WorldWideScience

Sample records for experiment onboard coronas-photon

  1. TESIS experiment on XUV imaging spectroscopy of the Sun onboard the CORONAS-PHOTON satellite

    Science.gov (United States)

    Kuzin, S. V.; Zhitnik, I. A.; Bogachev, S. A.; Shestov, S. V.; Bugaenko, O. I.; Suhodrev, N. K.; Pertsov, A. A.; Mitrofanov, A. V.; Ignat'ev, A. P.; Slemzin, V. A.

    We present a brief description of new complex of space telescopes and spectrographs, TESIS, which will be placed aboard the CORONAS-PHOTON satellite. The complex is intended for high-resolution imaging observation of full Sun in the coronal spectral lines and in the spectral lines of the solar transition region. TESIS will be launched at the end of 2007 - early of 2008. About 25 % of the daily TESIS images will be free for use and for downloading from the TESIS data center that is planned to open 2 months before the TESIS launching at http://www.tesis.lebedev.ru

  2. TESIS experiment on study of solar corona in EUV spectral range (CORONAS-PHOTON project)

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Zhitnik, I.A.; Ignat'ev, A.P.; Mitrofanov, A.V.; Pertsov, A.A.; Bugaenko, O.I.

    2005-01-01

    A new orbital station, namely: the CORONAS-PHOTON one (to be launched in 2006) equipped with systems to explore Sun at the intensification period of the solar activity 24-th cycle and at its peak is being designed within the framework of the CORONAS National Sun Space Exploration Program. The station equipment consists of systems to observe Sun within the spectral soft X-ray and vacuum ultraviolet bands. Paper lists and describes the TESIS experiment tools designed for the CORONAS-PHOTON Project to ensure the Sun atmospheric research within short-wave band [ru

  3. The TESIS experiment on the CORONAS-PHOTON spacecraft

    Science.gov (United States)

    Kuzin, S. V.; Zhitnik, I. A.; Shestov, S. V.; Bogachev, S. A.; Bugaenko, O. I.; Ignat'ev, A. P.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.; Slemzin, V. A.; Sukhodrev, N. K.; Ivanov, Yu. S.; Goncharov, L. A.; Mitrofanov, A. V.; Popov, S. G.; Shergina, T. A.; Solov'ev, V. A.; Oparin, S. N.; Zykov, A. M.

    2011-04-01

    On February 26, 2009, the first data was obtained in the TESIS experiment on the research of the solar corona using imaging spectroscopy. The TESIS is a part of the scientific equipment of the CORONAS-PHO-TON spacecraft and is designed for imaging the solar corona in soft X-ray and extreme ultraviolet regions of the spectrum with high spatial, spectral, and temporal resolutions at altitudes from the transition region to three solar radii. The article describes the main characteristics of the instrumentation, management features, and operation modes.

  4. The Lyman Alpha Imaging-Monitor Experiment (LAIME) for TESIS/CORONAS-PHOTON

    Science.gov (United States)

    Damé, L.; Koutchmy, S.; Kuzin, S.; Lamy, P.; Malherbe, J.-M.; Noëns, J.-C.

    LAIME the Lyman Alpha Imaging-Monitor Experiment is a remarkably simple no mechanisms and compact 100x100x400 mm full Sun imager to be flown with TESIS on the CORONAS-PHOTON mission launch expected before mid-2008 As such it will be the only true chromospheric imager to be flown in the next years supporting TESIS EUV-XUV imaging SDO and the Belgian LYRA Lyman Alpha flux monitor on the ESA PROBA-2 microsatellite launch expected in September 2007 We will give a short description of this unique O60 mm aperture imaging telescope dedicated to the investigating of the magnetic sources of solar variability in the UV and chromospheric and coronal disruptive events rapid waves Moreton waves disparitions brusques of prominences filaments eruptions and CMEs onset The resolution pixel is 2 7 arcsec the field of view 1 4 solar radius and the acquisition cadence could be as high as 1 image minute The back thinned E2V CCD in the focal plane is using frame transfer to avoid shutter and mechanisms Further more the double Lyman Alpha filtering allows a 40 AA FWHM bandwidth and excellent rejection yet providing a vacuum seal design of the telescope MgF2 entrance window Structural stability of the telescope focal length 1 m is preserved by a 4-INVAR bars design with Aluminium compensation in a large pm 10 o around 20 o

  5. The CORONAS-Photon/TESIS experiment on EUV imaging spectroscopy of the Sun

    Science.gov (United States)

    Kuzin, S.; Zhitnik, I.; Bogachev, S.; Bugaenko, O.; Ignat'ev, A.; Mitrofanov, A.; Perzov, A.; Shestov, S.; Slemzin, V.; Suhodrev, N.

    The new experiment TESIS is developent for russian CORONAS-Photon mission launch is planned on the end of 2007 The experiment is aimed on the study of activity of the Sun in the phases of minimum rise and maximum of 24 th cycle of Solar activity by the method of XUV imaging spectroscopy The method is based on the registration full-Sun monochromatic images with high spatial and temporal resolution The scientific tasks of the experiment are i Investigation dynamic processes in corona flares CME etc with high spatial up to 1 and temporal up to 1 second resolution ii determination of the main plasma parameters like plasma electron and ion density and temperature differential emission measure etc iii study of the processes of appearance and development large scale long-life magnetic structures in the solar corona study of the fluency of this structures on the global activity of the corona iv study of the mechanisms of energy accumulation and release in the solar flares and mechanisms of transformation of this energy into the heating of the plasma and kinematics energy To get the information for this studies the TESIS will register full-Sun images in narrow spectral intervals and the monochromatic lines of HeII SiXI FeXXI-FeXXIII MgXII ions The instrument includes 5 independent channels 2 telescopes for 304 and 132 A wide-field 2 5 degrees coronograph 280-330A and 8 42 A spectroheliographs The detailed description of the TESIS experiment and the instrument is presented

  6. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    Science.gov (United States)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  7. Processing method of images obtained during the TESIS/CORONAS-PHOTON experiment

    Science.gov (United States)

    Kuzin, S. V.; Shestov, S. V.; Bogachev, S. A.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.

    2011-04-01

    In January 2009, the CORONAS-PHOTON spacecraft was successfully launched. It includes a set of telescopes and spectroheliometers—TESIS—designed to image the solar corona in soft X-ray and EUV spectral ranges. Due to features of the reading system, to obtain physical information from these images, it is necessary to preprocess them, i.e., to remove the background, correct the white field, level, and clean. The paper discusses the algorithms and software developed and used for the preprocessing of images.

  8. L-shell bifurcation of electron outer belt at the recovery phase of geomagnetic storm as observed by STEP-F and SphinX instruments onboard the CORONAS-Photon satellite

    Science.gov (United States)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Podgorski, Piotr

    2016-07-01

    Radiation belts and sporadically arising volumes comprising enhanced charged particle fluxes in the Earth's magnetosphere are typically studied by space-borne telescopes, semiconductor, scintillation, gaseous and other types of detectors. Ambient and internal electron bremsstrahlung in hard X-ray arises as a result of interaction of precipitating particles with the atmosphere (balloon experiments) and with the satellite's housings and instrument boxes (orbital experiments). Theses emissions provide a number of new information on the physics of radiation belts. The energies of primary electrons and their spectra responsible for measured X-ray emissions remain usually unknown. Combined measurements of particle fluxes, and their bremsstrahlung by individual satellite instruments placed next to each other provide insight to respective processes. The satellite telescope of electrons and protons STEP-F and the solar X-ray spectrophotometer SphinX were placed in close proximity to each other aboard CORONAS-Photon, the low, circular and highly inclined orbit satellite. Based on joint analysis of the data we detected new features in the high energy particle distributions of the Earth's magnetosphere during deep minimum of solar activity [1-3]. In this research the bifurcation of Van Allen outer electron radiation belt during the weak geomagnetic storm and during passage of interplanetary shock are discussed. Outer belt bifurcation and growth of electron fluxes in a wide energy range were recorded by both instruments during the recovery phase of May 8, 2009 substorm. STEP-F recorded also barely perceptible outer belt splitting on August 5, 2009, after arrival of interplanetary shock to the Earth's magnetosphere bowshock. The STEP-F and SphinX data are compared with the space weather indexes, and with relativistic electron fluxes observed at geostationary orbit. We discuss possible mechanism of the phenomena consisting in the splitting of drift shells because of Earth

  9. X-ray spectrophotometer SphinX and particle spectrometer STEP-F of the satellite experiment CORONAS-PHOTON. Preliminary results of the joint data analysis

    Science.gov (United States)

    Dudnik, O. V.; Podgorski, P.; Sylwester, J.; Gburek, S.; Kowalinski, M.; Siarkowski, M.; Plocieniak, S.; Bakala, J.

    2012-04-01

    A joint analysis is carried out of data obtained with the help of the solar X-ray SphinX spectrophotometer and the electron and proton satellite telescope STEP-F in May 2009 in the course of the scientific space experiment CORONAS-PHOTON. In order to determine the energies and particle types, in the analysis of spectrophotometer records data are used on the intensities of electrons, protons, and secondary γ-radiation, obtained by the STEP-F telescope, which was located in close proximity to the SphinX spectrophotometer. The identical reaction of both instruments is noted at the intersection of regions of the Brazilian magnetic anomaly and the Earth's radiation belts. It is shown that large area photodiodes, serving as sensors of the X-ray spectrometer, reliably record electron fluxes of low and intermediate energies, as well as fluxes of the secondary gamma radiation from construction materials of detector modules, the TESIS instrument complex, and the spacecraft itself. The dynamics of electron fluxes, recorded by the SphinX spectrophotometer in the vicinity of a weak geomagnetic storm, supplements the information about the processes of radial diffusion of electrons, which was studied using the STEP-F telescope.

  10. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    Science.gov (United States)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  11. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  12. High-cadence observations of CME initiation and plasma dynamics in the corona with TESIS on board CORONAS-Photon

    Science.gov (United States)

    Bogachev, Sergey; Kuzin, Sergey; Zhitnik, I. A.; Bugaenko, O. I.; Goncharov, A. L.; Ignatyev, A. P.; Krutov, V. V.; Lomkova, V. M.; Mitrofanov, A. V.; Nasonkina, T. P.; Oparin, S. N.; Petzov, A. A.; Shestov, S. V.; Slemzin, V. A.; Soloviev, V. A.; Suhodrev, N. K.; Shergina, T. A.

    The TESIS is an ensemble of space instruments designed in Lebedev Institute of Russian Academy of Sciences for spectroscopic and imaging investigation of the Sun in EUV and soft X-ray spectral range with high spatial, temporal and spectral resolution. From 2009 January, when TESIS was launched onboard the Coronas-Photon satellite, it provided about 200 000 new images and spectra of the Sun, obtained during one of the deepest solar minimum in last century. Because of the wide field of view (4 solar radii) and high sensitivity, TESIS provided high-quality data on the origin and dynamics of eruptive prominences and CMEs in the low and intermediate solar corona. TESIS is also the first EUV instrument which provided high-cadence observations of coronal bright points and solar spicules with temporal resolution of a few seconds. We present first results of TESIS observations and discuss them from a scientific point of view.

  13. The EUV-observatory TESIS on board Coronas-Photon: scientific goals and initial plan of observations

    Science.gov (United States)

    Bogachev, Sergey

    The TESIS a EUV-observatory for solar research from space will be launched in 2008 September on board the satellite Coronas-Photon from cosmodrome Plesetsk. TESIS is a project of Lebedev Physical Institute of Russian Academy of Science with contribution from Space Research Center of Polish Academy of Science (the spectrometer SphinX). The experiment will focus on quasi-monochromatic imaging of the Sun and XUV spectroscopy of solar plasma. The scientific payload of TESIS contains five instruments: (1) Bragg crystal spectroheliometer for Sun monochromatic imaging in the line MgXII 8.42 A, (2) the normal-incidence Herschelian EUV telescopes with a resolution of 1.7 arc sec operated in lines FeXXII 133 A, FeIX 171 A and HeII 304 A, (3) the EUV imaging spectrometer, (4) the wide-field Ritchey-Chretien coronograph and (5) the X-ray spectrometer SphinX. The TESIS will focus on coordinated study of solar activity from the transition region to the outer corona up to 4 solar radii in wide temperature range from 5*104 to 2*107 K. We describe the scientific goals of the TESIS and its initial plan of observations.

  14. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    Science.gov (United States)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and

  15. The Soft X-ray Spectrophotometer SphinX for the CORONAS-Photon Mission

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Miroslaw; Szymon, Gburek; Bakala, Jaroslaw; Kuzin, Sergey; Kotov, Yury; Farnik, Frantisek; Reale, Fabio

    The purpose, construction details and calibration results of the new design, Polish-led solar X-ray spectrophotometer SphinX will be presented. The instrument constitutes a part of the Russian TESIS X-ray and EUV complex aboard the forthcoming CORONAS-Photon solar mission to be launched later in 2008. SphinX uses Si-PIN detectors for high time resolution (down to 0.01 s) measurements of solar spectra in the energy range between 0.5 keV and 15 keV. The spectral resolution allows separating 256 individual energy channels in this range with particular groups of lines clearly distinguishable. Unprecedented accuracy of the instrument calibration at the XACT (Palermo) and BESSY (Berlin) synchrotron will allow for establishing the solar soft X-ray photometric reference system. The cross-comparison between SphinX and the other instruments presently in orbit like XRT on Hinode, RHESSI and GOES X-ray monitor, will allow for a precise determination of the coronal emission measure and temperature during both very low and very high activity periods. Examples of the detectors' ground calibration results as well as the calculated synthetic spectra will be presented. The operation of the instrument while in orbit will be discussed allowing for suggestions from other groups to be still included in mission planning.

  16. Simultaneous Observation of High Temperature Plasma of Solar Corona By TESIS CORONAS-PHOTON and XRT Hinode.

    Science.gov (United States)

    Reva, A.; Kuzin, S.; Bogachev, S.; Shestov, S.

    2012-05-01

    The Mg XII spectroheliograph is a part of instrumentation complex TESIS (satellite CORONAS-PHOTON). This instrument builds monochromatic images of hot plasma of the solar corona (λ = 8.42 Å, T>5 MK). The Mg XII spectroheliograph observed hot plasma in the non-flaring active-region NOAA 11019 during nine days. We reconstructed DEM of this active region with the help of genetic algorithm (we used data of the Mg XII spectroheliograph, XRT and EIT). Emission measure of the hot component amounts 1 % of the emission measure of the cool component.

  17. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Science.gov (United States)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  18. Onboard Autonomy and Ground Operations Automation for the Intelligent Payload Experiment (IPEX) CubeSat Mission

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas

    2012-01-01

    The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.

  19. Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft

    Science.gov (United States)

    Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy

    2018-01-01

    The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.

  20. Thermochemolysis and the Search for Organic Material on Mars Onboard the MOMA Experiment

    Science.gov (United States)

    Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Glavin, Daniel; Freissinet, Carolinette; Pinnick, Veronica; Goetz, Walter; Stambouli, Moncef; Belmahdi, Imene; Coll, Patrice; Stalport, Fabien; Grand, Noël; Brinckerhoff, William; Goesmann, Fred; Raulin, François; Mahaffy, Paul

    2016-04-01

    Following the Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover, the Mars Organic Molecule Analyzer (MOMA) experiment onboard the future ExoMars 2018 mission will continue to investigate the organic composition of the martian subsurface. MOMA will have the advantage of extracting the sample from as deep as 2 meters below the martian surface where the deleterious effects of radiation and oxidation on organic matter are minimized. To analyse the wide range of organic compounds (volatile and non-volatile compounds) potentially present in the martian soil, MOMA includes two operational modes: UV laser desorption / ionization ion trap mass spectrometry (LDI-ITMS) and pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyse refractory organic compounds and chirality, samples which undergo GC-ITMS analysis may be derivatized beforhands, consisting in the reaction of the sample components with specific chemical reagents (MTBSTFA [1], DMF-DMA [2] or TMAH [3]). To prove the feasibility of the derivatization within the MOMA conditions we have adapated our laboratory procedure for the space conditions (temperature, time, pressure and size). Goal is optimize our detection limits and increase the range of the organic compounds that MOMA will be able to detect. Results of this study, show that Thermochemolysis is one of the most promising technique onboard MOMA to detect organic material. References : [1] Buch, A. et al. (2009) J Chrom. A, 43, 143-151. [2] Freissinet, C. et al. (2013) J Chrom. A, 1306, 731-740. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459.

  1. Spaceflight of HUVEC: An Integrated eXperiment- SPHINX Onboard the ISS

    Science.gov (United States)

    Versari, S.; Maier, J. A. M.; Norfini, A.; Zolesi, V.; Bradamante, S.

    2013-02-01

    The spaceflight orthostatic challenge can promote in astronauts inadequate cardiovascular responses defined as cardiovascular deconditioning. In particular, disturbance of endothelial functions are known to lead to altered vascular performances, being the endothelial cells crucial in the maintenance of the functional integrity of the vascular wall. In order to evaluate whether weightlessness affects endothelial functions, we designed, developed, and performed the experiment SPHINX - SPaceflight of HUVEC: an INtegrated eXperiment - where HUVEC (Human Umbilical Vein Endothelial Cells) were selected as a macrovascular cell model system. SPHINX arrived at the International Space Station (ISS) onboard Progress 40P, and was processed inside Kubik 6 incubator for 7 days. At the end, all of the samples were suitably fixed and preserved at 6°C until return on Earth on Soyuz 23S.

  2. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  3. Characterization and selection of CZT detector modules for HEX experiment onboard Chandrayaan-1

    International Nuclear Information System (INIS)

    Vadawale, S.V.; Purohit, S.; Shanmugam, M.; Acharya, Y.B.; Goswami, J.N.; Sudhakar, M.; Sreekumar, P.

    2009-01-01

    We present the results of characterization of a large sample of Cadmium Zinc Telluride (CZT) detector modules planned to be used for the HEX (High Energy X-ray spectrometer) experiment onboard India's first mission to the Moon, Chandrayaan-1. We procured forty modules from Orbotech Medical Solutions Ltd. and carried out a detailed characterization of each module at various temperatures and selected final nine detector modules for the flight model of HEX. Here we present the results of the characterization of all modules and the selection procedure for the HEX flight detector modules. These modules show 5-6% energy resolution (at 122 keV, for best 90% of pixels) at room temperature which is improved to ∼4% when these modules are cooled to sub-0 deg. C temperature. The gain and energy resolution were stable during the long duration tests.

  4. Proposal of experimental setup on boiling two-phase flow on-orbit experiments onboard Japanese experiment module "KIBO"

    Science.gov (United States)

    Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.

    2011-12-01

    Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.

  5. Fluid Physics Experiments onboard International Space Station: Through the Eyes of a Scientist.

    Science.gov (United States)

    Shevtsova, Valentina

    Fluids are present everywhere in everyday life. They are also present as fuel, in support systems or as consumable in rockets and onboard of satellites and space stations. Everyone experiences every day that fluids are very sensitive to gravity: on Earth liquids flow downwards and gases mostly rise. Nowadays much of the interest of the scientific community is on studying the phenomena at microscales in so-called microfluidic systems. However, at smaller scales the experimental investigation of convective flows becomes increasingly difficult as the control parameter Ra scales with g L (3) (g; acceleration level, L: length scale). A unique alternative to the difficulty of investigating systems with small length scale on the ground is to reduce the gravity level g. In systems with interfaces, buoyancy forces are proportional to the volume of the liquid, while capillary forces act solely on the liquid surface. The importance of buoyancy diminishes either at very small scales or with reducing the acceleration level. Under the weightless conditions of space where buoyancy is virtually eliminated, other mechanisms such as capillary forces, diffusion, vibration, shear forces, electrostatic and electromagnetic forces are dominating in the fluid behaviour. This is why research in space represents a powerful tool for scientific research in this field. Understanding how fluids work really matters and so does measuring their properties accurately. Presently, a number of scientific laboratories, as usual goes with multi-user instruments, are involved in fluid research on the ISS. The programme of fluid physics experiments on-board deals with capillary flows, diffusion, dynamics in complex fluids (foams, emulsions and granular matter), heat transfer processes with phase change, physics and physico-chemistry near or beyond the critical point and it also extends to combustion physics. The top-level objectives of fluid research in space are as follows: (i) to investigate fluid

  6. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    Science.gov (United States)

    Stetson, Howard K.; Haddock, Angie T.; Frank, Jeremy; Cornelius, Randy; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify

  7. Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft

    Science.gov (United States)

    Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi

    2017-12-01

    In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.

  8. Robonaut 2 - IVA Experiments On-Board ISS and Development Towards EVA Capability

    Science.gov (United States)

    Diftler, Myron; Hulse, Aaron; Badger, Julia; Thackston, Allison; Rogers, Jonathan

    2014-01-01

    Robonaut 2 (R2) has completed its fixed base activities on-board the ISS and is scheduled to receive its climbing legs in early 2014. In its continuing line of firsts, the R2 torso finished up its on-orbit activities on its stanchion with the manipulation of space blanket materials and performed multiple tasks under teleoperation control by IVA astronauts. The successful completion of these two IVA experiments is a key step in Robonaut's progression towards an EVA capability. Integration with the legs and climbing inside the ISS will provide another important part of the experience that R2 will need prior to performing tasks on the outside of ISS. In support of these on-orbit activities, R2 has been traversing across handrails in simulated zero-g environments and working with EVA tools and equipment on the ground to determine manipulation strategies for an EVA Robonaut. R2 made significant advances in robotic manipulation of deformable materials in space while working with its softgoods task panel. This panel features quarter turn latches that secure a space blanket to the task panel structure. The space blanket covers two cloth cubes that are attached with Velcro to the structure. R2 was able to open and close the latches, pull back the blanket, and remove the cube underneath. R2 simulated cleaning up an EVA worksite as well, by replacing the cube and reattaching the blanket. In order to interact with the softgoods panel, R2 has both autonomously and with a human in the loop identified and localized these deformable objects. Using stereo color cameras, R2 identified characteristic elements on the softgoods panel then extracted the location and orientation of the object in its field of view using stereo disparity and kinematic transforms. R2 used both vision processing and supervisory control to successfully accomplish this important task. Teleoperation is a key capability for Robonaut's effectiveness as an EVA system. To build proficiency, crewmembers have

  9. ``High energy Electron exPeriment (HEP)'' onboard the ERG satellite

    Science.gov (United States)

    Mitani, T.; Takashima, T.; Kasahara, S.; Miyake, W.; Hirahara, M.

    2017-12-01

    The Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016, and now explores how relativistic electrons in the radiation belts are generated during space storms. "High energy Electron exPeriment (HEP)" onboard the ERG satellite observes 70 keV - 2 MeV electrons and provides three-dimensional velocity distribution of electrons every spacecraft spin period. Electrons are observed by two types of camera designs, HEP-L and HEP-H, with regard to geometrical factor and energy range. HEP-L observes 0.1 - 1 MeV electrons and its geometrical factor (G-factor) is 10-3 cm2 str, and HEP-H observes 0.7 - 2 MeV and G-factor is 10-2 cm2 str. HEP-L and HEP-H each consist of three pin-hole type cameras, and each camera consist of mechanical collimator, stacked silicon semiconductor detectors and readout ASICs. HEP-H has larger opening angle of the collimator and more silicon detectors to observe higher energy electrons than HEP-L. The initial checkout in orbit was carried out in February 2017 and it was confirmed that there was no performance degradation by comparing the results of the initial checkout in orbit and the prelaunch function tests. Since late March, HEP has carried out normal observation. HEP observed losses and recovery of the outer radiation belt electrons several times up to now. In this presentation we introduce the HEP instrument design, prelaunch tests results and report the initial results in orbit.

  10. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  11. Hypersonic wind-tunnel free-flying experiments with onboard instrumentation

    KAUST Repository

    Mudford, Neil R.; O'Byrne, Sean B.; Neely, Andrew J.; Buttsworth, David R.; Balage, Sudantha

    2015-01-01

    Hypersonic wind-tunnel testing with "free-flight" models unconnected to a sting ensures that sting/wake flow interactions do not compromise aerodynamic coefficient measurements. The development of miniaturized electronics has allowed the demonstration of a variant of a new method for the acquisition of hypersonic model motion data using onboard accelerometers, gyroscopes, and a microcontroller. This method is demonstrated in a Mach 6 wind-tunnel flow, whose duration and pitot pressure are sufficient for the model to move a body length or more and turn through a significant angle. The results are compared with those obtained from video analysis of the model motion, the existing method favored for obtaining aerodynamic coefficients in similar hypersonic wind-tunnel facilities. The results from the two methods are in good agreement. The new method shows considerable promise for reliable measurement of aerodynamic coefficients, particularly because the data obtained are in more directly applicable forms of accelerations and rates of turn, rather than the model position and attitude obtained from the earlier visualization method. The ideal may be to have both methods operating together.

  12. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments

    Science.gov (United States)

    Zhang, Hong-Bo; Zheng, Lei; Su, Yan; Fang, Guang-You; Zhou, Bin; Feng, Jian-Qing; Xing, Shu-Guo; Dai, Shun; Li, Jun-Duo; Ji, Yi-Cai; Gao, Yun-Ze; Xiao, Yuan; Li, Chun-Lai

    2014-12-01

    Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm.

  13. Performance evaluation of lunar penetrating radar onboard the rover of CE-3 probe based on results from ground experiments

    International Nuclear Information System (INIS)

    Zhang Hong-Bo; Zheng Lei; Su Yan; Feng Jian-Qing; Xing Shu-Guo; Dai Shun; Li Jun-Duo; Xiao Yuan; Li Chun-Lai; Fang Guang-You; Zhou Bin; Ji Yi-Cai; Gao Yun-Ze

    2014-01-01

    Lunar Penetrating Radar (LPR) onboard the rover that is part of the Chang'e-3 (CE-3) mission was firstly utilized to obtain in situ measurements about geological structure on the lunar surface and the thickness of the lunar regolith, which are key elements for studying the evolutional history of lunar crust. Because penetration depth and resolution of LPR are related to the scientific objectives of this mission, a series of ground-based experiments using LPR was carried out, and results of the experimental data were obtained in a glacial area located in the northwest region of China. The results show that the penetration depth of the first channel antenna used for LPR is over 79 m with a resolution of 2.8 m, and that for the second channel antenna is over 50.8 m with a resolution of 17.1 cm

  14. On-board Model Predictive Control of a Quadrotor Helicopter: Design, Implementation, and Experiments

    Science.gov (United States)

    2012-12-13

    food runs in the cafes and restaurants along Euclid Avenue. It was also a pleasure working with George (Xiaojing) Zhang to whom most of the credit for...cameras arranged on custom rails near the ceiling of a room dedicated to aerial robotics experiments4, two Vicon Giganet MX multiplexing units, a

  15. The magnetic field experiment onboard Equator-S and its scientific possibilities

    Directory of Open Access Journals (Sweden)

    K.-H. Fornacon

    1999-12-01

    Full Text Available The special feature of the ringcore fluxgate magnetometer on Equator-S is the high time and field resolution. The scientific aim of the experiment is the investigation of waves in the 10–100 picotesla range with a time resolution up to 64 Hz. The instrument characteristics and the influence of the spacecraft on the magnetic field measurement will be discussed. The work shows that the applied pre- and inflight calibration techniques are sufficient to suppress spacecraft interferences. The offset in spin axis direction was determined for the first time with an independent field measurement by the Equator-S Electron Drift Instrument. The data presented gives an impression of the accuracy of the measurement.Key words. Magnetospheric physics (instruments and techniques · Space plasma physics (instruments and techniques

  16. The magnetic field experiment onboard Equator-S and its scientific possibilities

    Directory of Open Access Journals (Sweden)

    K.-H. Fornacon

    Full Text Available The special feature of the ringcore fluxgate magnetometer on Equator-S is the high time and field resolution. The scientific aim of the experiment is the investigation of waves in the 10–100 picotesla range with a time resolution up to 64 Hz. The instrument characteristics and the influence of the spacecraft on the magnetic field measurement will be discussed. The work shows that the applied pre- and inflight calibration techniques are sufficient to suppress spacecraft interferences. The offset in spin axis direction was determined for the first time with an independent field measurement by the Equator-S Electron Drift Instrument. The data presented gives an impression of the accuracy of the measurement.

    Key words. Magnetospheric physics (instruments and techniques · Space plasma physics (instruments and techniques

  17. Summary of the results from the Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment (LADEE) Mission

    Science.gov (United States)

    Horanyi, Mihaly

    2016-07-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including

  18. Clinical Experiences With Onboard Imager KV Images for Linear Accelerator-Based Stereotactic Radiosurgery and Radiotherapy Setup

    International Nuclear Information System (INIS)

    Hong, Linda X.; Chen, Chin C.; Garg, Madhur; Yaparpalvi, Ravindra; Mah, Dennis

    2009-01-01

    Purpose: To report our clinical experiences with on-board imager (OBI) kV image verification for cranial stereotactic radiosurgery (SRS) and radiotherapy (SRT) treatments. Methods and Materials: Between January 2007 and May 2008, 42 patients (57 lesions) were treated with SRS with head frame immobilization and 13 patients (14 lesions) were treated with SRT with face mask immobilization at our institution. No margin was added to the gross tumor for SRS patients, and a 3-mm three-dimensional margin was added to the gross tumor to create the planning target volume for SRT patients. After localizing the patient with stereotactic target positioner (TaPo), orthogonal kV images using OBI were taken and fused to planning digital reconstructed radiographs. Suggested couch shifts in vertical, longitudinal, and lateral directions were recorded. kV images were also taken immediately after treatment for 21 SRS patients and on a weekly basis for 6 SRT patients to assess any intrafraction changes. Results: For SRS patients, 57 pretreatment kV images were evaluated and the suggested shifts were all within 1 mm in any direction (i.e., within the accuracy of image fusion). For SRT patients, the suggested shifts were out of the 3-mm tolerance for 31 of 309 setups. Intrafraction motions were detected in 3 SRT patients. Conclusions: kV imaging provided a useful tool for SRS or SRT setups. For SRS setup with head frame, it provides radiographic confirmation of localization using the stereotactic target positioner. For SRT with mask, a 3-mm margin is adequate and feasible for routine setup when TaPo is combined with kV imaging

  19. Development and Flight Results of a PC104/QNX-Based On-Board Computer and Software for the YES2 Tether Experiment

    Science.gov (United States)

    Spiliotopoulos, I.; Mirmont, M.; Kruijff, M.

    2008-08-01

    This paper highlights the flight preparation and mission performance of a PC104-based On-Board Computer for ESA's second Young Engineer's Satellite (YES2), with additional attention to the flight software design and experience of QNX as multi-process real-time operating system. This combination of Commercial-Of-The-Shelf (COTS) technologies is an accessible option for small satellites with high computational demands.

  20. On the control of magnetic perturbing field onboard landers: the Magnetometer Protection program for the ESA ExoMars/Humboldt MSMO magnetometer experiment

    DEFF Research Database (Denmark)

    Menvielle, M.; Primdahl, Fritz; Brauer, Peter

    to planetary research. The major difficulty in implementing a magnetometer experiment onboard a lander is to achieve at acceptable costs a good Magnetometer Protection, namely to control the perturbing magnetic field generated by the lander during operations at the planetary surfa ce, so as to achieve...... scientific payload in the frame of the ESA ExoMars mission. Experience from previous missions constitutes the background for the MSMO Magnetometer Protection strategy. DC and AC lander generated magnetic perturbations are discussed, with particular attention to those related to solar generators. Emphasis...... and very resource consuming....

  1. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  2. Radiation environment measurements with the cosmic ray experiments on-board the KITSAT-1 and PoSAT-1 micro-satellites

    International Nuclear Information System (INIS)

    Underwood, C.I.; Brock, D.J.; Williams, P.S.; Kim, S.; Dilao, R.; Santos, P.R.; Brito, M.C.; Dyer, C.S.; Sims, A.J.

    1994-01-01

    The success of the Cosmic Radiation Environment and Dosimetry (CREDO) experiment carried on-board the UoSAT-3 micro-satellite (launched in 1990) has lead to the development of a new instrument called the Cosmic-Ray Experiment (CRE) which has flown on-board the KITSAT-1 and PoSAT-1 micro-satellites, launched in 1992 and 1993 respectively. The results from both CRE instruments show excellent agreement with those of CREDO for the galactic cosmic-ray environment. However, there are some differences in the CRE and CREDO response to the trapped proton environment of the South Atlantic Anomaly which can be explained by the differences in the detector response time. The fit between the flight results and predictions from the standard models is generally good, but some differences are noted. The CRE and CREDO instruments should provide continuous coverage of the near-Earth radiation environment across a complete solar cycle. This is important in view of the dynamic nature of the radiation environment - as amply demonstrated by the results from the CRRES spacecraft

  3. Amaro-autonomous real-time detection of moving maritime objects: introducing a flight experiment for an on-board ship detection system

    Science.gov (United States)

    Schwenk, Kurt; Willburger, Katharina; Pless, Sebastian

    2017-10-01

    Motivated by politics and economy, the monitoring of the world wide ship traffic is a field of high topicality. To detect illegal activities like piracy, illegal fishery, ocean dumping and refugee transportation is of great value. The analysis of satellite images on the ground delivers a great contribution to situation awareness. However, for many applications the up-to-dateness of the data is crucial. With ground based processing, the time between image acquisition and delivery of the data to the end user is in the range of several hours. The highest influence to the duration of ground based processing is the delay caused by the transmission of the large amount of image data from the satellite to the processing centre on the ground. One expensive solution to this issue is the usage of data relay satellites systems like EDRS. Another approach is to analyse the image data directly on-board of the satellite. Since the product data (e.g. ship position, heading, velocity, characteristics) is very small compared to the input image data, real-time connections provided by satellite telecommunication services like Iridium or Orbcomm can be used to send small packets of information directly to the end user without significant delay. The AMARO (Autonomous real-time detection of moving maritime objects) project at DLR is a feasibility study of an on-board ship detection system involving a real-time low bandwidth communication. The operation of a prototype on-board ship detection system will be demonstrated on an airborne platform. In this article, the scope, aim and design of a flight experiment for an on-board ship detection system scheduled for mid of 2018 is presented. First, the scope and the constraints of the experiment are explained in detail. The main goal is to demonstrate the operability of an automatic ship detection system on board of an airplane. For data acquisition the optical high resolution DLR MACS-MARE camera (VIS/NIR) is used. The system will be able to

  4. PHITS simulations of the Protective curtain experiment onboard the Service module of ISS: Comparison with absorbed doses measured with TLDs

    Czech Academy of Sciences Publication Activity Database

    Ploc, Ondřej; Sihver, L.; Kartashov, D.; Shurshakov, V.; Tolochek, R. V.

    2013-01-01

    Roč. 52, č. 11 (2013), s. 1911-1918 ISSN 0273-1177 Institutional support: RVO:61389005 Keywords : protective curtain experiment * shielding of cosmic radiation * PHITS simulations * ISS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.238, year: 2013

  5. Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR

    Science.gov (United States)

    Korablev, O. I.; Bertaux, J. L.; Kalinnikov, Yu. K.; Fedorova, A. A.; Moroz, V. I.; Kiselev, A. V.; Stepanov, A. V.; Grigoriev, A. V.; Zhegulev, V. S.; Rodin, A. V.; Dimarellis, E.; Dubois, J. P.; Reberac, A.; van Ransbeeck, E.; Gondet, B.

    2006-07-01

    The acousto-optic spectrometer of the near infrared range, which is a part of the spectrometer SPICAM onboard the Mars-Express spacecraft, began to operate in the orbit of Mars in January 2004. In the SPICAM experiment, a spectrometer on the basis of an acousto-optic filter was used for the first time to investigate other planets. During one and a half years of operation, the IR channel of SPICAM obtained more than half a million spectra in the 1-1.7 μm range with a resolving power of more than 1500 in different modes of observation: limb, nadir, and solar eclipses. The main goal of the experiment is to study the content of water vapor in the Martian atmosphere by measuring the absorption spectrum in the 1.38 μm band. Characteristics of the instrument (high spectral resolution and signal-to-noise ratio) allow one to solve a number of additional scientific problems including the study of ozone distribution by emission of singlet oxygen (O2 1Δg), detection of the water and carbonic dioxide ices, and also the study of the vertical distribution and optical characteristics of aerosol in the Martian atmosphere. We present a description of the instrument, the results of its ground and in-flight calibrations, and a brief survey of the basic scientific results obtained by the SPICAM spectrometer during a year-and-half of operation.

  6. Calibration of the SphinX experiment at the XACT facility in Palermo

    Science.gov (United States)

    Collura, A.; Barbera, M.; Varisco, S.; Calderone, G.; Reale, F.; Gburek, S.; Kowalinski, M.; Sylwester, J.; Siarkowski, M.; Bakala, J.; Podgorski, P.; Trzebinski, W.; Plocieniak, S.; Kordylewski, Z.

    2008-07-01

    Three of the four detectors of the SphinX experiment to be flown on the Russian mission Coronas-Photon have been measured at the XACT Facility of the Palermo Observatory at several wavelengths in the soft X-ray band. We describe the instrumental set-up and report some measurements. The analysis work to obtain the final calibration is still in progress.

  7. Identifying Onboarding Heuristics for Free-to-Play Mobile Games

    DEFF Research Database (Denmark)

    Thomsen, Line Ebdrup; Weigert Petersen, Falko; Drachen, Anders

    2016-01-01

    a set of heuristics for the design of onboarding phases in mobile games is presented. The heuristics are identified by a lab-based mixed-methods experiment, utilizing lightweight psycho-physiological measures together with self-reported player responses, across three titles that cross the genres...... of puzzle games, base builders and arcade games, and utilize different onboarding phase design approaches. Results showcase how heuristics can be used to design engaging onboarding phases in mobile games....

  8. Influence of Oxychlorine Phases During the Pyrolysis of Organic Molecules: Implications for the Quest of Organics on Mars with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.

    2017-01-01

    One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.

  9. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  10. Rapid Diagnostics of Onboard Sequences

    Science.gov (United States)

    Starbird, Thomas W.; Morris, John R.; Shams, Khawaja S.; Maimone, Mark W.

    2012-01-01

    Keeping track of sequences onboard a spacecraft is challenging. When reviewing Event Verification Records (EVRs) of sequence executions on the Mars Exploration Rover (MER), operators often found themselves wondering which version of a named sequence the EVR corresponded to. The lack of this information drastically impacts the operators diagnostic capabilities as well as their situational awareness with respect to the commands the spacecraft has executed, since the EVRs do not provide argument values or explanatory comments. Having this information immediately available can be instrumental in diagnosing critical events and can significantly enhance the overall safety of the spacecraft. This software provides auditing capability that can eliminate that uncertainty while diagnosing critical conditions. Furthermore, the Restful interface provides a simple way for sequencing tools to automatically retrieve binary compiled sequence SCMFs (Space Command Message Files) on demand. It also enables developers to change the underlying database, while maintaining the same interface to the existing applications. The logging capabilities are also beneficial to operators when they are trying to recall how they solved a similar problem many days ago: this software enables automatic recovery of SCMF and RML (Robot Markup Language) sequence files directly from the command EVRs, eliminating the need for people to find and validate the corresponding sequences. To address the lack of auditing capability for sequences onboard a spacecraft during earlier missions, extensive logging support was added on the Mars Science Laboratory (MSL) sequencing server. This server is responsible for generating all MSL binary SCMFs from RML input sequences. The sequencing server logs every SCMF it generates into a MySQL database, as well as the high-level RML file and dictionary name inputs used to create the SCMF. The SCMF is then indexed by a hash value that is automatically included in all command

  11. Onboard Short Term Plan Viewer

    Science.gov (United States)

    Hall, Tim; LeBlanc, Troy; Ulman, Brian; McDonald, Aaron; Gramm, Paul; Chang, Li-Min; Keerthi, Suman; Kivlovitz, Dov; Hadlock, Jason

    2011-01-01

    Onboard Short Term Plan Viewer (OSTPV) is a computer program for electronic display of mission plans and timelines, both aboard the International Space Station (ISS) and in ISS ground control stations located in several countries. OSTPV was specifically designed both (1) for use within the limited ISS computing environment and (2) to be compatible with computers used in ground control stations. OSTPV supplants a prior system in which, aboard the ISS, timelines were printed on paper and incorporated into files that also contained other paper documents. Hence, the introduction of OSTPV has both reduced the consumption of resources and saved time in updating plans and timelines. OSTPV accepts, as input, the mission timeline output of a legacy, print-oriented, UNIX-based program called "Consolidated Planning System" and converts the timeline information for display in an interactive, dynamic, Windows Web-based graphical user interface that is used by both the ISS crew and ground control teams in real time. OSTPV enables the ISS crew to electronically indicate execution of timeline steps, launch electronic procedures, and efficiently report to ground control teams on the statuses of ISS activities, all by use of laptop computers aboard the ISS.

  12. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  13. Lunar Penetrating Radar onboard the Chang'e-3 mission

    Science.gov (United States)

    Fang, Guang-You; Zhou, Bin; Ji, Yi-Cai; Zhang, Qun-Ying; Shen, Shao-Xiang; Li, Yu-Xi; Guan, Hong-Fei; Tang, Chuan-Jun; Gao, Yun-Ze; Lu, Wei; Ye, Sheng-Bo; Han, Hai-Dong; Zheng, Jin; Wang, Shu-Zhi

    2014-12-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.

  14. On-board Data Mining

    Science.gov (United States)

    Tanner, Steve; Stein, Cara; Graves, Sara J.

    Networks of remote sensors are becoming more common as technology improves and costs decline. In the past, a remote sensor was usually a device that collected data to be retrieved at a later time by some other mechanism. This collected data were usually processed well after the fact at a computer greatly removed from the in situ sensing location. This has begun to change as sensor technology, on-board processing, and network communication capabilities have increased and their prices have dropped. There has been an explosion in the number of sensors and sensing devices, not just around the world, but literally throughout the solar system. These sensors are not only becoming vastly more sophisticated, accurate, and detailed in the data they gather but they are also becoming cheaper, lighter, and smaller. At the same time, engineers have developed improved methods to embed computing systems, memory, storage, and communication capabilities into the platforms that host these sensors. Now, it is not unusual to see large networks of sensors working in cooperation with one another. Nor does it seem strange to see the autonomous operation of sensorbased systems, from space-based satellites to smart vacuum cleaners that keep our homes clean and robotic toys that help to entertain and educate our children. But access to sensor data and computing power is only part of the story. For all the power of these systems, there are still substantial limits to what they can accomplish. These include the well-known limits to current Artificial Intelligence capabilities and our limited ability to program the abstract concepts, goals, and improvisation needed for fully autonomous systems. But it also includes much more basic engineering problems such as lack of adequate power, communications bandwidth, and memory, as well as problems with the geolocation and real-time georeferencing required to integrate data from multiple sensors to be used together.

  15. Aerial Logistics Management for Carrier Onboard Delivery

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AERIAL LOGISTICS MANAGEMENT FOR CARRIER ONBOARD DELIVERY by Samuel L. Chen September 2016...AND SUBTITLE AERIAL LOGISTICS MANAGEMENT FOR CARRIER ONBOARD DELIVERY 5. FUNDING NUMBERS 6. AUTHOR(S) Samuel L. Chen 7. PERFORMING ORGANIZATION NAME(S...delivery (COD) is the use of aircraft to transport people and cargo from a forward logistics site (FLS) to a carrier strike group (CSG). The goal of

  16. Semantic Information Extraction of Lanes Based on Onboard Camera Videos

    Science.gov (United States)

    Tang, L.; Deng, T.; Ren, C.

    2018-04-01

    In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately identify lane semantics from video images.

  17. New On-board Microprocessors

    Science.gov (United States)

    Weigand, R.

    (for SW development on PC etc.), or to consider using it as a PCI master controller in an on-board system. Advanced SEU fault tolerance is in- troduced by design, using triple modular redundancy (TMR) flip-flops for all registers and EDAC protection for all memories. The device will be manufactured in a radia- tion hard Atmel 0.25 um technology, targeting 100 MHz processor clock frequency. The non fault-tolerant LEON processor VHDL model is available as free source code, and the SPARC architecture is a well-known industry standard. Therefore, know-how, software tools and operating systems are widely available.

  18. Automation of On-Board Flightpath Management

    Science.gov (United States)

    Erzberger, H.

    1981-01-01

    The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings.

  19. Using Onboard Telemetry for MAVEN Orbit Determination

    Science.gov (United States)

    Lam, Try; Trawny, Nikolas; Lee, Clifford

    2013-01-01

    Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.

  20. Proton irradiation experiment for x-ray charge-coupled devices of the monitor of all-sky x-ray image mission onboard the international space station. 2. Degradation of dark current and identification of electron trap level

    CERN Document Server

    Miyata, E; Kamiyama, D

    2003-01-01

    We have investigated the radiation damage effects on a charge-coupled device (CCD) to be used for the Japanese X-ray mission, the monitor of all-sky X-ray image (MAXI), onboard the international space station (ISS). A temperature dependence of the dark current as a function of incremental dose is studied. We found that the protons having energy of >292 keV seriously increased the dark current of the devices. In order to improve the radiation tolerance of the devices, we have developed various device architectures to minimize the radiation damage in orbit. Among them, nitride oxide enables us to reduce the dark current significantly and therefore we adopted nitride oxide for the flight devices. We also compared the dark current of a device in operation and that out of operation during the proton irradiation. The dark current of the device in operation became twofold that out of operation, and we thus determined that devices would be turned off during the passage of the radiation belt. The temperature dependenc...

  1. Dust Measurements Onboard the Deep Space Gateway

    Science.gov (United States)

    Horanyi, M.; Kempf, S.; Malaspina, D.; Poppe, A.; Srama, R.; Sternovsky, Z.; Szalay, J.

    2018-02-01

    A dust instrument onboard the Deep Space Gateway will revolutionize our understanding of the dust environment at 1 AU, help our understanding of the evolution of the solar system, and improve dust hazard models for the safety of crewed and robotic missions.

  2. An Onboard ISS Virtual Reality Trainer

    Science.gov (United States)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  3. Arctic summer school onboard an icebreaker

    Science.gov (United States)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  4. Fresh water generators onboard a floating platform

    International Nuclear Information System (INIS)

    Tewari, P.K.; Verma, R.K.; Misra, B.M.; Sadhulkan, H.K.

    1997-01-01

    A dependable supply of fresh water is essential for any ocean going vessel. The operating and maintenance personnel on offshore platforms and marine structures also require a constant and regular supply of fresh water to meet their essential daily needs. A seawater thermal desalination unit onboard delivers good quality fresh water from seawater. The desalination units developed by Bhabha Atomic Research Centre (BARC) suitable for ocean going vessels and offshore platforms have been discussed. Design considerations of such units with reference to floating platforms and corrosive environments have been presented. The feasibility of coupling a low temperature vacuum evaporation (LTVE) desalination plant suitable for an onboard floating platform to a PHWR nuclear power plant has also been discussed. (author). 1 ref., 3 figs, 2 tabs

  5. On-boarding the Middle Manager.

    Science.gov (United States)

    OʼConnor, Mary

    The trend of promoting clinical experts into management roles continues. New middle managers need a transitional plan that includes support, mentoring, and direction from senior leaders, including the chief nursing officer (CNO). This case study demonstrates how the CNO of one organization collaborated with a faculty member colleague to develop and implement a yearlong personalized on-boarding program for a group of new nurse middle managers.

  6. The AGILE on-board Kalman filter

    International Nuclear Information System (INIS)

    Giuliani, A.; Cocco, V.; Mereghetti, S.; Pittori, C.; Tavani, M.

    2006-01-01

    On-board reduction of particle background is one of the main challenges of space instruments dedicated to gamma-ray astrophysics. We present in this paper a discussion of the method and main simulation results of the on-board background filter of the Gamma-Ray Imaging Detector (GRID) of the AGILE mission. The GRID is capable of detecting and imaging with optimal point spread function gamma-ray photons in the range 30MeV-30GeV. The AGILE planned orbit is equatorial, with an altitude of 550km. This is an optimal orbit from the point of view of the expected particle background. For this orbit, electrons and positrons of kinetic energies between 20MeV and hundreds of MeV dominate the particle background, with significant contributions from high-energy (primary) and low-energy protons, and gamma-ray albedo-photons. We present here the main results obtained by extensive simulations of the on-board AGILE-GRID particle/photon background rejection algorithms based on a special application of Kalman filter techniques. This filter is applied (Level-2) sequentially after other data processing techniques characterizing the Level-1 processing. We show that, in conjunction with the Level-1 processing, the adopted Kalman filtering is expected to reduce the total particle/albedo-photon background rate to a value (=<10-30Hz) that is compatible with the AGILE telemetry. The AGILE on-board Kalman filter is also effective in reducing the Earth-albedo-photon background rate, and therefore contributes to substantially increase the AGILE exposure for celestial gamma-ray sources

  7. Autonomous onboard optical processor for driving aid

    Science.gov (United States)

    Attia, Mondher; Servel, Alain; Guibert, Laurent

    1995-01-01

    We take advantage of recent technological advances in the field of ferroelectric liquid crystal silicon back plane optoelectronic devices. These are well suited to perform massively parallel processing tasks. That choice enables the design of low cost vision systems and allows the implementation of an on-board system. We focus on transport applications such as road sign recognition. Preliminary in-car experimental results are presented.

  8. Gas monitoring onboard ISS using FTIR spectroscopy

    Science.gov (United States)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  9. Onboard Processing on PWE OFA/WFC (Onboard Frequency Analyzer/Waveform Capture) aboard the ERG (ARASE) Satellite

    Science.gov (United States)

    Matsuda, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Yagitani, S.; Ozaki, M.; Imachi, T.; Ishisaka, K.; Kurita, S.; Ota, M.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Matsuoka, A.; Teramoto, M.; Shinohara, I.

    2017-12-01

    Exploration of energization and Radiation in Geospace (ERG) is a mission for understanding particle acceleration, loss mechanisms, and the dynamic evolution of space storms in the context of cross-energy and cross-regional coupling [Miyoshi et al., 2012]. The ERG (ARASE) satellite was launched on December 20, 2016, and successfully inserted into an orbit. The Plasma Wave Experiment (PWE) is one of the science instruments on board the ERG satellite to measure electric field and magnetic field in the inner magnetosphere. PWE consists of three sub-components, EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer). Especially, OFA/WFC measures electric and magnetic field spectrum and waveform from a few Hz to 20 kHz. OFA/WFC processes signals detected by a couple of dipole wire-probe antenna (WPT) and tri-axis magnetic search coils (MSC) installed onboard the satellite. The PWE-OFA subsystem calculates and produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectrum matrix), and OFA-COMPLEX (complex spectrum). They are continuously processed 24 hours per day and all data are sent to the ground. OFA-MATRIX and OFA-COMPLEX are used for polarization analyses and direction finding of the plasma waves. The PWE-WFC subsystem measures raw (64 kHz sampled) and down-sampled (1 kHz sampled) burst waveform detected by the WPT and the MSC sensors. It activates by a command, automatic triggering, and scheduling. The initial check-out process of the PWE successfully completed, and initial data has been obtained. In this presentation, we introduce onboard processing technique on PWE OFA/WFC and its initial results.

