WorldWideScience

Sample records for experiment h-mode plasmas

  1. Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling

    Science.gov (United States)

    Angioni, Clemente

    2014-10-01

    The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation

  2. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Le Blanc, B.P.; Maingi, R.

    2002-01-01

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  3. Magnetic perturbation experiments on MAST L- and H-mode plasmas using internal coils

    Czech Academy of Sciences Publication Activity Database

    Kirk, A.; Liu, Y.Q.; Nardon, E.; Tamain, P.; Cahyna, Pavel; Chapman, I.; Denner, P.; Meyer, H.; Mordijck, S.; Temple, D.

    2011-01-01

    Roč. 53, č. 6 (2011), 065011-065011 ISSN 0741-3335 R&D Projects: GA ČR GAP205/11/2341 Institutional research plan: CEZ:AV0Z20430508 Keywords : Resonant magnetic perturbations * L-H transition * spherical tokamaks * edge localized modes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.425, year: 2011 http://dx.doi.org/10.1088/0741-3335/53/6/065011

  4. Limiter H-mode experiments on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Bush, C [Oak Ridge National Lab., TN (USA); Bretz, N L; Fredrickson, E D; McGuire, K M; Nazikian, R; Park, H K; Schivell, J; Taylor, G; Bitter, B; Budny, R; Cohen, S A; Kilpatrick, S J; LeBlanc, B; Manos, D M; Meade, D; Paul, S F; Scott, S D; Stratton, B C; Synakowski, E J; Towner, H H; Weiland, R M; Arunasalam, V; Bateman, G; Bell, M G; Bell, R; Boivin, R; Cavallo, A; Cheng, C Z; Chu, T K; Cowl,

    1990-12-15

    Limiter H-modes with centrally peaked density profiles have been obtained in TFTR using a highly conditioned graphite limiter. The transition to these centrally peaked H-modes takes place from the supershot to the H-mode rather than the usual L- to H-mode transition observed on other tokamaks. Bi-directional beam heating is required to induce the transition. Density peaking factors, n{sub e}(0)/{l angle}n{sub e}{r angle}, >2.3 are obtained and at the same time the H-mode characteristics are similar to those of limiter H-modes on other tokamaks and the global confinement, {tau}{sub E}, can be >2.5 times L-mode scaling. The TRANSP analysis shows that transport in these H-modes is similar to that of supershots within the inner 60 cm of the plasma, but the stored electron energy (calculated using measured values of T{sub e} and n{sub e}) is higher for the H-mode at the plasma edge. Microwave scattering near the edge shows broad spectra at k = 5.5 cm{sup {minus}1} which begin at the drop in D{sub {alpha}} radiation and are strongly shifted in the electron diamagnetic drift direction. At the same time beam emission spectroscopy shows a coherent mode near the boundary with m = 15--20 at 20--30 kHz which is propagating in the ion direction. During an ELM event these apparent rotations cease and Mirnov fluctuations in the 50--500 kHz increase in intensity.

  5. 'Snowflake' H Mode in a Tokamak Plasma

    International Nuclear Information System (INIS)

    Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.

    2010-01-01

    An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔW ELM /W p ) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.

  6. H-mode development in TEXT-U limiter plasmas

    International Nuclear Information System (INIS)

    Roberts, D.R.; Bravenec, R.V.; Bengtson, R.D.

    1996-01-01

    H-mode transitions in TEXT-U limiter plasmas have been observed at q a ∼ 3 and I p ∼ 250 kA (P OH ∼ 300 kW) with at least 300 kW of central electron-cyclotron heating (ECH). These are dithering transitions which are induced by sawtooth crashes and display the typical signatures of H-modes (D α drop, spontaneous density increase, evidence of a transport barrier). However, they show only a slight improvement over L-mode energy confinement. The vessel walls are boronized and conditioned prior to experiments to achieve low-impurity influx and particle recycling. Discharges which undergo transitions are fuelled almost entirely on residual recycling. Transitions are observed when limited on a toroidally localized top or bottom limiter and, more often, when the limiter surface is 'fresh', which is achieved by alternating between top and bottom limiters on successive shots. No strong dependence upon the distance from the low-field-side limiter has been found. Transitions are not yet observed when limited on the high-field-side wall tiles or in the case of TEXT-U diverted configurations. Preliminary measurements with the 2 MeV heavy-ion beam probe (HIBP) (in the core) and Langmuir probes (in the edge) indicate that the plasma potential drops outside the q = 1 radius while only small changes are observed in the density fluctuations level. (author)

  7. JET Radiative Mantle Experiments in ELMy H-Mode

    International Nuclear Information System (INIS)

    Budny, R.; Coffey, I.; Dumortier, P.; Grisolia, C.; Strachan, J.D.

    1999-01-01

    Radiative mantle experiments were performed on JET ELMy H-mode plasmas. The Septum configuration was used where the X-point is embedded into the top of the Septum. Argon radiated 50% of the input power from the bulk plasma while Z eff rose from an intrinsic level of 1.5 to about 1.7 due to the injected Argon. The total energy content and global energy confinement time decreased 15% when the impurities were introduced. In contrast, the effective thermal diffusivity in the core confinement region (r/a = .4--.8) decreased by 30%. Usually, JET ELMy H-mode plasmas have confinement that is correlated to the edge pedestal pressure. The radiation lowered the edge pedestal and consequently lowered the global confinement. Thus the confinement was changed by a competition between the edge pedestal reduction lowering the confinement and the weaker RI effect upon the core transport coefficients raising the confinement. The ELM frequency increased from 10 Hz Type I ELMs, to 200 Hz type III ELMs. The energy lost by each ELM reduced to 0.5% of the plasma energy content

  8. Theory of anomalous transport in H-mode plasmas

    International Nuclear Information System (INIS)

    Itoh, S.; Itoh, K.; Fukuyama, A.; Yagi, M.

    1993-05-01

    Theory of the anomalous transport is developed, and the unified formula for the L- and H-mode plasmas is presented. The self-sustained ballooning-mode turbulence is solved in the presence of the inhomogeneous radial electric field, E r . Reductions in transport coefficients and the amplitude and decorrelation length of fluctuations due to E r ' are quantitatively analyzed. Combined with the E r -bifurcation model, the thickness of the transport barrier is simultaneously determined. (author)

  9. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.F.F; Lomas, P.; Gowers, C.; Guo, H.; Hawkes, N.; Huysmans, G.T.A.; Jones, T.; Parail, V.V.; Rimini, F.; Schunke, B.

    2000-01-01

    Some models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the thermal or the fast-ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in (Guo H Y et al 2000 Edge transport barrier in JET hot-ion H-modes Nucl. Fusion 40 69) using a large database containing both deuterium-only and deuterium-tritium plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing one to study the dependence of the pedestal height on the edge shear. In addition, the range of plasma currents was extended up to 6 MA. It is shown that the edge data are best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to conclusively eliminate the thermal ion model. (author)

  10. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.; Lomas, P.; Gowers, C.

    2000-01-01

    Models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in using a large database containing both Deuterium-only (DD) and Deuterium-Tritium (DT) plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing to study the dependence of the pedestal height on the edge shear. In addition the range of plasma currents was extended up to 6 MA. It is shown that the edge data is best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to eliminate conclusively the thermal ion model. (author)

  11. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  12. Particle transport in JET and TCV-H mode plasmas

    International Nuclear Information System (INIS)

    Maslov, M.

    2009-10-01

    Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the problem of heat transport in tokamaks attracted the attention of researchers, but the particle transport phenomena were largely neglected until fairly recently. As tokamak physics advanced to its present level, the physics community realized that there are many hurdles to the development of fusion power beyond the energy confinement. Particle transport is one of the outstanding issues. The aim of this thesis work is to study the anomalous (turbulence driven) particle transport in tokamaks on the basis of experiments on two different devices: JET (Joint European Torus) and TCV (Tokamak à Configuration Variable). In particular the physics of particle inward convection (pinch), which causes formation of peaked density profiles, is addressed in this work. Density profile peaking has a direct, favorable effect on fusion power in a reactor, we therefore also propose an extrapolation to the international experimental reactor ITER, which is currently under construction. To complete the thesis research, a comprehensive experimental database was created on the basis of data collected on JET and TCV during the duration of the thesis. Improvements of the density profile measurements techniques and careful analysis of the experimental data allowed us to derive the dependencies of density profile shape on the relevant plasma parameters. These improved techniques also allowed us to dispel any doubts that had been voiced about previous results. The major conclusions from previous work on JET and other tokamaks were generally confirmed, with some minor supplements. The main novelty of the thesis resides in systematic tests of the predictions of linear gyrokinetic simulations of the ITG (Ion Temperature Gradient) mode against the

  13. Pedestal Temperature Model for Type III ELMy H-mode Plasma

    International Nuclear Information System (INIS)

    Buangam, W.; Suwanna, S.; Onjun, T.; Poolyarat, N.; Picha, R.; Singhsomroje, W.

    2009-07-01

    Full text: It is widely known that the improved performance of H-mode plasma results mainly from a formation of the pedestal, which is a narrow region of strong pressure gradient near the edge of plasma. A predictive capability for the conditions at the top of the pedestal is important, especially for predictive simulations of future experiments. New models for predicting the temperature values at the top of the pedestal for type III ELMy H-mode plasma are developed by using two different approaches: a theory-based approaches and an empirical approach. For a theory-based approach, a model is developed based on the calculation of thermal energy in the pedestal region and on accepted scaling laws of energy confinement time. For an empirical model, a scaling law for pedestal temperature in terms of plasma controlled parameters, such as plasma current, magnetic field, heating power, is deduced from experimental data. Predictions from these models are compared with experimental data from the Pedestal International Database. Statistical quantities, such as Root-Mean Square Error (RMSE) and offset values, are computed to quantify the predictive capability of the models. It is found that the theory-based model predicts the pedestal temperature values moderately well yielding RMSE between 30% and 40%. The IPB98(y,3) scaling law yields with best agreement with RMSE of 30.4%. The empirical model predicts the pedestal temperature value with better agreement, yield RMSE of 25.9%

  14. Accounting of the Power Balance for Neutral-beam heated H-Mode Plasmas in NSTX

    International Nuclear Information System (INIS)

    Paul, S.F.; Maingi, R.; Soukhanovskii, V.; Kaye, S.M.; Kugel, H.

    2004-01-01

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  15. Particle and power deposition on divertor targets in EAST H-mode plasmas

    International Nuclear Information System (INIS)

    Wang, L.; Xu, G.S.; Guo, H.Y.; Chen, R.; Ding, S.; Gan, K.F.; Gao, X.; Gong, X.Z.; Jiang, M.; Liu, P.; Liu, S.C.; Luo, G.N.; Ming, T.F.; Wan, B.N.; Wang, D.S.; Wang, F.M.; Wang, H.Q.; Wu, Z.W.; Yan, N.; Zhang, L.

    2012-01-01

    The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons were made between the H-mode plasmas with lower hybrid current drive (LHCD) and those with combined ion cyclotron resonance heating (ICRH). The particle and heat flux profiles between and during ELMs were obtained from Langmuir triple-probe arrays embedded in the divertor target plates. And isolated ELMs were chosen for analysis in order to reduce the uncertainty resulting from the influence of fast electrons on Langmuir triple-probe evaluation during ELMs. The power deposition obtained from Langmuir triple probes was consistent with that from the divertor infra-red camera during an ELM-free period. It was demonstrated that ELM-induced radial transport predominantly originated from the low-field side region, in good agreement with the ballooning-like transport model and experimental results of other tokamaks. ELMs significantly enhanced the divertor particle and heat fluxes, without significantly broadening the SOL width and plasma-wetted area on the divertor target in both LHCD and LHCD + ICRH H-modes, thus posing a great challenge for the next-step high-power, long-pulse operation in EAST. Increasing the divertor-wetted area was also observed to reduce the peak heat flux and particle recycling at the divertor target, hence facilitating long-pulse H-mode operation. The particle and heat flux profiles during ELMs appeared to exhibit multiple peak structures, and were analysed in terms of the behaviour of ELM filaments and the flux tubes induced by modified magnetic topology during ELMs. (paper)

  16. Predictive modelling of edge transport phenomena in ELMy H-mode tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Loennroth, J.-S.

    2009-01-01

    This thesis discusses a range of work dealing with edge plasma transport in magnetically confined fusion plasmas by means of predictive transport modelling, a technique in which qualitative predictions and explanations are sought by running transport codes equipped with models for plasma transport and other relevant phenomena. The focus is on high confinement mode (H-mode) tokamak plasmas, which feature improved performance thanks to the formation of an edge transport barrier. H-mode plasmas are generally characterized by the occurrence of edge localized modes (ELMs), periodic eruptions of particles and energy, which limit confinement and may turn out to be seriously damaging in future tokamaks. The thesis introduces schemes and models for qualitative study of the ELM phenomenon in predictive transport modelling. It aims to shed new light on the dynamics of ELMs using these models. It tries to explain various experimental observations related to the performance and ELM-behaviour of H-mode plasmas. Finally, it also tries to establish more generally the potential effects of ripple-induced thermal ion losses on H-mode plasma performance and ELMs. It is demonstrated that the proposed ELM modelling schemes can qualitatively reproduce the experimental dynamics of a number of ELM regimes. Using a theory-motivated ELM model based on a linear instability model, the dynamics of combined ballooning-peeling mode ELMs is studied. It is shown that the ELMs are most often triggered by a ballooning mode instability, which renders the plasma peeling mode unstable, causing the ELM to continue in a peeling mode phase. Understanding the dynamics of ELMs will be a key issue when it comes to controlling and mitigating the ELMs in future large tokamaks. By means of integrated modelling, it is shown that an experimentally observed increase in the ELM frequency and deterioration of plasma confinement triggered by external neutral gas puffing might be due to a transition from the second to

  17. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Asunta, O; Kurki-Suonio, T; Tala, T; Sipilae, S; Salomaa, R [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom)], E-mail: Otto.Asunta@tkk.fi

    2008-12-15

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger ({approx}16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  18. Fast wave current drive in H mode plasmas on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Grassie, J.S. de; Baity, F.W.

    1999-01-01

    Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)

  19. Ion orbit loss and pedestal width of H-mode tokamak plasmas in limiter geometry

    International Nuclear Information System (INIS)

    Xiao Xiaotao; Liu Lei; Zhang Xiaodong; Wang Shaojie

    2011-01-01

    A simple analytical model is proposed to analyze the effects of ion orbit loss on the edge radial electric field in a tokamak with limiter configuration. The analytically predicted edge radial electric field is consistent with the H-mode experiments, including the width, the magnitude, and the well-like shape. This model provides an explanation to the H-mode pedestal structure. Scaling of the pedestal width based on this model is proposed.

  20. The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas

    Science.gov (United States)

    Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng

    2018-03-01

    Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.

  1. Investigation of EBW Thermal Emission and Mode Conversion Physics in H-Mode Plasmas on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; Kugel, H.W.; LeBlanc, B.P.; Phillips, C.K.; Caughman, J.B.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.; Sabbagh, S.A.

    2008-01-01

    High β plasmas in the National Spherical Torus Experiment (NSTX) operate in the overdense regime, allowing the electron Bernstein wave (EBW) to propagate and be strongly absorbed/emitted at the electron cyclotron resonances. As such, EBWs may provide local electron heating and current drive. For these applications, efficient coupling between the EBWs and electromagnetic waves outside the plasma is needed. Thermal EBW emission (EBE) measurements, via oblique B-X-O double mode conversion, have been used to determine the EBW transmission efficiency for a wide range of plasma conditions on NSTX. Initial EBE measurements in H-mode plasmas exhibited strong emission before the L-H transition, but the emission rapidly decayed after the transition. EBE simulations show that collisional damping of the EBW prior to the mode conversion (MC) layer can significantly reduce the measured EBE for T e < 20 eV, explaining the observations. Lithium evaporation was used to reduce EBE collisional damping near the MC layer. As a result, the measured B-X-O transmission efficiency increased from < 10% (no Li) to 60% (with Li), consistent with EBE simulations.

  2. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc...

  3. MHD-activity in ohmic, diverted and limited H-mode plasmas in TCV

    International Nuclear Information System (INIS)

    Pochelon, A.; Anton, M.; Buehlmann, F.; Dutch, M.J.; Duval, B.P.; Hirt, A.; Hofmann, F.; Joye, B.; Lister, J.B.; Llobet, X.; Martin, Y.; Moret, J.M.; Nieswand, C.; Pietrzyk, A.Z.; Tonetti, G.; Weisen, H.

    1994-01-01

    During its first year of operation the TCV tokamak has produced a variety of plasma configurations with currents in the range 150 to 800 kA and elongations in the range of 1.0 to 2.05. Ohmic H-modes have been obtained in diverted discharges and discharges limited on the graphite tiles inner wall. After boronisation in May 1994 H-modes with line average densities up to 1.7x10 20 m -3 , corresponding to a Murakami parameter of 10, were obtained. (author) 5 figs., 2 refs

  4. Observation of inverse hysteresis in the E to H mode transitions in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Lee, Min-Hyong; Chung, Chin-Wook

    2010-01-01

    An inverse hysteresis is observed during the E mode to H mode transition in low pressure argon inductively coupled plasmas. The transition is accompanied by an evolution of electron energy distribution from the bi-Maxwellian to the Maxwellian distribution. The mechanism of this inversion is not clear. However, we think that the bi-Maxwellian electron energy distribution in E mode, where the proportion of high energy electron is much higher than the Maxwellian distribution, would be one of the reasons for the observed inverse hysteresis. As the gas pressure increases, the inverse hysteresis disappears and the E to H mode transition follows the scenario of usual hysteresis.

  5. Comparison of L- and H-mode plasma edge fluctuations in MAST

    International Nuclear Information System (INIS)

    Dudson, B D; Dendy, R O; Kirk, A; Meyer, H; Counsell, G F

    2005-01-01

    Edge turbulence measurements from a reciprocating Langmuir probe in MAST are presented. A comparison of the range/standard deviation (R/S), growth of range, first moment and differencing and rescaling methods for calculating the Hurst exponent is made. The differencing and rescaling method is found to be the most useful for identifying scaling over long time-periods. A comparison is made between L-mode, dithering H-mode and H-mode plasma edge turbulence and evidence for self-similarity is found. Tests are performed and it is demonstrated that the results are due to properties of the data, and are not artefacts of the methods. A comparison of Hurst exponent methods with the autocorrelation function and power spectrum is used to demonstrate the presence of long-time correlation in L-mode data, and the absence of long-time correlation in the case of dithering H-mode

  6. Results of the H-mode experiments with JT-60 outer and lower divertors

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Tsuji, Shunji; Nagami, Masayuki

    1989-08-01

    In JT-60, hydrogen H-mode experiments with outer and lower divertors were performed. In the outer divertor, H-mode were obtained, similar to the ones observed in the other lower/upper divertors. Its threshold absorbed power and electron density were 16 MW and 1.8 x 10 19 m -3 . In the two combined heatings with NB+ICRF and NB+LHRF, H-mode discharges are also obtained. Moreover, in new configuration of lower divertor, H-mode phases without and with ELM are obtained. Typical results of the lower divertor are shown to compare the H-mode characteristics between the two configurations. Improvement of the energy confinement time in the two divertors was limited to 10 %. Analyses on ballooning/interchange instabilities were carried out with precise equlibria of JT-60. These results showed that the both modes were enough stable. (author)

  7. New fluctuation phenomena in the H-mode regime of PDX tokamak plasmas

    International Nuclear Information System (INIS)

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-05-01

    A new kind of quasi-coherent fluctuation is observed near the edge of plasmas in the PDX tokamak during H-mode operation. (The H-mode occurs in neutral beam heated divertor plasmas and is characterized by improved energy containment as well as large density and temperature gradients near the plasma edge.) These fluctuations are evidenced as VUV and density fluctuation bursts at well-defined frequencies (Δω/ω less than or equal to 0.1) in the frequency range between 50 and 180 kHz. They affect the edge temperature-density product, and therefore they may be important for understanding the relationship between the large edge density and temperature gradients and the improved energy confinement

  8. Energy confinement and transport of H-mode plasmas in tokamak

    International Nuclear Information System (INIS)

    Urano, Hajime

    2005-02-01

    A characteristic feature of the high-confinement (H-mode) regime is the formation of a transport barrier near the plasma edge, where steepening of the density and temperature gradients is observed. The H-mode is expected to be a standard operation mode in a next-step fusion experimental reactor, called ITER-the International Thermonuclear Experimental Reactor. However, energy confinement in the H-mode has been observed to degrade with increasing density. This is a critical constraint for the operation domain in the ITER. Investigation of the main cause of confinement degradation is an urgent issue in the ITER Physics Research and Development Activity. A key element for solving this problem is investigation of the energy confinement and transport properties of H-mode plasmas. However, the influence of the plasma boundary characterized by the transport barrier in H-modes on the energy transport of the plasma core has not been examined sufficiently in tokamak research. The aim of this study is therefore to investigate the energy confinement properties of H-modes in a variety of density, plasma shape, seed impurity concentration, and conductive heat flux in the plasma core using the experimental results obtained in the JT-60U tokamak of Japan Atomic Energy Research Institute. Comparison of the H-mode confinement properties with those of other tokamaks using an international multi-machine database for extrapolation to the next step device was also one of the main subjects in this study. Density dependence of the energy confinement properties has been examined systematically by separating the thermal stored energy into the H-mode pedestal component determined by MHD stability called the Edge Localized Modes (ELMs) and the core component governed by gyro-Bohm-like transport. It has been found that the pedestal pressure imposed by the destabilization of ELM activities led to a reduction in the pedestal temperature with increasing density. The core temperature for each

  9. Pedestal characteristics and MHD stability of H-mode plasmas in TCV

    International Nuclear Information System (INIS)

    Pitzschke, A.

