis, lipid metabolism, and energy homeostasis. Recent evidence suggests that GPBAR1 may also have important effects in reducing the inflammatory response through its expression on monocytes and macrophages. To further understand the role of GPBAR1 in inflammation, we generated a novel, selective, proprietary GPBAR1 agonist and tested its effectiveness at reducing monocyte and macrophage activation in vitro and in vivo. We have used this agonist, together with previously described agonists to study agonism of GPBAR1, and shown that they can all induce cAMP and reduce TLR activation-induced cytokine production in human monocytes and monocyte-derived macrophages in vitro. Additionally, through the usage of RNA sequencing (RNA-Seq), we identified a select set of genes that are regulated by GPBAR1 agonism during LPS activation. To further define the in vivo role of GPBAR1 in inflammation, we assessed GPBAR1 expression and found high levels on circulating mouse monocytes. Agonism of GPBAR1 reduced LPS-induced cytokine production in mouse monocytes ex vivo and serum cytokine levels in vivo. Agonism of GPBAR1 also had profound effects in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis, where monocytes play an important role. Mice treated with the GPBAR1 agonist exhibited a significant reduction in the EAE clinical score which correlated with reduced monocyte and microglial activation and reduced trafficking of monocytes and T cells into the CNS. These data confirm the importance of GPBAR1 in controlling monocyte and macrophage activation in vivo and support the rationale for selective agonists of GPBAR1 in the treatment of inflammatory diseases. PMID:24967665

  13. Proteomic Profiling Analysis Reveals a Link between Experimental Autoimmune Uveitis and Complement Activation in Rats.

    Science.gov (United States)

    Guo, D D; Hu, B; Tang, H Y; Sun, Y Y; Liu, B; Tian, Q M; Bi, H S

    2017-05-01

    Uveitis is an autoimmune disease that usually damages the vision function, leading to poor visual quality in patients. As an autoimmune ocular inflammatory disease, the pathogenesis of uveitis is associated with abnormal expression of some proteins and aberrant regulation of multiple signalling pathways. Nevertheless, the detailed mechanism remains unclear. In this study, we induced an experimental autoimmune uveitis (EAU) model in rats. We determined the levels of C3a and membrane attack complex C5b-9 (soluble C5b-9, sC5b-9) in both plasma and aqueous humour, identified the differentially expressed proteins in plasma by liquid chromatography-tandem mass spectrometry and employed bioinformatics algorithms to analyse differentially expressed proteins in EAU rat plasma. The results demonstrate that there were 168 differentially expressed plasma proteins in EAU rats versus control subjects. The levels of sC5b-9 and C3a were elevated in the plasmas and aqueous humours of EAU rats. Gene ontology enrichment analysis showed that the differentially expressed proteins in EAU rat plasma were mainly involved in metabolic and immune processes. Kyoto encyclopedia of genes and genomes (KEGG) pathway annotation, database for annotation, visualization and integrated discovery (DAVID) and protein-protein interaction analyses revealed that the differentially expressed proteins in EAU rat plasmas were closely associated with complement and coagulation cascades, metabolic pathways, NF-kappa B, PI3K-Akt, Toll-like receptors and autophagy. Overall, the differentially expressed proteins in EAU rat plasmas are mainly involved in the complement and coagulation cascades. The pathogenesis of uveitis closely correlates with complement activation. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  14. Traditional Chinese medicine Yisui Tongjing relieved neural severity in experimental autoimmune neuritis rat model.

    Science.gov (United States)

    Zhang, Erli; Li, Mingquan; Zhao, Jianjun; Dong, Yuxiang; Yang, Xueqin; Huang, Jingbo

    2016-01-01

    To study the effect of Yisui Tongjing (YSTJ) prescription on motor nerve conduction velocity (MNCV) and microstructure of the sciatic nerve in experimental autoimmune neuritis (EAN) rats, the Guillain-Barré syndrome classic animal models. In this study, we established an EAN model in Lewis rats by immunization. We evaluated the potential clinical application of a traditional Chinese medicine YSTJ by intragastric administration and compared its effect with immunoglobulin. The sciatic MNCV was measured by electrophysiology experiment. Hematoxylin-eosin staining and transmission electron microscope analysis were used to determine the pathologically morphological changes before and after YSTJ application. We found that application of YSTJ could significantly alleviate the clinical signs in EAN rats. The treatment also increased MNCV in the sciatic nerve compared to that in the untreated nerve. Demyelination in the sciatic nerve in EAN rats was significantly ameliorated, and newly generated myelinated nerve fibers were observed with treatment of high dose of YSTJ. This study showed that the traditional Chinese medicine YSTJ was likely to serve as a therapeutic medicine in autoimmune neuropathies, providing an effective and economic means to the treatment of Guillain-Barré syndrome.

  15. Autophagy and Autoimmunity CrossTalks

    Directory of Open Access Journals (Sweden)

    Abhisek eBhattacharya

    2013-04-01

    Full Text Available Autophagy, initially viewed as a conserved bulk-degradation mechanism, has emerged as a central player in a multitude of immune functions. Autophagy is important in host defense against intracellular and extracellular pathogens, metabolic syndromes, immune cell homeostasis, antigen processing and presentation and maintenance of tolerance. The observation that the above processes are implicated in triggering or exacerbating autoimmunity raises the possibility that the autophagy pathway is involved in mediating autoimmune processes, either directly or as a consequence of innate or adaptive functions mediated by the pathway. Genome-wide association studies have shown association between single nucleotide polymorphisms (SNPs in autophagy related gene 5 (Atg5, and Atg16l1 with susceptibility to systemic lupus erythematous (SLE and Crohn’s disease, respectively. Enhanced expression of Atg5 was also reported in blood of mice with experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis (MS, and in T cells isolated from blood or brain tissues from patients with active relapse of MS. This review explores the roles of autophagy pathway in the innate and adaptive immune systems on regulating or mediating the onset, progression or exacerbation of autoimmune processes.

  16. Effect and Mechanism of QiShenYiQi Pill on Experimental Autoimmune Myocarditis Rats

    Science.gov (United States)

    Lv, Shichao; Wu, Meifang; Li, Meng; Wang, Qiang; Xu, Ling; Wang, Xiaojing; Zhang, Junping

    2016-01-01

    Background To observe the effect of QiShenYiQi pill (QSYQ) on experimental autoimmune myocarditis rats, and to explore its mechanism of action. Material/methods Lewis rats underwent the injection of myocardial myosin mixed with Freund’s complete adjuvant were randomized into 3 groups: model, valsartan, and QSYQ groups. Rats injected with phosphate-buffered saline (PBS) mixed with Freund’s complete adjuvant were used as the control group. Rats were euthanized at 4 and 8 weeks, and we weighed rat body mass, heart mass, and left ventricular mass. Myocardium sections were stained with hematoxylin and eosin (H&E) and Masson trichrome. Myocardial TGF-β1 and CTGF protein expression was detected by immunohistochemistry, and myocardial TGF-β1 and CTGF mRNA expression was detected by real-time qPCR. Results QSYQ reduced HMI and LVMI, as well as the histological score of hearts and CVF, which further decreased over time, and its effect was significantly greater than that of valsartan at 4 and 8 weeks. After 4 weeks, QSYQ inhibited the protein and mRNA expression of TGF-β1 and CTGF, and its effect on lowering CTGF was significantly greater than that of valsartan. In addition, after 8 weeks, QSYQ also inhibited the protein and mRNA expression of CTGF, whereas there was no significant difference in the expression of myocardial TGF-β1. Conclusions This study provides evidence that QSYQ can improve cardiac remodeling of experimental autoimmune myocarditis rats. It also effectively improved the degree of myocardial fibrosis, which is related to the mechanism of regulation of TGF-β1 CTGF. PMID:26946470

  17. Carvedilol Inhibits Matrix Metalloproteinase-2 Activation in Experimental Autoimmune Myocarditis: Possibilities of Cardioprotective Application.

    Science.gov (United States)

    Skrzypiec-Spring, Monika; Haczkiewicz, Katarzyna; Sapa, Agnieszka; Piasecki, Tomasz; Kwiatkowska, Joanna; Ceremuga, Ireneusz; Wozniak, Mieczyslaw; Biczysko, Wieslawa; Kobierzycki, Christopher; Dziegiel, Piotr; Podhorska-Okolow, Marzenna; Szelag, Adam

    2017-01-01

    Acute myocarditis is a potentially lethal inflammatory heart disease that frequently precedes the development of dilated cardiomyopathy and subsequent heart failure. At present, there is no effective standardized therapy for acute myocarditis, besides the optimal care of heart failure and arrhythmias in accordance with evidence-based guidelines and specific etiology-driven therapy for infectious myocarditis. Carvedilol has been shown to be cardioprotective by reducing cardiac pro-inflammatory cytokines present in oxidative stress in certain heart diseases. However, effects of carvedilol administration in acute myocarditis with its impact on matrix metalloproteinases' (MMPs) activation have not been elucidated. Carvedilol in 3 doses (2, 10, and 30 mg/kg) was given daily to 3 study groups of rats (n = 8) with experimental autoimmune myocarditis by gastric gavage for 3 weeks. In comparison to untreated rats (n = 8) with induced myocarditis, carvedilol significantly prevented the left ventricle enlargement and/or systolic dysfunction depending on the dose in study groups. Performed zymography showed enhanced MMP-2 activity in untreated rats, while carvedilol administration reduced alterations. This was accompanied by prevention of troponin I release and myofilaments degradation in cardiac muscle tissue. Additionally, severe inflammatory cell infiltration was detected in the nontreated group. Carvedilol in all doses tested, had no impact on severity of inflammation. The severity of inflammation did not differ between study groups and in relation to the untreated group. The protective effects of carvedilol on heart function observed in the acute phase of experimental autoimmune myocarditis seem to be associated with its ability to decrease MMP-2 activity and subsequently prevent degradation of myofilaments and release of troponin I while not related to suppression of inflammation.

  18. A Role for the Intestinal Microbiota and Virome in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)?

    National Research Council Canada - National Science Library

    Navaneetharaja, Navena; Griffiths, Verity; Wileman, Tom; Carding, Simon R

    2016-01-01

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous disorder of significant societal impact that is proposed to involve both host and environmentally derived aetiologies that may be autoimmune in nature...

  19. P2Y2R deficiency attenuates experimental autoimmune uveitis development.

    Directory of Open Access Journals (Sweden)

    Lia Judice M Relvas

    Full Text Available We aimed to study the role of the nucleotide receptor P2Y2R in the development of experimental autoimmune uveitis (EAU. EAU was induced in P2Y2+/+ and P2Y2-/- mice by immunization with IRBP peptide or by adoptive transfer of in vitro restimulated semi-purified IRBP-specific enriched T lymphocytes from spleens and lymph nodes isolated from native C57Bl/6 or P2Y2+/+ and P2Y2-/- immunized mice. Clinical and histological scores were used to grade disease severity. Splenocytes and lymph node cell phenotypes were analyzed using flow cytometry. Semi-purified lymphocytes and MACS-purified CD4+ T lymphocytes from P2Y2+/+ and P2Y2-/- immunized mice were tested for proliferation and cytokine secretion. Our data show that clinical and histological scores were significantly decreased in IRBP-immunized P2Y2-/- mice as in P2Y2-/- mice adoptively transfered with enriched T lymphocytes from C57Bl/6 IRBP-immunized mice. In parallel, naïve C57Bl/6 mice adoptively transferred with T lymphocytes from P2Y2-/- IRBP-immunized mice also showed significantly less disease. No differences in term of spleen and lymph node cell recruitment or phenotype appeared between P2Y2-/- and P2Y2+/+ immunized mice. However, once restimulated in vitro with IRBP, P2Y2-/- T cells proliferate less and secrete less cytokines than the P2Y2+/+ one. We further found that antigen-presenting cells of P2Y2-/- immunized mice were responsible for this proliferation defect. Together our data show that P2Y2-/- mice are less susceptible to mount an autoimmune response against IRBP. Those results are in accordance with the danger model, which makes a link between autoreactive lymphocyte activation, cell migration and the release of danger signals such as extracellular nucleotides.

  20. TH1 and TH17 cells promote crescent formation in experimental autoimmune glomerulonephritis.

    Science.gov (United States)

    Hünemörder, Stefanie; Treder, Julia; Ahrens, Stefanie; Schumacher, Valéa; Paust, Hans-Joachim; Menter, Thomas; Matthys, Patrick; Kamradt, Thomas; Meyer-Schwesinger, Catherine; Panzer, Ulf; Hopfer, Helmut; Mittrücker, Hans-Willi

    2015-09-01

    Autoimmunity against the Goodpasture antigen α3IV-NC1 results in crescentic glomerulonephritis (GN). Both antibodies and T cells directed against α3IV-NC1 have been implicated in disease development and progression. Using the model of experimental autoimmune glomerulonephritis (EAG) in DBA/1 mice, we aimed to characterize the frequency and function of α3IV-NC1-specific CD4(+) T cells in the kidneys. DBA/1 mice repeatedly immunized with human α3IV-NC1 developed necrotizing/crescentic GN. Kidneys with crescentic GN contained CD4(+) cells responding to α3IV-NC1 with the production of IFN-γ or IL-17A, demonstrating the accumulation of both α3IV-NC1-specific TH1 and TH17 cells. To test the functional relevance of TH1 and TH17 cells, EAG was induced in DBA/1 mice deficient in IFN-γR, IL-17A or IL-23p19. Mice of all knockout groups mounted α3IV-NC1 IgG, developed nephrotic range proteinuria, and IgG deposition to the glomerular basement membranes at levels similar to immunized wild-type mice. However, all knockout groups showed significantly fewer glomerular crescents and attenuated tubulointerstitial damage. Our results suggest that both α3IV-NC1-specific TH1 and TH17 cells accumulate in the kidneys and are crucial for the development of necrotizing/crescentic GN. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Methylthioadenosine reverses brain autoimmune disease.

    Science.gov (United States)

    Moreno, Beatriz; Hevia, Henar; Santamaria, Monica; Sepulcre, Jorge; Muñoz, Javier; García-Trevijano, Elena R; Berasain, Carmen; Corrales, Fernando J; Avila, Matias A; Villoslada, Pablo

    2006-09-01

    To assess the immunomodulatory activity of methylthioadenosine (MTA) in rodent experimental autoimmune encephalomyelitis (EAE) and in patients with multiple sclerosis. We studied the effect of intraperitoneal MTA in the acute and chronic EAE model by quantifying clinical and histological scores and by performing immunohistochemistry stains of the brain. We studied the immunomodulatory effect of MTA in lymphocytes from EAE animals and in peripheral blood mononuclear cells from healthy control subjects and multiple sclerosis patients by assessing cell proliferation and cytokine gene expression, by real-time polymerase chain reaction, and by nuclear factor-kappaB modulation by Western blot. We found that MTA prevents acute EAE and, more importantly, reverses chronic-relapsing EAE. MTA treatment markedly inhibited brain inflammation and reduced brain damage. Administration of MTA suppressed T-cell activation in vivo and in vitro, likely through a blockade in T-cell signaling resulting in the prevention of inhibitor of kappa B (IkappaB-alpha) degradation and in the impaired activation transcription factor nuclear factor-kappaB. Indeed, MTA suppressed the production of proinflammatory genes and cytokines (interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase) and increased the production of antiinflammatory cytokines (interleukin-10). MTA has a remarkable immunomodulatory activity and may be beneficial for multiple sclerosis and other autoimmune diseases.

  2. An in vitro experimental model of neuroinflammation: the induction of interleukin-6 in murine astrocytes infected with Theiler's murine encephalomyelitis virus, and its inhibition by oestrogenic receptor modulators

    Science.gov (United States)

    Rubio, Nazario; Cerciat, Marie; Unkila, Mikko; Garcia-Segura, Luis M; Arevalo, Maria-Angeles

    2011-01-01

    This paper describes an experimental model of neuroinflammation based on the production of interleukin-6 (IL-6) by neural glial cells infected with Theiler's murine encephalomyelitis virus (TMEV). Production of IL-6 mRNA in mock-infected and TMEV-infected SJL/J murine astrocytes was examined using the Affymetrix murine genome U74v2 DNA microarray. The IL-6 mRNA from infected cells showed an eightfold increase in hybridization to a sequence encoding IL-6 located on chromosome number 5. Quantitative real-time reverse transcription PCR (qPCR) was used to study the regulation of IL-6 expression. The presence of IL-6 in the supernatants of TMEV-infected astrocyte cultures was quantified by ELISA and found to be weaker than in cultures of infected macrophages. The IL-6 was induced by whole TMEV virions, but not by Ad.βGal adenovirus, purified TMEV capsid proteins, or UV-inactivated virus. Two recombinant inflammatory cytokines, IL-1α and tumour necrosis factor-α were also found to be potent inducers of IL-6. The secreted IL-6 was biologically active because it fully supported B9 hybridoma proliferation in a [3H]thymidine incorporation bioassay. The cerebrospinal fluid of infected mice contained IL-6 during the acute encephalitis phase, peaking at days 2–4 post-infection. Finally, this in vitro neuroinflammation model was fully inhibited, as demonstrated by ELISA and qPCR, by five selective oestrogen receptor modulators. PMID:21564094

  3. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer

    Science.gov (United States)

    Bremer, Daniel; Pache, Florence; Günther, Robert; Hornow, Jürgen; Andresen, Volker; Leben, Ruth; Mothes, Ronja; Zimmermann, Hanna; Brandt, Alexander U.; Paul, Friedemann; Hauser, Anja E.; Radbruch, Helena; Niesner, Raluca

    2016-01-01

    A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent

  4. Acute Disseminated Encephalomyelitis: Outcome

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-11-01

    Full Text Available The clinical and neuroimaging findings in 84 consecutive children with acute disseminated encephalomyelitis (ADEM were studied prospectively, between March 1988 and July 2000, in relation to outcome at the National Pediatric Hospital, Buenos Aires, Argentina.

  5. A DPP-4 inhibitor suppresses fibrosis and inflammation on experimental autoimmune myocarditis in mice.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hirakawa

    Full Text Available Myocarditis is a critical inflammatory disorder which causes life-threatening conditions. No specific or effective treatment has been established. DPP-4 inhibitors have salutary effects not only on type 2 diabetes but also on certain cardiovascular diseases. However, the role of a DPP-4 inhibitor on myocarditis has not been investigated. To clarify the effects of a DPP-4 inhibitor on myocarditis, we used an experimental autoimmune myocarditis (EAM model in Balb/c mice. EAM mice were assigned to the following groups: EAM mice group treated with a DPP-4 inhibitor (linagliptin (n = 19 and those untreated (n = 22. Pathological analysis revealed that the myocardial fibrosis area ratio in the treated group was significantly lower than in the untreated group. RT-PCR analysis demonstrated that the levels of mRNA expression of IL-2, TNF-α, IL-1β and IL-6 were significantly lower in the treated group than in the untreated group. Lymphocyte proliferation assay showed that treatment with the DPP-4 inhibitor had no effect on antigen-induced spleen cell proliferation. Administration of the DPP-4 inhibitor remarkably suppressed cardiac fibrosis and reduced inflammatory cytokine gene expression in EAM mice. Thus, the agents present in DPP-4 inhibitors may be useful to treat and/or prevent clinical myocarditis.

  6. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats

    Directory of Open Access Journals (Sweden)

    Henry Kaminski

    2016-11-01

    Full Text Available The differential susceptibility of skeletal muscle by myasthenia gravis (MG is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM, diaphragm (DIA, and extensor digitorum (EDL of rats with experimental autoimmune MG (EAMG to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, three hundred and fifty-nine probes (1.16% with greater than 2 fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism.

  7. Tryptase-PAR2 axis in experimental autoimmune prostatitis, a model for chronic pelvic pain syndrome.

    Science.gov (United States)

    Roman, Kenny; Done, Joseph D; Schaeffer, Anthony J; Murphy, Stephen F; Thumbikat, Praveen

    2014-07-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine EAP. Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia led to extracellular signal-regulated kinase (ERK)1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. Development of experimental autoimmune uveitis: efficient recruitment of monocytes is independent of CCR2.