  10. Onboard Autonomous Corrections for Accurate IRF Pointing.

    Science.gov (United States)

    Jorgensen, J. L.; Betto, M.; Denver, T.

    2002-05-01

    Over the past decade, the Noise Equivalent Angle (NEA) of onboard attitude reference instruments, has decreased from tens-of-arcseconds to the sub-arcsecond level. This improved performance is partly due to improved sensor-technology with enhanced signal to noise ratios, partly due to improved processing electronics which allows for more sophisticated and faster signal processing. However, the main reason for the increased precision, is the application of onboard autonomy, which apart from simple outlier rejection also allows for removal of "false positive" answers, and other "unexpected" noise sources, that otherwise would degrade the quality of the measurements (e.g. discrimination between signals caused by starlight and ionizing radiation). The utilization of autonomous signal processing has also provided the means for another onboard processing step, namely the autonomous recovery from lost in space, where the attitude instrument without a priori knowledge derive the absolute attitude, i.e. in IRF coordinates, within fractions of a second. Combined with precise orbital state or position data, the absolute attitude information opens for multiple ways to improve the mission performance, either by reducing operations costs, by increasing pointing accuracy, by reducing mission expendables, or by providing backup decision information in case of anomalies. The Advanced Stellar Compass's (ASC) is a miniature, high accuracy, attitude instrument which features fully autonomous operations. The autonomy encompass all direct steps from automatic health checkout at power-on, over fully automatic SEU and SEL handling and proton induced sparkle removal, to recovery from "lost in space", and optical disturbance detection and handling. But apart from these more obvious autonomy functions, the ASC also features functions to handle and remove the aforementioned residuals. These functions encompass diverse operators such as a full orbital state vector model with automatic cloud

  11. On-board data management study for EOPAP

    Science.gov (United States)

    Davisson, L. D.

    1975-01-01

    The requirements, implementation techniques, and mission analysis associated with on-board data management for EOPAP were studied. SEASAT-A was used as a baseline, and the storage requirements, data rates, and information extraction requirements were investigated for each of the following proposed SEASAT sensors: a short pulse 13.9 GHz radar, a long pulse 13.9 GHz radar, a synthetic aperture radar, a multispectral passive microwave radiometer facility, and an infrared/visible very high resolution radiometer (VHRR). Rate distortion theory was applied to determine theoretical minimum data rates and compared with the rates required by practical techniques. It was concluded that practical techniques can be used which approach the theoretically optimum based upon an empirically determined source random process model. The results of the preceding investigations were used to recommend an on-board data management system for (1) data compression through information extraction, optimal noiseless coding, source coding with distortion, data buffering, and data selection under command or as a function of data activity, (2) for command handling, (3) for spacecraft operation and control, and (4) for experiment operation and monitoring.

  12. Ambient dose equivalent H*(d) - an appropriate philosophy for radiation monitoring onboard aircraft and in space?

    International Nuclear Information System (INIS)

    Vana, N.; Hajek, M.; Berger, T.

    2003-01-01

    In this paper authors deals with the ambient dose equivalent H * (d) and their application for onboard Aircraft and Space station. The discussion and the carried out experiments demonstrated that the philosophy of H * (10) leads to an underestimation of the whole-body radiation exposure when applied onboard aircraft and in space. It therefore has to be considered to introduce a new concept that could be based on microdosimetric principles, offering the unique potential of a more direct correlation to radiobiological parameters

  13. Evaluating the Onboarding Phase of Free-toPlay Mobile Games

    DEFF Research Database (Denmark)

    Weigert Petersen, Falko; Thomsen, Line Ebdrup; Mirza-Babaei, Pejman

    2017-01-01

    . This paper presents a study utilizing a lab-based mixed-methods approach in providing insights for evaluating the user experience of onboarding phases in mobile games. This includes an investigation into the contribution of physiological measures (Heart-Rate Variability and Galvanic Skin Conductance) as well...

  14. SE83-9 'Chix in Space' student experimenter monitors STS-29 onboard activity

    Science.gov (United States)

    1989-01-01

    Student experimenter John C. Vellinger watches monitor in the JSC Mission Control Center (MCC) Bldg 30 Customer Support Room (CSR) during the STS-29 mission. Crewmembers are working with his Student Experiment (SE) 83-9 Chicken Embryo Development in Space or 'Chix in Space' onboard Discovery, Orbiter Vehicle (OV) 103. The student's sponsor is Kentucky Fried Chicken (KFC).

  15. On-board landmark navigation and attitude reference parallel processor system

    Science.gov (United States)

    Gilbert, L. E.; Mahajan, D. T.

    1978-01-01

    An approach to autonomous navigation and attitude reference for earth observing spacecraft is described along with the landmark identification technique based on a sequential similarity detection algorithm (SSDA). Laboratory experiments undertaken to determine if better than one pixel accuracy in registration can be achieved consistent with onboard processor timing and capacity constraints are included. The SSDA is implemented using a multi-microprocessor system including synchronization logic and chip library. The data is processed in parallel stages, effectively reducing the time to match the small known image within a larger image as seen by the onboard image system. Shared memory is incorporated in the system to help communicate intermediate results among microprocessors. The functions include finding mean values and summation of absolute differences over the image search area. The hardware is a low power, compact unit suitable to onboard application with the flexibility to provide for different parameters depending upon the environment.

  16. On-Board Rendezvous Targeting for Orion

    Science.gov (United States)

    Weeks, Michael W.; DSouza, Christopher N.

    2010-01-01

    The Orion On-board GNC system is among the most complex ever developed for a space mission. It is designed to operate autonomously (independent of the ground). The rendezvous system in particular was designed to operate on the far side of the moon, and in the case of loss-of-communications with the ground. The vehicle GNC system is designed to retarget the rendezvous maneuvers, given a mission plan. As such, all the maneuvers which will be performed by Orion, have been designed and are being incorporated into the flight code.

  17. Method of optimization onboard communication network

    Science.gov (United States)

    Platoshin, G. A.; Selvesuk, N. I.; Semenov, M. E.; Novikov, V. M.

    2018-02-01

    In this article the optimization levels of onboard communication network (OCN) are proposed. We defined the basic parameters, which are necessary for the evaluation and comparison of modern OCN, we identified also a set of initial data for possible modeling of the OCN. We also proposed a mathematical technique for implementing the OCN optimization procedure. This technique is based on the principles and ideas of binary programming. It is shown that the binary programming technique allows to obtain an inherently optimal solution for the avionics tasks. An example of the proposed approach implementation to the problem of devices assignment in OCN is considered.

  18. On-board processing for telecommunications satellites

    Science.gov (United States)

    Nuspl, P. P.; Dong, G.

    1991-01-01

    In this decade, communications satellite systems will probably face dramatic challenges from alternative transmission means. To balance and overcome such competition, and to prepare for new requirements, INTELSAT has developed several on-board processing techniques, including Satellite-Switched TDMA (SS-TDMA), Satellite-Switched FDMA (SS-FDMA), several Modulators/Demodulators (Modem), a Multicarrier Multiplexer and Demodulator MCDD), an International Business Service (IBS)/Intermediate Data Rate (IDR) BaseBand Processor (BBP), etc. Some proof-of-concept hardware and software were developed, and tested recently in the INTELSAT Technical Laboratories. These techniques and some test results are discussed.

  19. Orienting and Onboarding Clinical Nurse Specialists: A Process Improvement Project.

    Science.gov (United States)

    Garcia, Mayra G; Watt, Jennifer L; Falder-Saeed, Karie; Lewis, Brennan; Patton, Lindsey

    Clinical nurse specialists (CNSs) have a unique advanced practice role. This article describes a process useful in establishing a comprehensive orientation and onboarding program for a newly hired CNS. The project team used the National Association of Clinical Nurse Specialists core competencies as a guide to construct a process for effectively onboarding and orienting newly hired CNSs. Standardized documents were created for the orientation process including a competency checklist, needs assessment template, and professional evaluation goals. In addition, other documents were revised to streamline the orientation process. Standardizing the onboarding and orientation process has demonstrated favorable results. As of 2016, 3 CNSs have successfully been oriented and onboarded using the new process. Unique healthcare roles require special focus when onboarding and orienting into a healthcare system. The use of the National Association of Clinical Nurse Specialists core competencies guided the project in establishing a successful orientation and onboarding process for newly hired CNSs.

  20. Estimation of waves and ship responses using onboard measurements

    DEFF Research Database (Denmark)

    Montazeri, Najmeh

    This thesis focuses on estimation of waves and ship responses using ship-board measurements. This is useful for development of operational safety and performance efficiency in connection with the broader concept of onboard decision support systems. Estimation of sea state is studied using a set...... of measured ship responses, a parametric description of directional wave spectra (a generalised JONSWAP model) and the transfer functions of the ship responses. The difference between the spectral moments of the measured ship responses and the corresponding theoretically calculated moments formulates a cost...... information. The model is tested on simulated data based on known unimodal and bimodal wave scenarios. The wave parameters in the output are then compared with the true wave parameters. In addition to the numerical experiments, two sets of full-scale measurements from container ships are analysed. Herein...

  1. A new model for understanding teamwork onboard: the shipmate model.

    Science.gov (United States)

    Espevik, Roar; Olsen, Olav Kjellevold

    2013-01-01

    The increasing complexity onboard a ship underline the importance of crews that are able to coordinate and cooperate with each other to facilitate task objectives through a shared understanding of resources (e.g. team members' knowledge, skills and experience), the crew's goals, and the constrains under which they work. Rotation of personnel through 24/7 shift-work schedules and replacements often put crews ina position of having little or no previous history as a team. Findings from 3 studies indicated that unfamiliar teams used less efficient coordination strategies which reduced efficiency and increased levels of stress in situations where team members where experts on task, distributed or unknown to task and environment.Implications for staffing, safety and training are discussed.

  2. Flight Hardware Virtualization for On-Board Science Data Processing

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  3. Onboard autonomous mineral detectors for Mars rovers

    Science.gov (United States)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer

  4. On-board processing of video image sequences

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Chanrion, Olivier Arnaud; Forchhammer, Søren

    2008-01-01

    and evaluated. On-board there are six video cameras each capturing images of 1024times1024 pixels of 12 bpp at a frame rate of 15 fps, thus totalling 1080 Mbits/s. In comparison the average downlink data rate for these images is projected to be 50 kbit/s. This calls for efficient on-board processing to select...

  5. Defense Threat Reduction Agency > Careers > Onboarding > Special Programs

    Science.gov (United States)

    Development Work/Life Programs Onboarding Onboarding Overview Before You Report Sponsor Program Getting Here , programs, and practices to help our employees and Service members balance work and family responsibilities . We have put in place family-friendly Work/Life programs and policies designed to create a more

  6. ON-BOARD COMPUTER SYSTEM FOR KITSAT-1 AND 2

    Directory of Open Access Journals (Sweden)

    H. S. Kim

    1996-06-01

    Full Text Available KITSAT-1 and 2 are microsatellites weighting 50kg and all the on-board data are processed by the on-board computer system. Hence, these on-board computers require to be highly reliable and be designed with tight power consumption, mass and size constraints. On-board computer(OBC systems for KITSAT-1 and 2 are also designed with a simple flexible hardware for reliability and software takes more responsibility than hardware. KITSAT-1 and 2 on-board computer system consist of OBC 186 as the primary OBC and OBC80 as its backup. OBC186 runs spacecraft operating system (SCOS which has real-time multi-tasking capability. Since their launch, OBC186 and OBC80 have been operating successfully until today. In this paper, we describe the development of OBC186 hardware and software and analyze its in-orbit operation performance.

  7. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer

  8. Memory-Efficient Onboard Rock Segmentation

    Science.gov (United States)

    Burl, Michael C.; Thompson, David R.; Bornstein, Benjamin J.; deGranville, Charles K.

    2013-01-01

    Rockster-MER is an autonomous perception capability that was uploaded to the Mars Exploration Rover Opportunity in December 2009. This software provides the vision front end for a larger software system known as AEGIS (Autonomous Exploration for Gathering Increased Science), which was recently named 2011 NASA Software of the Year. As the first step in AEGIS, Rockster-MER analyzes an image captured by the rover, and detects and automatically identifies the boundary contours of rocks and regions of outcrop present in the scene. This initial segmentation step reduces the data volume from millions of pixels into hundreds (or fewer) of rock contours. Subsequent stages of AEGIS then prioritize the best rocks according to scientist- defined preferences and take high-resolution, follow-up observations. Rockster-MER has performed robustly from the outset on the Mars surface under challenging conditions. Rockster-MER is a specially adapted, embedded version of the original Rockster algorithm ("Rock Segmentation Through Edge Regrouping," (NPO- 44417) Software Tech Briefs, September 2008, p. 25). Although the new version performs the same basic task as the original code, the software has been (1) significantly upgraded to overcome the severe onboard re source limitations (CPU, memory, power, time) and (2) "bulletproofed" through code reviews and extensive testing and profiling to avoid the occurrence of faults. Because of the limited computational power of the RAD6000 flight processor on Opportunity (roughly two orders of magnitude slower than a modern workstation), the algorithm was heavily tuned to improve its speed. Several functional elements of the original algorithm were removed as a result of an extensive cost/benefit analysis conducted on a large set of archived rover images. The algorithm was also required to operate below a stringent 4MB high-water memory ceiling; hence, numerous tricks and strategies were introduced to reduce the memory footprint. Local filtering

  9. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    Science.gov (United States)

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  10. IBIS: the imager on-board integral

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Lebrun, F.; Goldwurm, A.; Laurent, P.; Mirabel, I.F.; Vigroux, L.; Di Cocco, G.; Labanti, C.; Bird, A.J.; Broenstad, K.; La Rosa, G.; Sacco, B.; Quadrini, E.M.; Ramsey, B.; Weisskopf, M.C.; Reglero, V.; Sabau, L.; Staubert, R.; Zdziarski, A.A.

    2003-01-01

    The IBIS telescope is the high angular resolution gamma-ray imager on-board the INTEGRAL Observatory, successfully launched from Baikonur (Kazakhstan) on October 2002. This medium size ESA project, planned for a 2 year mission with possible extension to 5, is devoted to the observation of the gamma-ray sky in the energy range from 3 keV to 10 MeV (Winkler 2001). The IBIS imaging system is based on two independent solid state detector arrays optimised for low (15-1000 keV) and high (0.175-10.0 MeV) energies surrounded by an active VETO System. This high efficiency shield is essential to minimise the background induced by high energy particles in the highly ex-centric out of van Allen belt orbit. A Tungsten Coded Aperture Mask, 16 mm thick and ∼ 1 squared meter in dimension is the imaging device. The IBIS telescope will serve the scientific community at large providing a unique combination of unprecedented high energy wide field imaging capability coupled with broad band spectroscopy and high resolution timing over the energy range from X to gamma rays. To date the IBIS telescope is working nominally in orbit since more than 9 month. (authors)

  11. Digibaro pressure instrument onboard the Phoenix Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  12. Lunar Penetrating Radar onboard the Chang'e-3 mission

    International Nuclear Information System (INIS)

    Fang Guang-You; Zhou Bin; Ji Yi-Cai; Zhang Qun-Ying; Shen Shao-Xiang; Li Yu-Xi; Guan Hong-Fei; Tang Chuan-Jun; Gao Yun-Ze; Lu Wei; Ye Sheng-Bo; Han Hai-Dong; Zheng Jin; Wang Shu-Zhi

    2014-01-01

    Lunar Penetrating Radar (LPR) is one of the important scientific instruments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed

  13. LAT Onboard Science: Gamma-Ray Burst Identification

    International Nuclear Information System (INIS)

    Kuehn, Frederick; Hughes, Richard; Smith, Patrick; Winer, Brian; Bonnell, Jerry; Norris, Jay; Ritz, Steven; Russell, James

    2007-01-01

    The main goal of the Large Area Telescope (LAT) onboard science program is to provide quick identification and localization of Gamma Ray Bursts (GRB) onboard the LAT for follow-up observations by other observatories. The GRB identification and localization algorithm will provide celestial coordinates with an error region that will be distributed via the Gamma ray burst Coordinate Network (GCN). We present results that show our sensitivity to bursts as characterized using Monte Carlo simulations of the GLAST observatory. We describe and characterize the method of onboard track determination and the GRB identification and localization algorithm. Onboard track determination is considerably different than in the on-ground case, resulting in a substantially altered point spread function. The algorithm contains tunable parameters which may be adjusted after launch when real bursts characteristics at very high energies have been identified

  14. Onboard Blackbody Calibrator Component Development for IR Remote Sensing Instrumentation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this study is to apply and to provide a reliable, stable durable onboard blackbody calibrator to future Earth Science missions by infusing the new...

  15. Design of an onboard battery charger for an electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Heckford, Simon

    2001-07-01

    This report describes the design of an on-board battery charger for an electric car. There are already various battery charger units on the market. However, these are not specifically designed for this application, and consequently do not provide an ideal solution. Because these products are not specific to one application, and instead opt to cover a variety of briefs, they are not ideal. They also tend to be heavier and more expensive than if the charger was built specifically for one purpose. The main design considerations were that the charger should be compact and lightweight. It was also specified that the design should be able to operate using either the single-phase or three-phase AC supply. Before the design process for the battery charger could commence, it was necessary for the author to get an appreciation of power electronics, since he had no previous experience in the subject. The author focused his attention on areas of the subject most valuable to the project, including becoming familiar with the principle behind battery chargers. Once the required knowledge was obtained, the author could begin designing the charger. The majority of the design was actually undertaken using two software packages called MATLAB and Simulink, whilst also using the knowledge acquired. Regular discussions were had with the project team in order to ensure that the correct methodology was being used and a suitable design was duly developed. Possible further work was identified which could not be carried out within the time constraints of this project.

  16. GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Cardellach, Estel; Bandeiras, Jorge

    2016-01-01

    GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus...... of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans...

  17. Analysis of simultaneous multi-bit induced by a cosmic ray for onboard memory

    International Nuclear Information System (INIS)

    Ono, Takashi; Mori, Masato

    1987-01-01

    Accompanying the development of intelligent onboard equipment using high density memories, the soft-error phenomenon, which is the bit upset induced by a cosmic ray, must be investigated. Especially, the simultaneous multi-bit error (SME) induced by a cosmic ray negligible on earth becomes remarkable in space use. This paper entimates the SME occurrence rate of memory chip by computer simulations and describes the results of the SME experiments using a cyclotron. The computer simulation and experiment results confirm the SME occurrence and show that layout of memory cells is important for the probability of SME occurrence. (author)

  18. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    Science.gov (United States)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including

  19. Risk Mitigation for the Development of the New Ariane 5 On-Board Computer

    Science.gov (United States)

    Stransky, Arnaud; Chevalier, Laurent; Dubuc, Francois; Conde-Reis, Alain; Ledoux, Alain; Miramont, Philippe; Johansson, Leif

    2010-08-01

    In the frame of the Ariane 5 production, some equipment will become obsolete and need to be redesigned and redeveloped. This is the case for the On-Board Computer, which has to be completely redesigned and re-qualified by RUAG Space, as well as all its on-board software and associated development tools by ASTRIUM ST. This paper presents this obsolescence treatment, which has started in 2007 under an ESA contract, in the frame of ACEP and ARTA accompaniment programmes, and is very critical in technical term but also from schedule point of view: it gives the context and overall development plan, and details the risk mitigation actions agreed with ESA, especially those related to the development of the input/output ASIC, and also the on-board software porting and revalidation strategy. The efficiency of these risk mitigation actions has been proven by the outcome schedule; this development constitutes an up-to-date case for good practices, including some experience report and feedback for future other developments.

  20. MICROBIOLOGICAL EFFECTS OF ON-BOARD FISHING VESSEL HANDLING IN MERLUCCIUS MERLUCCIUS

    Directory of Open Access Journals (Sweden)

    P. Serratore

    2011-01-01

    Full Text Available The purpose of the present study was to determine the impact of different manipulation techniques applied on board fishing vessel, on the microbiological quality of the flesh of European hake (Merluccius merluccius during storage at +3°C ± 1°C for a time (T of 10 days after landing (T1-T10. Samples of fish were taken from a fishing vessel of the Adriatic Sea and from one of the Tyrrhenian Sea, treated on-board under different icing conditions: 1 a low ice/product weight ratio and 2 an optimal ice/product weight ratio, up to 1:3 (3. Spoilage bacteria as Total Bacterial Count (TBC and specific spoilage bacteria as Sulphide Producing Bacteria (SPB were enumerated in fish flesh as Colony Forming Units (CFU/g on Plate Count Agar and Lyngby Agar at 20°C for 3-5 days. TBC of the Adriatic fishes (gutted on-board resulted 103 UFC/g at T1-T6, and 104-105 at T10, whereas TBC of the Tyrrhenian fishes (not gutted on-board resulted 10-102 UFC/g at T2- T3, 103 at T6, and 104-105 at T10. SPB resulted 10- 102 UFC/g at T1-T6, and 103- 104 at T10, with absolute values higher in the Adriatic fishes, in respect with the Tyrrhenian fishes, and in the low icing conditions in respect with the optimal icing condition. At the experimented condition, the lowering of the microbiological quality of fish flesh during storage, seems to be more dependent on the gutting versus not gutting on-board practice rather than on the low versus optimal icing treatment.

  1. Spaceflight Systems Training: A Comparison and Contrasting of Techniques for Training Ground Operators and Onboard Crewmembers

    Science.gov (United States)

    Balmain, Clinton; Fleming, Mark

    2009-01-01

    When developing techniques and products for instruction on manned spaceflight systems, training organizations are often faced with two very different customers: ground operators and onboard crewmembers. Frequently, instructional development focuses on one of these customers with the assumption that the other s needs will be met by default. Experience teaches us that differing approaches are required when developing training tailored to the specific needs of each customer. As a rule, ground operators require focused instruction on specific areas of expertise. Their knowledge should be of the details of the hardware, software, and operational techniques associated with that system. They often benefit from historical knowledge of how their system has operated over its lifetime. Since several different ground operators may be interfacing with the same system, each individual operator must understand the agreed-to principles by which that system will be run. In contrast, onboard crewmembers require a more broad, hands-on awareness of their operational environment. Their training should be developed with an understanding of the physical environment in which they live and work and the day-to-day tasks they are most likely to perform. Rarely do they require a deep understanding of the details of a system; it is often sufficient to teach them just enough to maintain situational awareness and perform basic tasks associated with maintenance and operation of onboard systems. Crewmembers may also develop unique onboard operational techniques that differ from preceding crews. They should be taught what flexibility they have in systems operations and how their specific habits can be communicated to ground support personnel. This paper will explore the techniques that can be employed when developing training for these unique customers. We will explore the history of International Space Station training development and how past efforts can guide us in creating training for users of

  2. Reactive Goal Decomposition Hierarchies for On-Board Autonomy

    Science.gov (United States)

    Hartmann, L.

    2002-01-01

    As our experience grows, space missions and systems are expected to address ever more complex and demanding requirements with fewer resources (e.g., mass, power, budget). One approach to accommodating these higher expectations is to increase the level of autonomy to improve the capabilities and robustness of on- board systems and to simplify operations. The goal decomposition hierarchies described here provide a simple but powerful form of goal-directed behavior that is relatively easy to implement for space systems. A goal corresponds to a state or condition that an operator of the space system would like to bring about. In the system described here goals are decomposed into simpler subgoals until the subgoals are simple enough to execute directly. For each goal there is an activation condition and a set of decompositions. The decompositions correspond to different ways of achieving the higher level goal. Each decomposition contains a gating condition and a set of subgoals to be "executed" sequentially or in parallel. The gating conditions are evaluated in order and for the first one that is true, the corresponding decomposition is executed in order to achieve the higher level goal. The activation condition specifies global conditions (i.e., for all decompositions of the goal) that need to hold in order for the goal to be achieved. In real-time, parameters and state information are passed between goals and subgoals in the decomposition; a termination indication (success, failure, degree) is passed up when a decomposition finishes executing. The lowest level decompositions include servo control loops and finite state machines for generating control signals and sequencing i/o. Semaphores and shared memory are used to synchronize and coordinate decompositions that execute in parallel. The goal decomposition hierarchy is reactive in that the generated behavior is sensitive to the real-time state of the system and the environment. That is, the system is able to react

  3. The end-to-end testbed of the optical metrology system on-board LISA Pathfinder

    Energy Technology Data Exchange (ETDEWEB)

    Steier, F; Cervantes, F Guzman; Marin, A F GarcIa; Heinzel, G; Danzmann, K [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Universitaet Hannover (Germany); Gerardi, D, E-mail: frank.steier@aei.mpg.d [EADS Astrium Satellites GmbH, Friedrichshafen (Germany)

    2009-05-07

    LISA Pathfinder is a technology demonstration mission for the Laser Interferometer Space Antenna (LISA). The main experiment on-board LISA Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to measure the differential acceleration between two free-falling test masses with an accuracy of 3 x 10{sup -14} ms{sup -2} Hz{sup -1/2} between 1 mHz and 30 mHz. This measurement is performed interferometrically by the optical metrology system (OMS) on-board LISA Pathfinder. In this paper, we present the development of an experimental end-to-end testbed of the entire OMS. It includes the interferometer and its sub-units, the interferometer backend which is a phasemeter and the processing of the phasemeter output data. Furthermore, three-axes piezo-actuated mirrors are used instead of the free-falling test masses for the characterization of the dynamic behaviour of the system and some parts of the drag-free and attitude control system (DFACS) which controls the test masses and the satellite. The end-to-end testbed includes all parts of the LTP that can reasonably be tested on earth without free-falling test masses. At its present status it consists mainly of breadboard components. Some of those have already been replaced by engineering models of the LTP experiment. In the next steps, further engineering and flight models will also be inserted in this testbed and tested against well-characterized breadboard components. The presented testbed is an important reference for the unit tests and can also be used for validation of the on-board experiment during the mission.

  4. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  5. The on-board data handling system of the AFIS-P mission

    Energy Technology Data Exchange (ETDEWEB)

    Gaisbauer, Dominic; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Meng, Lingxin; Paul, Stephan; Poeschl, Thomas [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Renker, Dieter [Physics Department E17, Technische Universitaet Muenchen (Germany)

    2014-07-01

    The Antiproton Flux in Space experiment (AFIS) is a novel particle detector comprised of silicon photomultipliers and scintillating plastic fibers. Its purpose is to measure the trapped antiproton flux in low Earth orbit. To test the detector and the data acquisition system, a prototype detector will be flown aboard a high altitude research balloon as part of the REXUS/BEXUS program by the German Aerospace Center (DLR). This talk presents the on-board data handling system and the ground support equipment of AFIS-P. It will also highlight the data handling algorithms developed and used for the mission.

  6. Get Your Hotel Operations Team Onboard The Tricycle of Guest Service

    OpenAIRE

    Kennedy, Doug

    2018-01-01

    As hospitality industry trainers know, using symbols and models can help trainees grasp abstract concepts and make seemingly-complex paradigms easy to understand. Seems like is a good time for the hotel industry to update its model, so let’s get your team onboard The Tricycle of Guest Service. When you think about it, a tricycle is a perfect model for a positive guest experience. For one, it has three wheels, just like the three components of a memorable guest stay. The back wheels repres...

  7. High-G Survivability of an Unpotted Onboard Recorder

    Science.gov (United States)

    2017-10-01

    UNCLASSIFIED UNCLASSIFIED AD-E403 949 Technical Report ARMET-TR-16081 HIGH -G SURVIVABILITY OF AN UNPOTTED ONBOARD RECORDER...Arsenal, New Jersey UNCLASSIFIED UNCLASSIFIED The views, opinions, and/or findings contained in this report are those...documentation. The citation in this report of the names of commercial firms or commercially available products or services does not constitute

  8. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  9. On-Board Mining in the Sensor Web

    Science.gov (United States)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans

  10. Spacelab Life Science-1 Mission Onboard Photograph

    Science.gov (United States)

    1995-01-01

    Spacelab Life Science -1 (SLS-1) was the first Spacelab mission dedicated solely to life sciences. The main purpose of the SLS-1 mission was to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight, to investigate the consequences of the body's adaptation to microgravity and readjustment to Earth's gravity, and bring the benefits back home to Earth. The mission was designed to explore the responses of the heart, lungs, blood vessels, kidneys, and hormone-secreting glands to microgravity and related body fluid shifts; examine the causes of space motion sickness; and study changes in the muscles, bones, and cells. This photograph shows astronaut Rhea Seddon conducting an inflight study of the Cardiovascular Deconditioning experiment by breathing into the cardiovascular rebreathing unit. This experiment focused on the deconditioning of the heart and lungs and changes in cardiopulmonary function that occur upon return to Earth. By using noninvasive techniques of prolonged expiration and rebreathing, investigators can determine the amount of blood pumped out of the heart (cardiac output), the ease with which blood flows through all the vessels (total peripheral resistance), oxygen used and carbon dioxide released by the body, and lung function and volume changes. SLS-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-40) on June 5, 1995.

  11. STS-50 USML-1, Onboard Photograph

    Science.gov (United States)

    1992-01-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Astroculture experiment rack in the middeck of the orbiter. The Astroculture experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water, as well as lower the costs of removing carbon dioxide in human space habitats. The USML-1 flew aboard the STS-50 mission on June 1992 and was managed by the Marshall Space Flight Center.

  12. Spacelab-3 (STS-51B) Onboard Photograph

    Science.gov (United States)

    1985-01-01

    The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew performed research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new minilabs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. In this photograph, astronaut Don Lind observes the mercuric iodide growth experiment through a microscope at the vapor crystal growth furnace. The goals of this investigation were to grow near-perfect single crystals of mercuric iodide and to gain improved understanding of crystal growth by a vapor process. Mercuric iodide crystals have practical use as sensitive x-ray and gamma-ray detectors, and in portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications in diagnosis and therapy, and in astronomical instruments. Managed by the Marshall Space Flight Center, Spacelab-3 (STS-51B) was launched aboard the Space Shuttle Orbiter Challenger on April 29, 1985.

  13. Onboard Decision Making For a New Class of AUV Science

    Science.gov (United States)

    Rajan, K.; McGann, C.; Py, F.; Thomas, H.; Henthorn, R.; McEwen, R.

    2007-12-01

    Autonomous Underwater Vehicles (AUVs) are an increasingly important tool for oceanographic research. They routinely and cost effectively sample the water column at depths far beyond what humans are capable of visiting. However, control of these platforms has relied on fixed sequences for execution of pre-planned actions limiting their effectiveness for measuring dynamic and episodic ocean phenomenon. At the Monterey Bay Aquarium Research Institute (MBARI), we are developing an advanced Artificial Intelligence (AI) based control system to enable our AUV's to dynamically adapt to the environment by deliberating in-situ about mission plans while tracking onboard resource consumption, dealing with plan failures by allowing dynamic re-planning and being cognizant of vehicle health and safety in the course of executing science plans. Existing behavior-based approaches require an operator to script plans a priori while anticipating where and how the vehicle will transect the water column. While adequate for current needs to do routine pre-defined transects, it has limited flexibility in dealing with opportunistic science needs, is unable to deal with uncertainty in the oceanic environment and puts undue burden on the mission operators to manage complex interactions between behaviors. Our approach, informed by a decades worth of experience in intelligent control of NASA spacecraft, uses a constraint-based representation to manage mission goals, react to exogenous or endogenous failure conditions, respond to sensory feedback by using AI-based search techniques to sort thru a space of likely responses and picking one which is satisfies the completion of mission goals. The system encapsulates the long-standing notion of a sense-deliberate-act cycle at the heart of a control loop and reflects the goal-oriented nature of control allowing operators to specify abstract mission goals rather than detailed command sequences. To date we have tested T- REX (the Teleo

  14. Identifying Onboarding Heuristics for Free-to-Play Mobile Games: A Mixed Methods Approach

    DEFF Research Database (Denmark)

    Thomsen, Line Ebdrup; Weigert Petersen, Falko; Mirza-Babaei, Pejman

    2016-01-01

    The onboarding phase of Free-to-Play mobile games, covering the first few minutes of play, typically sees a substantial retention rate amongst players. It is therefore crucial to the success of these games that the onboarding phase promotes engagement to the widest degree possible. In this paper ...... of puzzle games, base builders and arcade games, and utilize different onboarding phase design approaches. Results showcase how heuristics can be used to design engaging onboarding phases in mobile games....

  15. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    Science.gov (United States)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; hide

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  16. Development of Onboard Computer Complex for Russian Segment of ISS

    Science.gov (United States)

    Branets, V.; Brand, G.; Vlasov, R.; Graf, I.; Clubb, J.; Mikrin, E.; Samitov, R.

    1998-01-01

    Report present a description of the Onboard Computer Complex (CC) that was developed during the period of 1994-1998 for the Russian Segment of ISS. The system was developed in co-operation with NASA and ESA. ESA developed a new computation system under the RSC Energia Technical Assignment, called DMS-R. The CC also includes elements developed by Russian experts and organizations. A general architecture of the computer system and the characteristics of primary elements of this system are described. The system was integrated at RSC Energia with the participation of American and European specialists. The report contains information on software simulators, verification and de-bugging facilities witch were been developed for both stand-alone and integrated tests and verification. This CC serves as the basis for the Russian Segment Onboard Control Complex on ISS.

  17. Optimization of Planck-LFI on-board data handling

    Energy Technology Data Exchange (ETDEWEB)

    Maris, M; Galeotta, S; Frailis, M; Zacchei, A; Fogliani, S; Gasparo, F [INAF-OATs, Via G.B. Tiepolo 11, 34131 Trieste (Italy); Tomasi, M; Bersanelli, M [Universita di Milano, Dipartimento di Fisica, Via G. Celoria 16, 20133 Milano (Italy); Miccolis, M [Thales Alenia Space Italia S.p.A., S.S. Padana Superiore 290, 20090 Vimodrone (Italy); Hildebrandt, S; Chulani, H; Gomez, F [Instituto de Astrofisica de Canarias (IAC), C/o Via Lactea, s/n E38205 - La Laguna, Tenerife (Spain); Rohlfs, R; Morisset, N; Binko, P [ISDC Data Centre for Astrophysics, University of Geneva, ch. d' Ecogia 16, 1290 Versoix (Switzerland); Burigana, C; Butler, R C; Cuttaia, F; Franceschi, E [INAF-IASF Bologna, Via P. Gobetti, 101, 40129 Bologna (Italy); D' Arcangelo, O, E-mail: maris@oats.inaf.i [IFP-CNR, via Cozzi 53, 20125 Milano (Italy)

    2009-12-15

    To asses stability against 1/f noise, the Low Frequency Instrument (LFI) on-board the Planck mission will acquire data at a rate much higher than the data rate allowed by the science telemetry bandwith of 35.5 Kbps. The data are processed by an on-board pipeline, followed on-ground by a decoding and reconstruction step, to reduce the volume of data to a level compatible with the bandwidth while minimizing the loss of information. This paper illustrates the on-board processing of the scientific data used by Planck/LFI to fit the allowed data-rate, an intrinsecally lossy process which distorts the signal in a manner which depends on a set of five free parameters (N{sub aver}, r{sub 1}, r{sub 2}, q, O) for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the on-board processing as a function of these parameters. It describes the method of tuning the on-board processing chain to cope with the limited bandwidth while keeping to a minimum the signal distortion. Tuning is sensitive to the statistics of the signal and has to be constantly adapted during flight. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, pre-launch tests or data taken in flight from LFI operating in a special diagnostic acquisition mode. All the needed optimization steps are performed by an automated tool, OCA2, which simulates the on-board processing, explores the space of possible combinations of parameters, and produces a set of statistical indicators, among them: the compression rate C{sub r} and the processing noise epsilon{sub Q}. For Planck/LFI it is required that C{sub r} = 2.4 while, as for other systematics, epsilon{sub Q} would have to be less than 10% of rms of the instrumental white noise. An analytical model is developed that is able to extract most of the relevant information on the processing errors and the compression rate as a function of the signal

  18. Development of on-board fuel metering and sensing system

    Science.gov (United States)

    Hemanth, Y.; Manikanta, B. S. S.; Thangaraja, J.; Bharanidaran, R.

    2017-11-01

    Usage of biodiesel fuels and their blends with diesel fuel has a potential to reduce the tailpipe emissions and reduce the dependence on crude oil imports. Further, biodiesel fuels exhibit favourable greenhouse gas emission and energy balance characteristics. While fossil fuel technology is well established, the technological implications of biofuels particularly biodiesel is not clearly laid out. Hence, the objective is to provide an on-board metering control in selecting the different proportions of diesel and bio-diesel blends. An on-board fuel metering system is being developed using PID controller, stepper motors and a capacitance sensor. The accuracy was tested with the blends of propanol-1, diesel and are found to be within 1.3% error. The developed unit was tested in a twin cylinder diesel engine with biodiesel blended diesel fuel. There was a marginal increase (5%) in nitric oxide and 14% increase in smoke emission with 10% biodiesel blended diesel at part load conditions.

  19. Onboard radiation shielding estimates for interplanetary manned missions

    International Nuclear Information System (INIS)

    Totemeier, A.; Jevremovic, T.; Hounshel, D.

    2004-01-01

    The main focus of space related shielding design is to protect operating systems, personnel and key structural components from outer space and onboard radiation. This paper summarizes the feasibility of a lightweight neutron radiation shield design for a nuclear powered, manned space vehicle. The Monte Carlo code MCNP5 is used to determine radiation transport characteristics of the different materials and find the optimized shield configuration. A phantom torso encased in air is used to determine a dose rate for a crew member on the ship. Calculation results indicate that onboard shield against neutron radiation coming from nuclear engine can be achieved with very little addition of weight to the space vehicle. The selection of materials and neutron transport analysis as presented in this paper are useful starting data to design shield against neutrons generated when high-energy particles from outer space interact with matter on the space vehicle. (authors)

  20. Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

    Science.gov (United States)

    Trumbauer, Eric Michael

    This research develops automated, on-board trajectory planning algorithms in order to support current and new mission concepts. These include orbiter missions to Phobos or Deimos, Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem from the limited on-board computing resources which restrict full trajectory optimization with guaranteed convergence in complex dynamical environments. The approach taken consists of leveraging pre-mission computations to create a large database of pre-computed orbits and arcs. Such a database is used to generate a discrete representation of the dynamics in the form of a directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-board in order to provide good approximate solutions to the path planning problem. Coupled with robust differential correction and optimization techniques, this enables the determination of an efficient path between any boundary conditions with very little time and computing effort. Furthermore, the optimization methods developed here based on sequential convex programming are shown to have provable convergence properties, as well as generating feasible major iterates in case of a system interrupt -- a key requirement for on-board application. The outcome of this project is thus the development of an algorithmic framework which allows the deployment of this approach in a variety of specific mission contexts. Test cases related to missions of interest to NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated, including the results of an implementation on the RAD750 flight processor. This method fills a gap in the toolbox being developed to create fully autonomous space exploration systems.

  1. Experimental study on ceramic membrane technology for onboard oxygen generation

    OpenAIRE

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure d...

  2. MOBS - A modular on-board switching system

    Science.gov (United States)

    Berner, W.; Grassmann, W.; Piontek, M.

    The authors describe a multibeam satellite system that is designed for business services and for communications at a high bit rate. The repeater is regenerative with a modular onboard switching system. It acts not only as baseband switch but also as the central node of the network, performing network control and protocol evaluation. The hardware is based on a modular bus/memory architecture with associated processors.

  3. STS-59 crewmembers in training for onboard Earth observations

    Science.gov (United States)

    1993-01-01

    The six astronauts in training for the STS-59 mission are shown onboard Earth observations tips by Justin Wilkinson (standing, foreground) of the Space Shuttle Earth Observations Project (SSEOP) group. Astronaut Sidney M. Gutierrez, mission commander, is at center on the left side of the table. Others, left to right, are Astronauts Kevin P. Chilton, pilot; Jerome (Jay) Apt and Michael R.U. (Rich) Clifford, both mission specialists; Linda M. Godwin, payload commander; and Thomas D. Jones, mission specialist.

  4. Radiation dosimetry onboard the International Space Station ISS

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Thomas [German Aerospace Center - DLR, Inst. of Aerospace Medicine, Radiation Biology, Cologne (Germany)

    2008-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as 'operational' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on 'scientific' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  5. Radiation dosimetry onboard the International Space Station ISS

    International Nuclear Information System (INIS)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as ''operational'' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on ''scientific'' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  6. Weather-enabled future onboard surveillance and navigation systems

    Science.gov (United States)

    Mutuel, L.; Baillon, B.; Barnetche, B.; Delpy, P.

    2009-09-01

    With the increasing traffic and the development of business trajectories, there is a widespread need to anticipate any adverse weather conditions that could impact the performance of the flight or to use of atmospheric parameters to optimize trajectories. Current sensors onboard air transport are challenged to provide the required service, while new products for business jets and general aviation open the door to innovative assimilation of weather information in onboard surveillance and navigation. The paper aims at surveying current technology available to air transport aircraft and pointing out their shortcomings in view of the modernization proposed in SESAR and NextGen implementation plans. Foreseen innovations are then illustrated via results of ongoing research like FLYSAFE or standardization efforts, in particular meteorological datalink services and impact on Human-Machine Interface. The paper covers the operational need to avoid adverse weather like thunderstorm, icing, turbulence, windshear and volcanic ash, but also the requirement to control in 4D the trajectory through the integration of wind and temperature grids in the flight management. The former will lead to enhanced surveillance systems onboard the aircraft with new displays and new alerting schemes, ranging from targeted information supporting better re-planning to auto-escape strategies. The latter will be standard in next generation flight management systems. Finally both will rely on ATM products that will also assimilate weather information so that situational awareness is shared and decision is collaborative.

  7. Applied Questions of Onboard Laser Radar Equipment Development

    Directory of Open Access Journals (Sweden)

    E. I. Starovoitov

    2015-01-01

    Full Text Available During development of the spacecraft laser radar systems (LRS it is a problem to make a choice of laser sources and photo-detectors both because of their using specifics in onboard equipment and because of the limited number of domestic and foreign manufacturers.Previous publications did not consider in detail the accuracy versus laser pulse repetition frequency, the impact of photo-detector sensitivity and dynamic range on the LRS characteristics, and the power signal-protected photo-detector against overload.The objective of this work is to analyze how the range, accuracy, and reliability of onboard LRS depend on different types of laser sources and photo-detectors, and on availability of electromechanical optical attenuator.The paper describes design solutions that are used to compensate for a decreased sensitivity of photo-detector and an impact of these changes on the LRS characteristics.It is shown that due to the high pulse repetition frequency a fiber laser is the preferred type of a laser source in onboard LRS, which can be used at ranges less than 500 m for two purposes: determining the orientation of the passive spacecraft with the accuracy of 0.3 and measuring the range rate during the rendezvous of spacecrafts with an accuracy of 0.003... 0.006 m/s.The work identifies the attenuation level of the optical attenuator versus measured range. In close proximity to a diffusely reflecting passive spacecraft and a corner reflector this attenuator protects photo-detector. It is found that the optical attenuator is advisable to apply when using the photo-detector based on an avalanche photodiode. There is no need in optical attenuator (if a geometric factor is available in the case of sounding corner reflector when a photo-detector based on pin-photodiode is used. Exclusion of electromechanical optical attenuator can increase the reliability function of LRS from Р (t = 0.9991 to Р (t = 0.9993.The results obtained in this work can be used

  8. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    Science.gov (United States)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  9. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  10. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    Directory of Open Access Journals (Sweden)

    Yaodong Xing

    2012-08-01

    Full Text Available Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can’t be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  11. Dose characteristics and LET spectra on and inside the spherical phantom onboard of ISS

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Brabcova, K.; Mrazova, Z.; Spurny, F.; Shurshakov, V.A.; Kartsev, I.S.; Tolochek, R.V.

    2010-01-01

    To estimate the radiation risk of spacecraft crew during the mission, it is necessary to measure dose distribution at various compartments, on and inside the human body that can be simulated using various phantoms. Due to some convenient characteristics (especially small weight and dimensions), passive detectors are used to measure dosimetric quantities onboard spacecraft. This contribution deals with the measurement of dosimetric characteristics and spectra of linear energy transfer (LET) onboard the International Space Station (ISS) during two experiments with tissue-equivalent spherical Russian phantom MATROSHKA-R realized in years 2006 and 2008. To obtain LET spectra, total absorbed doses, and dose equivalents, we used combination of plastic nuclear track detectors and thermoluminescence detectors. The detectors were placed at various locations on the surface of the MATROSHKA-R phantom; some detectors were also inserted inside this phantom. The variation of dosimetric quantities obtained during both missions is discussed. The dose characteristics vary with the position of the detectors on or inside the phantom; the absorbed dose and dose equivalent can differ almost twice.

  12. Productivity of Mizuna Cultivated in the Space Greenhouse Onboard the Russian Module of the Iss

    Science.gov (United States)

    Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Bingham, Gail; Moukhamedieva, Lana

    As stipulated by the science program of research into the processes of growth, development, metabolism and reproduction of higher plants in microgravity in view of their potential use in advanced life support systems, five experiments on Mizuna plants (Brassica rapa var. nipponisica) were performed using the Lada space greenhouse onboard the ISS Russian Module (RM) during Expeditions ISS-5, 17 and 20-22. One of the goals of the experiments was to evaluate the productivity of Mizuna plants grown at different levels of ISS RM air contamination. Mizuna plants were cultivated for 31 - 36 days when exposed to continuous illumination. The root growing medium was made of Turface enriched with a controlled release fertilizer Osmocote. In the course of the flight experiments major parameters of plant cultivation, total level of ISS RM air contamination and plant microbiological status were measured. The grown plants were returned to Earth as fresh or frozen samples. After the three last vegetation cycles the plants were harvested, packed and frozen at -80 0C in the MELFI freezer on the ISS U.S. Module and later returned to Earth onboard Space Shuttle. It was found that the productivity and morphometric (e.g., plant height and mass, number of leaves) parameters of the plants grown in space did not differ from those seen in ground controls. The T coefficient, which represents the total contamination level of ISS air), was 4 (ISS-5), 22 (ISS-17), 55 (ISS-20), 22 (ISS-21) and 28 (ISS-22) versus the norm of no more than 5. In summary, a significant increase in the total contamination level of the ISS RM air did not reduce the productivity of the leaf vegetable plant used in the flight experiments.

  13. HTML 5 Displays for On-Board Flight Systems

    Science.gov (United States)

    Silva, Chandika

    2016-01-01

    During my Internship at NASA in the summer of 2016, I was assigned to a project which dealt with developing a web-server that would display telemetry and other system data using HTML 5, JavaScript, and CSS. By doing this, it would be possible to view the data across a variety of screen sizes, and establish a standard that could be used to simplify communication and software development between NASA and other countries. Utilizing a web- approach allowed us to add in more functionality, as well as make the displays more aesthetically pleasing for the users. When I was assigned to this project my main task was to first establish communication with the current display server. This display server would output data from the on-board systems in XML format. Once communication was established I was then asked to create a dynamic telemetry table web page that would update its header and change as new information came in. After this was completed, certain minor functionalities were added to the table such as a hide column and filter by system option. This was more for the purpose of making the table more useful for the users, as they can now filter and view relevant data. Finally my last task was to create a graphical system display for all the systems on the space craft. This was by far the most challenging part of my internship as finding a JavaScript library that was both free and contained useful functions to assist me in my task was difficult. In the end I was able to use the JointJs library and accomplish the task. With the help of my mentor and the HIVE lab team, we were able to establish stable communication with the display server. We also succeeded in creating a fully dynamic telemetry table and in developing a graphical system display for the advanced modular power system. Working in JSC for this internship has taught me a lot about coding in JavaScript and HTML 5. I was also introduced to the concept of developing software as a team, and exposed to the different

  14. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Arai, Takehiko; Nakamura, Tomoki; Tanaka, Satoshi; Demura, Hirohide; Ogawa, Yoshiko; Sakatani, Naoya; Horikawa, Yamato; Senshu, Hiroki; Fukuhara, Tetsuya; Okada, Tatsuaki

    2017-07-01

    The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity ɛ , surface roughness, and thermal inertia Γ, through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (50 mm × 2 mm in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1°C (3σ standard deviation) for the temperature range of 30 to 100°C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 °C (1σ ) for each pixel at a target temperature of 50°C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051°C (328 × 248 pixels). There were spatial distributions with a temperature variation of 3°C at the setting

  15. Biomedical program of the ALTAÏR french russian flight onboard the MIR station

    Science.gov (United States)

    André-Deshays, C.; Haigneré, J. P.; Guell, A.; Marsal, O.; Suchet, L.; Kotovskaya, A.; Gratchev, V.; Noskin, A.; Grigoriev, A.

    One year after the achievemant of the 2 weeks ANTARES french-russian mission in the MIR station in July 1992, a 22 days ALTAÏR mission with a french cosmonaut has been performed in July 1993, making use of the scientific payload remaining on board. Taking benefit of the analysis of the previous mission, the experimental protocols were adapted to refine scientific objectives and gave to the scientists the opportunity to enhance quantitatively and qualitatively their results. The french biomedical program, conducted in close scientific cooperation with IMBP and associated laboratories, was composed of 8 experiments out of which 2 were new with regards to the ANTARES program. In the field of cardio-vascular physiology and fluid regulation, the experiments: ORTHOSTATISME, DIURESE have been renewed and complemented by the TISSU experiment (proposed by a german scientist) and a real-time tele-assistance program using US echography technic and ground support from the french CADMOS support control center located in Toulouse. With respect to neurosciences objectives, to the experiments VIMINAL (cognitive processes) and ILLUSIONS (study of proprioceptives cues), was added the SYNERGIES experiment to analyse the postural adjustements during movement. The IMMUNOLOGIE experiment carried on and the radiobiological experiment BIODOSE ended. Adding the results of the 2 missions ANTARES and ALTAÏR, and the data obtained in between onboard with russian cosmonauts, the scientists have received a wealth of physiological data and gained reproducibility and confidence in their results.