    2011-01-01

    temperature profile during the ELM cycle, the low repetition rate of the lasers used for Thomson scattering is a limiting. Although the system on TCV comprises 3 laser units that may be triggered in sequence with time separations down to 1 ms, time evolution over longer periods can only be reconstructed from repetitive events. In this context, an adjustment of the laser trigger to improve the synchronization with the ELM event is an advantage. A method was developed and implemented to generate a synchronizing trigger sequence, by a real-time monitoring of the D-alpha emission, which provides a marker for the ELM event. Recently, a ‘snowflake’ (SF) divertor configuration, proposed as a possible solution to reduce the plasma-wall interaction by changing the divertor’s poloidal magnetic field topology, was generated, for the first time, in TCV. A numerical code (KINX), based on a magnetohydrodynamic model (ideal MHD), was used to investigate the stability limits of this configuration under H-mode conditions and compare them with a similar standard single-null equilibrium. In a series of experiments, improved energy confinement was found and explained by improved stability of the edge region in the SF configuration. The influence of the pedestal structure in ELMy H-mode plasmas on the energy confinement and on ELM energy losses was investigated. The different ELM regimes found in TCV were analyzed, in particular the transition between type-III to type-I ELMs. The operational boundary of each ELM regime was characterized and verified by ideal MHD stability simulations for the ETB region. Recent studies on the scaling of the pedestal width with normalized poloidal pressure were confirmed. Using the capabilities of TCV, the influence of plasma shaping on pedestal parameters and MHD stability limits was investigated. In the past, models were developed to describe the onset of type-I ELMs, which are associated with modes in the ETB region arising from a coupling of pressure- and

  10. ELM triggering conditions for the integrated modeling of H-mode plasmas

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Schnack, D.D.; Bateman, G.; Kritz, A.H.; Brennan, D.P.; Snyder, P.B.; Voitsekhovitch, I.; Kruger, S.; Janeschitz, G.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2005-01-01

    Recent advances in the integrated modeling of ELMy H-mode plasmas are presented. A new model for the H-mode pedestal and for the triggering of ELMs predicts the height, width, and shape of the H-mode pedestal and the frequency and width of ELMs. The model for the pedestal and ELMs is used in the ASTRA integrated transport code to follow the time evolution of tokamak discharges from L-mode through the transition from L-mode to H-mode, with the formation of the H-mode pedestal, and, subsequently, to the triggering of ELMs. Turbulence driven by the ion temperature gradient mode, resistive ballooning mode, trapped electron mode, and electron temperature gradient mode contributes to the anomalous thermal transport at the plasma edge in this model. Formation of the pedestal and the L-H transition is the direct result of E(vector) r x B(vector) flow shear suppression of anomalous transport. The periodic ELM crashes are triggered by MHD instabilities. Two mechanisms for triggering ELMs are considered: ELMs are triggered by ballooning modes if the pressure gradient exceeds the ballooning threshold or by peeling modes if the edge current density exceeds the peeling mode threshold. The BALOO, DCON, and ELITE ideal MHD stability codes are used to derive a new parametric expression for the peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like discharges are presented and compared with experimental observations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD. (author)

  11. Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling

    Czech Academy of Sciences Publication Activity Database

    Angioni, C.; Mantica, P.; Pütterich, T.; Valisa, M.; Baruzzo, M.; Belli, A.E.; Belo, P.; Casson, F.J.; Challis, C.; Drewelow, P.; Giroud, C.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Koskela, T.; Lauro Taroni, L.; Maggi, C.F.; Mlynář, Jan; Odstrčil, T.; Reinke, M.L.; Romanelli, M.

    2014-01-01

    Roč. 54, č. 8 (2014), 083028-083028 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : heavy impurity transport * H-mode hybrid scenario * neoclassical and turbulent transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/8/083028/pdf/0029-5515_54_8_083028.pdf

  12. Observation of internal transport barrier in ELMy H-mode plasmas on the EAST tokamak

    Science.gov (United States)

    Yang, Y.; Gao, X.; Liu, H. Q.; Li, G. Q.; Zhang, T.; Zeng, L.; Liu, Y. K.; Wu, M. Q.; Kong, D. F.; Ming, T. F.; Han, X.; Wang, Y. M.; Zang, Q.; Lyu, B.; Li, Y. Y.; Duan, Y. M.; Zhong, F. B.; Li, K.; Xu, L. Q.; Gong, X. Z.; Sun, Y. W.; Qian, J. P.; Ding, B. J.; Liu, Z. X.; Liu, F. K.; Hu, C. D.; Xiang, N.; Liang, Y. F.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Wan, Y. X.; EAST Team

    2017-08-01

    The internal transport barrier (ITB) has been obtained in ELMy H-mode plasmas by neutron beam injection and lower hybrid wave heating on the Experimental Advanced Superconducting Tokamak (EAST). The ITB structure has been observed in profiles of ion temperature, electron temperature, and electron density within ρ safety factor q(0) ˜ 1. Transport coefficients are calculated by particle balance and power balance analysis, showing an obvious reduction after the ITB formation.

  13. First HIBP Measurement of Plasma Potential During the H-Mode Transition on the TUMAN-3M Tokamak

    International Nuclear Information System (INIS)

    Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Lebedev, S.V.; Shevkin, E.A.; Tukachinsky, A.S.; Zhubr, N.A.; Chmyga, A.A.; Dreval, N.B.; Khrebtov, S.M.; Komarov, A.S.; Krupnik, L.I.; Oost, G. van; Tendler, M.

    2003-01-01

    The difficulty of Heavy Ion Beam Probe (HIBP) application on the TUMAN-3M (R=0.53m, a=0.22m, BT=0.8T, Ip=140kA, Te=0.5keV, n<4 1019m-3) -- significant toroidal shift of beam trajectory -- is caused by high ratio of poloidal field to toroidal one. Strong UV radiation from the plasma loads the energy analyzer's detector and complicates the problem even more. This paper presents the results of first measurement of plasma potential evolution in the discharges performed in ohmic H-mode using 80 keV K+ beam and a Proca-Green secondary ion energy analyzer. Spatial region covered by the diagnostic in the experiments discussed was 0< r<0.6a. Spatial scan was performed utilizing the toroidal field decrease due to capacity power supply battery discharge. The change in plasma potential of the order of 100V has been measured during the H-mode formation. The potential in core plasma (r<0.6a) starts to change simultaneously with L-H transition, and than changes during ∼6-8ms after the transition. Thus, the potential changes rather slowly in a comparison with L-H transition timescale (∼2ms for TUMAN-3M ohmic H-mode). Possible explanation to the slow change in central plasma potential may be a formation of potential well structure at the plasma edge, in which radial electric field changes direction. This kind of structure is beneficial for the edge turbulent transport suppression because of high |∂Er/∂r|, but not necessary requires a strong change in central plasma potential to occur immediately. The results from microwave reflectometry support this hypothesis

  14. Confinement improvement in H-mode-like plasmas in helical systems

    International Nuclear Information System (INIS)

    Itoh, K.; Sanuki, H.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1993-06-01

    The reduction of the anomalous transport due to the inhomogeneous radial electric field is theoretically studied for toroidal helical plasmas. The self-sustained interchange-mode turbulence is analysed for the system with magnetic shear and magnetic hill. For the system with magnetic well like conventional stellarators, the ballooning mode turbulence is studied. Influence of the radial electric field inhomogeneity on the transport coefficients and fluctuations are quantitatively shown. Unified theory of the transport coefficients in the L-mode and H-mode-like plasmas are presented. (author)

  15. Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.

    Science.gov (United States)

    Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M

    2009-04-17

    For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.

  16. Effect of variation in equilibrium shape on ELMing H-mode performance in DIII-D diverted plasmas

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Osborne, T.H.; Petrie, T.W.

    2001-01-01

    The changes in the performance of the core, pedestal, scrape-off-layer (SOL), and divertor plasmas as a result of changes in triangularity, δ, up/down magnetic balance, and secondary divertor volume were examined in shape variation experiments using ELMing H mode plasmas on DIII-D. In moderate density, unpumped plasmas, high δ∼0.7 increased the energy in the H mode pedestal and the global energy confinement of the core, primarily due to an increase in the margin by which the edge pressure gradient exceeded the value which would have been expected had it been limited by infinite-n ideal ballooning modes. In addition, a nearly balanced double-null (DN) shape was effective for sharing the peak heat flux in the divertor in these attached plasmas. For detached plasmas good heat flux sharing was obtained for a substantial range of unbalanced DN shapes. Finally, the presence of a second X-point in unbalanced DN shapes did not degrade the plasma performance if it was sufficiently far inside the vacuum vessel. These results indicate that a high δ unbalanced DN shape has some advantages over a single null shape for future high power tokamak operation. (author)

  17. Coupling of an ICRF compact loop antenna to H-mode plasmas in DIII-D

    International Nuclear Information System (INIS)

    Mayberry, M.J.; Baity, F.W.; Hoffman, D.J.; Luxon, J.L.; Owens, T.L.; Prater, R.

    1987-01-01

    Low power coupling tests have been carried out with a prototype ICRF compact loop antenna on the DIII-D tokamak. During neutral-beam-heated L-mode discharges the antenna loading is typically R≅1-2Ω for an rf frequency of 32 MHz (B/sub T/ = 21 kG, ω = 2Ω/sub D/(0)). When a transition into the H-mode regime of improved confinement occurs, the loading drops to R≅0.5-1.0Ω. During ELMs, transient increases in loading up to several Ohms are observed. The apparent sensitivity of ICRF antenna coupling to changes in the edge plasma profiles associated with the H-mode regime could have important implications for the design of future high power systems

  18. Effect of low density H-mode operation on edge and divertor plasma parameters

    International Nuclear Information System (INIS)

    Maingi, R.; Mioduszewski, P.K.; Cuthbertson, J.W.

    1994-07-01

    We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation

  19. Power requirements for superior H-mode confinement on Alcator C-Mod: experiments in support of ITER

    International Nuclear Information System (INIS)

    Hughes, J.W.; Reinke, M.L.; Terry, J.L.; Brunner, D.; Greenwald, M.; Hubbard, A.E.; LaBombard, B.; Lipschultz, B.; Ma, Y.; Wolfe, S.; Wukitch, S.J.; Loarte, A.

    2011-01-01

    Power requirements for maintaining sufficiently high confinement (i.e. normalized energy confinement time H 98 ≥ 1) in H-mode and its relation to H-mode threshold power scaling, P th , are of critical importance to ITER. In order to better characterize these power requirements, recent experiments on the Alcator C-Mod tokamak have investigated H-mode properties, including the edge pedestal and global confinement, over a range of input powers near and above P th . In addition, we have examined the compatibility of impurity seeding with high performance operation, and the influence of plasma radiation and its spatial distribution on performance. Experiments were performed at 5.4 T at ITER relevant densities, utilizing bulk metal plasma facing surfaces and an ion cyclotron range of frequency waves for auxiliary heating. Input power was scanned both in stationary enhanced D α (EDA) H-modes with no large edge localized modes (ELMs) and in ELMy H-modes in order to relate the resulting pedestal and confinement to the amount of power flowing into the scrape-off layer, P net , and also to the divertor targets. In both EDA and ELMy H-mode, energy confinement is generally good, with H 98 near unity. As P net is reduced to levels approaching that in L-mode, pedestal temperature diminishes significantly and normalized confinement time drops. By seeding with low-Z impurities, such as Ne and N 2 , high total radiated power fractions are possible, along with substantial reductions in divertor heat flux (>4x), all while maintaining H 98 ∼ 1. When the power radiated from the confined versus unconfined plasma is examined, pedestal and confinement properties are clearly seen to be an increasing function of P net , helping to unify the results with those from unseeded H-modes. This provides increased confidence that the power flow across the separatrix is the correct physics basis for ITER extrapolation. The experiments show that P net /P th of one or greater is likely to lead to H

  20. Gyrokinetic Stability Studies of the Microtearing Mode in the National Spherical Torus Experiment H-mode

    International Nuclear Information System (INIS)

    Baumgaertel J.A., Redi M.H., Budny R.V., Rewoldt G., Dorland W.

    2005-01-01

    Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER

  1. ELM triggering conditions for the integrated modeling of H-mode plasmas

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Schnack, D.D.; Bateman, G.; Kritz, A.H.; Brennan, D.P.; Snyder, P.B.; Voitsekhovitch, I.; Kruger, S.; Janeschitz, G.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2004-01-01

    Recent advances in the integrated modeling of ELMy (edge localized mode) H-mode plasmas are presented. A model for the H-mode pedestal and for the triggering of ELMs predicts the height, width, and shape of the H-mode pedestal and the frequency and width of ELMs. Formation of the pedestal and the L-H transition is the direct result of E r x B flow shear suppression of anomalous transport. The periodic ELM crashes are triggered by either the ballooning or peeling MHD instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to derive a new parametric expression for the peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like discharges are presented and compared with experimental observations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD. (authors)

  2. Rotation characteristics of main ions and impurity ions in H-mode tokamak plasma

    International Nuclear Information System (INIS)

    Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Kim, Y.; St. John, H.E.; Seraydarian, R.P.; Wade, M.R.

    1994-01-01

    Poloidal and toroidal rotation of the main ions (He 2+ ) and the impurity ions (C 6+ and B 5+ ) in H-mode helium plasmas have been measured via charge exchange recombination spectroscopy in the DIII-D tokamak. It was discovered that the main ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction, in qualitative agreement with the neoclassical theory. The deduced radial electric field in the edge is of the same negative-well shape regardless of which ion species is used, validating the fundamental nature of the electric field in L-H transition phenomenology

  3. Methane penetration in DIII-D ELMing H-mode plasmas

    International Nuclear Information System (INIS)

    West, W.P.; Lasnier, C.J.; Whyte, D.G.; Isler, R.C.; Evans, T.E.; Jackson, G.L.; Rudakov, D.; Wade, M.R.; Strachan, J.

    2003-01-01

    Carbon penetration into the core plasma during midplane and divertor methane puffing has been measured for DIII-D ELMing H-mode plasmas. The methane puffs are adjusted to a measurable signal, but global plasma parameters are only weakly affected (line average density, e > increases by E , drops by 6+ density profiles in the core measured as a function of time using charge exchange recombination spectroscopy. The methane penetration factor is defined as the difference in the core content with the puff on and puff off, divided by the carbon confinement time and the methane puffing rate. In ELMing H-mode discharges with ion ∇B drift direction into the X-point, increasing the line averaged density from 5 to 8x10 19 m -3 dropped the penetration factor from 6.6% to 4.6% for main chamber puffing. The penetration factor for divertor puffing was below the detection limit (<1%). Changing the ion ∇B drift to away from the X-point decreased the penetration factor by more than a factor of five for main chamber puffing

  4. BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL

    International Nuclear Information System (INIS)

    KINSEY, J.E.; ONJUN, T.; BATEMAN, G.; KRITZ, A.; PANKIN, A.; STAEBLER, G.M.; WALTZ, R.E.

    2002-01-01

    OAK-B135 The GLF23 and Multi-Mode (MM95) transport models are used along with a model for the H-mode pedestal to predict the fusion performance for the ITER, FIRE, and IGNITOR tokamak designs. The drift-wave predictive transport models reproduce the core profiles in a wide variety of tokamak discharges, yet they differ significantly in their response to temperature gradient (stiffness). Recent gyro-kinetic simulations of ITG/TEM and ETG modes motivate the renormalization of the GLF23 model. The normalizing coefficients for the ITG/TEM modes are reduced by a factor of 3.7 while the ETG mode coefficient is increased by a factor of 4.8 in comparison with the original model. A pedestal temperature model is developed for type I ELMy H-mode plasmas based on ballooning mode stability and a theory-motivated scaling for the pedestal width. In this pedestal model, the pedestal density is proportional to the line-averaged density and the pedestal temperature is inversely related to the pedestal density

  5. Operational conditions and characteristics of ELM-events during H-mode plasmas in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Grigull, P.; Wobig, H.; Kisslinger, J.; McCormick, K.; Anton, M.; Baldzuhn, J.; Fiedler, S.; Fuchs, Ch.; Geiger, J.; Giannone, L.; Hartfuss, H.-J.; Holzhauer, E.; Hirsch, M.; Jaenicke, R.; Kick, M.; Maassberg, H.; Wagner, F.; Weller, A.

    2000-01-01

    H-mode operation in the low-shear stellarator W7-AS is achieved for specific plasma edge topologies characterized by three 'operational windows' of the edge rotational transform. An explanation for this strong influence of the magnetic configuration could be the increase of viscous damping if rational surfaces and thus island structures occur within the relevant plasma edge layer, thereby impeding the development of an edge transport barrier. Prior to the final transition to a quiescent state, the plasma edge passes a rich phenomenology of dynamic behaviour such as dithering and ELMs. Plasma edge parameters indicate that a quiescent H-mode occurs if a certain edge pressure is achieved. (author)

  6. Plasma interaction with tungsten samples in the COMPASS tokamak in ohmic ELMy H-modes

    International Nuclear Information System (INIS)

    Dimitrova, M; Weinzettl, V; Matejicek, J; Dejarnac, R; Stöckel, J; Havlicek, J; Panek, R; Popov, Tsv; Marinov, S; Costea, S

    2016-01-01

    This paper reports experimental results on plasma interaction with tungsten samples with or without pre-grown He fuzz. Under the experimental conditions, arcing was observed on the fuzzy tungsten samples, resulting in localized melting of the fuzz structure that did not extend into the bulk. The parallel power flux densities were obtained from the data measured by Langmuir probes embedded in the divertor tiles on the COMPASS tokamak. Measurements of the current-voltage probe characteristics were performed during ohmic ELMy H-modes reached in deuterium plasmas at a toroidal magnetic field B T = 1.15 T, plasma current I p = 300 kA and line-averaged electron density n e = 5×10 19 m -3 . The data obtained between the ELMs were processed by the recently published first-derivative probe technique for precise determination of the plasma potential and the electron energy distribution function (EEDF). The spatial profile of the EEDF shows that at the high-field side it is Maxwellian with a temperature of 5 -- 10 eV. The electron temperatures and the ion-saturation current density obtained were used to evaluate the radial distribution of the parallel power flux density as being in the order of 0.05 -- 7 MW/m 2 . (paper)

  7. Predictive modelling of the impact of argon injection on H-mode plasmas in JET with the RITM code

    International Nuclear Information System (INIS)

    Unterberg, B; Kalupin, D; Tokar', M Z; Corrigan, G; Dumortier, P; Huber, A; Jachmich, S; Kempenaars, M; Kreter, A; Messiaen, A M; Monier-Garbet, P; Ongena, J; Puiatti, M E; Valisa, M; Hellermann, M von

    2004-01-01

    Self-consistent modelling of energy and particle transport of the plasma background and impurities has been performed with the code RITM for argon seeded high density H-mode plasmas in JET. The code can reproduce both the profiles in the plasma core and the structure of the edge pedestal. The impact of argon on core transport is found to be small; in particular, no significant change in confinement is observed in both experimental and modelling results. The same transport model, which has been used to reproduce density peaking in the radiative improved mode in TEXTOR, reveals a flat density profile in Ar seeded JET H-mode plasmas in agreement with the experimental observations. This behaviour is attributed to the rather flat profile of the safety factor in the bulk of H-mode discharges

  8. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    International Nuclear Information System (INIS)

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-01-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N 2 -Ar and O 2 -Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N 2 -Ar and O 2 -Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N 2 -Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O 2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O 2 -Ar discharges, the dissociation fraction of O 2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  9. Pellet injection into H-mode ITER plasma with the presence of internal transport barriers

    Science.gov (United States)

    Leekhaphan, P.; Onjun, T.

    2011-04-01

    The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for ω E× B calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.

  10. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, A. M., E-mail: garofalo@fusion.gat.com; Burrell, K. H.; Meneghini, O.; Osborne, T. H.; Paz-Soldan, C.; Smith, S. P.; Snyder, P. B.; Turnbull, A. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Eldon, D.; Grierson, B. A.; Solomon, W. M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Hanson, J. M. [Columbia University, 2960 Broadway, New York, New York 10027-6900 (United States); Holland, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Huijsmans, G. T. A.; Liu, F.; Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Zeng, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States)

    2015-05-15

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER-like shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory, the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. The DIII-D results are in excellent agreement with these predictions, and nonlinear magnetohydrodynamic analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.

  11. First-wall heat-flux measurements during ELMing H-mode plasma

    International Nuclear Information System (INIS)

    Lasnier, C.J.; Allen, S.L.; Hill, D.N.; Leonard, A.W.; Petrie, T.W.

    1994-01-01

    In this report we present measurements of the diverter heat flux in DIII-D for ELMing H-mode and radiative diverter conditions. In previous work we have examined heat flux profiles in lower single-null diverted plasmas and measured the scaling of the peak heat flux with plasma current and beam power. One problem with those results was our lack of good power accounting. This situation has been improved to better than 80--90% accountability with the installation of new bolometer arrays, and the operation of the entire complement of 5 Infrared (IR) TV cameras using the DAPS (Digitizing Automated Processing System) video processing system for rapid inter-shot data analysis. We also have expanded the scope of our measurements to include a wider variety of plasma shapes (e.g., double-null diverters (DND), long and short single-null diverters (SND), and inside-limited plasmas), as well as more diverse discharge conditions. Double-null discharges are of particular interest because that shape has proven to yield the highest confinement (VH-mode) and beta of all DIII-D plasmas, so any future diverter modifications for DIII-D will have to support DND operation. In addition, the proposed TPX tokamak is being designed for double-null operation, and information on the magnitude and distribution of diverter heat flux is needed to support the engineering effort on that project. So far, we have measured the DND power sharing at the target plates and made preliminary tests of heat flux reduction by gas injection

  12. Characteristics of edge pedestals in LHW and NBI heated H-mode plasmas on EAST

    Science.gov (United States)

    Zang, Q.; Wang, T.; Liang, Y.; Sun, Y.; Chen, H.; Xiao, S.; Han, X.; Hu, A.; Hsieh, C.; Zhou, H.; Zhao, J.; Zhang, T.; Gong, X.; Hu, L.; Liu, F.; Hu, C.; Gao, X.; Wan, B.; the EAST Team

    2016-10-01

    By using the recently developed Thomson scattering diagnostic, the pedestal structure of the H-mode with neutral beam injection (NBI) or/and lower hybrid wave (LHW) heating on EAST (Experimental Advanced Superconducting Tokamak) is analyzed in detail. We find that a higher ratio of the power of the NBI to the total power of the NBI and the lower hybrid wave (LHW) will produce a large and regular different edge-localized mode (ELM), and a lower ratio will produce a small and irregular ELM. The experiments show that the mean pedestal width has good correlation with β \\text{p,\\text{ped}}0.5 , The pedestal width appears to be wider than that on other similar machines, which could be due to lithium coating. However, it is difficult to draw any conclusion of correlation between ρ * and the pedestal width for limited ρ * variation and scattered distribution. It is also found that T e/\

  13. Dependence of helium transport on plasma current and ELM frequency in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Finkenthal, D.F.; West, W.P.; Burrell, K.H.; Seraydarian, R.P.