    Science.gov (United States)

    Dagkalis, Athanasios; Wallace, Carol; Xu, Heping; Liebau, Sebastian; Manivannan, Ayyakkannu; Stone, Michael A; Mack, Matthias; Liversidge, Janet; Crane, Isabel J

    2009-09-01

    Macrophages are major contributors to the damage occurring in the retina in experimental autoimmune uveitis (EAU). CCR2 may be needed for efficient recruitment of monocytes to an inflammatory site, and the aim of this study was to determine whether this was the case in EAU. EAU was induced and graded in C57BL/6J and CCR2(-/-) mice. Macrophage infiltration and CCR2 expression were assessed using immunohistochemistry. Retinas were examined for MCP-1 expression using RT-PCR. Rolling and infiltration of labeled bone marrow monocytes at the inflamed retinal vasculature were examined by scanning laser ophthalmoscopy and confocal microscopy, respectively. Effect of CCR2 deletion or blockade by antibody and antagonist was determined. Expression of mRNA for MCP-1 increased as EAU developed and was localized to the retina. CCR2 was associated with infiltrating macrophages. However, EAU induced in CCR2(-/-) mice was not reduced in severity, and neither was the percentage of macrophages in the retina. CCR2(-/-) monocytes, 48 hours after adoptive transfer to mice with EAU, showed no significant difference in percentage rolling or infiltration into the retina compared to WT. CCR2-independent rolling of monocytes was confirmed by CCR2 neutralizing antibody and antagonist treatment. CCR2 does not have a primary role in the recruitment of monocytes to the inflammatory site across the blood-retina barrier in well-developed EAU. Therapeutics targeting CCR2 are unlikely to be of value in treating human posterior uveitis.

  9. Role of PU.1 Expression as an Inflammatory Marker in Experimental Autoimmune Uveoretinitis.

    Science.gov (United States)

    Umazume, Akihiko; Kezuka, Takeshi; Matsuda, Ryusaku; Usui, Yoshihiko; Takahashi, Hiroki; Yamakawa, Naoyuki; Yashiro, Takuya; Nishiyama, Chiharu; Goto, Hiroshi

    2017-04-27

    PU.1 is an Ets family transcription factor, which is essential for the development of immune system through generation of myeloid and lymphoid lineages. In this study, we investigated PU.1 expression in the retina of mice with experimental autoimmune uveoretinitis (EAU) and the association between PU.1 expression level and inflammation in EAU. IRBP 1-20 peptide-immunized mice were used. Quantitative PCR, ELISA analysis, cytometric bead array (CBA), assay and immunostaining were conducted using ocular tissues and lymph nodes. Quantitative PCR showed significant increases in mRNA levels of PU.1 in the retina at the peak of inflammation. Immunostaining of retina flat mounts revealed that most PU.1-positive cells were co-stained with anti-CD11c and anti-F4/80 antibodies. PU.1 knockdown in lymph node cells significantly suppressed IRBP-stimulated IFN-γ production measured by ELISA and IL-2 production measured by CBA. PU.1 may play crucial roles in the development and progression of inflammation in EAU.

  10. Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1- or Th2-type immune response in rats

    DEFF Research Database (Denmark)

    Saoudi, A; Bernard, I; Hoedemaekers, A

    1999-01-01

    Experimental autoimmune myasthenia gravis (EAMG) is a T cell-dependent, Ab-mediated autoimmune disease induced in rats by a single immunization with acetylcholine receptor (AChR). Although polarized Th1 responses have been shown to be crucial for the development of mouse EAMG, the role of Th cell...

  11. [Bone marrow stromal cells transfected with ciliary neurotrophic factor gene ameliorates the symptoms and inflammation in C57BL/6 mice with experimental allergic encephalomyelitis].

    Science.gov (United States)

    Lu, Zheng-qi; Hu, Xue-qiang; Zhu, Can-sheng; Zheng, Xue-ping; Wan, Dun-jing; Liu, Ran-yi; Huang, Bi-jun; Huang, Wen-lin

    2009-12-01

    To investigate the anti-inflammatory effect of bone marrow stromal cells (MSCs) transfected with recombinant adenovirus-mediated ciliary neurotrophic factor (CNTF) gene in C57BL/6 mice with experimental allergic encephalomyelitis (EAE). An adenovirus vector containing CNTF gene Ad-CNTF-IRES-GFP was constructed and transfected in the MSCs (MSC-CNTF). After examination of CNTF expression, the transfected cells were transplanted in C57BL/6 mice with MOG 35-55-induced EAE, which were monitored for the changes in the symptoms scores. The levels of tumor necrosis factor-alpha (TNF-alpha), inteferon-gamma (IFN-gamma), interleukin-12P35 (IL-12P35), and IL-10 in the peripheral blood of the mice were detected, and the number of MSC-CNTF cells in the spleen and spinal cord was counted. CD3+ T cell infiltration and TNF-alpha and IFN-gamma expressions in the lesions were also observed after the cell transplantation. CNTF gene transfection resulted in significantly increased CNTF expression in the MSCs. The mice receiving MSC-CNTF transplantation exhibited significantly improved symptoms with shortened disease course and lessened disease severity. The cell transplantation also resulted in significantly decreased peripheral blood TNF-alpha levels, ameliorated CD3+T cell infiltrations and lowered TNF-alpha expression in the lesions, while the levels of IFN-gamma underwent no significant changes. Transplantation of CNTF gene-transfected MSCs results in decreased peripheral blood TNF-alpha and IFN-gamma levels and reduced inflammatory cells, CD3-positive cells and TNF-alpha expression in the lesion of EAE, therefore providing better effect than MSCs in relieving the symptoms of EAE in mice.

  12. Autoimmune regulator (AIRE)-deficient CD8+CD28low regulatory T lymphocytes fail to control experimental colitis.

    Science.gov (United States)

    Pomié, Céline; Vicente, Rita; Vuddamalay, Yirajen; Lundgren, Brita Ardesjö; van der Hoek, Mark; Enault, Geneviève; Kagan, Jérémy; Fazilleau, Nicolas; Scott, Hamish S; Romagnoli, Paola; van Meerwijk, Joost P M

    2011-07-26

    Mutations in the gene encoding the transcription factor autoimmune regulator (AIRE) are responsible for autoimmune polyendocrinopathy candidiasis ectodermal dystrophy syndrome. AIRE directs expression of tissue-restricted antigens in the thymic medulla and in lymph node stromal cells and thereby substantially contributes to induction of immunological tolerance to self-antigens. Data from experimental mouse models showed that AIRE deficiency leads to impaired deletion of autospecific T-cell precursors. However, a potential role for AIRE in the function of regulatory T-cell populations, which are known to play a central role in prevention of immunopathology, has remained elusive. Regulatory T cells of CD8(+)CD28(low) phenotype efficiently control immune responses in experimental autoimmune and colitis models in mice. Here we show that CD8(+)CD28(low) regulatory T lymphocytes from AIRE-deficient mice are transcriptionally and phenotypically normal and exert efficient suppression of in vitro immune responses, but completely fail to prevent experimental colitis in vivo. Our data therefore demonstrate that AIRE plays an important role in the in vivo function of a naturally occurring regulatory T-cell population.

  13. CD24: from a Hematopoietic Differentiation Antigen to a Genetic Risk Factor for Multiple Autoimmune Diseases.

    Science.gov (United States)

    Tan, Yixin; Zhao, Ming; Xiang, Bo; Chang, Christopher; Lu, Qianjin

    2016-02-01

    The autoantibody is an essential characteristic of inflammatory disorders, including autoimmune diseases. Although the exact pathogenic mechanisms of these diseases remain elusive, accumulated evidence has implicated that genetic factors play important roles in autoimmune inflammation. Among these factors, CD24 was first identified as a heat-stable antigen in 1978 and first successfully cloned in 1990. Thereafter, its functional roles have been intensively investigated in various human diseases, especially autoimmune diseases and cancers. It is currently known that CD24 serves as a costimulatory factor of T cells that regulate their homeostasis and proliferation, while in B cells, CD24 is functionally involved in cell activation and differentiation. CD24 can enhance autoimmune diseases in terms of its protective role in the clonal deletion of autoreactive thymocytes. Furthermore, CD24 deficiency has been linked to mouse experimental autoimmune encephalomyelitis. Finally, CD24 genetic variants, including single-nucleotide polymorphisms and deletions, are etiologically relevant to autoimmune diseases, such as multiple sclerosis and systemic lupus erythematosus. Therefore, CD24 is a promising biomarker and novel therapeutic target for autoimmune diseases.

  14. Analysis of the direct injury effector of oligodendroglia cells or myelin sheath in an experimental allergic encephalomyelitis model induced by the MOG35-55 peptide.

    Science.gov (United States)

    Zhou, Xiangyu; Li, Xiaoyong; Feng, Meina; Zhang, Qi; Yang, Zhendong

    2015-11-01

    The aim of the present study was to investigate the possible role of cytotoxic T lymphocytes (CTL) and mononuclear macrophages in the pathogenic processes of experimental animals. To construct a chronic experimental allergic encephalomyelitis (EAE) model, an artificially synthesized myelin oligodendrocyte glycoprotein (MOG)35‑55 peptide was used to induce C57BL/6 mice. Subsequently, the experimental animals were investigated at the level of their nervous function, and histopathological, immunohistochemical and fluorescence immunohistochemical experiments were performed at different time points following immunization. The expression of immune molecules and cytokines associated with the activation of the mononuclear macrophages and CTL during the different stages was assessed by western blotting and reverse transcription‑quantitative polymerase chain reaction. As a result, the MOG35‑55 peptide was identified as being successful at inducing C57BL/6 mice for the development of the EAE model. A modest level of mononuclear macrophage and lymphocyte infiltration was observed in the central nervous system (CNS), although no infiltration of neutrophils was observed. A sporadic flaky deletion of the myelin sheath was also identified. The activation and proliferation of mononuclear macrophages, including microglia cells, was clearly demonstrated. Furthermore, the expression levels of major histocompatibility complex class I and II molecules and interleukin‑12 in the brain, which is associated with the activation and proliferation of mononuclear macrophages, increased over the duration of the experiment compared with less pronounced changes in the expression levels of interferon (IFN)‑γ, Fas and perforin in the CNS, which are associated with the function of CTL. The secretion of IFN‑γ in the spleen increased during the morbidity peak, however, any noticeable activation and proliferation of CD8+ T cells was absent. These results demonstrated that the induced

  15. A novel pathogenic RBP-3 peptide reveals epitope spreading in persistent experimental autoimmune uveoretinitis.

    Science.gov (United States)

    Boldison, Joanne; Khera, Tarnjit K; Copland, David A; Stimpson, Madeleine L; Crawford, Gemma L; Dick, Andrew D; Nicholson, Lindsay B

    2015-10-01

    Experimental autoimmune uveoretinitis (EAU) in the C57BL/6J mouse is a model of non-infectious posterior segment intraocular inflammation that parallels clinical features of the human disease. The purpose of this study was to analyse the immune response to the four murine subunits of retinol binding protein-3 (RBP-3) to identify pathogenic epitopes to investigate the presence of intramolecular epitope spreading during the persistent inflammation phase observed in this model of EAU. Recombinant murine subunits of the RBP-3 protein were purified and used to immunize C57BL/6J mice to induce EAU. An overlapping peptide library was used to screen RBP-3 subunit 3 for immunogenicity and pathogenicity. Disease phenotype and characterization of pathogenic subunits and peptides was undertaken by topical endoscopic fundal imaging, immunohistochemistry, proliferation assays and flow cytometry. RBP-3 subunits 1, 2 and 3 induced EAU in the C57BL/6J mice, with subunit 3 eliciting the most destructive clinical disease. Within subunit 3 we identified a novel uveitogenic epitope, 629-643. The disease induced by this peptide was comparable to that produced by the uveitogenic 1-20 peptide. Following immunization, peptide-specific responses by CD4(+) and CD8(+) T-cell subsets were detected, and cells from both populations were present in the retinal inflammatory infiltrate. Intramolecular epitope spreading between 629-643 and 1-20 was detected in mice with clinical signs of disease. The 629-643 RBP-3 peptide is a major uveitogenic peptide for the induction of EAU in C57BL/6J mice and the persistent clinical disease induced with one peptide leads to epitope spreading. © 2015 John Wiley & Sons Ltd.

  16. Effects of 1, 25-Dihydroxyvitamin D3 on Experimental Autoimmune Myocarditis in Mice

    Directory of Open Access Journals (Sweden)

    Fen Hu

    2016-05-01

    Full Text Available Background/Aims: Myocarditis is an important inflammatory disease of the heart which causes life-threatening conditions. 1, 25(OH2 D3 has effects on multiple systems and diseases. The present study was aimed to investigate the effect of 1, 25(OH2 D3 on experimental autoimmune myocarditis (EAM, and explored the underlying mechanisms involved. Methods: EAM was induced by immunizing BALB/c mice with cardiac α-myosin heavy chain peptides (MyHC-α. 1, 25(OH2 D3 (1,000 ng/kg once or vehicle was administered intraperitoneally every other day during the entire experiment. On day 21, transthoracic echocardiography was performed and cardiac inflammatory infiltration was detected by hematoxylin and eosin (HE. The terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL assay, and Western blots for the expression of protein caspase-3 and cleaved-caspase3 were used to evaluate apoptosis. Transmission electron microscopy and Western blots for the expression of protein Beclin-1, LC3B, and P62 were used to evaluate autophagy. Results: The ratio of heart weight/body weight was significantly reduced in 1, 25(OH2 D3 -treated EAM mice, compared with vehicle -treated ones. 1, 25(OH2 D3 treatment improved cardiac function, diminished cell infiltration in cardiac, suppressed myocardial apoptosis, decreased the number of autophagosomes, and decreased the protein expression of Beclin-1, LC3-II and p62. Conclusions: The present results demonstrated that administration of 1, 25(OH2 D3 decreased EAM severity. 1, 25(OH2 D3 treatment may be a feasible therapeutic approach for EAM.

  17. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Tüzün, Erdem; Scott, Benjamin G; Goluszko, Elzbieta; Higgs, Stephen; Christadoss, Premkumar

    2003-10-01

    Abs to acetylcholine receptor (AChR) and complement are the major constituents of pathogenic events causing neuromuscular junction destruction in both myasthenia gravis (MG) and experimental autoimmune MG (EAMG). To analyze the differential roles of the classical vs alternative complement pathways in EAMG induction, we immunized C3(-/-), C4(-/-), C3(+/-), and C4(+/-) mice and their control littermates (C3(+/+) and C4(+/+) mice) with AChR in CFA. C3(-/-) and C4(-/-) mice were resistant to disease, whereas mice heterozygous for C3 or C4 displayed intermediate susceptibility. Although C3(-/-) and C4(-/-) mice had anti-AChR Abs in their sera, anti-AChR IgG production by C3(-/-) mice was significantly suppressed. Both C3(-/-) and C4(-/-) mice had reduced levels of B cells and increased expression of apoptotis inducers (Fas ligand, CD69) and apoptotic cells in lymph nodes. Immunofluorescence studies showed that the neuromuscular junction of C3(-/-) and C4(-/-) mice lacked C3 or membrane attack complex deposits, despite having IgG deposits, thus providing in vivo evidence for the incapacity of anti-AChR IgGs to induce full-blown EAMG without the aid of complements. The data provide the first direct genetic evidence for the classical complement pathway in the induction of EAMG induced by AChR immunization. Accordingly, severe MG and other Ab- and complement-mediated diseases could be effectively treated by inhibiting C4, thus leaving the alternative complement pathway intact.

  18. Immunopathological events initiated and maintained by pathogenic IgG autoantibodies in an experimental autoimmune kidney disease.

    Science.gov (United States)

    Barabas, Arpad Zsigmond; Cole, Chad Douglas; Lafreniere, Rene; Weir, Donald Mackay

    2012-11-01

    The experimental models of Heymann nephritis (HN) and slowly progressive Heymann nephritis (SPHN) give us rare opportunities to investigate the etiologies and pathogenesis of two immunopathological processes in rats leading to: (1) autoimmune disease, where the autoimmune disease HN and SPHN is initiated and maintained by cross-reactive pathogenic IgG autoantibodies (aabs) directed against the renal proximal convoluted tubules' brush border (BB) cells - where the nephritogenic antigen (ag) is produced and localized - damaging and releasing BB associated nephritogenic ag into the circulation which in turn contributes to continuation of the autoimmune disease; and (2) immune complex glomerulonephritis, where the glomerular injury is initiated, proceeding into a chronic progressive disease by depositing immune complexes (ICs) - made up of a glomerular epithelial cell produced endogenous nephritogenic ag and the developing pathogenic IgG aab directed against the nephritogenic ag, and complement components - on the epithelial side of the glomerular basement membrane. We also observed how the normally functioning immune system is able to avert autoimmune disease developments by circulating specific non-pathogenic IgM aabs clearing the system of intracytoplasmic ags released from cells at the end of their life spans or following damage by toxic agents. We also described how an autoimmune disease SPHN can be prevented and when present terminated by the implementation of a new vaccination technique we have developed and call modified vaccination technique. By increasing the specific IgM aab production against the native nephritogenic ag - by injecting ICs made up of: [nephritogenic ag X homologous anti-nephritogenic ag IgM ab] in slight ag excess into SPHN rats - pathogenic IgG aab producing native and modified nephritogenic ags were removed from the circulation and termination of the autoimmune disease causing immune events was achieved. Even though HN and SPHN are not

  19. Effects of Japanese herbal medicine Sairei-to on murine experimental autoimmune uveitis.

    Science.gov (United States)

    Kaburaki, Toshikatsu; Zhang, Qi; Jin, Xiangyuan; Uchiyama, Masateru; Fujino, Yujiro; Nakahara, Hisae; Takamoto, Mitsuko; Otomo, Kazuyoshi; Niimi, Masanori

    2013-12-01

    It has been suggested thatSairei-to (TJ114), a traditional Japanese herbal medicine, has immunomodulatory activities. To evaluate the effects of TJ114 on uveitis, we examined the effectiveness of oral administration in a murine model of experimental autoimmune uveitis (EAU). Murine EAU was induced by subcutaneous injection of human inter-photoreceptor retinoid-binding protein (IRBP) peptide mixed with complete Freund's adjuvant. In the TJ114-treated group, 2 g/kg was administrated orally from 0 to 20 days after immunization. Clinical scoring, histopathological scoring of EAU, cell proliferation, cytokine assessment, and adoptive transfer experiment of splenic T cells into naïve mice were performed. EAU development occurred in 32 of 38 mice (86 %) in the untreated group and 12 of 33 (36 %) in the TJ114-treated group. The clinical scores for EAU in the vehicle-treated and TJ114-treated groups were 1.56 ± 1.65 and 0.59 ± 0.63 respectively, at 14 days after immunization (p < 0.01, Mann-Whitney U-test), and 2.26 ± 1.56 and 0.75 ± 1.31 respectively at 21 days (p < 0.001, Mann-Whitney U-test), while the histopathological scores at 21 days were 1.47 ± 1.42 and 0.54 ± 0.84 respectively (p < 0.01, Mann-Whitney U-test). Interferon (IFN)-γ and tumor necrosis factor (TNF)-α production by cervical lymph node cells obtained from the TJ114-treated group were significantly reduced as compared with those from the vehicle-treated group (p < 0.01, Student's unpaired t-test). Moreover, the levels of C-C motif chemokine 2 (CCL2) and IFN-γ were significantly reduced in splenocytes of TJ114-treated mice as compared with the vehicle-treated group (p < 0.01, Student's unpaired t-test). Mice that received adoptive transfer of splenic T cells from TJ114-treated EAU mice caused significantly lower severity of EAU compared to those that received from vehicle-treated EAU mice. Oral administration of TJ114 has an inhibitory effect on a murine model of EAU, possibly via reduction in

  20. Adiponectin Suppresses T Helper 17 Cell Differentiation and Limits Autoimmune CNS Inflammation via the SIRT1/PPARγ/RORγt Pathway.