  16. Biomedical program of the ALTAIR french russian flight onboard the MIR station.

    Science.gov (United States)

    Andre-Deshays, C; Haignere, J P; Guell, A; Marsal, O; Suchet, L; Kotovskaya, A; Gratchev, V; Noskin, A; Grigoriev, A

    1995-01-01

    One year after the achievement of the 2 weeks ANTARES french-russian mission in the MIR station in July 1992, a 22 days ALTAIR mission with a french cosmonaut has been performed in July 1993, making use of the scientific payload remaining on board. Taking benefit of the analysis of the previous mission, the experimental protocols were adapted to refine scientific objectives and gave to the scientists the opportunity to enhance quantitatively and qualitatively their results. The french biomedical program, conducted in close scientific cooperation with IMBP and associated laboratories, was composed of 8 experiments out of which 2 were new with regards to the ANTARES program. In the field of cardio-vascular physiology and fluid regulation, the experiments: ORTHOSTATISME, DIURESE have been renewed and complemented by the TISSU experiment (proposed by a german scientist) and a real-time tele-assistance program using US echography technic and ground support from the french CADMOS support control center located in Toulouse. With respect to neurosciences objectives, to the experiments VIMINAL (cognitive processes) and ILLUSIONS (study of proprioceptives cues), was added the SYNERGIES experiment to analyse the postural adjustments during movement. The IMMUNOLOGIE experiment carried on and the radiobiological experiment BIODOSE ended. Adding the results of the 2 missions ANTARES and ALTAIR, and the data obtained in between onboard with russian cosmonauts, the scientists have received a wealth of physiological data and gained reproducibility and confidence in their results.

  17. Biological quarantine on international waters: an initiative for onboard protocols

    Science.gov (United States)

    Takano, Yoshinori; Yano, Hajime; Funase, Ryu; Sekine, Yasuhito; Takai, Ken

    2012-07-01

    The research vessel Chikyu is expanding new frontiers in science, technology, and international collaboration through deep-sea expedition. The Chikyu (length: 210 m, gross tonnage: 56752 tons) has advanced and comprehensive scientific research facilities. One of the scientific purposes of the vessel is to investigate into unexplored biosphere (i.e., undescribed extremophiles) on the Earth. Therefore, "the onboard laboratory" provides us systematic microbiological protocols with a physical containment situation. In parallel, the onboard equipments provide sufficient space for fifty scientists and technical support staff. The helicopter deck also supports various logistics through transporting by a large scale helicopter (See, http://www.jamstec.go.jp/chikyu/eng/). Since the establishment of Panel on Planetary Protection (PPP) in Committee on Space Research (COSPAR), we have an international consensus about the development and promulgation of planetary protection knowledge, policy, and plans to prevent the harmful effects of biological contamination on the Earth (e.g., Rummel, 2002). However, the matter to select a candidate location of initial quarantine at BSL4 level is often problematic. To answer the key issue, we suggest that international waters can be a meaningful option with several advantages to conduct initial onboard-biological quarantine investigation. Hence, the research vessel Chikyu is promising for further PPP requirements (e.g., Enceladus sample return project: Tsou et al., 2012). Rummel, J., Seeking an international consensus in planetary protection: COSPAR's planetary protection panel. Advances in Space Research, 30, 1573-1575 (2002). Tsou, P. et al. LIFE: Life Investigation For Enceladus - A Sample Return Mission Concept in Search for Evidence of Life. Astrobiology, in press.

  18. Onboard Data Processors for Planetary Ice-Penetrating Sounding Radars

    Science.gov (United States)

    Tan, I. L.; Friesenhahn, R.; Gim, Y.; Wu, X.; Jordan, R.; Wang, C.; Clark, D.; Le, M.; Hand, K. P.; Plaut, J. J.

    2011-12-01

    Among the many concerns faced by outer planetary missions, science data storage and transmission hold special significance. Such missions must contend with limited onboard storage, brief data downlink windows, and low downlink bandwidths. A potential solution to these issues lies in employing onboard data processors (OBPs) to convert raw data into products that are smaller and closely capture relevant scientific phenomena. In this paper, we present the implementation of two OBP architectures for ice-penetrating sounding radars tasked with exploring Europa and Ganymede. Our first architecture utilizes an unfocused processing algorithm extended from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS, Jordan et. al. 2009). Compared to downlinking raw data, we are able to reduce data volume by approximately 100 times through OBP usage. To ensure the viability of our approach, we have implemented, simulated, and synthesized this architecture using both VHDL and Matlab models (with fixed-point and floating-point arithmetic) in conjunction with Modelsim. Creation of a VHDL model of our processor is the principle step in transitioning to actual digital hardware, whether in a FPGA (field-programmable gate array) or an ASIC (application-specific integrated circuit), and successful simulation and synthesis strongly indicate feasibility. In addition, we examined the tradeoffs faced in the OBP between fixed-point accuracy, resource consumption, and data product fidelity. Our second architecture is based upon a focused fast back projection (FBP) algorithm that requires a modest amount of computing power and on-board memory while yielding high along-track resolution and improved slope detection capability. We present an overview of the algorithm and details of our implementation, also in VHDL. With the appropriate tradeoffs, the use of OBPs can significantly reduce data downlink requirements without sacrificing data product fidelity. Through the development

  19. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    Science.gov (United States)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system

  20. On-board cryogenic system for magnetic levitation of trains

    Energy Technology Data Exchange (ETDEWEB)

    Baldus, S A.W.; Kneuer, R; Stephan, A

    1975-02-01

    An experimental car based on electrodynamic levitation with superconducting magnets was developed and manufactured with an on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. Processes and components are discussed, and a brief description of the first results for the whole system under simulation conditions is given.

  1. On-board image compression for the RAE lunar mission

    Science.gov (United States)

    Miller, W. H.; Lynch, T. J.

    1976-01-01

    The requirements, design, implementation, and flight performance of an on-board image compression system for the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft are described. The image to be compressed is a panoramic camera view of the long radio astronomy antenna booms used for gravity-gradient stabilization of the spacecraft. A compression ratio of 32 to 1 is obtained by a combination of scan line skipping and adaptive run-length coding. The compressed imagery data are convolutionally encoded for error protection. This image compression system occupies about 1000 cu cm and consumes 0.4 W.

  2. MARES: Navigation, Control and On-board Software

    OpenAIRE

    Aníbal Matos; Nuno Cruz

    2009-01-01

    MARES, or Modular Autonomous Robot for Environment Sampling, is a 1.5m long AUV, designed and built by the Ocean Systems Group. The vehicle can be programmed to follow predefined trajectories, while collecting relevant data with the onboard sensors. MARES can dive up to 100m deep, and unlike similar-sized systems, has vertical thrusters to allow for purely vertical motion in the water column. Forward velocity can be independently defined, from 0 to 2 m/s. Major application areas include pollu...

  3. On-board cryogenic system for magnetic levitation of trains

    International Nuclear Information System (INIS)

    Asztalos, St.; Baldus, W.; Kneuer, R.; Stephan, A.

    1974-01-01

    An experimental car based on electrodynamic levitation with superconducting magnets has been developed and manufactured by AEG, BBC, Siemens and other partners, together with Linde AG as the firm responsible for the on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotatable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. This paper reports on processes and components. A brief description of the first results for the whole system under simulation conditions is given. (author)

  4. Applying CASE Tools for On-Board Software Development

    Science.gov (United States)

    Brammer, U.; Hönle, A.

    For many space projects the software development is facing great pressure with respect to quality, costs and schedule. One way to cope with these challenges is the application of CASE tools for automatic generation of code and documentation. This paper describes two CASE tools: Rhapsody (I-Logix) featuring UML and ISG (BSSE) that provides modeling of finite state machines. Both tools have been used at Kayser-Threde in different space projects for the development of on-board software. The tools are discussed with regard to the full software development cycle.

  5. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    Science.gov (United States)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  6. On-board system for physical and microphysical measurements

    International Nuclear Information System (INIS)

    Ravaut, M.; Allet, C.; Dole, B.; Gribkoff, A.; Schibler, P.; Charpentier, C.

    1981-10-01

    This report presents the system of physical and microphysical measurement instrumentation on board the HUREL-DUBOIS HD 34 aircraft, built in cooperation with the Institut National d'Astronomie et de Geophysique (I.N.A.G.) and the Institut Geographique National (I.G.N.). The feasibility study of the system was carried out in the first half of 1978 and took shape in an on-site proving campaign in November 1979. As a result, the on-board system was able to participate in the BUGEY experimental campaign of March 1980, a glimpse of which is given in this report [fr

  7. Onboard calibration and monitoring for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2012-01-01

    The SWIFT (Stratospheric Wind Interferometer for Transport studies) instrument is a proposed space-based field-widened Doppler Michelson interferometer designed to measure stratospheric winds and ozone densities using a passive optical technique called Doppler Michelson imaging interferometry. The onboard calibration and monitoring procedures for the SWIFT instrument are described in this paper. Sample results of the simulations of onboard calibration measurements are presented and discussed. This paper also discusses the results of the derivation of the calibrations and monitoring requirements for the SWIFT instrument. SWIFT's measurement technique and viewing geometry are briefly described. The reference phase calibration and filter monitoring for the SWIFT instrument are two of the main critical design issues. In this paper it is shown that in order to meet SWIFT's science requirements, Michelson interferometer optical path difference monitoring corresponding to a phase calibration accuracy of ∼10 −3 radians, filter passband monitoring corresponding to phase accuracy of ∼5 × 10 −3 radians and a thermal stability of 10 −3 K s −1 are required. (paper)

  8. Tuning the Solar Dynamics Observatory Onboard Kalman Filter

    Science.gov (United States)

    Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin

    2017-01-01

    The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.

  9. [Construction and application of an onboard absorption analyzer device for CDOM].

    Science.gov (United States)

    Lin, Jun-Fang; Sun, Zhao-Hua; Cao, Wen-Xi; Hu, Shui-Bo; Xu, Zhan-Tang

    2013-04-01

    Colored dissolved organic matter (CDOM) plays an important role in marine ecosystems. In order to solve the current problems in measurement of CDOM absorption, an automated onboard analyzer based on liquid core waveguides (Teflon AF LWCC/LCW) was constructed. This analyzer has remarkable characteristics including adjusted optical pathlength, wide measurement range, and high sensitivity. The model of filtration and injection can implement the function of automated filtration, sample injection, and LWCC cleaning. The LabVIEW software platform can efficiently control the running state of the analyzer and acquire real time data including light absorption spectra, GPS data, and CTW data. By the comparison experiments and shipboard measurements, it was proved that the analyzer was reliable and robust.

  10. Flight Hardware Virtualization for On-Board Science Data Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  11. Possibilities of reduction of the on-board energy for an innovative subway

    OpenAIRE

    Allègre, A-L.; Barrade, P.; Delarue, P.; Bouscayrol, A.; Chattot, E.; El-Fassi, S.

    2009-01-01

    An innovative subway has been proposed using supercapacitors as energy source. In this paper, are presented different possibilities to reduce on-board stored energy in order to downsize the on-board energy storage subsystem. Special attention is paid to the influence of a feeding rail extension or a downward slope at the beginning of the interstation on the on-board stored energy. A map is built to facilitate the selection of the solution which leads to reduce the on-board energy.

  12. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    Science.gov (United States)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground

  13. Fatigue crack growth spectrum simplification: Facilitation of on-board damage prognosis systems

    Science.gov (United States)

    Adler, Matthew Adam

    2009-12-01

    Better lifetime predictions of systems subjected to fatigue loading are needed in support of the optimization of the costs of life-cycle engineering. In particular, the climate is especially encouraging for the development of safer aircraft. One issue is that aircraft experience complex fatigue loading and current methods for the prediction of fatigue damage accumulation rely on intensive computational tools that are not currently carried onboard during flight. These tools rely on complex models that are made more difficult by the complicated load spectra themselves. This presents an overhead burden as offline analysis must be performed at an offsite facility. This architecture is thus unable to provide online, timely information for on-board use. The direct objective of this research was to facilitate the real-time fatigue damage assessments of on-board systems with a particular emphasis on aging aircraft. To achieve the objective, the goal of this research was to simplify flight spectra. Variable-amplitude spectra, in which the load changes on a cycle-by-cycle basis, cannot readily be supported by an onboard system because the models required to predict fatigue crack growth during variable-amplitude loading are too complicated. They are too complicated because variable-amplitude fatigue crack growth analysis must be performed on a cycle-by-cycle basis as no closed-form solution exists. This makes these calculations too time-consuming and requires impractical, heavy onboard systems or offsite facilities. The hypothesis is to replace a variable-amplitude spectrum with an equivalent constant-amplitude spectrum. The advantage is a dramatic reduction in the complexity of the problem so that damage predictions can be made onboard by simple, fast calculations in real-time without the need to add additional weight to the aircraft. The intent is to reduce the computational burden and facilitate on-board projection of damage evolution and prediction for the accurate

  14. Incidence and predictors of onboard injuries among Sri Lankan flight attendants

    Directory of Open Access Journals (Sweden)

    Agampodi Thilini C

    2009-07-01

    Full Text Available Abstract Background Occupational injuries among flight attendants have not been given appropriate attention in Sri Lanka. The purpose of this study was to estimate the incidence of onboard injury among Sri Lankan flight attendants and to describe the determinants of onboard injury. Methods A descriptive cross-sectional study was carried out among Sri Lankan flight attendants. All flight attendants undergoing their annual health and first aid training were invited to participate. Flight attendants who flew continuously for a six-month period prior to data collection were included in the study sample. Recall history of injuries for a period of six months was recorded. Results The study sample consisted of 98 (30.4% male and 224 (69.6% female flight attendants. The mean age of the study sample was 31 years (SD = 8 and the average duration of service was 10 years (SD = 7. A total of 100 onboard falls, slips or trips in the previous six months were reported by 52 (16.1% respondents. Of the total sample, 128 (39.8% cabin crew members reported an injury in the six months preceding the study. This represents a total injury incidence of 795 per 1000 person per year. The leading causes of injury was pulling, pushing or lifting (60.2%. The commonest type of injuries were strains and sprains (52.3%. Turbulence related injuries were reported by 38 (29.7% flight attendants. The upper limbs (44.5% and the back (32% were the commonest sites affected. After controlling for other factors, female flight attendants had 2.9 times higher risk (95% CI 1.2–7.2 of sustaining and injury than males. Irrespective of sex, body weight less than 56 kilograms (OR 2.9, 95% CI 1.4–5.8 and less than seven years of on board experience (OR 10.5, 95% CI 3.6–31.0 were associated with higher risk of injury. Conclusion Work related injury is a major occupational hazard to flight attendants. Appropriate preventive strategies are required to minimize them.

  15. Results of the first stage (2002-2009) of investigation of higher plants onboard RS ISS, as an element of future closed Life Support Systems

    Science.gov (United States)

    Sychev, Vladimir; Levinskikh, Margarita; Podolsky, Igor; Bingham, Gail; Novikova, Nataliya; Sugimoto, Manabu

    A key task for biomedical human support in long-term manned space expeditions is the develop-ment of the Life Support System (LSS). It is expected that in the first continuous interplanetary expeditions LSS of only a few biological elements of the LSS, such as higher plants will be in-cluded. Therefore, investigations of growth and development of higher plants for consideration in the LSS are of high importance. In a period from October, 2002 to December 2009, 15 ex-periments on cultivation of different plants, including two genetically marked species of dwarf peas, a leaf vegetable strain of Mizuna, radish, barley and wheat were conducted in space greenhouse "LADA" onboard Russian Segment (RS) of International Space Station (ISS). The experiments resulted in the conclusion that the properties of growth and development of plants grown in space greenhouse "LADA" were unaffected by spaceflight conditions. In experiments conducted in a period from 2003 to 2005, it was shown for the first time that pea plants pre-serve reproductive functions, forming viable seeds during at least four continuous full cycles of ontogenesis ("seed to seed") under spaceflight conditions. No changes were found in the genetic apparatus of the pea plants in the four "space" generations. Since 2005, there have been routine collections of microbiological samples from the surfaces of the plants grown on-board in "LADA" greenhouse. Analysis has shown that the properties of contamination of the plants grown aboard by microorganism contain no abnormal patterns. Since 2008, the plants cultivated in "LADA" greenhouse have been frozen onboard RS ISS in the MELFI refrigerator and transferred to the Earth for further investigations. Investigations of Mizuna plants grown and frozen onboard of ISS, showed no differences between "ground control" and "space" plants in chemical and biochemical properties. There also no stress-response was found in kashinriki strain barley planted and frozen onboard ISS.

  16. Safe Onboard Guidance and Control Under Probabilistic Uncertainty

    Science.gov (United States)

    Blackmore, Lars James

    2011-01-01

    An algorithm was developed that determines the fuel-optimal spacecraft guidance trajectory that takes into account uncertainty, in order to guarantee that mission safety constraints are satisfied with the required probability. The algorithm uses convex optimization to solve for the optimal trajectory. Convex optimization is amenable to onboard solution due to its excellent convergence properties. The algorithm is novel because, unlike prior approaches, it does not require time-consuming evaluation of multivariate probability densities. Instead, it uses a new mathematical bounding approach to ensure that probability constraints are satisfied, and it is shown that the resulting optimization is convex. Empirical results show that the approach is many orders of magnitude less conservative than existing set conversion techniques, for a small penalty in computation time.

  17. Onboard monitoring of fatigue damage rates in the hull girder

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    2011-01-01

    Most new advanced ships have extensive data collection systems to be used for continuous monitoring of engine and hull performance, for voyage performance evaluation etc. Such systems could be expanded to include also procedures for stress monitoring and for decision support, where the most...... critical wave-induced ship extreme responses and fatigue damage accumulation can be estimated for hypothetical changes in ship course and speed in the automatically estimated wave environment.The aim of this paper is to outline a calculation procedure for fatigue damage rate prediction in hull girders...... taking into account whipping stresses. It is conceptually shown how such a method, which integrates onboard estimation of sea states, can be used to deduce decision support with respect to the accumulated fatigue damage in the hull girder.The paper firstly presents a set of measured full-scale wave...

  18. Reconfigurable On-Board Vision Processing for Small Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    James K. Archibald

    2006-12-01

    Full Text Available This paper addresses the challenge of supporting real-time vision processing on-board small autonomous vehicles. Local vision gives increased autonomous capability, but it requires substantial computing power that is difficult to provide given the severe constraints of small size and battery-powered operation. We describe a custom FPGA-based circuit board designed to support research in the development of algorithms for image-directed navigation and control. We show that the FPGA approach supports real-time vision algorithms by describing the implementation of an algorithm to construct a three-dimensional (3D map of the environment surrounding a small mobile robot. We show that FPGAs are well suited for systems that must be flexible and deliver high levels of performance, especially in embedded settings where space and power are significant concerns.

  19. Reconfigurable On-Board Vision Processing for Small Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Fife WadeS

    2007-01-01

    Full Text Available This paper addresses the challenge of supporting real-time vision processing on-board small autonomous vehicles. Local vision gives increased autonomous capability, but it requires substantial computing power that is difficult to provide given the severe constraints of small size and battery-powered operation. We describe a custom FPGA-based circuit board designed to support research in the development of algorithms for image-directed navigation and control. We show that the FPGA approach supports real-time vision algorithms by describing the implementation of an algorithm to construct a three-dimensional (3D map of the environment surrounding a small mobile robot. We show that FPGAs are well suited for systems that must be flexible and deliver high levels of performance, especially in embedded settings where space and power are significant concerns.

  20. Spatial distribution of absorbed dose onboard of International Space Station

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spumy, F.; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, Yu.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.

    2009-01-01

    The passive detectors (LD and PNTD) were exposed onboard of Russian Service Module Qn the International Space Station (ISS) from August 2004 to October 2005 (425 days). The detectors were located at 6 different positions inside the Service Module and also in 32 pockets on the surface of the spherical tissue-equivalent phantom located in crew cabin. Distribution of absorbed doses and dose equivalents measured with passive detectors, as well as LET spectra of fluences of registered particles, are presented as the function of detectors' location. The variation of dose characteristics for different locations can be up to factor of 2. In some cases, data measured with passive detectors are also compared with the data obtained by means of active instruments. (authors)

  1. Comparison of MODIS and VIIRS On-board Blackbody Performance

    Science.gov (United States)

    Xiong, Jack; Butler, Jim; Wu, Aisheng; Chiang, Vincent; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    MODIS has 16 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 14.4 microns. MODIS TEBs are calibrated on-orbit by a v-grooved blackbody (BB) on a scan-by-scan basis. The BB temperatures are measured by a set of 12 thennistors. As expected, the BB temperature uncertainty and stability have direct impact on the quality of TEB calibration and, therefore, the quality of the science products derived from TEB observations. Since launch, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively. Their on-board BB performance has been satisfactory in meeting the TEB calibration requirements. The first VIIRS, launched on-board the Suomi NPP spacecraft on October 28, 2011, has successfully completed its initial Intensive Calibration and Validation (ICV) phase. VIIRS has 7 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 12.4 microns. Designed with strong MODIS heritage, VIIRS uses a similar BB for its TEB calibration. Like MODIS, VIIRS BB is nominally controlled at a pre-determined temperature (set point). Periodically, a BB Warm-Up and Cool-Down (WUCD) operation is performed, during which the BB temperatures vary from instrument ambient (temperature) to 315K. This paper examines NPP VIIRS BB on-orbit performance. It focuses on its BB temperature scan-to-scan variations at nominally controlled temperature as well as during its WUCD operation and their impact on TEB calibration uncertainty. Comparisons of VIIRS (NPP) and MODIS (Terra and Aqua) BB on-orbit performance and lessons learned for future improvements are also presented in this paper.

  2. Calibration of the radiation monitor onboard Akebono using Geant4

    Science.gov (United States)

    Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu

    Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.

  3. TESIS experiment on EUV imaging spectroscopy of the Sun

    Science.gov (United States)

    Kuzin, S. V.; Bogachev, S. A.; Zhitnik, I. A.; Pertsov, A. A.; Ignatiev, A. P.; Mitrofanov, A. M.; Slemzin, V. A.; Shestov, S. V.; Sukhodrev, N. K.; Bugaenko, O. I.

    2009-03-01

    TESIS is a set of solar imaging instruments in development by the Lebedev Physical Institute of the Russian Academy of Science, to be launched aboard the Russian spacecraft CORONAS-PHOTON in December 2008. The main goal of TESIS is to provide complex observations of solar active phenomena from the transition region to the inner and outer solar corona with high spatial, spectral and temporal resolution in the EUV and Soft X-ray spectral bands. TESIS includes five unique space instruments: the MgXII Imaging Spectroheliometer (MISH) with spherical bent crystal mirror, for observations of the Sun in the monochromatic MgXII 8.42 Å line; the EUV Spectoheliometer (EUSH) with grazing incidence difraction grating, for the registration of the full solar disc in monochromatic lines of the spectral band 280-330 Å; two Full-disk EUV Telescopes (FET) with multilayer mirrors covering the band 130-136 and 290-320 Å; and the Solar EUV Coronagraph (SEC), based on the Ritchey-Chretien scheme, to observe the inner and outer solar corona from 0.2 to 4 solar radii in spectral band 290-320 Å. TESIS experiment will start at the rising phase of the 24th cycle of solar activity. With the advanced capabilities of its instruments, TESIS will help better understand the physics of solar flares and high-energy phenomena and provide new data on parameters of solar plasma in the temperature range 10-10K. This paper gives a brief description of the experiment, its equipment, and its scientific objectives.

  4. Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express

    Science.gov (United States)

    Aoki, S.; Sato, Y.; Giuranna, M.; Wolkenberg, P.; Sato, T. M.; Nakagawa, H.; Kasaba, Y.

    2018-03-01

    We have investigated mesospheric CO2 ice clouds on Mars through analysis of near-infrared spectra acquired by Planetary Fourier Spectrometer (PFS) onboard the Mars Express (MEx) from MY 27 to MY 32. With the highest spectral resolution achieved thus far in the relevant spectral range among remote-sensing experiments orbiting Mars, PFS enables precise identification of the scattering peak of CO2 ice at the bottom of the 4.3 μm CO2 band. A total of 111 occurrences of CO2 ice cloud features have been detected over the period investigated. Data from the OMEGA imaging spectrometer onboard MEx confirm all of PFS detections from times when OMEGA operated simultaneously with PFS. The spatial and seasonal distributions of the CO2 ice clouds detected by PFS are consistent with previous observations by other instruments. We find CO2 ice clouds between Ls = 0° and 140° in distinct longitudinal corridors around the equatorial region (± 20°N). Moreover, CO2 ice clouds were preferentially detected at the observational LT range between 15-16 h in MY 29. However, observational biases prevent from distinguishing local time dependency from inter-annual variation. PFS also enables us to investigate the shape of mesospheric CO2 ice cloud spectral features in detail. In all cases, peaks were found between 4.240 and 4.265 μm. Relatively small secondary peaks were occasionally observed around 4.28 μm (8 occurrences). These spectral features cannot be reproduced using our radiative transfer model, which may be because the available CO2 ice refractive indices are inappropriate for the mesospheric temperatures of Mars, or because of the assumption in our model that the CO2 ice crystals are spherical and composed by pure CO2 ice.

  5. A New Algorithm for the On-Board Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Raúl Guerra

    2018-03-01

    Full Text Available Hyperspectral sensors are able to provide information that is useful for many different applications. However, the huge amounts of data collected by these sensors are not exempt of drawbacks, especially in remote sensing environments where the hyperspectral images are collected on-board satellites and need to be transferred to the earth’s surface. In this situation, an efficient compression of the hyperspectral images is mandatory in order to save bandwidth and storage space. Lossless compression algorithms have been traditionally preferred, in order to preserve all the information present in the hyperspectral cube for scientific purposes, despite their limited compression ratio. Nevertheless, the increment in the data-rate of the new-generation sensors is making more critical the necessity of obtaining higher compression ratios, making it necessary to use lossy compression techniques. A new transform-based lossy compression algorithm, namely Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA, is proposed in this manuscript. This compressor has been developed for achieving high compression ratios with a good compression performance at a reasonable computational burden. An extensive amount of experiments have been performed in order to evaluate the goodness of the proposed HyperLCA compressor using different calibrated and uncalibrated hyperspectral images from the AVIRIS and Hyperion sensors. The results provided by the proposed HyperLCA compressor have been evaluated and compared against those produced by the most relevant state-of-the-art compression solutions. The theoretical and experimental evidence indicates that the proposed algorithm represents an excellent option for lossy compressing hyperspectral images, especially for applications where the available computational resources are limited, such as on-board scenarios.

  6. Staying connected: Service-specific orientation can be successfully achieved using a mobile application for onboarding care providers.

    Science.gov (United States)

    Chreiman, Kristen M; Prakash, Priya S; Martin, Niels D; Kim, Patrick K; Mehta, Samir; McGinnis, Kelly; Gallagher, John J; Reilly, Patrick M

    2017-01-01

    Communicating service-specific practice patterns, guidelines, and provider information to a new team of learners that rotate frequently can be challenging. Leveraging individual and healthcare electronic resources, a mobile device platform was implemented into a newly revised resident onboarding process. We hypothesized that offering an easy-to-use mobile application would improve communication across multiple disciplines as well as improve provider experiences when transitioning to a new rotation. A mobile platform was created and deployed to assist with enhancing communication within a trauma service and its resident onboarding process. The platform had resource materials such as: divisional policies, Clinical Practice Guidelines (CMGs), and onboarding manuals along with allowing for the posting of divisional events, a divisional directory that linked to direct dialing, text or email messaging, as well as on-call schedules. A mixed-methods study, including an anonymous survey, aimed at providing information on team member's impressions and usage of the mobile application was performed. Usage statistics over a 3-month period were analyzed on those providers who completed the survey. After rotation on the trauma service, trainees were asked to complete an anonymous, online survey addressing both the experience with, as well as the utility of, the mobile app. Thirty of the 37 (81%) residents and medical students completed the survey. Twenty-five (83%) trainees stated that this was their first experience rotating on the trauma service and 6 (20%) were from outside of the health system. According to those surveyed, the most useful function of the app were access to the directory (15, 50%), the divisional calendar (4, 13.3%), and the on-call schedules (3, 10%). Overall, the app was felt to be easy to use (27, 90%) and was accessed an average of 7 times per day (1-50, SD 9.67). Over half the survey respondents felt that the mobile app was helpful in completing their

  7. 49 CFR 395.15 - Automatic on-board recording devices.

    Science.gov (United States)

    2010-10-01

    ... information concerning on-board system sensor failures and identification of edited data. Such support systems... driving today; (iv) Total hours on duty for the 7 consecutive day period, including today; (v) Total hours...-driver operation; (7) The on-board recording device/system identifies sensor failures and edited data...

  8. An overview of CAFE credits and incorporation of the benefits of on-board carbon capture.

    Science.gov (United States)

    2014-05-01

    This report discusses the application of Corporate Average Fuel Economy (CAFE) : credits that are currently available to vehicle manufacturers in the U.S., and the implications of : on-board carbon capture and sequestration (on-board CCS) on fu...

  9. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy.

    Science.gov (United States)

    Noel, Camille E; Parikh, Parag J; Spencer, Christopher R; Green, Olga L; Hu, Yanle; Mutic, Sasa; Olsen, Jeffrey R

    2015-01-01

    Onboard magnetic resonance imaging (OB-MRI) for daily localization and adaptive radiotherapy has been under development by several groups. However, no clinical studies have evaluated whether OB-MRI improves visualization of the target and organs at risk (OARs) compared to standard onboard computed tomography (OB-CT). This study compared visualization of patient anatomy on images acquired on the MRI-(60)Co ViewRay system to those acquired with OB-CT. Fourteen patients enrolled on a protocol approved by the Institutional Review Board (IRB) and undergoing image-guided radiotherapy for cancer in the thorax (n = 2), pelvis (n = 6), abdomen (n = 3) or head and neck (n = 3) were imaged with OB-MRI and OB-CT. For each of the 14 patients, the OB-MRI and OB-CT datasets were displayed side-by-side and independently reviewed by three radiation oncologists. Each physician was asked to evaluate which dataset offered better visualization of the target and OARs. A quantitative contouring study was performed on two abdominal patients to assess if OB-MRI could offer improved inter-observer segmentation agreement for adaptive planning. In total 221 OARs and 10 targets were compared for visualization on OB-MRI and OB-CT by each of the three physicians. The majority of physicians (two or more) evaluated visualization on MRI as better for 71% of structures, worse for 10% of structures, and equivalent for 14% of structures. 5% of structures were not visible on either. Physicians agreed unanimously for 74% and in majority for > 99% of structures. Targets were better visualized on MRI in 4/10 cases, and never on OB-CT. Low-field MR provides better anatomic visualization of many radiotherapy targets and most OARs as compared to OB-CT. Further studies with OB-MRI should be pursued.

  10. Testing the associations between different aspects of seafarers' employment contract and on-board internet access and their job and life satisfaction and health.

    Science.gov (United States)

    Slišković, Ana; Penezić, Zvjezdan

    2016-12-01

    The aim of this study was to test for associations between different aspects of contract and on-board internet access and seafarers' satisfaction and health. Altogether 298 Croatian seafarers, all officers, employed on cargo ships, with a minimum work experience of two years with their current shipping company, participated in an online survey. The questionnaire included sociodemographic items, questions relating to their employment contract and internet access, and measures of job satisfaction, life satisfaction, mental health, and gastrointestinal and cardiovascular symptoms. Their job- and lifesatisfaction levels were higher for shorter duration on board, favourable ratio of work to non-work days, and compliance with the employment contract regarding the changes to work and non-work days. Mental health differed likewise but only in relation to two aspects of the contract: on-board duration and compliance with the contract. The level of gastrointestinal symptoms was lower in cases of shorter on-board duration and compliance with the contract, and in seafarers who have free, unlimited internet access on board. Lower level of cardiovascular symptoms was found in seafarers with free, unlimited internet access on board. Our findings suggest that in promoting satisfaction and health in seafaring, attention should be given to reducing on-board duration, compliance with the contract, and internet accessibility on board.

  11. Improving BDS Autonomous Orbit Determination Performance Using Onboard Accelerometers

    Directory of Open Access Journals (Sweden)

    QIAO Jing

    2017-05-01

    Full Text Available Autonomous orbit determination is a crucial step for GNSS development to improve GNSS vulnerability, integrity, reliability and robustness. The newly launched BeiDou (BD satellites are capable of conducting satellite to satellite tracking (SST, which can be used for autonomous orbit determination. However, using SST data only, the BD satellite system (BDS will have whole constellation rotation in the absence of absolute constraints from ground or other celestial body over time, due to various force perturbations. The perturbations can be categorized into conservative forces and non-conservative forces. The conservative forces, such as the Earth non-spherical perturbations, tidal perturbation, the solar, lunar and other third-body perturbations, can be precisely modeled with latest force models. The non-conservative forces (i.e. Solar Radiation Pressure (SRP, on the other hand, are difficult to be modeled precisely, which are the main factors affecting satellite orbit determination accuracy. In recent years, accelerometers onboard satellites have been used to directly measure the non-conservative forces for gravity recovery and atmosphere study, such as GRACE, CHAMP, and GOCE missions. This study investigates the feasibility to use accelerometers onboard BD satellites to improve BD autonomous orbit determination accuracy and service span. Using simulated BD orbit and SST data, together with the error models of existing space-borne accelerometers, the orbit determination accuracy for BD constellation is evaluated using either SST data only or SST data with accelerometers. An empirical SRP model is used to extract non-conservative forces. The simulation results show that the orbit determination accuracy using SST with accelerometers is significantly better than that with SST data only. Assuming 0.33 m random noises and decimeter level signal transponder system biases in SST data, IGSO and MEO satellites decimeter level orbit accuracy can be

  12. Fiber optical sensing on-board communication satellites

    Science.gov (United States)

    Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.

    2017-11-01

    Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB

  13. On-board Payload Data Processing from Earth to Space Segment

    Science.gov (United States)

    Tragni, M.; Abbattista, C.; Amoruso, L.; Cinquepalmi, L.; Bgongiari, F.; Errico, W.

    2013-09-01

    Matching the users application requirements with the more and more huge data streaming of the satellite missions is becoming very complex. But we need both of them. To face both the data management (memory availability) and their transmission (band availability) many recent R&D activities are studying the right way to move the data processing from the ground segment to the space segment by the development of the so-called On-board Payload Data Processing (OPDP). The space designer are trying to find new strategies to increase the on board computation capacity and its viability to overcome such limitations, memory and band, focusing the transmission of remote sensing information (not only data) towards their final use. Some typical applications which can benefit of the on board payload data processing include the automatic control of a satellites constellation which can modify its scheduled acquisitions directly on-board and according to the information extracted from the just acquired data, increasing, for example, the capability of monitoring a specific objective (such as oil spills, illegal traffic) with a greater versatility than a traditional ground segment workflow. The authors and their companies can count on a sound experience in design and development of open, modular and compact on-board processing systems. Actually they are involved in a program, the Space Payload Data Processing (SpacePDP) whose main objective is to develop an hardware and a software framework able to perform both the space mission standard tasks (sensors control, mass storage devices management, uplink and downlink) and the specific tasks required by each mission. SpacePDP is an Open and modular Payload Data Processing system, composed of Hardware and Software modules included a SDK. The whole system is characterised by flexible and customizable building blocks that form the system architectures and by a very easy way to be integrated in the missions by the SDK (a development

  14. Neon dewar for the X-ray spectrometer onboard Suzaku

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, R. [Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Sagamihara 229-8510 (Japan)]. E-mail: fujimoto@isas.jaxa.jp; Mitsuda, K. [Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Sagamihara 229-8510 (Japan); Hirabayashi, M. [Sumitomo Heavy Industries, Ltd. (SHI), 5-2 Sobiraki-cho, Niihama 792-8588 (Japan); Narasaki, K. [Sumitomo Heavy Industries, Ltd. (SHI), 5-2 Sobiraki-cho, Niihama 792-8588 (Japan); Breon, S. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States); Boyle, R. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States); Di Pirro, M. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States); Volz, S.M. [NASA Headquarters, Washington, DC 20546-0001 (United States); Kelley, R.L. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771 (United States)

    2006-04-15

    The X-ray spectrometer (XRS) onboard Suzaku is the first X-ray microcalorimeter array in orbit. The sensor array is operated at 60mK, which is attained by an adiabatic demagnetization refrigerator and superfluid liquid helium. The neon dewar is a vacuum-insulated container for the XRS. The requirements for the XRS dewar are to maintain the detector and the cryogenic system under the mechanical environment at launch ({approx}15G), and to attain a lifetime of 3 years in a near-earth orbit. It is characterized with adoptions of solid neon as the second cryogen and a mechanical cooler, design optimization of the support straps for the neon tank to reduce the heat load as much as possible, and shock absorbers to mitigate the mechanical environment at launch. Microphonics from the mechanical cooler was one of the concerns for the detector performance, but the ground test results proved that they do not interfere with the detector. After about 1 month in orbit, its thermal performance showed that the dewar potentially achieves its design goals.

  15. SuperAGILE onboard electronics and ground test instrumentation

    International Nuclear Information System (INIS)

    Pacciani, Luigi; Morelli, Ennio; Rubini, Alda; Mastropietro, Marcello; Porrovecchio, Geiland; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Lazzarotto, Francesco; Rapisarda, Massimo; Soffitta, Paolo

    2007-01-01

    In this paper we describe the electronics of the SuperAGILE X-ray imager on-board AGILE satellite and the instrumentation developed to test and improve the Front-End and digital electronics of the flight model of the imager. Although the working principle of the instrument is very well established, and the conceptual scheme simple, the budget and mechanical constraints of the AGILE small mission made necessary the introduction of new elements in SuperAGILE, regarding both the mechanics and the electronics. In fact the instrument is contained in a ∼44x44x16cm 3 volume, but the required performance is quite ambitious, leading us to equip a sensitive area of ∼1350cm 2 with 6144 Silicon μstrips detectors with a pitch of 121μm and a total length of ∼18.2cm. The result is a very light and power-cheap imager with a good sensitivity (∼15mCrab in 1 day in 15-45keV), high angular resolution (6arcmin) and gross spectral resolution. The test-equipment is versatile, and can be easily modified to test FEE based on self-triggered, data-driven and sparse-readout ASICs such as XA family chips

  16. Cosmic radiation dosimetry onboard aircrafts at the brazilian airspace

    International Nuclear Information System (INIS)

    Federico, Claudio Antonio

    2011-01-01

    The objective of this work is the establishment of a dosimetric system for the aircrew in the domestic territory. A technique to perform measurements of ambient dose equivalent in aircrafts was developed. An active detector was evaluated for onboard aircraft use, testing its adequacy to this specific type of measurement as well as its susceptibility to the magnetic and electromagnetic interferences. The equipment was calibrated in standard radiation beams and in a special field of the European Laboratory CERN, that reproduces with great proximity the real spectrum in aircraft flight altitudes; it was also tested in several flights, in an Brazilian Air Force's aircraft. The results were evaluated and compared with those obtained from several computational programs for cosmic radiation estimates, with respect to its adequacy for use in the South American region. The program CARI-6 was selected to evaluate the estimated averaged effective doses for the aircrew who operate in this region. A statistical distribution of aircrew effective doses in South America and Caribe was made, and the results show that a great part of this aircrew members are subjected to annual effective doses that exceed the dose limits for the members of the public. Additionally, a preliminary passive dosemeter, based in thermoluminescent detectors, was proposed; international collaborations with United Kingdom and Italy were established for joint measurements of the ambient equivalent doses in aircrafts. (author)

  17. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab

    Science.gov (United States)

    Shen, Yunze; Guo, Shuangsheng; Zhao, Pisheng; Wang, Longji; Wang, Xiaoxia; Li, Jian; Bian, Qiang

    2018-03-01

    Lettuce was grown in a space vegetable cultivation facility onboard the Tiangong Ⅱ Spacelab during October 18 to November 15, 2016, in order to testify the key cultivating technology in CELSS under spaceflight microgravity condition. Potable water was used for irrigation of rooting substrate and the SRF (slowly released fertilizer) offered mineral nutrition for plant growth. Water content and electric conductivity in rooting substrate were measured based on FDR(frequency domain reflectometry) principle applied first in spaceflight. Lettuce germinated with comparative growth vigor as the ground control, showing that the plants appeared to be not stressed by the spaceflight environment. Under microgravity, lettuce grew taller and showed deeper green color than the ground control. In addition, the phototropism of the on-orbit plants was more remarkable. The nearly 30-d spaceflight test verified the seed fixation technology and water& nutrition management technology, which manifests the feasibility of FDR being used for measuring moisture content and electric conductivity in rooting zone under microgravity. Furthermore, the edibility of the space-grown vegetable was proved, providing theoretical support for astronaut to consume the space vegetable in future manned spaceflight.

  18. Autonomous Onboard Science Data Analysis for Comet Missions

    Science.gov (United States)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  19. The hard x-ray imager onboard IXO

    Science.gov (United States)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  20. On-board aircrew dosimetry using a semiconductor spectrometer

    CERN Document Server

    Spurny, F

    2002-01-01

    Radiation fields on board aircraft contain particles with energies up to a few hundred MeV. Many instruments have been tested to characterise these fields. This paper presents the results of studies on the use of an Si diode spectrometer to characterise these fields. The spectrometer has been in use since spring 2000 on more than 130 return flights to monitor and characterise the on-board field. During a Czech Airlines flight from Prague to New York it was possible to register the effects of an intense solar flare, (ground level event, GLE 60), which occurred on 15 April 2001. It was found that the number of deposition events registered was increased by about 70% and the dose in Si by a factor of 2.0 when compared with the presence of galactic cosmic rays alone. Directly measured data are interpreted with respect to on-earth reference field calibration (photons, CERN high-energy particles); it was found that this approach leads to encouraging results and should be followed up. (7 refs).

  1. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  2. Fiducial-Based Translational Localization Accuracy of Electromagnetic Tracking System and On-Board Kilovoltage Imaging System

    International Nuclear Information System (INIS)

    Santanam, Lakshmi; Malinowski, Kathleen; Hubenshmidt, James; Dimmer, Steve; Mayse, Martin L.; Bradley, Jeffrey; Chaudhari, Amir; Lechleiter, Kirsten; Goddu, Sree Krishna Murty; Esthappan, Jacqueline; Mutic, Sasa; Low, Daniel A.; Parikh, Parag

    2008-01-01

    Purpose: The Calypso medical four-dimensional localization system uses AC electromagnetics, which do not require ionizing radiation, for accurate, real-time tumor tracking. This investigation compared the static and dynamic tracking accuracy of this system to that of an on-board imaging kilovoltage X-ray system for concurrent use of the two systems. Methods and Materials: The localization accuracies of a kilovoltage imaging system and a continuous electromagnetic tracking system were compared. Using an in-house developed four-dimensional stage, quality-assurance fixture containing three radiofrequency transponders was positioned at a series of static locations and then moved through the ellipsoidal and nonuniform continuous paths. The transponder positions were tracked concurrently by the Calypso system. For static localization, the transponders were localized using portal images and digitally reconstructed radiographs by commercial matching software. For dynamic localization, the transponders were fluoroscopically imaged, and their positions were determined retrospectively using custom-written image processing programs. The localization data sets were synchronized with and compared to the known quality assurance fixture positions. The experiment was repeated to retrospectively track three transponders implanted in a canine lung. Results: The root mean square error of the on-board imaging and Calypso systems was 0.1 cm and 0.0 cm, respectively, for static localization, 0.22 mm and 0.33 mm for dynamic phantom positioning, and 0.42 mm for the canine study. Conclusion: The results showed that both localization systems provide submillimeter accuracy. The Calypso and on-board imaging tracking systems offer distinct sets of advantages and, given their compatibility, patients could benefit from the complementary nature of the two systems when used concurrently

  3. Observation sequences and onboard data processing of Planet-C

    Science.gov (United States)

    Suzuki, M.; Imamura, T.; Nakamura, M.; Ishi, N.; Ueno, M.; Hihara, H.; Abe, T.; Yamada, T.

    Planet-C or VCO Venus Climate Orbiter will carry 5 cameras IR1 IR 1micrometer camera IR2 IR 2micrometer camera UVI UV Imager LIR Long-IR camera and LAC Lightning and Airglow Camera in the UV-IR region to investigate atmospheric dynamics of Venus During 30 hr orbiting designed to quasi-synchronize to the super rotation of the Venus atmosphere 3 groups of scientific observations will be carried out i image acquisition of 4 cameras IR1 IR2 UVI LIR 20 min in 2 hrs ii LAC operation only when VCO is within Venus shadow and iii radio occultation These observation sequences will define the scientific outputs of VCO program but the sequences must be compromised with command telemetry downlink and thermal power conditions For maximizing science data downlink it must be well compressed and the compression efficiency and image quality have the significant scientific importance in the VCO program Images of 4 cameras IR1 2 and UVI 1Kx1K and LIR 240x240 will be compressed using JPEG2000 J2K standard J2K is selected because of a no block noise b efficiency c both reversible and irreversible d patent loyalty free and e already implemented as academic commercial software ICs and ASIC logic designs Data compression efficiencies of J2K are about 0 3 reversible and 0 1 sim 0 01 irreversible The DE Digital Electronics unit which controls 4 cameras and handles onboard data processing compression is under concept design stage It is concluded that the J2K data compression logics circuits using space

  4. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  5. Event processing in X-IFU detector onboard Athena.

    Science.gov (United States)

    Ceballos, M. T.; Cobos, B.; van der Kuurs, J.; Fraga-Encinas, R.

    2015-05-01

    The X-ray Observatory ATHENA was proposed in April 2014 as the mission to implement the science theme "The Hot and Energetic Universe" selected by ESA for L2 (the second Large-class mission in ESA's Cosmic Vision science programme). One of the two X-ray detectors designed to be onboard ATHENA is X-IFU, a cryogenic microcalorimeter based on Transition Edge Sensor (TES) technology that will provide spatially resolved high-resolution spectroscopy. X-IFU will be developed by a consortium of European research institutions currently from France (leadership), Italy, The Netherlands, Belgium, UK, Germany and Spain. From Spain, IFCA (CSIC-UC) is involved in the Digital Readout Electronics (DRE) unit of the X-IFU detector, in particular in the Event Processor Subsytem. We at IFCA are in charge of the development and implementation in the DRE unit of the Event Processing algorithms, designed to recognize, from a noisy signal, the intensity pulses generated by the absorption of the X-ray photons, and lately extract their main parameters (coordinates, energy, arrival time, grade, etc.) Here we will present the design and performance of the algorithms developed for the event recognition (adjusted derivative), and pulse grading/qualification as well as the progress in the algorithms designed to extract the energy content of the pulses (pulse optimal filtering). IFCA will finally have the responsibility of the implementation on board in the (TBD) FPGAs or micro-processors of the DRE unit, where this Event Processing part will take place, to fit into the limited telemetry of the instrument.

  6. Performance assessment of an onboard monitoring system for CMV drivers : a field operational test : research brief.

    Science.gov (United States)

    2016-11-01

    The primary goal of an onboard monitoring system (OBMS) is to enhance driver performance and safety. OBMSs are employed with the expectation that feedback provided concurrently (via flashing feedback lights in the vehicle) and cumulatively (via coach...

  7. Advanced Hybrid On-Board Data Processor - SpaceCube 2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop advanced on-board processing to meet the requirements of the Decadal Survey missions: advanced instruments (hyper-spectral, SAR, etc) require advanced...

  8. On-Board Thermal Management of Waste Heat from a High-Energy Device

    National Research Council Canada - National Science Library

    Klatt, Nathan D

    2008-01-01

    The use of on-board high-energy devices such as megawatt lasers and microwave emitters requires aircraft system integration of thermal devices to either get rid of waste heat or utilize it in other areas of the aircraft...

  9. The Whisper Relaxation Sounder onboard Cluster: A Powerful Tool for Space Plasma Diagnosis around the Earth

    International Nuclear Information System (INIS)

    Trotignon, J.G.; Decreau, P.M.E.; Rauch, J.L.; LeGuirriec, E.; Canu, P.; Darrouzet, F.

    2001-01-01

    The WHISPER relaxation sounder that is onboard the four CLUSTER spacecraft has for main scientific objectives to monitor the natural waves in the 2 kHz - 80 kHz frequency range and, mostly, to determine the total plasma density from the solar wind down to the Earth's plasmasphere. To fulfil these objectives, the WHISPER uses the two long double sphere antennae of the Electric Field and Wave experiment as transmitting and receiving sensors. In its active working mode, the WHISPER works according to principles that have been worked out for topside sounding. A radio wave transmitter sends an almost monochromatic and short wave train. A few milliseconds after, a receiver listens to the surrounding plasma response. Strong and long lasting echoes are actually received whenever the transmitting frequencies coincide with characteristic plasma frequencies. Provided that these echoes, also called resonances, may be identified, the WHISPER relaxation sounder becomes a reliable and powerful tool for plasma diagnosis. When the transmitter is off, the WHISPER behaves like a passive receiver, allowing natural waves to be monitored. The paper aims mainly at the resonance identification process description and the WHISPER capabilities and performance highlighting. (author)

  10. Imaging design of the wide field x-ray monitor onboard the HETE satellite

    International Nuclear Information System (INIS)

    Zand, J.J.M. In'T; Fenimore, E.E.; Kawai, N.; Yoshida, A.; Matsuoka, M.; Yamauchi, M.

    1994-01-01

    The High Energy Transient Experiment (HETE), to be launched in 1995, will study Gamma-Ray Bursts in an unprecendented wide wavelength range from Gamma- and X-ray to UV wavelengths. The X-ray range (2 to 25 keV) will be covered by 2 perpendicularly oriented 1-dimensional coded aperture cameras. These instruments cover a wide field of view of 2 sr and thus have a relatively large potential to locate GRBs to a fraction of a degree, which is an order of magnitude better than BATSE. The imaging design of these coded aperture cameras relates to the design of the coded apertures and the decoding algorithm. The aperture pattern is to a large extent determined by the high background in this wide field application and the low number of pattern elements (∼100) in each direction. The result is a random pattern with an open fraction of 33%. The onboard decoding algorithm is dedicated to the localization of a single point source

  11. The study of a plasma jet injected by an on-board plasma thruster

    International Nuclear Information System (INIS)

    Grebnev, I.A.; Ivanov, G.V.; Khodnenko, V.P.