    1993-05-01

    The removal of helium (He) ash from the plasma core with high efficiency to prevent dilution of the D-T fuel mixture is of utmost importance for future fusion devices, such as the International Thermonuclear Experimental Reactor (ITER). A variety of measurements in L-mode conditions have shown that the intrinsic level of helium transport from the core to the edge may be sufficient to prevent sufficient dilution (i.e., τ He /τ E < 5). Preliminary measurements in biased-induced, limited H-mode discharges in TEXTOR suggest that the intrinsic helium transport properties may not be as favorable. If this trend is shown also in diverted H-mode plasmas, then scenarios based on ELMing H-modes would be less desirable. To further establish the database on helium transport in H-mode conditions, recent studies on the DIII-D tokamak have focused on determining helium transport properties in H-mode conditions and the dependence of these properties on plasma current and ELM frequency

  14. Pellet injection into H-mode ITER plasma with the presence of internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Leekhaphan, P. [Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (Thailand); Onjun, T. [Thammasat University, School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology (Thailand)

    2011-04-15

    The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for {omega}{sub E Multiplication-Sign B} calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.

  15. The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments

    International Nuclear Information System (INIS)

    Saibene, G.; Oyama, N.; Loennroth, J.; Andrew, Y.; Luna, E. de la; Giroud, C.; Huysmans, G.T.A.; Kamada, Y.; Kempenaars, M.A.H.; Loarte, A.; Donald, D. Mc; Nave, M.M.F.; Meiggs, A.; Parail, V.; Sartori, R.; Sharapov, S.; Stober, J.; Suzuki, T.; Takechi, M.; Toi, K.; Urano, H.

    2007-01-01

    This paper summarizes results of dimensionless identity experiments in JT-60U and JET, aimed at the comparison of the H-mode pedestal and ELM behaviour in the two devices. Given their similar size, dimensionless matched plasmas are also similar in their dimensional parameters (in particular, the plasma minor radius a is the same in JET and JT-60U). Power and density scans were carried out at two values of I p , providing a q scan (q 95 = 3.1 and 5.1) with fixed (and matched) toroidal field. Contrary to initial expectations, a dimensionless match between the two devices was quite difficult to achieve. In general, p ped in JT-60U is lower than in JET and, at low q, the pedestal pressure of JT-60U with a Type I ELMy edge is matched in JET only in the Type III ELM regime. At q 95 = 5.1, a dimensionless match in ρ*, ν* and β p,ped is obtained with Type I ELMs, but only with low power JET H-modes. These results motivated a closer investigation of experimental conditions in the two devices, to identify possible 'hidden' physics that prevents obtaining a good match of pedestal values over a large range of plasmas parameters. Ripple-induced ion losses of the medium bore plasma used in JT-60U for the similarity experiments are identified as the main difference with JET. The magnitude of the JT-60U ripple losses is sufficient to induce counter-toroidal rotation in co-injected plasma. The influence of ripple losses was demonstrated at q 95 = 5.1: reducing ripple losses by ∼2 (from 4.3 to 1.9 MW) by replacing positive with negative neutral beam injection at approximately constant P in resulted in an increased p ped in JT-60U, providing a good match to full power JET H-modes. At the same time, the counter-toroidal rotation decreased. Physics mechanisms relating ripple losses to pedestal performance are not yet identified, and the possible role of velocity shear in the pedestal stability, as well as the possible influence of ripple on thermal ion transport are briefly

  16. H-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; LaBombard, B.; Snipes, J.A.; Wolfe, S.; Snyder, P.; Wilson, H.; Xu, X.; Nevins, W.

    2003-01-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. C-Mod sees two such mechanisms - EDA and grassy ELMs, but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasi coherent electromagnetic mode that exists at moderate pedestal temperature T 3.5 and does not limit the build up of the edge pressure gradient. The mode is not observed in the ideal MHD stability analysis, but is recorded in the nonlinear real geometry fluctuations modeling based on fluid equations and is thus tentatively identified as a resistive ballooning mode. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations (f< 50 kHz) and small irregular ELMs are observed. Based on ideal MHD calculations that include the effects of edge bootstrap current, these ELMs are identified as medium n (10 < n < 50) coupled peeling/ballooning modes. The stability thresholds, its dependence on the plasma shape and the modes structure are studied experimentally and with the linear MHD stability code ELITE. (author)

  17. Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W. M., E-mail: solomon@fusion.gat.com; Bortolon, A.; Grierson, B. A.; Nazikian, R.; Poli, F. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Snyder, P. B.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Leonard, A. W.; Meneghini, O.; Osborne, T. H.; Petty, C. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Loarte, A. [ITER Organization, Route de Vinon-sur-Verdon - CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2016-05-15

    A new high pedestal regime (“Super H-mode”) has been predicted and accessed on DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. While elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER can benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. Similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.

  18. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    Science.gov (United States)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  19. High performance H-mode plasmas at densities above the Greenwald limit

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Osborne, T.H.; Leonard, A.W.

    2001-01-01

    Densities up to 40 percent above the Greenwald limit are reproducibly achieved in high confinement (H ITER89p =2) ELMing H-mode discharges. Simultaneous gas fueling and divertor pumping were used to obtain these results. Confinement of these discharges, similar to moderate density H-mode, is characterized by a stiff temperature profile, and therefore sensitive to the density profile. A particle transport model is presented that explains the roles of divertor pumping and geometry for access to high densities. Energy loss per ELM at high density is a factor of five lower than predictions of an earlier scaling, based on data from lower density discharges. (author)

  20. Characterization of fueling NSTX H-mode plasmas diverted to a liquid lithium divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R., E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Kugel, H.W.; Abrams, T. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, West Lafayette, IN 47907 (United States); Bell, M.G.; Bell, R.E.; Diallo, A.; Gerhardt, S.P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, IN 47907 (United States); Jaworski, M.A., E-mail: mjaworsk@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Kallman, J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mansfield, D. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Nygren, R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Ono, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); and others

    2013-07-15

    Deuterium fueling experiments were conducted with the NSTX Liquid Lithium Divertor (LLD). Lithium evaporation recoated the LLD surface to approximate flowing liquid Li to sustain D retention. In the first experiment with the diverted outer strike point on the LLD, the difference between the applied D gas input and the plasma D content reached very high values without disrupting the plasma, as would normally occur in the absence of Li pumping, and there was also little change in plasma D content. In the second experiment, constant fueling was applied, as the LLD temperature was varied to change the surface from solid to liquid. The D retention was relatively constant, and about the same as that for solid Li coatings on graphite, or twice that achieved without Li PFC coatings. Contamination of the LLD surface was also possible due to compound formation and erosion and redeposition from carbon PFCs.

  1. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times

  2. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Medley, S.S.; Gorelenkov, N.N.; Andre, R.; Bell, R.E.; Darrow, D.S.; Fredrickson, E.D.; Kaye, S.M.; LeBlanc, B.P.; Roquemore, A.L.

    2004-01-01

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E ∼ 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and

  3. The Effect of Plasma Shape on H-Mode Pedestal Characteristics on DIII-D

    International Nuclear Information System (INIS)

    T.H. Osborne; J.R. Ferron; R.J. Groebner; L.L. Lao; A.W. Leonard; R. Maingi; R.L. Miller; A.D. Turnbull; M.R. Wade; J.G. Watkins

    1999-01-01

    The characteristics of the H-mode are studied in discharges with varying triangularity and squareness. The pressure at the top of the H-mode pedestal increases strongly with triangularity primarily due to an increase in the margin by which the edge pressure gradient exceeds the ideal ballooning mode first stability limit. Two models are considered for how the edge may exceed the ballooning mode limit. In one model [1], access to the ballooning mode second stable regime allows the edge pressure gradient and associated bootstrap current to continue to increase until an edge localized, low toroidal mode number, ideal kink mode is destabilized. In the second model [2], the finite width of the H-mode transport barrier, and diamagnetic effects raise the pressure gradient limit above the ballooning mode limit. We observe a weak inverse dependence of the width of the H-mode transport barrier, Δ, on triangularity relative to the previously obtained [3] scaling Δ ∞ (β P PED ) 1/2 . The energy loss for Type I ELMs increases with triangularity in proportion to the pedestal energy increase. The temperature profile is found to respond stiffly to changes in T PED at low temperature, while at high temperature the response is additive. The response of the density profile is also found to play a role in the response of the total stored energy to changes in the W PED

  4. Intermittency in the Scrape-off Layer of the National Spherical Torus Experiment During H-mode Confinement

    International Nuclear Information System (INIS)

    Maqueda, R.J.; Stotler, D.P.; Zweben, S.J.

    2010-01-01

    A gas puff imaging diagnostic is used in the National Spherical Tokamak Experiment (M. Ono, et al., Nucl. Fusion 40, 557 (2000)) to study the edge turbulence and intermittency present during H-mode discharges. In the case of low power Ohmic H-modes the suppression of turbulence/blobs is maintained through the duration of the (short lived) H-modes. Similar quiescent edges are seen during the early stages of H-modes created with the use of neutral beam injection. Nevertheless, as time progresses following the L-H transition, turbulence and blobs reappear although at a lower level than that typically seen during L-mode confinement. It is also seen that the time-averaged SOL emission profile broadens, as the power loss across the separatrix increases. These broad profiles are characterized by a large level of fluctuations and intermittent events.

  5. H-mode access during plasma current ramp-up in TCV

    International Nuclear Information System (INIS)

    Martin, Y.; Behn, R.; Furno, I.; Labit, B.; Reimerdes, H.

    2014-01-01

    A recent TCV experiment has investigated the dependence of the L–H transition threshold power on the plasma current ramp-rate and the X-point height above the divertor target, which both have previously been seen to affect the transition behaviour. Systematic scans in ohmically heated plasmas do not show any dependence on the plasma current ramp-up rate. In contrast, the threshold power is found to increase by a factor of two while the X-point is moved from about 10 cm up to 35 cm above the vessel floor. However, further increase, up to 60 cm, does not lead to any further increase of the required power. The Fundamenski et al model is tested against the measurements. Estimates of the Wagner number (Wa) at L–H transitions are generally close to unity, in accordance with the model. In contrast, estimates of Wa before the L–H transition, i.e. in L-mode, do not show the expected evolution towards unity. (paper)

  6. Three-dimensional simulation of H-mode plasmas with localized divertor impurity injection on Alcator C-Mod using the edge transport code EMC3-EIRENE

    International Nuclear Information System (INIS)

    Lore, J. D.; Reinke, M. L.; Lipschultz, B.; Brunner, D.; LaBombard, B.; Terry, J.; Pitts, R. A.; Feng, Y.

    2015-01-01

    Experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (∼1.1) in divertor electron temperatures for high-power enhanced D-alpha H-mode plasmas. This is in contrast to similar experiments in Ohmically heated L-mode plasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due to the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. The consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE

  7. Plasma-edge gradients in L-mode and ELM-free H-mode JET plasmas

    International Nuclear Information System (INIS)

    Breger, P.; Zastrow, K.-D.; Davies, S.J.; K ig, R.W.T.; Summers, D.D.R.; Hellermann, M.G. von; Flewin, C.; Hawkes, N.C.; Pietrzyk, Z.A.; Porte, L.

    1998-01-01

    Experimental plasma-edge gradients in JET during the edge-localized-mode (ELM) free H-mode are examined for evidence of the presence and location of the transport barrier region inside the magnetic separatrix. High spatial resolution data in electron density is available in- and outside the separatrix from an Li-beam diagnostic, and in electron temperature inside the separatrix from an ECE diagnostic, while outside the separatrix, a reciprocating probe provides electron density and temperature data in the scrape-off layer. Ion temperatures and densities are measured using an edge charge-exchange diagnostic. A comparison of observed widths and gradients of this edge region with each other and with theoretical expectations is made. Measurements show that ions and electrons form different barrier regions. Furthermore, the electron temperature barrier width (3-4 cm) is about twice that of electron density, in conflict with existing scaling laws. Suitable parametrization of the edge data enables an electron pressure gradient to be deduced for the first time at JET. It rises during the ELM-free phase to reach only about half the marginal pressure gradient expected from ballooning stability before the first ELM. Subsequent type I ELMs occur on a pressure gradient contour roughly consistent with both a constant barrier width model and a ballooning mode envelope model. (author)

  8. ITER operational space for full plasma current H-mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, M. [Assoc. Euratom-ENEA-CREATE, Seconda University di Napoli, Aversa (Italy)], E-mail: massimiliano.mattei@unirc.it; Cavinato, M.; Saibene, G.; Portone, A. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Albanese, R.; Ambrosino, G. [Assoc. Euratom-ENEA-CREATE, University Napoli Federico II, Napoli (Italy); Horton, L.D. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Kessel, C. [Princeton Plasma Physics Laboratory, Princeton University (United States); Koechl, F. [Assoc. EURATOM-OAW/ATI, Vienna (Austria); Lomas, P.J. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Nunes, I. [Assoc. EURATOM/IST, Centro de Fusao Nuclear, Lisbon (Portugal); Parail, V. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Sartori, R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Sips, A.C.C. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Thomas, P.R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain)

    2009-06-15

    Sensitivity studies performed as part of the ITER IO design review highlighted a very stiff dependence of the maximum Q attainable on the machine parameters. In particular, in the considered range, the achievable Q scales with I{sub p}{sup 4}. As a consequence, the achievement of the ITER objective of Q = 10 requires the machine to be routinely operated at a nominal current I{sub p} of 15 MA, and at full toroidal field BT of 5.3 T. This paper analyses the capabilities of the poloidal field (PF) system (including the central solenoid) of ITER against realistic full current plasma scenarios. An exploration of the ITER operational space for the 15 and 17 MA inductive scenario is carried out. An extensive analysis includes the evaluation of margins for the closed loop shape control action. The overall results of this analysis indicate that the control of a 15 MA plasma in ITER is likely to be adequate in the range of li 0.7-0.9 whereas, for a 17 MA plasma, control capabilities are strongly reduced. The ITER operational space, provided by the reference pre-2008 PF system, was rather limited if compared to the range of parameters normally observed in present experiment. Proposals for increasing the current and field limits on PF2, PF5 and PF6, adjustment on the number of turns in some of the PF coils, changes to the divertor dome geometry, to the conductor of PF6 to Nb3Sn, moving PF6 radially and/or vertically are described and evaluated in the paper. Some of them have been included in 2008 ITER revised configuration.

  9. Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer

    International Nuclear Information System (INIS)

    Shinohara, Kouji

    1997-08-01

    We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs

  10. Nonlinear theory of trapped electron temperature gradient driven turbulence in flat density H-mode plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.

    1990-12-01

    Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs

  11. The H-mode of ASDEX

    International Nuclear Information System (INIS)

    1989-01-01

    The paper is a review of investigations of the H-mode on ASDEX performed since its discovery in 1982. The topics discussed are: (1) the development of the plasma profiles, with steep gradients in the edge region and flat profiles in the bulk plasma, (2) the MHD properties resulting from the profile changes, including an extensive stability analysis, (3) the impurity development, with special emphasis on the MHD aspects and on neoclassical impurity transport effects in quiescent H-phases, and (4) the properties of the edge plasma, including the evidence of three-dimensional distortions at the edge. The part on confinement includes scaling studies and the results of transport analysis. The power threshold of the H-mode is found to depend weakly on the density, but there is probably no dependence on the toroidal field or the current. For the operational range of the H-mode, new results for the limiter H-mode on ASDEX and the development of the H-mode under beam current drive conditions are included. A number of experiments are described which demonstrate the crucial role of the edge electron temperature in the L-H transition. New results of magnetic and density fluctuation studies at the plasma edge within the edge transport barrier are presented. Finally, the findings on ASDEX are compared with results obtained on other machines and are used to test various H-mode theories. (author). 131 refs, 103 figs, 1 tab

  12. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    International Nuclear Information System (INIS)

    Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C.

    2001-01-01

    First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement

  13. Investigation of the hydrogen fluxes in the plasma edge of W7-AS during H-mode discharges

    International Nuclear Information System (INIS)

    Langer, U.; Taglauer, E.; Fischer, R.

    2001-01-01

    In the stellarator W7-AS the H-mode is characterized by an edge transport barrier which is localized within a few centimeters inside the separatrix. The corresponding L-H transition shows well-known features such as the steepening of the temperature and density profiles in the region of the separatrix. With a so-called sniffer probe the temporal development of the hydrogen and deuterium fluxes has been studied in the plasma edge during different H-mode discharges with deuterium gas puffing. Prior to the transition a significant reduction of the deuterium and also the hydrogen fluxes can be observed. This fact confirms the assumption that the steepening of the density profiles starts at the outermost edge of the plasma. Moreover, sniffer probe measurements in the plasma edge could therefore identify a precursor for the L-H transition. The analysis of the hydrogen neutral gases shows a distinct change of the hydrogen isotope ratio during the transition. This observation is in agreement with the change in the particle fluxes onto the targets and can also be seen in the reduced H α signals from the limiters. It is further demonstrated that significant improvement in the time resolution of the measured data can be obtained by deconvolution of the data with the apparatus function using Bayesian probability theory and the Maximum Entropy method with adaptive kernels

  14. Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode plasma on EAST tokamak

    Science.gov (United States)

    Zhen, ZHENG; Nong, XIANG; Jiale, CHEN; Siye, DING; Hongfei, DU; Guoqiang, LI; Yifeng, WANG; Haiqing, LIU; Yingying, LI; Bo, LYU; Qing, ZANG

    2018-04-01

    The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.

  15. Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Doyle, E J [University of California, Los Angeles, CA 90095-1597 (United States); Austin, M E [University of Texas at Austin, Austin, TX 78712 (United States); DeGrassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Gohil, P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Greenfield, C M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Jayakumar, R [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); Kaplan, D H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lao, L L [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); McKee, G R [University of Wisconsin, Madison, WI 53706-1687 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Rhodes, T L [University of California, Los Angeles, CA 90095-1597 (United States); Wade, M R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, G [University of California, Los Angeles, CA 90095-1597 (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Zeng, L [University of California, Los Angeles, CA 90095-1597 (United States)

    2004-05-01

    H-mode operation is the choice for next step tokamak devices based on either conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the {beta} limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D over the past four years have demonstrated a new operating regime, the quiescent H-mode (QH-mode) regime, that solves these problems. QH-mode plasmas have now been run for over 4 s (>30 energy confinement times). Utilizing the steady-state nature of the QH-mode edge allows us to obtain unprecedented spatial resolution of the edge ion profiles and the edge radial electric field, E{sub r}, by sweeping the edge plasma slowly past the view points of the charge exchange spectroscopy system. We have investigated the effects of direct edge ion orbit loss on the creation and sustainment of the QH-mode. Direct loss of ions injected into the velocity-space loss cone at the plasma edge is not necessary for creation or sustainment of the QH-mode. The direct ion orbit loss has little effect on the edge E{sub r} well. The E{sub r} at the bottom of the well in these cases is about -100 kV m{sup -1} compared with -20 to -30 kV m{sup -1} in the standard H-mode. The well is about 1 cm wide, which is close to the diameter of the deuteron gyro-orbit. We also have investigated the effect of changing edge triangularity by changing the plasma shape from upwardly biased single null to magnetically balanced double null. We have now achieved the QH-mode in these double-null plasmas. The increased triangularity allows us to increase pedestal density in QH-mode plasmas by a factor of about 2.5 and overall pedestal pressure by a factor of 2. Pedestal {beta} and {nu}{sup *} values matching the values desired for ITER have been achieved. In

  16. Transport analysis of the edge zone of H-mode plasmas by computer simulation

    International Nuclear Information System (INIS)

    Becker, G.; Murmann, H.

    1988-01-01

    Local transport and ideal ballooning stability in the L-phase and ELM-free H-phase in ASDEX are analysed by computer modelling. It is found that the diffusivities χ e and D at the edge are reduced by a factor of six a few milliseconds after the H-transition. Local transport in the inner plasma improves at an early stage by a typical factor of two. A change in the collisionality regime of electrons and ions does not take place. During the L-phase and the quiescent H-phase ideal ballooning modes are found to be stable. Computer experiments further show that a significant reduction in the particle flux at the separatrix takes place which is closely connected with the H-transition process. This explains the observed buildup of a density shoulder on a millisecond time-scale and the drop of the particle flow into the divertor. A strong decrease of the electron heat conduction flux at the separatrix is, however, ruled out in ELM-free periods. On the assumption of electrostatic turbulence induced transport, these results are consistent with measured density fluctuation levels near the separatrix. (author). 20 refs, 9 figs

  17. Evolution of the radial electric field in a JET H-mode plasma

    International Nuclear Information System (INIS)

    Andrew, Y.; Hawkes, N.C.; Biewer, T.; Crombe, K.; Keeling, D.; De la Luna, E.; Giroud, C.; Korotkov, A.; Meigs, A.; Murari, A.; Nunes, I.; Sartori, R.; Tala, T.; Andrew, Y.; Hawkes, N.C.; Keeling, D.; Giroud, C.; Korotkov, A.; Meigs, A.; Biewer, T.; Crombe, K.; De la Luna, E.; Murari, A.; Nunes, I.; Sartori, R.; Tala, T.