    Science.gov (United States)

    Zhang, Kai; Guo, Yawei; Ge, Zhenzhen; Zhang, Zhihui; Da, Yurong; Li, Wen; Zhang, Zimu; Xue, Zhenyi; Li, Yan; Ren, Yinghui; Jia, Long; Chan, Koon-Ho; Yang, Fengrui; Yan, Jun; Yao, Zhi; Xu, Aimin; Zhang, Rongxin

    2017-09-01

    T helper 17 (Th17) cells are vital components of the adaptive immune system involved in the pathogenesis of most autoimmune and inflammatory syndromes, and adiponectin(ADN) is correlated with inflammatory diseases such as multiple sclerosis (MS) and type II diabetes. However, the regulatory effects of adiponectin on pathogenic Th17 cell and Th17-mediated autoimmune central nervous system (CNS) inflammation are not fully understood. In this study, we demonstrated that ADN could inhibit Th1 and Th17 but not Th2 cells differentiation in vitro. In the in vivo study, we demonstrated that ADN deficiency promoted CNS inflammation and demyelination and exacerbated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. Furthermore, ADN deficiency increased the Th1 and Th17 cell cytokines of both the peripheral immune system and CNS in mice suffering from EAE. It is worth mentioning that ADN deficiency predominantly promoted the antigen-specific Th17 cells response in autoimmune encephalomyelitis. In addition, in vitro and in vivo, ADN upregulated sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ (PPARγ) and inhibited retinoid-related orphan receptor-γt (RORγt); the key transcription factor during Th17 cell differentiation. These results systematically uncovered the role and mechanism of adiponectin on pathogenic Th17 cells and suggested that adiponectin could inhibit Th17 cell-mediated autoimmune CNS inflammation.

  1. CD154 Blockade Results in Transient Reduction in Theiler's Murine Encephalomyelitis Virus-Induced Demyelinating Disease

    OpenAIRE

    Howard, Laurence M.; Neville, Katherine L.; Haynes, Lia M.; Dal Canto, Mauro C.; Miller, Stephen D

    2003-01-01

    Transient CD154 blockade at the onset of Theiler's murine encephalomyelitis virus-induced demyelinating disease ameliorated disease progression for 80 days, reduced immune cell infiltration, and transiently increased viral loads in the central nervous system. Peripheral antiviral and autoimmune T-cell responses were normal, and disease severity returned to control levels by day 120.

  2. MRI findings of enteroviral encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Mohamed Saied Abdelgawad

    2016-09-01

    Conclusion: Enterovirus encephalomyelitis has characteristic lesion locations in the posterior portions of the brain stem, substantia nigra, dentate nucleus and within the anterior horns of spinal cord. Recognition of these findings in the presence of suggestive clinical presentation can help to establish the diagnosis of enterovirus encephalomyelitis.

  3. Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Füchtbauer, Laila; Owens, Trevor

    2011-01-01

    -associated molecules TNFα, MMP-12 and TIMP-1 was elevated in spinal cord of GFAP HSV-TK mice treated with ganciclovir. Relative expression of CD3ε was downregulated, and expression levels of IFNγ, IL-4, IL-10, IL-17, and Foxp3 were not significantly changed. mRNA expression of CCL2 was upregulated, and CXL10...

  4. Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis

    National Research Council Canada - National Science Library

    Blakely, Pennelope K; Hussain, Shabbir; Carlin, Lindsey E; Irani, David N

    2015-01-01

    The matricellular proteins, secreted protein acidic and rich in cysteine (SPARC) and SPARC-like 1 (SPARCL1), are produced by astrocytes and control excitatory synaptogenesis in the central nervous system...

  5. Effect of vitamin D3 on leukocyte infiltration into the brain of C57/BL6 mice with experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    ghasem Mosayebi

    2006-11-01

    Material and methods: Male C57BL/6 mice were divided into two therapeutic groups (n=8 per group with age and weight-matched as follow: Vitamin D3-treated EAE mice (5μg/kg/every two days of vitamin D3 given i.p. from day -3 until day +19 after disease induction. Non-treated EAE mice (EAE control received vehicle alone with same schedule. In addition, 5 age and weight-matched male C57BL/6 mice served as normal (non-EAE controls. Results: Vitamin D3-treated mice had significantly less clinical score of EAE (3.2±0.8 than non-treated mice (5.3±0.44, (p<0.001. Also, there was a significant difference between vitamin D3-trated and non treated mice (p<0.01 in relation to the number of the infiltrating cells in the brain. Conclusion: These results indicate that vitamin D3 treatment reduces infiltration of leukocytes into the brain of EAE mice, and ameliorate the disease. Thus, vitamin D3 treatment may be of therapeutic value against inflammatory disease processes associated with infiltration of activated mononuclear cells into the tissue.

  6. Vitamin D3 influence the Th1/Th2 ratio in C57BL/6 induced model of experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Maryam Soleimani

    2014-10-01

    Results: By using ELISA and RT-PCR the brain level of TNF-α, IL-10, IL-4 and IL-12 determined. Significant decrease of clinical symptoms in trial group which received vitamin D was seen comparing to control animals (P

  7. 1,25-Dihydroxyvitamin D3 Suppresses TLR8 Expression and TLR8-Mediated Inflammatory Responses in Monocytes In Vitro and Experimental Autoimmune Encephalomyelitis In Vivo

    Science.gov (United States)

    2013-03-14

    paralysis; 4, hind and forelimb paralysis; 5, death . Paralyzed mice were given easy access to food and water. Cell Culture Human monocytic THP-1 cells...Mata-Greenwood (Center for Perinatal Biology, Loma Linda University) for assistance with luciferase measurement. Author Contributions Conceived and

  8. Antagonizing the alpha(4)beta(1) Integrin, but Not alpha(4)beta(7), Inhibits Leukocytic Infiltration of the Central Nervous System in Rhesus Monkey Experimental Autoimmune Encephalomyelitis

    NARCIS (Netherlands)

    Haanstra, Krista G.; Hofman, Sam O.; Estevao, Dave M. Lopes; Blezer, Erwin L. A.; Bauer, Jan; Yang, Li-Li; Wyant, Tim; Csizmadia, Vilmos; 't Hart, Bert A.; Fedyk, Eric R.

    2013-01-01

    The immune system is characterized by the preferential migration of lymphocytes through specific tissues (i.e., tissue tropism). Tissue tropism is mediated, in part, by the alpha(4) integrins expressed by T lymphocytes. The alpha(4)beta(1) integrin mediates migration of memory T lymphocytes into the

  9. Tissue-Resident Exhausted Effector Memory CD8+ T Cells Accumulate in the Retina during Chronic Experimental Autoimmune Uveoretinitis

    Science.gov (United States)

    Boldison, Joanne; Chu, Colin J.; Copland, David A.; Lait, Philippa J. P.; Khera, Tarnjit K.; Dick, Andrew D.

    2014-01-01

    Experimental autoimmune uveoretinitis is a model for noninfectious posterior segment intraocular inflammation in humans. Although this disease is CD4+ T cell dependent, in the persistent phase of disease CD8+ T cells accumulate. We show that these are effector memory CD8+ T cells that differ from their splenic counterparts with respect to surface expression of CD69, CD103, and Ly6C. These retinal effector memory CD8+ T cells have limited cytotoxic effector function, are impaired in their ability to proliferate in response to Ag-specific stimulation, and upregulate programmed death 1 receptor. Treatment with fingolimod (FTY720) during the late phase of disease revealed that retinal CD8+ T cells were tissue resident. Despite signs of exhaustion, these cells were functional, as their depletion resulted in an expansion of retinal CD4+ T cells and CD11b+ macrophages. These results demonstrate that, during chronic autoimmune inflammation, exhausted CD8+ T cells become established in the local tissue. They are phenotypically distinct from peripheral CD8+ T cells and provide local signals within the tissue by expression of inhibitory receptors such as programmed death 1 that limit persistent inflammation. PMID:24740509

  10. A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms

    Directory of Open Access Journals (Sweden)

    In Young Choi

    2016-06-01

    Full Text Available Dietary interventions have not been effective in the treatment of multiple sclerosis (MS. Here, we show that periodic 3-day cycles of a fasting mimicking diet (FMD are effective in ameliorating demyelination and symptoms in a murine experimental autoimmune encephalomyelitis (EAE model. The FMD reduced clinical severity in all mice and completely reversed symptoms in 20% of animals. These improvements were associated with increased corticosterone levels and regulatory T (Treg cell numbers and reduced levels of pro-inflammatory cytokines, TH1 and TH17 cells, and antigen-presenting cells (APCs. Moreover, the FMD promoted oligodendrocyte precursor cell regeneration and remyelination in axons in both EAE and cuprizone MS models, supporting its effects on both suppression of autoimmunity and remyelination. We also report preliminary data suggesting that an FMD or a chronic ketogenic diet are safe, feasible, and potentially effective in the treatment of relapsing-remitting multiple sclerosis (RRMS patients (NCT01538355.

  11. Diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms

    Science.gov (United States)

    Choi, In Young; Piccio, Laura; Childress, Patra; Bollman, Bryan; Ghosh, Arko; Brandhorst, Sebastian; Suarez, Jorge; Michalsen, Andreas; Cross, Anne H.; Morgan, Todd E.; Wei, Min; Paul, Friedemann; Bock, Markus; Longo, Valter D.

    2016-01-01

    Summary Dietary interventions have not been effective in the treatment of multiple sclerosis (MS). Here we show that periodic 3 day cycles of a fasting mimicking diet (FMD) are effective in ameliorating demyelination and symptoms in a murine experimental autoimmune encephalomyelitis (EAE) model. The FMD reduced clinical severity in all mice, and completely reversed symptoms in 20% of the animals. These improvements were associated with increased corticosterone levels and Treg cell number, reduced levels of pro-inflammatory cytokines, TH1 and TH17 cells, and antigen presenting cells (APCs). Moreover, the FMD promoted oligodendrocyte precursor cell regeneration and remyelination in axons in response to both EAE and cuprizone MS models, supporting its effects on both suppression of autoimmunity and remyelination. We also report preliminary data suggesting that a FMD or a chronic ketogenic diet are safe, feasible and potentially effective in the treatment of relapsing remitting multiple sclerosis (RRMS) patients (NCT01538355). PMID:27239035

  12. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease

    Science.gov (United States)

    Pishesha, Novalia; Bilate, Angelina M.; Wibowo, Marsha C.; Huang, Nai-Jia; Li, Zeyang; Deshycka, Rhogerry; Bousbaine, Djenet; Li, Hojun; Patterson, Heide C.; Dougan, Stephanie K.; Maruyama, Takeshi; Lodish, Harvey F.; Ploegh, Hidde L.

    2017-01-01

    Current therapies for autoimmune diseases rely on traditional immunosuppressive medications that expose patients to an increased risk of opportunistic infections and other complications. Immunoregulatory interventions that act prophylactically or therapeutically to induce antigen-specific tolerance might overcome these obstacles. Here we use the transpeptidase sortase to covalently attach disease-associated autoantigens to genetically engineered and to unmodified red blood cells as a means of inducing antigen-specific tolerance. This approach blunts the contribution to immunity of major subsets of immune effector cells (B cells, CD4+ and CD8+ T cells) in an antigen-specific manner. Transfusion of red blood cells expressing self-antigen epitopes can alleviate and even prevent signs of disease in experimental autoimmune encephalomyelitis, as well as maintain normoglycemia in a mouse model of type 1 diabetes. PMID:28270614

  13. A new small molecule for treating inflammation and chorioretinal neovascularization in relapsing-remitting and chronic experimental autoimmune uveitis.

    Science.gov (United States)

    Diedrichs-Möhring, Maria; Leban, Johann; Strobl, Stefan; Obermayr, Franz; Wildner, Gerhild

    2014-12-16

    We investigated the effect of PP-001, a new small molecule inhibitor of dihydro-orotate dehydrogenase in two experimental rat experimental autoimmune uveitis (EAU) models: a spontaneously relapsing-remitting model and a monophasic/chronic disease model that results in late chorioretinal neovascularization. Both of the diseases are induced by immunization with autoantigen peptides. Prevention was tested using daily oral applications of PP-001 after immunization with the retinal S-antigen peptide PDSAg (for induction of monophasic uveitis and neovascularization) or the interphotoreceptor retinoid-binding protein peptide R14 (for induction of spontaneously relapsing-remitting EAU). Treatment to inhibit relapses and neovascularization was tested using PP-001 daily after the first attack of R14-induced or after onset of PDSAg-induced EAU. Uveitis was graded clinically and histologically. The effect of PP-001 on cytokine secretion and proliferation was evaluated using rat T-cell lines. Preventive feeding of PP-001 abrogated both types of EAU. Starting treatment after the resolution of the first attack led to a significant reduction of the number and intensity of relapses in R14-induced EAU. PP-001-treatment initiated after onset or after peak of PDSAg-induced EAU significantly reduced neovascularization (as determined by histology). Proliferation of antigen-specific T-cell lines and secretion of IFN-γ, IL-17, IL-10, IP-10, and VEGF were efficiently suppressed by PP-001. We investigated a new dihydroorotate dehydrogenase inhibitor as treatment for primary and recurrent disease in relapsing-remitting and chronic rat models of experimental autoimmune uveitis. The small molecule compound PP-001 suppressed proliferation and cytokine secretion of autoreactive T cells (i.e., IFN-g, IL-17, and VEGF) and chorioretinal neovascularization in chronic EAU. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  14. Contrasting Roles of Islet Resident Immunoregulatory Macrophages and Dendritic Cells in Experimental Autoimmune Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    Thomas B Thornley

    Full Text Available The innate immune system critically shapes diabetogenic adaptive immunity during type 1 diabetes (T1D pathogenesis. While the role of tissue-infiltrating monocyte-derived macrophages in T1D is well established, the role of their tissue-resident counterparts remains undefined. We now demonstrate that islet resident macrophages (IRMs from non-autoimmune mice have an immunoregulatory phenotype and powerfully induce FoxP3+ Tregs in vitro. The immunoregulatory phenotype and function of IRMs is compromised by TLR4 activation in vitro. Moreover, as T1D approaches in NOD mice, the immunoregulatory phenotype of IRMs is diminished as is their relative abundance compared to immunostimulatory DCs. Our findings suggest that maintenance of IRM abundance and their immunoregulatory phenotype may constitute a novel therapeutic strategy to prevent and/or cure T1D.

  15. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine.

    Science.gov (United States)

    Haghikia, Aiden; Jörg, Stefanie; Duscha, Alexander; Berg, Johannes; Manzel, Arndt; Waschbisch, Anne; Hammer, Anna; Lee, De-Hyung; May, Caroline; Wilck, Nicola; Balogh, Andras; Ostermann, Annika I; Schebb, Nils Helge; Akkad, Denis A; Grohme, Diana A; Kleinewietfeld, Markus; Kempa, Stefan; Thöne, Jan; Demir, Seray; Müller, Dominik N; Gold, Ralf; Linker, Ralf A

    2015-10-20

    Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling.

    Science.gov (United States)

    Hu, Wei; Nessler, Stefan; Hemmer, Bernhard; Eagar, Todd N; Kane, Lawrence P; Leliveld, S Rutger; Müller-Schiffmann, Andreas; Gocke, Anne R; Lovett-Racke, Amy; Ben, Li-Hong; Hussain, Rehana Z; Breil, Andreas; Elliott, Jeffrey L; Puttaparthi, Krishna; Cravens, Petra D; Singh, Mahendra P; Petsch, Benjamin; Stitz, Lothar; Racke, Michael K; Korth, Carsten; Stüve, Olaf

    2010-02-01

    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein(1-11) T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central

  17. Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine.

    Science.gov (United States)

    Casserly, Courtney S; Nantes, Julia C; Whittaker Hawkins, Ryder F; Vallières, Luc

    2017-03-01

    Neutrophils are essential to a healthy life, yet pose a threat if improperly controlled. Neutrophil perversion is well documented in a variety of inflammatory disorders (e.g. arthritis, lupus, psoriasis), but is only beginning to be demystified in autoimmune demyelination, the most common cause of neurological disability in young adults. Using the animal model experimental autoimmune encephalomyelitis (EAE), several molecules that help neutrophils invade the central nervous system (CNS) have been identified. Mechanisms by which neutrophils may contribute to demyelination have also been proposed (e.g. secretion of endothelial/leukocytic modulators, antigen presentation to T cells, myelin degradation and phagocytosis). In human, neutrophils are seen in the CNS of people with neuromyelitis optica spectrum disorder and other severe variants of autoimmune demyelinating diseases. At the time of autopsy for multiple sclerosis (MS) - often many years after its onset - neutrophils appear to have escaped the scene of the crime. However, new clues implicate neutrophils in MS relapses and progression. This warrants further investigating 1) the differential importance of neutrophils among demyelinating diseases, 2) the largely unknown effects of current MS therapies on neutrophils, and 3) the potential of neutrophil proteins as clinical biomarkers or therapeutic targets. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Acute disseminated encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Panicker J

    2007-01-01

    Full Text Available Acute disseminated encephalomyelitis (ADEM presents as an acute-onset neurological dysfunction following a triggering event such as an infection or vaccination. Patients present with polysymptomatic neurological dysfunction, and imaging shows multifocal white matter lesions in the brain and spinal cord. Clinical evaluation, magnetic resonance imaging, and cerebrospinal fluid study are most useful in establishing the diagnosis and ruling out important differential diagnoses. Corticosteroids are the mainstay of treatment and the role of other modalities of treatment, such as plasma exchange and intravenous immunoglobulin, require further study. Prognosis is generally good. The recently proposed consensus definitions are likely to facilitate delineation of ADEM from other acquired demyelinating disorders.

  19. Acute Disseminated Encephalomyelitis with Measles

    Directory of Open Access Journals (Sweden)

    Ishrat Jahan

    2013-01-01

    Full Text Available Acute disseminated encephalomyelitis is an inflammatory demyelinating illness usually associated with infections or antecedent immunization. Due to control of most vaccine preventable diseases in developed countries, most cases of acute disseminated encephalomyelitis occur in developing countries and are seen secondary to nonspecific upper respiratory tract infections. We report a case of acute disseminated encephalomyelitis associated with measles in a 2½-year-old male child despite having measles vaccination in infancy. The diagnosis was based on clinical findings and CT scan of brain. The patient was managed with high dose corticosteroids along with supportive measures. He recovered completely and follow-up for six months revealed no neurological deterioration.

  20. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Renno, T; Krakowski, M; Piccirillo, C

    1995-01-01

    The inflammatory cytokines IFN-gamma and TNF-alpha have been demonstrated in various autoimmune diseases, and are thought to participate in the induction and pathogenesis of disease. TFN-alpha is a cytopathic cytokine that is cytotoxic for oligodendrocytes in vitro and has been implicated in the ...

  1. Immunomodulation of liver injury by Ascaris suum extract in an experimental model of autoimmune hepatitis.

    Science.gov (United States)

    Nascimento, Wheverton C; Silva, Roeckson P; Fernandes, Erica S; Silva, Maria C; Holanda, Gabriela C; Santos, Patrícia A; Albuquerque, Mônica P; Costa, Vlaudia A; Pontes-Filho, Nicodemos T; Souza, Valdênia O

    2014-09-01

    Adult worm extract from Ascaris suum (Asc) has immunosuppressive activity and elicits Th2/IL-4/IL-10 response. This study evaluated the prophylactic and therapeutic effect of Asc in a murine model of concanavalin A (ConA)-induced autoimmune hepatitis (AIH). BALB/c mice received ConA, iv, (20 mg/kg), and three groups of animals were formed: (1) AIH, received only ConA; (2) AIH + Asc prophylactic, treated with Asc (1 mg/ml), ip, 30 min before of the AIH; and (3) AIH + Asc therapeutic, treated with Asc 2 h after the AIH. Plasma transaminase and immunoglobulins (measured at 8 and 24 h and 7 days after treatment) and cytokine production (IL-4, IL-10, IL-13, and IFN-γ) by splenocytes upon ConA and Asc stimulus were compared. The livers were weighed and examined histologically. In the AIH group, there was an increase in liver weight, transaminase levels, and total immunoglobulins. These parameters were reduced by 8-24 h and 7 days in the prophylactic group, but in the therapeutic group, only on day 7. The survival rate of mice in the AIH group was 38.5%, compared to 67% in the therapeutic Asc group. The survival rate of the animals with AIH that were prophylactically treated with Asc was 100%. A decrease of cellular infiltration and high levels of IL-4, IL-10, and IL-13 were induced by Asc. An increase of liver fibrosis was also observed, but with less intensity with prophylactic treatment. Thus, the Ascaris components have an inhibitory effect on AIH, with an intense Th2 immune response.

  2. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.