    1981-01-01

    The injection of a steady plasma jet into the ionosphere results in interactions which were studied in experiments conducted onboard two Meteor satellites in 1977-1979. The jet parameters at the propulsion system output were as follows: propulsive mass: Xe Xe (+) ion density at the nozzle section 3 x 10 to the 11th per cu cm plasma stream divergence: 20 degrees jet velocity: 10-12 km/cm ion energy: 130 eV electron temperature: 1 + 3 eV. A Bennett-type modified radio-frequency mass-spectrometer and a two-channel electromagnetic wave analyzer were used for the measurements. It was found that (1) the injected plasma jet propagation depends on the jet injection pitch angle (2) when the plasma jet was injected along the magnetic field, impactless jet spreading took place without considerable interaction with the ionospheric plasma (3) when the plasma jet was injected across the magnetic field, considerable interaction was observed between the plasma jet/ionospheric plasma and the earth's magnetic field and (4) electromagnetic fields were generated near the satellite by plasma jet interaction

  12. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    Science.gov (United States)

    Dudley, Stephanie R. B.; Marsh, Angela L.

    2014-01-01

    With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of

  13. Ground facility for information reception, processing, dissemination and scientific instruments management setup in the CORONAS-PHOTON space project

    Science.gov (United States)

    Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.

    2011-06-01

    This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.

  14. TECHNICAL MAINTENANCE EFFICIENCY OF THE AIRCRAFT MAINTENANCE-FREE ON-BOARD SYSTEM BETWEEN SCHEDULED MAINTENANCES

    Directory of Open Access Journals (Sweden)

    A. M. Bronnikov

    2017-01-01

    Full Text Available The avionics concept of the maintenance-free on-board equipment implies the absence of necessity to maintain onboard systems between scheduled maintenance, preserving the required operational and technical characteristics; it should be achieved by automatic diagnosis of the technical condition and the application of active means of ensuring a failsafe design, allowing to change the structure of the system to maintain its functions in case of failure. It is supposed that such equipment will reduce substantially and in the limit eliminate traditional maintenance of aircraft between scheduled maintenance, ensuring maximum readiness for use, along with improving safety. The paper proposes a methodology for evaluating the efficiency of maintenance-free between scheduled maintenance aircraft system with homogeneous redundancy. The excessive redundant elements allow the system to accumulate failures which are repaired during the routine maintenance. If the number of failures of any reserve is approaching a critical value, the recovery of the on-board system (elimination of all failures is carried out between scheduled maintenance by conducting rescue and recovery operations. It is believed that service work leads to the elimination of all failures and completely updates the on-board system. The process of system operational status changes is described with the discrete-continuous model in the flight time. The average losses in the sorties and the average cost of operation are used as integrated efficiency indicators of system operation. For example, the evaluation of the operation efficiency of formalized on-board system with homogeneous redundancy demonstrates the efficiency of the proposed methodology and the possibility of its use while analyzing the efficiency of the maintenance-free operation equipment between scheduled periods. As well as a comparative analysis of maintenance-free operation efficiency of the on-board system with excessive

  15. A new on-board imaging treatment technique for palliative and emergency treatments in radiation oncology

    International Nuclear Information System (INIS)

    Held, Mareike

    2016-01-01

    This dissertation focuses on the use of on-board imaging systems as the basis for treatment planning, presenting an additional application for on-board images. A clinical workflow is developed to simulate, plan, and deliver a simple radiation oncology treatment rapidly, using 3D patient scans. The work focuses on an on-line dose planning and delivery process based on on-board images entirely performed with the patient set up on the treatment couch of the linear accelerator. This potentially reduces the time between patient simulation and treatment to about 30 minutes. The basis for correct dose calculation is the accurate image gray scale to tissue density calibration. The gray scale, which is defined in CT Numbers, is dependent on the energy spectrum of the beam. Therefore, an understanding of the physics characteristics of each on-board system is required to evaluate the impact on image quality, especially regarding the underlying cause of image noise, contrast, and non-uniformity. Modern on-board imaging systems, including kV and megavoltage (MV) cone beam (CB) CT as well as MV CT, are characterized in terms of image quality and stability. A library of phantom and patient CT images is used to evaluate the dose calculation accuracy for the on-board images. The dose calculation objective is to stay within 5% local dose differences compared to standard kV CT dose planning. The objective is met in many treatment cases. However, dose calculation accuracy depends on the anatomical treatment site. While on-board CT-based treatments of the head and extremities are predictable within 5% on all systems, lung tissue and air cavities may create local dose discrepancies of more than 5%. The image quality varies between the tested units. Consequently, the CT number-to-density calibration is defined independently for each system. In case of some imaging systems, the CT numbers of the images are dependent on the protocol used for on-board imaging, which defines the imaging dose

  16. A new on-board imaging treatment technique for palliative and emergency treatments in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Mareike

    2016-03-23

    This dissertation focuses on the use of on-board imaging systems as the basis for treatment planning, presenting an additional application for on-board images. A clinical workflow is developed to simulate, plan, and deliver a simple radiation oncology treatment rapidly, using 3D patient scans. The work focuses on an on-line dose planning and delivery process based on on-board images entirely performed with the patient set up on the treatment couch of the linear accelerator. This potentially reduces the time between patient simulation and treatment to about 30 minutes. The basis for correct dose calculation is the accurate image gray scale to tissue density calibration. The gray scale, which is defined in CT Numbers, is dependent on the energy spectrum of the beam. Therefore, an understanding of the physics characteristics of each on-board system is required to evaluate the impact on image quality, especially regarding the underlying cause of image noise, contrast, and non-uniformity. Modern on-board imaging systems, including kV and megavoltage (MV) cone beam (CB) CT as well as MV CT, are characterized in terms of image quality and stability. A library of phantom and patient CT images is used to evaluate the dose calculation accuracy for the on-board images. The dose calculation objective is to stay within 5% local dose differences compared to standard kV CT dose planning. The objective is met in many treatment cases. However, dose calculation accuracy depends on the anatomical treatment site. While on-board CT-based treatments of the head and extremities are predictable within 5% on all systems, lung tissue and air cavities may create local dose discrepancies of more than 5%. The image quality varies between the tested units. Consequently, the CT number-to-density calibration is defined independently for each system. In case of some imaging systems, the CT numbers of the images are dependent on the protocol used for on-board imaging, which defines the imaging dose

  17. The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results

    Czech Academy of Sciences Publication Activity Database

    Lebreton, J. P.; Štverák, Štěpán; Trávníček, Pavel M.; Maksimovic, M.; Klinge, A.; Merikallio, S.; Lagoutte, D.; Poirier, B.; Blelly, P. L.; Kozáček, Z.; Salaquarda, M.

    2006-01-01

    Roč. 54, č. 5 (2006), s. 472-486 ISSN 0032-0633 Institutional research plan: CEZ:AV0Z30420517 Keywords : electrostatic probes * ionospheric plasma * electron density and temperature Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.509, year: 2006

  18. MEASUREMENTS OF ELECTROMAGNETIC ULF FIELD ONBOARD THE MAGION-4 SATELLITE: ULF EXPERIMENT

    Czech Academy of Sciences Publication Activity Database

    Tříska, Pavel; Vojta, Jaroslav; Czapek, Alexandr; Chum, Jaroslav; Teodosiev, D.; Galev, G.; Shibaev, I.

    2003-01-01

    Roč. 17, - (2003), s. 47-53 ISSN 0861-1432 Institutional research plan: CEZ:AV0Z3042911 Keywords : Satellite * measurement * electromagnetic field * ULF Subject RIV: JV - Space Technology http://www.space.bas.bg/astro/eng.html

  19. Evaluation of the use of on-board spacecraft energy storage for electric propulsion missions

    Science.gov (United States)

    Poeschel, R. L.; Palmer, F. M.

    1983-01-01

    On-board spacecraft energy storage represents an under utilized resource for some types of missions that also benefit from using relatively high specific impulse capability of electric propulsion. This resource can provide an appreciable fraction of the power required for operating the electric propulsion subsystem in some missions. The most probable mission requirement for utilization of this energy is that of geostationary satellites which have secondary batteries for operating at high power levels during eclipse. The study summarized in this report selected four examples of missions that could benefit from use of electric propulsion and on-board energy storage. Engineering analyses were performed to evaluate the mass saved and economic benefit expected when electric propulsion and on-board batteries perform some propulsion maneuvers that would conventionally be provided by chemical propulsion. For a given payload mass in geosynchronous orbit, use of electric propulsion in this manner typically provides a 10% reduction in spacecraft mass.

  20. New control method of on-board ATP system of Shinkansen trains

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, N.; Watanabe, T. [Railway Technical Research Inst. (Japan)

    2000-07-01

    We studied a new control method of the on-board automatic train protection (ATP) system for Shinkansen trains to shorten the operation time and not to degrade ride comfort at changes in deceleration of the train, while maintaining the safety and reliability of the present ATP signal system. We propose a new on-board pattern brake control system based on the present ATP data without changing the wayside equipment. By simulating the ATP braking of the proposed control method, we succeeded in shortening the operation time by 48 seconds per one station in comparison with the present ATP brake control system. This paper reports the concept of the system and simulation results of the on-board pattern. (orig.)

  1. Implementing Temperature Supervision for the ALICE CRU Card Using the Onboard Microcontroller

    CERN Document Server

    Perez Bernabeu, Ruben

    2017-01-01

    We report on the first implementation of the thermal supervisory firmware for the onboard microcontroller on the ALICE CRU card. The Common Readout Unit (CRU) is a custom PCI Express FPGA card developed by “Centre Physique des Particules de Marseille” in collaboration of LHCb and ALICE. While the main effort has been focused on the development of the FPGA firmware that implements all the communication needs, there are several independent design tasks identified to ensure the safe operation of the CRU card under all possible conditions. One such task is to implement a robust local (on-board) temperature monitoring and safeguarding subsystem based on ATmega128 microcontroller. It will autonomously prevent the thermal damage of the card even if the remote HW monitoring and controlling functions (integrated in DCS) failed for any reason. Consequently, our main goal in this project will be implementing the temperature supervision using the onboard microcontroller.

  2. A Comprehensive Onboarding and Orientation Plan for Neurocritical Care Advanced Practice Providers.

    Science.gov (United States)

    Langley, Tamra M; Dority, Jeremy; Fraser, Justin F; Hatton, Kevin W

    2018-06-01

    As the role of advanced practice providers (APPs) expands to include increasingly complex patient care within the intensive care unit, the educational needs of these providers must also be expanded. An onboarding process was designed for APPs in the neurocritical care service line. Onboarding for new APPs revolved around 5 specific areas: candidate selection, proctor assignment, 3-phased orientation process, remediation, and mentorship. To ensure effective training for APPs, using the most time-conscious approach, the backbone of the process is a structured curriculum. This was developed and integrated within the standard orientation and onboarding process. The curriculum design incorporated measurable learning goals, objective assessments of phased goal achievements, and opportunities for remediation. The neurocritical care service implemented an onboarding process in 2014. Four APPs (3 nurse practitioners and 1 physician assistant) were employed by the department before the implementation of the orientation program. The length of employment ranged from 1 to 4 years. Lack of clinical knowledge and/or sufficient training was cited as reasons for departure from the position in 2 of the 4 APPs, as either self-expression or peer evaluation. Since implementation of this program, 12 APPs have completed the program, of which 10 remain within the division, creating an 83% retention rate. The onboarding process, including a 3-phased, structured orientation plan for neurocritical care, has increased APP retention since its implementation. The educational model, along with proctoring and mentorship, has improved clinical knowledge and increased nurse practitioner retention. A larger-scale study would help to support the validity of this onboarding process.

  3. Chang?E-5T Orbit Determination Using Onboard GPS Observations

    OpenAIRE

    Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin

    2017-01-01

    In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang?E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard G...

  4. Development and application of an emitter for research of an on-board ultraviolet polarimeter

    Science.gov (United States)

    Nevodovskyi, P. V.; Geraimchuk, M. D.; Vidmachenko, A. P.; Ivakhiv, O. V.

    2018-05-01

    In carrying out of the work a layout of on-board small-sized ultraviolet polarimeter (UVP) was created. UVP is the device, which provides an implementation of passive remote studies of stratospheric aerosol from the board of the microsatellite of the Earth by the method of polarimetry. For carrying out of tests and the research of polarimetric equipment, a special stand was created at MAO of NAS of Ukraine. In its composition is an ultraviolet emitter. Emitter is one of the main components of a special stand for the study of on-board ultraviolet polarimeters.

  5. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  6. Extending Quad-Rotor UAV Autonomy with Onboard Image Processing

    Science.gov (United States)

    2015-03-01

    Recognition subsystem of the Image Capture model. ..........................52 Figure 40. Remote-controlled car , used as the target in this experiment...RELATED WORK Unmanned vehicles are used by researchers throughout the world to study control theory, aerodynamics , guidance, and dozens of other...2. The algorithm is tested in an outdoor suburban environment, where the Parrot successfully tracks a variety of objects including people, cars , and

  7. Advanced stellar compass - Onboard autonomous orbit determination, preliminary performance

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2004-01-01

    and the cost of deep space missions. From past experience, it appears that navigation is the Achilles heel of deep space missions. Performed on ground, this imposes considerable constraints on the entire system and limits operations. This makes it is very expensive to execute, especially when the mission lasts...... be implemented into an ASC without degrading the attitude measurements; and (4) to identify the areas of development and consolidation. The results obtained are very encouraging....

  8. Development of an on-board H2 storage and recovery system based on lithium borohydride.

    Science.gov (United States)

    2014-02-28

    Alkali metal borohydrides based on sodium and lithium, NaBH4 and LiBH4, have been evaluated as a potential hydrogen storage and recovery system for on-board vehicle use. The borohydride salts could be dissolved in water, followed by a hydrolytic reac...

  9. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard ...

    Indian Academy of Sciences (India)

    M. C. RAMADEVI

    MS received 1 September 2017; accepted 19 December 2017; published online 10 February 2018. Abstract. Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the ..... 31(2–3), 99. Ramadevi M. C., Seetha S., Babu V. C., Ashoka B. N., Sreeku- mar P. 2006, Optimization of Gas Proportional Coun-.

  10. On-board conversion of methanol to dimethyl ether as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, H; Heinzelmann, G; Struis, R; Stucki, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytic dehydration of methanol to dimethyl ether was investigated for application on-board a methanol fuelled vehicle. Several catalysts have been tested in a fixed bed reactor. Our approach is to develop a small and efficient reactor converting liquid MeOH under pressure and at low reaction temperatures. (author) 2 figs., 5 refs.

  11. 40 CFR 85.2222 - On-board diagnostic test procedures.

    Science.gov (United States)

    2010-07-01

    ... on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist... the unset readiness code(s) in question may be issued a passing certificate without being required to... lit malfunction indicator light (MIL) must be failed, though setting the unset readiness flags in...

  12. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    Science.gov (United States)

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  13. Contribution of magnetic measurements onboard NetLander to Mars exploration

    DEFF Research Database (Denmark)

    Menvielle, M.; Musmann, G.; Kuhnke, F.

    2000-01-01

    between the environment of the planet and solar radiation, and a secondary source, the electric currents induced in the conductive planet. The continuous recording of the time variations of the magnetic field at the surface of Mars by means of three component magnetometers installed onboard Net...

  14. THE DEVELOPMENT OF METHOD AND ON-BOARD DEVICES FOR COLLISION AVOIDANCE WHEN OVERTAKING

    Directory of Open Access Journals (Sweden)

    Podryhalo, M.

    2013-06-01

    Full Text Available A method for improving the safety of overtaking maneuver by using the on-board collision avoidance system, which has an increased assessment reliability of safety of vehicles overtaking that move in the same direction is offered. The proposed system takes into account the main factors that affect the overtaking maneuver.

  15. STOL terminal area operating systems (aircraft and onboard avionics, ATC, navigation aids)

    Science.gov (United States)

    Burrous, C.; Erzberger, H.; Johnson, N.; Neuman, F.

    1974-01-01

    Operational procedures and systems onboard the STOL aircraft which are required to enable the aircraft to perform acceptably in restricted airspace in all types of atmospheric conditions and weather are discussed. Results of simulation and flight investigations to establish operational criteria are presented.

  16. Functional requirements for onboard management of space shuttle consumables, volume 1

    Science.gov (United States)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  17. A novel approach for navigational guidance of ships using onboard monitoring systems

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2011-01-01

    A novel approach and conceptual ideas are outlined for risk-based navigational guidance of ships using decision support systems in combination with onboard, in-service monitoring systems. The guidance has as the main objective to advise on speed and/or course changes; in particular with focus...

  18. CALIBRATION OF MODIFIED LIULIN DETECTOR FOR COSMIC RADIATION MEASUREMENTS ON-BOARD AIRCRAFT

    Czech Academy of Sciences Publication Activity Database

    Kyselová, Dagmar; Ambrožová, Iva; Krist, Pavel; Kubančák, Ján; Uchihori, Y.; Kitamura, H.; Ploc, Ondřej

    2015-01-01

    Roč. 164, č. 4 (2015), s. 489-492 ISSN 0144-8420 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Liulin detector * on-board aircraft * cosmic radiation measurement Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  19. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    Science.gov (United States)

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  20. Data systems and computer science space data systems: Onboard networking and testbeds

    Science.gov (United States)

    Dalton, Dan

    1991-01-01

    The technical objectives are to develop high-performance, space-qualifiable, onboard computing, storage, and networking technologies. The topics are presented in viewgraph form and include the following: justification; technology challenges; program description; and state-of-the-art assessment.

  1. Validation of multi-channel scanning microwave radiometer on-board Oceansat-1

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Harikrishnan, M.

    Sea surface temperature (SST), sea surface wind speed (WS) and columnar water vapour (WV) derived from Multi-frequency Scanning Microwave Radiometer (MSMR) sensor on-board IRS-P4 (Oceansat-1) were validated against the in situ measurements from ship...

  2. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    Science.gov (United States)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  3. On-Board File Management and Its Application in Flight Operations

    Science.gov (United States)

    Kuo, N.

    1998-01-01

    In this paper, the author presents the minimum functions required for an on-board file management system. We explore file manipulation processes and demonstrate how the file transfer along with the file management system will be utilized to support flight operations and data delivery.

  4. Human Resources Management: Onboarding Program and Trainer's Guide for Charter School Employees

    Science.gov (United States)

    Cook, Jeannette

    2016-01-01

    The applied dissertation project focused on the development of a comprehensive onboarding program and Trainer's Guide specifically developed for charter school management employees. Charter school education has grown significantly in the last several decades with over 6,100 charter schools that are currently serving students nationwide. Formal or…

  5. Onboard Flow Sensing For Downwash Detection and Avoidance On Small Quadrotor Helicopters

    Science.gov (United States)

    2015-01-01

    onboard computers, one for flight stabilization and a Linux computer for sensor integration and control calculations . The Linux computer runs Robot...Hirokawa, D. Kubo , S. Suzuki, J. Meguro, and T. Suzuki. Small uav for immediate hazard map generation. In AIAA Infotech@Aerospace Conf, May 2007. 8F

  6. The CFRP primary structure of the MIRI instrument onboard the James Webb Space Telescope

    DEFF Research Database (Denmark)

    Jessen, Niels Christian; Nørgaard-Nielsen, Hans Ulrik; Schroll, J

    2004-01-01

    The design of the Primary Structure of the Mid Infra-Red Instrument (MIRI) onboard the NASA/ESA James Webb Space Telescope will be presented. The main design driver is the energy flow from the 35 K "hot" satellite interface to the 7 K "cold" MIRI interface. Carbon fibre reinforced plastic (CFRP...

  7. 19 CFR 122.49b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ...” means air carrier employees and their family members and persons traveling onboard a commercial aircraft...), air carrier employees, their family members, and persons onboard for the safety of the flight are...) Date of birth; (iii) Place of birth (city, state—if applicable, country); (iv) Gender (F = female; M...

  8. USING THE INFORMATION OF ON-BOARD DIAGNOSTIC SYSTEMS IN DETERMINING THE TECHNICAL STATE OF THE LOCOMOTIVE

    Directory of Open Access Journals (Sweden)

    B. Ye. Bodnar

    2008-12-01

    Full Text Available The issues of increase of efficiency of information processing by оn-board systems of diagnostics of locomotives are considered. The examples of information processing by the on-board system of diagnostics of electric locomotives DE1 are presented. The suggestions on improvement of systematization and processing of information by on-board systems of diagnostics are given.

  9. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    Science.gov (United States)

    2001-01-01

    The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  10. A study on the real-time reliability of on-board equipment of train control system

    Science.gov (United States)

    Zhang, Yong; Li, Shiwei

    2018-05-01

    Real-time reliability evaluation is conducive to establishing a condition based maintenance system for the purpose of guaranteeing continuous train operation. According to the inherent characteristics of the on-board equipment, the connotation of reliability evaluation of on-board equipment is defined and the evaluation index of real-time reliability is provided in this paper. From the perspective of methodology and practical application, the real-time reliability of the on-board equipment is discussed in detail, and the method of evaluating the realtime reliability of on-board equipment at component level based on Hidden Markov Model (HMM) is proposed. In this method the performance degradation data is used directly to realize the accurate perception of the hidden state transition process of on-board equipment, which can achieve a better description of the real-time reliability of the equipment.

  11. Using Small Capacity Fuel Cells Onboard Drones for Battery Cooling: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Shayok Mukhopadhyay

    2018-06-01

    Full Text Available Recently, quadrotor-based drones have attracted a lot of attention because of their versatility, which makes them an ideal medium for a variety of applications, e.g., personal photography, surveillance, and the delivery of lightweight packages. The flight duration of a drone is limited by its battery capacity. Increasing the payload capacity of a drone requires more current to be supplied by the battery onboard a drone. Elevated currents through a Li-ion battery can increase the battery temperature, thus posing a significant risk of fire or explosion. Li-ion batteries are suited for drone applications, due to their high energy density. There have been attempts to use hydrogen fuel cells onboard drones. Fuel cell stacks and fuel tank assemblies can have a high energy to weight ratio. So, they may be able to power long duration drone flights, but such fuel cell stacks and associated systems, are usually extremely expensive. Hence, this work proposes the novel use of a less expensive, low capacity, metal hydride fuel stick-powered fuel cell stack as an auxiliary power supply onboard a drone. A primary advantage of this is that the fuel sticks can be used to cool the batteries, and a side effect is that this slightly reduces the burden on the onboard Li-ion battery and provides a small increment in flight time. This work presents the results of an experimental study which shows the primary effect (i.e., decrease in battery temperature and the secondary side effect (i.e., a small increment in flight time obtained by using a fuel cell stack. In this work, a metal hydride fuel stick powered hydrogen fuel cell is used along with a Li-ion battery onboard a drone.

  12. Development and implementation of a new onboard diagnosis method for automotive lithium-ion-batteries; Entwicklung und Implementierung einer neuen Onboard-Diagnosemethode fuer Lithium-Ionen-Fahrzeugbatterien

    Energy Technology Data Exchange (ETDEWEB)

    Brill, Michael

    2012-11-01

    The author of the contribution under consideration reports on a onboard diagnosis for lithium ion accumulators which determines the actual state of aging of a high voltage drive battery during the normal usage of hybrid vehicles and electrically driven vehicles. Due to the limited computing time and storages resources in the battery control unit a combined process is shown which analyses the state of aging of the total battery as a unit and additionally the scattering of the battery cells. Furthermore the procedure is design to supply an optimal result with the available measurement signals.

  13. Fuel flexibility in power generation onboard offshore floating units

    Energy Technology Data Exchange (ETDEWEB)

    Keep, Jeroen van [Waertsilae Corporation, Helsinki (Finland)

    2012-07-01

    Power Plants for offshore oil and gas installations utilizing dual fuel (DF) reciprocating engines are by many owners seen as an interesting alternative to conventional solutions due to the apparent advantages in fuel flexibility, fuel efficiency and lower emission. The paper summarizes the dual fuel technology, typical solutions for FPSO's and operational. Items that are discussed: DF operation and how it works; fuel flexibility, including transfer between fuel modes; fuel efficiency, also in production an important cost saver; emissions of the different fuel modes; size and weights, constraints; experiences of the P-63 project. With the above it is safe to conclude that the DF-technology is mature with important benefits for the offshore production market in certain specific applications, most notably the FPSO's for fields in low gas to oil ratios, bringing important fuel cost savings and also for new-built F-LNG/FSO/FPSO's where the power plant can be accommodated below decks, freeing up valuable deck space for the process plant. (author)

  14. Online technique for detecting state of onboard fiber optic gyroscope

    International Nuclear Information System (INIS)

    Miao, Zhiyong; He, Kunpeng; Pang, Shuwan; Xu, Dingjie; Tian, Chunmiao

    2015-01-01

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data

  15. Online technique for detecting state of onboard fiber optic gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhiyong; He, Kunpeng, E-mail: pengkhe@126.com; Pang, Shuwan [Department of Automation, Harbin Engineering University, Harbin, Heilongjiang 150000 (China); Xu, Dingjie [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang 150000 (China); Tian, Chunmiao [Department of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150000 (China)

    2015-02-15

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  16. Robotics On-Board Trainer (ROBoT)

    Science.gov (United States)

    Johnson, Genevieve; Alexander, Greg

    2013-01-01

    ROBoT is an on-orbit version of the ground-based Dynamics Skills Trainer (DST) that astronauts use for training on a frequent basis. This software consists of two primary software groups. The first series of components is responsible for displaying the graphical scenes. The remaining components are responsible for simulating the Mobile Servicing System (MSS), the Japanese Experiment Module Remote Manipulator System (JEMRMS), and the H-II Transfer Vehicle (HTV) Free Flyer Robotics Operations. The MSS simulation software includes: Robotic Workstation (RWS) simulation, a simulation of the Space Station Remote Manipulator System (SSRMS), a simulation of the ISS Command and Control System (CCS), and a portion of the Portable Computer System (PCS) software necessary for MSS operations. These components all run under the CentOS4.5 Linux operating system. The JEMRMS simulation software includes real-time, HIL, dynamics, manipulator multi-body dynamics, and a moving object contact model with Tricks discrete time scheduling. The JEMRMS DST will be used as a functional proficiency and skills trainer for flight crews. The HTV Free Flyer Robotics Operations simulation software adds a functional simulation of HTV vehicle controllers, sensors, and data to the MSS simulation software. These components are intended to support HTV ISS visiting vehicle analysis and training. The scene generation software will use DOUG (Dynamic On-orbit Ubiquitous Graphics) to render the graphical scenes. DOUG runs on a laptop running the CentOS4.5 Linux operating system. DOUG is an Open GL-based 3D computer graphics rendering package. It uses pre-built three-dimensional models of on-orbit ISS and space shuttle systems elements, and provides realtime views of various station and shuttle configurations.

  17. Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents.

    Science.gov (United States)

    Papadelis, Christos; Chen, Zhe; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Chouvarda, Ioanna; Bekiaris, Evangelos; Maglaveras, Nikos

    2007-09-01

    The objective of this study is the development and evaluation of efficient neurophysiological signal statistics, which may assess the driver's alertness level and serve as potential indicators of sleepiness in the design of an on-board countermeasure system. Multichannel EEG, EOG, EMG, and ECG were recorded from sleep-deprived subjects exposed to real field driving conditions. A number of severe driving errors occurred during the experiments. The analysis was performed in two main dimensions: the macroscopic analysis that estimates the on-going temporal evolution of physiological measurements during the driving task, and the microscopic event analysis that focuses on the physiological measurements' alterations just before, during, and after the driving errors. Two independent neurophysiologists visually interpreted the measurements. The EEG data were analyzed by using both linear and non-linear analysis tools. We observed the occurrence of brief paroxysmal bursts of alpha activity and an increased synchrony among EEG channels before the driving errors. The alpha relative band ratio (RBR) significantly increased, and the Cross Approximate Entropy that quantifies the synchrony among channels also significantly decreased before the driving errors. Quantitative EEG analysis revealed significant variations of RBR by driving time in the frequency bands of delta, alpha, beta, and gamma. Most of the estimated EEG statistics, such as the Shannon Entropy, Kullback-Leibler Entropy, Coherence, and Cross-Approximate Entropy, were significantly affected by driving time. We also observed an alteration of eyes blinking duration by increased driving time and a significant increase of eye blinks' number and duration before driving errors. EEG and EOG are promising neurophysiological indicators of driver sleepiness and have the potential of monitoring sleepiness in occupational settings incorporated in a sleepiness countermeasure device. The occurrence of brief paroxysmal bursts of

  18. Onboard power line conditioning system for an electric or hybrid vehicle

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  19. The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    Science.gov (United States)

    Dominique, M.; Hochedez, J.-F.; Schmutz, W.; Dammasch, I. E.; Shapiro, A. I.; Kretzschmar, M.; Zhukov, A. N.; Gillotay, D.; Stockman, Y.; BenMoussa, A.

    2013-08-01

    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency Project for On-Board Autonomy 2 (PROBA2) mission, which was launched in November 2009. LYRA acquires solar-irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, which have been chosen for their relevance to solar physics, space weather, and aeronomy. We briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe how the data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.

  20. Semantic modeling and structural synthesis of onboard electronics protection means as open information system

    Science.gov (United States)

    Zhevnerchuk, D. V.; Surkova, A. S.; Lomakina, L. S.; Golubev, A. S.

    2018-05-01

    The article describes the component representation approach and semantic models of on-board electronics protection from ionizing radiation of various nature. Semantic models are constructed, the feature of which is the representation of electronic elements, protection modules, sources of impact in the form of blocks with interfaces. The rules of logical inference and algorithms for synthesizing the object properties of the semantic network, imitating the interface between the components of the protection system and the sources of radiation, are developed. The results of the algorithm are considered using the example of radiation-resistant microcircuits 1645RU5U, 1645RT2U and the calculation and experimental method for estimating the durability of on-board electronics.

  1. QMX3.3 module-based on-board vehicle charger

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S. [Delta-Q Technologies, Burnaby, BC (Canada)

    2010-07-01

    Delta-Q is a tier one supplier to industrial electric vehicle manufacturers offering in-house product design and development as well as sales, marketing and customer service. This presentation discussed on-board chargers for use in electric vehicles. Electric vehicle chargers are needed due to their lower cost, lack of time for generational change, and long lifetime and safety requirements. The presentation discussed universal on-board charger requirements as well as final design requirements. Other topics that were addressed included common control; QMX prototypes; steps from prototype to production; and Delta-Q and tier one partnering. It was concluded that there is a complicated array of diverse requirements with multiple stakeholders and standards. figs.

  2. Development of fast scattering model of complex shape target for seminatural tests of onboard proximity radars in real time mode

    Directory of Open Access Journals (Sweden)

    Likhoedenko Andrei K.

    2016-01-01

    Full Text Available Problems of creation of models of real time of complex shape targets on the basis of use of their polygonal models are considered. Formulas for radar cross section of multipoint model of target and power of input signal of onboard radar are described. Technique of semi-natural tests of onboard radar detector on the base of multipoint model of target is proposed. Results of digital simulation of input signals of the onboard radar detector of the target from the aerodynamic target on the basis of their multipoint models are given.

  3. Data processing in Software-type Wave-Particle Interaction Analyzer onboard the Arase satellite

    Science.gov (United States)

    Hikishima, Mitsuru; Kojima, Hirotsugu; Katoh, Yuto; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Miyoshi, Yoshizumi; Asamura, Kazushi; Takashima, Takeshi; Yokota, Shoichiro; Kitahara, Masahiro; Matsuda, Shoya

    2018-05-01

    The software-type wave-particle interaction analyzer (S-WPIA) is an instrument package onboard the Arase satellite, which studies the magnetosphere. The S-WPIA represents a new method for directly observing wave-particle interactions onboard a spacecraft in a space plasma environment. The main objective of the S-WPIA is to quantitatively detect wave-particle interactions associated with whistler-mode chorus emissions and electrons over a wide energy range (from several keV to several MeV). The quantity of energy exchanges between waves and particles can be represented as the inner product of the wave electric-field vector and the particle velocity vector. The S-WPIA requires accurate measurement of the phase difference between wave and particle gyration. The leading edge of the S-WPIA system allows us to collect comprehensive information, including the detection time, energy, and incoming direction of individual particles and instantaneous-wave electric and magnetic fields, at a high sampling rate. All the collected particle and waveform data are stored in the onboard large-volume data storage. The S-WPIA executes calculations asynchronously using the collected electric and magnetic wave data, data acquired from multiple particle instruments, and ambient magnetic-field data. The S-WPIA has the role of handling large amounts of raw data that are dedicated to calculations of the S-WPIA. Then, the results are transferred to the ground station. This paper describes the design of the S-WPIA and its calculations in detail, as implemented onboard Arase.[Figure not available: see fulltext.

  4. High-Speed On-Board Data Processing for Science Instruments

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  5. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Bowsher, James; Giles, William; Yin, Fang-Fang; Yan, Susu; Roper, Justin

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  6. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  7. Solid and hazardous waste management practices onboard ocean going vessels: a review.

    Science.gov (United States)

    Swamy, Yeddanapudi V R P P

    2012-01-01

    Shipping or carriage of goods play an important role in the development of human societies and international shipping industry, which carries 90% of the world trade, is the life blood of global economy. During ships operational activity a number of solid and hazardous wastes, also referred as garbage are produced from galleys, crew cabins and engine/deck departments stores. This review provides an overview of the current practices onboard and examines the evidence that links waste management plan regulations to shipping trade. With strict compliance to International Maritime Organization's MARPOL regulations, which prevents the pollution of sea from ships various discharges, well documented solid and hazardous waste management practices are being followed onboard ships. All ship board wastes are collected, segregated, stored and disposed of in appropriate locations, in accordance with shipping company's environmental protection policy and solid and hazardous waste management plan. For example, food residues are ground onboard and dropped into the sea as fish food. Cardboard and the like are burned onboard in incinerators. Glass is sorted into dark/light and deposited ashore, as are plastics, metal, tins, batteries, fluorescent tubes, etc. The residue from plastic incineration which is still considered as plastic is brought back to shore for disposal. New targets are being set up to reduce the volume of garbage generated and disposed of to shore facilities, and newer ships are using baling machines which compress cardboard etc into bales to be taken ashore. The garbage management and its control system work as a 'continual improvement' process to achieve new targets.

  8. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    Science.gov (United States)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  9. Functional Requirements for Onboard Management of Space Shuttle Consumables. Volume 2

    Science.gov (United States)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    This report documents the results of the study "Functional Requirements for Onboard Management of Space Shuttle Consumables." The study was conducted for the Mission Planning and Analysis Division of the NASA Lyndon B. Johnson Space Center, Houston, Texas, between 3 July 1972 and 16 November 1973. The overall study program objective was two-fold. The first objective was to define a generalized consumable management concept which is applicable to advanced spacecraft. The second objective was to develop a specific consumables management concept for the Space Shuttle vehicle and to generate the functional requirements for the onboard portion of that concept. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The report consists of two volumes. Volume I presents a description of the study activities related to general approaches for developing consumable management, concepts for advanced spacecraft applications, and functional requirements for a Shuttle consumables management concept. Volume II presents a detailed description of the onboard consumables management concept proposed for use on the Space Shuttle.

  10. Onboard autonomous mission re-planning for multi-satellite system

    Science.gov (United States)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2018-04-01

    This paper presents an onboard autonomous mission re-planning system for Multi-Satellites System (MSS) to perform onboard re-planing in disruptive situations. The proposed re-planning system can deal with different potential emergency situations. This paper uses Multi-Objective Hybrid Dynamic Mutation Genetic Algorithm (MO-HDM GA) combined with re-planning techniques as the core algorithm. The Cyclically Re-planning Method (CRM) and the Near Real-time Re-planning Method (NRRM) are developed to meet different mission requirements. Simulations results show that both methods can provide feasible re-planning sequences under unforeseen situations. The comparisons illustrate that using the CRM is average 20% faster than the NRRM on computation time. However, by using the NRRM more raw data can be observed and transmitted than using the CRM within the same period. The usability of this onboard re-planning system is not limited to multi-satellite system. Other mission planning and re-planning problems related to autonomous multiple vehicles with similar demands are also applicable.

  11. Long-term monitoring of air crew exposure onboard of Czech Airlines aircraft

    International Nuclear Information System (INIS)

    Ploc, O.; Spurny, F.; Ploc, O.

    2007-01-01

    This contribution presents new results related to the aircraft crew exposure onboard aircraft of Czech air companies. First, the results of long term monitoring onboard of an aircraft of Czech Airlines are presented. In the period May-December 2005, 494 individual flights have been followed using MDU-Liulin Si-diode based spectrometer, together with thermoluminescent and track detectors. The results of measurements are analyzed and compared with those of calculation performed with CARI6 and EPCARD3.2 codes. Monitoring period represented about 4.6 times more than usual annual engagement of an aircrew (600 hours). Total effective dose during these 2 755 hours was between Il and 12 mSv, following the considered method of evaluation. Both the measuring and calculation methods correlate well. This fact leads to confirmation of the routine method evaluating the level of aircraft crew exposure using CARI6 code as correct for this purpose. Second, the results of individual monitoring of aircrew members obtained during few last years by this routine method are presented; general tendencies of aircraft crew onboard exposure of Czech air companies are outlined. The contribution of aircrew exposure to total occupational exposure in the Czech Republic represents about 20%. (authors)

  12. Definition of Atmospheric Science Experiments and Techniques: Wake Zone Mapping Experiments

    Science.gov (United States)

    Taeusch, D. R.

    1976-01-01

    The development of a subsatellite system has been proposed for the shuttle program which would provide to the scientific community a platform for experiments which would be tethered to the shuttle spacecraft orbiting at about 200 km altitude. Experiments which can perform measurements of aeronomic interest onboard or utilizing the tethered satellite concept are described and recommended.

  13. Feasibility Study and Cost Benefit Analysis of Thin-Client Computer System Implementation Onboard United States Navy Ships

    National Research Council Canada - National Science Library

    Arbulu, Timothy D; Vosberg, Brian J

    2007-01-01

    The purpose of this MBA project was to conduct a feasibility study and a cost benefit analysis of using thin-client computer systems instead of traditional networks onboard United States Navy ships...

  14. Nano-FTIR Spectroscopy to Investigate the Silicate Mineralogy of Mercury Analogues: Supporting MERTIS Onboard BepiColombo Mission

    Science.gov (United States)

    Varatharajan, I.; Maturilli, A.; Helbert, J.; Ulrich, G.; Born, K.; Namur, O.; Kästner, B.; Hecht, L.; Charlier, B.; Hiesinger, H.

    2018-05-01

    Nano-FTIR Spectroscopy is used to investigate the silicate mineralogy of synthetic Mercury analogues produced under reduced conditions representing different Mercury terrains. The study will support MERTIS payload onboard BepiColombo mission.

  15. The on-board tailpipe emissions measurement system (TOTEMS) : proof\\0x2010 of\\0x2010concept.

    Science.gov (United States)

    2009-06-03

    An on-board tailpipe emissions instrumentation system was designed, assembled and tested as proof-of-concept : for the University of Vermonts Transportation Research Center (TRC) Signature Project #2 real-world vehicle : emissions data colle...

  16. Plans for Selection and In-Situ Investigation of Return Samples by the Supercam Instrument Onboard the Mars 2020 Rover

    Science.gov (United States)

    Wiens, R. C.; Maurice, S.; Mangold, N.; Anderson, R.; Beyssac, O.; Bonal, L.; Clegg, S.; Cousin, A.; DeFlores, L.; Dromart, G.; Fisher, W.; Forni, O.; Fouchet, T.; Gasnault, O.; Grotzinger, J.; Johnson, J.; Martinez-Frias, J.; McLennan, S.; Meslin, P.-Y.; Montmessin, F.; Poulet, F.; Rull, F.; Sharma, S.

    2018-04-01

    The SuperCam instrument onboard Rover 2020 still provides a complementary set of analyses with IR reflectance and Raman spectroscopy for mineralogy, LIBS for chemistry, and a color imager in order to investigate in-situ samples to return.

  17. Control of the Onboard Microgravity Environment and Extension of the Service Life of the Long-Term Space Station

    Science.gov (United States)

    Titov, V. A.

    2018-03-01

    The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.

  18. On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tiansi Wang

    2015-08-01

    Full Text Available A state-of-health (SOH estimation method for electric vehicles (EVs is presented with three main advantages: (1 it provides joint estimation of cell’s aging states in terms of power and energy (i.e., SOHP and SOHE—because the determination of SOHP and SOHE can be reduced to the estimation of the ohmic resistance increase and capacity loss, respectively, the ohmic resistance at nominal temperature will be taken as a health indicator, and the capacity loss is estimated based on a mechanistic model that is developed to describe the correlation between resistance increase and capacity loss; (2 it has wide applicability to various ambient temperatures—to eliminate the effects of temperature on the resistance, another mechanistic model about the resistance against temperature is presented, which can normalize the resistance at various temperatures to its standard value at the nominal temperature; and (3 it needs low computational efforts for on-board application—based on a linear equation of cell’s dynamic behaviors, the recursive least-squares (RLS algorithm is used for the resistance estimation. Based on the designed performance and validation experiments, respectively, the coefficients of the models are determined and the accuracy of the proposed method is verified. The results at different aging states and temperatures show good accuracy and reliability.

  19. Damage localization using a power-efficient distributed on-board signal processing algorithm in a wireless sensor network

    International Nuclear Information System (INIS)

    Liu, Lei; Liu, Shuntao; Yuan, Fuh-Gwo

    2012-01-01

    A distributed on-board algorithm that is embedded and executed within a group of wireless sensors to locate structural damages in isotropic plates is presented. The algorithm is based on an energy-decay model of Lamb waves and singular value decomposition (SVD) to determine damage locations. A sensor group consists of a small number of sensors, each of which independently collects wave signals and evaluates wave energy upon an external triggering signal sent from a base station. The energy values, usually a few bytes in length, are then sent to the base station to determine the presence and location of damages. In comparison with traditional centralized approaches in which whole datasets are required to be transmitted, the proposed algorithm yields much less wireless communication traffic, yet with a modest amount of computation required within sensors. Experiments have shown that the algorithm is robust to locate damage for isotropic plate structures and is very power efficient, with more than an order-of-magnitude power saving

  20. Development of porous plug phase separator and superfluid film flow suppression system for the Soft X-ray Spectrometer onboard ASTRO-H

    Science.gov (United States)

    Ezoe, Yuichiro; Ishikawa, Kumi; Ohashi, Takaya; Yamaguchi, Hiroya; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Murakami, Masahide; Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji; DiPirro, Michael; Shirron, Peter; the SXS Team

    2012-04-01

    ASTRO-H is the sixth Japanese astronomy satellite scheduled for launch in 2014. The Soft X-ray Spectrometer instrument is onboard ASTRO-H. This is a 6 × 6 array of X-ray microcalorimeters with an energy resolution of gravity, a porous plug phase separator made of sintered stainless is used. Since the vapor mass flow rate is only 29 μg/s, any additional superfluid film loss influences the lifetime of the liquid helium. Therefore, a film flow suppression system consisting of an orifice, a heat exchanger, and knife edge devices is adopted based on the design used for the X-ray Spectrometer onboard Suzaku. The film flow will be suppressed to <2 μg/s, sufficiently smaller than the vapor flow rate. In the present investigation, the design and ground experiments of a helium vent system composed of the porous plug and film flow suppression system are presented. The results show that the phase separation and the film flow suppression are satisfactorily achieved.

  1. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    Science.gov (United States)

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  2. Investigation of atmospheric high-energy phenomena onboard International Space Station: microsatellite ''Chibis-AI'' and VHF interferometer ''Kite''

    International Nuclear Information System (INIS)

    Dolgonosov, M.; Gotlib, V.; Karedin, V.; Kosov, A.; Nazarov, V.; Zelenyi, L.; Klimov, S.

    2017-01-01

    Space Research Institute of the RAS is gradually developing its own program of the space-born experiments to study high- energy process in the terrestrial atmosphere. Terrestrial Gamma-ray Flashes (TGFS) and Compact Intracloud Discharges (CIDs) are among principal goals of the scientific research of the program. To conduct research is supposed to produce new «instruments»: microsatellite «ChibiS-AI» and VHF interferometer «Kite» aboard International Space Station. Microsatellite ”Chibis-AI” will be constructed on the platform originally designed at the Special Engineering Department of Space Research Institute of the Russian Academy of Sciences in 2011. It's forerunner «Chibis-M» was successfully launched in 2012. Expected date of «Chibis-AI» launch is 2019. The principal idea underlying design of the scientific payload of the microsatellite ”Chibis-AI” is the joint observations of the TGF and CID emissions by different detectors installed onboard: Radio Frequency Analyzer (RFA) and Neutron and Gamma spectrometer (N GS). RFA contained two passbands in the range 15-26 and 26-48 MHZ with a digitization at 96 megasamples/s. NGS is based on LaBr3(Ce3+) crystal with the maximum achievable today spectral resolution and efficiency of gamma rays in the energy range 100 Kev - 10 MeV among scintillation crystals. The microsatellite orbit will be circular with inclination 51° with initial elevation above sea level around 550 km. VHF interferometer «Kite» to be installed in 2019-2020 aboard 188. To implement interferometric scheme 4 antennas will be installed on the 188 surface. The passband of the instrument will be ∼50-100 MHZ. Technical details of both experiments, its current stage and features as well results of the previous experiment «Chibis-M» will be discussed. (author)

  3. Lost in space: Onboard star identification using CCD star tracker data without an a priori attitude

    Science.gov (United States)

    Ketchum, Eleanor A.; Tolson, Robert H.

    1993-01-01

    There are many algorithms in use today which determine spacecraft attitude by identifying stars in the field of view of a star tracker. Some methods, which date from the early 1960's, compare the angular separation between observed stars with a small catalog. In the last 10 years, several methods have been developed which speed up the process and reduce the amount of memory needed, a key element to onboard attitude determination. However, each of these methods require some a priori knowledge of the spacecraft attitude. Although the Sun and magnetic field generally provide the necessary coarse attitude information, there are occasions when a spacecraft could get lost when it is not prudent to wait for sunlight. Also, the possibility of efficient attitude determination using only the highly accurate CCD star tracker could lead to fully autonomous spacecraft attitude determination. The need for redundant coarse sensors could thus be eliminated at substantial cost reduction. Some groups have extended their algorithms to implement a computation intense full sky scan. Some require large data bases. Both storage and speed are concerns for autonomous onboard systems. Neural network technology is even being explored by some as a possible solution, but because of the limited number of patterns that can be stored and large overhead, nothing concrete has resulted from these efforts. This paper presents an algorithm which, by descretizing the sky and filtering by visual magnitude of the brightness observed star, speeds up the lost in space star identification process while reducing the amount of necessary onboard computer storage compared to existing techniques.

  4. PROCESS OF CHANGES OF MAINTENANCE-FREE ONBOARD SYSTEM OPERATIONAL STATUS BETWEEN SCHEDULED MAINTENANCES

    Directory of Open Access Journals (Sweden)

    Andrey Mikhaylovich Bronnikov

    2017-01-01

    Full Text Available In this article the authors consider the problem of simulating the process of a maintenance-free between scheduled maintenance aircraft system operational status changes, which failure during the flight leads to the disaster. On-board equipment with automatic self-repair between routine maintenance in the event the components fail is called maintenance-free. During operation, onboard equipment accumulates failures maintaining its functions with a safety level not lower than the required minimum. Trouble shooting is carried out either at the end of between-maintenance period (as a rule, or after the failure, which led to the functions disorder or to the decrease below the target level of flight safety (as an exception. The system contains both redundant and nonredundant units and elements with the known failure rates. The system can be in one of the three states: operable, extreme, failed. The excessive redundant elements allow the system to accumulate failures which are repaired during the routine maintenance. The process of system operational status changes is described with the discrete-continuous model in the flight time. Basing on the information about the probabilities of the on-board equipment being in an operable, extreme or failed state, it is possible to calculate such complex efficiency indicators as the average loss of sorties, the average operating costs, the expected number of emergency recovery operations and others. Numerical studies have been conducted to validate the proposed model. It is believed that maintenance work completely updates the system. The analysis of these indicators will allow to evaluate the maintenance-free aircraft equipment operation efficiency, as well as to make an effectiveness comparison with other methods of technical operation. The model can be also used to assess the technical operation systems performance. The model can be used to optimize the period between maintenance.

  5. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  6. Information processing requirements for on-board monitoring of automatic landing

    Science.gov (United States)

    Sorensen, J. A.; Karmarkar, J. S.

    1977-01-01

    A systematic procedure is presented for determining the information processing requirements for on-board monitoring of automatic landing systems. The monitoring system detects landing anomalies through use of appropriate statistical tests. The time-to-correct aircraft perturbations is determined from covariance analyses using a sequence of suitable aircraft/autoland/pilot models. The covariance results are used to establish landing safety and a fault recovery operating envelope via an event outcome tree. This procedure is demonstrated with examples using the NASA Terminal Configured Vehicle (B-737 aircraft). The procedure can also be used to define decision height, assess monitoring implementation requirements, and evaluate alternate autoland configurations.

  7. On-board power supply system of a magnetically levitated vehicle

    International Nuclear Information System (INIS)

    Shibata, M.; Maki, N.; Saitoh, T.; Kobayashi, T.

    1992-01-01

    In this paper a possible on-board power supply system for a magnetically levitated train is presented and its obtainable electrical power is estimated. The system uses special superconducting magnets. These magnets are used only for generating electrical power. Some induction coils to pick up high frequency components are set in front of the magnets. The special superconducting magnets and the induction coils will be mounted only at the head car and the tail car out of 14 cars in a train. The estimation shows that is possible to obtain more than 630kW of electrical power

  8. The Ionospheric Bubble Index deduced from magnetic field and plasma observations onboard Swarm

    DEFF Research Database (Denmark)

    Park, Jaeheung; Noja, Max; Stolle, Claudia

    2013-01-01

    . This product called L2-IBI is generated from magnetic field and plasma observations onboard Swarm, and gives information as to whether a Swarm magnetic field observation is affected by EPBs. We validate the performance of the L2-IBI product by using magnetic field and plasma measurements from the CHAMP...... satellite, which provided observations similar to those of the Swarm. The L2-IBI product is of interest not only for ionospheric studies, but also for geomagnetic field modeling; modelers can de-select magnetic data which are affected by EPBs or other unphysical artifacts....

  9. New Material Overcomes a Long-Standing Challenge for Efficient, Onboard Storage of Hydrogen using Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Fuel Cell Technologies Office

    2018-02-28

    The quest to develop a low cost material that efficiently stores hydrogen onboard fuel cell electric vehicles at low pressures and near room temperature has been pursued by U.S. Department of Energy since the early 2000s. This success story describes a recent early stage scientific breakthrough by researchers at Lawrence Berkeley National Laboratory that could open the door to achieving a material that offers a 300+ mile driving range with 5 minute refuels, while still only emitting water vapor at the tail pipe.

  10. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from the exhaust gas, contacting the separated CO2 with one or more of a second MOF composition sufficient to store the CO2 and wherein the one or more first MOF composition comprises one or more SIFSIX-n-M MOF and wherein M is a metal and n is 2 or 3. Embodiments also describe an apparatus or system for capturing and storing CO2 onboard a vehicle.