    2008-01-01

    Results from recent measurements of carbon impurity ion toroidal and poloidal rotation velocities, ion temperature, ion density and the resulting radial electric field (E r ) profiles are presented from an evolving Joint European Torus (JET) tokamak plasma over a range of energy and particle confinement regimes. Significant levels of edge plasma poloidal rotation velocity have been measured for the first time on JET, with maximum values of ±9 km/s. Such values of poloidal rotation provide an important contribution to the total edge plasma E r profiles. Large values of shear in the measured E r profiles are observed to arise as a consequence of the presence of the edge transport barrier (ETB) and do not appear to be necessary for their formation or destruction. These results have an important impact on potential mechanisms for transport barrier triggering and sustainment in present-day and future high-performance fusion plasmas. (authors)

  18. Tungsten transport and sources control in JET ITER-like wall H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fedorczak, N., E-mail: nicolas.fedorczak@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Monier-Garbet, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pütterich, T. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Brezinsek, S. [Institute of Energy and Climate Research, Forschungszentrum Jlich, Assoc EURATOM-FZJ, Jlich (Germany); Devynck, P.; Dumont, R.; Goniche, M.; Joffrin, E. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Lerche, E. [Association EURATOM-Belgian State, LPP-ERM-KMS, TEC partner, Brussels (Belgium); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lipschultz, B. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom); Luna, E. de la [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Maddison, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Maggi, C. [MPI für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Matthews, G. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Nunes, I. [Istituto de plasmas e fusao nuclear, Lisboa (Portugal); Rimini, F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Solano, E.R. [Laboratorio Nacional de Fusin, Asociacin EURATOM/CIEMAT, 28040 Madrid (Spain); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Tsalas, M. [Association EURATOM-Hellenic Republic, NCSR Demokritos 153 10, Attica (Greece); Vries, P. de [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-08-15

    A set of discharges performed with the JET ITER-like wall is investigated with respect to control capabilities on tungsten sources and transport. In attached divertor regimes, increasing fueling by gas puff results in higher divertor recycling ion flux, lower divertor tungsten source, higher ELM frequency and lower core plasma radiation, dominated by tungsten ions. Both pedestal flushing by ELMs and divertor screening (including redeposition) are possibly responsible. For specific scenarios, kicks in plasma vertical position can be employed to increase the ELM frequency, which results in slightly lower core radiation. The application of ion cyclotron radio frequency heating at the very center of the plasma is efficient to increase the core electron temperature gradient and flatten electron density profile, resulting in a significantly lower central tungsten peaking. Beryllium evaporation in the main chamber did not reduce the local divertor tungsten source whereas core radiation was reduced by approximately 50%.

  19. Direct measurements of the plasma potential in ELMy H-mode plasma with ball-pen probes on ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, J., E-mail: adamek@ipp.cas.c [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic); Rohde, V.; Mueller, H.W.; Herrmann, A. [Institute of Plasma Physics, Association EURATOM/IPP, Garching (Germany); Ionita, C.; Schrittwieser, R.; Mehlmann, F. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Association EURATOM/OAW (Austria); Stoeckel, J.; Horacek, J.; Brotankova, J. [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic)

    2009-06-15

    Experimental investigations of the plasma potential and electric field were performed for ELMy H-mode plasmas in the vicinity of the limiter shadow of ASDEX Upgrade. A fast reciprocating probe with a probe head containing four ball-pen probes (BPPs) [J. Adamek et al., Czech. J. Phys. 54 (2004) C95 - C99.] was used on the midplane manipulator. Different gradients of the plasma potential were observed during ELMs and in between them. The temporal resolution of the direct plasma potential measurements with BPP was determined by using power-spectra analysis.

  20. Turbulence at the transition to the high density H-mode in Wendelstein 7-AS plasmas

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Baumel, S.

    2003-01-01

    Recently a new improved confinement regime was found in the Wendelstein 7-AS (W7-AS) stellarator (Renner H. et al 1989 Plasma Phys. Control. Fusion 31 1579). The discovery of this high density high confinement mode (HDH-mode) was facilitated by the installation of divertor modules. In this paper,...

  1. ELMy-H mode as limit cycle and chaotic oscillations in tokamak plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Fukuyama, Atsushi.

    1991-06-01

    A model of Edge Localized Modes (ELMs) in tokamaks is presented. A limit cycle solution is found in time-dependent Ginzburg Landau type model equation of L/H transition, which has a hysteresis curve between the plasma gradient and flux. The oscillation of edge density appears near the L/H transition boundary. Spatial structure of the intermediate state (mesophase) is obtained in the edge region. Chaotic oscillation is predicted due to random neutrals and external oscillations. (author)

  2. ELMy-H mode as limit cycle and chaotic oscillations in tokamak plasmas

    International Nuclear Information System (INIS)

    Itoh Sanae, I.; Itoh, Kimitaka; Fukuyama, Atsushi; Miura, Yukitoshi.

    1991-05-01

    A model of Edge Localized Modes (ELMs) in tokamak plasmas is presented. A limit cycle solution is found in the transport equation (time-dependent Ginzburg-Landau type), which a has hysteresis curve between the gradient and flux. Periodic oscillation of the particle outflux and L/H intermediate state are predicted near the L/H transition boundary. A mesophase in spatial structure appears near edge. Chaotic oscillation is also predicted. (author)

  3. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  4. A Comparison of Plasma Performance Between Single-Null and Double-Null Configurations During Elming H-Mode

    International Nuclear Information System (INIS)

    Petrie, T.W.; Fenstermacher, M.E.; Allen, S.L.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Greenfield, C.M.; Hyatt, A.W.; Lasnier, C.J.; La Haye, R.J.; Leonard, A.W.; Mahdavi, M.A.; Osborne, T.H.; Porter, G.D.; Rhodes, T.L.; Thomas, D.M.; Watkins, J.G.; West, W.P.; Wolf, N.S.

    1999-01-01

    Tokamak plasma performance generally improves with increased shaping of the plasma cross section, such as higher elongation and higher triangularity. The stronger shaping, especially higher triangularity, leads to changes in the magnetic topology of the divertor. Because there are engineering and divertor physics issues associated with changes in the details of the divertor flux geometry, especially as the configuration transitions from a single-null (SN) divertor to a marginally balanced double-null (DN) divertor, we have undertaken a systematic evaluation of the plasma characteristics as the magnetic geometry is varied, particularly with respect to (1) energy confinement, (2) the response of the plasma to deuterium gas fueling, (3) the operational density range for the ELMing H-mode, and (4) heat flux sharing by the diverters. To quantify the degree of divertor imbalance (or equivalently, to what degree the shape is double-null or single-null), we define a parameter DRSEP. DRSEP is taken as the radial distance between the upper divertor separatrix and the lower divertor separatrix, as determined at the outboard midplane. For example, if DRSEP=O, the configuration is a magnetically balanced DN; if DRSEP = +1.0 cm, the divertor configuration is biased toward the upper divertor. Three examples are shown in Fig. 1. In the following discussions, VB drift is directed toward the lower divertor

  5. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    Science.gov (United States)

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  6. Edge Recycling and Heat Fluxes in L- and H-mode NSTX Plasmas

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Maingi, R.; Raman, R.; Kugel, H.; LeBlanc, B.; Roquemore, A.L.; Lasnier, C.J.

    2003-01-01

    Introduction Edge characterization experiments have been conducted in NSTX to provide an initial survey of the edge particle and heat fluxes and their scaling with input power and electron density. The experiments also provided a database of conditions for the analyses of the NSTX global particle sources, core fueling, and divertor operating regimes

  7. Direct measurements of the plasma potential in ELMy H-mode plasma with ball-pen probes on ASDEX Upgrade tokamak

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Stöckel, Jan; Brotánková, Jana; Horáček, Jan; Rohde, V.; Müller, H. W.; Herrmann, A.; Schrittwieser, R.; Mehlmann, F.; Ionita, C.

    390-391, - (2009), s. 1114-1117 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Device/18th./. Toledo, 26.05.2008-30.05.2008] R&D Projects: GA AV ČR KJB100430601 Institutional research plan: CEZ:AV0Z20430508 Keywords : Edge plasma * Electric field * ELMs * H-mode * ASDEX-Upgrade Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.933, year: 2009 http://dx.doi.org/10.1016/j.jnucmat.2009.01.286

  8. Dynamics of the Plasma Edge during the L-H Transition and H-mode in MAST

    Energy Technology Data Exchange (ETDEWEB)

    Scannell, R.; Meyer, H.; Cunningham, G.; Field, A.; Kirk, A.; Samuli, S.; Patel, A., E-mail: rory.scannell@ccfe.ac.uk [EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Dunai, D.; Zoletnik, S. [KFKI-RMKI, EURATOM Association, Budapest (Hungary)

    2012-09-15

    Full text: The evolution of the MAST plasma during the L-H transition has been studied in the density range 1.5 - 3.0 x 10{sup 19} m{sup -3}. A dithering transition phase, the duration of which depends on the plasma density, is observed before the transition to ELMy or ELM free H-mode. A range of new diagnostic data has been taken during these periods, showing a spin-up of the perpendicular He{sup +} flow correlated with changes in the Da emission. In this density range the power threshold increases with increasing density. As well as the expected power threshold dependency on absolute density, the threshold power is observed to depend on the density evolution prior to the transition. Small changes in fuelling location, plasma current, toroidal field and plasma shape can lead to changes in the power threshold by a factor of two, significantly larger than hose predicted by the scaling. The pedestal evolution between typical type I ELMs in connected double null configuration on MAST show increasing pedestal pressure and width as function time through the ELM cycle. This results in an expanding high pressure gradient region with little increase in peak pressure gradient within this region. It has been shown that the triggering of these ELMs is caused by decreasing stability limit as the transport barrier moves inwards. Application of n = 6 resonant magnetic perturbations to the plasma causes ELM mitigation, with smaller but much more frequent ELMs. The pressure gradients in this mitigated period are significantly less than those observed during non-mitigated type I ELMs. This reduction in pressure gradient, which indicates a different stability limit, results from both a decrease in pedestal height and increase in pedestal width. (author)

  9. L to H-mode Power Threshold and Confinement Characteristics of H-modes in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Na, Y.S., E-mail: ftwalker.hyuns@gmail.com [Seoul National University, Seoul (Korea, Republic of); Ahn, J. W. [Oak Ridge National Laboratory, Oak Ridge (United States); Jeon, Y. M.; Yoon, S. W.; Lee, K. D.; Ko, W. H.; Bae, Y. S.; Kim, W. C.; Kwak, J. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-09-15

    Full text: Since KSTAR has obtained the H-mode in 2010 campaign, H-mode plasmas were routinely obtained with combined heating of NBI with maximum power of 1.5 MW and ECRH with maximum power of {approx} 0.3 MW and {approx} 0.6 MW for 110 GHz and 170 GHz, respectively. The L- to H-mode power threshold and confinement properties of KSTAR H-modes are investigated in this work. Firstly, the L- to H-mode power threshold and the power loss to the seperatrix are calculated by power balance analysis for about collected 400 shots. As a result, a trend of roll-over is observed in the power threshold of KSTAR H-mode compared with the multi-machine power threshold scaling in the low density regime. Dependence of the power threshold on other parameters are also investigated such as the X-point position and shaping parameters like as triangularity and elongation. In addition, the reason of reduction of power threshold in 2011 campaign compared with that in 2010 is addressed. Secondly, the confinement enhancement factors are calculated to evaluate the performance of KSTAR H-modes. The calculated H{sub 89-p} and H{sub 98} (y, 2) represent that the confinement is enhanced in most KSTAR H-mode discharges. Interestingly, even in L-mode phases, confinement is observed to be enhanced against the multi-machine scalings. H{sub exp} factor is newly introduced to evaluate the amount of confinement improvement in the H-mode phase compared with the L-mode phase in a single discharge. H{sub exp} exhibits that the global energy confinement time of the H-mode phase is improved about 1.3 - 2.0 times compared with that of the L-mode phase. Finally, interpretive and predictive numerical simulations are carried out using the ASTRA code for typical KSTAR H-mode discharges. The Weiland model and the GLF23 model are employed for calculating the anomalous contributions of both electron and ion heat transport in predictive simulations. For the H-mode phase, the Weiland model reproduces the experiment

  10. Recent H-mode density limit experiments on DIII-D

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Maingi, R.; Hyatt, A.W.

    1997-06-01

    A vast body of tokamak data is in good agreement with the empirical density limit scalings proposed by Hugill and Greenwald. These scalings have common puzzling features of showing no dependence on either impurity concentration or heating power, since the density limit is frequently correlated with a rapid rise of the edge radiation. Despite the resiliency of these scalings, several machines under restrictive conditions have operated at densities well above the predictions of these scalings, albeit with pellet injection and at varying degrees of confinement degradation. Furthermore, data from several machines display a weak dependence on heating power. These results cast doubt on the universal validity of both of these scalings. Nevertheless the fact remains that access to densities above Hugill-Greenwald scaling is very difficult. A number of theories based on radiative power balance in the plasma boundary have explained some but not all features of tokamak density limit behavior, and as ITER design studies recently brought to focus, a satisfactory understanding of this phenomenon is lacking. Motivated by a need for better understanding of effects of density and fueling on tokamak plasmas in general, the authors have conducted a series of experiments designed to identify and isolate physical effects suspected to be directly or indirectly responsible for the density limit. The physical effects being considered include: divertor power balance, MARFE, poloidally symmetric radiative instabilities, MHD instabilities, and transport. In this paper they first present a brief summary of the experimental results up to the writing of this paper. The remainder of the paper is devoted to a comparison of this data at the onset of the MARFE instability with predictions of theory and the implications of the results on access to densities beyond the Hugill-Greenwald limit

  11. Plasma dynamics with second and third-harmonic ECRH and access to quasi-stationary ELM-free H-mode on TCV

    International Nuclear Information System (INIS)

    Porte, L.; Coda, S.; Alberti, S.; Arnoux, G.; Blanchard, P.; Bortolon, A.; Fasoli, A.; Goodman, T.P.; Klimanov, Y.; Martin, Y.; Maslov, M.; Scarabosio, A.; Weisen, H.

    2007-01-01

    Intense electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) are employed on the Tokamak a Configuration Variable (TCV) both in second- and third-harmonic X-mode (X2 and X3). The plasma behaviour under such conditions is driven largely by the electron dynamics, motivating extensive studies of the heating and relaxation phenomena governing both the thermal and suprathermal electron populations. In particular, the dynamics of suprathermal electrons are intimately tied to the physics of X2 ECCD. ECRH is also a useful tool for manipulating the electron distribution function in both physical and velocity space. Fundamental studies of the energetic electron dynamics have been performed using periodic, low-duty-cycle bursts of ECRH, with negligible average power injection, and with electron cyclotron emission (ECE). The characteristic times of the dynamical evolution are clearly revealed. Suprathermal electrons have also been shown to affect the absorption of X3 radiation. Thermal electrons play a crucial role in high density plasmas where indirect ion heating can be achieved through ion-electron collisions. In recent experiments ∼ 1.35 MW of vertically launched X3 ECRH was coupled to a diverted ELMy H-mode plasma. In cases where ≥ 1.1 MW of ECRH power was coupled, the discharge was able to transition into a quasi-stationary ELM-free H-mode regime. These H-modes operated at β N ∼ 2, n-bar e /n G approx. 0.25 and had high energy confinement, H IPB98(y,2) up to ∼ 1.6. Despite being purely electron heated and having no net particle source these discharges maintained a density peaking factor (n e,o /(n e ) ∼ 1.6). They also exhibited spontaneous toroidal momentum production in the co-current direction. The momentum production is due to a transport process as there is no external momentum input. This process supports little or no radial gradient of the toroidal velocity

  12. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Q. Q., E-mail: yangqq@ipp.ac.cn; Zhong, F. C., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Jia, M. N. [College of Science, Donghua University, Shanghai 201620 (China); Xu, G. S., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  13. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K. H.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Osborne, T. H.; Petty, C. C.; Snyder, P. B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Barada, K.; Rhodes, T. L.; Zeng, L. [University of California-Los Angeles, Los Angeles, California 90024 (United States); Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Yan, Z. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H{sub 98y2} international tokamak energy confinement scaling (H{sub 98y2} = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β{sub N} = 1.6–1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints

  14. Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection

    DEFF Research Database (Denmark)

    Valisa, M.; Carraro, L.; Predebon, I.

    2011-01-01

    The scan of ion cyclotron resonant heating (ICRH) power has been used to systematically study the pump out effect of central electron heating on impurities such as Ni and Mo in H-mode low collisionality discharges in JET. The transport parameters of Ni and Mo have been measured by introducing...

  15. Electron Bernstein wave heating of over-dense H-mode plasmas in the TCV tokamak via O-X-B double mode conversion

    International Nuclear Information System (INIS)

    Pochelon, A.; Mueck, A.; Curchod, L.; Camenen, Y.; Coda, S.; Duval, B.P.; Goodman, T.P.; Klimanov, I.; Laqua, H.P.; Martin, Y.; Moret, J.-M.; Porte, L.; Sushkov, A.; Udintsev, V.S.; Volpe, F.

    2007-01-01

    This paper reports on the first demonstration of electron Bernstein wave heating (EBWH) by double mode conversion from ordinary (O-) to Bernstein (B-) via the extraordinary (X-) mode in an over-dense tokamak plasma, using low field side launch, achieved in the TCV tokamak H-mode, making use of its naturally generated steep density gradient. This technique offers the possibility of overcoming the upper density limit of conventional EC microwave heating. The sensitive dependence of the O-X mode conversion on the microwave launching direction has been verified experimentally. Localized power deposition, consistent with theoretical predictions, has been observed at densities well above the conventional cut-off. Central heating has been achieved, at powers up to two megawatts. This demonstrates the potential of EBW in tokamak H-modes, the intended mode of operation for a reactor such as ITER

  16. Low-n magnetohydrodynamic edge instabilities in quiescent H-mode plasmas with a safety-factor plateau

    International Nuclear Information System (INIS)

    Zheng, L.J.; Kotschenreuther, M.T.; Valanju, P.

    2013-01-01

    Low-n magnetohydrodynamic (MHD) modes in the quiescent high confinement mode (H-mode) pedestal are investigated in this paper. Here, n is the toroidal mode number. The low collisionality regime is considered, so that a safety-factor plateau arises in the pedestal region because of the strong bootstrap current. The JET-like (Joint European Torus) equilibria of quiescent H-mode discharges are generated numerically using the VMEC code. The stability of this type of equilibria is analysed using the AEGIS code, with subsonic rotation effects taken into account. The current investigation extends the previous studies of n = 1 modes to n = 2 and 3 modes. The numerical results show that the MHD instabilities in this type of equilibria have characteristic features of the infernal mode. We find that this type of mode tends to prevail when the safety-factor value in the shear-free region is slightly larger than an integer. In this case the frequencies (ω n ) of modes with toroidal mode number n roughly follow the rule ω n ∼ −nΩ p , where Ω p is the local rotation frequency where the infernal harmonic prevails. Since the infernal mode tends to develop near the pedestal top, where pressure driving is strong but magnetic shear stabilization is weak, this local rotation frequency tends to be close to the pedestal top value. These typical mode features bear close resemblance to the edge harmonic oscillations (or outer modes) at the quiescent H-mode discharges observed experimentally. (paper)

  17. Drift-based Model for Power Scrape-off Width in Low-Gas-Puff H-mode Plasmas: Theory and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R., E-mail: rgoldston@pppl.gov [Princeton Plasma Physics Laboratory, Princeton (United States)

    2012-09-15

    Full text: A heuristic model for the plasma scrape-off width in low-gas-puff tokamak H-mode plasmas is introduced. {nabla}B and curvature drifts into the scrape-off layer (SOL) are balanced against near-sonic parallel flows out of the SOL, to the divertor plates. These assumptions result in an estimated SOL width of order the poloidal gyroradius. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, derived above, with heat from the main plasma. The separatrix temperature is then calculated based on a two-point model balancing power input to the SOL with Spitzer-Hiarm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in quantitative agreement both in absolute magnitude and in scaling with recent experimental data. The applicability of the Spitzer-Harm model to this regime can be questioned at the lowest densities, where the presence of a sheath can raise the divertor target electron temperature. A more general two-point model including a finite ratio of divertor target to upstream electron temperature shows only a 5% effect on the SOL width with target temperature f{sub T} = 75% of upstream, so this effect is likely negligible in experimentally relevant regimes. To achieve the near-sonic flows measured experimentally, and assumed in this model, sets requirements on the ratio of upstream to total SOL particle sources relative to the square-root of the ratio of target to upstream temperature. As a result very high recycling regimes may allow significantly wider power fluxes. The Pfisch-Schluter model for equilibrium flows has been modified to allow near-sonic flows, appropriate for gradient scale lengths of order the poloidal gyroradius. This results in a new quadrupole flow pattern that amplifies the usual P-S flows at the outer midplane, while reducing them at the inner

  18. Modification of adhered dust on plasma-facing surfaces due to exposure to ELMy H-mode plasma in DIII-D

    Directory of Open Access Journals (Sweden)

    I. Bykov

    2017-08-01

    Full Text Available Transient heat load tests have been conducted in the lower divertor of DIII-D using DiMES manipulator in order to study the behavior of dust on tungsten Plasma Facing Components (PFCs during ELMy H-mode discharges. Samples with pre-adhered, pre-characterized dust have been exposed at the outer strike point (OSP in a series of discharges with varied intra-(inter- ELM heat fluxes. We used C dust because of its high sublimation temperature and non-metal properties. Al dust as a surrogate for Be and W dust were employed as relevant to that in the ITER divertor. The poor initial thermal contact between the substrate and the particles led to overheating, sublimation and shrinking of the carbon dust, and wetting induced coagulation of Al dust. Little modification of the W dust was observed. An enhanced surface adhesion and improvement of the thermal contact of C and Al dust were the result of exposure. A post mortem “adhesive tape” sampling showed that 70% of Al, <5% of W and C particles could not be removed from the surface owing to the improved adhesion. Al and C but not W particles that could be lifted had W inclusions indicating damage to the substrate. This suggests that non destructive methods may be inefficient for removal of dust in ITER.