    Science.gov (United States)

    Ulusoy, Canan; Çavuş, Filiz; Yılmaz, Vuslat; Tüzün, Erdem

    2017-07-01

    Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ), characterized with muscle weakness. While MG develops due to acetylcholine receptor (AChR) antibodies in most patients, antibodies to muscle-specific receptor tyrosine kinase (MuSK) or low-density lipoprotein receptor-related protein 4 (LRP4) may also be identified. Experimental autoimmune myasthenia gravis (EAMG) has been previously induced by both LRP4 immunization and passive transfer of LRP4 antibodies. Our aim was to confirm previous results and to test the pathogenic effects of LRP4 immunization in a commonly used mouse strain C57BL/6 (B6) using a recombinantly expressed human LRP4 protein. B6 mice were immunized with human LRP4 in CFA, Torpedo Californica AChR in CFA or only CFA. Clinical and pathogenic aspects of EAMG were compared among groups. LRP4- and AChR-immunized mice showed comparable EAMG clinical severity. LRP4-immunized mice displayed serum antibodies to LRP4 and NMJ IgG and complement factor C3 deposits. IgG2 was the dominant anti-LRP4 isotype. Cultured lymph node cells of LRP4- and AChR-immunized mice gave identical pro-inflammatory cytokine (IL-6, IFN-γ and IL-17) responses to LRP4 and AChR stimulation, respectively. Our results confirm the EAMG-inducing action of LRP4 immunization and identify B6 as a LRP4-EAMG-susceptible mouse strain. Demonstration of complement fixing anti-LRP4 antibodies in sera and complement/IgG deposits at the NMJ of LRP4-immunized mice indicates complement activation as a putative pathogenic mechanism. We have thus developed a practical LRP4-induced EAMG model using a non-conformational protein and a widely available mouse strain for future investigation of LRP4-related MG.

  3. Pathology of acute disseminated encephalomyelitis

    National Research Council Canada - National Science Library

    Habek, Mario; Žarković, Kamelija

    2011-01-01

    Acute disseminated encephalomyelitis (ADEM) is an acute, monophasic neurologic syndrome that occurs after vaccination against various viruses and after many viral infections and rarely occurs again in the same patient...

  4. Acute disseminated encephalomyelitis; Akute disseminierte Enzephalomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Politi, M.; Papanagiotou, P.; Grunwald, I.Q.; Roth, C.; Reith, W. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2008-06-15

    Acute disseminated encephalomyelitis (ADEM) is an acute widespread autoimmune demyelinating condition, which principally affects the white matter of the brain and spinal cord. It usually follows an infection or vaccination. The typical presentation is that of multifocal neurologic disturbances accompanied by change in mental status. CSF analysis reveals lymphocytic pleocytosis and elevated protein content, but may also yield normal results. MRI is regarded as the diagnostic imaging modality of choice and typically demonstrates involvement of deep cerebral hemispheric and subcortical white matter as well as lesions in the basal ganglia, gray-white junction, diencephalon, brainstem, cerebellum and spinal cord. Unlike multiple sclerosis (MS), ADEM has a monophasic course and a favorable long-term prognosis. (orig.) [German] Die akute disseminierte Enzephalomyelitis (ADEM) ist eine akut auftretende autoimmune demylinisierende Erkrankung der weissen Substanz, die hauptsaechlich Gehirn und Rueckenmark befaellt. Ueblicherweise tritt sie nach einer Infektion oder Impfung auf. Die Entwicklung einer fokalen oder multifokalen neurologischen Funktionsstoerung ist das Kennzeichen der klinischen Praesentation der ADEM. Lymphozytaere Pleozytose und Eiweisserhoehung sind typische Befunde in der Liquoruntersuchung. Die Magnetresonanztomographie (MRT) ist die Untersuchungsmethode der Wahl. Die ADEM-Laesionen sind typischerweise gross, multipel und asymmetrisch. Sie koennen in den Gross- und Kleinhirnhemisphaeren, im Hirnstamm und im Rueckenmark lokalisiert sein. Die subkortikale und die zentrale weisse Substanz sind am haeufigsten befallen. Weniger haeufig ist die graue Substanz der Thalami und der Basalganglien betroffen. Im Gegensatz zur Multiplen Sklerose (MS) ist die Prognose der ADEM im Allgemeinen guenstig. (orig.)

  5. Prophylactic Effect of Probiotics on the Development of Experimental Autoimmune Myasthenia Gravis

    OpenAIRE

    Chae, Chang-Suk; Kwon, Ho-Keun; Hwang, Ji-Sun; Kim, Jung-Eun; Im, Sin-Hyeog

    2012-01-01

    Probiotics are live bacteria that confer health benefits to the host physiology. Although protective role of probiotics have been reported in diverse diseases, no information is available whether probiotics can modulate neuromuscular immune disorders. We have recently demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental disorders in mice model. In this study we further investigated whether IRT5 probiotics could modulate the progression of experimen...

  6. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis

    Directory of Open Access Journals (Sweden)

    Hai-peng Huang

    2016-01-01

    Full Text Available Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10, Zusanli (ST36, Pishu (BL20, and Shenshu (BL23 once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.

  7. One calcitriol dose transiently increases Helios+ FoxP3+ T cells and ameliorates autoimmune demyelinating disease.

    Science.gov (United States)

    Nashold, Faye E; Nelson, Corwin D; Brown, Lauren M; Hayes, Colleen E

    2013-10-15

    Multiple sclerosis (MS) is an incurable inflammatory demyelinating disease. We investigated one calcitriol dose plus vitamin D3 (calcitriol/+D) as a demyelinating disease treatment in experimental autoimmune encephalomyelitis (EAE). Evidence that calcitriol-vitamin D receptor pathway deficits may promote MS, and data showing calcitriol enhancement of autoimmune T cell apoptosis provided the rationale. Whereas vitamin D3 alone was ineffective, calcitriol/+D transiently increased central nervous system (CNS) Helios(+)FoxP3(+) T cells and sustainably decreased CNS T cells, pathology, and neurological deficits in mice with EAE. Calcitriol/+D, which was more effective than methylprednisolone, has potential for reversing inflammatory demyelinating disease safely and cost-effectively. © 2013.

  8. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity

    Directory of Open Access Journals (Sweden)

    Meike Mitsdoerffer

    2016-10-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS, which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease, however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function and clinical significance. Mechanistic studies in patiens are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs.

  9. Autoimmune Diseases

    Science.gov (United States)

    ... autoimmune diseases are rare, while others, such as Hashimoto's disease, affect many people. Who gets autoimmune diseases? ... often occur on both sides of the body. Hashimoto's (hah-shee-MOH-tohz) disease (underactive thyroid) A ...

  10. Metals and kidney autoimmunity.

    Science.gov (United States)

    Bigazzi, P E

    1999-10-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  11. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  12. DISTINCT CHEMOKINE RECEPTOR AXES REGULATE T HELPER 9 CELL TRAFFICKING TO ALLERGIC AND AUTOIMMUNE INFLAMMATORY SITES

    Science.gov (United States)

    Kara, Ervin E.; Comerford, Iain; Bastow, Cameron R.; Fenix, Kevin A.; Litchfield, Wendel; Handel, Tracy M.; McColl, Shaun R.

    2013-01-01

    Migration of TH cells to peripheral sites of inflammation is essential for execution of their effector function. The recently described TH9 subset characteristically produces IL-9 and has been implicated in both allergy and autoimmunity. Despite this, the migratory properties of TH9 cells remain enigmatic. In this study, we have examined chemokine receptor usage by TH9 cells and demonstrate, in models of allergy and autoimmunity, that these cells express functional CCR3, CCR6 and CXCR3, chemokine receptors commonly associated with other, functionally opposed, effector TH subsets. Most TH9 cells that express CCR3 also express CXCR3 and CCR6 and expression of these receptors appears to account for the recruitment of TH9 cells to disparate inflammatory sites. During allergic inflammation, TH9 cells utilize CCR3 and CCR6 but not CXCR3 to home to the peritoneal cavity, whereas TH9 homing to the central nervous system (CNS) during experimental autoimmune encephalomyelitis (EAE) involves CXCR3 and CCR6 but not CCR3. These data provide the first insights into regulation of TH9 cell trafficking in allergy and autoimmunity. PMID:23797668

  13. Distinct chemokine receptor axes regulate Th9 cell trafficking to allergic and autoimmune inflammatory sites.

    Science.gov (United States)

    Kara, Ervin E; Comerford, Iain; Bastow, Cameron R; Fenix, Kevin A; Litchfield, Wendel; Handel, Tracy M; McColl, Shaun R

    2013-08-01

    Migration of Th cells to peripheral sites of inflammation is essential for execution of their effector function. The recently described Th9 subset characteristically produces IL-9 and has been implicated in both allergy and autoimmunity. Despite this, the migratory properties of Th9 cells remain enigmatic. In this study, we examined chemokine receptor usage by Th9 cells and demonstrate, in models of allergy and autoimmunity, that these cells express functional CCR3, CCR6, and CXCR3, chemokine receptors commonly associated with other, functionally opposed effector Th subsets. Most Th9 cells that express CCR3 also express CXCR3 and CCR6, and expression of these receptors appears to account for the recruitment of Th9 cells to disparate inflammatory sites. During allergic inflammation, Th9 cells use CCR3 and CCR6, but not CXCR3, to home to the peritoneal cavity, whereas Th9 homing to the CNS during experimental autoimmune encephalomyelitis involves CXCR3 and CCR6 but not CCR3. To our knowledge, these data provide the first insights into regulation of Th9 cell trafficking in allergy and autoimmunity.

  14. Attenuation of experimental autoimmune neuritis with locally administered lovastatin-encapsulating poly(lactic-co-glycolic) acid nanoparticles.

    Science.gov (United States)

    Langert, Kelly A; Goshu, Bruktawit; Stubbs, Evan B

    2017-01-01

    Acute inflammatory demyelinating polyneuropathy (AIDP) is an aggressive antibody- and T-cell-mediated variant of Guillain-Barré Syndrome (GBS), a prominent and debilitating autoimmune disorder of the peripheral nervous system. Despite advancements in clinical management, treatment of patients with AIDP/GBS and its chronic variant CIDP remains palliative and relies on the use of non-specific immunemodulating therapies. Our laboratory has previously reported that therapeutic administration of statins safely attenuates the clinical severity of experimental autoimmune neuritis (EAN), a well-characterized animal model of AIDP/GBS, by restricting the migration of autoreactive leukocytes across peripheral nerve microvascular endoneurial endothelial cells that form the blood-nerve barrier. Despite these advancements, the clinical application of systemically administered statins for the management of inflammatory disorders remains controversial as a result of disappointingly inconclusive phase trials. Here, poly(lactic-co-glycolic) acid (PLGA) nanoparticles were evaluated as an alternative strategy by which to locally administer statins for the management of EAN. When tested in vitro, lovastatin-encapsulating PLGA nanoparticles elicited a marked increase in RhoB mRNA content in peripheral nerve microvascular endoneurial endothelial cells, similar to cells treated with activated unencapsulated lovastatin. Unilateral peri-neural administration of lovastatin-encapsulating PLGA nanoparticles, but not empty nanoparticles, to naïve Lewis rats similarly enhanced RhoB mRNA content in adjacent nerve and muscle tissue. When administered in this manner, serum levels of lovastatin were below the level of detection. Bilateral peri-neural administration of lovastatin-encapsulating PLGA nanoparticles to EAN-induced Lewis rats significantly attenuated EAN clinical severity while protecting against EAN-induced peripheral nerve morphological and functional deficits. This study provides

  15. Increased expression of activation antigens on CD8+ T lymphocytes in Myalgic Encephalomyelitis/chronic fatigue syndrome: inverse associations with lowered CD19+ expression and CD4+/CD8+ ratio, but no associations with (auto)immune, leaky gut, oxidative and nitrosative stress biomarkers.

    Science.gov (United States)

    Maes, Michael; Bosmans, Eugene; Kubera, Marta

    2015-01-01

    There is now evidence that specific subgroups of patients with Myalgic Encephalomyelitis / chronic fatigue syndrome (ME/CFS) suffer from a neuro-psychiatric-immune disorder. This study was carried out to delineate the expression of the activation markers CD38 and human leukocyte antigen (HLA) DR on CD4+ and CD8+ peripheral blood lymphocytes in ME/CFS. Proportions and absolute numbers of peripheral lymphocytes expressing CD3+, CD19+, CD4+, CD8+, CD38+ and HLA-DR+ were measured in ME/CFS (n=139), chronic fatigue (CF, n=65) and normal controls (n=40). The proportions of CD3+, CD8+, CD8+CD38+ and CD8+HLA-DR+ were significantly higher in ME/CFS patients than controls, while CD38+, CD8+CD38+, CD8+HLA-DR+ and CD38+HLA-DR+ were significantly higher in ME/CFS than CF. The percentage of CD19+ cells and the CD4+/CD8+ ratio were significantly lower in ME/CFS and CF than in controls. There were highly significant inverse correlations between the increased expression of CD38+, especially that of CD8+CD38+, and the lowered CD4+/CD8+ ratio and CD19+ expression. There were no significant associations between the flow cytometric results and severity or duration of illness and peripheral blood biomarkers of oxidative and nitrosative stress (O&NS, i.e. IgM responses to O&N modified epitopes), leaky gut (IgM or IgA responses to LPS of gut commensal bacteria), cytokines (interleukin-1, tumor necrosis factor-α), neopterin, lysozyme and autoimmune responses to serotonin. The results support that a) increased CD38 and HLA-DR expression on CD8+ T cells are biomarkers of ME/CFS; b) increased CD38 antigen expression may contribute to suppression of the CD4+/CD8+ ratio and CD19+ expression; c) there are different immune subgroups of ME/CFS patients, e.g. increased CD8+ activation marker expression versus inflammation or O&NS processes; and d) viral infections or reactivation may play a role in a some ME/CFS patients.

  16. Galectin-3 in autoimmunity and autoimmune diseases.

    Science.gov (United States)

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo; Doria, Andrea

    2015-08-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell-cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte-macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. © 2015 by the Society for Experimental Biology and Medicine.

  17. ANTI-ERGOTYPIC RESPONSE: ROLE IN NORMAL IMMUNE RESPONSE AND AUTOIMMUNE PATHOLOGY IN EXPERIMENTAL MODEL

    Directory of Open Access Journals (Sweden)

    N. A. Ilyina

    2011-01-01

    Full Text Available Abstract. Anti-ergotypic cells are a part of peripheral regulatory network, and they are thought to control autoreactive T cells by recognition of certain clonotypic and ergotypic determinants on the surface of activated T cells. The aim of our study was to investigate ability of anti-CD3 activated syngeneic splenocytes to induce anti-ergotypic  response  and  to  assess  immune  response  in  delayed-type hypersensitivity (DTH reaction.DTH response in experimental group was significantly greater than in control and intact groups. Upon crossadministration, DTH response was minimal and there were no significant differences between the groups. No changes in cellular and humoral immune response were observed under such conditions. These results suggest a development of immune response to activated antigen-nonspecific cells. In a model of chronic GvHD, donor immunization was shown to exert a protective effect, with regard of proteinuria dynamics in recipients, whereas immunization of recipients did not alter the GvHD dynamics. (Med. Immunol., 2011, vol. 13, N 1, pp 29-34

  18. Glucagon-Like Peptide-1 Analog, Liraglutide, Delays Onset of Experimental Autoimmune Encephalitis in Lewis Rats

    DEFF Research Database (Denmark)

    DellaValle, Brian; Brix, Gitte S; Brock, Birgitte

    2016-01-01

    Introduction: Recent findings indicate that metabolic disturbances are involved in multiple sclerosis (MS) pathology and influence the susceptibility to treatment, directing attention toward anti-diabetic drugs such as metformin and pioglitazone. Liraglutide, a drug of the glucagon-like peptide-1......, that liraglutide treatment delays onset of EAE in Lewis rats and is associated with improved protective capacity against oxidative stress. These data suggest GLP-1 receptor agonists should be investigated further as a potential therapy for MS.......Introduction: Recent findings indicate that metabolic disturbances are involved in multiple sclerosis (MS) pathology and influence the susceptibility to treatment, directing attention toward anti-diabetic drugs such as metformin and pioglitazone. Liraglutide, a drug of the glucagon-like peptide-1...... (GLP-1) family, is also anti-diabetic and weight-reducing and is, moreover, directly neuroprotective and anti-inflammatory in a broad spectrum of experimental models of brain disease. In this study we investigate the potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing...

  19. Disruption of TGF-β signaling improves ocular surface epithelial disease in experimental autoimmune keratoconjunctivitis sicca.

    Directory of Open Access Journals (Sweden)

    Cintia S De Paiva

    Full Text Available TGF-β is a pleiotropic cytokine that can have pro- or anti-inflammatory effects depending on the context. Elevated levels of bioactive TGF-β1 in tears and elevated TGF-β1mRNA transcripts in conjunctiva and minor salivary glands of human Sjögren's Syndrome patients has also been reported. The purpose of this study was to evaluate the response to desiccating stress (DS, an experimental model of dry eye, in dominant-negative TGF-β type II receptor (CD4-DNTGFβRII mice. These mice have a truncated TGF-β receptor in CD4(+ T cells, rendering them unresponsive to TGF-β.DS was induced by subcutaneous injection of scopolamine and exposure to a drafty low humidity environment in CD4-DNTGFβRII and wild-type (WT mice, aged 14 weeks, for 5 days. Nonstressed (NS mice served as controls. Parameters of ocular surface disease included corneal smoothness, corneal barrier function and conjunctival goblet cell density. NS CD4-DNTGFβRII at 14 weeks of age mice exhibited a spontaneous dry eye phenotype; however, DS improved their corneal barrier function and corneal surface irregularity, increased their number of PAS+ GC, and lowered CD4(+ T cell infiltration in conjunctiva. In contrast to WT, CD4-DNTGFβRII mice did not generate a Th-17 and Th-1 response, and they failed to upregulate MMP-9, IL-23, IL-17A, RORγT, IFN-γ and T-bet mRNA transcripts in conjunctiva. RAG1KO recipients of adoptively transferred CD4+T cells isolated from DS5 CD4-DNTGFβRII showed milder dry eye phenotype and less conjunctival inflammation than recipients of WT control.Our results showed that disruption of TGF-β signaling in CD4(+ T cells causes paradoxical improvement of dry eye disease in mice subjected to desiccating stress.

  20. Systemic but no local effects of combined zoledronate and parathyroid hormone treatment in experimental autoimmune arthritis.

    Directory of Open Access Journals (Sweden)

    Kresten Krarup Keller

    Full Text Available INTRODUCTION: Local bone erosions and osteoporosis in rheumatoid arthritis (RA are the result of a more pronounced bone resorption than bone formation. Present treatment strategies for RA inhibit inflammation, but do not directly target bone erosions. The aim of the study was in experimental arthritis to investigate the juxtaarticular and systemic effects of simultaneous osteoclast inhibition with zoledronate (ZLN and osteoblast stimulation with parathyroid hormone (PTH. METHODS: Arthritis was induced in 36 SKG mice. The mice were randomized to three treatment groups and an untreated group: ZLN, PTH, PTH+ZLN, and untreated. Arthritis score and ankle width measurements were performed. Histological sections were cut from the right hind paw, and design-based stereological estimators were used to quantify histological variables of bone volume and bone formation and resorption. The femora were DXA- and μCT-scanned, and the bone strength was determined at the femoral neck and mid-diaphysis. RESULTS: Locally, we found no differences in arthritis score or ankle width throughout the study. Similarly, none of the treatments inhibited bone erosions or stimulated bone formation in the paw. Systemically, all treatments improved bone mineral density, strength of the femoral neck and mid-diaphysis, and μCT parameters of both cortical and trabecular bone. In addition, there was an additive effect of combination treatment compared with single treatments for most trabecular parameters including bone mineral density and bone volume fraction. CONCLUSIONS: No local effect on bone was found by the combined action of inhibiting bone resorption and stimulating bone formation. However, a clear systemic effect of the combination treatment was demonstrated.