  11. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes

    International Nuclear Information System (INIS)

    Pratt, Joseph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

    2013-01-01

    Highlights: ► We examine proton exchange membrane fuel cells on-board commercial airplanes. ► We model the added fuel cell system’s effect on overall airplane performance. ► It is feasible to implement an on-board fuel cell system with current technology. ► Systems that maximize waste heat recovery are the best performing. ► Current PEM and H 2 storage technology results in an airplane performance penalty. -- Abstract: Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today’s off-the-shelf technology. We also examine the effects of the fuel cell system on airplane performance with (1) different electrical loads, (2) different locations on the airplane, and (3) expected advances in fuel cell and hydrogen storage technologies. Through hardware analysis and thermodynamic simulation, we found that an additional fuel cell system on a commercial airplane is technically feasible using current technology. Although applied to a Boeing 787-type airplane, the method presented is applicable to other airframes as well. Recovery and on-board use of the heat and water that is generated by the fuel cell is an important method to increase the benefit of such a system. The best performance is achieved when the fuel cell is coupled to a load that utilizes the full output of the fuel cell for the entire flight. The effects of location are small and location may be better determined by other considerations such as safety and modularity. Although the PEM fuel cell generates power more efficiently than the gas turbine generators currently used, when considering the effect of the fuel cell system on the airplane’s overall performance we found that an overall

  12. Processor breadboard for on-board RFI detection and mitigation in MetOp-SG radiometers

    DEFF Research Database (Denmark)

    Skou, Niels; Kristensen, Steen S.; Kovanen, Arhippa

    2015-01-01

    Radio Frequency Interference (RFI) is an increasing threat to proper operation of space-borne Earth viewing microwave radiometer systems. There is a steady growth in active services, and tougher requirements to sensitivity and fidelity of future radiometer systems. Thus it has been decided...... that the next generation MetOp satellites must include some kind of RFI detection and mitigation system at Ku band. This paper describes a breadboard processor that detects and mitigates RFI on-board the satellite. Thus cleaned data can be generated in real time, and following suitable integration, downloaded...... to ground at the modest data rate usually associated with radiometer systems....

  13. Study of the coma of comet 67P/Churyumov-Gerasimenko based on the ROSINA/RTOF instrument onboard Rosetta

    Science.gov (United States)

    Hoang, M.; Garnier, P.; Lasue, J.; Reme, H.; Altwegg, K.; Balsiger, H. R.; Bieler, A. M.; Calmonte, U.; Fiethe, B.; Galli, A.; Gasc, S.; Gombosi, T. I.; Jäckel, A.; Mall, U.; Le Roy, L.; Rubin, M.; Tzou, C. Y.; Waite, J. H., Jr.; Wurz, P.

    2015-12-01

    The ROSETTA spacecraft of ESA is in the environment of comet 67P/Churyumov-Gerasimenko since August 2014. Among the experiments onboard the spacecraft, the ROSINA experiment (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) includes two mass spectrometers (DFMS and RTOF) to analyze the composition of neutrals and ions, and a pressure sensor (COPS) to monitor the density and velocity of neutrals in the coma [1]. We will here analyze and discuss the data of the ROSINA/RTOF instrument during the comet escort phase. The Reflectron-type Time-Of-Flight (RTOF) mass spectrometer possesses a wide mass range and a high temporal resolution [1,2]. It was designed to measure cometary neutral gas as well as cometary ions. A detailed description of the main volatiles (H2O, CO2, CO) dynamics and of the heterogeneities of the coma will then be provided. The influence of various parameters on the coma measurements is investigated on a statistical basis, with the parameters being distance to the comet, heliocentric distance, longitude and latitude of nadir point. Our analysis of the northern hemisphere summer season shows the presence of water vapor mostly in the illuminated northern hemisphere near the neck region with cyclic diurnal variations whereas CO2 was confined to the cold southern hemisphere with a more spatially homogeneous composition, in agreement with previous observations of 67P [2] or Hartley 2 [3]. A comparison will also be provided with the COPS total density and DFMS abundance measurements. [1] Balsiger et al., "ROSINA - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis", Space Sci. Rev., 2007. [2] Scherer et al., "A novel principle for an ion mirror design in time-of-flight mass spectrometry," Int. Jou. Mass Spectr., 2006. [3] Hässig et al., "Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko", Science, 2015. [4] A'Hearn et al., "EPOXI at comet Hartley 2", Science, 2011.

  14. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    Science.gov (United States)

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Random On-Board Pixel Sampling (ROPS) X-Ray Camera

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos; Iaroshenko, O. [Los Alamos; Li, S. [Los Alamos; Liu, T. [Fermilab; Parab, N. [Argonne (main); Chen, W. W. [Purdue U.; Chu, P. [Los Alamos; Kenyon, G. [Los Alamos; Lipton, R. [Fermilab; Sun, K.-X. [Nevada U., Las Vegas

    2017-09-25

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  16. An artificial intelligence approach to onboard fault monitoring and diagnosis for aircraft applications

    Science.gov (United States)

    Schutte, P. C.; Abbott, K. H.

    1986-01-01

    Real-time onboard fault monitoring and diagnosis for aircraft applications, whether performed by the human pilot or by automation, presents many difficult problems. Quick response to failures may be critical, the pilot often must compensate for the failure while diagnosing it, his information about the state of the aircraft is often incomplete, and the behavior of the aircraft changes as the effect of the failure propagates through the system. A research effort was initiated to identify guidelines for automation of onboard fault monitoring and diagnosis and associated crew interfaces. The effort began by determining the flight crew's information requirements for fault monitoring and diagnosis and the various reasoning strategies they use. Based on this information, a conceptual architecture was developed for the fault monitoring and diagnosis process. This architecture represents an approach and a framework which, once incorporated with the necessary detail and knowledge, can be a fully operational fault monitoring and diagnosis system, as well as providing the basis for comparison of this approach to other fault monitoring and diagnosis concepts. The architecture encompasses all aspects of the aircraft's operation, including navigation, guidance and controls, and subsystem status. The portion of the architecture that encompasses subsystem monitoring and diagnosis was implemented for an aircraft turbofan engine to explore and demonstrate the AI concepts involved. This paper describes the architecture and the implementation for the engine subsystem.

  17. Using remotely piloted aircraft and onboard processing to optimize and expand data collection

    Science.gov (United States)

    Fladeland, M. M.; Sullivan, D. V.; Chirayath, V.; Instrella, R.; Phelps, G. A.

    2016-12-01

    Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASA's Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.

  18. MERTIS: the thermal infrared imaging spectrometer onboard of the Mercury Planetary Orbiter

    Science.gov (United States)

    Zeh, T.; Peter, G.; Walter, I.; Kopp, E.; Knollenberg, J.; Helbert, J.; Gebhardt, A.; Weber, I.; Hiesinger, Harry

    2017-11-01

    The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS has four goals: the study of Mercury's surface composition, identification of rock-forming minerals, mapping of the surface mineralogy, and the study of the surface temperature variations and thermal inertia. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm at high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. The MERTIS detector is based on an uncooled micro-bolometer array providing spectral separation and spatial resolution according to its 2-dimensional shape. The operation principle is characterized by intermediate scanning of the planet surface and three different calibration targets - free space view and two on-board black body sources. In the current project phase, the MERTIS Qualification Model (QM) is under a rigorous testing program. Besides a general overview of the instrument principles, the papers addresses major aspects of the instrument design, manufacturing and verification.

  19. Detecting the Use of Intentionally Transmitting Personal Electronic Devices Onboard Commercial Aircraft

    Science.gov (United States)

    Woods, Randy; Ely, Jay J.; Vahala, Linda

    2003-01-01

    The need to detect unauthorized usage of intentionally transmitting portable electronic devices (PEDs) onboard commercial aircraft is growing, while still allowing passengers to use selected unintentionally transmitting devices, such as laptop computers and CD players during non-critical stages of flight. The following paper presents an installed system for detecting PEDs over multiple frequency bands. Additionally, the advantages of a fixed verses mobile system are discussed. While data is presented to cover the frequency range of 20 MHz to 6.5 GHz, special attention was given to the Cellular/PCS bands as well as Bluetooth and the FRS radio bands. Measurement data from both the semi-anechoic and reverberation chambers are then analyzed and correlated with data collected onboard a commercial aircraft to determine the dominant mode of coupling inside the passenger cabin of the aircraft versus distance from the source. As a final check of system feasibility, several PEDs transmission signatures were recorded and compared with the expected levels.

  20. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  1. ON-BOARD MONITORING OF TECHNICAL STATE FOR POWER UNITS OF WHEELED AND TRACKED VEHICLES

    Directory of Open Access Journals (Sweden)

    Yu. D. Karpievich

    2016-01-01

    Full Text Available The paper considers new methodologies pertaining to on-board diagnosis of wear-out rate for friction linings of a clutch driven disk and friction discs of a hydraulic press clutch of transmission gear boxes which are based on physical process that uses friction work as an integrated indicator. A new methodology in determination of life-span rate for engine oil has been developed in the paper. The paper presents block schematic diagrams for on-board monitoring of technical state for power units of wheeled and tracked vehicles. Usage of friction work as an integrated indicator for determination of wear-out rate for friction linings of clutch driven disk and friction discs of a haydraulic press clutch makes it possible timely at any operational period of wheeled and tracked vehicles to determine their residual operation life and forecast their replacement.While taking volume of the used fuel for determination of engine oil life-span rate it permits quickly and effectively at any operational period of wheeled and tracked vehicles to determine residual useful life of the engine oil and also forecast its replacement.

  2. Improving of technical characteristics of launch vehicles with liquid rocket engines using active onboard de-orbiting systems

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.

    2017-09-01

    In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.

  3. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  4. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    Berger Thomas

    2016-01-01

    Full Text Available The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS, a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009–2011 and the DOSIS 3D (2012–ongoing experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195–270 μGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 μGy/day. The absorbed dose is modulated by (a the variation in solar activity and (b the changes in ISS altitude.

  5. Four dimensional digital tomosynthesis using on-board imager for the verification of respiratory motion.

    Directory of Open Access Journals (Sweden)

    Justin C Park

    Full Text Available PURPOSE: To evaluate respiratory motion of a patient by generating four-dimensional digital tomosynthesis (4D DTS, extracting respiratory signal from patients' on-board projection data, and ensuring the feasibility of 4D DTS as a localization tool for the targets which have respiratory movement. METHODS AND MATERIALS: Four patients with lung and liver cancer were included to verify the feasibility of 4D-DTS with an on-board imager. CBCT acquisition (650-670 projections was used to reconstruct 4D DTS images and the breath signal of the patients was generated by extracting the motion of diaphragm during data acquisition. Based on the extracted signal, the projection data was divided into four phases: peak-exhale phase, mid-inhale phase, peak-inhale phase, and mid-exhale phase. The binned projection data was then used to generate 4D DTS, where the total scan angle was assigned as ±22.5° from rotation center, centered on 0° and 180° for coronal "half-fan" 4D DTS, and 90° and 270° for sagittal "half-fan" 4D DTS. The result was then compared with 4D CBCT which we have also generated with the same phase distribution. RESULTS: The motion of the diaphragm was evident from the 4D DTS results for peak-exhale, mid-inhale, peak-inhale and mid-exhale phase assignment which was absent in 3D DTS. Compared to the result of 4D CBCT, the view aliasing effect due to arbitrary angle reconstruction was less severe. In addition, the severity of metal artifacts, the image distortion due to presence of metal, was less than that of the 4D CBCT results. CONCLUSION: We have implemented on-board 4D DTS on patients data to visualize the movement of anatomy due to respiratory motion. The results indicate that 4D-DTS could be a promising alternative to 4D CBCT for acquiring the respiratory motion of internal organs just prior to radiotherapy treatment.

  6. Soft x-ray imager (SXI) onboard the NeXT satellite

    Science.gov (United States)

    Tsuru, Takeshi Go; Takagi, Shin-Ichiro; Matsumoto, Hironori; Inui, Tatsuya; Ozawa, Midori; Koyama, Katsuji; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Miyata, Emi; Ozawa, Hideki; Touhiguchi, Masakuni; Matsuura, Daisuke; Dotani, Tadayasu; Ozaki, Masanobu; Murakami, Hiroshi; Kohmura, Takayoshi; Kitamoto, Shunji; Awaki, Hisamitsu

    2006-06-01

    We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging (SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2 (IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan. The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer (200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm. The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard electronics for the CCD clocking, readout and digital processing of the frame date.

  7. An integrated development framework for rapid development of platform-independent and reusable satellite on-board software

    Science.gov (United States)

    Ziemke, Claas; Kuwahara, Toshinori; Kossev, Ivan

    2011-09-01

    Even in the field of small satellites, the on-board data handling subsystem has become complex and powerful. With the introduction of powerful CPUs and the availability of considerable amounts of memory on-board a small satellite it has become possible to utilize the flexibility and power of contemporary platform-independent real-time operating systems. Especially the non-commercial sector such like university institutes and community projects such as AMSAT or SSETI are characterized by the inherent lack of financial as well as manpower resources. The opportunity to utilize such real-time operating systems will contribute significantly to achieve a successful mission. Nevertheless the on-board software of a satellite is much more than just an operating system. It has to fulfill a multitude of functional requirements such as: Telecommand interpretation and execution, execution of control loops, generation of telemetry data and frames, failure detection isolation and recovery, the communication with peripherals and so on. Most of the aforementioned tasks are of generic nature and have to be conducted on any satellite with only minor modifications. A general set of functional requirements as well as a protocol for communication is defined in the SA ECSS-E-70-41A standard "Telemetry and telecommand packet utilization". This standard not only defines the communication protocol of the satellite-ground link but also defines a set of so called services which have to be available on-board of every compliant satellite and which are of generic nature. In this paper, a platform-independent and reusable framework is described which is implementing not only the ECSS-E-70-41A standard but also functionalities for interprocess communication, scheduling and a multitude of tasks commonly performed on-board of a satellite. By making use of the capabilities of the high-level programming language C/C++, the powerful open source library BOOST, the real-time operating system RTEMS and

  8. INTEGRATED ON-BOARD COMPUTING SYSTEMS: PRESENT SITUATION REVIEW AND DEVELOPMENT PROSPECTS ANALYSIS IN THE AVIATION INSTRUMENT-MAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    P. P. Paramonov

    2013-03-01

    Full Text Available The article deals with present situation review and analysis of development prospects for integrated on-board computing systems, used in the aviation instrument-making industry. The main attention is paid to the projects carried out in the framework of an integrated modular avionics. Hierarchical levels of module design, crates (onboard systems and aviation complexes are considered in detail. Examples of the existing products of our country and from abroad and their brief technical characteristics are given and voluminous bibliography on the subject matter as well.

  9. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    Science.gov (United States)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  10. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    Science.gov (United States)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  11. Integration of passive driver-assistance systems with on-board vehicle systems

    Science.gov (United States)

    Savchenko, V. V.; Poddubko, S. N.

    2018-02-01

    Implementation in OIAS such functions as driver’s state monitoring and high-precision calculation of the current navigation coordinates of the vehicle, modularity of the OIAS construction and the possible increase in the functionality through integration with other onboard systems has a promising development future. The development of intelligent transport systems and their components allows setting and solving fundamentally new tasks for the safety of human-to-machine transport systems, and the automatic analysis of heterogeneous information flows provides a synergistic effect. The analysis of cross-modal information exchange in human-machine transport systems, from uniform methodological points of view, will allow us, with an accuracy acceptable for solving applied problems, to form in real time an integrated assessment of the state of the basic components of the human-to-machine system and the dynamics in changing situation-centered environment, including the external environment, in their interrelations.

  12. Implementation of a research prototype onboard fault monitoring and diagnosis system

    Science.gov (United States)

    Palmer, Michael T.; Abbott, Kathy H.; Schutte, Paul C.; Ricks, Wendell R.

    1987-01-01

    Due to the dynamic and complex nature of in-flight fault monitoring and diagnosis, a research effort was undertaken at NASA Langley Research Center to investigate the application of artificial intelligence techniques for improved situational awareness. Under this research effort, concepts were developed and a software architecture was designed to address the complexities of onboard monitoring and diagnosis. This paper describes the implementation of these concepts in a computer program called FaultFinder. The implementation of the monitoring, diagnosis, and interface functions as separate modules is discussed, as well as the blackboard designed for the communication of these modules. Some related issues concerning the future installation of FaultFinder in an aircraft are also discussed.

  13. Optimization of an on-board imaging system for extremely rapid radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Maxim, Peter G.; Loo, Billy W. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-11-15

    Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors are proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration

  14. Optimization of an on-board imaging system for extremely rapid radiation therapy

    International Nuclear Information System (INIS)

    Cherry Kemmerling, Erica M.; Wu, Meng; Yang, He; Fahrig, Rebecca; Maxim, Peter G.; Loo, Billy W.

    2015-01-01

    Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors are proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration

  15. Deployment of the MARSIS Radar Antennas On-Board Mars Express

    Science.gov (United States)

    Denis, Michel; Moorhouse, A.; Smith, A.; McKay, Mike; Fischer, J.; Jayaraman, P.; Mounzer, Z.; Schmidt, R.; Reddy, J.; Ecale, E.; hide

    2006-01-01

    On the first European planetary mission, the deployment of the two 20-meter long MARSIS antennas onboard the ESA Mars Express spacecraft has represented an unprecedented technological challenge, in the middle of a successful science mission. While Mars Express was already performing regular observations at Mars, a complex process has been performed on Earth, involving the ESA Project, coordination between ESA, NASA and ASI, the Mars Science community, the spacecraft manufacturer EADS Astrium and the Mission Control Centre at ESOC. This paper describes the steps that led from an initial nogo in 2004 to deployment one year later, as well as the conditions and difficulties encountered during the actual deployment. It provides insights in the technical and managerial processes that made it a success, and analyses the rationale behind the decisions.

  16. On-board ammonia generation and exhaust after treatment system using same

    Science.gov (United States)

    Driscoll, Josh; Robel, Wade J.; Brown, Cory A.; Urven, Jr., Roger L.

    2010-03-30

    Often NOx selective catalysts that use ammonia to reduce NOx within exhaust to a harmless gas require on-board storage of ammonia which can be hazardous and inconvenient. In order to generate ammonia in exhaust, the present disclosure increases a NOx concentration in exhaust from at least one combustion chamber, at least in part, by injecting fuel in a predetermined increased NOx generation sequence that includes a first injection during non-auto ignition conditions and a second injection during auto ignition conditions. At least a portion of the NOx is converted to ammonia by passing at least a portion of the exhaust with the increased NOx concentration over an ammonia-producing catalyst.

  17. Modeling and Simulation of Truck Engine Cooling System for Onboard Diagnosis

    Institute of Scientific and Technical Information of China (English)

    朱正礼; 张建武; 包继华

    2004-01-01

    A cooling system model of a selected internal combustion engine has been built for onboard diagnosis. The model uses driving cycle data available within the production Engine Control Module (ECM): vehicle speed, engine speed, and fuel flow rate for the given ambient temperature and pressure, etc. Based on the conservation laws for heat transfer and mass flow process, the mathematical descriptions for the components involved in the cooling circuit are obtained and all the components are integrated into a model on Matlab/Simulink platform. The model can simulate the characteristics of thermostat (e.g. time-lag, hysteresis effect).The changes of coolant temperature, heat transfer flow rate, and pressure at individual component site are also shown.

  18. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    Science.gov (United States)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  19. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  20. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  1. Design of on-board Bluetooth wireless network system based on fault-tolerant technology

    Science.gov (United States)

    You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang

    2007-11-01

    In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.

  2. Engineering assessment of in situ sulfate production onboard aircraft at high altitude

    Science.gov (United States)

    Smith, J.; Dykema, J. A.; Keith, D.

    2016-12-01

    Stratospheric injection of scattering aerosols has been proposed as a way to reduce global temperature increases by decreasing net atmospheric radiative forcing. Several methods have been suggested as a means of implementing solar geoengineering, and high altitude aircraft have been identified as an accessible means delivering sulfate aerosols to the lower and mid-stratosphere. This research initiative analyzes the design features of an onboard open cycle chemical plant capable of in situ sulfur to sulfate conversion, and compares the required mass to that of transporting pre-fabricated gaseous or liquid sulfate aerosol precursors. Scaling from aero-derivative gas turbine engines, commercial catalytic converters, and existing aerospace materials indicate that aircraft equipped with such a system could provide a substantial mass benefit compared to direct transport of compound sulfate products.

  3. The development of a computational platform to design and simulate on-board hydrogen storage systems

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2017-01-01

    A computational platform is developed in the Modelica® language within the Dymola™ environment to provide a tool for the design and performance comparison of on-board hydrogen storage systems. The platform has been coupled with an open source library for hydrogen fueling stations to investigate...... the vehicular tank within the frame of a complete refueling system. The two technologies that are integrated in the platform are solid-state hydrogen storage in the form of metal hydrides and compressed gas systems. In this work the computational platform is used to compare the storage performance of two tank...... to a storage capacity four times larger than a tube-in-tube solution of the same size. The volumetric and gravimetric densities of the shell and tube are 2.46% and 1.25% respectively. The dehydriding ability of this solution is proven to withstand intense discharging conditions....

  4. Time Synchronization Strategy Between On-Board Computer and FIMS on STSAT-1

    Directory of Open Access Journals (Sweden)

    Seong Woo Kwak

    2004-06-01

    Full Text Available STSAT-1 was launched on sep. 2003 with the main payload of Far Ultra-violet Imaging Spectrograph(FIMS. The mission of FIMS is to observe universe and aurora. In this paper, we suggest a simple and reliable strategy adopted in STSAT-1 to synchronize time between On-board Computer(OBC and FIMS. For the characteristics of STSAT-1, this strategy is devised to maintain reliability of satellite system and to reduce implementation cost by using minimized electronic circuits. We suggested two methods with different synchronization resolutions to cope with unexpected faults in space. The backup method with low resolution can be activated when the main has some problems.

  5. Around the world with professor Vening Meinesz onboard the submarine K-XVIII

    Science.gov (United States)

    Root, Bart; Hanssen, Ramon; Vermeersen, Bert; Munnik, Michiel; Vlijm, Rozemarijn

    2015-04-01

    In November 1934, Den Helder, The Netherlands, the start of a remarkable voyage commenced. The Hr. Ms. K-XVIII, a Dutch submarine, was about to set sail to Soerabaya, Indonesia. Onboard was a Dutch professor, Felix Andries Vening Meinesz. He was able to measure the Earth's gravity field with similar precision as on land for the first time in history using his innovative pendulum apparatus. His ground breaking data and systematic way of working changed the way of performing scientific expeditions. With the Library of the TUDelft and "Stichting Academisch Erfgoed" (Academic Heritage Foundation), we revisit this particular expedition and use it as a stepping stone to web-based geodetic and geophysical education for students and the public. The K-XVIII sailed over spreading ridges, transform faults, hotspot volcanos, subduction zones and many more interesting geological structures, which are discussed in this application. The importance of geodetic research is heavily present along the complete voyage in the form of global geoid determination. Moreover, the precision of the observations onboard the K-XVIII are compared with current satellite gravimetry and prove to be remarkable accurate. The goal of the project is to make the several datasets of Vening Meinesz, his measurements, articles, media, old foto's and other objects of the K-XVIII voyage, accessible for the public. The user can follow the famous voyage from Den Helder to Soerabaya in an interactive web application, stopping at interesting geophysical or historical places in space and time. The user can learn about plate tectonics and its historical findings, study the equipment that Vening Meinesz used to observe the gravity field with extreme precision, and learn about the important collaboration between science and the Navy. Dive into the adventure of the geo-scientific research of professor Vening Meinesz.

  6. Hydrogen production by onboard gasoline processing – Process simulation and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bisaria, Vega; Smith, R.J. Byron,

    2013-12-15

    Highlights: • Process flow sheet for an onboard fuel processor for 100 kW fuel cell output was simulated. • Gasoline fuel requirement was found to be 30.55 kg/hr. • The fuel processor efficiency was found to be 95.98%. • An heat integrated optimum flow sheet was developed. - Abstract: Fuel cell vehicles have reached the commercialization stage and hybrid vehicles are already on the road. While hydrogen storage and infrastructure remain critical issues in stand alone commercialization of the technology, researchers are developing onboard fuel processors, which can convert a variety of fuels into hydrogen to power these fuel cell vehicles. The feasibility study of a 100 kW on board fuel processor based on gasoline fuel is carried out using process simulation. The steady state model has been developed with the help of Aspen HYSYS to analyze the fuel processor and total system performance. The components of the fuel processor are the fuel reforming unit, CO clean-up unit and auxiliary units. Optimization studies were carried out by analyzing the influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, temperature and pressure on the process equipments. From the steady state model optimization using Aspen HYSYS, an optimized reaction composition in terms of hydrogen production and carbon monoxide concentration corresponds to: oxygen to carbon ratio of 0.5 and steam to carbon ratio of 0.5. The fuel processor efficiency of 95.98% is obtained under these optimized conditions. The heat integration of the system using the composite curve, grand composite curve and utility composite curve were studied for the system. The most appropriate heat exchanger network from the generated ones was chosen and that was incorporated into the optimized flow sheet of the100 kW fuel processor. A completely heat integrated 100 kW fuel processor flow sheet using gasoline as fuel was thus successfully simulated and optimized.

  7. Hydrogen production by onboard gasoline processing – Process simulation and optimization

    International Nuclear Information System (INIS)

    Bisaria, Vega; Smith, R.J. Byron

    2013-01-01

    Highlights: • Process flow sheet for an onboard fuel processor for 100 kW fuel cell output was simulated. • Gasoline fuel requirement was found to be 30.55 kg/hr. • The fuel processor efficiency was found to be 95.98%. • An heat integrated optimum flow sheet was developed. - Abstract: Fuel cell vehicles have reached the commercialization stage and hybrid vehicles are already on the road. While hydrogen storage and infrastructure remain critical issues in stand alone commercialization of the technology, researchers are developing onboard fuel processors, which can convert a variety of fuels into hydrogen to power these fuel cell vehicles. The feasibility study of a 100 kW on board fuel processor based on gasoline fuel is carried out using process simulation. The steady state model has been developed with the help of Aspen HYSYS to analyze the fuel processor and total system performance. The components of the fuel processor are the fuel reforming unit, CO clean-up unit and auxiliary units. Optimization studies were carried out by analyzing the influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, temperature and pressure on the process equipments. From the steady state model optimization using Aspen HYSYS, an optimized reaction composition in terms of hydrogen production and carbon monoxide concentration corresponds to: oxygen to carbon ratio of 0.5 and steam to carbon ratio of 0.5. The fuel processor efficiency of 95.98% is obtained under these optimized conditions. The heat integration of the system using the composite curve, grand composite curve and utility composite curve were studied for the system. The most appropriate heat exchanger network from the generated ones was chosen and that was incorporated into the optimized flow sheet of the100 kW fuel processor. A completely heat integrated 100 kW fuel processor flow sheet using gasoline as fuel was thus successfully simulated and optimized

  8. New technologies for supporting real-time on-board software development

    Science.gov (United States)

    Kerridge, D.

    1995-03-01

    The next generation of on-board data management systems will be significantly more complex than current designs, and will be required to perform more complex and demanding tasks in software. Improved hardware technology, in the form of the MA31750 radiation hard processor, is one key component in addressing the needs of future embedded systems. However, to complement these hardware advances, improved support for the design and implementation of real-time data management software is now needed. This will help to control the cost and risk assoicated with developing data management software development as it becomes an increasingly significant element within embedded systems. One particular problem with developing embedded software is managing the non-functional requirements in a systematic way. This paper identifies how Logica has exploited recent developments in hard real-time theory to address this problem through the use of new hard real-time analysis and design methods which can be supported by specialized tools. The first stage in transferring this technology from the research domain to industrial application has already been completed. The MA37150 Hard Real-Time Embedded Software Support Environment (HESSE) is a loosely integrated set of hardware and software tools which directly support the process of hard real-time analysis for software targeting the MA31750 processor. With further development, this HESSE promises to provide embedded system developers with software tools which can reduce the risks associated with developing complex hard real-time software. Supported in this way by more sophisticated software methods and tools, it is foreseen that MA31750 based embedded systems can meet the processing needs for the next generation of on-board data management systems.

  9. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  10. Onboard measurement system of atmospheric carbon monoxide over the Pacific Ocean by voluntary observing ships

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Nojiri, Y.; Mukai, H.; Machida, T.; Tohjima, Y.

    2011-07-01

    Long-term monitoring of carbon monoxide (CO) mixing ratios in the atmosphere over the Pacific Ocean is being carried out on commercial cargo vessels participating in the National Institute for Environmental Studies Voluntary Observing Ships program. The program provides a regular platform for measurement of atmospheric CO along four cruising routes: from Japan to Oceania, from Japan to the United States, from Japan to Canada, and from Japan to Southeast Asia. Flask samples are collected during every cruise for subsequent analysis in the laboratory, and in 2005, continuous shipboard CO measurements were initiated on three of the routes. Here, we describe the system we developed for onboard measurement of CO mixing ratios with a commercially available gas filter correlation CO analyzer. The fully automated system measures CO in ambient air, and the detector sensitivity and background signals are calibrated by referencing the measurements to a CO-in-air standard gas (~1 ppmv) and to CO-free air scrubbed with a catalyst, respectively. We examined the artificial production of CO in the high-pressure working gas standards (CO balanced with purified air at ppmv levels) during storage by referencing the measurements to CO standard gases maintained as our primary scale before and after use on the ships. The onboard performance of the continuous CO measurement system was evaluated by comparing its data with data from laboratory analyses of flask samples using gas chromatography with a reduction gas detector. The reasonably good consistency between the two independent measurement methods demonstrated the good performance of both methods over the course of 3-5 yr. The continuous measurement system was more useful than the flask sampling method for regionally polluted air masses, which were often encountered on Southeast Asian cruises.

  11. Onboard measurement system of atmospheric carbon monoxide in the Pacific by voluntary observing ships

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Nojiri, Y.; Mukai, H.; Machida, T.; Tohjima, Y.

    2011-11-01

    Long-term monitoring of carbon monoxide (CO) mixing ratios in the atmosphere over the Pacific Ocean is being carried out on commercial cargo vessels participating in the National Institute for Environmental Studies Voluntary Observing Ships program. The program provides a regular platform for measurement of atmospheric CO along four cruise routes: from Japan to Oceania, the United States, Canada, and Southeast Asia. Flask samples are collected during every cruise for subsequent analysis in the laboratory, and in 2005, continuous shipboard CO measurements were initiated on three of the routes. Here, we describe the system we developed for onboard measurement of CO mixing ratios with a commercially available gas filter correlation CO analyzer. The fully automated system measures CO in ambient air, and the detector sensitivity and background signals are calibrated by referencing the measurements to a CO-in-air standard gas (~1 ppmv) and to CO-free air scrubbed with a catalyst, respectively. We examined the artificial production of CO in the high-pressure working gas standards during storage by referencing the measurements to CO standard gases maintained as our primary scale before and after use on the ships. The onboard performance of the continuous CO measurement system was evaluated by comparing its data with data from laboratory analyses of flask samples using gas chromatography with a reduction gas detector. The reasonably good consistency between the two independent measurement methods demonstrated the good performance of both methods over the course of 3-5 years. The continuous measurement system was more useful than the flask sampling method for regionally polluted air masses, which were often encountered on Southeast Asian cruises.

  12. Onboard measurement system of atmospheric carbon monoxide in the Pacific by voluntary observing ships

    Directory of Open Access Journals (Sweden)

    H. Nara

    2011-11-01

    Full Text Available Long-term monitoring of carbon monoxide (CO mixing ratios in the atmosphere over the Pacific Ocean is being carried out on commercial cargo vessels participating in the National Institute for Environmental Studies Voluntary Observing Ships program. The program provides a regular platform for measurement of atmospheric CO along four cruise routes: from Japan to Oceania, the United States, Canada, and Southeast Asia. Flask samples are collected during every cruise for subsequent analysis in the laboratory, and in 2005, continuous shipboard CO measurements were initiated on three of the routes. Here, we describe the system we developed for onboard measurement of CO mixing ratios with a commercially available gas filter correlation CO analyzer. The fully automated system measures CO in ambient air, and the detector sensitivity and background signals are calibrated by referencing the measurements to a CO-in-air standard gas (~1 ppmv and to CO-free air scrubbed with a catalyst, respectively. We examined the artificial production of CO in the high-pressure working gas standards during storage by referencing the measurements to CO standard gases maintained as our primary scale before and after use on the ships. The onboard performance of the continuous CO measurement system was evaluated by comparing its data with data from laboratory analyses of flask samples using gas chromatography with a reduction gas detector. The reasonably good consistency between the two independent measurement methods demonstrated the good performance of both methods over the course of 3–5 years. The continuous measurement system was more useful than the flask sampling method for regionally polluted air masses, which were often encountered on Southeast Asian cruises.

  13. Implementation of the program of quality control of the system on-board imager of varian: initial assessment; Puesta en marcha del programa de control de calidad del sistema on-board imager de varian: evaluacion inicial

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Martin, I.; Ruiz Morales, C.; Lopez Sanchez, F.; Tobarra Gonzalez, B. M.

    2013-07-01

    This work aims to present evidence that are part of our quality control system on-board Imager of Varian, elaborated from recommendations and national and international protocols, as well as a first assessment of the results obtained to date. (Author)

  14. Implementation of the program of quality control of the system on-board imager of varian: initial assessment

    International Nuclear Information System (INIS)

    Ortega Martin, I.; Ruiz Morales, C.; Lopez Sanchez, F.; Tobarra Gonzalez, B. M.

    2013-01-01

    This work aims to present evidence that are part of our quality control system on-board Imager of Varian, elaborated from recommendations and national and international protocols, as well as a first assessment of the results obtained to date. (Author)

  15. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Electronic manifest requirement for crew members... THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial...

  16. The SantaBot experiment

    DEFF Research Database (Denmark)

    Hansen, Søren Tranberg; Svenstrup, Mikael; Andersen, Hans Jørgen

    2009-01-01

    The video shows how an autonomous mobile robot dressed as Santa Claus is interacting with people in a shopping mall. The underlying hypothesis is that it is possible to create interesting new living spaces and induce value in terms of experiences, information or economics, by putting socially...... interactive mobile agents into public urban transit area. To investigate the hypothesis, an experiment was carried out using a robot capable of navigating autonomously based on the input of an onboard laser scanner. The robot would detect and follow random people, who afterwards were asked to fill out...

  17. Broadband Internet Based Service to Passengers and Crew On-board Aircraft

    Science.gov (United States)

    Azzarelli, Tony

    2003-07-01

    The Connexion by BoeingSM (CbB) global network will provide broadband information services to aircraft passengers and crews. Through this Ku-band (14 GHz (uplink) and 11/12 GHz (downlink)) satellite-based system, aircraft passengers and crew will no longer be limited to pre-packaged services, but instead will be able to access the full range of broadband services from their seats using their laptop, PDA or the on-board IFE console.The kind of services offered to passengers are based on the internet/intranet access via their own laptops and PDA (using Ethernet wired cable, or wireless 802.11b access), while those offered to the crew can range between various crew application (such as weather updates and travel information) and aircraft health monitoring.The CbB system is divided into four basic layers of infrastructure:(1) an airborne segment, i.e. the Aircraft Earth Station (AES) consisting of proprietary high gain antenna, transceivers and other on-board subsystems providing a nominal return link data rate of 1 Mbps and a forward link data rates up to 20 Mbps;(2) a space segment consisting of leased satellite transponders on existing in-orbit Geostationary satellites;(3) a ground segment consisting of one or more leased satellite land earth stations (LESs) and redundant interconnection facilities; and;(4) a network operations centre (NOC) segment.During 2003, trials with Lufthansa (DLH) and British Airways (BA) have proved very successful. This has resulted in the recent signing of an agreement with Lufthansa which calls for the Connexion by BoeingSM service to be installed on Lufthansa's fleet of approximately 80 long-haul aircraft, including Boeing 747-400 and Airbus A330 and A340 aircraft, beginning in early 2004. BA is expected to follow soon. In addition to the successful recent service demonstrations, both Japan Airlines (JAL) and Scandinavian Airlines System (SAS) have announced their intent to install the revolutionary service on their long-range aircraft.

  18. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    International Nuclear Information System (INIS)

    Yan, Susu; Tough, MengHeng; Bowsher, James; Yin, Fang-Fang; Cheng, Lin

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom TM ), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  19. On-Board Video Recording Unravels Bird Behavior and Mortality Produced by High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Eladio L. García de la Morena

    2017-10-01

    Full Text Available Large high-speed railway (HSR networks are planned for the near future to accomplish increased transport demand with low energy consumption. However, high-speed trains produce unknown avian mortality due to birds using the railway and being unable to avoid approaching trains. Safety and logistic difficulties have precluded until now mortality estimation in railways through carcass removal, but information technologies can overcome such problems. We present the results obtained with an experimental on-board system to record bird-train collisions composed by a frontal recording camera, a GPS navigation system and a data storage unit. An observer standing in the cabin behind the driver controlled the system and filled out a form with data of collisions and bird observations in front of the train. Photographs of the train front taken before and after each journey were used to improve the record of killed birds. Trains running the 321.7 km line between Madrid and Albacete (Spain at speeds up to 250–300 km/h were equipped with the system during 66 journeys along a year, totaling approximately 14,700 km of effective recording. The review of videos produced 1,090 bird observations, 29.4% of them corresponding to birds crossing the infrastructure under the catenary and thus facing collision risk. Recordings also showed that 37.7% bird crossings were of animals resting on some element of the infrastructure moments before the train arrival, and that the flight initiation distance of birds (mean ± SD was between 60 ± 33 m (passerines and 136 ± 49 m (raptors. Mortality in the railway was estimated to be 60.5 birds/km year on a line section with 53 runs per day and 26.1 birds/km year in a section with 25 runs per day. Our results are the first published estimation of bird mortality in a HSR and show the potential of information technologies to yield useful data for monitoring the impact of trains on birds via on-board recording systems. Moreover

  20. A quality assurance program for the on-board imager[reg

    International Nuclear Information System (INIS)

    Yoo, Sua; Kim, Gwe-Ya; Hammoud, Rabih

    2006-01-01

    To develop a quality assurance (QA) program for the On-Board Imager (OBI) system and to summarize the results of these QA tests over extended periods from multiple institutions. Both the radiographic and cone-beam computed tomography (CBCT) mode of operation have been evaluated. The QA programs from four institutions have been combined to generate a series of tests for evaluating the performance of the On-Board Imager. The combined QA program consists of three parts: (1) safety and functionality (2) geometry, and (3) image quality. Safety and functionality tests evaluate the functionality of safety features and the clinical operation of the entire system during the tube warm-up. Geometry QA verifies the geometric accuracy and stability of the OBI/CBCT hardware/software. Image quality QA monitors spatial resolution and contrast sensitivity of the radiographic images. Image quality QA for CBCT includes tests for Hounsfield Unit (HU) linearity, HU uniformity, spatial linearity, and scan slice geometry, in addition. All safety and functionality tests passed on a daily basis. The average accuracy of the OBI isocenter was better than 1.5 mm with a range of variation of less than 1 mm over 8 months. The average accuracy of arm positions in the mechanical geometry QA was better than 1 mm, with a range of variation of less than 1 mm over 8 months. Measurements of other geometry QA tests showed stable results within tolerance throughout the test periods. Radiographic contrast sensitivity ranged between 2.2% and 3.2% and spatial resolution ranged between 1.25 and 1.6 lp/mm. Over four months the CBCT images showed stable spatial linearity, scan slice geometry, contrast resolution (1%; 6 lp/cm). The HU linearity was within ±40 HU for all measurements. By combining test methods from multiple institutions, we have developed a comprehensive, yet practical, set of QA tests for the OBI system. Use of the tests over extended periods show that the OBI system has reliable mechanical

  1. Evaluation of onboard hyperspectral-image compression techniques for a parallel push-broom sensor

    Energy Technology Data Exchange (ETDEWEB)

    Briles, S.

    1996-04-01

    A single hyperspectral imaging sensor can produce frames with spatially-continuous rows of differing, but adjacent, spectral wavelength. If the frame sample-rate of the sensor is such that subsequent hyperspectral frames are spatially shifted by one row, then the sensor can be thought of as a parallel (in wavelength) push-broom sensor. An examination of data compression techniques for such a sensor is presented. The compression techniques are intended to be implemented onboard a space-based platform and to have implementation speeds that match the date rate of the sensor. Data partitions examined extend from individually operating on a single hyperspectral frame to operating on a data cube comprising the two spatial axes and the spectral axis. Compression algorithms investigated utilize JPEG-based image compression, wavelet-based compression and differential pulse code modulation. Algorithm performance is quantitatively presented in terms of root-mean-squared error and root-mean-squared correlation coefficient error. Implementation issues are considered in algorithm development.

  2. Real Time Corner Detection for Miniaturized Electro-Optical Sensors Onboard Small Unmanned Aerial Systems

    Directory of Open Access Journals (Sweden)

    Antonio Moccia

    2012-01-01

    Full Text Available This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d’Etudes et de Recherches Aérospatiales (ONERA which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed.

  3. Comparison of the Spectral Properties of Pansharpened Images Generated from AVNIR-2 and Prism Onboard Alos

    Science.gov (United States)

    Matsuoka, M.

    2012-07-01

    A considerable number of methods for pansharpening remote-sensing images have been developed to generate higher spatial resolution multispectral images by the fusion of lower resolution multispectral images and higher resolution panchromatic images. Because pansharpening alters the spectral properties of multispectral images, method selection is one of the key factors influencing the accuracy of subsequent analyses such as land-cover classification or change detection. In this study, seven pixel-based pansharpening methods (additive wavelet intensity, additive wavelet principal component, generalized Laplacian pyramid with spectral distortion minimization, generalized intensity-hue-saturation (GIHS) transform, GIHS adaptive, Gram-Schmidt spectral sharpening, and block-based synthetic variable ratio) were compared using AVNIR-2 and PRISM onboard ALOS from the viewpoint of the preservation of spectral properties of AVNIR-2. A visual comparison was made between pansharpened images generated from spatially degraded AVNIR-2 and original images over urban, agricultural, and forest areas. The similarity of the images was evaluated in terms of the image contrast, the color distinction, and the brightness of the ground objects. In the quantitative assessment, three kinds of statistical indices, correlation coefficient, ERGAS, and Q index, were calculated by band and land-cover type. These scores were relatively superior in bands 2 and 3 compared with the other two bands, especially over urban and agricultural areas. Band 4 showed a strong dependency on the land-cover type. This was attributable to the differences in the observing spectral wavelengths of the sensors and local scene variances.

  4. Validation of double Langmuir probe in-orbit performance onboard a nano-satellite

    Science.gov (United States)

    Tejumola, Taiwo Raphael; Zarate Segura, Guillermo Wenceslao; Kim, Sangkyun; Khan, Arifur; Cho, Mengu

    2018-03-01

    Many plasma measurement systems have been proposed and used onboard different satellites to characterize space plasma. Most of these systems employed the technique of Langmuir probes either using the single or double probes methods. Recent growth of lean satellites has positioned it on advantage to be used for space science missions using Langmuir probes because of its simplicity and convenience. However, single Langmuir probes are not appropriate to be used on lean satellites because of their limited conducting area which leads to spacecraft charging and drift of the instrument's electrical ground during measurement. Double Langmuir probes technique can overcome this limitation, as a measurement reference in relation to the spacecraft is not required. A double Langmuir probe measurement system was designed and developed at Kyushu Institute of Technology for HORYU-IV satellite, which is a 10 kg, 30 cm cubic class lean satellite launched into Low Earth Orbit on 17th February 2016. This paper presents the on-orbit performance and validation of the double Langmuir probe measurement using actual on-orbit measured data and computer simulations.

  5. Prospective Architectures for Onboard vs Cloud-Based Decision Making for Unmanned Aerial Systems

    Science.gov (United States)

    Sankararaman, Shankar; Teubert, Christopher

    2017-01-01

    This paper investigates propsective architectures for decision-making in unmanned aerial systems. When these unmanned vehicles operate in urban environments, there are several sources of uncertainty that affect their behavior, and decision-making algorithms need to be robust to account for these different sources of uncertainty. It is important to account for several risk-factors that affect the flight of these unmanned systems, and facilitate decision-making by taking into consideration these various risk-factors. In addition, there are several technical challenges related to autonomous flight of unmanned aerial systems; these challenges include sensing, obstacle detection, path planning and navigation, trajectory generation and selection, etc. Many of these activities require significant computational power and in many situations, all of these activities need to be performed in real-time. In order to efficiently integrate these activities, it is important to develop a systematic architecture that can facilitate real-time decision-making. Four prospective architectures are discussed in this paper; on one end of the spectrum, the first architecture considers all activities/computations being performed onboard the vehicle whereas on the other end of the spectrum, the fourth and final architecture considers all activities/computations being performed in the cloud, using a new service known as Prognostics as a Service that is being developed at NASA Ames Research Center. The four different architectures are compared, their advantages and disadvantages are explained and conclusions are presented.

  6. On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending

    Science.gov (United States)

    Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong

    2017-11-01

    A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.

  7. Experimental evaluation of the exposure level onboard Czech Airlines aircraft - measurements verified the routine method

    International Nuclear Information System (INIS)

    Ploc, O.; Spurny, F.; Turek, K.; Kovar, I.

    2008-01-01

    Air-crew members are exposed to ionizing radiation due to their work on board of air-crafts. The International Commission on Radiological Protection (ICRP) in 1990 recommends that exposure to cosmic radiation in the operation of jet aircraft should be recognised as occupational exposure. Czech air transport operators are therefore obliged to ensure: - Air-crew members to be well informed about the exposure level and health risks; - An analysis of complete exposure level of aircraft crew and its continuing monitoring in cases of exceeding the informative value 1 mSv; - A compliance of limit 1 mSv during pregnancy Since 1998, after receiving a proper accreditation, the Department of Radiation Dosimetry of Nuclear Physics Institute of Czech Academy of Sciences (DRD) is the competent dosimetric service realized requirements of Notice No.307 of the State Office for Nuclear Safety concerning air-crew exposure (paragraphs 87-90). The DRD has developed routine method of personal dosimetry of aircraft crew in 1998 which has been applied after receiving a proper accreditation in the same year. DRD therefore helps Czech airlines a.s. (CSA) with their legislative obligations mentioned above, and in return, once per four years, in terms of business contract, CSA allows scientific measurements performed by DRD onboard its air-crafts with the aim to verify the method of routine individual monitoring of aircraft crew exposure. (authors)

  8. Measurement of dose equivalent distribution on-board commercial jet aircraft

    International Nuclear Information System (INIS)

    Kubancak, J.; Ambrozova, I.; Ploc, O.; Pachnerova Brabcova, K.; Stepan, V.; Uchihori, Y.

    2014-01-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them [International Commission on Radiation Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21(1-3), (1991)]. According to the Monte Carlo simulations [Battistoni, G., Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv. Space Res. 36, 1645-1652 (2005) and Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. Radiat. Prot. Dosim. 108(2), 91-105 (2004)], the ambient dose equivalent rate H*(10) depends on the location in the aircraft. The aim of this article is to experimentally evaluate H*(10) on-board selected types of aircraft. The authors found that H*(10) values are higher in the front and the back of the cabin and lesser in the middle of the cabin. Moreover, total dosimetry characteristics obtained in this way are in a reasonable agreement with other data, in particular with the above-mentioned simulations. (authors)

  9. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    Science.gov (United States)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  10. Multi-gigabit optical interconnects for next-generation on-board digital equipment

    Science.gov (United States)

    Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.

  11. Designing on-Board Data Handling for EDF (Electric Ducted Fan) Rocket

    Science.gov (United States)

    Mulyana, A.; Faiz, L. A. A.

    2018-02-01

    The EDF (Electric Ducted Fan) rocket to launch requires a system of monitoring, tracking and controlling to allow the rocket to glide properly. One of the important components in the rocket is OBDH (On-Board Data Handling) which serves as a medium to perform commands and data processing. However, TTC (Telemetry, Tracking, and Command) are required to communicate between GCS (Ground Control Station) and OBDH on EDF rockets. So the design control system of EDF rockets and GCS for telemetry and telecommand needs to be made. In the design of integrated OBDH controller uses a lot of electronics modules, to know the behavior of rocket used IMU sensor (Inertial Measurement Unit) in which consist of 3-axis gyroscope sensor and Accelerometer 3-axis. To do tracking using GPS, compass sensor as a determinant of the direction of the rocket as well as a reference point on the z-axis of gyroscope sensor processing and used barometer sensors to measure the height of the rocket at the time of glide. The data can be known in real-time by sending data through radio modules at 2.4 GHz frequency using XBee-Pro S2B to GCS. By using windows filter, noises can be reduced, and it used to guarantee monitoring and controlling system can work properly.

  12. On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sappok, Alex [Filter Sensing Technologies; Ragaller, Paul [Filter Sensing Technologies; Herman, Andrew [CTS Corporation; Bromberg, L. [Massachusetts Institute of Technology (MIT); Prikhodko, Vitaly Y [ORNL; Parks, II, James E [ORNL; Storey, John Morse [ORNL

    2017-01-01

    The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.

  13. Improving the Geolocation Algorithm for Sensors Onboard the ISS: Effect of Drift Angle

    Directory of Open Access Journals (Sweden)

    Changyong Dou

    2014-05-01

    Full Text Available The drift angle caused by the Earth’s self-rotation may introduce rotational displacement artifact on the geolocation results of imagery acquired by an Earth observing sensor onboard the International Space Station (ISS. If uncorrected, it would cause a gradual degradation of positional accuracy from the center towards the edges of an image. One correction method to account for the drift angle effect was developed. The drift angle was calculated from the ISS state vectors and positional information of the ground nadir point of the imagery. Tests with images acquired by the International Space Station Agriculture Camera (ISSAC using Google EarthTM as a reference indicated that applying the drift angle correction can reduce the residual geolocation error for the corner points of the ISSAC images from over 1000 to less than 500 m. The improved geolocation accuracy is well within the inherent geolocation uncertainty of up to 800 m, mainly due to imprecise knowledge of the ISS attitude and state parameters required to perform the geolocation algorithm.

  14. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase

    Science.gov (United States)

    Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin

    2018-02-01

    A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.

  15. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    Science.gov (United States)

    Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael

    2009-01-01

    Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.