  19. Comparing 1.5D ONETWO and 2D SOLPS analyses of inter-ELM H-mode plasma in DIII-D

    International Nuclear Information System (INIS)

    Owen, Larry W.; Canik, John; Groebner, R.; Callen, J.D.; Bonnin, X.; Osborne, T.H.

    2010-01-01

    A DIII-D inter-ELM H-mode plasma that is in approximate transport equilibrium is analysed with the 1.5D ONETWO core code and the 2D SOLPS code. In order to investigate the importance of core-edge coupling and 2D effects, including divertor fuelling across the X-point and poloidal asymmetries that are not explicitly included in ONETWO, the domain of SOLPS is extended to very near the magnetic axis. Two principal objectives are (1) to determine whether poloidal asymmetries in the plasma distributions are large enough to vitiate a core-type interpretive plasma transport analysis and (2) to determine whether the interpretive transport coefficients and neutral beam power and particle sources from ONETWO, when used in 2D SOLPS full plasma simulations, yield the same quality fits to the measured upstream density and temperature profiles as obtained with ONETWO. Results show that only a small increase in the separatrix value of the particle diffusion coefficient, and no change in the thermal diffusivities from ONETWO was needed to get excellent agreement of the upstream SOLPS density and temperature profiles and the Thomson scattering and CER data. Good agreement of the ONETWO and SOLPS flux surface averaged distributions of the core electron and D+ densities and temperatures are also obtained. Likewise the C6+ density, with a simple chemical sputtering model based on a constant fraction of the divertor D+ flux, the core heat and particle fluxes and the neutral density reveal no 2D effects in the core/pedestal region that would vitiate a 1.5D treatment of the inter-ELM H-mode plasma.

  20. H-mode study in CHS

    International Nuclear Information System (INIS)

    Toi, K.; Morisaki, T.; Sakakibara, S.

    1995-02-01

    In CHS rapid H-mode transition is observed in NBI heated deuterium and hydrogen plasmas without obvious isotope effect, when a net plasma current is ramped up to increase the external rotational transform. The H-mode of CHS has many similarities with those in tokamaks. Recent measurement with fast response Langmuir probes has revealed that the rapid change in floating potential occurs at the transition, but the change follows the formation of edge transport barrier. The presence of ι/2π = 1 surface near the edge and sawtooth crash triggered by internal modes may play an important role for determining the H-mode transition in CHS. (author)

  1. Ohmic H-mode studies in TUMAN-3

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Levin, L.S.; Tukachinsky, A.S.; Tendler, M.

    1994-01-01

    The spontaneous transition from Ohmically heated limiter discharges into the regime with improved confinement termed as ''Ohmic H-mode'' has been investigated in ''TUMAN-3''. The typical signatures of H-mode in tokamaks with powerful auxiliary heating have been observed: sharp drop of D α radiation with simultaneous increase in the electron density and stored energy, suppression of the density fluctuations and establishing the steep gradient near the periphery. The crucial role of the radial electric field in the L-H transition was found in the experiments with boundary biasing. The possibility of initiating the H-mode using single pellet injection was demonstrated. In Ohmic H-mode strong dependencies of τ E on plasma current and on input power and weak dependence on density were found. Thermal energy confinement time enhanced by a factor of 10 compared to predictions of Neo-Alcator scaling. Longest energy confinement time (30 ms) was obtained in the small tokamak TUMAN-3. Absolute values of the energy confinement time are in agreement with scaling proposed for description of the ELM-free H-modes in devices with powerful auxiliary heating (''DIII-D/JET H-mode'' scaling). (author)

  2. Application of divertor cryopumping to H-mode density control in DIII-D

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Ferron, J.R.; Hyatt, A.W.

    1993-11-01

    In this paper we describe the method and the results of experiments where a unique in-vessel cryopump-baffle system was used to control density of H-mode plasmas. We were able to independently regulate current and density of ELMing H-mode plasmas, each over a range of factor two, and measure the H-mode confinement scaling with plasma density and current. With a modest pumping speed of ∼40 kl/s, particle exhaust rates as high as 2 x 10 22 atom/s -1 have been observed

  3. Detailed study of spontaneous rotation generation in diverted H-mode plasma using the full-f gyrokinetic code XGC1

    Science.gov (United States)

    Seo, Janghoon; Chang, C. S.; Ku, S.; Kwon, J. M.; Yoon, E. S.

    2013-10-01

    The Full-f gyrokinetic code XGC1 is used to study the details of toroidal momentum generation in H-mode plasma. Diverted DIII-D geometry is used, with Monte Carlo neutral particles that are recycled at the limiter wall. Nonlinear Coulomb collisions conserve particle, momentum, and energy. Gyrokinetic ions and adiabatic electrons are used in the present simulation to include the effects from ion gyrokinetic turbulence and neoclassical physics, under self-consistent radial electric field generation. Ion orbit loss physics is automatically included. Simulations show a strong co-Ip flow in the H-mode layer at outside midplane, similarly to the experimental observation from DIII-D and ASDEX-U. The co-Ip flow in the edge propagates inward into core. It is found that the strong co-Ip flow generation is mostly from neoclassical physics. On the other hand, the inward momentum transport is from turbulence physics, consistently with the theory of residual stress from symmetry breaking. Therefore, interaction between the neoclassical and turbulence physics is a key factor in the spontaneous momentum generation.

  4. Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas

    Czech Academy of Sciences Publication Activity Database

    Ekedahl, A.; Petržílka, Václav; Baranov, Y.; Biewer, T.M.; Brix, M.; Goniche, M.; Jacquet, P.; Kirov, K.K.; Klepper, C.C.; Mailloux, J.; Mayoral, M.-L.; Nave, M.F.F.; Ongena, J.; Rachlew, E.

    2012-01-01

    Roč. 54, č. 7 (2012), 074004-074004 ISSN 0741-3335. [IAEA Fusion Energy Conference 2010/23./. Daejeon, 11.10.2010-16.10.2010] R&D Projects: GA ČR GA202/07/0044; GA ČR GAP205/10/2055; GA MŠk(CZ) LG11018 Institutional research plan: CEZ:AV0Z20430508 Keywords : LH wave * plasma * current drive * tokamak * LHCD Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.369, year: 2012 http://iopscience.iop.org/0741-3335/54/7/074004/pdf/0741-3335_54_7_074004.pdf

  5. ELMs and constraints on the H-mode pedestal: peeling-ballooning stability calculation and comparison with experiment

    International Nuclear Information System (INIS)

    Snyder, P.B.; Ferron, J.R.; Wilson, H.R.

    2004-01-01

    We review and test the peeling-ballooning model for edge localized modes (ELMs) and pedestal constraints, a model based upon theoretical analysis of magnetohydrodynamic (MHD) instabilities that can limit the pedestal height and drive ELMs. A highly efficient MHD stability code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including constraints on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependent on the density and temperature separately, rather than simply on the pressure. ELITE stability calculations are directly compared with experimental data for a series of plasmas in which the density is varied and ELM characteristics change. In addition, a technique is developed whereby peeling-ballooning pedestal constraints are calculated as a function of key equilibrium parameters via ELITE calculations using series of model equilibria. This technique is used to successfully compare the expected pedestal height as a function of density, triangularity and plasma current with experimental data. Furthermore, the technique can be applied for parameter ranges beyond the purview of present experiments, and we present a brief projection of peeling-ballooning pedestal constraints for burning plasma tokamak designs. (author)

  6. Studies of Turbulence and Transport in Alcator C-Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO

    Science.gov (United States)

    Porkolab, M.; Lin, L.; Edlund, E. M.; Rost, J. C.; Fiore, C. L.; Greenwald, M.; Mikkelsen, D.

    2008-11-01

    We present recent experimental measurements of turbulence and transport in C-Mod H-Mode plasmas with and without internal transport barriers (ITB) using the phase contrast imaging (PCI) diagnostic and compare the results with GYRO predictions. In plasmas without ITB, the fluctuation above 300 kHz observed by PCI agrees with ITG in GYRO simulation, including the direction of propagation, wavenumber spectrum, and absolute intensity within experimental uncertainly (+/-75%). After transition to ITBs, the observed overall fluctuation intensity increases. GYRO simulation in the core shows that ITG dominates in ITBs but its intensity is lower than the overall experimental measurements which may also include contributions from the plasma edge. These results, as well as the impact of varying ∇Ti, ∇n, and ExB shear on turbulence will be discussed. C.L. Fiore et al., Fusion Sci. Technol., 51, 303 (2007). M. Porkolab et al., IEEE Trans. Plasma Sci. 34, 229 (2006). J. Candy et al., Phys. Rev. Lett., 91, 045001 (2003).

  7. Pellet fuelling and ELMy H-mode physics at JET

    International Nuclear Information System (INIS)

    Horton, L.D.

    2001-01-01

    As the reference operating regime for ITER, investigations of the ELMy H-mode have received high priority in the JET experimental programme. Recent experiments have concentrated in particular on operation simultaneously at high density and high confinement using high field side (HFS) pellet launch. The enhanced fuelling efficiency of HFS pellet fuelling is found to scale favourably to a large machine such as JET. The achievable density of ELMy H-mode plasmas in JET has been significantly increased using HFS fuelling although at the expense of confinement degradation back to L-mode levels. Initial experiments using control of the pellet injection frequency have shown that density and confinement can simultaneously be increased close to the values necessary for ITER. The boundaries of the available ELMy H-mode operational space have also been extensively explored. The power necessary to maintain the high confinement normally associated with ELMy H-mode operation is found to be substantially higher than the H-mode threshold power. The compatibility of ELMy H-modes with divertor operation acceptable for a fusion device has been studied. Narrow energy scrape-off widths are measured which place stringent limits on divertor power handling. Deuterium and tritium codeposition profiles are measured to be strongly in/out asymmetric. Successful modelling of these profiles requires the inclusion of the (measured) scrape-off layer flows and of the production in the divertor of hydrocarbon molecules with sticking coefficients below unity. Helium exhaust and compression are found to be within the limits sufficient for a reactor. (author)

  8. Offset linear scaling for H-mode confinement

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Tamai, Hiroshi; Suzuki, Norio; Mori, Masahiro; Matsuda, Toshiaki; Maeda, Hikosuke; Takizuka, Tomonori; Itoh, Sanae; Itoh, Kimitaka.

    1992-01-01

    An offset linear scaling for the H-mode confinement time is examined based on single parameter scans on the JFT-2M experiment. Regression study is done for various devices with open divertor configuration such as JET, DIII-D, JFT-2M. The scaling law of the thermal energy is given in the MKSA unit as W th =0.0046R 1.9 I P 1.1 B T 0.91 √A+2.9x10 -8 I P 1.0 R 0.87 P√AP, where R is the major radius, I P is the plasma current, B T is the toroidal magnetic field, A is the average mass number of plasma and neutral beam particles, and P is the heating power. This fitting has a similar root mean square error (RMSE) compared to the power law scaling. The result is also compared with the H-mode in other configurations. The W th of closed divertor H-mode on ASDEX shows a little better values than that of open divertor H-mode. (author)

  9. Physics of the H-mode

    International Nuclear Information System (INIS)

    Hinton, F.L.; Chu, M.S.; Dominguez, R.R.

    1985-01-01

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  10. H-modes studies in PDX

    International Nuclear Information System (INIS)

    Fonck, R.J.; Beirsdorfer, P.; Bell, M.

    1984-07-01

    A regime of enhanced energy confinement during neutral beam heating has been obtained routinely in the PDX tokamak after modifications to form a closed divertor geometry. Plasma density profiles were broad and the electron temperature at the plasma edge reached values of approx. 400 eV in the H-mode phase of a discharge. A comparison of closed divertor discharges with moderate and intense gas puffing indicates that a requirement for obtaining high confinement times is the localization of the plasma fueling source in the divertor throat region. While high confinement was attained at moderate injected powers (P/sub INJ/ less than or equal to 3 MW), confinement was degraded at higher powers due to both increased edge instabilities and, especially, the intense gas puffing needed to prevent disruptions. Initial results with a particle scoop limiter indicate high particle confinement times and energy confinement times approaching those of diverted H-mode plasmas

  11. Investigation into the formation of the scrape-off layer density shoulder in JET ITER-like wall L-mode and H-mode plasmas

    Science.gov (United States)

    Wynn, A.; Lipschultz, B.; Cziegler, I.; Harrison, J.; Jaervinen, A.; Matthews, G. F.; Schmitz, J.; Tal, B.; Brix, M.; Guillemaut, C.; Frigione, D.; Huber, A.; Joffrin, E.; Kruzei, U.; Militello, F.; Nielsen, A.; Walkden, N. R.; Wiesen, S.; Contributors, JET

    2018-05-01

    The low temperature boundary layer plasma (scrape-off layer or SOL) between the hot core and the surrounding vessel determines the level of power loading, erosion and implantation of material surfaces, and thus the viability of tokamak-based fusion as an energy source. This study explores mechanisms affecting the formation of flattened density profiles, so-called ‘density shoulders’, in the low-field side (LFS) SOL, which modify ion and neutral fluxes to surfaces—and subsequent erosion. We find that increases in SOL parallel resistivity, Λdiv (=[L || ν eiΩi]/c sΩe), postulated to lead to shoulder growth through changes in SOL turbulence characteristics, correlates with increases in SOL shoulder amplitude, A s, only under a subset of conditions (D2-fuelled L-mode density scans with outer strike point on the horizontal target). Λdiv fails to correlate with A s for cases of N2 seeding or during sweeping of the strike point across the horizontal target. The limited correlation of Λdiv and A s is also found for H-mode discharges. Thus, while it may be necessary for Λdiv to be above a threshold of ~1 for shoulder formation and/or growth, another mechanism is required. More significantly, we find that in contrast to parallel resistivity, outer divertor recycling, as quantified by the total outer divertor Balmer D α emission, I-D α , does scale with A s where Λdiv does and even where Λdiv does not. Divertor recycling could lead to SOL density shoulder formation through: (a) reducing the parallel to the field flow (loss) of ions out of the SOL to the divertor; and (b) changes in radial electric fields which lead to E  ×  B poloidal flows as well as potentially affecting SOL turbulence birth characteristics. Thus, changes in divertor recycling may be the sole process involved in bringing about SOL density shoulders or it may be that it acts in tandem with parallel resistivity.

  12. Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator-CMOD H-modes

    International Nuclear Information System (INIS)

    Redi, M.H.; Dorland, W.; Bell, R.; Bonoli, P.; Bourdelle, C.; Candy, J.; Ernst, D.; Fiore, C.; Gates, D.; Hammett, G.; Hill, K.; Kaye, S.; LeBlanc, B.; Menard, J.; Mikkelsen, D.; Rewoldt, G.; Rice, J.; Waltz, R.; Wukitch, S.

    2003-01-01

    Recent H-mode experiments on NSTX [National Spherical Torus Experiment] and experiments on Alcator-CMOD, which also exhibit internal transport barriers (ITB), have been examined with gyrokinetic simulations with the GS2 and GYRO codes to identify the underlying key plasma parameters for control of plasma performance and, ultimately, the successful operation of future reactors such as ITER [International Thermonuclear Experimental Reactor]. On NSTX the H-mode is characterized by remarkably good ion confinement and electron temperature profiles highly resilient in time. On CMOD, an ITB with a very steep electron density profile develops following off-axis radio-frequency heating and establishment of H-mode. Both experiments exhibit ion thermal confinement at the neoclassical level. Electron confinement is also good in the CMOD core

  13. ELM Dynamics in TCV H-modes

    Science.gov (United States)

    Degeling, A. W.; Martin, Y. R.; Lister, J. B.; Llobet, X.; Bak, P. E.

    2003-06-01

    TCV (Tokamak à Configuration Variable, R = 0.88 m, a limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma — wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock.

  14. ELM Dynamics in TCV H-modes

    International Nuclear Information System (INIS)

    Degeling, A.W.; Martin, Y.R.; Lister, J.B.; Llobet, X.; Bak, P.E.

    2003-01-01

    TCV (Tokamak a Configuration Variable, R = 0.88 m, a < 0.25 m, BT < 1.54 T) is a highly elongated tokamak, capable of producing limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma -- wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock

  15. Effect of Gas Fueling Location on H-mode Access in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.; Bell, R.; Biewer, T.; Bush, C.; Chang, C.S.; Gates, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; Maqueda, R.; Menard, J.; Mueller, D.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2003-01-01

    The dependence of H-mode access on the poloidal location of the gas injection source has been investigated in the National Spherical Torus Experiment (NSTX). We find that gas fueling from the center stack midplane area produces the most reproducible H-mode access with generally the lowest L-H threshold power in lower single-null configuration. The edge toroidal rotation velocity is largest (in direction of the plasma current) just before the L-H transition with center stack midplane fueling, and then reverses direction after the L-H transition. Simulation of these results with a 2-D guiding-center Monte Carlo neoclassical transport code is qualitatively consistent with the trends in the measured velocities. Double-null discharges exhibit H-mode access with gas fueling from either the center stack midplane or center stack top locations, indicating a reduced sensitivity of H-mode access on fueling location in that shape

  16. Energy confinement in Ohmic H-mode in TUMAN-3M

    International Nuclear Information System (INIS)

    Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Lebedev, S.V.; Levin, L.S.; Tukachinsky, A.S.

    1997-01-01

    The spontaneous transition from Ohmically heated limiter discharges into the regime with improved confinement termed as ''Ohmic H-mode'' has been investigated in ''TUMAN-3''. The typical signatures of H-mode in tokamaks with powerful auxiliary heating have been observed: sharp drop of D α radiation with simultaneous increase in the electron density and stored energy, suppression of the density fluctuations and establishing the steep gradient near the periphery. In 1994 new vacuum vessel had been installed in TUMAN-3 tokamak. The vessel has the same sizes as old one (R 0 =0.55 m, a 1 =0.24 m). New vessel was designed to reduce mechanical stresses in the walls during B T ramp phase of a shot. Therefore modified device - TUMAN-3M is able to produce higher B T and I p , up to 2 T and 0.2 MA respectively. During first experimental run device was operated in Ohmic Regime. In these experiments the possibility to achieve Ohmic H-mode was studied. The study of the parametric dependencies of the energy confinement time in both OH and Ohmic H-mode was performed. In Ohmic H-mode strong dependencies of τ E on plasma current and on input power and weak dependence on density were found. Energy confinement time in TUMAN-3/TUMAN-3M Ohmic H-mode has revealed good agreement with JET/DIII-D/ASDEX scaling for ELM-free H-mode, resulting in very long τ E at the high plasma current discharges. (author)

  17. Origin of the various beta dependences of ELMy H-mode confinement properties

    International Nuclear Information System (INIS)

    Takizuka, T; Urano, H; Takenaga, H; Oyama, N

    2006-01-01

    Dependence of the energy confinement in ELMy H-mode tokamak on the beta has been investigated for a long time, but a common conclusion has not been obtained so far. Recent non-dimensional transport experiments in JT-60U demonstrated clearly the beta degradation. A database for JT-60U ELMy H-mode confinement was assembled. Analysis of this database is carried out, and the strong beta degradation consistent with the above experiments is confirmed. Two subsets of ASDEX Upgrade and JET data in the ITPA H-mode confinement database are analysed to find the origin of the various beta dependences. The shaping of the plasma cross section, as well as the fuelling condition, affects the confinement performance. The beta dependence is not identical for different devices and conditions. The shaping effect, as well as the fuelling effect, is a possible candidate for causing the variation of beta dependence

  18. Neutron Profiles and Fuel Ratio nT /nD Measurements in JET ELMy H-mode Plasmas with Tritium Puff

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Popovichev, S.; Bertalot, L.; Murari, A.; Conroy, S.; Mlynář, Jan; Voitsekhovitch, I.

    2006-01-01

    Roč. 46, č. 7 (2006), s. 725-740 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion * JET * plasma profile * tomography * neutron diagnostics * fuel * tritium transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.839, year: 2006

  19. Scaling of the H-mode power threshold for ITER

    International Nuclear Information System (INIS)

    1998-01-01

    Analysis of the latest ITER H-mode threshold database is presented. The power necessary for the transition to H-mode is estimated for ITER, with or without the inclusion of radiation losses from the bulk plasma, in terms of the main engineering variables. The main geometrical variables (aspect ratio ε, elongation κ and average triangularity δ) are also included in the analysis. The H-mode transition is also considered from the point of view of the local edge variables, and the electron temperature at 90% of the poloidal flux is expressed in terms of both local and global variables. (author)

  20. Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Osborne, T.; Snyder, P. B.; Alper, B.; Angioni, C.; Bourdelle, C.; Buratti, P.; Crisanti, F.; Giovannozzi, E.; Giroud, C.; Groebner, R.; Hobirk, J.; Jenkins, I.; Joffrin, E.; Leyland, M. J.; Lomas, P.; Mantica, P.; McDonald, D.; Nunes, I.; Rimini, F.; Saarelma, S.; Voitsekhovitch, I.; P. de Vries,; Zarzoso, D.

    2013-01-01

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have beta(Nu) similar to 1.5-2, H-98 similar to 1, whereas the hybrid

  1. Collisional drift waves in the H-mode edge

    International Nuclear Information System (INIS)

    Sen, S.