  1. Glucagon-like peptide-1 analogue, liraglutide, delays onset and reduces severity of experimental autoimmune encephalitis in Lewis rats

    Directory of Open Access Journals (Sweden)

    Brian DellaValle

    2016-11-01

    Full Text Available AbstractIntroduction: Recent findings indicate that metabolic disturbances are involved in multiple sclerosis (MS pathology and influence the susceptibility to treatment, directing attention towards anti-diabetic drugs such as metformin and pioglitazone. Liraglutide, a drug of the glucagon-like peptide-1 (GLP-1 family, is also anti-diabetic and weight-reducing and is moreover, directly neuroprotective and anti-inflammatory in a broad spectrum of experimental models of brain disease. In this study we investigate the potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing the experimental model, experimental autoimmune encephalitis (EAE.Methods: EAE was induced in 30 female Lewis rats that subsequently received twice-daily liraglutide (200 µg/kg s.c. or saline. Healthy controls were included (saline, n=6, liraglutide, n=7. Clinical score and weight were assessed daily by blinded observers. Animals were killed at peak disease severity (day 11 or if exceeding humane endpoint (clinical score ≥4. Protein levels of manganese superoxide dismutase (MnSOD, amyloid precursor protein (APP, and glial fibrillary acidic protein (GFAP were determined.Results: Liraglutide treatment delayed disease onset (group clinical score significantly >0 by two days and markedly reduced disease severity (median clinical score 2 vs. 5; p=0.0003. Fourteen of 15 (93% of vehicle-treated rats reached the humane endpoint (clinical score ≥4 by day 11 compared to 5 of 15 (33% of liraglutide-treated rats (p=0.0004. Liraglutide substantially increased the mitochondrial antioxidant MnSOD (p<0.01 and reduced the neurodegenerative marker APP (p=0.036 in the brain. GFAP levels were not significantly changed with drug treatment (p=0.09Conclusion: We demonstrate, for the first time, that liraglutide treatment delays onset of EAE in Lewis rats and is associated with improved protective capacity against oxidative stress. These data suggest GLP-1 receptor

  2. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors--Recommendations for methods and experimental designs.

    Science.gov (United States)

    Losen, Mario; Martinez-Martinez, Pilar; Molenaar, Peter C; Lazaridis, Konstantinos; Tzartos, Socrates; Brenner, Talma; Duan, Rui-Sheng; Luo, Jie; Lindstrom, Jon; Kusner, Linda

    2015-08-01

    Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR) is characterized by a chronic, fatigable weakness of voluntary muscles. The production of autoantibodies involves the dysregulation of T cells which provide the environment for the development of autoreactive B cells. The symptoms are caused by destruction of the postsynaptic membrane and degradation of the AChR by IgG autoantibodies, predominantly of the G1 and G3 subclasses. Active immunization of animals with AChR from mammalian muscles, AChR from Torpedo or Electrophorus electric organs, and recombinant or synthetic AChR fragments generates a chronic model of MG, termed experimental autoimmune myasthenia gravis (EAMG). This model covers cellular mechanisms involved in the immune response against the AChR, e.g. antigen presentation, T cell-help and regulation, B cell selection and differentiation into plasma cells. Our aim is to define standard operation procedures and recommendations for the rat EAMG model using purified AChR from the Torpedo californica electric organ, in order to facilitate more rapid translation of preclinical proof of concept or efficacy studies into clinical trials and, ultimately, clinical practice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Resolvin D1 Programs Inflammation Resolution by Increasing TGF-β Expression Induced by Dying Cell Clearance in Experimental Autoimmune Neuritis.

    Science.gov (United States)

    Luo, Bangwei; Han, Fuyu; Xu, Kai; Wang, Jinsong; Liu, Zongwei; Shen, Zigang; Li, Jia; Liu, Yu; Jiang, Man; Zhang, Zhi-Yuan; Zhang, Zhiren

    2016-09-14

    Experimental autoimmune neuritis (EAN) is the animal model of human acute inflammatory demyelinating polyradiculoneuropathies (AIDP), an auto-immune inflammatory demyelination disease of the peripheral nervous system (PNS) and the world's leading cause of acute autoimmune neuromuscular paralysis. EAN and AIDP are characterized by self-limitation with spontaneous recovery; however, endogenous pathways that regulate inflammation resolution in EAN and AIDP remain elusive. A pathway of endogenous mediators, especially resolvins and clearance of apoptotic cells, may be involved. Here, we determined that resolvin D1 (RvD1), its synthetic enzyme, and its receptor were greatly increased in PNS during the recovery stage of EAN. Both endogenous and exogenous RvD1 increased regulatory T (Treg) cell and anti-inflammatory macrophage counts in PNS, enhanced inflammation resolution, and promoted disease recovery in EAN rats. Moreover, RvD1 upregulated the transforming growth factor-β (TGF-β) level and pharmacologic inhibition of TGF-β signaling suppressed RvD1-induced Treg cell counts, but not anti-inflammatory macrophage counts, and RvD1-improved inflammation resolution and disease recovery in EAN rats. Mechanistically, the RvD1-enhanced macrophage phagocytosis of apoptotic T cells leading to reduced apoptotic T-cell accumulation in PNS induced TGF-β production and caused Treg cells to promote inflammation resolution and disease recovery in EAN. Therefore, these data highlight the crucial role of RvD1 as an important pro-resolving molecule in EAN and suggest its potential as a therapeutic target in human neuropathies. Experimental autoimmune neuritis (EAN) is the animal model of human acute inflammatory demyelinating polyradiculoneuropathies, an auto-immune inflammatory demyelination disease of the peripheral nervous system (PNS) and the world's leading cause of acute autoimmune neuromuscular paralysis. Here, we demonstrated that resolvin D1 (RvD1) promoted macrophage

  4. MRI findings of acute disseminated encephalomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sei Jung; Suh, Jung Ho; Kim, Dong Ik; Chung, Tae Sub; Lee, So Jin [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1993-07-15

    Acute disseminate encephalomyelitis (ADEM) is a demyelinating disease of probable autoimmune etiology. The MR images of patients with clinically suspected ADEM were retrospectively reviewed. The clinical symptoms occurred 5 days to 1 month after viral upper respiratory infection (4) and Coxsakie viral infection (1). The symptoms had begun with fever (3), headache (3), sore throat (1), and drowsy mental state (1), which progressed with monophasic course to altered mental change (2), extremity weakness (2), seizure (1) and/or cerebellar symptom (1). MRI findings of ADEM showed patchy (4), non hemorrhagic (5), asymmetric (5) high signal intensity lesions on T2-weighted images. The number of the lesions was mostly multiple (4). The lesions mainly involved the brain stem (3) and subcortical while matter (3). Follow-up MR images of 13 days to 20 days after high dose steroid therapy showed marked improvement in two of three, which well corrected with clinical manifestations. MR finding of multiple, patchy, nonhemorrhagic and asymmetric lesions in subcortical white matter and brain stem on T2-weighted images seem to be characteristic features of ADEM, but nonspecific. Therefore, clinical correlation is required in evaluating ADEM.

  5. A case of acute disseminated encephalomyelitis associated with hepatitis C virus infection.

    Science.gov (United States)

    Sim, Jae Eun; Lee, Jun-Bum; Cho, Yu Na; Suh, Sang Hyun; Kim, Ja Kyung; Lee, Kyung-Yul

    2012-07-01

    Acute disseminated encephalomyelitis (ADEM) is a monophasic autoimmune demyelinating disease of the central nervous system, which typically follows acute viral or bacterial infection or vaccination. We report a case of ADEM associated with hepatitis C virus (HCV) infection with positive serum and cerebrospinal fluid (CSF) anti-HCV antibody. After steroid treatment, neurologic symptoms were improved. Virus triggers autoimmunity or direct viral invasion plays a part in the genesis of ADEM. This is the first reported case of ADEM with anti-HCV antibody in the CSF.

  6. Immunological GABAergic interactions and therapeutic applications in autoimmune diseases.

    Science.gov (United States)

    Prud'homme, Gérald J; Glinka, Yelena; Wang, Qinghua

    2015-11-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. However, it is also produced in other sites; notably by pancreatic β cells and immune cells. The function of GABA in the immune system is at an early stage of study, but it exerts inhibitory effects that are relevant to autoimmune diseases. The study of GABAergic interactions in the immune system has centered on three main aspects: 1) the expression of GABA and the relevant GABAergic molecular machinery; 2) the in vitro response of immune cells; and 3) therapeutic applications in autoimmune diseases. T cells and macrophages can produce GABA, and express all the components necessary for a GABAergic response. There are two types of GABA receptors, but lymphocytes appear to express only type A (GABAAR); a ligand-gated chloride channel. Other immune cells may also express the type B receptor (GABABR); a G-protein coupled receptor. Activation of GABA receptors on T cells and macrophages inhibits responses such as production of inflammatory cytokines. In T cells, GABA blocks the activation-induced calcium signal, and it also inhibits NF-κB activation. In preclinical models, therapeutic application of GABA, or GABAergic (agonistic) drugs, protects against type 1 diabetes (T1D), experimental autoimmune encephalomyelitis (EAE), collagen-induced arthritis (CIA) and contact dermatitis. In addition, GABA exerts anti-apoptotic and proliferative effects on islet β cells, which may be applicable to islet transplantation. Autoimmunity against glutamic acid decarboxylase 65 (GAD65; synthesizes GABA) occurs in T1D. Antigen therapy of T1D with GAD65 or proinsulin in mice has protective effects, which are markedly enhanced by combined GABA therapy. Clinically, autoantibodies against GAD65 and/or GABA receptors play a pathogenic role in several neurological conditions, including stiff person syndrome (SPS), some forms of encephalitis, and autoimmune epilepsy. GABAergic drugs are widely used in

  7. CCR2 gene deletion and pharmacologic blockade ameliorate a severe murine experimental autoimmune neuritis model of Guillain-Barre syndrome.

    Directory of Open Access Journals (Sweden)

    Furong Yuan

    Full Text Available The molecular determinants and signaling pathways responsible for hematogenous leukocyte trafficking during peripheral neuroinflammation are incompletely elucidated. Chemokine ligand/receptor pair CCL2/CCR2 has been pathogenically implicated in the acute inflammatory demyelinating polyradiculoneuropathy variant of Guillain-Barré syndrome (GBS. We evaluated the role of CCR2 in peripheral neuroinflammation utilizing a severe murine experimental autoimmune neuritis (sm-EAN model. Sm-EAN was induced in 8-12 week old female SJL CCR2 knockout (CCR2KO, heterozygote (CCR2HT and wild type (CCR2WT mice, and daily neuromuscular severity scores and weights recorded. In vitro and in vivo splenocyte proliferation and cytokine expression assays, and sciatic nerve Toll-like receptor (TLR 2, TLR4 and CCL2 expression assays were performed to evaluate systemic and local innate immune activation at disease onset. Motor nerve electrophysiology and sciatic nerve histology were also performed to characterize the inflammatory neuropathy at expected peak severity. To further determine the functional relevance of CCR2 in sm-EAN, 20 mg/kg CCR2 antagonist, RS 102895 was administered daily for 5 days to a cohort of CCR2WT mice following sm-EAN disease onset, with efficacy compared to 400 mg/kg human intravenous immunoglobulin (IVIg. CCR2KO mice were relatively resistant to sm-EAN compared to CCR2WT and CCR2HT mice, associated with attenuated peripheral nerve demyelinating neuritis. Partial CCR2 gene deletion did not confer any protection against sm-EAN. CCR2KO mice demonstrated similar splenocyte activation or proliferation profiles, as well as TLR2, TLR4 and CCL2 expression to CCR2WT or CCR2HT mice, implying a direct role for CCR2 in sm-EAN pathogenesis. CCR2 signaling blockade resulted in rapid, near complete recovery from sm-EAN following disease onset. RS 102895 was significantly more efficacious than IVIg. CCR2 mediates pathogenic hematogenous monocyte trafficking

  8. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease

    Science.gov (United States)

    Flach, Anne-Christine; Litke, Tanja; Strauss, Judith; Haberl, Michael; Gómez, César Cordero; Reindl, Markus; Saiz, Albert; Fehling, Hans-Jörg; Wienands, Jürgen; Odoardi, Francesca; Lühder, Fred; Flügel, Alexander

    2016-01-01

    Multiple sclerosis (MS) is caused by T cells that are reactive for brain antigens. In experimental autoimmune encephalomyelitis, the animal model for MS, myelin-reactive T cells initiate the autoimmune process when entering the nervous tissue and become reactivated upon local encounter of their cognate CNS antigen. Thereby, the strength of the T-cellular reactivation process within the CNS tissue is crucial for the manifestation and the severity of the clinical disease. Recently, B cells were found to participate in the pathogenesis of CNS autoimmunity, with several diverse underlying mechanisms being under discussion. We here report that B cells play an important role in promoting the initiation process of CNS autoimmunity. Myelin-specific antibodies produced by autoreactive B cells after activation in the periphery diffused into the CNS together with the first invading pathogenic T cells. The antibodies accumulated in resident antigen-presenting phagocytes and significantly enhanced the activation of the incoming effector T cells. The ensuing strong blood–brain barrier disruption and immune cell recruitment resulted in rapid manifestation of clinical disease. Therefore, myelin oligodendrocyte glycoprotein (MOG)-specific autoantibodies can initiate disease bouts by cooperating with the autoreactive T cells in helping them to recognize their autoantigen and become efficiently reactivated within the immune-deprived nervous tissue. PMID:26957602

  9. Gestational bisphenol-A exposure lowers the threshold for autoimmunity in a model of multiple sclerosis.

    Science.gov (United States)

    Rogers, James A; Mishra, Manoj K; Hahn, Jennifer; Greene, Catherine J; Yates, Robin M; Metz, Luanne M; Yong, V Wee

    2017-05-09

    Environmental and hormonal factors are implicated in dysimmunity in multiple sclerosis. We investigated whether bisphenol-A, a prominent contaminant with endocrine-disrupting capabilities, altered susceptibility in an inflammatory model of multiple sclerosis. We found that gestational, but not adult, exposure to bisphenol-A increased the development of experimental autoimmune encephalomyelitis in adulthood in male, but not female, mice when a suboptimal disease-inducing immunization was used. Gestational bisphenol-A in male mice primed macrophages in adulthood and raised granulocyte-colony stimulating factor and neutrophil counts/activity postsuboptimal immunization. Neutralizing granulocyte-colony stimulating factor blocked susceptibility to disease in bisphenol-A mice. Early life exposure to bisphenol-A may represent an environmental consideration in multiple sclerosis.

  10. IL-17 receptor signaling and T helper 17-mediated autoimmune demyelinating disease.

    Science.gov (United States)

    Zepp, Jarod; Wu, Ling; Li, Xiaoxia

    2011-05-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is widely used to dissect molecular mechanisms of MS and to develop new therapeutic strategies. The T helper 17 (Th17) subset of CD4 T cells plays a crucial role in the development of EAE. IL-17, a cytokine produced by Th17 cells, participates in EAE pathogenesis through induction of inflammatory gene expression in target cells. Recent work has shown that Act1, a U-box E3 ubiquitin ligase, is recruited to IL-17 receptor (IL-17R) upon IL-17 stimulation and is required for IL-17-mediated signaling. Here, we review the molecular and cellular mechanisms by which IL-17 and Act1-mediated signaling contribute to EAE. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Eosinophils in Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Daniela Čiháková

    2017-04-01

    Full Text Available Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs.

  12. Eosinophils in Autoimmune Diseases.

    Science.gov (United States)

    Diny, Nicola L; Rose, Noel R; Čiháková, Daniela

    2017-01-01

    Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs.

  13. Vaccines, adjuvants and autoimmunity.

    Science.gov (United States)

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Plasminogen Deficiency Delays the Onset and Protects from Demyelination and Paralysis in Autoimmune Neuroinflammatory Disease.

    Science.gov (United States)

    Shaw, Maureen A; Gao, Zhen; McElhinney, Kathryn E; Thornton, Sherry; Flick, Matthew J; Lane, Adam; Degen, Jay L; Ryu, Jae Kyu; Akassoglou, Katerina; Mullins, Eric S

    2017-04-05

    Multiple sclerosis (MS) is a neuroinflammatory, demyelinating disease of the CNS. Fibrinogen deposition at sites of blood-brain barrier breakdown is a prominent feature of neuroinflammatory disease and contributes to disease severity. Plasminogen, the primary fibrinolytic enzyme, also modifies inflammatory processes. We used a murine model of MS, experimental autoimmune encephalomyelitis (EAE), to evaluate the hypothesis that the loss of plasminogen would exacerbate neuroinflammatory disease. However, contrary to initial expectations, EAE-challenged plasminogen-deficient (Plg-) mice developed significantly delayed disease onset and reduced disease severity compared with wild-type (Plg+) mice. Similarly, pharmacologic inhibition of plasmin activation with tranexamic acid also delayed disease onset. The T-cell response to immunization was similar between genotypes, suggesting that the contribution of plasminogen was downstream of the T-cell response. Spinal cords from EAE-challenged Plg- mice demonstrated significantly decreased demyelination and microglial/macrophage accumulation compared with Plg+ mice. Although fibrinogen-deficient mice or mice with combined deficiencies of plasminogen and fibrinogen had decreased EAE severity, they did not exhibit the delay in EAE disease onset, as seen in mice with plasminogen deficiency alone. Together, these data suggest that plasminogen and plasmin-mediated fibrinolysis is a key modifier of the onset of neuroinflammatory demyelination.SIGNIFICANCE STATEMENT Multiple sclerosis is a severe, chronic, demyelinating disease. Understanding the pathobiology related to the autoreactive T-cell and microglial/macrophage demyelinating response is critical to effectively target therapeutics. We describe for the first time that deficiency of plasminogen, the key fibrinolytic enzyme, delays disease onset and protects from the development of the paralysis associated with a murine model of multiple sclerosis, experimental autoimmune

  15. Autoimmune gastritis.

    Science.gov (United States)

    Kulnigg-Dabsch, Stefanie

    2016-10-01

    Autoimmune gastritis is a chronic inflammatory disease with destruction of parietal cells of the corpus and fundus of the stomach. The known consequence is vitamin B12 deficiency and, consequently, pernicious anemia. However, loss of parietal cells reduces secretion of gastric acid which is also required for absorption of inorganic iron; thus, iron deficiency is commonly found in patients with autoimmune gastritis. This usually precedes vitamin B12 deficiency and is found mainly in young women. Patients with chronic iron deficiency, especially those refractory to oral iron therapy, should therefore be evaluated for the presence of autoimmune gastritis.

  16. Autoimmune disorders

    Science.gov (United States)

    ... at the same time. Common autoimmune disorders include: Addison disease Celiac disease - sprue (gluten-sensitive enteropathy) Dermatomyositis Graves ... In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods . 22nd ed. Philadelphia, ...

  17. Autoimmune Hepatitis

    Science.gov (United States)

    ... person usually needs blood tests for an exact diagnosis because a person with autoimmune hepatitis can have the same symptoms as those of other liver diseases or metabolic disorders. Blood tests. A blood test involves drawing ...

  18. MRI in acute disseminated encephalomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Caldemeyer, K.S. (Div. of Neuroradiology, Dept. of Radiology, Indiana Univ. School of Medicine, Indianapolis, IN (United States)); Smith, R.R. (Div. of Neuroradiology, Dept. of Radiology, Indiana Univ. School of Medicine, Indianapolis, IN (United States)); Harris, T.M. (Div. of Neuroradiology, Dept. of Radiology, Indiana Univ. School of Medicine, Indianapolis, IN (United States)); Edwards, M.K. (Div. of Neuroradiology, Dept. of Radiology, Indiana Univ. School of Medicine, Indianapolis, IN (United States))

    1994-04-01

    A retrospective analysis of CT and MRI studies in 12 patients with a clinical diagnosis of acute disseminated encephalomyelitis (ADEM) was performed. MRI was the definitive modality for the assessment of the lesions of ADEM: all patients had abnormalities consistent with the clinical diagnosis. Ten had abnormalities in the brain, three spinal cord lesions, and three showed evidence of optic neuritis. CT was normal in 6 of the 7 patients in which it was performed. (orig.)