  16. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  17. Development strategies for the satellite flight software on-board Meteosat Third Generation

    Science.gov (United States)

    Tipaldi, Massimo; Legendre, Cedric; Koopmann, Olliver; Ferraguto, Massimo; Wenker, Ralf; D'Angelo, Gianni

    2018-04-01

    Nowadays, satellites are becoming increasingly software dependent. Satellite Flight Software (FSW), that is to say, the application software running on the satellite main On-Board Computer (OBC), plays a relevant role in implementing complex space mission requirements. In this paper, we examine relevant technical approaches and programmatic strategies adopted for the development of the Meteosat Third Generation Satellite (MTG) FSW. To begin with, we present its layered model-based architecture, and the means for ensuring a robust and reliable interaction among the FSW components. Then, we focus on the selection of an effective software development life cycle model. In particular, by combining plan-driven and agile approaches, we can fulfill the need of having preliminary SW versions. They can be used for the elicitation of complex system-level requirements as well as for the initial satellite integration and testing activities. Another important aspect can be identified in the testing activities. Indeed, very demanding quality requirements have to be fulfilled in satellite SW applications. This manuscript proposes a test automation framework, which uses an XML-based test procedure language independent of the underlying test environment. Finally, a short overview of the MTG FSW sizing and timing budgets concludes the paper.

  18. Cometary dust at the smallest scale - latest results of the MIDAS Atomic Force Microscope onboard Rosetta

    Science.gov (United States)

    Bentley, Mark; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Schmied, Roland; Mannel, Thurid

    2015-04-01

    The MIDAS instrument onboard the Rosetta orbit is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography, MIDAS addresses a range of fundamental questions in Solar System and cometary science. The first few months of dust collection and scanning revealed a deficit of smaller (micron and below) particles but eventually several 10 µm-class grains were discovered. In fact these were unexpectedly large and close to the limit of what is observable with MIDAS. As a result the sharp tip used by the AFM struck the particles from the side, causing particle breakage and distortion. Analyses so far suggest that the collected particles are fluffy aggregates of smaller sub-units, although determination of the size of these sub-units and high resolution re-imaging remains to be done. The latest findings will be presented here, including a description of the particles collected and the implications of these observations for cometary science and the Rosetta mission at comet 67P.

  19. On-board emission measurement of high-loaded light-duty vehicles in Algeria.

    Science.gov (United States)

    Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2008-01-01

    A sample of eight private gasoline and diesel conventional light-duty vehicles (LDVs) in use with various ages, carrying a load of 460 kg, were tested on a representative trip in the traffic flow of the city of Blida to obtain emission factors representing the actual use conditions of Algerian LDVs. The gas sampling system (mini-constant volume sampling) as well as the analyzers are carried on-board the vehicle. Around 55 tests were conducted during 3 months covering more than 480 km under various real driving conditions. The mean speed downtown is about 16.1 km/hr with a rather low acceleration, an average of 0.60 m/sec2. For each test, kinematics are recorded as well as the analysis of the four emitted pollutants carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbons. Emission factors were evaluated according to speed for each category of gasoline and diesel engines. The influence of some parameters such as cold/hot start, age of vehicle and its state of maintenance are discussed. Results are compared with the European database ARTEMIS for comparable vehicles. These measurements contribute to the development of unit emission of the vehicles used in Algeria, which are necessary for the calculation of emission inventory of pollutants and greenhouse gases from the road transportation sector. The unit emissions constitute a tool of decisionmaking aid regarding the conception of new regulations of vehicle control and inspection in Algeria and even in similar developing countries.

  20. Development of a 32-channel ASIC for an X-ray APD detector onboard the ISS

    Science.gov (United States)

    Arimoto, Makoto; Harita, Shohei; Sugita, Satoshi; Yatsu, Yoichi; Kawai, Nobuyuki; Ikeda, Hirokazu; Tomida, Hiroshi; Isobe, Naoki; Ueno, Shiro; Mihara, Tatehiro; Serino, Motoko; Kohmura, Takayoshi; Sakamoto, Takanori; Yoshida, Atsumasa; Tsunemi, Hiroshi; Hatori, Satoshi; Kume, Kyo; Hasegawa, Takashi

    2018-02-01

    We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station. To realize wide-band detection from 20 keV to 1 MeV, we use Ce:GAGG scintillators, each coupled to an APD, with low-noise front-end electronics capable of achieving a minimum energy detection threshold of 20 keV. The developed ASIC has the ability to read out 32-channel APD signals using 0.35 μm CMOS technology, and an analog amplifier at the input stage is designed to suppress the capacitive noise primarily arising from the large detector capacitance of the APDs. The ASIC achieves a performance of 2099 e- + 1.5 e-/pF at root mean square (RMS) with a wide 300 fC dynamic range. Coupling a reverse-type APD with a Ce:GAGG scintillator, we obtain an energy resolution of 6.7% (FWHM) at 662 keV and a minimum detectable energy of 20 keV at room temperature (20 °C). Furthermore, we examine the radiation tolerance for space applications by using a 90 MeV proton beam, confirming that the ASIC is free of single-event effects and can operate properly without serious degradation in analog and digital processing.

  1. Li-Al-borohydride as a potential candidate for on-board hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Inge; Domenech Ferrer, Roger; Dunsch, Lothar; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, PO Box 270016, D-01171 Dresden (Germany); Filinchuk, Yaroslav [Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Hagemann, Hans; Cerny, Radovan [University of Geneva, Crystallography and Physical Chemistry Department, 1211 Geneva (Switzerland)

    2010-07-01

    Recently, double-cation borohydride systems have attracted great interest. It was found that the desorption temperature of the borohydrides decreases with increasing electronegativity of the cation. Consequently, it is possible to tailor a feasible on-board hydrogen storage material by combination of appropriate cations. Li-Al-borohydride shows a desorption temperature suitable for applications ({approx} 70 C) combined with an high hydrogen density (17.2 wt.%). It was synthesised via high energy ball milling of AlCl{sub 3} and LiBH{sub 4}. The structure of the compound was obtained from high-resolution synchrotron powder diffraction and shows a unique complex structure within the borohydrides. The material was characterized by means of in-situ-Raman, DSC, TG and thermal desorption measurements to study its decomposition pathway. The desorption at {approx} 70 C results in the formation of LiBH{sub 4} while the high mass loss of about 20% points to the release of not only hydrogen but also diborane. This is right now the main drawback for applications because it hinders reversibility.

  2. Monitoring the Microgravity Environment Quality On-board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.

    2002-01-01

    This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known

  3. Test Analysis Tools to Ensure Higher Quality of On-Board Real Time Software for Space Applications

    Science.gov (United States)

    Boudillet, O.; Mescam, J.-C.; Dalemagne, D.

    2008-08-01

    EADS Astrium Space Transportation, in its Les Mureaux premises, is responsible for the French M51 nuclear deterrent missile onboard SW. There was also developed over 1 million of line of code, mostly in ADA, for the Automated Transfer Vehicle (ATV) onboard SW and the flight control SW of the ARIANE5 launcher which has put it into orbit. As part of the ATV SW, ASTRIUM ST has developed the first Category A SW ever qualified for a European space application. To ensure that all these embedded SW have been developed with the highest quality and reliability level, specific development tools have been designed to cover the steps of source code verification, automated validation test or complete target instruction coverage verification. Three of such dedicated tools are presented here.

  4. On-board event processing algorithms for a CCD-based space borne X-ray spectrometer

    International Nuclear Information System (INIS)

    Chun, H.J.; Bowles, J.A.; Branduardi-Raymont, G.; Gowen, R.A.

    1996-01-01

    This paper describes two alternative algorithms which are applied to reduce the telemetry requirements for a Charge Coupled Device (CCD) based, space-borne, X-ray spectrometer by on-board reconstruction of the X-ray events split over two or more adjacent pixels. The algorithms have been developed for the Reflection Grating Spectrometer (RGS) on the X-ray multi-mirror (XMM) mission, the second cornerstone project in the European Space Agency's Horizon 2000 programme. The overall instrument and some criteria which provide the background of the development of the algorithms, implemented in Tartan ADA on an MA31750 microprocessor, are described. The on-board processing constraints and requirements are discussed, and the performances of the algorithms are compared. Test results are presented which show that the recursive implementation is faster and has a smaller executable file although it uses more memory because of its stack requirements. (orig.)

  5. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria

    OpenAIRE

    Chikhi , Saâdane; Boughedaoui , Ménouèr; Kerbachi , Rabah; Joumard , Robert

    2014-01-01

    International audience; On-board measurements of unit emissions of CO, HC, NOx and CO 2 were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-LPG, gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most eff...

  6. On-Boarding a New Chief Nursing Officer to Lead a Magnet Redesignation Visit: The Value of Relationships.

    Science.gov (United States)

    Cantu, Kathy; Batcheller, Joyce A

    2016-01-01

    The chief nursing officer (CNO) is a critical senior executive in a hospital and serves as the architect of patient care. Recruiting, hiring, and on-boarding a new CNO present a challenge for any facility. Stakes are higher when the facility is replacing a CNO in the midst of its Magnet redesignation. How does a facility ensure success under these circumstances? This case study demonstrates how one organization was successful in meeting this challenge.

  7. Dosimetry and microdosimetry using LET spectrometer based on the track-etch detector: radiotherapy bremsstrahlung beam, onboard aircraft radiation field

    Czech Academy of Sciences Publication Activity Database

    Jadrníčková, Iva; Spurný, František

    2006-01-01

    Roč. 41, č. 4 (2006), s. 421-429 ISSN 0033-8451 R&D Projects: GA ČR GA202/04/0795; GA ČR(CZ) GD202/05/H031 Institutional research plan: CEZ:AV0Z10480505 Keywords : linear energy transfer * bremsstrahlung beam * onboard aircraft Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  8. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    Science.gov (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  9. On Resource Description Capabilities of On-Board Tools for Resource Management in Cloud Networking and NFV Infrastructures

    OpenAIRE

    Tutschku, Kurt; Ahmadi Mehri, Vida; Carlsson, Anders; Chivukula, Krishna Varaynya; Johan, Christenson

    2016-01-01

    The rapid adoption of networks that are based on "cloudification" and Network Function Virtualisation (NFV) comes from the anticipated high cost savings of up to 70% in their build and operation. The high savings are founded in the use of general standard servers, instead of single-purpose hardware, and by efficiency resource sharing through virtualisation concepts. In this paper, we discuss the capabilities of resource description of "on-board" tools, i.e. using standard Linux commands, to e...

  10. Correlation of propagation characteristics of solar cosmic rays detected onboard the spatially separated space probes Mars-7 and Prognoz-3

    International Nuclear Information System (INIS)

    Gombosi, T.; Somogyi, A.J.; Kolesov, G.Ya.; Kurt, V.G.; Kuzhevskii, B.M.; Logachev, Yu.I.; Savenko, I.A.

    1977-01-01

    Solar flare generated particle fluxes during the period 3-5 November, 1973 are analysed using the data of the Mars 7 and Prognoz-3 spacecrafts. The intensity profiles registrated onboard these satellites were quite similar, although the space probes were spatially separated by 0.3 AU. The general characteristics of the event can well be understood in terms of the effect of a corotating streat-stream interaction region on the general behaviour of energetic charged particles. (author)

  11. Statistical analysis of geomagnetic field intensity differences between ASM and VFM instruments onboard Swarm constellation

    Science.gov (United States)

    De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe

    2017-02-01

    From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity

  12. EUV high resolution imager on-board solar orbiter: optical design and detector performances

    Science.gov (United States)

    Halain, J. P.; Mazzoli, A.; Rochus, P.; Renotte, E.; Stockman, Y.; Berghmans, D.; BenMoussa, A.; Auchère, F.

    2017-11-01

    The EUV high resolution imager (HRI) channel of the Extreme Ultraviolet Imager (EUI) on-board Solar Orbiter will observe the solar atmospheric layers at 17.4 nm wavelength with a 200 km resolution. The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range. Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM). Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.

  13. Lightning x-rays inside thunderclouds, in-flight measurements on-board an A350

    Science.gov (United States)

    van Deursen, Alexander; Kochkin, Pavlo; de Boer, Alte; Bardet, Michiel; Boissin, Jean-François

    2015-04-01

    Thunderstorms emit bursts of energetic radiation. Moreover, lightning stepped leader produces x-ray pulses. The phenomena, their interrelation and impact on Earth's atmosphere and near space are not fully understood yet. The In-flight Lightning Strike Damage Assessment System ILDAS was developed in an EU FP6 project ( http://ildas.nlr.nl/ ) to provide information on threat that lightning poses to aircraft. It is intended to localize the lightning attachment points in order to reduce maintenance time and to build statics on lightning current. The system consists of 2 E-field sensors and a varying number of H-field sensors. It has recently been enhanced by two LaBr3 scintillation detectors inside the aircraft. The scintillation detectors are sensitive to x- and gamma-rays above 30 keV. The entire system is installed on-board of an A-350 aircraft and digitizes data with 100Msamples/sec rate when triggered by lightning. A continuously monitoring channel counts the number of occurrences that the x-ray signal exceeds a set of trigger levels. In the beginning of 2014 the aircraft flew through thunderstorm cells collecting the data from the sensors. The x-rays generated by the lightning flash are measured in synchronization better than 40 ns with the lightning current information during a period of 1 second around the strike. The continuous channel stores x-ray information with very limited time and amplitude resolution during the whole flight. That channel would allow x-rays from cosmic ray background, TGFs and continuous gamma-ray glow of thundercloud outside the 1 s time window. In the EGU2014 we presented the ILDAS system and showed that the x-ray detection works as intended. Fast x-ray bursts have been detected during stepped/dart stepped leaders and during interception of lightning. Data analysis of continuous channel recordings will be presented as well.

  14. An air quality assessment onboard an Oberon class submarine : HMCS Okanagan

    International Nuclear Information System (INIS)

    Severs, Y.D.; Sabiston, B.H.

    2000-09-01

    The Defence and Civil Institute of Environmental Medicine (DCIEM) re-examined the air quality on an Oberon class submarine, the HMCS Okanagan, to determine if the atmosphere complied with Air Purification Standard BR 1326. The main objective of the assessment was to help in the development of future submarine air quality management. The information obtained from the Oberon class submarine could be readily applied to the Victoria class submarines. The assessment involved a trial aboard an Oberon under patrol conditions. The functional and detection capabilities of analytical air monitoring instruments were assessed for a 24-hour period to obtain data regarding the contaminants onboard the submarine. A profile of carbon dioxide accumulation and oxygen consumption was determined. This was followed by an assessment of the effectiveness of air purification such as carbon dioxide scrubbing, oxygen generation and snorting. Carbon monoxide was also monitored and carboxyhemoglobin was measured in both smokers and non-smokers. In order to determine if the sanitary or electrical systems, or engine exhaust posed any danger, ammonia, ozone and nitrous compounds were also measured. In addition, hydrogen, arsine and stibene were monitored to determine any possible danger from charging batteries. The health risks associated with aerosolized particles from cooking, smoking and exhaust gases were also measured. Results showed that all contaminants were within allowable limits. However, the study also confirmed that air purification measures on diesel submarines are minimal and poorly placed and that there is a lack of exhaust ventilation. Poor air exchange was worsened by compartmentalization and blackout curtains. Several recommendations were proposed to improve the management of air quality in Victoria class submarines. 18 refs., 2 tabs., 5 figs

  15. Flight diversions due to onboard medical emergencies on an international commercial airline.

    Science.gov (United States)

    Valani, Rahim; Cornacchia, Marisa; Kube, Douglas

    2010-11-01

    Each year, close to 2 billion passengers travel on commercial airlines. In-flight medical events result in suboptimal care due to a variety of factors. Flight diversions due to medical emergencies carry a significant financial and legal cost. The purpose of this study was to determine the causes of in-flight medical diversions from Air Canada. This was a review of in-flight medical emergencies from 2004-2008. Both telemedicine and Air Canada databases were crossreferenced to capture all incidents. Presenting complaints were categorized by systems. Descriptive statistics were used to analyze the data. Over the 5 yr, there were 220 diversions, of which 91 (41.4%) of the decisions were made by pilots or onboard medical personnel. During this period there were 5386 telemedicine contacts with ground support providers, who on average recommended 2.4 diversions per 100 calls. The rate for diversions almost doubled from 2006 to 2007, with a sharp drop in telemedicine contacts during the same period. The four most common categories resulting in diversions were cardiac (58 diversions, 26.4%), neurological (43 diversions, 19.5%), gastrointestinal (GI) (25 diversions, 11.4%), and syncope (22 diversions, 10.0%). Only 6.8% of all diversions were due to cardiac arrest. Medical conditions most commonly leading to diversions were cardiac, neurological, gastrointestinal, and syncope. Our study showed that a decrease in telemedicine contact during this period was accompanied by an increase in diversions, while increased pre-screening of passengers did not prove effective in decreasing diversion rates.

  16. Paleomagnetism Onboard the IODP Research Vessel JOIDES Resolution: Recent Advances, Best Practices, and Pitfalls

    Science.gov (United States)

    Acton, G. D.; Morris, A.; Musgrave, R. J.; Zhao, X., , prof; Clement, B. M.; Evans, H. F.; Hastedt, M.; Houpt, D.; Mills, B.; Novak, B.; Petronotis, K. E.

    2017-12-01

    One of the largest openly available paleomagnetism databases is derived from paleomagnetic data acquired continuously along drill cores collected by the International Ocean Discovery Program (IODP) and its predecessors. The bulk of data are magnetic remanences measured using superconducting rock magnetometers (SRMs) with automated track systems and in-line alternating field (AF) demagnetization units produced by 2G Enterprises. Our goal in this study is to (1) report on the new SRM that was installed onboard the JOIDES Resolution in December 2016 prior to the start of IODP Expedition 366, (2) consider best practices that may aid shipboard scientists in collecting high quality data, and (3) discuss common pitfalls associated with using an SRM in the shipboard environment to measure a diverse range of lithologies collected in metal core barrels that pass through a relatively strongly magnetized drill string. From a series of tests conducted on the new SRM during a June 11-13, 2017 port call, our main conclusion was that the new magnetometer is functioning as designed. While overall its capabilities are comparable to the previous magnetometer, the new SRM does have several significant advances, including better flux counting, which allows more strongly magnetized rocks to be measured accurately. It also performs AF demagnetizations at high fields (up to 80 mT) without imparting spurious anhysteretic magnetizations, which was a common problem in the old SRM. A worrisome observation, and one that has been made in many shore-based labs, is that devices that emit radio-frequency electromagnetic waves, like actively transmitting cell phones, interfere significantly with SRM measurements. This pitfall will likely have to be addressed on all forthcoming cruises unless better electromagnetic shielding for the SQUID sensors can be found.

  17. TruckWeight wireless onboard scale helps oilfield services fleet find profit, compliance

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-05-15

    This article presented a wireless scale that measures temperature and pressure changes in a vehicle's air suspension. The instrument is being used by Alberta-based Rusch Inc., an operator of tank trucks and pup trailers which haul potassium chloride solution, methanol, frac oil, crude oil and other fluids. Made by TruckWeight Inc., the Smart Scale relays data to a handheld receiver using a low-powered safe radio transmitter. It is designed so its power output is not high enough to ignite gases in the atmosphere near wellheads. The information from the Smart Scale is interpreted by a small computer in a handheld receiver. The axle weight and gross vehicle weight measurement is accurate to within 150 pounds. Rusch trucks operate on steep grades all year, encountering soft ground in the summer, and frozen terrain in the winter. When loading is done in the bush, it is impossible to reliably weigh the trucks, whose licensed gross combination weight is 51,300 kilograms. In Alberta, an overweight fine can trigger an audit of a company's safety record and operating practices. Running overweight also places stress on axles, suspensions, wheel-end components tires and brakes. Therefore, adhering to the rated weight is essential. In 2006, Rusch Inc. installed the Smart Scale wireless on-board scale for trucks, tractors and trailers with air suspension. The scale includes a sensor with an integrated antenna and DOT fittings for the vehicle's airline. While the truck is being loaded, the scale produces readings every 3 seconds. This maintenance-free instrument is accurate in temperature extremes ranging from -40 F to 158 F and uses common AA batteries. It is waterproof, weatherproof, shock resistant and non-corrosive. The cost to equip a tractor and trailer with a Smart Scale is $1,590 US, half the cost of a hard-wired scale. 5 figs.

  18. Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications

    Science.gov (United States)

    Aranki, Nazeeh; Bakhshi, Alireza; Keymeulen, Didier; Klimesh, Matthew

    2009-01-01

    Efficient on-board lossless hyperspectral data compression reduces the data volume necessary to meet NASA and DoD limited downlink capabilities. The techniques also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware, which makes it practical for flight implementations of pushbroom instruments. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. Hardware acceleration provides performance improvements of 10x-100x vs. the software implementation (about 1M samples/sec on a Pentium IV machine). This paper describes a hardware implementation of the JPL-developed 'Fast Lossless' compression algorithm on a Field Programmable Gate Array (FPGA). The FPGA implementation targets the current state of the art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications.

  19. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    Science.gov (United States)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  20. An air quality assessment onboard an Oberon class submarine : HMCS Okanagan

    Energy Technology Data Exchange (ETDEWEB)

    Severs, Y.D.; Sabiston, B.H.

    2000-09-01

    The Defence and Civil Institute of Environmental Medicine (DCIEM) re-examined the air quality on an Oberon class submarine, the HMCS Okanagan, to determine if the atmosphere complied with Air Purification Standard BR 1326. The main objective of the assessment was to help in the development of future submarine air quality management. The information obtained from the Oberon class submarine could be readily applied to the Victoria class submarines. The assessment involved a trial aboard an Oberon under patrol conditions. The functional and detection capabilities of analytical air monitoring instruments were assessed for a 24-hour period to obtain data regarding the contaminants onboard the submarine. A profile of carbon dioxide accumulation and oxygen consumption was determined. This was followed by an assessment of the effectiveness of air purification such as carbon dioxide scrubbing, oxygen generation and snorting. Carbon monoxide was also monitored and carboxyhemoglobin was measured in both smokers and non-smokers. In order to determine if the sanitary or electrical systems, or engine exhaust posed any danger, ammonia, ozone and nitrous compounds were also measured. In addition, hydrogen, arsine and stibene were monitored to determine any possible danger from charging batteries. The health risks associated with aerosolized particles from cooking, smoking and exhaust gases were also measured. Results showed that all contaminants were within allowable limits. However, the study also confirmed that air purification measures on diesel submarines are minimal and poorly placed and that there is a lack of exhaust ventilation. Poor air exchange was worsened by compartmentalization and blackout curtains. Several recommendations were proposed to improve the management of air quality in Victoria class submarines. 18 refs., 2 tabs., 5 figs.

  1. Machine Learning Approach to Deconvolution of Thermal Infrared (TIR) Spectrum of Mercury Supporting MERTIS Onboard ESA/JAXA BepiColombo

    Science.gov (United States)

    Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.

    2018-04-01

    Machine learning approach to spectral unmixing of emissivity spectra of Mercury is carried out using endmember spectral library measured at simulated daytime surface conditions of Mercury. Study supports MERTIS payload onboard ESA/JAXA BepiColombo.

  2. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.; Faaij, A.P.C.

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid

  3. Enhanced benthic activity in sandy sublittoral sediments: Evidence from 13C tracer experiments

    NARCIS (Netherlands)

    Bühring, S.I.; Ehrenhauss, S.; Kamp, A.; Moodley, L.; Prof. Witte, U.

    2006-01-01

    In situ and on-board pulse-chase experiments were carried out on a sublittoral fine sand in the German Bight (southern North Sea) to investigate the hypothesis that sandy sediments are highly active and have fast turnover rates. To test this hypothesis, we conducted a series of experiments where we

  4. First light of Cassis: the stereo surface imaging system onboard the exomars TGO

    Science.gov (United States)

    Gambicorti, L.; Piazza, D.; Pommerol, A.; Roloff, V.; Gerber, M.; Ziethe, R.; El-Maarry, M. R.; Weigel, T.; Johnson, M.; Vernani, D.; Pelo, E.; Da Deppo, V.; Cremonese, G.; Ficai Veltroni, I.; Thomas, N.

    2017-09-01

    The Colour and Stereo Surface Imaging System (CaSSIS) camera was launched on 14 March 2016 onboard the ExoMars Trace Gas Orbiter (TGO) and it is currently in cruise to Mars. The CaSSIS high resolution optical system is based on a TMA telescope (Three Mirrors Anastigmatic configuration) with a 4th powered folding mirror compacting the CFRP (Carbon Fiber Reinforced Polymer) structure. The camera EPD (Entrance Pupil Diameter) is 135 mm and the focal length is 880 mm, giving an F# 6.5 system; the wavelength range covered by the instrument is 400-1100 nm. The optical system is designed to have distortion of less than 2%, and a worst case Modulation Transfer Function (MTF) of 0.3 at the detector Nyquist spatial frequency (i.e. 50 lp/mm). The Focal Plane Assembly (FPA), including the detector, is a spare from the Simbio-Sys instrument of the Italian Space Agency (ASI). Simbio-Sys will fly on ESA's BepiColombo mission to Mercury in 2018. The detector, developed by Raytheon Vision Systems, is a 2k×2k hybrid Si-PIN array with 10 μm-pixel pitch. The detector allows snap shot operation at a read-out rate of 5 Mpx/s with 14-bit resolution. CaSSIS will operate in a push-frame mode with a Filter Strip Assembly (FSA), placed directly above the detector sensitive area, selecting 4 colour bands. The scale at a slant angle of 4.6 m/px from the nominal orbit is foreseen to produce frames of 9.4 km × 6.3 km on the Martian surface, and covering a Field of View (FoV) of 1.33° cross track × 0.88° along track. The University of Bern was in charge of the full instrument integration as well as the characterisation of the focal plane of CaSSIS. The paper will present an overview of CaSSIS and the optical performance of the telescope and the FPA. The preliminary results of the on-ground calibration campaign and the first light obtained during the commissioning and pointing campaign (April 2016) will be described in detail. The instrument is acquiring images with an average Point Spread

  5. Onboard Determination of Vehicle Glide Capability for Shuttle Abort Flight Managment (SAFM)

    Science.gov (United States)

    Straube, Timothy; Jackson, Mark; Fill, Thomas; Nemeth, Scott

    2002-01-01

    When one or more main engines fail during ascent, the flight crew of the Space Shuttle must make several critical decisions and accurately perform a series of abort procedures. One of the most important decisions for many aborts is the selection ofa landing site. Several factors influence the ability to reach a landing site, including the spacecraft point of atmospheric entry, the energy state at atmospheric entry, the vehicle glide capability from that energy state, and whether one or more suitable landing sites are within the glide capability. Energy assessment is further complicated by the fact that phugoid oscillations in total energy influence glide capability. Once the glide capability is known, the crew must select the "best" site option based upon glide capability and landing site conditions and facilities. Since most of these factors cannot currently be assessed by the crew in flight, extensive planning is required prior to each mission to script a variety of procedures based upon spacecraft velocity at the point of engine failure (or failures). The results of this preflight planning are expressed in tables and diagrams on mission-specific cockpit checklists. Crew checklist procedures involve leafing through several pages of instructions and navigating a decision tree for site selection and flight procedures - all during a time critical abort situation. With the advent of the Cockpit Avionics Upgrade (CAU), the Shuttle will have increased on-board computational power to help alleviate crew workload during aborts and provide valuable situational awareness during nominal operations. One application baselined for the CAU computers is Shuttle Abort Flight Management (SAFM), whose requirements have been designed and prototyped. The SAFM application includes powered and glided flight algorithms. This paper describes the glided flight algorithm which is dispatched by SAFM to determine the vehicle glide capability and make recommendations to the crew for site

  6. The Plasma Instrument for Magnetic Sounding (PIMS) onboard the Europa Clipper Mission

    Science.gov (United States)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Rymer, Abigail; Case, Anthony; Battista, Corina; Cochrane, Corey; Coren, David; Crew, Alexander; Grey, Matthew; Jia, Xianzhe; Khurana, Krishan; Kim, Cindy; Kivelson, Margaret G.; Korth, Haje; Krupp, Norbert; Paty, Carol; Roussos, Elias; Stevens, Michael; Slavin, James A.; Smith, Howard T.; Saur, Joachim

    2017-10-01

    Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa’s ionosphere affecting the magnetic induction signal. Plasma from Io’s temporally varying torus diffuses outward and mixes with the charged particles in Europa’s own torus producing highly variable plasma conditions. Onboard the Europa Clipper spacecraft the Plasma Instrument for Magnetic Sounding (PIMS) works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa’s subsurface ocean. This investigation exploits currents induced in Europa’s interior by the moon’s exposure to variable magnetic fields in the Jovian system to infer properties of Europa’s subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa’s global liquid ocean by accounting for contributions to the magnetic field from plasma currents.The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. PIMS on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter’s magnetosphere and Europa’s ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa’s magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa’s surface into the atmosphere and

  7. Data Products From Particle Detectors On-Board NOAA's Newest Space Weather Monitor

    Science.gov (United States)

    Kress, B. T.; Rodriguez, J. V.; Onsager, T. G.

    2017-12-01

    NOAA's newest Geostationary Operational Environmental Satellite, GOES-16, was launched on 19 November 2016. Instrumentation on-board GOES-16 includes the new Space Environment In-Situ Suite (SEISS), which has been collecting data since 8 January 2017. SEISS is composed of five magnetospheric particle sensor units: an electrostatic analyzer for measuring 30 eV - 30 keV ions and electrons (MPS-LO), a high energy particle sensor (MPS-HI) that measures keV to MeV electrons and protons, east and west facing Solar and Galactic Proton Sensor (SGPS) units with 13 differential channels between 1-500 MeV, and an Energetic Heavy Ion Sensor (EHIS) that measures 30 species of heavy ions (He-Ni) in five energy bands in the 10-200 MeV/nuc range. Measurement of low energy magnetospheric particles by MPS-LO and heavy ions by EHIS are new capabilities not previously flown on the GOES system. Real-time data from GOES-16 will support space weather monitoring and first-principles space weather modeling by NOAA's Space Weather Prediction Center (SWPC). Space weather level 2+ data products under development at NOAA's National Centers for Environmental Information (NCEI) include the Solar Energetic Particle (SEP) Event Detection algorithm. Legacy components of the SEP event detection algorithm (currently produced by SWPC) include the Solar Radiation Storm Scales. New components will include, e.g., event fluences. New level 2+ data products also include the SEP event Linear Energy Transfer (LET) Algorithm, for transforming energy spectra from EHIS into LET spectra, and the Density and Temperature Moments and Spacecraft Charging algorithm. The moments and charging algorithm identifies electron and ion signatures of spacecraft surface (frame) charging in the MPS-LO fluxes. Densities and temperatures from MPS-LO will also be used to support a magnetopause crossing detection algorithm. The new data products will provide real-time indicators of potential radiation hazards for the satellite

  8. Process for Upgrading Cognitive Assessment Capabilities Onboard the International Space Station

    Science.gov (United States)

    Picano, J. J.; Seaton, K. A.; Holland, A. W.

    2016-01-01

    MOTIVATION: Spaceflight poses varied and unique risks to the brain and cognitive functioning including radiation exposure, sleep disturbance, fatigue, fluid shifts (increased intracranial pressure), toxin exposure, elevated carbon dioxide, and traumatic brain injury, among others. These potential threats to cognitive functioning are capable of degrading performance and compromising mission success. Furthermore, the threats may increase in severity, and new types of threats may emerge for longer duration exploration missions. This presentation will describe the process used to identify gaps in our current approach, evaluate best practices in cognitive assessment, and transition new cognitive assessment tools to operational use. OVERVIEW: Risks to brain health and performance posed by spaceflight missions require sensitive tools to assess cognitive functioning of astronauts in flight. The Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) is the automated cognitive assessment tool currently deployed onboard the International Space Station (ISS). WinSCAT provides astronauts and flight surgeons with objective data to monitor neurocognitive functioning. WinSCAT assesses 5 discrete cognitive domains, is sensitive to changes in cognitive functioning, and was designed to be completed in less than 15 minutes. However, WinSCAT does not probe other areas of cognitive functioning that might be important to mission success. Researchers recently have developed batteries that may expand current capabilities, such as increased sensitivity to subtle fluctuations in cognitive functioning. Therefore, we engaged in a systematic process review in order to improve upon our current capabilities and incorporate new advances in cognitive assessment. This process included a literature review on newer measures of neurocognitive assessment, surveys of operational flight surgeons at NASA regarding needs and gaps in our capabilities, and expert panel review of candidate cognitive

  9. Registered particles onboard identification in the various apertures of GAMMA-400 space gamma-telescope

    Science.gov (United States)

    Arkhangelskaja, Irene

    2016-07-01

    GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to

  10. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  11. Wide-Field Gamma-Spectrometer BDRG: GRB Monitor On-Board the Lomonosov Mission

    Science.gov (United States)

    Svertilov, S. I.; Panasyuk, M. I.; Bogomolov, V. V.; Amelushkin, A. M.; Barinova, V. O.; Galkin, V. I.; Iyudin, A. F.; Kuznetsova, E. A.; Prokhorov, A. V.; Petrov, V. L.; Rozhkov, G. V.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Jeong, S.; Kim, M. B.

    2018-02-01

    The study of GRB prompt emissions (PE) is one of the main goals of the Lomonosov space mission. The payloads of the GRB monitor (BDRG) with the wide-field optical cameras (SHOK) and the ultra-fast flash observatory (UFFO) onboard the Lomonosov satellite are intended for the observation of GRBs, and in particular, their prompt emissions. The BDRG gamma-ray spectrometer is designed to obtain the temporal and spectral information of GRBs in the energy range of 10-3000 keV as well as to provide GRB triggers on several time scales (10 ms, 1 s and 20 s) for ground and space telescopes, including the UFFO and SHOK. The BDRG instrument consists of three identical detector boxes with axes shifted by 90° from each other. This configuration allows us to localize a GRB source in the sky with an accuracy of ˜ 2°. Each BDRG box contains a phoswich NaI(Tl)/CsI(Tl) scintillator detector. A thick CsI(Tl) crystal in size of \\varnothing 130 × 17 mm is placed underneath the NaI(Tl) as an active shield in the soft energy range and as the main detector in the hard energy range. The ratio of the CsI(Tl) to NaI(Tl) event rates at varying energies can be employed as an independent metric to distinguish legitimate GRB signals from false positives originating from electrons in near-Earth vicinities. The data from three detectors are collected in a BA BDRG information unit, which generates a GRB trigger and a set of data frames in output format. The scientific data output is ˜ 500 Mb per day, including ˜ 180 Mb of continuous data for events with durations in excess of 100 ms for 16 channels in each detector, detailed energy spectra, and sets of frames with ˜ 5 Mb of detailed information for each burst-like event. A number of pre-flight tests including those for the trigger algorithm and calibration were carried out to confirm the reliability of the BDRG for operation in space.

  12. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    Science.gov (United States)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  13. Evaluation of Crew-Centric Onboard Mission Operations Planning and Execution Tool: Year 2

    Science.gov (United States)

    Hillenius, S.; Marquez, J.; Korth, D.; Rosenbaum, M.; Deliz, Ivy; Kanefsky, Bob; Zheng, Jimin

    2018-01-01

    Currently, mission planning for the International Space Station (ISS) is largely affected by ground operators in mission control. The task of creating a week-long mission plan for ISS crew takes dozens of people multiple days to complete, and is often created far in advance of its execution. As such, re-planning or adapting to changing real-time constraints or emergent issues is similarly taxing. As we design for future mission operations concepts to other planets or areas with limited connectivity to Earth, more of these ground-based tasks will need to be handled autonomously by the crew onboard.There is a need for a highly usable (including low training time) tool that enables efficient self-scheduling and execution within a single package. The ISS Program has identified Playbook as a potential option. It already has high crew acceptance as a plan viewer from previous analogs and can now support a crew self-scheduling assessment on ISS or on another mission. The goals of this work, a collaboration between the Human Research Program and the ISS Program, are to inform the design of systems for more autonomous crew operations and provide a platform for research on crew autonomy for future deep space missions. Our second year of the research effort have included new insights on the crew self-scheduling sessions performed by the crew through use on the HERA (Human Exploration Research Analog) and NEEMO (NASA Extreme Environment Mission Operations) analogs. Use on the NEEMO analog involved two self-scheduling strategies where the crew planned and executed two days of EVAs (Extra-Vehicular Activities). On HERA year two represented the first HERA campaign where we were able to perform research tasks. This involved selected flexible activities that the crew could schedule, mock timelines where the crew completed more complex planning exercises, usability evaluation of the crew self-scheduling features, and more insights into the limit of plan complexity that the crew

  14. Dosimetry and microdosimetry using LET spectrometer based on the track-etch detector: radiotherapy Bremsstrahlung beam, onboard aircraft radiation field

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spurny, F.

    2006-01-01

    The spectrometer of linear energy transfer (Let) based on the chemically etched poly-allyl-diglycol-carbonate (P.A.D.C.) track-etch detector was developed several years ago in our institute. This Let spectrometer enables determining Let of particles approximately from 10 to 700 keV/μm. From the Let spectra, dose characteristics can be calculated. The contribution presents the Let spectra and other dosimetric characteristics obtained onboard a commercial aircraft during more than 6 months long exposure and in the 18 MV radiotherapy Bremsstrahlung beam. (authors)

  15. Dosimetric verification of lung cancer treatment using the CBCTs estimated from limited-angle on-board projections.

    Science.gov (United States)

    Zhang, You; Yin, Fang-Fang; Ren, Lei

    2015-08-01

    Lung cancer treatment is susceptible to treatment errors caused by interfractional anatomical and respirational variations of the patient. On-board treatment dose verification is especially critical for the lung stereotactic body radiation therapy due to its high fractional dose. This study investigates the feasibility of using cone-beam (CB)CT images estimated by a motion modeling and free-form deformation (MM-FD) technique for on-board dose verification. Both digital and physical phantom studies were performed. Various interfractional variations featuring patient motion pattern change, tumor size change, and tumor average position change were simulated from planning CT to on-board images. The doses calculated on the planning CT (planned doses), the on-board CBCT estimated by MM-FD (MM-FD doses), and the on-board CBCT reconstructed by the conventional Feldkamp-Davis-Kress (FDK) algorithm (FDK doses) were compared to the on-board dose calculated on the "gold-standard" on-board images (gold-standard doses). The absolute deviations of minimum dose (ΔDmin), maximum dose (ΔDmax), and mean dose (ΔDmean), and the absolute deviations of prescription dose coverage (ΔV100%) were evaluated for the planning target volume (PTV). In addition, 4D on-board treatment dose accumulations were performed using 4D-CBCT images estimated by MM-FD in the physical phantom study. The accumulated doses were compared to those measured using optically stimulated luminescence (OSL) detectors and radiochromic films. Compared with the planned doses and the FDK doses, the MM-FD doses matched much better with the gold-standard doses. For the digital phantom study, the average (± standard deviation) ΔDmin, ΔDmax, ΔDmean, and ΔV100% (values normalized by the prescription dose or the total PTV) between the planned and the gold-standard PTV doses were 32.9% (±28.6%), 3.0% (±2.9%), 3.8% (±4.0%), and 15.4% (±12.4%), respectively. The corresponding values of FDK PTV doses were 1.6% (±1

  16. SU-E-I-72: First Experimental Study of On-Board CBCT Imaging Using 2.5MV Beam On a Radiotherapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Institute of Image Processing and Pattern Recognition, Xi' an Jiaotong University, Xi' an (China); Li, R; Yang, Y; Xing, L [Department of Radiation Oncology, Stanford University, Stanford, CA (United States)

    2014-06-01

    Purpose: Varian TrueBeam version 2.0 comes with a new inline 2.5MV beam modality for image guided patient setup. In this work we develop an iterative volumetric image reconstruction technique specific to the beam and investigate the possibility of obtaining metal artifact free CBCT images using the new imaging modality. Methods: An iterative reconstruction algorithm with a sparse representation constraint based on dictionary learning is developed, in which both sparse projection and low dose rate (10 MU/min) are considered. Two CBCT experiments were conducted using the newly available 2.5MV beam on a Varian TrueBeam linac. First, a Rando anthropomorphic head phantom with and without a copper bar inserted in the center was scanned using both 2.5MV and kV (100kVp) beams. In a second experiment, an MRI phantom with many coils was scanned using 2.5MV, 6MV, and kV (100kVp) beams. Imaging dose and the resultant image quality is studied. Results: Qualitative assessment suggests that there were no visually detectable metal artifacts in MV CBCT images, compared with significant metal artifacts in kV CBCT images, especially in the MRI phantom. For a region near the metal object in the head phantom, the 2.5MV CBCT gave a more accurate quantification of the electron density compared with kV CBCT, with a ∼50% reduction in mean HU error. As expected, the contrast between bone and soft-tissue in 2.5MV CBCT decreased compared with kV CBCT. Conclusion: On-board CBCT imaging with the new 2.5MV beam can effectively reduce metal artifacts, although with a reduced softtissue contrast. Combination of kV and MV scanning may lead to metal artifact free CBCT images with uncompromised soft-tissue contrast.

  17. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  18. Software design for the VIS instrument onboard the Euclid mission: a multilayer approach

    Science.gov (United States)

    Galli, E.; Di Giorgio, A. M.; Pezzuto, S.; Liu, S. J.; Giusi, G.; Li Causi, G.; Farina, M.; Cropper, M.; Denniston, J.; Niemi, S.

    2014-07-01

    The Euclid mission scientific payload is composed of two instruments: a VISible Imaging Instrument (VIS) and a Near Infrared Spectrometer and Photometer instrument (NISP). Each instrument has its own control unit. The Instrument Command and Data Processing Unit (VI-CDPU) is the control unit of the VIS instrument. The VI-CDPU is connected directly to the spacecraft by means of a MIL-STD-1553B bus and to the satellite Mass Memory Unit via a SpaceWire link. All the internal interfaces are implemented via SpaceWire links and include 12 high speed lines for the data provided by the 36 focal plane CCDs readout electronics (ROEs) and one link to the Power and Mechanisms Control Unit (VI-PMCU). VI-CDPU is in charge of distributing commands to the instrument sub-systems, collecting their housekeeping parameters and monitoring their health status. Moreover, the unit has the task of acquiring, reordering, compressing and transferring the science data to the satellite Mass Memory. This last feature is probably the most challenging one for the VI-CDPU, since stringent constraints about the minimum lossless compression ratio, the maximum time for the compression execution and the maximum power consumption have to be satisfied. Therefore, an accurate performance analysis at hardware layer is necessary, which could delay too much the design and development of software. In order to mitigate this risk, in the multilayered design of software we decided to design a middleware layer that provides a set of APIs with the aim of hiding the implementation of the HW connected layer to the application one. The middleware is built on top of the Operating System layer (which includes the Real-Time OS that will be adopted) and the onboard Computer Hardware. The middleware itself has a multi-layer architecture composed of 4 layers: the Abstract RTOS Adapter Layer (AOSAL), the Speci_c RTOS Adapter Layer (SOSAL), the Common Patterns Layer (CPL), the Service Layer composed of two subgroups which

  19. Session 4: On-board exhaust gas reforming for improved performance of natural gas HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Amieiro, A.; Golunski, S.; James, D. [Johnson Matthey Technology Centre, Sonning Common, Reading (United Kingdom); Miroslaw, Wyszynski; Athanasios, Megaritis; Peucheret, S. [Birmingham Univ., School of Engineering, Future Power Systems Research Group (United Kingdom); Hongming, Xu [Jaguar Cars Ltd, W/2/021 Engineering Centre, Whitley, Coventry (United Kingdom)

    2004-07-01

    Although natural gas (NG) is a non-renewable energy source, it is still a very attractive alternative fuel for transportation - it is inexpensive, abundant, and easier to refine than petroleum. Unfortunately the minimum spark energy required for NG ignition is higher than for liquid fuels, and engine performance is reduced since the higher volume of NG limits the air breathing capacity of the cylinders. On the other hand, the flammability range of NG is wider than for other hydrocarbons, so the engine can operate under leaner conditions. Environmentally, the use of NG is particularly attractive since it has a low flame temperature (resulting in reduced NO{sub x} emissions) and a low carbon content compared to diesel or gasoline (resulting in less CO, CO{sub 2} and particulate). In addition, NG is easily made sulphur-free, and has a high octane rating (RON = 110-130) which makes it suitable for high compression engine applications. Exhaust gas recirculation (EGR) into an engine is known to reduce both flame temperature and speed, and therefore produce lower NO{sub x} emissions. In general, a given volume of exhaust gas has a greater effect on flame speed and NO{sub x} emissions than the same quantity of excess air, although there is a limit to the amount of exhaust gas recirculation that can be used without inhibiting combustion. However, hydrogen addition to exhaust gas recirculation has been proved to reduce emissions while increasing flame speed, so improving both the emissions and the thermal efficiency of the engine. On-board reforming of some of the fuel, by reaction with exhaust gas during EGR, is a novel way of adding hydrogen to an engine. We have carried out reforming tests on mixtures of natural gas and exhaust gas at relatively low temperatures (400-600 C), to mimic the low availability of external heat within the integrated system. The reforming catalyst is a nickel-free formulation, containing precious metals promoted by metal oxides. The roles of

  20. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  1. Crew awareness as key to optimizing habitability standards onboard naval platforms: A 'back-to-basics' approach.

    Science.gov (United States)

    Neelakantan, Anand; Ilankumaran, Mookkiah; Ray, Sougat

    2017-10-01

    A healthy habitable environment onboard warships is vital to operational fleet efficiency and fit sea-warrier force. Unique man-machine-armament interface issues and consequent constraints on habitability necessitate a multi-disciplinary approach toward optimizing habitability standards. Study of the basic 'human factor', including crew awareness on what determines shipboard habitability, and its association with habitation specifications is an essential step in such an approach. The aim of this study was to assess crew awareness on shipboard habitability and the association between awareness and maintenance of optimal habitability as per specifications. A cross-sectional descriptive study was carried out among 552 naval personnel onboard warships in Mumbai. Data on crew awareness on habitability was collected using a standardized questionnaire, and correlated with basic habitability requirement specifications. Data was analyzed using Microsoft Excel, Epi-info, and SPSS version 17. Awareness level on basic habitability aspects was very good in 65.3% of crew. Area-specific awareness was maximum with respect to living area (95.3%). Knowledge levels on waste management were among the lowest (65.2%) in the category of aspect-wise awareness. Statistically significant association was found between awareness levels and habitability standards (OR = 7.27). The new benchmarks set in the form of high crew awareness levels on basic shipboard habitability specifications and its significant association with standards needs to be sustained. It entails re-iteration of healthy habitation essentials into training; and holds the key to a fit fighting force.

  2. An adaptive multi-spline refinement algorithm in simulation based sailboat trajectory optimization using onboard multi-core computer systems

    Directory of Open Access Journals (Sweden)

    Dębski Roman

    2016-06-01

    Full Text Available A new dynamic programming based parallel algorithm adapted to on-board heterogeneous computers for simulation based trajectory optimization is studied in the context of “high-performance sailing”. The algorithm uses a new discrete space of continuously differentiable functions called the multi-splines as its search space representation. A basic version of the algorithm is presented in detail (pseudo-code, time and space complexity, search space auto-adaptation properties. Possible extensions of the basic algorithm are also described. The presented experimental results show that contemporary heterogeneous on-board computers can be effectively used for solving simulation based trajectory optimization problems. These computers can be considered micro high performance computing (HPC platforms-they offer high performance while remaining energy and cost efficient. The simulation based approach can potentially give highly accurate results since the mathematical model that the simulator is built upon may be as complex as required. The approach described is applicable to many trajectory optimization problems due to its black-box represented performance measure and use of OpenCL.

  3. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    International Nuclear Information System (INIS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-01-01

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves

  4. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

    Science.gov (United States)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio

    2018-04-01

    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  5. Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe

    2015-12-01

    Robust algorithms using reduced order equivalent circuit model (ECM) for an accurate and reliable estimation of battery states in various applications become more popular. In this study, a novel adaptive, self-learning heuristic algorithm for on-board impedance parameters and voltage estimation of lithium-ion batteries (LIBs) in electric vehicles is introduced. The presented approach is verified using LIBs with different composition of chemistries (NMC/C, NMC/LTO, LFP/C) at different aging states. An impedance-based reduced order ECM incorporating ohmic resistance and a combination of a constant phase element and a resistance (so-called ZARC-element) is employed. Existing algorithms in vehicles are much more limited in the complexity of the ECMs. The algorithm is validated using seven day real vehicle data with high temperature variation including very low temperatures (from -20 °C to +30 °C) at different Depth-of-Discharges (DoDs). Two possibilities to approximate both ZARC-elements with finite number of RC-elements on-board are shown and the results of the voltage estimation are compared. Moreover, the current dependence of the charge-transfer resistance is considered by employing Butler-Volmer equation. Achieved results indicate that both models yield almost the same grade of accuracy.

  6. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Waag, Wladislaw; Marongiu, Andrea; Sauer, Dirk Uwe

    2015-05-01

    This work provides an overview of available methods and algorithms for on-board capacity estimation of lithium-ion batteries. An accurate state estimation for battery management systems in electric vehicles and hybrid electric vehicles is becoming more essential due to the increasing attention paid to safety and lifetime issues. Different approaches for the estimation of State-of-Charge, State-of-Health and State-of-Function are discussed and analyzed by many authors and researchers in the past. On-board estimation of capacity in large lithium-ion battery packs is definitely one of the most crucial challenges of battery monitoring in the aforementioned vehicles. This is mostly due to high dynamic operation and conditions far from those used in laboratory environments as well as the large variation in aging behavior of each cell in the battery pack. Accurate capacity estimation allows an accurate driving range prediction and accurate calculation of a battery's maximum energy storage capability in a vehicle. At the same time it acts as an indicator for battery State-of-Health and Remaining Useful Lifetime estimation.

  7. Application of the Oxidation-Reduction Potential (ORP) for Pre-grading Tuna Freshness On-board

    Science.gov (United States)

    Cheevaporanapivat, Mongkol; Sakai, Hisaharu; Mine, Yuuji; Watanabe, Manabu; Suzuki, Toru

    Application of ORP as a rapid indicator for grading tuna's freshness on the ship was studied. The long line trawling process was used for catching the sample tuna in the South Pacific Ocean. All captured sample tuna were weighed, gender identified and investigated for their mortality, then measured ORP and K value. Three species of tuna were caught: blue marlin (Makaira mazara), yellow fin tuna (Thunnus albacares), and swordfish (Xiphia gladius). Most of the fish captured were male and they had been dead after picking onboard. The measured ORP values of blue marlin varied in the range of 0.295-0.362 Volt, with pH between 5.35-5.84. Both ORP and pH of swordfish was similar to that of blue marlin. But for yellow fin tuna, the ORP value was about the same as blue marlin while its pH was significantly higher. ORP value in all species tended to increase with pH of the fish meat decrease. It is interesting that ORP value of tuna increased in correlation with K value. These results suggested that ORP and pH change, which are measured in the short time, are the effective indicators for grading tuna's freshness on-board.