    1994-01-01

    The stability of the collisional drift wave in a sheared slab geometry is found to be severely restricted at the H-mode edge plasma due to the very steep density gradient. However, a radially varying transverse velocity field is found to play the key role in stability. Velocity profiles usually found in the H-mode plasma stabilize drift waves. On the other hand, velocity profiles corresponding to the L-mode render collisional drift waves unstable even though the magnetic shear continues to play its stabilizing role. (author). 24 refs

  2. ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES

    International Nuclear Information System (INIS)

    WOLF, NS; PETRIE, TW; PORTER, GD; ROGNLIEN, TD; GROEBNER, RJ; MAKOWSKI, MA

    2002-01-01

    OAK A271 ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES. The 2-D fluid code UEDGE was used to analyze DIII-D experiments to determine the role of neutrals in core fueling, core impurities, and also the H-mode pedestal structure. The authors compared the effects of divertor closure on the fueling rate and impurity density of high-triangularity, H-mode plasmas. UEDGE simulations indicate that the decrease in both deuterium core fueling (∼ 15%-20%) and core carbon density (∼ 15%-30%) with the closed divertor compared to the open divertor configuration is due to greater divertor screening of neutrals. They also compared UEDGE results with a simple analytic model of the H-mode pedestal structure. The model predicts both the width and gradient of the transport barrier in n e as a function of the pedestal density. The more sophisticated UEDGE simulations of H-mode discharges corroborate the simple analytic model, which is consistent with the hypothesis that fueling processes play a role in H-mode transport barrier formation

  3. H-Mode Turbulence, Power Threshold, ELM, and Pedestal Studies in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Menard, J.E.; Meyer, H.; Mueller, D.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.; Zweben, S.J.; Bell, M.G.; Bell, R.E.; Biewer, T.; Boedo, J.A.; Johnson, D.W.; Kaita, R.; Kugel, H.W.; Maqueda, R.J.; Munsat, T.; Raman, R.; Soukhanovskii, V.A.; Stevenson, T.; Stutman, D.

    2004-01-01

    High-confinement mode (H-mode) operation plays a crucial role in NSTX [National Spherical Torus Experiment] research, allowing higher beta limits due to reduced plasma pressure peaking, and long-pulse operation due to high bootstrap current fraction. Here, new results are presented in the areas of edge localized modes (ELMs), H-mode pedestal physics, L-H turbulence, and power threshold studies. ELMs of several other types (as observed in conventional aspect ratio tokamaks) are often observed: (1) large, Type I ELMs, (2) ''medium'' Type II/III ELMs, and (3) giant ELMs which can reduce stored energy by up to 30% in certain conditions. In addition, many high-performance discharges in NSTX have tiny ELMs (newly termed Type V), which have some differences as compared with ELM types in the published literature. The H-mode pedestal typically contains between 25-33% of the total stored energy, and the NSTX pedestal energy agrees reasonably well with a recent international multi-machine scaling. We find that the L-H transition occurs on a ∼100 (micro)sec timescale as viewed by a gas puff imaging diagnostic, and that intermittent quiescent periods precede the final transition. A power threshold identity experiment between NSTX and MAST shows comparable loss power at the L-H transition in balanced double-null discharges. Both machines require more power for the L-H transition as the balance is shifted toward lower single null. High field side gas fueling enables more reliable H-mode access, but does not always lead to a lower power threshold e.g., with a reduction of the duration of early heating. Finally the edge plasma parameters just before the L-H transition were compared with theories of the transition. It was found that while some theories can separate well-developed L- and H-mode data, they have little predictive value

  4. On global H-mode scaling laws for JET

    International Nuclear Information System (INIS)

    Kardaun, O.; Lackner, K.; Thomsen, K.; Christiansen, J.; Cordey, J.; Gottardi, N.; Keilhacker, M.; Smeulders, P.

    1989-01-01

    Investigation of the scaling of the energy confinement time τ E with various plasma parameters has since long been an interesting, albeit not uncontroversial topic in plasma physics. Various global scaling laws have been derived for ohmic as well as (NBI and/or RF heated) L-mode discharges. Due to the scarce availability of computerised, extensive and validated H-mode datasets, systematic statistical analysis of H-mode scaling behaviour has hitherto been limited. A common approach is to fit the available H-mode data by an L-mode scaling law (e.g., Kaye-Goldston, Rebut-Lallia) with one or two adjustable constant terms. In this contribution we will consider the alternative approach of fitting all free parameters of various simple scaling models to two recently compiled datasets consisting of about 140 ELM-free and 40 ELMy H-mode discharges, measured at JET in the period 1986-1988. From this period, approximately all known H-mode shots have been included that satisfy the following criteria: D-injected D + discharges with no RF heating, a sufficiently long (≥300 ms) and regular P NBI flat-top, and validated main diagnostics. (author) 13 refs., 1 tab

  5. Phenomenological model for H-mode

    International Nuclear Information System (INIS)

    Ohyabu, N.

    1985-08-01

    A phenomenological model has been developed to clarify the role of the boundary configuration in the heat transport of the H-mode regime. We assume that the dominant mechanism of heat loss at the edge of the plasma is convection and that the diffusion coefficient (D/sub edge/) at the edge of the plasma increases rapidly with plasma pressure, but drops to a low value when the temperature exceeds a certain threshold value. When particle refueling takes place without time delay, as in the case of a limiter discharge, the unfavorable temperature dependence of the D/sub edge/ prohibits even a modest rise of the edge temperature. In a divertor discharge, the particles lost from the closed surface are kept away from the edge region for a time comparable to or longer than the energy transport time in the edge region. Thus, rapid increase in the heat flux allows an excursion of the edge temperature to a higher value thereby reaching the threshold value of the H-transition

  6. LH transition theories and theory of H-mode

    International Nuclear Information System (INIS)

    Ward, D.J.

    1996-01-01

    Recent developments in H-mode theory are discussed with earlier work described to put new theories in context. Much of the recent work concerns the development of the radial electric field near the plasma edge and its impact on transport driven by fluctuations, and is the main topic discussed. (author)

  7. Transition to H-mode by energetic electrons

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae.

    1992-07-01

    Effect of the electron loss due to the toroidal ripple on an H-mode transition is studied. When energetic electrons exist in tokamaks, e.g., in the case of the current drive by lower hybrid (LH) waves, the edge electric field can show the bifurcation to the more positive value. In this state, both the electron loss and ion loss (such as loss cone loss) are reduced. The criterion for the transition is derived. Comparison with H-mode in JT-60 LH plasma shows a qualitative agreement. (author)

  8. Change of transport at L- and H-mode transition

    International Nuclear Information System (INIS)

    Itoh, Sanae-I; Itoh, Kimitaka.

    1990-01-01

    A new refined model of the L-mode and H-mode transition in tokamaks is presented based on the bifurcation of the radial electric field, E r , near edge. The radial gradient of E r is newly introduced to explain the sudden change of fluctuations as well as plasma fluxes at the onset of transition. This model predicts that the L-to H-mode transition is associated with the decrease of dE r /dr causing reduction of particle and energy fluxes at critical gradient. (author)

  9. Analysis of the H-mode density limit in the ASDEX upgrade tokamak using bolometry

    Energy Technology Data Exchange (ETDEWEB)

    Bernert, Matthias

    2013-10-23

    The high confinement mode (H-mode) is the operational scenario foreseen for ITER, DEMO and future fusion power plants. At high densities, which are favourable in order to maximize the fusion power, a back transition from the H-mode to the low confinement mode (L-mode) is observed. This H-mode density limit (HDL) occurs at densities on the order of, but below, the Greenwald density. In this thesis, the HDL is revisited in the fully tungsten walled ASDEX Upgrade tokamak (AUG). In AUG discharges, four distinct operational phases were identified in the approach towards the HDL. First, there is a stable H-mode, where the plasma density increases at steady confinement, followed by a degrading H-mode, where the core electron density is fixed and the confinement, expressed as the energy confinement time, reduces. In the third phase, the breakdown of the H-mode and transition to the L-mode, the overall electron density is fixed and the confinement decreases further, leading, finally, to an L-mode, where the density increases again at a steady confinement at typical L-mode values until the disruptive Greenwald limit is reached. These four phases are reproducible, quasi-stable plasma regimes and provide a framework in which the HDL can be further analysed. Radiation losses and several other mechanisms, that were proposed as explanations for the HDL, are ruled out for the current set of AUG experiments with tungsten walls. In addition, a threshold of the radial electric field or of the power flux into the divertor appears to be responsible for the final transition back to L-mode, however, it does not determine the onset of the HDL. The observation of the four phases is explained by the combination of two mechanisms: a fueling limit due to an outward shift of the ionization profile and an additional energy loss channel, which decreases the confinement. The latter is most likely created by an increased radial convective transport at the edge of the plasma. It is shown that the

  10. Analysis of the H-mode density limit in the ASDEX upgrade tokamak using bolometry

    International Nuclear Information System (INIS)

    Bernert, Matthias

    2013-01-01

    The high confinement mode (H-mode) is the operational scenario foreseen for ITER, DEMO and future fusion power plants. At high densities, which are favourable in order to maximize the fusion power, a back transition from the H-mode to the low confinement mode (L-mode) is observed. This H-mode density limit (HDL) occurs at densities on the order of, but below, the Greenwald density. In this thesis, the HDL is revisited in the fully tungsten walled ASDEX Upgrade tokamak (AUG). In AUG discharges, four distinct operational phases were identified in the approach towards the HDL. First, there is a stable H-mode, where the plasma density increases at steady confinement, followed by a degrading H-mode, where the core electron density is fixed and the confinement, expressed as the energy confinement time, reduces. In the third phase, the breakdown of the H-mode and transition to the L-mode, the overall electron density is fixed and the confinement decreases further, leading, finally, to an L-mode, where the density increases again at a steady confinement at typical L-mode values until the disruptive Greenwald limit is reached. These four phases are reproducible, quasi-stable plasma regimes and provide a framework in which the HDL can be further analysed. Radiation losses and several other mechanisms, that were proposed as explanations for the HDL, are ruled out for the current set of AUG experiments with tungsten walls. In addition, a threshold of the radial electric field or of the power flux into the divertor appears to be responsible for the final transition back to L-mode, however, it does not determine the onset of the HDL. The observation of the four phases is explained by the combination of two mechanisms: a fueling limit due to an outward shift of the ionization profile and an additional energy loss channel, which decreases the confinement. The latter is most likely created by an increased radial convective transport at the edge of the plasma. It is shown that the

  11. Improved H-mode access in connected DND in MAST

    International Nuclear Information System (INIS)

    Meyer, H; Carolan, P G; Conway, N J; Counsell, G F; Cunningham, G; Field, A R; Kirk, A; McClements, K G; Price, M; Taylor, D

    2005-01-01

    In the Mega-Amp Spherical Tokamak, MAST, the formation of the edge transport barrier leading to the high-confinement (H-mode) regime is greatly facilitated by operating in a double null diverted (DND) configuration where both X-points are practically on the same flux surface. Ohmic H-modes are presently only obtained in these connected double null diverted (CDND) configurations. The ease of H-mode access is lost if the two flux surfaces passing through the X-points are radially separated by more than one ion Larmor radius (ρ i ∼ 6 mm) at the low-field-side mid-plane. The change of the magnetic configuration from disconnected to CDND is accompanied by a change in the radial electric field of about ΔE ψ ∼ -1 kV m -1 and a reduction of the electron temperature decay length in the high-field-side scrape-off-layer. Other parameters at the plasma edge, in particular those affecting the H-mode access criteria of common L/H transition theories, are not affected by the slight changes to the magnetic configuration. It is believed that the observed change in E ψ , which may result from differences in ion orbit losses, leads to a higher initial E x B flow shear in CDND configurations which could lead to the easier H-mode access

  12. The importance of the toroidal magnetic field for the feasibility of a tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2000-01-01

    The next step in the demonstration of the scientific feasibility of a tokamak fusion reactor is a DT burning plasma experiment for the study and control of self-heated plasmas. In this paper, the authors examine the role of the toroidal magnetic field on the confinement of a tokamak plasma in the ELMy H-mode regime--the operational regime foreseen for ITER

  13. Investigation of lower hybrid current drive during H-mode in EAST tokamak

    International Nuclear Information System (INIS)

    Li Miao-Hui; Ding Bo-Jiang; Kong Er-Hua; Zhang Lei; Zhang Xin-Jun; Qian Jin-Ping; Yan Ning; Han Xiao-Feng; Shan Jia-Fang; Liu Fu-Kun; Wang Mao; Xu Han-Dong; Wan Bao-Nian

    2011-01-01

    H-mode discharges with lower hybrid current drive (LHCD) alone are achieved in EAST divertor plasma over a wide parameter range. These H-mode discharges are characterized by a sudden drop in D α emission and a spontaneous rise in main plasma density. Good lower hybrid (LH) coupling during H-mode is obtained by putting the plasma close to the antenna and by injecting D 2 gas from a pipe near the grill mouse. The analysis of lower hybrid current drive properties shows that the LH deposition profile shifts off axis during H-mode, and current drive (CD) efficiency decreases due to the increase in density. Modeling results of H-mode discharges with a general ray tracing code GENRAY are reported. (physics of gases, plasmas, and electric discharges)

  14. Characteristics of the First H-mode Discharges in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Menard, J.E.; Mueller, D.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Maqueda, R.J.; Ono, M.; Paoletti, F.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.; Synakowski, E.J.

    2001-01-01

    We report observations of the first low-to-high (L-H) confinement mode transitions in the National Spherical Torus Experiment (NSTX). The H-mode energy confinement time increased over reference L-mode discharges transiently by 100-300%, as high as ∼150 ms. This confinement time is ∼1.8-2.3 times higher than predicted by a multi-machine ELM-free H-mode scaling. This achievement extends the H-mode window of fusion devices down to a record low aspect ratio (R/a) ∼ 1.3, challenging both confinement and L-H power thresholds scalings based on conventional aspect ratio tokamaks

  15. High temperature L- and H-mode confinement in JET

    International Nuclear Information System (INIS)

    Balet, B.; Boyd, D.A.; Campbell, D.J.

    1990-01-01

    The energy confinement properties of low density, high ion temperature L- and H-mode plasmas are investigated. For L-mode plasmas it is shown that, although the global confinement is independent of density, the energy confinement in the central region is significantly better at low densities than at higher densities. The improved confinement appears to be associated with the steepness of the density gradient. For the H-mode phase, although the confinement at the edge is dramatically improved, which is once again associated with the steep density gradient in the edge region, the central confinement properties are essentially the same as for the standard L-mode. The results are compared in a qualitative manner with the predictions of the ion temperature gradient instability theory and appear to be in disagreement with some aspects of this theory. (author). 13 refs, 15 figs

  16. Gyrokinetic Calculations of Microinstabilities and Transport During RF H-Modes on Alcator C-Mod

    International Nuclear Information System (INIS)

    Redi, M.H.; Fiore, C.; Bonoli, P.; Bourdelle, C.; Budny, R.; Dorland, W.D.; Ernst, D.; Hammett, G.; Mikkelsen, D.; Rice, J.; Wukitch, S.

    2002-01-01

    Physics understanding for the experimental improvement of particle and energy confinement is being advanced through massively parallel calculations of microturbulence for simulated plasma conditions. The ultimate goal, an experimentally validated, global, non-local, fully nonlinear calculation of plasma microturbulence is still not within reach, but extraordinary progress has been achieved in understanding microturbulence, driving forces and the plasma response in recent years. In this paper we discuss gyrokinetic simulations of plasma turbulence being carried out to examine a reproducible, H-mode, RF heated experiment on the Alcator CMOD tokamak3, which exhibits an internal transport barrier (ITB). This off axis RF case represents the early phase of a very interesting dual frequency RF experiment, which shows density control with central RF heating later in the discharge. The ITB exhibits steep, spontaneous density peaking: a reduction in particle transport occurring without a central particle source. Since the central temperature is maintained while the central density is increasing, this also suggests a thermal transport barrier exists. TRANSP analysis shows that ceff drops inside the ITB. Sawtooth heat pulse analysis also shows a localized thermal transport barrier. For this ICRF EDA H-mode, the minority resonance is at r/a * 0.5 on the high field side. There is a normal shear profile, with q monotonic

  17. H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Moda)

    Science.gov (United States)

    Hubbard, A. E.; Hughes, J. W.; Bespamyatnov, I. O.; Biewer, T.; Cziegler, I.; LaBombard, B.; Lin, Y.; McDermott, R.; Rice, J. E.; Rowan, W. L.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S.

    2007-05-01

    This paper reports on studies of the edge transport barrier and transition threshold of the high confinement (H) mode of operation on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)], over a wide range of toroidal field (2.6-7.86T) and plasma current (0.4-1.7MA). The H-mode power threshold and edge temperature at the transition increase with field. Barrier widths, pressure limits, and confinement are nearly independent of field at constant current, but the operational space at high B shifts toward higher temperature and lower density and collisionality. Experiments with reversed field and current show that scrape-off-layer flows in the high-field side depend primarily on configuration. In configurations with the B ×∇B drift away from the active X-point, these flows lead to more countercurrent core rotation, which apparently contributes to higher H-mode thresholds. In the unfavorable case, edge temperature thresholds are higher, and slow evolution of profiles indicates a reduction in thermal transport prior to the transition in particle confinement. Pedestal temperatures in this case are also higher than in the favorable configuration. Both high-field and reversed-field results suggest that parameters at the L-H transition are influencing the evolution and parameters of the H-mode pedestal.

  18. The H-mode operational window as determined from the ITER H-mode database

    International Nuclear Information System (INIS)

    Ryter, F.; Kardaun, O.J.W.F.; Stroth, U.

    1994-01-01

    The H-mode is a promising regime for fusion reactors and it is essential to be able to predict its operational window in future devices. The 'H-Mode Database Working Group' started in 1992 to gather, analyze and compare H-mode threshold data from several divertor tokamaks so that predictions could be made. The database and first results were presented and the threshold database has been improved and extended since. The work has two objectives: 1) to predict the minimum heating power necessary to reach the H-mode in future devices, 2) to contribute to physics studies of the L-H transition. (author) 11 refs., 2 figs

  19. Discriminant analysis to predict the occurrence of ELMs in H-mode discharges

    International Nuclear Information System (INIS)

    Kardaun, O.J.W.F.; Itoh, S.; Itoh, K.; Kardaun, J.W.P.F.

    1993-08-01

    After an exposition of its theoretical background, discriminant analysis is applied to the H-mode confinement database to find the region in plasma parameter space in which H-mode with small ELMs (Edge Localized Modes) is likely to occur. The boundary of this region is determined by the condition that the probability of appearance of such a type of H-mode, as a function of the plasma parameters, should be (1) larger than some threshold value and (2) larger than the corresponding probability for other types of H-mode (i.e., H-mode without ELMs or with giant ELMs). In practice, the discrimination has been performed for the ASDEX, JET and JFT-2M tokamaks (a) using four instantaneous plasma parameters (injected power P inj , magnetic field B t , plasma current I p and line averaged electron density (n-bar e ) and (b) taking also memory effects of the plasma and the distance between the plasma and the wall into account, while using variables that are normalised with respect to machine size. Generally speaking, it is found that there is a substantial overlap between the region of H-mode with small ELMs and the region of the two other types of H-mode. However, the ELM-free and the giant ELM H-modes relatively rarely appear in the region, that, according to the analysis, is allocated to small ELMs. A reliable production of H-mode with only small ELMs seems well possible by choosing this regime in parameter space. In the present study, it was not attempted to arrive at a unified discrimination across the machines. So, projection from one machine to another remains difficult, and a reliable determination of the region where small ELMs occur still requires a training sample from the device under consideration. (author) 53 refs

  20. Behaviour of impurities during the H-mode in JET

    International Nuclear Information System (INIS)

    Gianella, R.; Behringer, K.; Denne, B.; Gottardi, N.; Hellermann, M. von; Morgan, P.D.; Pasini, D.; Stamp, M.F.

    1989-01-01

    In additionally-heated tokamak discharges, the H-mode phases are reported to display, together with a better energy confinement, a longer global containment time for particles. In particular, steep gradients of electron density and temperature are sustained in the outer region of the plasma column. This enhanced performance is observed especially in discharges in which the activity of edge localized modes (ELMs) is low or absent. High confinement and accumulation of metallic impurities, which quickly give raise to terminal disruptions have been described under similar conditions. In JET H-modes very long impurity confinement times are also observed. However the experimental condition is somewhat more favourable since quiescent H-modes are obtained lasting much longer than the energy confinement times and the radiation from metals is generally negligible. The dominant impurities are normally carbon and oxygen, the latter generally accounting for half or more of the power radiated from the bulk plasma. During the X-point operation the effective influx of carbon into the discharge, which is normally in close correlation with that of deuterium, is substantially reduced while the influx of oxygen, whose production mechanisms is believed to be of a chemical nature, does not show significant variations. (author) 5 refs., 4 figs

  1. An emerging understanding of H-mode discharges in tokamaks

    International Nuclear Information System (INIS)

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the υ E → = (E x B)/B 2 flow velocity. These results are qualitatively consistent with theories which predict suppression of fluctuations by shear or curvature in υE. The required υE flow is generated very rapidly when the magnitude of the heating power or of an externally imposed radial current exceed threshold values and several theoretical models have been developed to explain the observed changes in the υE flow. After the transition occurs, the altered boundary conditions enable the development of improved confinement in the plasma interior on a confinement time scale. The resulting H-mode discharge has typically twice the confinement of L-mode discharges and regimes of further improved confinement have been obtained in some H-mode scenarios

  2. Statistical study of TCV disruptivity and H-mode accessibility

    International Nuclear Information System (INIS)

    Martin, Y.; Deschenaux, C.; Lister, J.B.; Pochelon, A.