  19. Autoimmune pancreatitis

    Directory of Open Access Journals (Sweden)

    Davorin Dajčman

    2007-05-01

    Full Text Available Background: Autoimmune pancreatitis is a recently described type of pancreatitis of presumed autoimmune etiology. Autoimmune pancreatitis is often misdiagnosed as pancreatic cancer difficult, since their clinical presentations are often similar. The concept of autoimmune pancreatitis was first published in 1961. Since then, autoimmune pancreatitis has often been treated not as an independent clinical entity but rather as a manifestation of systemic disease. The overall prevalence and incidence of the disease have yet to be determined, but three series have reported the prevalence as between 5 and 6 % of all patients with chronic pancreatitis. Patient vary widely in age, but most are older than 50 years. Patients with autoimmune pancreatitis usually complain of the painless jaundice, mild abdominal pain and weight loss. There is no laboratory hallmark of the disease, even if cholestatic profiles of liver dysfunction with only mild elevation of amylase and lipase levels have been reported.Conclusions: Proposed diagnostic criteria contains: (1 radiologic imaging, diffuse enlargement of the pancreas and diffusely irregular narrowing of the main pancreatic duct, (2 laboratory data, elevated levels of serum ã-globulin and/or IgG, specially IgG4, or the presence of autoantibodies and (3 histopathologic examination, fibrotic change with dense lymphoplasmacytic infiltration in the pancreas. For correct diagnosis of autoimmune pancreatitis, criterion 1 must be present with criterion 2 and/or 3. Autoimmune pancreatitis is frequently associated with rheumatoid arthritis, Sjogren’s syndrome, inflammatory bowel disease, tubulointersticial nephritis, primary sclerosing cholangitis and idiopathic retroperitoneal fibrosis. Pancreatic biopsy using an endoscopic ultrasound-guided fine needle aspiration biopsy is the most important diagnostic method today. Treatment with corticosteroids leads to the and resolution of pancreatic inflamation, obstruction and

  20. A possible case of acute disseminated encephalomyelitis after Japanese encephalitis.

    Science.gov (United States)

    Chen, Wei-Liang; Liao, Ming-Feng; Chiang, Han-Lin; Lin, Shinn-Kuang

    2013-12-01

    Acute disseminated encephalomyelitis (ADEM) is a monophasic demyelination disease of central nervous system (CNS) with presentations of impaired consciousness, neurologic deficits and diffuse white matter lesions on magnetic resonance imaging (MRI). Predisposing infection can be identified in around 50 to 77% of all patients with ADEM. Post-infectious autoimmune events associated with Japanese encephalitis have been limited to case reports of Guillain-Barre syndrome after Japanese encephalitis and Japanese encephalitis virus vaccine-related ADEM. We herein report the first possible patient with Japanese encephalitis developed a subsequent ADEM after recovery from Japanese encephalitis. A 50-year-old man suffered from an acute onset of headache, fever, and disturbance of consciousness. Japanese encephalitis was diagnosed by virological and image study. He recovered gradually and was discharged about 1.5 months later. However, another episode of consciousness impairment with violent behavior occurred 21 days after discharge. Acute disseminated encephalomyelitis was confirmed by brain MRI which showed newly developed diffuse white matter lesions. His clinical symptoms and abnormal brain lesions on MRI improved gradually after combination of high-dose intravenous methylprednisolone and oral steroid therapy. Our patient is a possible case of ADEM developing after Japanese encephalitis. High dose steroid therapy resulted in good outcome of ADEM.

  1. A Rare Sequela of Acute Disseminated Encephalomyelitis

    OpenAIRE

    Vijay Kodadhala; Saravana Devulapalli; Mohankumar Kurukumbi; Annapurni Jayam-Trouth

    2014-01-01

    Acute disseminated encephalomyelitis is a demyelinating disease, typically occurring in children following a febrile infection or a vaccination. Primary and secondary immune responses contribute to inflammation and subsequent demyelination, but the exact pathogenesis is still unknown. Diagnosis of acute disseminated encephalomyelitis is strongly suggested by temporal relationship between an infection or an immunization and the onset of neurological symptoms. Biopsy is definitive. In general, ...

  2. Hemagglutinating encephalomyelitis coronavirus infection in pigs, Argentina.

    Science.gov (United States)

    Quiroga, Maria A; Cappuccio, Javier; Piñeyro, Pablo; Basso, Walter; Moré, Gastón; Kienast, Mariana; Schonfeld, Sergio; Cáncer, José L; Arauz, Sandra; Pintos, María E; Nanni, Mariana; Machuca, Mariana; Hirano, Norio; Perfumo, Carlos J

    2008-03-01

    We describe an outbreak of vomiting, wasting, and encephalomyelitis syndrome in piglets in Argentina, caused by porcine hemagglutinating encephalomyelitis coronavirus (PHE-CoV) infection. Diagnosis was made by epidemiologic factors, pathologic features, immunohistochemistry, reverse transcription-PCR, and genomic sequencing. This study documents PHE-CoV infection in South America.

  3. A minimum number of autoimmune T cells to induce autoimmunity?

    Science.gov (United States)

    Bosch, Angela J T; Bolinger, Beatrice; Keck, Simone; Stepanek, Ondrej; Ozga, Aleksandra J; Galati-Fournier, Virginie; Stein, Jens V; Palmer, Ed

    2017-06-01

    While autoimmune T cells are present in most individuals, only a minority of the population suffers from an autoimmune disease. To better appreciate the limits of T cell tolerance, we carried out experiments to determine how many autoimmune T cells are required to initiate an experimental autoimmune disease. Variable numbers of autoimmune OT-I T cells were transferred into RIP-OVA mice, which were injected with antigen-loaded DCs in a single footpad; this restricted T cell priming to a few OT-I T cells that are present in the draining popliteal lymph node. Using selective plane illumination microscopy (SPIM) we counted the number of OT-I T cells present in the popliteal lymph node at the time of priming. Analysis of our data suggests that a single autoimmune T cell cannot induce an experimental autoimmune disease, but a "quorum" of 2-5 autoimmune T cells clearly has this capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Constitutive Retinal CD200 Expression Regulates Resident Microglia and Activation State of Inflammatory Cells during Experimental Autoimmune Uveoretinitis

    OpenAIRE

    Broderick, Cathryn; Hoek, Robert M.; Forrester, John V.; Liversidge, Janet; Sedgwick, Jonathon D.; Dick, Andrew D

    2002-01-01

    Recent evidence supports the notion that tissue OX2 (CD200) constitutively provides down-regulatory signals to myeloid-lineage cells via CD200-receptor (CD200R). Thus, mice lacking CD200 (CD200−/−) show increased susceptibility to and accelerated onset of tissue-specific autoimmunity. In the retina there is extensive expression of CD200 on neurons and retinal vascular endothelium. We show here that retinal microglia in CD200−/− mice display normal morphology, but unlike microglia from wild-ty...

  5. Autoimmune encephalopathies

    Science.gov (United States)

    Leypoldt, Frank; Armangue, Thaís; Dalmau, Josep

    2014-01-01

    Over the last 10 years the continual discovery of novel forms of encephalitis associated with antibodies to cell-surface or synaptic proteins has changed the paradigms for diagnosing and treating disorders that were previously unknown or mischaracterized. We review here the process of discovery, the symptoms, and the target antigens of twelve autoimmune encephatilic disorders, grouped by syndromes and approached from a clinical perspective. Anti-NMDAR encephalitis, several subtypes of limbic encephalitis, stiff-person spectrum disorders, and other autoimmune encephalitides that result in psychosis, seizures, or abnormal movements are described in detail. We include a novel encephalopathy with prominent sleep dysfunction that provides an intriguing link between chronic neurodegeneration and cell-surface autoimmunity (IgLON5). Some of the caveats of limited serum testing are outlined. In addition, we review the underlying cellular and synaptic mechanisms that for some disorders confirm the antibody pathogenicity. The multidisciplinary impact of autoimmune encephalitis has been expanded recently by the discovery that herpes simplex encephalitis is a robust trigger of synaptic autoimmunity, and that some patients may develop overlapping syndromes, including anti-NMDAR encephalitis and neuromyelitis optica or other demyelinating diseases. PMID:25315420

  6. Neuromyelitis optica (NMO)--an autoimmune disease of the central nervous system (CNS).

    Science.gov (United States)

    Asgari, N; Owens, T; Frøkiaer, J; Stenager, E; Lillevang, S T; Kyvik, K O

    2011-06-01

    In the past 10 years, neuromyelitis optica (NMO) has evolved from Devic's categorical clinical description into a broader disease spectrum. Serum IgG antibodies have been identified in NMO patients with the water channel aquaporin-4 (AQP4) as their main target antigen. AQP4 antibodies/NMO-IgG have been shown to be a highly specific and moderately sensitive serum biomarker for NMO. The immunopathology of NMO lesions supports that anti-AQP4 antibodies/NMO-IgG are involved in the pathogenesis of NMO. In vitro studies have demonstrated that human NMO-IgG induce necrosis and impair glutamate transport in astrocytes. Certain ethnic groups, notably of Asian and African origin, seem to be more susceptible to NMO than others. The genetic background for these putative differences is not known, a weak human leucocyte antigen association has been identified. AQP4 gene variants could represent a genetic susceptibility factor for different clinical phenotypes within the NMO spectrum. Experimental models have been described including a double-transgenic myelin-specific B- and T-cell mouse. NMO-like disease has been induced with passive transfer of human anti-AQP4 antibodies to the plasma of mice with pre-established experimental autoimmune encephalomyelitis or by intrathecal administration to naive mice. NMO may be characterized as a channelopathy of the central nervous system with autoimmune characteristics. © 2010 John Wiley & Sons A/S.

  7. Autoimmune sialadenitis

    NARCIS (Netherlands)

    Guntinas-Lichius, O.; Vissink, A.; Ihrler, S.

    Using the European-American classification criteria the diagnosis of autoimmune sialadenitis in Sjogren's syndrome can generally be easily established or excluded. In addition, sonography performed by the ENT physician is helpful in diagnosing and especially in follow-up screening for MALT

  8. Autoimmun hypophysitis

    DEFF Research Database (Denmark)

    Krarup, Therese; Hagen, Claus

    2010-01-01

    during pregnancy or postpartum, but also occurs in males and children. AH is often associated with other autoimmune diseases, most frequently with Hashimoto's thyroiditis. The symptoms are caused by enlargement of the pituitary gland and disturbances of the hormone function. Treatment is either...

  9. Acute disseminated encephalomyelitis preceding measles exanthema.

    Science.gov (United States)

    Nardone, Raffaele; Golaszewski, Stefan; Trinka, Eugen; Tezzon, Frediano; Zuccoli, Giulio

    2011-12-01

    We report a case of acute disseminated encephalomyelitis preceding measles virus infection. Brain magnetic resonance imaging revealed signal intensity abnormalities in the basal ganglia and cortex consistent with acute disseminated encephalomyelitis. Fever and the first Koplik spots appeared 8 and 10 days later, respectively. This case supports the hypothesis that the immune-mediated demyelinating process may occur before the symptomatic phase of a viral infection. Therefore, children without history of infectious disorders should also have acute disseminated encephalomyelitis included in the differential considerations.

  10. Repetitive pertussis toxin promotes development of regulatory T cells and prevents central nervous system autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Martin S Weber

    2010-12-01

    Full Text Available Bacterial and viral infections have long been implicated in pathogenesis and progression of multiple sclerosis (MS. Incidence and severity of its animal model experimental autoimmune encephalomyelitis (EAE can be enhanced by concomitant administration of pertussis toxin (PTx, the major virulence factor of Bordetella pertussis. Its adjuvant effect at the time of immunization with myelin antigen is attributed to an unspecific activation and facilitated migration of immune cells across the blood brain barrier into the central nervous system (CNS. In order to evaluate whether recurring exposure to bacterial antigen may have a differential effect on development of CNS autoimmunity, we repetitively administered PTx prior to immunization. Mice weekly injected with PTx were largely protected from subsequent EAE induction which was reflected by a decreased proliferation and pro-inflammatory differentiation of myelin-reactive T cells. Splenocytes isolated from EAE-resistant mice predominantly produced IL-10 upon re-stimulation with PTx, while non-specific immune responses were unchanged. Longitudinal analyses revealed that repetitive exposure of mice to PTx gradually elevated serum levels for TGF-β and IL-10 which was associated with an expansion of peripheral CD4(+CD25(+FoxP3(+ regulatory T cells (Treg. Increased frequency of Treg persisted upon immunization and thereafter. Collectively, these data suggest a scenario in which repetitive PTx treatment protects mice from development of CNS autoimmune disease through upregulation of regulatory cytokines and expansion of CD4(+CD25(+FoxP3(+ Treg. Besides its therapeutic implication, this finding suggests that encounter of the immune system with microbial products may not only be part of CNS autoimmune disease pathogenesis but also of its regulation.

  11. TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease.

    Science.gov (United States)

    Pappu, Bhanu P; Borodovsky, Anna; Zheng, Timothy S; Yang, Xuexian; Wu, Ping; Dong, Xingwen; Weng, Shawn; Browning, Beth; Scott, Martin L; Ma, Li; Su, Lihe; Tian, Qiang; Schneider, Pascal; Flavell, Richard A; Dong, Chen; Burkly, Linda C

    2008-05-12

    T helper type 17 (Th17) cells play an important pathogenic function in autoimmune diseases; their regulation, however, is not well understood. We show that the expression of a tumor necrosis factor receptor family member, death receptor 3 (DR3; also known as TNFRSF25), is selectively elevated in Th17 cells, and that TL1A, its cognate ligand, can promote the proliferation of effector Th17 cells. To further investigate the role of the TL1A-DR3 pathway in Th17 regulation, we generated a TL1A-deficient mouse and found that TL1A(-/-) dendritic cells exhibited a reduced capacity in supporting Th17 differentiation and proliferation. Consistent with these data, TL1A(-/-) animals displayed decreased clinical severity in experimental autoimmune encephalomyelitis (EAE). Finally, we demonstrated that during EAE disease progression, TL1A was required for the optimal differentiation as well as effector function of Th17 cells. These observations thus establish an important role of the TL1A-DR3 pathway in promoting Th17 cell function and Th17-mediated autoimmune disease.

  12. TL1A–DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease

    Science.gov (United States)

    Pappu, Bhanu P.; Borodovsky, Anna; Zheng, Timothy S.; Yang, Xuexian; Wu, Ping; Dong, Xingwen; Weng, Shawn; Browning, Beth; Scott, Martin L.; Ma, Li; Su, Lihe; Tian, Qiang; Schneider, Pascal; Flavell, Richard A.; Dong, Chen; Burkly, Linda C.

    2008-01-01

    T helper type 17 (Th17) cells play an important pathogenic function in autoimmune diseases; their regulation, however, is not well understood. We show that the expression of a tumor necrosis factor receptor family member, death receptor 3 (DR3; also known as TNFRSF25), is selectively elevated in Th17 cells, and that TL1A, its cognate ligand, can promote the proliferation of effector Th17 cells. To further investigate the role of the TL1A–DR3 pathway in Th17 regulation, we generated a TL1A-deficient mouse and found that TL1A−/− dendritic cells exhibited a reduced capacity in supporting Th17 differentiation and proliferation. Consistent with these data, TL1A−/− animals displayed decreased clinical severity in experimental autoimmune encephalomyelitis (EAE). Finally, we demonstrated that during EAE disease progression, TL1A was required for the optimal differentiation as well as effector function of Th17 cells. These observations thus establish an important role of the TL1A–DR3 pathway in promoting Th17 cell function and Th17-mediated autoimmune disease. PMID:18411337

  13. 1,25-dihydroxyvitamin D3 conditioned CD11c+ dendritic cells are effective initiators of CNS autoimmune disease

    Directory of Open Access Journals (Sweden)

    Dario eBesusso

    2015-11-01

    Full Text Available Dendritic cells (DC play a crucial role in regulating T cell activation. Due to their capacity to shape the immune response, tolerogenic DC have been used to treat autoimmune diseases. In this study we examined whether 1,25 dihydroxyvitamin D3 conditioned bone marrow derived DC (VitD-BMDC were able to limit the development of autoimmune pathology in experimental autoimmune encephalomyelitis (EAE. We found that VitD-BMDC had lower expression of MHC class II and co-stimulatory molecules and were less effective at priming autoreactive T cells in-vitro. Using our recently described BMDC driven model of EAE, we demonstrated that VitD-BMDC had a significantly reduced ability to initiate EAE. We found that the impaired ability of VitD-BMDC to initiate EAE was not due to T cell tolerisation. Instead, we discovered that the addition of 1,25(OH2D3 to BMDC cultures resulted in a significant reduction in the proportion of CD11c+ cells. Purified CD11c+VitD-BMDC were significantly less effective at priming T cells in-vitro yet were similarly capable of initiating EAE as vehicle treated CD11c+BMDC. This study demonstrates that in-vitro assays of DC function can be a poor predictor of in-vivo behaviour and that CD11c+VitD-BMDC are highly effective initiators of an autopathogenic T cell response.

  14. Immunoregulatory function of lactoferrin in immunosuppressed and autoimmune animals.

    Science.gov (United States)

    Zimecki, Michał; Artym, Jolanta; Chodaczek, Grzegorz; Kocieba, Maja; Kuryszko, Jan; Houszka, Marek; Kruzel, Marian L

    2007-01-01

    In this article we review our recent results on the effects of lactoferrin (LF), given orally, on the immune status of mice subjected either to chemotherapy or immobilization stress as well as on rats with experimentally induced autoimmune encephalomyelitis (EAE). We demonstrated that LF accelerated reconstitution of the immune system function after administration of a sublethal dose cyclophosphamide (CP) and normalized the ratio of major blood cell types in that model. Also, after application of methotrexate (MTX) LF was effective to speed up reconstitution of the cellular and humoral immune response. Mice treated with lethal dose of busulfan (Bu) and CP and reconstituted with bone marrow cells (BMC) were able to quicker develop optimal immune responses when administered LF. In addition LF was shown to accelerate engraftment of bone marrow cells from syngeneic donors in that model. Using immobilization stress model was shown that LF accelerates reconstitution of the cellular and humoral immune response. In rats with EAE lactoferrin lowered the clinical score of the disease and diminished pathohistological changes in the spinal cord. In summary, in a series of studies we demonstrated a benefit of orally administered LF in immunocompromised animals.

  15. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  16. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Science.gov (United States)

    Hu, Wei; Metselaar, Josbert; Ben, Li-Hong; Cravens, Petra D; Singh, Mahendra P; Frohman, Elliot M; Eagar, Todd N; Racke, Michael K; Kieseier, Bernd C; Stüve, Olaf

    2009-01-01

    Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS). Minocycline, a potent inhibitor of matrix metalloproteinase (MMP)-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG) minocycline liposomes are effective in treating EAE. Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs), we determined that PEG minocycline-liposome preparations stabilized with CaCl(2) are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number. Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  17. Single Center Experience of Acute Disseminated Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-11-01

    Full Text Available Investigators at Department of Pediatrics, Neurology Division, Adana Medical Research Center; and Division of Child Neurology, Ankara, Turkey, retrospectively evaluated 15 children with acute disseminated encephalomyelitis (ADEM in children from the center in Adana.

  18. Disseminated Encephalomyelitis and Multiple Sclerosis Differentiation

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-09-01

    Full Text Available The distinguishing features of acute disseminated encephalomyelitis (DEM and multiple sclerosis (MS are reviewed by researchers at Harvard Medical School, Boston, MA, and University of Zagreb, Croatia.

  19. An Interesting Case Of Acute Disseminated Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2008-04-01

    Full Text Available Acute disseminated encephalomyelitis (ADEM is an uncommon inflammatory demyelinating disease of the central nervous system. The disease typically occurs after infections or vaccinations. However, in many patients with ADEM, no evidence of prior infection or vaccination can be found. We are reporting a patient who developed clinical and radiological features of acute disseminated encephalomyelitis after trauma of repeated attempts at lumber puncture for spinal anesthesia

  20. Autoimmun pankreatitis

    DEFF Research Database (Denmark)

    Fjordside, Eva; Novovic, Srdan; Schmidt, Palle Nordblad

    2015-01-01

    Autoimmune pancreatitis (AIP) is a rare inflammatory disease. AIP has characteristic histology, serology and imaging findings. Two types of AIP exist, type 1, which is a part of the systemic immunoglobulin G4-related disease, and type 2, which is only localized to the pancreas. Patients with type 1...... are predominantly older men, have involvement of other organs and more often experience relapse than patients with type 2. Both types respond well to steroid treatment. The most important differential diagnose is pancreatic cancer....