  8. Agile deployment and code coverage testing metrics of the boot software on-board Solar Orbiter's Energetic Particle Detector

    Science.gov (United States)

    Parra, Pablo; da Silva, Antonio; Polo, Óscar R.; Sánchez, Sebastián

    2018-02-01

    In this day and age, successful embedded critical software needs agile and continuous development and testing procedures. This paper presents the overall testing and code coverage metrics obtained during the unit testing procedure carried out to verify the correctness of the boot software that will run in the Instrument Control Unit (ICU) of the Energetic Particle Detector (EPD) on-board Solar Orbiter. The ICU boot software is a critical part of the project so its verification should be addressed at an early development stage, so any test case missed in this process may affect the quality of the overall on-board software. According to the European Cooperation for Space Standardization ESA standards, testing this kind of critical software must cover 100% of the source code statement and decision paths. This leads to the complete testing of fault tolerance and recovery mechanisms that have to resolve every possible memory corruption or communication error brought about by the space environment. The introduced procedure enables fault injection from the beginning of the development process and enables to fulfill the exigent code coverage demands on the boot software.

  9. Technology for organization of the onboard system for processing and storage of ERS data for ultrasmall spacecraft

    Science.gov (United States)

    Strotov, Valery V.; Taganov, Alexander I.; Konkin, Yuriy V.; Kolesenkov, Aleksandr N.

    2017-10-01

    Task of processing and analysis of obtained Earth remote sensing data on ultra-small spacecraft board is actual taking into consideration significant expenditures of energy for data transfer and low productivity of computers. Thereby, there is an issue of effective and reliable storage of the general information flow obtained from onboard systems of information collection, including Earth remote sensing data, into a specialized data base. The paper has considered peculiarities of database management system operation with the multilevel memory structure. For storage of data in data base the format has been developed that describes a data base physical structure which contains required parameters for information loading. Such structure allows reducing a memory size occupied by data base because it is not necessary to store values of keys separately. The paper has shown architecture of the relational database management system oriented into embedment into the onboard ultra-small spacecraft software. Data base for storage of different information, including Earth remote sensing data, can be developed by means of such database management system for its following processing. Suggested database management system architecture has low requirements to power of the computer systems and memory resources on the ultra-small spacecraft board. Data integrity is ensured under input and change of the structured information.

  10. Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan

    Directory of Open Access Journals (Sweden)

    Kevin R. Mallon

    2017-07-01

    Full Text Available Heavy-duty electric powertrains provide a potential solution to the high emissions and low fuel economy of trucks, buses, and other heavy-duty vehicles. However, the cost, weight, and lifespan of electric vehicle batteries limit the implementation of such vehicles. This paper proposes supplementing the battery with on-board photovoltaic modules. In this paper, a bus model is created to analyze the impact of on-board photovoltaics on electric bus range and battery lifespan. Photovoltaic systems that cover the bus roof and bus sides are considered. The bus model is simulated on a suburban bus drive cycle on a bus route in Davis, CA, USA for a representative sample of yearly weather conditions. Roof-mounted panels increased vehicle driving range by 4.7% on average annually, while roof and side modules together increased driving range by 8.9%. However, variations in weather conditions meant that this additional range was not reliably available. For constant vehicle range, rooftop photovoltaic modules extended battery cycle life by up to 10% while modules on both the roof and sides extended battery cycle life by up to 19%. Although side-mounted photovoltaics increased cycle life and range, they were less weight- and cost-effective compared to the roof-mounted panels.

  11. Onboard tagging for real-time quality assessment of photoplethysmograms acquired by a wireless reflectance pulse oximeter.

    Science.gov (United States)

    Li, Kejia; Warren, Steve; Natarajan, Balasubramaniam

    2012-02-01

    Onboard assessment of photoplethysmogram (PPG) quality could reduce unnecessary data transmission on battery-powered wireless pulse oximeters and improve the viability of the electronic patient records to which these data are stored. These algorithms show promise to increase the intelligence level of former "dumb" medical devices: devices that acquire and forward data but leave data interpretation to the clinician or host system. To this end, the authors have developed a unique onboard feature detection algorithm to assess the quality of PPGs acquired with a custom reflectance mode, wireless pulse oximeter. The algorithm uses a Bayesian hypothesis testing method to analyze four features extracted from raw and decimated PPG data in order to determine whether the original data comprise valid PPG waveforms or whether they are corrupted by motion or other environmental influences. Based on these results, the algorithm further calculates heart rate and blood oxygen saturation from a "compact representation" structure. PPG data were collected from 47 subjects to train the feature detection algorithm and to gauge their performance. A MATLAB interface was also developed to visualize the features extracted, the algorithm flow, and the decision results, where all algorithm-related parameters and decisions were ascertained on the wireless unit prior to transmission. For the data sets acquired here, the algorithm was 99% effective in identifying clean, usable PPGs versus nonsaturated data that did not demonstrate meaningful pulsatile waveshapes, PPGs corrupted by motion artifact, and data affected by signal saturation.

  12. Use of TV in space science activities - Some considerations. [onboard primary experimental data recording

    Science.gov (United States)

    Bannister, T. C.

    1977-01-01

    Advantages in the use of TV on board satellites as the primary data-recording system in a manned space laboratory when certain types of experiments are flown are indicated. Real-time or near-real-time validation, elimination of film weight, improved depth of field and low-light sensitivity, and better adaptability to computer and electronic processing of data are spelled out as advantages of TV over photographic techniques, say, in fluid dynamics experiments, and weightlessness studies.

  13. Detailed Calibration of SphinX instrument at the Palermo XACT facility of INAF-OAPA

    Science.gov (United States)

    Szymon, Gburek; Collura, Alfonso; Barbera, Marco; Reale, Fabio; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Kordylewski, Zbigniew; Plocieniak, Stefan; Podgorski, Piotr; Trzebinski, Witold; Varisco, Salvatore

    The Solar photometer in X-rays (SphinX) experiment is scheduled for launch late summer 2008 on-board the Russian CORONAS-Photon satellite. SphinX will use three silicon PIN diode detectors with selected effective areas in order to record solar spectra in the X-ray energy range 0.3-15 keV with unprecedented temporal and medium energy resolution. High sensitivity and large dynamic range of the SphinX instrument will give for the first time possibility of observing solar soft X-ray variability from the weakest levels, ten times below present thresholds, to the largest X20+ flares. We present the results of the ground X-ray calibrations of the SphinX instrument performed at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF-OAPA. The calibrations were essential for determination of SphinX detector energy resolution and efficiency. We describe the ground tests instrumental set-up, adopted measurement techniques and present results of the calibration data analysis.

  14. Sample-Data Modeling of a Zero Voltage Transition DC-DC Converter for On-Board Battery Charger in EV

    Directory of Open Access Journals (Sweden)

    Teresa R. Granados-Luna

    2014-01-01

    Full Text Available Battery charger is a key device in electric and hybrid electric vehicles. On-board and off-board topologies are available in the market. Lightweight, small, high performance, and simple control are desired characteristics for on-board chargers. Moreover, isolated single-phase topologies are the most common system in Level 1 battery charger topologies. Following this trend, this paper proposes a sampled-data modelling strategy of a zero voltage transition (ZVT DC-DC converter for an on-board battery charger. A piece-wise linear analysis of the converter is the basis of the technique presented such that a large-signal model and, therefore, a small-signal model of the converter are derived. Numerical and simulation results of a 250 W test rig validate the model.

  15. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016

    Directory of Open Access Journals (Sweden)

    Berger Thomas

    2017-01-01

    Full Text Available The natural radiation environment in Low Earth Orbit (LEO differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR, as well as of protons and electrons trapped in the Earth’s radiation belts (Van Allen belts. Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments “Dose Distribution within the ISS (DOSIS” (2009–2011 and “Dose Distribution within the ISS 3D (DOSIS 3D” (2012–onwards onboard the Columbus Laboratory of the International Space Station (ISS use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL and passive radiation detector packages (PDP and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments’ changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016

  16. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    Science.gov (United States)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286

  17. Onboard screening dockside testing as a new means of managing paralytic shellfish poisoning risks in federally closed waters

    Science.gov (United States)

    DeGrasse, Stacey; Conrad, Stephen; DiStefano, Paul; Vanegas, Camilo; Wallace, David; Jensen, Pete; Hickey, J. Michael; Cenci, Florence; Pitt, Jaclyn; Deardorff, Dave; Rubio, Fernando; Easy, Dorothy; Donovan, Mary Anne; Laycock, Maurice; Rouse, Debbie; Mullen, John

    2014-05-01

    Paralytic shellfish poisoning (PSP) is the foodborne intoxication associated with the consumption of seafood contaminated with naturally occurring neurotoxins known as paralytic shellfish toxins. To protect public health from this potentially fatal syndrome, harvesting closures are implemented when toxins exceed the regulatory action level. Traditional monitoring programs established by state shellfish authorities allow for timely closures in state waters with minimal negative impacts on industry. However, such monitoring programs are not feasible in federal offshore waters given their distance from shore and the range of their spatial coverage. Thus innovative management strategies were investigated for these offshore resources. Georges Bank, an offshore resource with an estimated market value of more than 3 billion in Atlantic surfclams and ocean quahogs, has been closed to harvesting following a temporary ban in 1989 and a subsequent indefinite closure in 1990 due to the risk of PSP. As a means of managing this risk and allowing harvest of safe shellfish from this important resource, the Onboard Screening Dockside Testing Protocol (referred to as the Protocol) was developed by the US Food and Drug Administration (FDA), National Marine Fisheries Service (NMFS), state shellfish control authorities, and industry. The Protocol, which sets forth control measures to ensure product safety and public health protection, was endorsed by the Interstate Shellfish Sanitation Conference (ISSC) for pilot testing. Briefly, the pilot study Protocol required that (1) the fishing vessel receive a permit from NMFS to harvest in closed waters, (2) a miniμm of five shellfish samples per intended harvest lot be tested for PSP toxins onboard, and (3) harvesting only occur when the samples tested from the intended fishing area are negative using the Jellett Rapid Tests or Abraxis Shipboard ELISA kits. Finally, product landed under the Protocol was confirmed to be safe for consumption

  18. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    International Nuclear Information System (INIS)

    Iliopoulos, AS; Sun, X; Pitsianis, N; Yin, FF; Ren, L

    2015-01-01

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  19. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States); Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  20. WE-G-BRD-06: Volumetric Cine MRI (VC-MRI) Estimated Based On Prior Knowledge for On-Board Target Localization

    International Nuclear Information System (INIS)

    Harris, W; Yin, F; Cai, J; Zhang, Y; Ren, L

    2015-01-01

    Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI at the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on-board

  1. WE-G-BRD-06: Volumetric Cine MRI (VC-MRI) Estimated Based On Prior Knowledge for On-Board Target Localization

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W; Yin, F; Cai, J; Zhang, Y; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop a technique to generate on-board VC-MRI using patient prior 4D-MRI, motion modeling and on-board 2D-cine MRI for real-time 3D target verification of liver and lung radiotherapy. Methods: The end-expiration phase images of a 4D-MRI acquired during patient simulation are used as patient prior images. Principal component analysis (PCA) is used to extract 3 major respiratory deformation patterns from the Deformation Field Maps (DFMs) generated between end-expiration phase and all other phases. On-board 2D-cine MRI images are acquired in the axial view. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI at the end-expiration phase. The DFM is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by matching the corresponding 2D slice of the estimated VC-MRI with the acquired single 2D-cine MRI. The method was evaluated using both XCAT (a computerized patient model) simulation of lung cancer patients and MRI data from a real liver cancer patient. The 3D-MRI at every phase except end-expiration phase was used to simulate the ground-truth on-board VC-MRI at different instances, and the center-tumor slice was selected to simulate the on-board 2D-cine images. Results: Image subtraction of ground truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground truth with prior image. Excellent agreement between profiles was achieved. The normalized cross correlation coefficients between the estimated and ground-truth in the axial, coronal and sagittal views for each time step were >= 0.982, 0.905, 0.961 for XCAT data and >= 0.998, 0.911, 0.9541 for patient data. For XCAT data, the maximum-Volume-Percent-Difference between ground-truth and estimated tumor volumes was 1.6% and the maximum-Center-of-Mass-Shift was 0.9 mm. Conclusion: Preliminary studies demonstrated the feasibility to estimate real-time VC-MRI for on-board

  2. Technology Readiness Level (TRL) Advancement of the MSPI On-Board Processing Platform for the ACE Decadal Survey Mission

    Science.gov (United States)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.; Wilson, Thor O.

    2011-01-01

    The Xilinx Virtex-5QV is a new Single-event Immune Reconfigurable FPGA (SIRF) device that is targeted as the spaceborne processor for the NASA Decadal Survey Aerosol-Cloud-Ecosystem (ACE) mission's Multiangle SpectroPolarimetric Imager (MSPI) instrument, currently under development at JPL. A key technology needed for MSPI is on-board processing (OBP) to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's ESTO1 AIST2 Program, JPL is demonstrating how signal data at 95 Mbytes/sec over 16 channels for each of the 9 multi-angle cameras can be reduced to 0.45 Mbytes/sec, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information. This is done via a least-squares fitting algorithm implemented on the Virtex-5 FPGA operating in real-time on the raw video data stream.

  3. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    Science.gov (United States)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  4. Fixed-wavelength H2O absorption spectroscopy system enhanced by an on-board external-cavity diode laser

    International Nuclear Information System (INIS)

    Brittelle, Mack S; Simms, Jean M; Sanders, Scott T; Gord, James R; Roy, Sukesh

    2016-01-01

    We describe a system designed to perform fixed-wavelength absorption spectroscopy of H 2 O vapor in practical combustion devices. The system includes seven wavelength-stabilized distributed feedback (WSDFB) lasers, each with a spectral accuracy of  ±1 MHz. An on-board external cavity diode laser (ECDL) that tunes 1320–1365 nm extends the capabilities of the system. Five system operation modes are described. In one mode, a sweep of the ECDL is used to monitor each WSDFB laser wavelength with an accuracy of  ±30 MHz. Demonstrations of fixed-wavelength thermometry at 10 kHz bandwidth in near-room-temperature gases are presented; one test reveals a temperature measurement error of ∼0.43%. (paper)

  5. Ergonomic problems regarding the interactive touch input via screens in onboard and ground-based flight control

    Science.gov (United States)

    Holzhausen, K. P.; Gaertner, K. P.

    1985-01-01

    A significant problem concerning the integration of display and switching functions is related to the fact that numerous informative data which have to be processed by man must be read from only a few display devices. A satisfactory ergonomic design of integrated display devices and keyboards is in many cases difficult, because not all functions which can be displayed and selected are simultaneously available. A technical solution which provides an integration of display and functional elements on the basis of the highest flexibility is obtained by using a cathode ray tube with a touch-sensitive screen. The employment of an integrated data input/output system is demonstrated for the cases of onboard and ground-based flight control. Ergonomic studies conducted to investigate the suitability of an employment of touch-sensitive screens are also discussed.

  6. Measuring Algorithm for the Distance to a Preceding Vehicle on Curve Road Using On-Board Monocular Camera

    Science.gov (United States)

    Yu, Guizhen; Zhou, Bin; Wang, Yunpeng; Wun, Xinkai; Wang, Pengcheng

    2015-12-01

    Due to more severe challenges of traffic safety problems, the Advanced Driver Assistance Systems (ADAS) has received widespread attention. Measuring the distance to a preceding vehicle is important for ADAS. However, the existing algorithm focuses more on straight road sections than on curve measurements. In this paper, we present a novel measuring algorithm for the distance to a preceding vehicle on a curve road using on-board monocular camera. Firstly, the characteristics of driving on the curve road is analyzed and the recognition of the preceding vehicle road area is proposed. Then, the vehicle detection and distance measuring algorithms are investigated. We have verified these algorithms on real road driving. The experimental results show that this method proposed in the paper can detect the preceding vehicle on curve roads and accurately calculate the longitudinal distance and horizontal distance to the preceding vehicle.

  7. LANL MTI calibration team experience

    Science.gov (United States)

    Bender, Steven C.; Atkins, William H.; Clodius, William B.; Little, Cynthia K.; Christensen, R. Wynn

    2004-01-01

    The Multispectral Thermal Imager (MTI) was designed as an imaging radiometer with absolute calibration requirements established by Department of Energy (DOE) mission goals. Particular emphasis was given to water surface temperature retrieval using two mid wave and three long wave infrared spectral bands, the fundamental requirement was a surface temperature determination of 1K at the 68% confidence level. For the ten solar reflective bands a one-sigma radiometric performance goal of 3% was established. In order to address these technical challenges a calibration facility was constructed containing newly designed sources that were calibrated at NIST. Additionally, the design of the payload and its onboard calibration system supported post launch maintenance and update of the ground calibration. The on-orbit calibration philosophy also included vicarious techniques using ocean buoys, playas and other instrumented sites; these became increasingly important subsequent to an electrical failure which disabled the onboard calibration system. This paper offers various relevant lessons learned in the eight-year process of reducing to practice the calibration capability required by the scientific mission. The discussion presented will include observations pertinent to operational and procedural issues as well as hardware experiences; the validity of some of the initial assumptions will also be explored.

  8. Defense Threat Reduction Agency > Careers > Onboarding > Onboarding

    Science.gov (United States)

    includes developing professional networks, identifying additional training and development opportunities , and celebrating accomplishments. Mission Personalization Networking Learning Career Development Basic and Applied Science Research Funding Opportunities Science of WMD Sensing and Recognition Network

  9. Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express

    Science.gov (United States)

    Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.

    2018-01-01

    The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.

  10. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  11. CNES studies for on-board implementation via HLS tools of a cloud-detection module for selective compression

    Science.gov (United States)

    Camarero, R.; Thiebaut, C.; Dejean, Ph.; Speciel, A.

    2010-08-01

    Future CNES high resolution instruments for remote sensing missions will lead to higher data-rates because of the increase in resolution and dynamic range. For example, the ground resolution improvement has induced a data-rate multiplied by 8 from SPOT4 to SPOT5 [1] and by 28 to PLEIADES-HR [2]. Innovative "smart" compression techniques will be then required, performing different types of compression inside a scene, in order to reach higher global compression ratios while complying with image quality requirements. This socalled "selective compression", allows important compression gains by detecting and then differently compressing the regions-of-interest (ROI) and non-interest in the image (e.g. higher compression ratios are assigned to the non-interesting data). Given that most of CNES high resolution images are cloudy [1], significant mass-memory and transmission gain could be reached by just detecting and suppressing (or compressing significantly) the areas covered by clouds. Since 2007, CNES works on a cloud detection module [3] as a simplification for on-board implementation of an already existing module used on-ground for PLEIADES-HR album images [4]. The different steps of this Support Vector Machine classifier have already been analyzed, for simplification and optimization, during this on-board implementation study: reflectance computation, characteristics vector computation (based on multispectral criteria) and computation of the SVM output. In order to speed up the hardware design phase, a new approach based on HLS [5] tools is being tested for the VHDL description stage. The aim is to obtain a bit-true VDHL design directly from a high level description language as C or Matlab/Simulink [6].

  12. High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center

    Science.gov (United States)

    Beyon, J.; Ng, T. K.; Davis, M. J.; Adams, J. K.; Lin, B.

    2015-12-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 - April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  13. Contiguous polarisation spectra of the Earth from 300-850 nm measured by GOME-2 onboard MetOp-A

    Science.gov (United States)

    Tilstra, L. G.; Lang, R.; Munro, R.; Aben, I.; Stammes, P.

    2013-12-01

    In this paper we present the first contiguous high-resolution spectra of the Earth's polarisation observed by a satellite instrument. The measurements of the Stokes fraction Q/I are performed by the spectrometer GOME-2 onboard the MetOp-A satellite. Polarisation measurements by GOME-2 are performed by onboard polarisation measurement devices (PMDs) and the high-resolution measurements discussed in this paper are taken in the special "PMD RAW" mode of operation. The spectral resolution of these PMD RAW polarisation measurements varies from 3 nm in the ultraviolet (UV) to 35 nm in the near-infrared wavelength range. We first compare measurements of the polarisation from cloud-free scenes with radiative transfer calculations for a number of cases. We find good agreement but also a spectral discrepancy at 800 nm, which we attribute to remaining imperfections in the calibration key data. Secondly, we study the polarisation of scenes with special scattering geometries that normally lead to near-zero Q/I. The GOME-2 polarisation spectra indeed show this behaviour and confirm the existence of the small discrepancy found earlier. Thirdly, we study the Earth polarisation for a variety of scenes. This provides a blueprint of Q/I over land and sea surfaces for various degrees of cloud cover. Fourthly, we compare the spectral dependence of measurements of Q/I in the UV with the generalised distribution function that was proposed in the past (Schutgens and Stammes, 2002) to describe the shape of the UV polarisation spectrum. The GOME-2 data confirm that these functions match the spectral behaviour captured by the GOME-2 PMD RAW mode.

  14. Contiguous polarisation spectra of the Earth from 300 to 850 nm measured by GOME-2 onboard MetOp-A

    Science.gov (United States)

    Tilstra, L. G.; Lang, R.; Munro, R.; Aben, I.; Stammes, P.

    2014-07-01

    In this paper we present the first contiguous high-resolution spectra of the Earth's polarisation observed by a satellite instrument. The measurements of the Stokes fraction Q/I are performed by the spectrometer GOME-2 onboard the MetOp-A satellite. Polarisation measurements by GOME-2 are performed by onboard polarisation measurement devices (PMDs) and the high-resolution measurements discussed in this paper are taken in the special "PMD RAW" mode of operation. The spectral resolution of these PMD RAW polarisation measurements varies from 3 nm in the ultraviolet (UV) to 35 nm in the near-infrared wavelength range. We first compare measurements of the polarisation from cloud-free scenes with radiative transfer calculations for a number of cases. We find good agreement but also a spectral discrepancy at 800 nm, which we attribute to remaining imperfections in the calibration key data. Secondly, we study the polarisation of scenes with special scattering geometries that normally lead to near-zero Q/I. The GOME-2 polarisation spectra indeed show this behaviour and confirm the existence of the small discrepancy found earlier. Thirdly, we study the Earth polarisation for a variety of scenes. This provides a blueprint of Q/I over land and sea surfaces for various degrees of cloud cover. Fourthly, we compare the spectral dependence of measurements of Q/I in the UV with the generalised distribution function proposed by Schutgens and Stammes (2002) to describe the shape of the UV polarisation spectrum. The GOME-2 data confirm that these functions match the spectral behaviour captured by the GOME-2 PMD RAW mode.

  15. A technique for on-board CT reconstruction using both kilovoltage and megavoltage beam projections for 3D treatment verification

    International Nuclear Information System (INIS)

    Yin Fangfang; Guan Huaiqun; Lu Wenkai

    2005-01-01

    The technologies with kilovoltage (kV) and megavoltage (MV) imaging in the treatment room are now available for image-guided radiation therapy to improve patient setup and target localization accuracy. However, development of strategies to efficiently and effectively implement these technologies for patient treatment remains challenging. This study proposed an aggregated technique for on-board CT reconstruction using combination of kV and MV beam projections to improve the data acquisition efficiency and image quality. These projections were acquired in the treatment room at the patient treatment position with a new kV imaging device installed on the accelerator gantry, orthogonal to the existing MV portal imaging device. The projection images for a head phantom and a contrast phantom were acquired using both the On-Board Imager TM kV imaging device and the MV portal imager mounted orthogonally on the gantry of a Varian Clinac TM 21EX linear accelerator. MV projections were converted into kV information prior to the aggregated CT reconstruction. The multilevel scheme algebraic-reconstruction technique was used to reconstruct CT images involving either full, truncated, or a combination of both full and truncated projections. An adaptive reconstruction method was also applied, based on the limited numbers of kV projections and truncated MV projections, to enhance the anatomical information around the treatment volume and to minimize the radiation dose. The effects of the total number of projections, the combination of kV and MV projections, and the beam truncation of MV projections on the details of reconstructed kV/MV CT images were also investigated

  16. New Leakage Current Particulate Matter Sensor for On-Board Diagnostics

    Directory of Open Access Journals (Sweden)

    Jiawei Wang

    2016-01-01

    Full Text Available Structure and principle of the new leakage current particulate matter (PM sensor are introduced and further study is performed on the PM sensor with the combination of numerical simulation and bench test. High voltage electrode, conductive shell, and heaters are all built-in. Based on the principle of Venturi tube and maze structure design, this sensor can detect transient PM concentrations. Internal flow field of the sensor and distribution condition of PM inside the sensor are analyzed through gas-solid two-phase flow numerical simulation. The experiment was also carried out on the whole sensor system (including mechanical and electronic circuit part and the output signals were analyzed. The results of simulation and experiment reveal the possibility of PM concentration (mass detection by the sensor.

  17. Telescience testbed: Operational support functions for biomedical experiments

    Science.gov (United States)

    Yamashita, Masamichi; Watanabe, Satoru; Shoji, Takatoshi; Clarke, Andrew H.; Suzuki, Hiroyuki; Yanagihara, Dai

    A telescience testbed was conducted to study the methodology of space biomedicine with simulated constraints imposed on space experiments. An experimental subject selected for this testbedding was an elaborate surgery of animals and electrophysiological measurements conducted by an operator onboard. The standing potential in the ampulla of the pigeon's semicircular canal was measured during gravitational and caloric stimulation. A principal investigator, isolated from the operation site, participated in the experiment interactively by telecommunication links. Reliability analysis was applied to the whole layers of experimentation, including design of experimental objectives and operational procedures. Engineering and technological aspects of telescience are discussed in terms of reliability to assure quality of science. Feasibility of robotics was examined for supportive functions to reduce the workload of the onboard operator.

  18. On-orbit technology experiment facility definition

    Science.gov (United States)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  19. Histological and Transcriptomic Analysis of Adult Japanese Medaka Sampled Onboard the International Space Station.

    Directory of Open Access Journals (Sweden)

    Yasuhiko Murata

    Full Text Available To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS. We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment ("Medaka Osteoclast" was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4 and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation-reduction processes (gene ontogeny term GO:0055114, and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation.

  20. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  1. Measurements in interplanetary space and in the Martian upper atmosphere with a hydrogen absorption-cell spectrophotometer for Lα-radiation on-board Mars 4 - 7 spaceprobes

    International Nuclear Information System (INIS)

    Babichenko, S.I.; Deregusov, E.V.; Kurt, V.G.; Romanova, N.N.; Skljankin, V.A.; Smirnov, A.S.; Bertaux, J.J.; Blamont, J.

    1977-01-01

    An ultraviolet spectrophotometer UFS-2, designed to measure radiation of atomic hydrogen in the Lα-line, was installed onboard the interplanetary Mars 4 - 7 spaceprobes launched in August 1973. The absorption cell which was used for the first time outside the hydrogen geocorona allowed direct temperature measurements of neutral interstellar hydrogen near the Sun and in the upper Martian atmosphere. (Auth.)

  2. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    Science.gov (United States)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  3. A quick method for species identification of Japanese eel (Anguilla japonica) using real-time PCR: an onboard application for use during sampling surveys.

    Science.gov (United States)

    Watanabe, Shun; Minegishi, Yuki; Yoshinaga, Tatsuki; Aoyama, Jun; Tsukamoto, Katsumi

    2004-01-01

    To compensate for the limited number of morphological characteristics of fish eggs and larvae, we established a convenient and robust method of species identification for eggs of the Japanese eel (Anguilla japonica) using a real-time polymerase chain reaction (PCR) that can be performed onboard research ships at sea. A total of about 1.2 kbp of the mitochondrial 16S ribosomal RNA gene sequences from all species of Anguilla and 3 other anguilliform species were compared to design specific primer pairs and a probe for A. japonica. This real-time PCR amplification was conducted for a total of 44 specimens including A. japonica, A. marmorata, A. bicolor pacifica, and 6 other anguilliform species. Immediate PCR amplification was only observed in A. japonica. We then tested this method under onboard conditions and obtained the same result as had been produced in the laboratory. These results suggest that real-time PCR can be a powerful tool for detecting Japanese eel eggs and newly hatched larvae immediately after onboard sampling during research cruises and will allow targeted sampling efforts to occur rapidly in response to any positive onboard identification of the eggs and larvae of this species.

  4. HySDeP: a computational platform for on-board hydrogen storage systems – hybrid high-pressure solid-state and gaseous storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2016-01-01

    A computational platform is developed in the Modelica® language within the DymolaTM environment to provide a tool for the design and performance comparison of on-board hydrogen storage systems. The platform has been coupled with an open source library for hydrogen fueling stations to investigate...

  5. Effects of on-board storage and electrical stunning of wild cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) on brain and heart activity

    NARCIS (Netherlands)

    Lambooij, E.; Digre, H.; Reimert, H.G.M.; Aursand, I.G.; Grimso, L.; Vis, van de J.W.

    2012-01-01

    Cod and haddock captured with commercial trawling gear were taken immediately after landing on deck to on-board storage in dry bins for measuring brain and heart activity, and behaviour. Other groups were first stored in holding tanks and then electrically stunned with a prototype "dry stunner". For

  6. Practical method for estimating road curvatures using onboard GPS and IMU equipment

    Science.gov (United States)

    Zamfir, S.; Drosescu, R.; Gaiginschi, R.

    2016-08-01

    This paper describes an experimental method to determine with high accuracy the curvature of a road segment, the turning radius of a car, and the discomfort level perceived by the passengers in the vehicle cabin when passing through a curve. For these experiments we used professional equipment provided with two GPS active antennas with 13 dB gain featuring non-contact 100 Hz speed and distance measurement, and a ten degree Inertial Measurement Unit (IMU) with dynamic orientation outputs. The same experimental measurements also usedthe low cost GPS equipment available on smartphones, domestic vehicle GPS devices, as well as an Arduino GPS shield in order to compare the results generated by professional equipment. The purpose of these experiments was also to establish if certain road curve sections were correctly executed in order to ensure the safety and comfort of passengers. Another use of the proposed method relates to the road accident reconstruction field, providing experts and forensics with an accurate method of measuring the roadway curvature at accident scenes or traffic events. The research and equipment described in this paper have been acquired and developed under a PhD studyand a European funded project won and elaborated by the authors.

  7. Experimental Study of an On-board Fuel Tank Inerting System

    Science.gov (United States)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  8. Advanced Liquid Feed Experiment

    Science.gov (United States)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  9. Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred

    It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2

  10. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanle, E-mail: Hu.Yanle@mayo.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 and Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, Arizona 85054 (United States); Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F. [ViewRay, Inc., Oakwood Village, Ohio 44146 (United States)

    2015-10-15

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm{sup 3} spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  11. Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system

    International Nuclear Information System (INIS)

    Hu, Yanle; Rankine, Leith; Green, Olga L.; Kashani, Rojano; Li, H. Harold; Li, Hua; Rodriguez, Vivian; Santanam, Lakshmi; Wooten, H. Omar; Mutic, Sasa; Nana, Roger; Shvartsman, Shmaryu; Victoria, James; Dempsey, James F.

    2015-01-01

    Purpose: To characterize the performance of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy (MR-IGRT) system. Methods: The imaging performance characterization included four components: ACR (the American College of Radiology) phantom test, spatial integrity, coil signal to noise ratio (SNR) and uniformity, and magnetic field homogeneity. The ACR phantom test was performed in accordance with the ACR phantom test guidance. The spatial integrity test was evaluated using a 40.8 × 40.8 × 40.8 cm 3 spatial integrity phantom. MR and computed tomography (CT) images of the phantom were acquired and coregistered. Objects were identified around the surfaces of 20 and 35 cm diameters of spherical volume (DSVs) on both the MR and CT images. Geometric distortion was quantified using deviation in object location between the MR and CT images. The coil SNR test was performed according to the national electrical manufacturers association (NEMA) standards MS-1 and MS-9. The magnetic field homogeneity test was measured using field camera and spectral peak methods. Results: For the ACR tests, the slice position error was less than 0.10 cm, the slice thickness error was less than 0.05 cm, the resolved high-contrast spatial resolution was 0.09 cm, the resolved low-contrast spokes were more than 25, the image intensity uniformity was above 93%, and the percentage ghosting was less than 0.22%. All were within the ACR recommended specifications. The maximum geometric distortions within the 20 and 35 cm DSVs were 0.10 and 0.18 cm for high spatial resolution three-dimensional images and 0.08 and 0.20 cm for high temporal resolution two dimensional cine images based on the distance-to-phantom-center method. The average SNR was 12.0 for the body coil, 42.9 for the combined torso coil, and 44.0 for the combined head and neck coil. Magnetic field homogeneities at gantry angles of 0°, 30°, 60°, 90°, and 120° were 23.55, 20.43, 18.76, 19

  12. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  13. Preliminary results from the MEMO multicomponent measurements of waves on-board INTERBALL 2

    Directory of Open Access Journals (Sweden)

    F. Lefeuvre

    Full Text Available The MEMO (MEsure Multicomposante des Ondes experiment is a part of the INTERBALL 2 wave consortium. It is connected to a total of six electric and nine magnetic independent sensors. It provides waveforms associated with the measurement of two to five components in three frequency bands: ELF (5–1000 Hz, VLF (1–20 kHz, LF (20–250 kHz. Preliminary analyses of low and high resolution data are presented. The emphasis is put on the estimation of the propagation characteristics of the observed waves.VLF hiss emissions are shown to be mainly whistler mode emissions, but other modes are present. An accurate estimation of the local plasma frequency is proposed when the low L = 0 cutoff frequency is identified. AKR emissions observed just above source regions are studied. R-X and L-O modes are found: the first at the lowest frequencies and the second at the highest. Both propagate with wave normal directions weakly oblique or quasi-parallel to the Earth's magnetic field direction. Propagation characteristics are also determined for a (non-drifting fine structure of AKR. There is no fundamental difference with structurless events. Nightside and dayside bursts of ELF electromagnetic emissions are presented. It is not clear whether the two emissions belong to the "lion roar" emissions or not.

    Key words. Magnetospheric physics (auroral phenomena; plasma waves and instabilities; instruments and techniques

  14. Preliminary results from the MEMO multicomponent measurements of waves on-board INTERBALL 2

    Directory of Open Access Journals (Sweden)

    F. Lefeuvre

    1998-09-01

    Full Text Available The MEMO (MEsure Multicomposante des Ondes experiment is a part of the INTERBALL 2 wave consortium. It is connected to a total of six electric and nine magnetic independent sensors. It provides waveforms associated with the measurement of two to five components in three frequency bands: ELF (5–1000 Hz, VLF (1–20 kHz, LF (20–250 kHz. Preliminary analyses of low and high resolution data are presented. The emphasis is put on the estimation of the propagation characteristics of the observed waves.VLF hiss emissions are shown to be mainly whistler mode emissions, but other modes are present. An accurate estimation of the local plasma frequency is proposed when the low L = 0 cutoff frequency is identified. AKR emissions observed just above source regions are studied. R-X and L-O modes are found: the first at the lowest frequencies and the second at the highest. Both propagate with wave normal directions weakly oblique or quasi-parallel to the Earth's magnetic field direction. Propagation characteristics are also determined for a (non-drifting fine structure of AKR. There is no fundamental difference with structurless events. Nightside and dayside bursts of ELF electromagnetic emissions are presented. It is not clear whether the two emissions belong to the "lion roar" emissions or not.Key words. Magnetospheric physics (auroral phenomena; plasma waves and instabilities; instruments and techniques

  15. Low energy response calibration of the BATSE large area detectors onboard the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Laird, C.E. [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)]. E-mail: Chris.Laird@eku.edu; Harmon, B.A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Wilson, Colleen A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Hunter, David [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States); Isaacs, Jason [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)

    2006-10-15

    The low-energy attenuation of the covering material of the Burst and Transient Source Experiment (BATSE) large area detectors (LADs) on the Compton Gamma Ray Observatory as well as the small-angle response of the LADs have been studied. These effects are shown to be more significant than previously assumed. The LAD entrance window included layers of an aluminum-epoxy composite (hexel) that acted as a collimator for the lowest energy photons entering the detector just above threshold (20-50 keV). Simplifying assumptions made concerning the entrance window materials and the angular response at incident angles near normal to the detector face in the original BATSE response matrix formalism had little effect on {gamma}-ray burst measurements; however, these assumptions created serious errors in measured fluxes of galactic sources, whose emission is strongest near the LAD energy threshold. Careful measurements of the angular and low-energy dependence of the attenuation due to the hexel plates only partially improved the response. A systematic study of Crab Nebula spectra showed the need for additional corrections: an angular-dependent correction for all detectors and an angular-independent correction for each detector. These corrections have been applied as part of an overall energy and angular-dependent correction to the BATSE response matrices.

  16. The Evolution of On-Board Emergency Training for the International Space Station Crew

    Science.gov (United States)

    LaBuff, Skyler

    2015-01-01

    The crew of the International Space Station (ISS) receives extensive ground-training in order to safely and effectively respond to any potential emergency event while on-orbit, but few people realize that their training is not concluded when they launch into space. The evolution of the emergency On- Board Training events (OBTs) has recently moved from paper "scripts" to an intranet-based software simulation that allows for the crew, as well as the flight control teams in Mission Control Centers across the world, to share in an improved and more realistic training event. This emergency OBT simulator ensures that the participants experience the training event as it unfolds, completely unaware of the type, location, or severity of the simulated emergency until the scenario begins. The crew interfaces with the simulation software via iPads that they keep with them as they translate through the ISS modules, receiving prompts and information as they proceed through the response. Personnel in the control centers bring up the simulation via an intranet browser at their console workstations, and can view additional telemetry signatures in simulated ground displays in order to assist the crew and communicate vital information to them as applicable. The Chief Training Officers and emergency instructors set the simulation in motion, choosing the type of emergency (rapid depressurization, fire, or toxic atmosphere) and specific initial conditions to emphasize the desired training objectives. Project development, testing, and implementation was a collaborative effort between ISS emergency instructors, Chief Training Officers, Flight Directors, and the Crew Office using commercial off the shelf (COTS) hardware along with simulation software created in-house. Due to the success of the Emergency OBT simulator, the already-developed software has been leveraged and repurposed to develop a new emulator used during fire response ground-training to deliver data that the crew receives

  17. Observations of frozen skin of southern ocean from multifrequency scanning microwave radiometer (MSMR) onboard oceansat - 1

    Science.gov (United States)

    Vyas, N.; Bhandari, S.; Dash, M.; Pandey, P.; Khare, N.

    Encircling the Antarctic, Southern Ocean connects all the three oceans of the world with fastest current system found anywhere in the world. The region is thermally very stable and is covered with ice, which has a strong seasonal variability. The sea ice pulsates annually with seasonal migration varying from 4 million square kilometer to 20 million square kilometer during summer and winter respectively. This has strong influence on energy balance of the ocean-ice-atmosphere system, and hence on atmospheric general circulation affecting weather and climate. Sea ice also works as an insulator thus inhibiting the energy flux between ocean and atmosphere. It also influences the ecosystem of the southern ocean, which has rich fish resources with global economic values such as krill and tooth fish. During winter Krill survives on algae found at the under side of the sea ice. The southern ocean is known to have high nutrition but low concentration of chlorophyll-a, which is a proxy of the phytoplankton. It is now understood that iron is the limiting factor as has been shown by various iron fertilization experiments. Passive microwave radiometry from space has been extensively used for the study of sea ice types and concentration in the Arctic and the Antarctic regions. Since late 1970s, data from SMMR and SSM/I have been used to study trends in sea ice extent and area. We have further extended the above studies by using data from OCEANSAT - 1 MSMR. The data, acquired at 18 GHz (H) with 50 kilometer resolution and having a swath of 1360 kilometer and a repeat cycle of 2 days, was processed to generate the brightness temperature maps over the Antarctica for a period of 2 years and the results were analyzed in conjunction with those obtained earlier (since 1978) through the study of SMMR and SSM/I data. Besides strong seasonal variability, our analysis shows an increasing trend in the sea ice extent during the recent years and the rate appears to be accelerating contrary to

  18. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    Science.gov (United States)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  19. On-board measurements of emissions from light-duty gasoline vehicles in three mega-cities of China

    Science.gov (United States)

    Huo, Hong; Yao, Zhiliang; Zhang, Yingzhi; Shen, Xianbao; Zhang, Qiang; Ding, Yan; He, Kebin

    2012-03-01

    This paper is the second in a series of three papers aimed at understanding the emissions of vehicles in China by conducting on-board emission measurements. This paper focuses on light-duty gasoline vehicles. In this study, we measured 57 light-duty gasoline vehicles (LDGVs) in three Chinese mega-cites (Beijing, Guangzhou, and Shenzhen), covering Euro 0 through Euro IV technologies, and generated CO, HC, and NOx emission factors and deterioration rates for each vehicle technology. The results show that the vehicle emission standards have played a significant role in reducing vehicle emission levels in China. The vehicle emission factors are reduced by 47-81%, 53-64%, 46-71%, and 78-82% for each phase from Euro I to Euro IV. Euro 0 vehicles have a considerably high emission level, which is hundreds of times larger than that of Euro IV vehicles. Three old taxis and four other Euro I and Euro II LDGVs are also identified as super emitters with equivalent emission levels to Euro 0 vehicles. Of the measured fleet, 23% super emitters were estimated to contribute 50-80% to total emissions. Besides vehicle emission standards, measures for restricting super emitters are equally important to reduce vehicle emissions. This study is intended to improve the understanding of the vehicle emission levels in China, but some key issues such as emission deterioration rates are yet to be addressed with the presence of a sufficient amount of vehicle emission measurements.

  20. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    Science.gov (United States)

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  1. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    Directory of Open Access Journals (Sweden)

    Marcin Piotr Pawlowski

    2015-10-01

    Full Text Available Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors have been analyzed. Additionally, the costs (i.e., time and memory consumption of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  2. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    Science.gov (United States)

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-01-01

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things. PMID:26506357

  3. Porous plug phase separator and superfluid film flow suppression system for the soft x-ray spectrometer onboard Hitomi

    Science.gov (United States)

    Ezoe, Yuichiro; DiPirro, Michael; Fujimoto, Ryuichi; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kanao, Kenichi; Kimball, Mark; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Murakami, Masahide; Noda, Hirofumi; Ohashi, Takaya; Okamoto, Atsushi; Satoh, Yohichi; Sato, Kosuke; Shirron, Peter; Tsunematsu, Shoji; Yamaguchi, Hiroya; Yoshida, Seiji

    2018-01-01

    When using superfluid helium in low-gravity environments, porous plug phase separators are commonly used to vent boil-off gas while confining the bulk liquid to the tank. Invariably, there is a flow of superfluid film from the perimeter of the porous plug down the vent line. For the soft x-ray spectrometer onboard ASTRO-H (Hitomi), its approximately 30-liter helium supply has a lifetime requirement of more than 3 years. A nominal vent rate is estimated as ˜30 μg/s, equivalent to ˜0.7 mW heat load. It is, therefore, critical to suppress any film flow whose evaporation would not provide direct cooling of the remaining liquid helium. That is, the porous plug vent system must be designed to both minimize film flow and to ensure maximum extraction of latent heat from the film. The design goal for Hitomi is to reduce the film flow losses to knife-edge devices. Design, on-ground testing results, and in-orbit performance are described.

  4. The pre-flight calibration setup of the instrument SIMBIO-SYS onboard the mission BepiColombo

    Science.gov (United States)

    Poulet, F.; Rodriguez-Ferreira, J.; Arondel, A.; Dassas, K.; Eng, P.; Lami, P.; Langevin, Y.; Longval, Y.; Pradel, P.; Dami, M.

    2015-11-01

    BepiColombo, an European Space Agency (ESA) mission being conducted in cooperation with the Japan space agency, will explore Mercury with a set of eleven instruments onboard the spacecraft Mercury Planetary Orbiter (MPO). Among them, SIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument that will provide images and spectra in the 400-2000 nm wavelength range of the entire surface of Mercury. Pre-flight calibration of the SYMBIO-SYS instrument is mandatory for reliable scientific interpretation of images and spectra returned from the planet Mercury. This paper presents the calibration device designed and implemented for the specific requirements of this instrument. It mainly consists of a thermal vacuum chamber simulating the space environment, an optical bench collecting calibration sources and optical elements that simulate the conditions of Mercury observations, mechanical interfaces used for positioning the three channels inside the vacuum chamber, thermal interfaces to explore the operating temperatures, computer interfaces that allow to communicate with both the instrument and the calibration elements and synchronize the calibrations sequences with the status of the calibration device. As the major goal is the characterization of the radiometric performances of the three channels of SIMBIO-SYS, radiometric performances of the test setup evaluated by simulations and measurements are emphasized.

  5. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, M., E-mail: ohno@hep01.hepl.hiroshima-u.ac.jp [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y. [Department of Physical Sciences, Hiroshima University, Hiroshima 739-8526 (Japan); Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); and others

    2016-09-21

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5–80 keV) and soft gamma-rays (60–600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector. - Highlights: • A detail of development of signal processing system for ASTRO-H is presented. • Digital filer with FPGA instead of discrete analog circuit is applied. • Expected performance is verified after integration of the satellite.

  6. Towards Real-time, On-board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Science.gov (United States)

    Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey

    2013-01-01

    Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.

  7. Extra Dose Due to Extravehicular Activity During the NASA4 Mission, Measured by an On-Board TLD System

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Hejja, I.; Lang, E.; Feher, I. [Budapest (Hungary)

    1999-07-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO{sub 4}:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO{sub 4}:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 {mu}Gy.h{sup -1} at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET. (author)

  8. Design of a mission network system using SpaceWire for scientific payloads onboard the Arase spacecraft

    Science.gov (United States)

    Takashima, Takeshi; Ogawa, Emiko; Asamura, Kazushi; Hikishima, Mitsuru

    2018-05-01

    Arase is a small scientific satellite program conducted by the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency, which is dedicated to the detailed study of the radiation belts around Earth through in situ observations. In particular, the goal is to directly observe the interaction between plasma waves and particles, which cause the generation of high-energy electrons. To observe the waves and particles in detail, we must record large volumes of burst data with high transmission rates through onboard mission network systems. For this purpose, we developed a high-speed and highly reliable mission network based on SpaceWire, as well as a new and large memory data recorder equipped with a data search function based on observation time (the time index, TI, is the satellite time starting from when the spacecraft is powered on.) with respect to the orbital data generated in large quantities. By adopting a new transaction concept of a ring topology network with SpaceWire, we could secure a redundant mission network system without using large routers and having to suppress the increase in cable weight. We confirmed that their orbit performs as designed.[Figure not available: see fulltext.

  9. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria.

    Science.gov (United States)

    Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2014-08-01

    On-board measurements of unit emissions of CO, HC, NOx and CO₂ were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. Copyright © 2014. Published by Elsevier B.V.

  10. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    Science.gov (United States)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  11. Tests of shielding effectiveness of Kevlar and Nextel onboard the International Space Station and the Foton-M3 capsule.

    Science.gov (United States)

    Pugliese, M; Bengin, V; Casolino, M; Roca, V; Zanini, A; Durante, M

    2010-08-01

    Radiation assessment and protection in space is the first step in planning future missions to the Moon and Mars, where mission and number of space travelers will increase and the protection of the geomagnetic shielding against the cosmic radiation will be absent. In this framework, the shielding effectiveness of two flexible materials, Kevlar and Nextel, were tested, which are largely used in the construction of spacecrafts. Accelerator-based tests clearly demonstrated that Kevlar is an excellent shield for heavy ions, close to polyethylene, whereas Nextel shows poor shielding characteristics. Measurements on flight performed onboard of the International Space Station and of the Foton-M3 capsule have been carried out with special attention to the neutron component; shielded and unshielded detectors (thermoluminescence dosemeters, bubble detectors) were exposed to a real radiation environment to test the shielding properties of the materials under study. The results indicate no significant effects of shielding, suggesting that thin shields in low-Earth Orbit have little effect on absorbed dose.

  12. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Science.gov (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  13. Inter-instrument calibration using magnetic field data from Flux Gate Magnetometer (FGM) and Electron Drift Instrument (EDI) onboard Cluster

    Science.gov (United States)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2013-07-01

    We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  14. Interinstrument calibration using magnetic field data from the flux-gate magnetometer (FGM) and electron drift instrument (EDI) onboard Cluster

    Science.gov (United States)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2014-01-01

    We compare the magnetic field data obtained from the flux-gate magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the electron drift instrument (EDI) onboard Cluster to determine the spin-axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July and October 2003. Using multipoint multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  15. Harvesting entropy for random number generation for internet of things constrained devices using on-board sensors.

    Science.gov (United States)

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-10-22

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  16. Ellerman bombs observed with the new vacuum solar telescope and the atmospheric imaging assembly onboard the solar dynamics observatory

    Science.gov (United States)

    Chen, Yajie; Tian, Hui; Xu, Zhi; Xiang, Yongyuan; Fang, Yuliang; Yang, Zihao

    2017-12-01

    Ellerman bombs (EBs) are believed to be small-scale reconnection events occurring around the temperature minimum region in the solar atmosphere. They are often identified as significant enhancements in the extended Hα wings without obvious signatures in the Hα core. Here we explore the possibility of using the 1700 Å images taken by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) to study EBs. From the Hα wing images obtained with the New Vacuum Solar Telescope (NVST) on 2015 May 2, we have identified 145 EBs and 51% of them clearly correspond to the bright points (BPs) in the AIA 1700 Å images. If we resize the NVST images using a linear interpolation to make the pixel sizes of the AIA and NVST images the same, some previously identified EBs disappear and about 71% of the remaining EBs are associated with BPs. Meanwhile, 66% of the compact brightenings in the AIA 1700 Å images can be identified as EBs in the Hα wings. The intensity enhancements of the EBs in the Hα wing images reveal a linear correlation with those of the BPs in the AIA 1700 Å images. Our study suggests that a significant fraction of EBs can be observed with the AIA 1700 Å filter, which is promising for large-sample statistical study of EBs as the seeing-free and full-disk SDO/AIA data are routinely available.

  17. Onboard cross-calibration of the Pille-ISS Detector System and measurement of radiation shielding effect of the water filled protective curtain in the ISS crew cabin

    International Nuclear Information System (INIS)

    Szántó, P.; Apáthy, I.; Deme, S.; Hirn, A.; Nikolaev, I.V.; Pázmándi, T.; Shurshakov, V.A.; Tolochek, R.V.; Yarmanova, E.N.