    1997-01-01

    Optimising tokamak operation consists of finding a path, in a multidimensional parameter space, which leads to the desired plasma characteristics and avoids hazards regions. Typically the desirable regions are the domain where an L-mode to H-mode transition can occur, and then, in the H-mode, where ELMs and the required high density< y can be maintained. The regions to avoid are those with a high rate of disruptivity. On TCV, learning the safe and successful paths is achieved empirically. This will no longer be possible in a machine like ITER, since only a small percentage of disrupted discharges will be tolerable. An a priori knowledge of the hazardous regions in ITER is therefore mandatory. This paper presents the results of a statistical analysis of the occurrence of disruptions in TCV. (author) 4 figs

  3. Overview of H-mode studies in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R,; Allen, S.L.

    1994-01-01

    A major portion of the DIII-D program includes studies of the L-H transition, of the VH-mode, of particle transport and control and of the power-handling capability of a diverter. Significant progress has been made in all of these areas and the purpose of this paper is to summarize the major results obtained during the last two years. An increased understanding of the origin of improved confinement in H-mode and in VH-mode discharges has been obtained, good impurity control has been achieved in several operating scenarios, studies of helium transport provide encouraging results from the point of view of reactor design, an actively pumped diverter chamber has controlled the density in H-mode discharges and a radiative diverter is a promising technique for controlling the heat flux from the main plasma

  4. H-mode edge rotation in W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Ehmler, H.; Grigull, P.; Maassberg, H.; McCormick, K.; Wagner, F.; Wobig, H.

    2005-01-01

    In W7-AS three regimes of improved confinement exist which base on negative radial electric fields at the plasma edge resulting there from ion-root conditions of the ambipolar radial fluxes. Experimental control besides the magnetic configuration is given via the edge density profile i.e. the recycling and fuelling conditions. However, the ordering element seems to be the radial electric field profile (respectively its shear) and its interplay with the gradients of ion temperature and density. At low to medium densities the so called optimum confinement regime occurs with maximum density gradients located well inside the plasma boundary and large negative values of E r extending deep in the bulk plasma. For a large inner fraction of the bulk the ion temperature can be sufficiently high that ion transport conditions already can be explained by neoclassics. This regime delivers maximum values of T i , τ e and n τ e T i . Density gradients located right inside the plasma boundary result in the classical H-mode phenomena reminiscent to other toroidal devices with the capability of an edge layer with nearly complete suppression of turbulence either quasi stationary (in a quiescent H-mode) or intermittently (in between ELMs). At even higher densities and highly collisional plasmas with the maximum of ∇n shifted to or even out of the plasma boundary the High Density H-mode (HDH) opens access to steady state conditions with no measurable impurity accumulation. These improved confinement regimes are accessed and left via significant transitions of the transport properties albeit these transitions occur on rather different timescales. A comprehensive picture of improved edge confinement regimes in W7-AS is drawn based on the assumption that a weak edge bounded transport barrier resulting from the ion root conditions (thus E r <0) is the ground state of the (turbulent) edge plasma and already behaves as a barrier for anomalous transport. On top of that the classical H-mode

  5. Plasma shape experiments for an optimized tokamak

    International Nuclear Information System (INIS)

    Hyatt, A.W.; Osborne, T.H.; Lazarus, E.A.

    1994-07-01

    In this paper we present results from recent experiments at DIII-D which measured the plasma stability and confinement performance product, βτ E , in one previously studied and three new plasma shapes. One important goal of these experiments was to identify performance vs shape trends which would identify a shape compatible with both high performance and the planned effort to decrease the power flux to the divertor floor using a closed ''slot'' divertor geometry. power flux to the divertor floor using a closed ''slot'' divertor geometry. The closed divertor hardware must be designed for a reduced set of plasma shapes, so care must be taken to choose the shape that optimizes βτ E and divertor performance. The four shapes studied form a matrix of moderate and high elongations (κ congruent 1.8 and 2.1) and low and high triangularities (δ congruent 0.3 and 0.9). All configurations were double-null diverted (DND), held fixed during a shot, with neutral beam heating. The shapes span a range of X-point locations compatible with the envisioned closed divertor. We find that from shape to shape, a shot's transient normalized performance, β N H, where β N ≡ β/(I p )/aB T and H ≡ τ E /τ E ITER-89P , increases strongly with triangularity, but depends only weakly on elongation. However, the normalized performance during quasi stationary ELMing H-mode, to which these discharges eventually relax, is insensitive to both triangularity and elongation. The moderate elongation, high triangularity DND shape is shown to be near optimum for future studies on DIII-D

  6. Plasma shape experiments for an optimized tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, A.W.; Osborne, T.H. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [Oak Ridge National Lab., TN (United States)

    1994-12-31

    In this paper we present results from recent experiments at DIII-D which measured the plasma stability and confinement performance product, {beta}{sub {tau}E}, in one previously studied and three new plasma shapes. One important goal of these experiments was to identify performance vs shape trends which would identify a shape compatible with both high performance and the planned effort to decrease the power flux to the divertor floor using a closed `slot` divertor geometry. The closed divertor hardware must be designed for a reduced set of plasma shapes, so care must be taken to choose the shape that optimizes {beta}{sub {tau}E} and divertor performance. The four shapes studied form a matrix of moderate and high elongations ({kappa} {approx_equal} 1.8 and 2.1) and low and high triangularities ({delta} {approx_equal} 0.3 and 0.9). All configurations were double-null diverted (DND), held fixed during a shot, with neutral beam heating. The shapes span a range of X-point locations compatible with the envisioned closed divertor. We find that from shape to shape, a shot`s transient normalized performance, {beta}{sub N}H, where {beta}{sub N} = {beta}/(I{sub p}/aB{sub T}) and H = {tau}{sub E}/{tau}{sub E}{sup ITER-89P}, increases strongly with triangularity, but depends only weakly on elongation. However, the normalized performance during quasi stationary ELMing H-mode, to which these discharges eventually relax, is insensitive to both triangularity and elongation. The moderate elongation, high triangularity DND shape is shown to be near optimum for future studies on DIII-D. (author) 7 refs., 7 figs.

  7. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    Science.gov (United States)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  8. Density profile analysis during an ELM event in ASDEX Upgrade H-modes

    International Nuclear Information System (INIS)

    Nunes, I.; Manso, M.; Serra, F.; Horton, L.D.; Conway, G.D.; Loarte, A.

    2005-01-01

    This paper reports results on measurements of the density profiles. Here we analyse the behaviour of the electron density for a set of experiments in type I ELMy H-mode discharges in ASDEX Upgrade where the plasma current, plasma density, triangularity and input power were varied. Detailed measurements of the radial extent of the perturbation on the density profiles caused by the edge localized mode (ELM) crash (ELM affected depth), the velocity of the radial propagation of the perturbation as well as the width and gradient of the density pedestal are determined. The effect of a type I ELM event on the density profiles affects the outermost 20-40% of the plasma minor radius. At the scrape-off layer (SOL) the density profile broadens while in the pedestal region the density decreases resulting in a smaller density gradient. This change in the density profile defines a pivot point around which the density profile changes. The average radial velocity at the SOL is in the range 125-150 ms -1 and approximately constant for all the density layers far from the pivot point. The width of the density pedestal is approximately constant for all the ELMy H-mode discharges analysed, with values between 2 and 3.5 cm. These results are then compared with an analytical model where the width of the density is predominantly set by ionization (neutral penetration model). The width of the density profiles for L-mode discharges is included, since L- and H-mode have different particle transport. No agreement between the experimental results and the model is found

  9. ELMs and the H-mode pedestal in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Sabbagh, S.A.; Bush, C.E.; Fredrickson, E.D.; Menard, J.E.; Stutman, D.; Tritz, K.; Bell, M.G.; Bell, R.E.; Boedo, J.A.; Gates, D.A.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Mueller, D.; Raman, R.; Roquemore, A.L.; Soukhanovskii, V.A.; Stevenson, T.

    2005-01-01

    We report on the behavior of ELMs in NBI-heated H-mode plasmas in NSTX. It is observed that the size of Type I ELMs, characterized by the change in plasma energy, decreases with increasing line-average density, as observed at conventional aspect ratio. It is also observed that the Type I ELM size decreases as the plasma equilibrium is shifted from a symmetric double-null toward a lower single-null configuration. Type II/III ELMs have also been observed in NSTX, as well as a high-performance regime with small ELMs which we designate Type V. The Type V ELMs are characterized by an intermittent n 1 magnetic pre-cursor oscillation rotating counter to the plasma current; the mode vanishes between Type V ELMs crashes. Without active pumping, the density rises continuously through the Type V phase, albeit at a slower rate than ELM-free discharges

  10. The H-mode Pedestal and Edge Localized Modes in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Fredrickson, E.D.; Menard, J.E.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.

    2004-01-01

    The research program of the National Spherical Torus Experiment (NSTX) routinely utilizes the H-mode confinement regime to test and extend beta and pulse length limits. As in conventional aspect ratio tokamaks, NSTX observes a variety of edge localized modes (ELMs) in H-mode. Hence a significant part of the research program is dedicated to ELMs studies

  11. Spheromak type plasma experiment apparatus

    International Nuclear Information System (INIS)

    Odagiri, Kiyoyuki; Miyauchi, Yasuyuki; Oomura, Hiroshi

    1985-01-01

    The fusion power reactor which is expected to be the most promising energy has been developed for several plasma confinement systems. Under these circumstances, Spheromak configuration has recently attracted attention because of its simple structure and efficient plasma confinement. This apparatus was ordered by the Engineering Department of University of Tokyo for basic studies of the Spheromak plasma confinement technologies. This forms Spheromak plasma according to the induction discharge system which injects this plasma with magnetic energy generated by a toroidal current in the plasma and discharges the current through the electrical feed through. Toroidal current is induced by the poloidal coil in the vessel. We worked together with the researchers of University of Tokyo to conduct experiments and confirmed the formation and confinement of Spheromak plasma in the initial test. (author)

  12. Simulation of electron thermal transport in H-mode discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-01-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  13. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Evans, T E [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Doyle, E J [University of California, Los Angeles, California (United States); Fenstermacher, M E [Lawrence Livermore National Laboratory, Livermore, California (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Moyer, R A [University of California, San Diego, California (United States); Osborne, T H; Schaffer, M J; Snyder, P B [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Thomas, P R [CEA Cadarache EURATOM Association, Cadarache (France); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Boedo, J A [University of California, San Diego, California (United States); Garofalo, A M [Columbia University, New York, New York (United States); Gohil, P; Jackson, G L; La Haye, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Lasnier, C J [Lawrence Livermore National Laboratory, Livermore, California (United States); Reimerdes, H [Columbia University, New York, New York (United States); Rhodes, T L [University of California, Los Angeles, California (United States); Scoville, J T [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Wang, G [University of California, Los Angeles, California (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, New Mexico (United States); Zeng, L [University of California, Los Angeles, California (United States)

    2005-12-15

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport.

  14. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    International Nuclear Information System (INIS)

    Burrell, K H; Evans, T E; Doyle, E J; Fenstermacher, M E; Groebner, R J; Leonard, A W; Moyer, R A; Osborne, T H; Schaffer, M J; Snyder, P B; Thomas, P R; West, W P; Boedo, J A; Garofalo, A M; Gohil, P; Jackson, G L; La Haye, R J; Lasnier, C J; Reimerdes, H; Rhodes, T L; Scoville, J T; Solomon, W M; Thomas, D M; Wang, G; Watkins, J G; Zeng, L

    2005-01-01

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport

  15. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

    International Nuclear Information System (INIS)

    Wilson, R.; Kessel, C.E.; Wolfe, S.; Hutchinson, I.H.; Bonoli, P.; Fiore, C.; Hubbard, A.E.; Hughes, J.; Lin, Y.; Ma, Y.; Mikkelsen, D.; Reinke, M.; Scott, S.; Sips, A.C.C.; Wukitch, S.

    2010-01-01

    Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent in the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also.

  16. 2XIIB plasma confinement experiments

    International Nuclear Information System (INIS)

    Coensgen, F.H.; Clauser, J.F.; Correll, D.L.

    1976-01-01

    This paper reports results of 2XIIB neutral-beam injection experiments with plasma-stream stabilization. The plasma stream is provided either by a pulsed plasma generator located on the field lines outside the plasma region or by ionization of neutral gas introduced at the mirror throat. In the latter case, the gas is ionized by the normal particle flux through the magnetic mirror. A method of plasma startup and sustenance in a steady-state magnetic field is reported in which the plasma stream from the pulsed plasma generator serves as the initial target for the neutral beams. After an energetic plasma of sufficient density is established, the plasma generator stream is replaced by the gas-fed stream. Lifetimes of the stabilized plasma increase with plasma temperature in agreement with the plasma stabilization of the drift-cyclotron loss-cone mode. The following plasma parameters are attained using the pulsed plasma generator for stabilization: n approximately 5 x 10 13 cm -3 , anti W/sub i/ approximately 13 keV, T/sub e/ = 140 eV, and ntau/sub p/ approximately 7 x 10 10 cm -3 .s. With the gas feed, the mean deuterium ion energy is 9 keV and the peak density n approximately 10 14 cm -3 . In the latter case, the energy confinement parameter reaches ntau/sub E/ = 7 x 10 10 cm -3 .s, and the particle confinement parameter reaches ntau/sub p/ = 1 x 10 11 cm -3 .s

  17. Pedestal structure and stability in H-mode and I-mode: a comparative study on Alcator C-Mod

    International Nuclear Information System (INIS)

    Hughes, J.W.; Walk, J.R.; Davis, E.M.; LaBombard, B.; Baek, S.G.; Churchill, R.M.; Greenwald, M.; Hubbard, A.E.; Lipschultz, B.; Marmar, E.S.; Reinke, M.L.; Rice, J.E.; Theiler, C.; Terry, J.; White, A.E.; Whyte, D.G.; Snyder, P.B.; Groebner, R.J.; Osborne, T.; Diallo, A.

    2013-01-01

    New experimental data from the Alcator C-Mod tokamak are used to benchmark predictive modelling of the edge pedestal in various high-confinement regimes, contributing to greater confidence in projection of pedestal height and width in ITER and reactors. ELMy H-modes operate near stability limits for ideal peeling–ballooning modes, as shown by calculations with the ELITE code. Experimental pedestal width in ELMy H-mode scales as the square root of β pol at the pedestal top, i.e. the dependence expected from theory if kinetic ballooning modes (KBMs) were responsible for limiting the pedestal width. A search for KBMs in experiment has revealed a short-wavelength electromagnetic fluctuation in the pedestal that is a candidate driver for inter-edge localized mode (ELM) pedestal regulation. A predictive pedestal model (EPED) has been tested on an extended set of ELMy H-modes from C-Mod, reproducing pedestal height and width reasonably well across the data set, and extending the tested range of EPED to the highest absolute pressures available on any existing tokamak and to within a factor of three of the pedestal pressure targeted for ITER. In addition, C-Mod offers access to two regimes, enhanced D-alpha (EDA) H-mode and I-mode, that have high pedestals, but in which large ELM activity is naturally suppressed and, instead, particle and impurity transport are regulated continuously. Pedestals of EDA H-mode and I-mode discharges are found to be ideal magnetohydrodynamic (MHD) stable with ELITE, consistent with the general absence of ELM activity. Invocation of alternative physics mechanisms may be required to make EPED-like predictions of pedestals in these kinds of intrinsically ELM-suppressed regimes, which would be very beneficial to operation in burning plasma devices. (paper)

  18. Ohmic H-mode and confinement in TCV

    International Nuclear Information System (INIS)

    Moret, J.-M.; Anton, M.; Barry, S.

    1995-01-01

    The unique flexibility of TCV for the creation of a wide variety of plasma shapes has been exploited to address some aspects of tokamak physics for which the shape may play an important role. The electron energy confinement time in limited ohmic L-mode plasmas whose elongation and triangularity have been varied (κ = 1.3 - 1.9, δ 0.1 - 0.7) has been observed to improve with elongation as κ 0.5 but to degrade with triangularity as (1 - 0.8 δ), for fixed safety factor. Ohmic H-modes have been obtained in several diverted and limited configurations, with some of the diverted discharges featuring large ELMs whose effects on the global confinement have been quantified. These effects depend on the configuration: in double null (DN) equilibria, a single ELM expels on average 2%, 6% and 2.5% of the particle, impurity and thermal energy content respectively, whilst in single null (SN) configurations, the corresponding numbers are 3.5%, 7% and 9%, indicative of larger ELM effects. The presence of absence of large ELMs in DN discharges has been actively controlled in a single discharge by alternately forcing one or other of the two X-points to lie on the separatrix, permitting stationary density and impurity content (Z eff ∼ 1.6) in long H-modes (1.5 s). (Author)

  19. Ohmic H-mode and confinement in TCV

    International Nuclear Information System (INIS)

    Moret, J.M.; Anton, M.; Barry, S.

    1995-01-01

    The unique flexibility of TCV for the creation of a wide variety of plasma shapes has been exploited to address some aspects of tokamak physics for which the shape may play an important role. The electron energy confinement time in limited ohmic L-mode plasmas whose elongation and triangularity have been varied, has been observed to improve with elongation as κ 0.5 but to degrade with triangularity as (1-0.8 δ), for fixed safety factor. Ohmic H-modes have been obtained in several diverted and limited configurations, with some of the diverted discharges featuring large ELMs whose effects on the global confinement have been quantified. These effects depend on the configuration: in double null (DN) equilibria, a single ELM expels on average 2%, 6% and 2.5% of the particle, impurity and thermal energy content respectively, whilst in single null (SN) configurations, the corresponding numbers are 3.5%, 7% and 9%, indicative of larger ELM effects. The presence or absence of large ELMs in DN discharges has been actively controlled in a single discharge by alternately forcing one or other of the two X-points to lie on the separatrix, permitting stationary density and impurity content (Z eff ≅1.6) in long H-modes (1.5 s). (author) 9 figs., 9 refs

  20. Transport of impurities during H-mode pulses in JET

    International Nuclear Information System (INIS)

    Giannella, R.; Gottardi, N.; Mompean, F.; Mori, H.; Pasini, D.; Stork, D.; Barnsley, R.; Hawkes, N.C.; Lawson, K.

    1990-01-01

    The transport of impurities during the H-mode is very different from that observed in the other regimes. This is clearly evident in the quiescent discharges where the confinement time of impurities τ I are measured in all the quiescent H-mode discharges in spite of the variety of impurity behavior observed corresponding to different plasma parameters and operating scenarios. The condition of the machine has an influence on the role played by the various impurities, but this does not seem to affect the flow patterns of these ions substantially. In particular oxygen, which was often detected as the dominant radiator, can be reduced to a negligible fraction by He conditioning of the carbon X-point tiles or limiters or by evaporating beryllium in the vacuum vessel. Nevertheless the behaviour of the residual impurities in otherwise similar discharges remains substantially unchanged. The transport patterns appear in fact to be affected by the plasma parameters and their profiles. In particular, two extreme transport regimes are presented in the following. These discharges have been modelled with the aid of a recently developed fully time-dependent impurity transport code using heuristic profiles for the impurity diffusion D and the convection velocity v. (author) 4 refs., 5 figs

  1. Overview of long pulse H-mode operation on EAST

    Science.gov (United States)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  2. Study of H-mode threshold conditions in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Carlstrom, T.N.; Burrell, K.H.

    1996-10-01

    Studies have been conducted in DIII-D to determine the dependence of the power threshold P lh for the transition to the H-mode regime and the threshold P hl for the transition from H-mode to L-mode as functions of external parameters. There is a value of the line-averaged density n e at which P lh has a minimum and P lh tends to increase for lower and higher values of n e . Experiments conducted to separate the effect of the neutral density n 0 from the plasma density n e give evidence of a strong coupling between n 0 and n e . The separate effect of neutrals on the transition has not been determined. Coordinated experiments with JET made in the ITER shape show that P lh increases approximately as S 0.5 where S is the plasma surface area. For these discharges, the power threshold in DIII-D was high by normal standards, thus suggesting that effects other than plasma size may have affected the experiment. Studies of H-L transitions have been initiated and hysteresis of order 40% has been observed. Studies have also been done of the dependence of the L-H transition on local edge parameters. Characterization of the edge within a few ms prior to the transition shows that the range of edge temperatures at which the transition has been observed is more restrictive than the range of densities at which it occurs. These results suggest that some temperature function is important for controlling the transition

  3. Helium Exhaust Studies in H-Mode Discharges in the DIII-D Tokamak Using an Argon-Frosted Divertor Cryopump

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Brooks, N.H.; Burrell, K.H.; Groebner, R.J.; Jackson, G.L.; Klepper, C.C.; Laughon, G.; Menon, M.M.; Mioduszewski, P.K.

    1995-01-01

    The first experiments demonstrating exhaust of thermal helium in a diverted, H-mode deuterium plasma have been performed on the DIII-D tokamak. The helium, introduced via gas puffing, is observed to reach the plasma core, and then is readily removed from the plasma with a time constant of ∼10--20 energy-confinement times by an in-vessel cryopump conditioned with argon frosting. Detailed analysis of the helium profile evolution suggests that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium-transport properties of the plasma

  4. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  5. Operational range and transport barrier of the H-mode in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Amadeo, P.; Anton, M.; Baldzuhn, J.; Brakel, R.; Bleuel, J.; Fiedler, S.; Geist, T.; Grigull, P.; Hartfuss, H.J.; Jaenicke, R.; Kick, M.; Kisslinger, J.; Koponen, J.; Wagner, F.; Weller, A.; Wobig, H.; Zoletnik, S.; Holzhauer, E.