  1. Dynamics of intraocular IFN-γ, IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis.

    Directory of Open Access Journals (Sweden)

    Ulrike Kaufmann

    Full Text Available A major limitation of most animal models of autoimmune diseases is that they do not reproduce the chronic or relapsing-remitting pattern characteristic of many human autoimmune diseases. This problem has been overcome in our rat models of experimentally induced monophasic or relapsing-remitting autoimmune uveitis (EAU, which depend on the inducing antigen peptides from retinal S-Antigen (monophasic EAU or interphotoreceptor retinoid-binding protein (relapsing EAU. These models enable us to compare autoreactive and regulatory T cell populations. Intraocular, but not peripheral T cells differ in their cytokine profiles (IFN-γ, IL-17 and IL-10 at distinct time points during monophasic or relapsing EAU. Only intraocular T cells concomitantly produced IFN-γ, IL-17 and/or IL-10. Monophasic EAU presented rising numbers of cells expressing IFN-γ and IL-17 (Th1/Th17 and cells expressing IL-10 or Foxp3. During relapsing uveitis an increase of intraocular IFN-γ+ cells and a concomitant decrease of IL-17+ cells was detected, while IL-10+ populations remained stable. Foxp3+ cells and cells expressing IL-10, even in combination with IFN-γ or IL-17, increased during the resolution of monophasic EAU, suggesting a regulatory role for these T cells. In general, cells producing multiple cytokines increased in monophasic and decreased in relapsing EAU. The distinct appearance of certain intraocular populations with characteristics of regulatory cells points to a differential influence of the ocular environment on T cells that induce acute and monophasic or relapsing disease. Here we provide evidence that different autoantigens can elicit distinct and differently regulated immune responses. IFN-γ, but not IL-17 seems to be the key player in relapsing-remitting uveitis, as shown by increased, synchronized relapses after intraocular application of IFN-γ. We demonstrated dynamic changes of the cytokine pattern during monophasic and relapsing-remitting disease

  2. CTLA4-Ig suppresses development of experimental autoimmune uveitis in the induction and effector phases: Comparison with blockade of interleukin-6.

    Science.gov (United States)

    Iwahashi, Chiharu; Fujimoto, Minoru; Nomura, Shintaro; Serada, Satoshi; Nakai, Kei; Ohguro, Nobuyuki; Nishida, Kohji; Naka, Tetsuji

    2015-11-01

    Recently, a number of biologics have been used in the treatment of autoimmune diseases. However, in the treatment of severe autoimmune uveitis, only TNF-alpha inhibitors are preferably used and the effect of other biologics such as interleukin-6 (IL-6) signaling blockade or cytotoxic T-lymphocyte antigen-4-immunoglobulin fusion protein (CTLA4-Ig) has not been well studied. Previously, we reported that IL-6 blockade effectively suppresses the development of experimental autoimmune uveitis (EAU), a mouse model for uveitis, by inhibiting Th17 cell development. In this study, we investigated the effect of CTLA4-Ig on EAU development and compared it with the effect of anti-IL-6 receptor monoclonal antibody (MR16-1). C57BL/6J mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) and treated once with CTLA4-Ig or MR16-1. Both CTLA4-Ig and MR16-1 administered in the induction phase (the same day as immunization) significantly reduced the clinical and histopathological scores of EAU. Fluorescence-activated cell sorting studies using draining lymph node (LN) cells from EAU mice 10 days after immunization showed that CTLA4-Ig can suppress early T-helper cell activation. CTLA4-Ig administered in the effector phase of the disease (one week after immunization), when IRBP-reactive T cells have been primed, also significantly reduced the clinical and histopathological scores of EAU. In contrast, MR16-1 administered in the effector phase did not ameliorate EAU. To investigate the differences between these biologics in the effector phase, in vitro restimulation analysis of LN cells obtained from EAU mice one week after immunization was performed and revealed that CTLA4-Ig, but not MR16-1, added to culture media could inhibit the proliferation of IRBP-specific CD4(+) T cells which possessed capacities of producing IFN-gamma and/or IL-17. Collectively, CTLA4-Ig ameliorated EAU through preventing initial T-cell activation in the induction phase and suppressing

  3. Cerebellar mutism in pediatric acute disseminated encephalomyelitis.

    Science.gov (United States)

    Parrish, Joy B; Weinstock-Guttman, Bianca; Yeh, E Ann

    2010-04-01

    Acute disseminated encephalomyelitis is a demyelinating process affecting multiple areas of the central nervous system, frequently including the cerebellum. Cerebellar insult may lead to absence of speech or cerebellar mutism. Cerebellar mutism often occurs in young children after posterior fossa tumor resection, and generally appears as part of a larger subset of neurobehavioral signs and personality changes known as posterior fossa syndrome. Information on the impact of widespread cerebellar involvement on speech production, behavior, and long-term outcomes in acute disseminated encephalomyelitis is limited. We describe cases of acute disseminated encephalomyelitis with predominantly cerebellar involvement, with specific attention to cerebellar mutism. We conducted a retrospective chart review of children diagnosed with acute disseminated encephalomyelitis between 2005-2009 at a pediatric multiple sclerosis and demyelinating disorders clinic. Of 19 patients diagnosed with acute disseminated encephalomyelitis, six (32%) manifested primary cerebellar involvement. Of these six, four (67%) exhibited acute language disturbance, with three (50%) exhibiting mutism. The three patients with cerebellar mutism experienced protracted speech and language deficits after follow-ups from 6 months to 4 years. Widespread cerebellar involvement in acute disseminated encephalomyelitis may result in cerebellar mutism, in addition to persistent neurocognitive and behavioral problems. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Dietary Omega-3 Fatty Acids Suppress Experimental Autoimmune Uveitis in Association with Inhibition of Th1 and Th17 Cell Function

    Science.gov (United States)

    Shoda, Hiromi; Yanai, Ryoji; Yoshimura, Takeru; Nagai, Tomohiko; Kimura, Kazuhiro; Sobrin, Lucia; Connor, Kip M.; Sakoda, Yukimi; Tamada, Koji; Ikeda, Tsunehiko; Sonoda, Koh-Hei

    2015-01-01

    Omega (ω)–3 long-chain polyunsaturated fatty acids (LCPUFAs) inhibit the production of inflammatory mediators and thereby contribute to the regulation of inflammation. Experimental autoimmune uveitis (EAU) is a well-established animal model of autoimmune retinal inflammation. To investigate the potential effects of dietary intake of ω-3 LCPUFAs on uveitis, we examined the anti-inflammatory properties of these molecules in comparison with ω-6 LCPUFAs in a mouse EAU model. C57BL/6 mice were fed a diet containing ω-3 LCPUFAs or ω-6 LCPUFAs for 2 weeks before as well as after the induction of EAU by subcutaneous injection of a fragment of human interphotoreceptor retinoid-binding protein emulsified with complete Freund’s adjuvant. Both clinical and histological scores for uveitis were smaller for mice fed ω-3 LCPUFAs than for those fed ω-6 LCPUFAs. The concentrations of the T helper 1 (Th1) cytokine interferon-γ and the Th17 cytokine interleukin-17 in intraocular fluid as well as the production of these cytokines by lymph node cells were reduced for mice fed ω-3 LCPUFAs. Furthermore, the amounts of mRNAs for the Th1- and Th17-related transcription factors T-bet and RORγt, respectively, were reduced both in the retina and in lymph node cells of mice fed ω-3 LCPUFAs. Our results thus show that a diet enriched in ω-3 LCPUFAs suppressed uveitis in mice in association with inhibition of Th1 and Th17 cell function. PMID:26393358

  5. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis. Copyright © 2014 by The American Association of Immunologists, Inc.

  6. [Immunopathogenesis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)].

    Science.gov (United States)

    Yamamura, Takashi; Ono, Hirohiko; Sato, Wakiro

    2018-01-01

    A recent study on the pathogenesis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has revealed an elevation of inflammatory and anti-inflammatory cytokines in the sera and cerebrospinal fluids of the patients and presence of autoantibodies in subgroups of ME/CFS patients. Furthermore, investigator-initiated clinical trials have proved the efficacy of anti-CD20 antibody (rituximab), that eliminate B cells, in the treatment of ME/CFS. Based on these findings, we hypothesize that immune abnormalities, such as enhanced autoimmune responses, may play an essential role in the neuroinflammatory pathogenesis of ME/CFS.

  7. [Acute disseminated encephalomyelitis in childhood].

    Science.gov (United States)

    Liptai, Zoltán; Ujhelyi, Eniko; Mihály, Ilona; Rudas, Gábor; Barsi, Péter

    2009-07-30

    Acute disseminated encephalomyelitis is a rare inflammatory demyelinating disorder often preceded by infection or vaccination. The purpose of the study was the systematic analysis of clinical, radiological and microbiological profiles of children treated at Szent László Hospital, and the comparison of findings with literature data. Demographic, infectological, clinical, radiological, laboratory and virological data of patients treated and followed-up between 1-Jan-1998 and 30-June-2008 were reviewed and analysed. 19 children met diagnostic criteria. Their mean age was 6.8 years. A prodromal illness--mostly febrile viral infection, upper respiratory infection or chickenpox--preceded neurological symptoms in 17 patients. All had polysymptomatic encephalopathy, 2 children had spinal symptoms. The cerebrospinal fluid was abnormal in all but one. A viral etiology was definite in 7 and probable in 8 cases. MRI disclosed white matter changes in 18, cortical and deep gray matter in 16, cerebellar in 6, brain stem in 14 and spinal cord changes in 2 cases. Repeat MRI performed mean 4 months later showed complete resolution in 6 and partial resolution in 11 patients. 13 patients received high-dose methylprednisolone, 2 of whom were also treated with plasma exchange and 1 with immunoglobulin. 9 children required mechanical ventilation. 2 patients died, 10 recovered without and 7 with sequelae. 2 patients developed further demyelinating events: multiple sclerosis and multiphasic disseminated encephalomyelitis, respectively. Clinical, radiological and follow-up results were similar to those published in literature however, triggering viruses were identified in a larger proportion of cases.

  8. Simultaneous complement response via lectin pathway in retina and optic nerve in an experimental autoimmune glaucoma model

    Directory of Open Access Journals (Sweden)

    Sabrina eReinehr

    2016-06-01

    Full Text Available Glaucoma is a multifactorial disease and especially mechanisms occurring independently from an elevated intraocular pressure (IOP are still unknown. Likely, the immune system contributes to the glaucoma pathogenesis. Previously, IgG antibody depositions and retinal ganglion cell (RGC loss were found in an IOP-independent autoimmune glaucoma model. Therefore, we investigated the possible participation of the complement system in this model. Here, rats were immunized with bovine optic nerve homogenate antigen (ONA, while controls (Co received sodium chloride (n=5-6/group. After 14 days, RGC density was quantified on flatmounts. No changes in the number of RGCs could be observed at this point in time. Longitudinal optic nerve sections were stained against the myelin basic protein (MBP. We could note few signs of degeneration processes. In order to detect distinct complement components, retinas and optic nerves were labeled with complement markers at 3, 7, 14, and 28 days and analyzed. Significantly more C3 and MAC depositions were found in retinas and optic nerves of the ONA group. These were already present at day 7, before RGC loss and demyelination occurred. Additionally, an upregulation of C3 protein was noted via Western Blot at this time. After 14 days, quantitative real-time PCR revealed significant more C3 mRNA in the ONA retinas. An upregulation of the lectin pathway associated mannose-serine-protease-2 (MASP2 was observed in the retinas as well as in the optic nerves of the ONA group after 7 days. Significant more MASP2 in retinas could also be observed via Western Blot analyses at this point in time. No effect was noted in regard to C1q. Therefore, we assume that the immunization led to an activation of the complement system via the lectin pathway in retinas and optic nerves at an early stage in this glaucoma model. This activation seems to be an early response, which then triggers degeneration. These findings can help to develop novel

  9. AUTOIMMUNE HEPATITIS

    Directory of Open Access Journals (Sweden)

    Yusri Dianne Jurnalis

    2010-05-01

    Full Text Available AbstrakHepatitis autoimun merupakan penyakit inflamasi hati yang berat dengan penyebab pasti yang tidak diketahui yang mengakibatkan morbiditas dan mortalitas yang tinggi. Semua usia dan jenis kelamin dapat dikenai dengan insiden tertinggi pada anak perempuan usia prepubertas, meskipun dapat didiagnosis pada usia 6 bulan. Hepatitis autoimun dapat diklasifikasikan menjadi 2 bagian berdasarkan adanya antibodi spesifik: Smooth Muscle Antibody (SMA dengan anti-actin specificity dan/atau Anti Nuclear Antibody (ANA pada tipe 1 dan Liver-Kidney Microsome antibody (LKM1 dan/atau anti-liver cytosol pada tipe 2. Gambaran histologisnya berupa “interface hepatitis”, dengan infiltrasi sel mononuklear pada saluran portal, berbagai tingkat nekrosis, dan fibrosis yang progresf. Penyakit berjalan secara kronik tetapi keadaan yang berat biasanya menjadi sirosis dan gagal hati.Tipe onset yang paling sering sama dengan hepatitis virus akut dengan gagal hati akut pada beberapa pasien; sekitar sepertiga pasien dengan onset tersembunyi dengan kelemahan dan ikterik progresif ketika 10-15% asimptomatik dan mendadak ditemukan hepatomegali dan/atau peningkatan kadar aminotransferase serum. Adanya predominasi perempuan pada kedua tipe. Pasien LKM1 positif menunjukkan keadaan lebih akut, pada usia yang lebih muda, dan biasanya dengan defisiensi Immunoglobulin A (IgA, dengan durasi gejala sebelum diagnosis, tanda klinis, riwayat penyakit autoimun pada keluarga, adanya kaitan dengan gangguan autoimun, respon pengobatan dan prognosis jangka panjang sama pada kedua tipe.Kortikosteroid yang digunakan secara tunggal atau kombinasi azathioprine merupakan terapi pilihan yang dapat menimbulkan remisi pada lebih dari 90% kasus. Strategi terapi alternatif adalah cyclosporine. Penurunan imunosupresi dikaitkan dengan tingginya relap. Transplantasi hati dianjurkan pada penyakit hati dekom-pensata yang tidak respon dengan pengobatan medis lainnya.Kata kunci : hepatitis Autoimmune

  10. Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome.

    Science.gov (United States)

    Pohl, Daniela; Alper, Gulay; Van Haren, Keith; Kornberg, Andrew J; Lucchinetti, Claudia F; Tenembaum, Silvia; Belman, Anita L

    2016-08-30

    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated demyelinating CNS disorder with predilection to early childhood. ADEM is generally considered a monophasic disease. However, recurrent ADEM has been described and defined as multiphasic disseminated encephalomyelitis. ADEM often occurs postinfectiously, although a causal relationship has never been established. ADEM and multiple sclerosis are currently viewed as distinct entities, generally distinguishable even at disease onset. However, pathologic studies have demonstrated transitional cases of yet unclear significance. ADEM is clinically defined by acute polyfocal neurologic deficits including encephalopathy. MRI typically demonstrates reversible, ill-defined white matter lesions of the brain and often also the spinal cord, along with frequent involvement of thalami and basal ganglia. CSF analysis may reveal a mild pleocytosis and elevated protein, but is generally negative for intrathecal oligoclonal immunoglobulin G synthesis. In the absence of a specific diagnostic test, ADEM is considered a diagnosis of exclusion, and ADEM mimics, especially those requiring a different treatment approach, have to be carefully ruled out. The role of biomarkers, including autoantibodies like anti-myelin oligodendrocyte glycoprotein, in the pathogenesis and diagnosis of ADEM is currently under debate. Based on the presumed autoimmune etiology of ADEM, the current treatment approach consists of early immunotherapy. Outcome of ADEM in pediatric patients is generally favorable, but cognitive deficits have been reported even in the absence of other neurologic sequelae. This review summarizes the current knowledge on epidemiology, pathology, clinical presentation, neuroimaging features, CSF findings, differential diagnosis, therapy, and outcome, with a focus on recent advances and controversies. © 2016 American Academy of Neurology.

  11. Transverse myelitis plus syndrome and acute disseminated encephalomyelitis plus syndrome: a case series of 5 children.

    Science.gov (United States)

    DeSena, Allen; Graves, Donna; Morriss, Michael C; Greenberg, Benjamin M

    2014-05-01

    Classically, transverse myelitis and acute disseminated encephalomyelitis are considered central nervous system demyelinating conditions. In both conditions, the spinal cord is involved to varying degrees, and there is a variety of presentations, usually involving some degree of progressive paralysis of the upper and/or lower extremities. Treatment usually consists of high-dose intravenous steroids in addition to plasma exchange and/or intravenous immunoglobulin. In some cases, immunosuppressive medications, such as intravenous cyclophosphamide, have been used with variable success. Cases with atypical features on examination, imaging, or with neurophysiological studies may be helpful in shedding light on the etiology and/or pathophysiology because many of these patients have permanent disabilities despite appropriate treatment. This case series presents 5 pediatric cases observed from 2009-2012 at our medical center, Children's Medical Center Dallas. These cases were notable because they provided evidence of autoimmune events affecting the central nervous system but with additional peripheral axonal pathology. We describe these cases with respect to findings that suggest a variant of these conditions that have concomitant nerve-root involvement. These patients had worse outcomes than typical patients with transverse myelitis/acute disseminated encephalomyelitis, and these observations build on previous work by other investigators that highlighted persistent flaccid paralysis and electrophysiological evidence of axonal loss portending a poorer prognosis. Furthermore, these cases suggest a potential role for approaching how we classify subtypes of transverse myelitis and acute disseminated encephalomyelitis.

  12. 9 CFR 113.308 - Encephalomyelitis Vaccine, Venezuelan.

    Science.gov (United States)

    2010-01-01

    ... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Encephalomyelitis Vaccine, Venezuelan... REQUIREMENTS Live Virus Vaccines § 113.308 Encephalomyelitis Vaccine, Venezuelan. Encephalomyelitis Vaccine...

  13. 21 CFR 866.3240 - Equine encephalomyelitis virus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Equine encephalomyelitis virus serological... § 866.3240 Equine encephalomyelitis virus serological reagents. (a) Identification. Equine... tests to identify antobodies to equine encephalomyelitis virus in serum. The identification aids in the...

  14. 9 CFR 113.325 - Avian Encephalomyelitis Vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the Master...

  15. Autoimmune liver disease panel

    Science.gov (United States)

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cholangitis (formerly called primary biliary cirrhosis). This group of tests ...

  16. [Autoimmune pancreatitis].

    Science.gov (United States)

    Beyer, G; Menzel, J; Krüger, P-C; Ribback, S; Lerch, M M; Mayerle, J

    2013-11-01

    Autoimmune pancreatitis is a relatively rare form of chronic pancreatitis which is characterized by a lymphoplasmatic infiltrate with a storiform fibrosis and often goes along with painless jaundice and discrete discomfort of the upper abdomen. Clinically we distinguish between two subtypes, which differ in terms of their histology, clinical picture and prognosis. Type 1 autoimmune pancreatitis is the pancreatic manifestation of the IgG4-associated syndrome which also involves other organs. About one third of the patients can only be diagnosed after either histological prove or a successful steroid trail. Type 2 is IgG4-negative with the histological picture of an idiopathic duct centric pancreatitis and is to higher degree associated with inflammatory bowel disease. A definitive diagnosis can only be made using biopsy. Usually both forms show response to steroid treatment, but in type 1 up to 50 % of the patients might develop a relapse. The biggest challenge and most important differential diagnosis remains the discrimination of AIP from pancreatic cancer, because also AIP can cause mass of the pancreatic head, lymphadenopathy and ductal obstruction. This article summarizes recent advances on epidemiology, clinical presentation, diagnostic strategy, therapy and differential diagnosis in this relatively unknown disease. © Georg Thieme Verlag KG Stuttgart · New York.

  17. The C-C Chemokines CCL17 and CCL22 and Their Receptor CCR4 in CNS Autoimmunity

    Directory of Open Access Journals (Sweden)

    Stefanie Scheu

    2017-11-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS. It affects more than two million people worldwide, mainly young adults, and may lead to progressive neurological disability. Chemokines and their receptors have been shown to play critical roles in the pathogenesis of experimental autoimmune encephalomyelitis (EAE, a murine disease model induced by active immunization with myelin proteins or transfer of encephalitogenic CD4+ T cells that recapitulates clinical and neuropathological features of MS. Chemokine ligand-receptor interactions orchestrate leukocyte trafficking and influence multiple pathophysiological cellular processes, including antigen presentation and cytokine production by dendritic cells (DCs. The C-C class chemokines 17 (CCL17 and 22 (CCL22 and their C-C chemokine receptor 4 (CCR4 have been shown to play an important role in homeostasis and inflammatory responses. Here, we provide an overview of the involvement of CCR4 and its ligands in CNS autoimmunity. We review key clinical studies of MS together with experimental studies in animals that have demonstrated functional roles of CCR4, CCL17, and CCL22 in EAE pathogenesis. Finally, we discuss the therapeutic potential of newly developed CCR4 antagonists and a humanized anti-CCR4 antibody for treatment of MS.