    2015-01-01

    As a preparation for long duration space missions it is important to determine and minimize the impact of space radiation on human health. One of the methods to diminish the radiation burden is using an additional local shielding in the places where the crewmembers can stay for longer time. To increase the crew cabin shielding a special protective curtain was designed and delivered to ISS in 2010 containing four layers of hygienic wipes and towels providing an additional shielding thickness of about 8 g/cm"2 water-equivalent matter. The radiation shielding effect of the protective curtain, in terms of absorbed dose, was measured with the thermoluminescent Pille-ISS Detector System. In order to verify the reliability of the Pille system an onboard cross-calibration was also performed. The measurement proved that potentially 25% reduction of the absorbed dose rate in the crew cabin can be achieved, that results in 8% (∼16 μGy/day) decrease of the total absorbed dose to the crew, assuming that they spend 8 h in the crew cabin a day. - Highlights: • The dose level in the ISS Zvezda crew quarters is higher than the average dose level in the module. • A shielding made of hygienic wipes and towels was set up onboard as additional protection. • Onboard cross calibration of the Pille-ISS space dosimeter (TL) system was performed. • The shielding effect of the protective curtain in terms of absorbed dose was measured with the onboard Pille system. • The shielding effect of the protective water curtain is approximately 24 ± 9% in absorbed dose.

  18. Education and Outreach from the JOIDES Resolution during IODP Expedition 360 : linking onboard research and classroom activities during and after the Expedition.

    Science.gov (United States)

    Burgio, M.; Zhang, J.; Kavanagh, L.; Martinez, A. O.; Expedition 360 Scientists, I.

    2016-12-01

    The International Ocean Discovery Program (IODP) expeditions provide an excellent opportunity for onboard Education Officers (EO) to communicate and disseminate exciting shipboard research and discoveries to students around the world. During expedition 360, the EOs carried out 140 live webcasts, using different strategies to create an effective link between both students and scientists. Below are examples of strategies we used: -Primary school: The Beauty of Gabbro! and Life in the rocks! During the webcasts, students could virtually tour the ship, interview scientists, and see and discuss samples of the cored gabbro and minerals in thin sections. Artistic contextualization by J. Zhang, facilitated these activities. Moreover, highlighting the search for microbes in the Earth's crust , was particularly successful in engaging the students. -Middle and High school: Fun and relationships in science. Students were able to email expert scientists in the scientific discipline they chose to research and interview them during a live webcast. Some students created a song about the expedition. "on the boat - cup song - IODP project" https://www.youtube.com/watch?v=qex-w9aSV7c-University: Travels, research and the everyday life of professors onboard. We used webcasts to connect with universities in France, Japan and Italy, to create vibrant interactions between students and scientists that enabled students to get closer to their professors and understand better the life of onboard researchers. In collaboration with the science party we developed new strategies to keep in touch with students after completion of the cruise. We generated teaching kits consisting of pedaqgoical sets of pictures, exercises using onboard data, a continuously updated map "tracking geologists", and live webcasts to be organized from laboratories to schools. We already have had enthusiastic feedback from teachers that took part in our webcasts and the challenge is to continue to foster the

  19. THE TECHNIQUE OF ANALYSIS OF SOFTWARE OF ON-BOARD COMPUTERS OF AIR VESSEL TO ABSENCE OF UNDECLARED CAPABILITIES BY SIGNATURE-HEURISTIC WAY

    Directory of Open Access Journals (Sweden)

    Viktor Ivanovich Petrov

    2017-01-01

    Full Text Available The article considers the issues of civil aviation aircraft onboard computers data safety. Infor- mation security undeclared capabilities stand for technical equipment or software possibilities, which are not mentioned in the documentation. Documentation and tests content requirements are imposed during the software certification. Documentation requirements include documents composition and content of control (specification, description and program code, the source code. Test requirements include: static analysis of program codes (including the compliance of the sources with their loading modules monitoring; dynamic analysis of source code (including implementation of routes monitor- ing. Currently, there are no complex measures for checking onboard computer software. There are no rules and regulations that can allow controlling foreign production aircraft software, and the actual receiving of software is difficult. Consequently, the author suggests developing the basics of aviation rules and regulations, which allow to analyze the programs of CA aircraft onboard computers. If there are no software source codes the two approaches of code analysis are used: a structural static and dy- namic analysis of the source code; signature-heuristic analysis of potentially dangerous operations. Static analysis determines the behavior of the program by reading the program code (without running the program which is represented in the assembler language - disassembly listing. Program tracing is performed by the dynamic analysis. The analysis of aircraft software ability to detect undeclared capa- bilities using the interactive disassembler was considered in this article.

  20. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels

    Science.gov (United States)

    Neubauer, Raphael; Weinlaender, Christof; Kienzl, Norbert; Bitschnau, Brigitte; Schroettner, Hartmuth; Hochenauer, Christoph

    2018-05-01

    On-board desulfurization is essential to operate fuel-cell-based auxiliary power units (APU) with commercial fuels. In this work, both (i) on-board desulfurization and (ii) on-board regeneration performance of Ag-Al2O3 adsorbent is investigated in a comprehensive manner. The herein investigated regeneration strategy uses hot APU off-gas as the regeneration medium and requires no additional reagents, tanks, nor heat exchangers and thus has remarkable advantages in comparison to state-of-the-art regeneration strategies. The results for (i) show high desulfurization performance of Ag-Al2O3 under all relevant operating conditions and specify the influence of individual operation parameters and the combination of them, which have not yet been quantified. The system integrated regeneration strategy (ii) shows excellent regeneration performance recovering 100% of the initial adsorption capacity for all investigated types of fuels and sulfur heterocycles. Even the adsorption capacity of the most challenging dibenzothiophene in terms of regeneration is restored to 100% over 14 cycles of operation. Subsequent material analyses proved the thermal and chemical stability of all relevant adsorption sites under APU off-gas conditions. To the best of our knowledge, this is the first time 100% regeneration after adsorption of dibenzothiophene is reported over 14 cycles of operation for thermal regeneration in oxidizing atmospheres.

  1. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  2. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    International Nuclear Information System (INIS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R.C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-01-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD 0.1 wt.% using electronic microprobe, and 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.

  3. High spatio-temporal resolution pollutant measurements of on-board vehicle emissions using ultra-fast response gas analyzers

    Directory of Open Access Journals (Sweden)

    M. Irwin

    2018-06-01

    Full Text Available Existing ultra-fast response engine exhaust emissions analyzers have been adapted for on-board vehicle use combined with GPS data. We present, for the first time, how high spatio-temporal resolution data products allow transient features associated with internal combustion engines to be examined in detail during on-road driving. Such data are both useful to examine the circumstances leading to high emissions, and reveals the accurate position of urban air quality hot spots as deposited by the candidate vehicle, useful for source attribution and dispersion modelling. The fast response time of the analyzers, which results in 100 Hz data, makes accurate time-alignment with the vehicle's engine control unit (ECU signals possible. This enables correlation with transient air fuel ratio, engine speed, load, and other engine parameters, which helps to explain the causes of the emissions spikes that portable emissions measurement systems (PEMS and conventional slow response analyzers would miss or smooth out due to mixing within their sampling systems. The data presented is from NO and NOx analyzers, but other fast analyzers (e.g. total hydrocarbons (THC, CO and CO2 can be used similarly. The high levels of NOx pollution associated with accelerating on entry ramps to motorways, driving over speed bumps, accelerating away from traffic lights, are explored in detail. The time-aligned ultra-fast analyzers offer unique insight allowing more accurate quantification and better interpretation of engine and driver activity and the associated emissions impact on local air quality.

  4. Aerosol Study over the Gulf of Guinea Region during DACCIWA Using a Mini Lidar onboard the French Aircraft ATR42

    Science.gov (United States)

    Shang, X.; Chazette, P.; Flamant, C.; Totems, J.; Denjean, C.; Meynadier, R.; Perrin, T.; Laurens, M.

    2016-12-01

    The EU-funded project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) aims to investigate the relationship between weather, climate and air pollution in southern West Africa. As part of this campaign, three research aircraft based in Lomé (Togo) flew targeted missions over West Africa from 27 June to 16 July 2016. In this area aerosols, having a mixing of natural and anthropogenic sources, exert an important influence on the local weather and climate, mainly due to the aerosol-cloud interactions. A mini backscattered lidar system onboard one research aircraft (the French aircraft ATR42) performed aerosols measurements over the Gulf of Guinea region. The main objective was to study aerosol properties in different chemical landscapes: from the background state over the Gulf of Guinea (marine aerosols or mix between marine aerosols and biomass burning aerosols) to ship/flaring emissions to the coastal strip of polluted megacities to the agricultural areas and forest areas further north, and eventually dust from Sahel/Sahara. Different aerosol origins were identified by using the coupling between the lidar cross-polarized channels and a set of back trajectories analyses. The aircraft conducted flights at low ( 1 km above the mean sea level -amsl) and high altitudes ( 5 km amsl), allowing the coupling of in situ and remote sensing data to assess the properties of the aerosol layers. During several flights, depolarizing aerosol layers from the northeast were observed between 2.5 and 4 km amsl, which highlight the significant contribution of dust-like particles to the aerosol load in the coastal region. The air masses originating from the southeast were loaded with biomass burning aerosols from Central Africa, which seem to be mixed with other aerosol types. The flight sampling strategy and related lidar investigations will be presented. The retrieved aerosol distributions and properties, and the aerosol type identification will be discussed.

  5. Spatial distribution and temporal variations of occurrence frequency of lightning whistlers observed by VLF/WBA onboard Akebono

    Science.gov (United States)

    Oike, Yuta; Kasahara, Yoshiya; Goto, Yoshitaka

    2014-09-01

    We statistically analyzed lightning whistlers detected from the analog waveform data below 15 kHz observed by the VLF instruments onboard Akebono. We examined the large amount of data obtained at Uchinoura Space Center in Japan for 22 years from 1989 to 2010. The lightning whistlers were mainly observed inside the L shell region below 2. Seasonal dependence of the occurrence frequency of lightning whistlers has two peaks around July to August and December to January. As lightning is most active in summer, in general, these two peaks correspond to summer in the Northern and Southern Hemispheres, respectively. Diurnal variation of the occurrence frequency showed that lightning whistlers begin to increase in the early evening and remain at a high-occurrence level through the night with a peak around 21 in magnetic local time (MLT). This peak shifts toward nightside compared with lightning activity, which begins to rise around noon and peaks in the late afternoon. This trend is supposed to be caused by attenuation of VLF wave in the ionosphere in the daytime. Comparison study with the ground-based observation revealed consistent results, except that the peak of the ground-based observation appeared after midnight while our measurements obtained by Akebono was around 21 in MLT. This difference is explained qualitatively in terms that lightning whistlers measured at the ground station passed through the ionosphere twice above both source region and the ground station. These facts provide an important clue to evaluate quantitatively the absorption effect of lightning whistler in the ionosphere.

  6. Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  7. A Failure Detection Strategy for Intrafraction Prostate Motion Monitoring With On-Board Imagers for Fixed-Gantry IMRT

    International Nuclear Information System (INIS)

    Liu Wu; Luxton, Gary; Xing Lei

    2010-01-01

    Purpose: To develop methods to monitor prostate intrafraction motion during fixed-gantry intensity-modulated radiotherapy using MV treatment beam imaging together with minimal kV imaging for a failure detection strategy that ensures prompt detection when target displacement exceeds a preset threshold. Methods and Materials: Real-time two-dimensional (2D) marker position in the MV image plane was obtained by analyzing cine-MV images. The marker's in-line movement, and thus its time-varying three-dimensional (3D) position, was estimated by combining the 2D projection data with a previously established correlative relationship between the directional components of prostate motion. A confirmation request for more accurate localization using MV-kV triangulation was triggered when the estimated prostate displacement based on the cine-MV data was greater than 3 mm. An interventional action alert followed on positive MV-kV confirmation. To demonstrate the feasibility and accuracy of the proposed method, simulation studies of conventional-fraction intensity-modulated radiotherapy sessions were done using 536 Calypso-measured prostate trajectories from 17 radiotherapy patients. Results: A technique for intrafraction prostate motion management has been developed. The technique, using 'freely available' cine-MV images and minimum on-board kV imaging (on average 2.5 images/fraction), successfully limited 3D prostate movement to within a range of 3 mm relative to the MV beam for 99.4% of the total treatment time. On average, only approximately one intervention/fraction was needed to achieve this level of accuracy. Conclusion: Instead of seeking to accurately and continuously localize the prostate target as existing motion tracking systems do, the present technique effectively uses cine-MV data to provide a clinically valuable way to minimize kV usage, while maintaining high targeting accuracy.

  8. Crew Factors in Flight Operations XII: A Survey of Sleep Quantity and Quality in On-Board Crew Rest Facilities

    Science.gov (United States)

    Rosekind, Mark R.; Gregory, Kevin B.; Co, Elizabeth L.; Miller, Donna L.; Dinges, David F.

    2000-01-01

    Many aircraft operated on long-haul commercial airline flights are equipped with on-board crew rest facilities, or bunks, to allow crewmembers to rest during the flight. The primary objectives of this study were to gather data on how the bunks were used, the quantity and quality of sleep obtained by flight crewmembers in the facilities, and the factors that affected their sleep. A retrospective survey comprising 54 questions of varied format addressed demographics, home sleep habits, and bunk sleep habits. Crewmembers from three airlines with long-haul fleets carrying augmented crews consisting of B747-100/200, B747-400, and MD-11 aircraft equipped with bunks returned a total of 1404 completed surveys (a 37% response rate). Crewmembers from the three carriers were comparable demographically, although one carrier had older, more experienced flight crewmembers. Each group, on average, rated themselves as "good" or "very good" sleepers at home, and all groups obtained about the same average amount of sleep each night. Most were able to sleep in the bunks, and about two thirds indicated that these rest opportunities benefited their subsequent flight deck alertness and performance. Comfort, environment, and physiology (e.g., being ready for sleep) were identified as factors that most promoted sleep. Factors cited as interfering with sleep included random noise, thoughts, heat, and the need to use the bathroom. These factors, in turn, suggest potential improvements to bunk facilities and their use. Ratings of the three aircraft types suggested differences among facilities. Bunks in the MD-11 were rated significantly better than either of the B747 types, and the B747-400 bunks received better ratings than did the older, B747-100/200 facilities.

  9. Design, Fabrication and Prototype testing of a Chip Integrated Micro PEM Fuel Cell Accumulator combined On-Board Range Extender

    International Nuclear Information System (INIS)

    Balakrishnan, A; Mueller, C; Reinecke, H

    2014-01-01

    In this work we present the design, fabrication and prototype testing of Chip Integrated Micro PEM Fuel Cell Accumulator (CIμ-PFCA) combined On-Board Range Extender (O-BRE). CIμ-PFCA is silicon based micro-PEM fuel cell system with an integrated hydrogen storage feature (palladium metal hydride), the run time of CIμ-PFCA is dependent on the stored hydrogen, and in order to extend its run time an O-BRE is realized (catalytic hydrolysis of chemical hydride, NaBH 4 . Combining the CIμ-PFCA and O-BRE on a system level have few important design requirements to be considered; hydrogen regulation, gas -liquid separator between the CIμ-PFCA and the O-RE. The usage of traditional techniques to regulate hydrogen (tubes), gas-liquid phase membranes (porous membrane separators) are less desirable in the micro domain, due to its space constraint. Our approach is to use a passive hydrogen regulation and gas-liquid phase separation concept; to use palladium membrane. Palladium regulates hydrogen by concentration diffusion, and its property to selectively adsorb only hydrogen is used as a passive gas-liquid phase separator. Proof of concept is shown by realizing a prototype system. The system is an assembly of CIμ-PFCA, palladium membrane and the O-BRE. The CIμ-PFCA consist of 2 individually processed silicon chips, copper supported palladium membrane realized by electroplating followed by high temperature annealing process under inter atmosphere and the O-BRE is realized out of a polymer substrate by micromilling process with platinum coated structures, which functions as a catalyst for the hydrolysis of NaBH 4 . The functionality of the assembled prototype system is demonstrated by the measuring a unit cell (area 1 mm 2 ) when driven by the catalytic hydrolysis of chemical hydride (NaBH 4 and the prototype system shows run time more than 15 hours

  10. MATHEMATICAL MODELS OF PROCESSES AND SYSTEMS OF TECHNICAL OPERATION FOR ONBOARD COMPLEXES AND FUNCTIONAL SYSTEMS OF AVIONICS

    Directory of Open Access Journals (Sweden)

    Sergey Viktorovich Kuznetsov

    2017-01-01

    Full Text Available Modern aircraft are equipped with complicated systems and complexes of avionics. Aircraft and its avionics tech- nical operation process is observed as a process with changing of operation states. Mathematical models of avionics pro- cesses and systems of technical operation are represented as Markov chains, Markov and semi-Markov processes. The pur- pose is to develop the graph-models of avionics technical operation processes, describing their work in flight, as well as during maintenance on the ground in the various systems of technical operation. The graph-models of processes and sys- tems of on-board complexes and functional avionics systems in flight are proposed. They are based on the state tables. The models are specified for the various technical operation systems: the system with control of the reliability level, the system with parameters control and the system with resource control. The events, which cause the avionics complexes and func- tional systems change their technical state, are failures and faults of built-in test equipment. Avionics system of technical operation with reliability level control is applicable for objects with constant or slowly varying in time failure rate. Avion- ics system of technical operation with resource control is mainly used for objects with increasing over time failure rate. Avionics system of technical operation with parameters control is used for objects with increasing over time failure rate and with generalized parameters, which can provide forecasting and assign the borders of before-fail technical states. The pro- posed formal graphical approach avionics complexes and systems models designing is the basis for models and complex systems and facilities construction, both for a single aircraft and for an airline aircraft fleet, or even for the entire aircraft fleet of some specific type. The ultimate graph-models for avionics in various systems of technical operation permit the beginning of

  11. Preflight Calibration Test Results for Optical Navigation Camera Telescope (ONC-T) Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Kameda, S.; Suzuki, H.; Takamatsu, T.; Cho, Y.; Yasuda, T.; Yamada, M.; Sawada, H.; Honda, R.; Morota, T.; Honda, C.; Sato, M.; Okumura, Y.; Shibasaki, K.; Ikezawa, S.; Sugita, S.

    2017-07-01

    The optical navigation camera telescope (ONC-T) is a telescopic framing camera with seven colors onboard the Hayabusa2 spacecraft launched on December 3, 2014. The main objectives of this instrument are to optically navigate the spacecraft to asteroid Ryugu and to conduct multi-band mapping the asteroid. We conducted performance tests of the instrument before its installation on the spacecraft. We evaluated the dark current and bias level, obtained data on the dependency of the dark current on the temperature of the charge-coupled device (CCD). The bias level depends strongly on the temperature of the electronics package but only weakly on the CCD temperature. The dark-reference data, which is obtained simultaneously with observation data, can be used for estimation of the dark current and bias level. A long front hood is used for ONC-T to reduce the stray light at the expense of flatness in the peripheral area of the field of view (FOV). The central area in FOV has a flat sensitivity, and the limb darkening has been measured with an integrating sphere. The ONC-T has a wheel with seven bandpass filters and a panchromatic glass window. We measured the spectral sensitivity using an integrating sphere and obtained the sensitivity of all the pixels. We also measured the point-spread function using a star simulator. Measurement results indicate that the full width at half maximum is less than two pixels for all the bandpass filters and in the temperature range expected in the mission phase except for short periods of time during touchdowns.

  12. Enhanced benthic activity in sandy sublittoral sediments: Evidence from 13C tracer experiments

    DEFF Research Database (Denmark)

    Bühring, Solveig I.; Ehrenhauss, Sandra; Kamp, Anja

    2006-01-01

    In situ and on-board pulse-chase experiments were carried out on a sublittoral fine sand in the German Bight (southern North Sea) to investigate the hypothesis that sandy sediments are highly active and have fast turnover rates. To test this hypothesis, we conducted a series of experiments where we...... investigated the pathway of settling particulate organic carbon through the benthic food web. The diatom Ditylum brightwellii was labelled with the stable carbon isotope 13C and injected into incubation chambers. On-board incubations lasted 12, 30 and 132 h, while the in situ experiment was incubated for 32 h....... The study revealed a stepwise short-term processing of a phytoplankton bloom settling on a sandy sediment. After the 12 h incubation, the largest fraction of recovered carbon was in the bacteria (62%), but after longer incubation times (30 and 32 h in situ) the macrofauna gained more importance (15 and 48...

  13. Final Rule for Control of Air Pollution From Motor Vehicles and New Motor Vehicle Engines; Modification of Federal Onboard Diagnostic Regulations for Light-Duty Vehicles and Light-Duty Trucks; Extension of Acceptance of California OBD

    Science.gov (United States)

    This action finalizes modifications to the federal on-board diagnostics regulations, including: harmonizing the emission levels above which a component or system is considered malfunctioning with those of the California Air Resources Board (CARB).

  14. Results of the new processing of images obtained from the surface of Venus in a TV experiment onboard the VENERA-9 lander (1975)

    Science.gov (United States)

    Ksanfomality, L. V.

    2012-09-01

    Data on the results of the analysis of the content of re-processed panorama of the VENERA-9 lander are presented. The panorama was transmitted historically for the first time from the surface of Venus in 1975. The low noise of the VENERA-9 data allowed allocating a large object of an unusual regular structure. Earlier, its fuzzy image was repeatedly cited in the literature being interpreted as a "strange stone". The complex shape and its other features suggest that the object may be a real habitant of the planet. It is not excluded that another similar object observed was damaged during the VENERA-9 landing. From the evidence of its movement and position of some other similar objects it is concluded that because of the limited energy capacity, the physical action of the Venusian fauna may be much slower than that of the Earth fauna. Another question considered is what sources of energy could be used by life in the conditions of the high temperature oxygenless atmosphere of the planet. It is natural to assume that, like on Earth, the Venusian fauna is heterotrophic and should be based on hypothetical flora, using photosynthesis (based on an unknown high temperature biophysical mechanism).

  15. Predicting adult pulmonary ventilation volume and wearing complianceby on-board accelerometry during personal level exposure assessments

    Science.gov (United States)

    Rodes, C. E.; Chillrud, S. N.; Haskell, W. L.; Intille, S. S.; Albinali, F.; Rosenberger, M. E.

    2012-09-01

    BackgroundMetabolic functions typically increase with human activity, but optimal methods to characterize activity levels for real-time predictions of ventilation volume (l min-1) during exposure assessments have not been available. Could tiny, triaxial accelerometers be incorporated into personal level monitors to define periods of acceptable wearing compliance, and allow the exposures (μg m-3) to be extended to potential doses in μg min-1 kg-1 of body weight? ObjectivesIn a pilot effort, we tested: 1) whether appropriately-processed accelerometer data could be utilized to predict compliance and in linear regressions to predict ventilation volumes in real-time as an on-board component of personal level exposure sensor systems, and 2) whether locating the exposure monitors on the chest in the breathing zone, provided comparable accelerometric data to other locations more typically utilized (waist, thigh, wrist, etc.). MethodsPrototype exposure monitors from RTI International and Columbia University were worn on the chest by a pilot cohort of adults while conducting an array of scripted activities (all volumes in-situ. For the subset of participants with complete data (n = 22), linear regressions were constructed (processed accelerometric variable versus ventilation rate) for each participant and exposure monitor type, and Pearson correlations computed to compare across scenarios. ResultsTriaxial accelerometer data were demonstrated to be adequately sensitive indicators for predicting exposure monitor wearing compliance. Strong linear correlations (R values from 0.77 to 0.99) were observed for all participants for both exposure sensor accelerometer variables against ventilation volume for recumbent, sedentary, and ambulatory activities with MET values ˜volume data. Computing accelerometric standard deviations allowed good sensitivity for compliance assessments even for sedentary activities. These pilot findings supported the hypothesis that a common linear

  16. THE METHOD OF FORMING A RATIONAL ASPECT OF THE ONBOARD COMPLEX OF RADAR DEFENSE UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    A. B. Guseynov

    2017-01-01

    Full Text Available The urgency of the problem of increasing the efficiency by reducing the visibility of aircraft and installing radio interference on the radio-electronic systems of the air defense complex is substantiated. The main characteristics of the on-board electronic radio protection system of an unmanned aerial vehicle are determined. When designing a low-visibility aircraft, it is advisable to simultaneously solve three-level tasks – the formation of a technical task for the design of aircraft, technical proposals and design sketches. In solving the problems of the first level, operational-tactical, flight-technical characteristics of the aircraft are analyzed and requirements for indicators of visibility are justified, the second one – a matrix of alternative design solutions is formed and rational structural solutions for the airborne complex and aircraft appearance as a whole are determined, the third one determines optimal design -Ballistic, geometric design parameters of technical solutions and aircraft in general. The statement of the problem is formulated in the article. A block diagram of the analysis of design solutions for the placement of an active noise station on board an unmanned aerial vehicle and optimization of their parameters based on a complex "cost-effectiveness" criterion is given. At the same time, it is necessary to take into account the influence of alternative technical solutions on low visibility and their design parameters on geometric, aerodynamic, energy, ballistic, thermal characteristics, mass, cost, indicators of visibility and combat effectiveness. The structural and logical scheme for solving the problem for a given technical assignment for the design of an unmanned aerial vehicle includes the following steps: the formation of the initial information and the development of a "support" version of the aircraft structure; formation of a morphological matrix of design decisions on aircraft; compatibility assessment

  17. Mesoscale circulation at the upper cloud level at middle latitudes from the imaging by Venus Monitoring Camera onboard Venus Express

    Science.gov (United States)

    Patsaeva, Marina; Ignatiev, Nikolay; Markiewicz, Wojciech; Khatuntsev, Igor; Titov, Dmitrij; Patsaev, Dmitry

    The Venus Monitoring Camera onboard ESA Venus Express spacecraft acquired a great number of UV images (365 nm) allowing us to track the motion of cloud features at the upper cloud layer of Venus. A digital method developed to analyze correlation functions between two UV images provided wind vector fields on the Venus day side (9-16 hours local time) from the equator to high latitudes. Sizes and regions for the correlation were chosen empirically, as a trade-off of sensitivity against noise immunity and vary from 10(°) x7.5(°) to 20(°) x10(°) depending on the grid step, making this method suitable to investigate the mesoscale circulation. Previously, the digital method was used for investigation of the circulation at low latitudes and provided good agreement with manual tracking of the motion of cloud patterns. Here we present first results obtained by this method for middle latitudes (25(°) S-75(°) S) on the basis of 270 orbits. Comparing obtained vector fields with images for certain orbits, we found a relationship between morphological patterns of the cloud cover at middle latitudes and parameters of the circulation. Elongated cloud features, so-called streaks, are typical for middle latitudes, and their orientation varies over wide range. The behavior of the vector field of velocities depends on the angle between the streak and latitude circles. In the middle latitudes the average angle of the flow deviation from the zonal direction is equal to -5.6(°) ± 1(°) (the sign “-“ means the poleward flow, the standard error is given). For certain orbits, this angle varies from -15.6(°) ± 1(°) to 1.4(°) ± 1(°) . In some regions at latitudes above 60(°) S the meridional wind is equatorward in the morning. The relationship between the cloud cover morphology and circulation peculiarity can be attributed to the motion of the Y-feature in the upper cloud layer due to the super-rotation of the atmosphere.

  18. The AMS-02 experiment status

    International Nuclear Information System (INIS)

    Oliva, A.

    2011-01-01

    The Alpha Magnetic Spectrometer (AMS) is a high-energy physics experiment built to operate in space. The prototype of the AMS detector was AMS-01, fown in1998 on-board of the space shuttle Discovery (missionSTS-91). Starting from the experience acquired in the high successful AMS-01 mission the detector AMS-02 has been designed improving the AMS-01 energetic range, geometric acceptance and particle identifcation capabilities. In 2010 the AMS-02 detector has been validated for the space/scientifc operations by means of a wide test campaign(including beam tests, TVT test and EMI test). A major change in the design of AMS-02 has been decided after the thermo-vacuum test to extend as much aspossible the endurance of the experiment, profiting also of the extended endurance of the International Space Station (ISS) program toward 2020. The final AMS-02 configuration has been integrated during summer 2010, then tested on the H8 beam-line at CERN, and finally delivered to the launch site (Kennedy Space Center, Florida) at the end of August. AMS-02 is planned to be installed on the International Space Station in 2011 by the space shuttle Endeavour (mission STS-134).

  19. TH-C-17A-12: Integrated CBCT and Optical Tomography System On-Board a Small Animal Radiation Research Platform (SARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Zhang, B; Eslami, S; Iordachita, I; Wong, J [Johns Hopkins University, Baltimore, MD (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada)

    2014-06-15

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used to provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100.

  20. TH-C-17A-12: Integrated CBCT and Optical Tomography System On-Board a Small Animal Radiation Research Platform (SARRP)

    International Nuclear Information System (INIS)

    Wang, K; Zhang, B; Eslami, S; Iordachita, I; Wong, J; Patterson, M

    2014-01-01

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used to provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100

  1. Autonomous Science Analysis with the New Millennium Program-Autonomous Sciencecraft Experiment

    Science.gov (United States)

    Doggett, T.; Davies, A. G.; Castano, R. A.; Baker, V. R.; Dohm, J. M.; Greeley, R.; Williams, K. K.; Chien, S.; Sherwood, R.

    2002-12-01

    The NASA New Millennium Program (NMP) is a testbed for new, high-risk technologies, including new software and hardware. The Autonomous Sciencecraft Experiment (ASE) will fly on the Air Force Research Laboratory TechSat-21 mission in 2006 is such a NMP mission, and is managed by the Jet Propulsion Laboratory, California Institute of Technology. TechSat-21 consists of three satellites, each equipped with X-band Synthetic Aperture Radar (SAR) that will occupy a 13-day repeat track Earth orbit. The main science objectives of ASE are to demonstrate that process-related change detection and feature identification can be conducted autonomously during space flight, leading to autonomous onboard retargeting of the spacecraft. This mission will observe transient geological and environmental processes using SAR. Examples of geologic processes that may be observed and investigated include active volcanism, the movement of sand dunes and transient features in desert environments, water flooding, and the formation and break-up of lake ice. Science software onboard the spacecraft will allow autonomous processing and formation of SAR images and extraction of scientific information. The subsequent analyses, performed on images formed onboard from the SAR data, will include feature identification using scalable feature "templates" for each target, change detection through comparison of current and archived images, and science discovery, a search for other features of interest in each image. This approach results in obtaining the same science return for a reduced amount of resource use (such as downlink) when compared to that from a mission operating without ASE technology. Redundant data is discarded. The science-driven goals of ASE will evolve during the ASE mission through onboard replanning software that can re-task satellite operations. If necessary, as a result of a discovery made autonomously by onboard science processing, existing observation sequences will be pre-empted to

  2. Idling Reduction for Long-Haul Trucks: An Economic Comparison of On-Board and Wayside Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Weikersheimer, Patricia [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Reducing the idling of long-haul heavy-duty trucks has long been recognized as a particularly low-hanging fruit of fuel efficiency and emissions reduction. The displacement of about 10 hours of diesel idling every day, for most days of the year, for as many as a million long-haul trucks has very clear benefits. This report considers the costs and return on investment (ROI) for idling reduction (IR) equipment for both truck owners and electrified parking space (EPS) equipment owners. For the truck owners, the key variables examined are idling hours to be displaced (generally 1,000 to 2,000 hours per year) and the price of fuel ($0 to $5/gal). The ideal IR option would provide complete services in varied climates in any location and offer the best ROI on trucks that log many idling hours. For trucks that have fewer idling hours, options with a fixed cost per hour (i.e., EPS) might be most attractive if they were available to all, or even most, truck drivers. EPS, however, is particularly cost effective for trucks on prescribed routes with a need for regular, extended stops at terminals. (EPS is also called truck stop electrification, or TSE.) The analysis shows that all IR options save money when fuel costs more than $2/gal. For trucks requiring bunk heat, a simple heater (plug-in or diesel) is almost always the most costeffective way to provide heat, even if the truck is equipped with an auxiliary power unit (APU) or is parked at a single-system EPS location. For trucks requiring bunk air-conditioning, the use of single-system EPS is most cost effective for those logging fewer idling hours. Even for trucks with higher idling hours, the cost of EPS may be about the same as that for on-board air-conditioning. Clearly, trucks’ locations and seasonal factors—and the availability of EPS— are significant in the choice of “best fit” IR equipment for truck owners. This report also considers costs and payback for owners of EPS infrastructure. An industry that 5

  3. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    Science.gov (United States)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    gamma ray events and the problem is to detect and reject the much more voluminous cosmic ray projections, so that the remaining science data can be telemetered to the ground over the constrained communication link. The state-of-the-art in cosmic rays detection and rejection does not provide an adequate computational solution. This paper presents a novel approach to the AdEPT on-board data processing burdened with the CR detection top pole bottleneck problem. This paper is introducing the data processing object, demonstrates object segmentation and distribution for processing among many processing elements (PEs) and presents solution algorithm for the processing bottleneck - the CR-Algorithm. The algorithm is based on the a priori knowledge that a CR pierces the entire instrument pressure vessel. This phenomenon is also the basis for a straightforward CR simulator, allowing the CR-Algorithm performance testing. Parallel processing of the readout image's (2(N+M) - 4) peripheral voxels is detecting all CRs, resulting in O(n) computational complexity. This algorithm near real-time performance is making AdEPT class spaceflight instruments feasible.

  4. Observations of the orbital debris complex by the Midcourse Space Experiment (MSX) satellite

    Science.gov (United States)

    Vilas, Faith; Anz-Meador, Phillip; Talent, Dave

    1997-01-01

    The midcourse space experiment (MSX) provides the opportunity to observe debris at multiple, simultaneous wavelengths, or in conjunction with other sensors and prior data sets. The instruments onboard MSX include an infrared telescope, an infrared interferometer, a visible telescope, an ultraviolet telescope and a spectroscopic imager. The spacecraft carries calibration spheres for instrument calibration and atmospheric drag studies. The experimental program, the implementation aspects, the data reduction techniques and the preliminary results are described.

  5. High-flux MFI-alumina hollow fibres: a membrane-based process for on-board CO2 capture from internal combustion vehicles

    International Nuclear Information System (INIS)

    Nicolas, C.H.

    2011-01-01

    This work focuses on the conception and development of a membrane-based process for an on-board CO 2 capture/storage application. In a first part, we simulate an on-board CO 2 capture unit based on a membrane process for the case study of a heavy vehicle (≥3500 kg). This study includes an energy analysis of the impact of gas separation and compression on the required membrane surface and module volume, as well the autonomy of the storage unit and the energy overconsumption involved in the process. In a second part, we study the influence of the hollow-fibre support quality on the final intergrowth level of nano-composite MFI-alumina membranes. Special attention is devoted to the influence of the isomorphic substitution of silica by boron and germanium, and replacement of the counter-cation (proton) by other elements, on the CO 2 /N 2 separation and permeance properties. Next, a complete chapter has been devoted to the evaluation of the thermodynamic (adsorption) and kinetic (diffusion) parameters in the CO 2 /N 2 separation. Finally, we analyze the influence of standard pollutants (water, NO x , hydrocarbons) on the CO 2 separation properties of the synthesized membranes. (author)

  6. Feasibility of introducing ferromagnetic materials to onboard bulk high-T{sub c} superconductors to enhance the performance of present maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: zgdeng@gmail.com [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Jiasu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Zheng, Jun; Zhang, Ya [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power (TPL), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China); Wang, Suyu [Applied Superconductivity Laboratory (ASCLab), Southwest Jiaotong University (SWJTU), Chengdu, Sichuan 610031 (China)

    2013-02-14

    Highlights: ► Ferromagnetic materials guide the flux distribution of the PMG to bulk positions. ► With ferromagnetic materials, guidance performance can be enhanced greatly. ► A new HTS Maglev system with onboard ferromagnetic materials is designed. ► The design can meet large guidance force requirements for practical applications. -- Abstract: Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  7. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Sauer, Dirk Uwe

    2016-10-01

    This study provides an overview of available techniques for on-board State-of-Available-Power (SoAP) prediction of lithium-ion batteries (LIBs) in electric vehicles. Different approaches dealing with the on-board estimation of battery State-of-Charge (SoC) or State-of-Health (SoH) have been extensively discussed in various researches in the past. However, the topic of SoAP prediction has not been explored comprehensively yet. The prediction of the maximum power that can be applied to the battery by discharging or charging it during acceleration, regenerative braking and gradient climbing is definitely one of the most challenging tasks of battery management systems. In large lithium-ion battery packs because of many factors, such as temperature distribution, cell-to-cell deviations regarding the actual battery impedance or capacity either in initial or aged state, the use of efficient and reliable methods for battery state estimation is required. The available battery power is limited by the safe operating area (SOA), where SOA is defined by battery temperature, current, voltage and SoC. Accurate SoAP prediction allows the energy management system to regulate the power flow of the vehicle more precisely and optimize battery performance and improve its lifetime accordingly. To this end, scientific and technical literature sources are studied and available approaches are reviewed.

  8. PRINCIPLES OF INDICATION FOR EN-ROUTE FLIGHT PATHS OF THE AIRCRAFT ON THE SCREEN OF ON-BOARD DISPLAY DEVICES

    Directory of Open Access Journals (Sweden)

    V. V. Markelov

    2016-01-01

    Full Text Available Subject of Research.We consider the principles and algorithms for construction of en-route flight paths of an aircraft (airplane in a horizontal plane for their subsequent display on the navigation situation indicators in the cockpit. Navigation situation indicatorsaredisplay devices designed on the basis of flat liquid crystal panel. Methods. Flight trajectory display by on-board multifunction indicators is performed by successive drawing of graphic primitives available in the library and defined in accordance with an array of data to display the route. An array of data is generated by on-board software complex based on the information provided in the flight task and the corresponding «Jeppesen» database or analogous one. Formation of the array is carried out by bringing the set of trajectory paths to the format of three typical trajectories described. In addition, each of the types of trajectories has a standard description of the algorithm for calculating the parameters that make up an array of data to display.Main Results.The algorithms of forming and calculating the amounts of data of routing paths required for their construction and display on the multifunction indicators applied in avionics.Practical Relevance.These novel routing algorithms for constructing trajectory paths unify algorithms of generating information for display on the navigation situation indicators and optimize a set of calculated data for flight control at the trajectory in the horizontal plane.

  9. Charge Management in LISA Pathfinder: The Continuous Discharging Experiment

    Science.gov (United States)

    Ewing, Becca Elizabeth

    2018-01-01

    Test mass charging is a significant source of excess force and force noise in LISA Pathfinder (LPF). The planned design scheme for mitigation of charge induced force noise in LISA is a continuous discharge by UV light illumination. We report on analysis of a charge management experiment on-board LPF conducted during December 2016. We discuss the measurement of test mass charging noise with and without continuous UV illumination, in addition to the dynamic response in the continuous discharge scheme. Results of the continuous discharge system will be discussed for their application to operating LISA with lower test mass charge.

  10. WE-G-17A-01: Improving Tracking Image Spatial Resolution for Onboard MR Image Guided Radiation Therapy Using the WHISKEE Technique

    International Nuclear Information System (INIS)

    Hu, Y; Mutic, S; Du, D; Green, O; Zeng, Q; Nana, R; Patrick, J; Shvartsman, S; Dempsey, J

    2014-01-01

    Purpose: To evaluate the feasibility of using the weighted hybrid iterative spiral k-space encoded estimation (WHISKEE) technique to improve spatial resolution of tracking images for onboard MR image guided radiation therapy (MR-IGRT). Methods: MR tracking images of abdomen and pelvis had been acquired from healthy volunteers using the ViewRay onboard MRIGRT system (ViewRay Inc. Oakwood Village, OH) at a spatial resolution of 2.0mm*2.0mm*5.0mm. The tracking MR images were acquired using the TrueFISP sequence. The temporal resolution had to be traded off to 2 frames per second (FPS) to achieve the 2.0mm in-plane spatial resolution. All MR images were imported into the MATLAB software. K-space data were synthesized through the Fourier Transform of the MR images. A mask was created to selected k-space points that corresponded to the under-sampled spiral k-space trajectory with an acceleration (or undersampling) factor of 3. The mask was applied to the fully sampled k-space data to synthesize the undersampled k-space data. The WHISKEE method was applied to the synthesized undersampled k-space data to reconstructed tracking MR images at 6 FPS. As a comparison, the undersampled k-space data were also reconstructed using the zero-padding technique. The reconstructed images were compared to the original image. The relatively reconstruction error was evaluated using the percentage of the norm of the differential image over the norm of the original image. Results: Compared to the zero-padding technique, the WHISKEE method was able to reconstruct MR images with better image quality. It significantly reduced the relative reconstruction error from 39.5% to 3.1% for the pelvis image and from 41.5% to 4.6% for the abdomen image at an acceleration factor of 3. Conclusion: We demonstrated that it was possible to use the WHISKEE method to expedite MR image acquisition for onboard MR-IGRT systems to achieve good spatial and temporal resolutions simultaneously. Y. Hu and O. green

  11. WE-G-17A-01: Improving Tracking Image Spatial Resolution for Onboard MR Image Guided Radiation Therapy Using the WHISKEE Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y; Mutic, S; Du, D; Green, O [Washington University School of Medicine, Saint Louis, MO (United States); Zeng, Q; Nana, R; Patrick, J; Shvartsman, S; Dempsey, J [ViewRay Incorporated, Oakwood Village, OH (United States)

    2014-06-15

    Purpose: To evaluate the feasibility of using the weighted hybrid iterative spiral k-space encoded estimation (WHISKEE) technique to improve spatial resolution of tracking images for onboard MR image guided radiation therapy (MR-IGRT). Methods: MR tracking images of abdomen and pelvis had been acquired from healthy volunteers using the ViewRay onboard MRIGRT system (ViewRay Inc. Oakwood Village, OH) at a spatial resolution of 2.0mm*2.0mm*5.0mm. The tracking MR images were acquired using the TrueFISP sequence. The temporal resolution had to be traded off to 2 frames per second (FPS) to achieve the 2.0mm in-plane spatial resolution. All MR images were imported into the MATLAB software. K-space data were synthesized through the Fourier Transform of the MR images. A mask was created to selected k-space points that corresponded to the under-sampled spiral k-space trajectory with an acceleration (or undersampling) factor of 3. The mask was applied to the fully sampled k-space data to synthesize the undersampled k-space data. The WHISKEE method was applied to the synthesized undersampled k-space data to reconstructed tracking MR images at 6 FPS. As a comparison, the undersampled k-space data were also reconstructed using the zero-padding technique. The reconstructed images were compared to the original image. The relatively reconstruction error was evaluated using the percentage of the norm of the differential image over the norm of the original image. Results: Compared to the zero-padding technique, the WHISKEE method was able to reconstruct MR images with better image quality. It significantly reduced the relative reconstruction error from 39.5% to 3.1% for the pelvis image and from 41.5% to 4.6% for the abdomen image at an acceleration factor of 3. Conclusion: We demonstrated that it was possible to use the WHISKEE method to expedite MR image acquisition for onboard MR-IGRT systems to achieve good spatial and temporal resolutions simultaneously. Y. Hu and O. green

  12. Fatigue in U.S. Astronauts Onboard the International Space Station: Environmental factors, Operational Impacts, and Implementation of Countermeasures

    Science.gov (United States)

    Scheuring, R. A.; Moomaw, R. C.; Johnston, S. L.

    2015-01-01

    Crewmembers have experienced fatigue for reasons similar to military deployments. Astronauts experience psychological stressors such as: heavy workloads, extended duty periods, circadian misalignment, inadequate/ineffective sleep, distracting background noise, unexpected and variable mission schedules, unfavorable thermal control, unusual sleep environment with schedules that impinge on pre-sleep periods.

  13. The European project Merlin on multi-gigabit, energy-efficient, ruggedized lightwave engines for advanced on-board digital processors

    Science.gov (United States)

    Stampoulidis, L.; Kehayas, E.; Karppinen, M.; Tanskanen, A.; Heikkinen, V.; Westbergh, P.; Gustavsson, J.; Larsson, A.; Grüner-Nielsen, L.; Sotom, M.; Venet, N.; Ko, M.; Micusik, D.; Kissinger, D.; Ulusoy, A. C.; King, R.; Safaisini, R.

    2017-11-01

    Modern broadband communication networks rely on satellites to complement the terrestrial telecommunication infrastructure. Satellites accommodate global reach and enable world-wide direct broadcasting by facilitating wide access to the backbone network from remote sites or areas where the installation of ground segment infrastructure is not economically viable. At the same time the new broadband applications increase the bandwidth demands in every part of the network - and satellites are no exception. Modern telecom satellites incorporate On-Board Processors (OBP) having analogue-to-digital (ADC) and digital-to-analogue converters (DAC) at their inputs/outputs and making use of digital processing to handle hundreds of signals; as the amount of information exchanged increases, so do the physical size, mass and power consumption of the interconnects required to transfer massive amounts of data through bulk electric wires.

  14. Vicarious calibration of the solar reflection channels of radiometers onboard satellites through the field campaigns with measurements of refractive index and size distribution of aerosols

    Science.gov (United States)

    Arai, K.

    A comparative study on vicarious calibration for the solar reflection channels of radiometers onboard satellite through the field campaigns between with and without measurements of refractive index and size distribution of aerosols is made. In particular, it is noticed that the influence due to soot from the cars exhaust has to be care about for the test sites near by a heavy trafficked roads. It is found that the 0.1% inclusion of soot induces around 10% vicarious calibration error so that it is better to measure refractive index properly at the test site. It is found that the vicarious calibration coefficients with the field campaigns at the different test site, Ivanpah (near road) and Railroad (distant from road) shows approximately 10% discrepancy. It seems that one of the possible causes for the difference is the influence due to soot from cars exhaust.

  15. Separation of the Galactic Cosmic Rays and Inner Earth Radiation Belt Contributions to the Daily Dose Onboard the International Space Station in 2005-2011

    Science.gov (United States)

    Lishnevskii, A. E.; Benghin, V. V.

    2018-03-01

    The DB-8 detectors of the ISS radiation monitoring system (RMS) have operated almost continuously onboard the ISS service module since August 2001 till December 2014. The RMS data obtained were used for the daily monitoring of the radiation environment aboard the station. This paper considers the technique of RMS data analysis that allows one to distinguish the contributions of galactic cosmic rays and the Earth's inner radiation belt to the daily dose based on the dosimetry data obtained as a result of the station's passage in areas of the highest geomagnetic latitudes. The paper presents the results of an analysis of the dosimetry data based on this technique for 2005-2011, as well as a comparison with similar results the authors obtained previously using the technique based on an analysis of the dosimetry data obtained during station passages in the area of the South Atlantic Anomaly.

  16. Oil condition monitoring of gears onboard ships using a regression approach for multivariate T2 control charts

    DEFF Research Database (Denmark)

    Henneberg, Morten; Jørgensen, Bent; Eriksen, René Lynge

    2016-01-01

    In this paper, we present an oil condition and wear debris evaluation method for ship thruster gears using T2 statistics to form control charts from a multi-sensor platform. The proposed method takes into account the different ambient conditions by multiple linear regression on the mean value...... only quasi-stationary data are included in phase I of the T2 statistics. Data from two thruster gears onboard two different ships are presented and analyzed, and the selection of the phase I data size is discussed. A graphic overview for quick localization of T2 signaling is also demonstrated using...... spider plots. Finally, progression and trending of the T2 statistics are investigated using orthogonal polynomials for a fix-sized data window....

  17. EVALUATING THE SENSITIVITY OF RADIONUCLIDE DETECTORS FOR CONDUCTING A MARITIME ON-BOARD SEARCH USING MONTE CARLO SIMULATION IMPLEMENTED IN AVERT(regsign)

    International Nuclear Information System (INIS)

    Harris, S.; Dave Dunn, D.

    2009-01-01

    The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation implemented in AVERT(reg s ign). AVERT(reg s ign), short for the Automated Vulnerability Evaluation for Risk of Terrorism, is personal computer based vulnerability assessment software developed by the ARES Corporation. The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation. The detectors, a RadPack and also a Personal Radiation Detector (PRD), were chosen from the class of Human Portable Radiation Detection Systems (HPRDS). Human Portable Radiation Detection Systems (HPRDS) serve multiple purposes. In the maritime environment, there is a need to detect, localize, characterize, and identify radiological/nuclear (RN) material or weapons. The RadPack is a commercially available broad-area search device used for gamma and also for neutron detection. The PRD is chiefly used as a personal radiation protection device. It is also used to detect contraband radionuclides and to localize radionuclide sources. Neither device has the capacity to characterize or identify radionuclides. The principal aim of this study was to investigate the sensitivity of both the RadPack and the PRD while being used under controlled conditions in a simulated maritime environment for detecting hidden RN contraband. The detection distance varies by the source strength and the shielding present. The characterization parameters of the source are not indicated in this report so the results summarized are relative. The Monte Carlo simulation results indicate the probability of detection of the RN source at certain distances from the detector which is a function of transverse speed and instrument sensitivity for the specified RN source

  18. Customer experience

    OpenAIRE

    Koperdáková, Zuzana

    2016-01-01

    Bachelor thesis deals with the theme of customer experience and terms related to this topic. The thesis consists of three parts. The first part explains the terms generally, as the experience or customer loyalty. The second part is dedicated to medotology used for Customer Experience Management. In the third part is described application of Customer Experience Management in practice, particularly in the context Touch Point Analyses in GE Money Bank.

  19. Legal education at sea via ATS-1. An evaluation of the T/S Golden Bear experiment

    Science.gov (United States)

    Connors, M. M.

    1982-01-01

    A course in maritime law was provided via ATS satellite to law students onboard ship. Classes were received while the ship was on the open seas and in the various ports visited. A half duplex audio channel provided the primary communication mode. All participants judged this pilot study to be extremely useful. Students were able to pursue their course work and to have the benefits of research guidance from academic advisors, while gaining practical, hands on experience at sea.

  20. Generation and propagation of an electromagnetic pulse in the Trigger experiment and its possible role in electron acceleration

    Science.gov (United States)

    Kelley, M. C.; Kintner, P. M.; Kudeki, E.; Holmgren, G.; Bostrom, R.; Fahleson, U. V.

    1980-01-01

    Instruments onboard the Trigger payload detected a large-amplitude, low-frequency, electric field pulse which was observed with a time delay consistent only with an electromagnetic wave. A model for this perturbation is constructed, and the associated field-aligned current is calculated as a function of altitude. This experiment may simulate the acceleration mechanism which results in the formation of auroral arcs, and possibly even other events in cosmic plasmas.