  18. Update in Endocrine Autoimmunity

    OpenAIRE

    Anderson, Mark S.

    2008-01-01

    Context: The endocrine system is a common target in pathogenic autoimmune responses, and there has been recent progress in our understanding, diagnosis, and treatment of autoimmune endocrine diseases.

  19. A Rare Sequela of Acute Disseminated Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Vijay Kodadhala

    2014-01-01

    Full Text Available Acute disseminated encephalomyelitis is a demyelinating disease, typically occurring in children following a febrile infection or a vaccination. Primary and secondary immune responses contribute to inflammation and subsequent demyelination, but the exact pathogenesis is still unknown. Diagnosis of acute disseminated encephalomyelitis is strongly suggested by temporal relationship between an infection or an immunization and the onset of neurological symptoms. Biopsy is definitive. In general, the disease is self-limiting and the prognostic outcome is favorable with anti-inflammatory and immunosuppressive agents. Locked-in syndrome describes patients who are awake and conscious but have no means of producing limb, speech, or facial movements. Locked-in syndrome is a rare complication of acute disseminated encephalomyelitis. We present a case of incomplete locked-in syndrome occurring in a 34-year-old male secondary to acute disseminated encephalomyelitis. Our case is unique, as acute disseminated encephalomyelitis occurred in a 34-year-old which was poorly responsive to immunosuppression resulting in severe disability.

  20. A rare sequela of acute disseminated encephalomyelitis.

    Science.gov (United States)

    Kodadhala, Vijay; Devulapalli, Saravana; Kurukumbi, Mohankumar; Jayam-Trouth, Annapurni

    2014-01-01

    Acute disseminated encephalomyelitis is a demyelinating disease, typically occurring in children following a febrile infection or a vaccination. Primary and secondary immune responses contribute to inflammation and subsequent demyelination, but the exact pathogenesis is still unknown. Diagnosis of acute disseminated encephalomyelitis is strongly suggested by temporal relationship between an infection or an immunization and the onset of neurological symptoms. Biopsy is definitive. In general, the disease is self-limiting and the prognostic outcome is favorable with anti-inflammatory and immunosuppressive agents. Locked-in syndrome describes patients who are awake and conscious but have no means of producing limb, speech, or facial movements. Locked-in syndrome is a rare complication of acute disseminated encephalomyelitis. We present a case of incomplete locked-in syndrome occurring in a 34-year-old male secondary to acute disseminated encephalomyelitis. Our case is unique, as acute disseminated encephalomyelitis occurred in a 34-year-old which was poorly responsive to immunosuppression resulting in severe disability.

  1. Elevation of AQP4 and selective cytokines in experimental autoimmune encephalitis mice provides some potential biomarkers in optic neuritis and demyelinating diseases.

    Science.gov (United States)

    Sun, Li; Weng, Huan; Li, Zhenxin

    2015-01-01

    Idiopathic optic neuritis (ION) is an inflammation of the optic nerve that may result in a complete or partial loss of vision. ION is usually due to the immune attack of the myelin sheath covering the optic nerve. ION acts frequently as the first symptoms of multiple sclerosis (MS) and neuromyelitis optica (NMO), or other inflammatory demyelinating disorders. The pathogenic progression of ION remains unclear. Experimental autoimmune encephalitis (EAE) is a commonly used model of idiopathic inflammatory demyelinating disorders (IIDDs); the optic nerve is affected in EAE as well. The specific mediators of demyelination in optic neuritis are unknown. Recent studies have indicated what T-cell activation in peripheral blood is associated with optic neuritis pathogenesis. The object of the present study was to determine whether certain cytokines (IL-6, IL-17A, and IL-23) and AQP4 contribute to the demyelinating process using EAE model. We have found that IL-6R, AQP4 and IL-23R are significantly increased in mRNA and protein levels in optic nerves in EAE mice compared to control mice; serum AQP4, IL-6, IL-17A, IL-23 are increased whereas transforming growth factor beta (TGF-β) is decreased in EAE mice. These results suggest that AQP4 and selective cytokines in serum are associated with ION pathogenesis in the animal model, and these results shine light for future clinical diagnosis as potential biomarkers in ION patients.

  2. Deficits in Endogenous Adenosine Formation by Ecto-5′-Nucleotidase/CD73 Impair Neuromuscular Transmission and Immune Competence in Experimental Autoimmune Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Laura Oliveira

    2015-01-01

    Full Text Available AMP dephosphorylation via ecto-5′-nucleotidase/CD73 is the rate limiting step to generate extracellular adenosine (ADO from released adenine nucleotides. ADO, via A2A receptors (A2ARs, is a potent modulator of neuromuscular and immunological responses. The pivotal role of ecto-5′-nucleotidase/CD73, in controlling extracellular ADO formation, prompted us to investigate its role in a rat model of experimental autoimmune myasthenia gravis (EAMG. Results show that CD4+CD25+FoxP3+ regulatory T cells express lower amounts of ecto-5′-nucleotidase/CD73 as compared to controls. Reduction of endogenous ADO formation might explain why proliferation of CD4+ T cells failed upon blocking A2A receptors activation with ZM241385 or adenosine deaminase in EAMG animals. Deficits in ADO also contribute to neuromuscular transmission failure in EAMG rats. Rehabilitation of A2AR-mediated immune suppression and facilitation of transmitter release were observed by incubating the cells with the nucleoside precursor, AMP. These findings, together with the characteristic increase in serum adenosine deaminase activity of MG patients, strengthen our hypothesis that the adenosinergic pathway may be dysfunctional in EAMG. Given that endogenous ADO formation is balanced by ecto-5′-nucleotidase/CD73 activity and that A2ARs exert a dual role to restore use-dependent neurocompetence and immune suppression in myasthenics, we hypothesize that stimulation of the two mechanisms may have therapeutic potential in MG.

  3. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Tokunori Ikeda

    Full Text Available We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs using two models of autoimmune disease, namely non-obese diabetic (NOD mice and experimental autoimmune encephalomyelitis (EAE. Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases.

  4. Acute disseminated encephalomyelitis mimicking acute meningoencephalitis.

    Science.gov (United States)

    Ashrafi, Mahmoud Reza; Amirkashani, Davood; Hirbod-Mobarakeh, Armin; Yaghmaei, Bahareh; Tavassoli, Alireza; Manafi, Farzad; Rezaei, Nima

    2013-12-01

    Acute disseminated encephalomyelitis is an inflammatory demyelinating disease of the central nervous system that usually occurs following an antecedent infection or vaccination. Children and young adults are predominantly affected, but it has low incidence in children younger than 3 years. The disease manifests with a wide range of neurological abnormalities and a variable combination of fever, headache, meningism, convulsion and cranial nerve palsies, and there are no pathognomonic clinical or laboratory findings. So, establishment of definitive diagnosis is challenging in infants. This challenge may result in delayed diagnosis and consequently delayed treatment of acute disseminated encephalomyelitis, which may cause permanent neurological disability. Herein, we report an infant with acute disseminated encephalomyelitis, who mimicked the symptoms of meningoencephalitis and the correct diagnosis and treatment were delayed till the development of a severe phase of the disease.

  5. Different mechanisms of inflammation induced in virus and autoimmune-mediated models of multiple sclerosis in C57BL6 mice.

    Science.gov (United States)

    Kishore, Abhinoy; Kanaujia, Anurag; Nag, Soma; Rostami, A M; Kenyon, Lawrence C; Shindler, Kenneth S; Das Sarma, Jayasri

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the human central nervous system (CNS). Neurotropic demyelinating strain of MHV (MHV-A59 or its isogenic recombinant strain RSA59) induces MS-like disease in mice mediated by microglia, along with a small population of T cells. The mechanism of demyelination is at least in part due to microglia-mediated myelin stripping, with some direct axonal injury. Immunization with myelin oligodendrocyte glycoprotein (MOG) induces experimental autoimmune encephalomyelitis (EAE), a mainly CD4(+) T-cell-mediated disease, although CD8(+) T cells may play a significant role in demyelination. It is possible that both autoimmune and nonimmune mechanisms such as direct viral toxicity may induce MS. Our study directly compares CNS pathology in autoimmune and viral-induced MS models. Mice with viral-induced and EAE demyelinating diseases demonstrated similar patterns and distributions of demyelination that accumulated over the course of the disease. However, significant differences in acute inflammation were noted. Inflammation was restricted mainly to white matter at all times in EAE, whereas inflammation initially largely involved gray matter in acute MHV-induced disease and then is subsequently localized only in white matter in the chronic disease phase. The presence of dual mechanisms of demyelination may be responsible for the failure of immunosuppression to promote long-term remission in many MS patients.

  6. Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-beta

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Lorentzen, J C; Mustafa, M I

    1996-01-01

    . This model enables studies of mechanisms related to chronicity and demyelination, two hallmarks of multiple sclerosis (MS). Here we have investigated, in situ, the dynamics of cytokine mRNA expression in the central nervous system (CNS) and peripheral lymphoid organs (lymph node cells and splenocytes......) of diseased DA rats. We demonstrate that peripheral lymphoid cells stimulated in vitro with encephalitogenic peptides 69-87 and 87-101 of myelin basic protein responded with high mRNA expression for proinflammatory cytokines; interferon-gamma, interleukin-12 (IL-12), tumour necrosis factors alpha and beta, IL......-1 beta and cytolysin. A high expression of mRNA for these proinflammatory cytokines was also observed in the CNS where it was accompanied by classical signs of inflammation such as expression of major histocompatibility complex class I and II, CD4, CD8 and IL-2 receptor. The expression of m...

  7. Zika Virus Causing Encephalomyelitis Associated With Immunoactivation

    Science.gov (United States)

    Galliez, Rafael Mello; Spitz, Mariana; Rafful, Patricia Piazza; Cagy, Marcelo; Escosteguy, Claudia; Germano, Caroline Spósito Brito; Sasse, Elisa; Gonçalves, Alessandro Luis; Silveira, Paola Paz; Pezzuto, Paula; Ornelas, Alice Maria de Magalhães; Tanuri, Amilcar; Aguiar, Renato Santana

    2016-01-01

    Brazil has experienced a Zika virus (ZIKV) outbreak with increased incidence of congenital malformations and neurological manifestations. We describe a case of a 26-year-old Brazilian Caucasian man infected with ZIKV and diagnosed with encephalomyelitis. Brain and spinal cord images showed hyperintense lesions on T2 and fluid-attenuated inversion recovery (FLAIR), and levels of proinflammatory cytokines in the cerebrospinal fluid showed a remarkable increase of interleukin (IL)-6 and IL-8. The observed pattern suggests immune activation during the acute phase, along with the neurological impairment, with normalization in the recovery phase. This is the first longitudinal report of ZIKV infection causing encephalomyelitis with documented immune activation. PMID:28053996

  8. [A case of anti-MOG antibody-positive multiphasic disseminated encephalomyelitis co-occurring with unilateral cerebral cortical encephalitis].

    Science.gov (United States)

    Fukushima, Naoya; Suzuki, Miki; Ogawa, Ryo; Hayashi, Kitami; Takanashi, Jun-Ichi; Ohashi, Takashi

    2017-11-25

    A 20-year-old woman first developed acute disseminated encephalomyelitis (ADEM) at 11 years of age. At 17 years of age, she was hospitalized due to generalized seizure and diagnosed with encephalitis. Brain MRI revealed a FLAIR-hyperintense lesion in the unilateral cerebral cortex. At 18 years of age, serum anti-myelin oligodendrocyte glycoprotein (MOG) antibody was detected. At 20 years of age, she was admitted to our hospital, diagnosed with multifocal disseminated encephalomyelitis (MDEM). MDEM has been observed in patients that are seropositive for the anti-MOG antibody. More recently, unilateral cerebral cortex encephalitis with epilepsy has also been reported in such patients. The co-occurrence of MDEM and cortical encephalitis in the same patient has important implications for the pathogenesis of anti-MOG antibody-associated autoimmune diseases.

  9. Seronegative autoimmune diseases.

    Science.gov (United States)

    Alessandri, Cristiano; Conti, Fabrizio; Conigliaro, Paola; Mancini, Riccardo; Massaro, Laura; Valesini, Guido

    2009-09-01

    A close relationship exists between autoimmunity and autoantibodies; despite this, some patients are persistently negative for disease-specific autoantibodies. These conditions have been defined as seronegative autoimmune diseases. Although the prevalence of seronegative autoimmune diseases is low, they may represent a practical problem because they are often difficult cases. There are also situations in which autoantibodies are positive in healthy subjects. In particular, three different conditions can be described: latent autoimmunity, preclinical autoimmunity, and postclinical autoimmunity. Here, we analyze briefly the meaning of autoantibody negativity in the seronegative autoimmune diseases, focusing in particular on the specificities associated with systemic lupus erythematosus, antiphospholipid syndrome, and rheumatoid arthritis.

  10. Autoimmune Pancreatitis.

    Science.gov (United States)

    Majumder, Shounak; Takahashi, Naoki; Chari, Suresh T

    2017-07-01

    Autoimmune pancreatitis (AIP) is a chronic fibroinflammatory disease of the pancreas that belongs to the spectrum of immunoglobulin G-subclass4-related diseases (IgG4-RD) and typically presents with obstructive jaundice. Idiopathic duct-centric pancreatitis (IDCP) is a closely related but distinct disease that mimics AIP radiologically but manifests clinically most commonly as recurrent acute pancreatitis in young individuals with concurrent inflammatory bowel disease. IgG4 levels are often elevated in AIP and normal in IDCP. Histologically, lymphoplasmacytic acinar inflammation and storiform fibrosis are seen in both. In addition, the histologic hallmark of IDCP is the granulocyte epithelial lesion: intraluminal and intraepithelial neutrophils in medium-sized and small ducts with or without granulocytic acinar inflammation often associated with destruction of ductal architecture. Initial treatment of both AIP and IDCP is with oral corticosteroids for duration of 4 weeks followed by a gradual taper. Relapses are common in AIP and relatively uncommon in IDCP, a relatively rare disease for which the natural history is not well understood. For patients with relapsing AIP, treatment with immunomodulators and more recently rituximab has been recommended. Although rare instances of pancreaticobiliary malignancy has been reported in patients with AIP, overall the lifetime risk of developing pancreatic cancer does not appear to be elevated.

  11. Autoimmune pancreatitis.

    Science.gov (United States)

    Pannala, Rahul; Chari, Suresh T

    2008-09-01

    Autoimmune pancreatitis (AIP) is an increasingly recognized clinical condition. Our objective is to provide a concise review of the advances in the past year in our understanding of AIP. In a hospital survey from Japan, the prevalence of AIP was estimated at 0.82 per 100,000 individuals. The pathogenesis of AIP remains unclear but a recent report noted that T helper type 2 and T regulatory cells predominantly mediate the immune reaction in AIP. Genetic associations that may predispose to relapse of AIP were reported. Multiple case series further described the clinical profile of AIP and its extrapancreatic manifestations. A large series on immunoglobulin G4 (IgG4)-associated cholangitis noted that patients with IgG4-associated cholangitis presented with obstructive jaundice and had increased serum IgG4 levels and IgG4-positive cells in bile duct biopsy specimens. Tissue IgG4 staining is likely to be a useful adjunct to serological diagnosis. AIP is steroid-responsive but maintaining remission continues to remain challenging. Presently low-dose steroids or immunomodulators are being used but efficacy of these medications remains to be determined. There has been significant progress in understanding the clinical profile of AIP but knowledge of pathogenesis remains limited. Treatment practices vary widely and management of refractory disease continues to be challenging.

  12. Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation.

    Directory of Open Access Journals (Sweden)

    Feng Mei

    Full Text Available Quetiapine (Que, a commonly used atypical antipsychotic drug (APD, can prevent myelin from breakdown without immune attack. Multiple sclerosis (MS, an autoimmune reactive inflammation demyelinating disease, is triggered by activated myelin-specific T lymphocytes (T cells. In this study, we investigated the potential efficacy of Que as an immune-modulating therapeutic agent for experimental autoimmune encephalomyelitis (EAE, a mouse model for MS. Que treatment was initiated on the onset of MOG(35-55 peptide induced EAE mice and the efficacy of Que on modulating the immune response was determined by Flow Cytometry through analyzing CD4(+/CD8(+ populations and the proliferation of effector T cells (CD4(+CD25(- in peripheral immune organs. Our results show that Que dramatically attenuates the severity of EAE symptoms. Que treatment decreases the extent of CD4(+/CD8(+ T cell infiltration into the spinal cord and suppresses local glial activation, thereby diminishing the loss of mature oligodendrocytes and myelin breakdown in the spinal cord of EAE mice. Our results further demonstrate that Que treatment decreases the CD4(+/CD8(+ T cell populations in lymph nodes and spleens of EAE mice and inhibits either MOG(35-55 or anti-CD3 induced proliferation as well as IL-2 production of effector T cells (CD4(+CD25(- isolated from EAE mice spleen. Together, these findings suggest that Que displays an immune-modulating role during the course of EAE, and thus may be a promising candidate for treatment of MS.

  13. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease.

    Science.gov (United States)

    King, Irah L; Dickendesher, Travis L; Segal, Benjamin M

    2009-04-02

    Mature myeloid cells (macrophages and CD11b(+) dendritic cells) form a prominent component of neuroinflammatory infiltrates in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). The mechanism by which these cells are replenished during relapsing and chronic neuroinflammation is poorly understood. Here we demonstrate that CD11b(+)CD62L(+)Ly6C(hi) monocytes with colony-forming potential are mobilized into the bloodstream by a granulocyte-macrophage colony-stimulating factor-dependent pathway immediately before EAE relapses. Circulating Ly6C(hi) monocytes traffic across the blood-brain barrier, up-regulate proinflammatory molecules, and differentiate into central nervous system dendritic cells and macrophages. Enrichment of Ly6C(hi) monocytes in the circulating pool is associated with an earlier onset and increased severity of clinical EAE. Our studies indicate that granulocyte-macrophage colony-stimulating factor-driven release of Ly6C(hi) precursors from the bone marrow prevents exhaustion of central nervous system myeloid populations during relapsing or chronic autoimmune demyelination, suggesting a novel pathway for therapeutic targeting.

  14. The anti-IRBP IgG1 and IgG2a response does not correlate with susceptibility to experimental autoimmune uveitis

    Directory of Open Access Journals (Sweden)

    L. Vieira de Moraes

    2006-06-01

    Full Text Available Susceptibility to experimental autoimmune uveitis (EAU in inbred mice has been associated with a dominant Th1 response. Elevated anti-inter-photoreceptor retinoid-binding protein (anti-IRBP IgG2a/IgG1 antibody ratios have been implicated as candidate markers to predict disease severity. In the present study, both the anti-IRBP antibody isotype and severity of EAU phenotypes were examined in 4 non-isogenic genetically selected mouse lines to determine if they can be used as general markers of disease. Mice between 8 and 12 weeks old selected for high (H III or low (L III antibody response and for maximum (AIR MAX or minimum (AIR MIN acute inflammatory reaction (AIR were immunized with IRBP. Each experiment was performed with at least 5 mice per group. EAU was evaluated by histopathology 21 days after immunization and the minimal criterion was inflammatory cell infiltration of the ciliary body, choroid and retina. Serum IgG1- and IgG2a-specific antibodies were determined by ELISA. EAU was graded by histological examination of the enucleated eyes. The incidence of EAU was lower in AIR MIN mice whereas in the other strains approximately 40% of the animals developed the disease. Low responder animals did not produce anti-IRBP IgG2a antibodies or interferon-gamma. No correlation was observed between susceptibility to EAU and anti-IRBP isotype profiles. Susceptibility to EAU is related to the intrinsic capacity to mount higher inflammatory reactions and increased production of anti-IRBP IgG2a isotype is not necessarily a marker of this immunologic profile.

  15. Acute disseminated e