    1998-01-01

    In W7-AS the H-mode is characterized by an edge transport barrier localized in the first 3-4 cm inside the separatrix. In the ELMy H-mode preceding the quiescent state ELMs appear as a sudden breakdown of the edge transport barrier in coincidence with bursts of fluctuations. Between ELMs fluctuations are identical to those of the quiescent H-mode. The operational range of the quiescent H-mode is determined by narrow windows of the edge rotational transform and a threshold edge electron density. In contrast, ELM-like events are observed for a variety of plasma conditions by far exceeding the narrow operational windows for the quiescent state. (author)

  6. H-mode pedestal characteristics on MAST

    International Nuclear Information System (INIS)

    Kirk, A; Counsell, G F; Arends, E; Meyer, H; Taylor, D; Valovic, M; Walsh, M; Wilson, H

    2004-01-01

    The H-mode pedestal characteristics on the mega ampere spherical tokamak (MAST) are measured in a variety of disconnected double null discharges and the effect of edge localized modes (ELMs) on the pedestal is presented. The edge density pedestal width in spatial co-ordinates is similar on both the inboard and outboard sides. Neutral penetration may be able to explain the density pedestal width but it alone cannot explain the characteristics of the temperature pedestal. The data from MAST can be used to improve temperature pedestal width scalings by extending the ranges in pedestal collisionality, magnetic field, elongation and aspect ratio studied by other machines. Convective transport is found to dominate energy losses during ELMs and the fractional loss of pedestal energy during an ELM on MAST correlates better with SOL ion transit time than with pedestal collisionality

  7. Expression for the thermal H-mode energy confinement time under ELM-free conditions

    International Nuclear Information System (INIS)

    Ryter, F.; Gruber, O.; Kardaun, O.J.W.F.; Menzler, H.P.; Wagner, F.; Schissel, D.P.; DeBoo, J.C.; Kaye, S.M.

    1992-07-01

    The design of future tokamaks, which are supposed to reach ignition with the H-mode, requires a reliable scaling expression for the H-mode energy confinement time. In the present work, an H-mode scaling expression for the thermal plasma energy confinement time has been developed by combining data from four existing divertor tokamaks, ASDEX, DIII-D, JET and PBX-M. The plasma conditions, which were as similar as possible to ensure a coherent set of data, were ELM-free deuterium discharges heated by deuterium neutral beam injection. By combining four tokamaks, the parametric dependence of the thermal energy confinement on the main plasma parameters, including the three main geometrical variables, was determined. (orig./WL)

  8. The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011) The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011)

    Science.gov (United States)

    Saibene, G.

    2012-11-01

    as to stimulate and lead the open discussion. Poster sessions were also organized to present specialist papers and provide a venue for continued discussion. The topics selected for this edition of the workshop were: 1. Integrated plasma scenarios for ITER and a reactor: experimental and theoretical studies, including the self-stabilizing transport approach. 2. Edge transport barrier control and plasma performance: physics of 3D stochastic magnetic fields for ELM suppression. 3. H-mode transition physics and H-mode pedestal structure: pedestal dynamics near transitions and requirements for high-confinement access and sustainment. 4. Energetic particle driven instabilities and related physics: H-mode and the transport barrier. 5. Role of and evidence for non-diffusive particle and toroidal momentum transport and impact of fuelling: experiments, theory and modelling. 6. Long-range correlation of plasma turbulence and interaction between edge and core transport. The choice of topics, and the amount of progress in the understanding of the complexity of transport barriers physics reflect the drive in the fusion community towards the preparation for the ITER tokamak operation. More than 100 scientists (including students) attended the three-day workshop, coming from all over the world to present their newest results, discuss with colleagues and enjoy the atmosphere of the beautiful Lady Margaret Hall. The preparation work of the International Advisory Committee (G. Saibene (EU - Chair), R. Groebner (US), T. S Hahm (KO), A. Hubbard (US), K. Ida (Japan), S. Lebedev (RF), N. Oyama (Japan), E Wolfrum (EU)) has been rewarded by the enthusiastic participation of scientists, experimentalist, modellers and theoreticians, and by the high level of the scientific discussion throughout the workshop, during lunch breaks and even at the conference dinner. The Committee is also grateful to EFDA for the support in the organization of the workshop and to the Local Organizing Committee (E

  9. RFP plasma experiment at INPE

    International Nuclear Information System (INIS)

    Ueda, M.; Aso, Y.

    1988-01-01

    Plasma experiments in CECI, a small Reversed Field Pinch (RFP) apparatus, are described. Preliminary measurements in this device shown the production of a plasma with peak current of 1.3kA and discharge duration of nearly 80μs, when a toroidal DC field of 100G was used. A loop voltage of 40V was measured and a maximum electron temperature of 3eV was estimated for these discharges. Experimental points in the F-θ diagram for CECI indicate that its plasma is approaching the RFP configuration when the discharge is optimize. The probe data also show that the plasma column expands outward. Numerical results indicate that leakage fields have to be reduced below 5G to form appropriate magnetic surfaces. (author) [pt

  10. SOLPS5 modelling of the type III ELMing H-mode on TCV

    International Nuclear Information System (INIS)

    Gulejova, B.; Pitts, R.A.; Wischmeier, M.; Behn, R.; Coster, D.; Horacek, J.; Marki, J.

    2007-01-01

    Although ohmic H-modes have long been produced on TCV and the effects of ELMs at the divertor target studied in some detail, no attempt has yet been made to model the scrape-off layer (SOL) in these plasmas. This paper describes details of the first such efforts in which simulations of the inter-ELM phases using the coupled fluid-Monte Carlo SOLPS5 code (without drifts) are constrained by careful upstream Thomson scattering and Langmuir probe profiles. Simulated divertor profiles are compared with Langmuir probes and fast IR camera measurements at the targets. To account for the very differing transport rates in the edge pedestal and main SOL regions, radial variation of edge transport coefficients has been introduced in the simulations. Similarly, it is found that transport in the main chamber and divertor regions must be separately adjusted to provide an acceptable code-experiment match

  11. H-mode profile parametrization for extrapolation and control

    International Nuclear Information System (INIS)

    Imre, K.; Riedel, K.S.; Schissel, D.P.; Schunke, B.

    1996-01-01

    A steady-state ELMy H-mode profile data set of 68 DIII-D discharges and 74 JET discharges is fitted with an error of 7-8%. The advantages of a parametrization of the plasma profiles in terms of a semi-parametric representation, T(ρ, I p , n-bar, B t , P L , R), are described. The shape of the temperature profile depends almost exclusively upon the size, R and q 95 , with a secondary dependence on the heating power. The density profile depends primarily upon q95 with a secondary dependence on n-bar. The line-average temperature T-bar e scales as n-bar -0.31 instead of T-bar∼''n-bar'' -1.0 . The predicted ITER temperature is T-bar = 17.1 keV. (Author)

  12. Progress in quantifying the edge physics of the H mode regime in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R.; Burrell, K.H.

    2001-01-01

    Edge conditions in DIII-D are being quantified in order to provide insight into the physics of the H mode regime. Several studies show that electron temperature is not the key parameter that controls the L-H transition. Gradients of edge temperature and pressure are much more promising candidates for elements of such parameters. They systematically increase during the L phases of discharges which make a transition to H mode, and these increases are typically larger than the increases in the underlying quantities. The quality of H mode confinement is strongly correlated with the height of the H mode pedestal for the pressure. The gradient of the pressure is limited by MHD modes, in particular by ideal kink ballooning modes with finite mode number n. For a wide variety of discharges, the width of the barrier for electron pressure is well described by a relationship that is proportional to (β p ped ) 1/2 . A new regime of confinement, called the quiescent H mode, which provides steady state operation with no ELMs, low radiated power and normal H mode confinement, has been discovered. A coherent edge MHD mode provides adequate particle transport to control the plasma density while permitting the pressure pedestal to remain almost identical to that observed in ELMing discharges. (author)

  13. Effect of ripple-induced transport on H-mode performance in tokamaks

    International Nuclear Information System (INIS)

    Parail, V.; Vries, P. de; Lonnroth, J.; Kiviniemi, T.; Johnson, T.; Loarte, A.; Saibene, G.; Hatae, T.; Kamada, Y.; Konovalov, S.; Oyama, N.; Shinohara, K.; Tobita, K.; Urano, H.

    2005-01-01

    A number of experiments have shown that ripple-induced transport influences performance of ELMy H-modes in the tokamak. A noticeable difference in confinement, ELM frequency and amplitude was found between JET (with ripple amplitude δ∼0.1%) and JT-60U (with δ∼1%) in otherwise identical discharges. It was previously shown in JET experiments with enhanced ripple that a gradual increase in the ripple amplitude first leads to a modest improvement in plasma confinement, which is followed by the degradation of edge pedestal and further transition to the L-mode regime if δ increases further. The DIII-D team recently reported a marginal increase in confinement in experiments with an edge transport enhanced by the externally driven resonant magnetic perturbation. Numerical predictive modelling of the dynamics of ELMy H-mode JET plasma relevant to a JET/JT-60U similarity experiment has been conducted taking into account ripple-induced ion transport, which was computed using the orbit following code ASCOT. This predictive modelling reveals that, depending on plasma parameters, ripple amplitude and localisation (the latter depending on the toroidal coil design), this additional transport can either improve global plasma confinement or reduce it. These controlled ripple losses might be used as an effective tool for ELM mitigation and may provide an explanation for the difference between JET and JT-60U observed in the similarity experiments. A detailed comparison between ripple- induced transport and the alternative method of ELM mitigation by an externally driven edge magnetic perturbation is discussed. The fact that ripple losses mainly increase ion transport, while a stochastic magnetic layer increases electron transport indicates that it might be beneficial to use a combination of both methods in future experiments. This work was funded partly by the United Kingdom Engineering and Physical Sciences Research Council and by the European Communities under the contract of

  14. Real-time Equilibrium Reconstruction and Isoflux Control of Plasma Shape and Position in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Mueller, D.; Gates, D.A.; Menard, J.E.; Ferron, J.R.; Sabbagh, S.A.

    2004-01-01

    The implementation of the rtEFIT-isoflux algorithm in the digital control system for NSTX has led to improved ability to control the plasma shape. In particular, it has been essential for good gap control for radio-frequency experiments, for control of drsep in H-mode studies, and for X-point height control and κ control in a variety of experiments

  15. Role of Density Gradient Driven Trapped Electron Modes in the H-Mode Inner Core with Electron Heating

    Science.gov (United States)

    Ernst, D.

    2015-11-01

    We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.

  16. Ubiquity of non-diffusive momentum transport in JET H-modes

    NARCIS (Netherlands)

    Weisen, H.; Camenen, Y.; Salmi, A.; Versloot, T. W.; de Vries, P. C.; Maslov, M.; Tala, T.; Beurskens, M.; Giroud, C.; JET-EFDA Contributors,

    2012-01-01

    A broad survey of the experimental database of neutral beam heated baseline H-modes and hybrid scenarios in the JET tokamak has established the ubiquity of non-diffusive momentum transport mechanisms in rotating plasmas. As a result of their presence, the normalized angular frequency gradient R

  17. Radiative type-III ELMy H-mode in all-tungsten ASDEX Upgrade

    NARCIS (Netherlands)

    Rapp, J.; Kallenbach, A.; Neu, R.; Eich, T.; Fischer, R.; Herrmann, A.; Potzel, S.; van Rooij, G. J.; Zielinski, J. J.; ASDEX Upgrade team,

    2012-01-01

    The type-III ELMy H-mode might be the solution for an integrated ITER operation scenario fulfilling the fusion power amplification factor (output fusion power to input heating power) of Q = 10 with simultaneous acceptable steady-state and transient power loads to the plasma-facing components. This

  18. H-mode and confinement studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Suttrop, W.; Ryter, F.; Mertens, V.; Gruber, O.; Murmann, H.; Salzmann, H.; Schweinzer, J.

    2001-01-01

    H-mode operational boundaries and H-mode confinement are investigated on ASDEX Upgrade. The local edge parameter threshold for H-mode holds independent of divertor geometry and changes little with ion mass. The deviation of the H-mode power threshold at densities near the Greenwald limit can be understood as a consequence of a confinement deterioration, caused by 'stiff' temperature profiles and lack of core density gradients in gas puff fuelled discharges. Ion and electron temperature profiles can be described by a lower limit of gradient length L T =T/T'. (author)

  19. Labotratory Simulation Experiments of Cometary Plasma

    OpenAIRE

    MINAMI, S.; Baum, P. J.; Kamin, G.; White, R. S.; 南, 繁行

    1986-01-01

    Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...

  20. Variable configuration plasmas in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Hofmann, F.; Anton, M.

    1994-01-01

    During its first year of operation, TCV has achieved a wide variety of plasma shapes, limited and diverted, attaining 810 kA plasma current and elongation over 2.0. Ohmic H-Modes have been regularly produced, with a maximum confinement time of 80 msec and maximum normalised β N of 1.9. The conditions for the H-Mode transition differ from other experiments. The transitions from ELM-free to ELMy H-Modes and back have been selectively triggered for configurations close to a Double-Null. (author) 3 figs., 5 refs

  1. Variable configuration plasmas in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Hofmann, F.; Anton, M.

    1995-01-01

    During its first year of operation, TCV has achieved a wide variety of plasma shapes, limited and diverted, attaining 810 kA plasma current and elongation over 2.0. Ohmic H modes have been regularly produced, with a maximum confinement time of 80 ms and a maximum normalized β N of 1.9. The conditions for the H mode transition differ from other experiments. The transitions from ELM free to ELMy H modes and back have been selectively triggered for configurations close to a double-null. (author). 5 refs, 3 figs

  2. Quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    International Nuclear Information System (INIS)

    Burrell, K.H.; Garofalo, A.M.; Osborne, T.H.; Snyder, P.B.; Solomon, W.M.; Park, J.-K.; Fenstermacher, M.E.; Orlov, D.M.

    2013-01-01

    Quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas including ITER. Using magnetic torque from n = 3 fields to replace counter-I p torque from neutral beam injection, we have achieved long duration, counter-rotating QH-mode operation with neutral beam injection (NBI) torque ranging continuously from counter-I p up to co-I p values of about 1 N m. This co-I p torque is about 3 times the scaled torque that ITER will have. This range also includes operation at zero net NBI torque, applicable to rf wave heated plasmas. These n = 3 fields have been created using coils either inside or, most recently, outside the toroidal coils. Experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values ν ped * ∼0.08, β T ped ∼ 1%$ and β N = 2. Discharges have confinement quality H 98y2 = 1.3, exceeding the value required for ITER. Initial work with low q 95 = 3.4 QH-mode plasmas transiently reached fusion gain values of G = β N H 89 /q 95 2 =0.4, which is the desired value for ITER; the limits on G have not yet been established. This paper also includes the most recent results on QH-mode plasmas run without n = 3 fields and with co-I p NBI; these shots exhibit co-I p plasma rotation and require NBI torque ⩾2 N m. The QH-mode work to date has made significant contact with theory. The importance of edge rotational shear is consistent with peeling–ballooning mode theory. We have seen qualitative and quantitative agreement with the predicted torque from neoclassical toroidal viscosity. (paper)

  3. W transport and accumulation control in the termination phase of JET H-mode discharges and implications for ITER

    Science.gov (United States)

    Köchl, F.; Loarte, A.; de la Luna, E.; Parail, V.; Corrigan, G.; Harting, D.; Nunes, I.; Reux, C.; Rimini, F. G.; Polevoi, A.; Romanelli, M.; Contributors, JET

    2018-07-01

    Tokamak operation with W PFCs is associated with specific challenges for impurity control, which may be particularly demanding in the transition from stationary H-mode to L-mode. To address W control issues in this phase, dedicated experiments have been performed at JET including the variation of the decrease of the power and current, gas fuelling and central ion cyclotron heating (ICRH), and applying active ELM control by vertical kicks. The experimental results obtained demonstrate the key role of maintaining ELM control to control the W concentration in the exit phase of H-modes with slow (ITER-like) ramp-down of the neutral beam injection power in JET. For these experiments, integrated fully predictive core+edge+SOL transport modelling studies applying discrete models for the description of transients such as sawteeth and ELMs have been performed for the first time with the JINTRAC suite of codes for the entire transition from stationary H-mode until the time when the plasma would return to L-mode focusing on the W transport behaviour. Simulations have shown that the existing models can appropriately reproduce the plasma profile evolution in the core, edge and SOL as well as W accumulation trends in the termination phase of JET H-mode discharges as function of the applied ICRH and ELM control schemes, substantiating the ambivalent effect of ELMs on W sputtering on one side and on edge transport affecting core W accumulation on the other side. The sensitivity with respect to NB particle and momentum sources has also been analysed and their impact on neoclassical W transport has been found to be crucial to reproduce the observed W accumulation characteristics in JET discharges. In this paper the results of the JET experiments, the comparison with JINTRAC modelling and the adequacy of the models to reproduce the experimental results are described and conclusions are drawn regarding the applicability of these models for the extrapolation of the applied W

  4. Ion thermal conductivity and convective energy transport in JET hot-ion regimes and H-modes

    International Nuclear Information System (INIS)

    Tibone, F.; Balet, B.; Cordey, J.G.

    1989-01-01

    Local transport in a recent series of JET experiments has been studied using interpretive codes. Auxiliary heating, mainly via neutral beam injection, was applied on low-density target plasmas confined in the double-null X-point configuration. This has produced two-component plasmas with high ion temperature and neutron yield and, above a threshold density, H-modes characterised by peak density and power deposition profiles. H-mode confinement was also obtained for the first time with 25 MW auxiliary power, of which 10 MW was from ion cyclotron resonance heating. We have used profile measurements of electron temperature T e from electron cyclotron emission and LIDAR Thomson scattering, ion temperature T i from charge-exchange recombination spectroscopy (during NBI), electron density n e from LIDAR and Abel-inverted interferometer measurements. Only sparse information is, however, available to date concerning radial profiles of effective ionic charge and radiation losses. Deuterium depletion due to high impurity levels is an important effect in these discharges, and our interpretation of thermal ion energy content, neutron yield and ion particle fluxes needs to be confirmed using measured Z eff -profiles. (author) 4 refs., 4 figs

  5. Formation of an internal transport barrier in the ohmic H-mode in the TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Zhubr, N.A.; Kornev, V.A.; Krikunov, S.V.; Lebedev, S.V.; Levin, L.S.; Razdobarin, G.T.; Rozhdestvensky, V.V.; Smirnov, A.I.; Tukachinsky, A.S.; Yaroshevich, S.P.

    2000-01-01

    In experiments on studying the ohmic H-mode in the TUMAN-3M tokamak, it is found that, in high-current (I p ∼ 120-170 kA) discharges, a region with high electron-temperature and density gradients is formed in the plasma core. In this case, the energy confinement time τ E attains 9-18 ms, which is nearly twice as large as that predicted by the ELM-free ITER-93H scaling. This is evidence that the internal transport barrier in a plasma can exist without auxiliary heating. Calculations of the effective thermal diffusivity by the ASTRA transport code demonstrate a strong suppression of heat transport in the region where the temperature and density gradients are high

  6. The H-mode power threshold in JET

    Energy Technology Data Exchange (ETDEWEB)

    Start, D F.H.; Bhatnagar, V P; Campbell, D J; Cordey, J G; Esch, H P.L. de; Gormezano, C; Hawkes, N; Horton, L; Jones, T T.C.; Lomas, P J; Lowry, C; Righi, E; Rimini, F G; Saibene, G; Sartori, R; Sips, G; Stork, D; Thomas, P; Thomsen, K; Tubbing, B J.D.; Von Hellermann, M; Ward, D J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    New H-mode threshold data over a range of toroidal field and density values have been obtained from the present campaign. The scaling with n{sub e} B{sub t} is almost identical with that of the 91/92 period for the same discharge conditions. The scaling with toroidal field alone gives somewhat higher thresholds than the older data. The 1991/2 database shows a scaling of P{sub th} (power threshold) with n{sub e} B{sub t} which is approximately linear and agrees well with that observed on other tokamaks. For NBI and carbon target tiles the threshold power is a factor of two higher with the ion {Nu}B drift away from the target compared with the value found with the drift towards the target. The combination of ICRH and beryllium tiles appears to be beneficial for reducing P{sub th}. The power threshold is largely insensitive to plasma current, X-point height and distance between the last closed flux surface and the limiter, at least for values greater than 2 cm. (authors). 3 refs., 6 figs.

  7. Scaling studies of the H-mode pedestal

    International Nuclear Information System (INIS)

    Groebner, R.J.; Osborne, T.H.

    1998-01-01

    The structure and scaling of the H-mode pedestal are examined for discharges in the DIII-D tokamak. For typical conditions, the pedestal values of the ion and electron temperatures T i and T e are comparable. Measurements of main ion and C 6+ profiles indicate that the ion pressure gradient in the barrier is 50%--100% of the electron pressure gradient for deuterium plasmas. The magnitude of the pressure gradient in the barrier often exceeds the predictions of infinite-n ballooning mode theory by a factor of two. Moreover, via the bootstrap current, the finite pressure gradient acts to entirely remove ballooning stability limits for typical discharges. For a large dataset, the width of the pressure barrier δ is best described by the dimensionless scaling δ/R ∝ (β pol ped ) 0.4 where (β pol ped ) is the pedestal value of poloidal beta and R is the major radius. Scalings based on the poloidal ion gyroradius or the edge density gradient do not adequately describe overall trends in the data set and the propagation of the pressure barrier observed between edge-localized modes. The width of the T i barrier is quite variable and is not a good measure of the width of the pressure barrier

  8. The influence of gas fuelling location on H-mode access in the MAST spherical tokamak

    International Nuclear Information System (INIS)

    Field, A R; Carolan, P G; Conway, N J; Counsell, G F; Cunningham, G; Helander, P; Meyer, H; Taylor, D; Tournianski, M R; Walsh, M J

    2004-01-01

    The observation that high-field side (HFS) gas puff refuelling facilitates access to the improved confinement (H-mode) regime on the COMPASS-D and MAST tokamaks prompted a theoretical investigation of the role of the neutral gas dynamics in controlling the edge plasma rotation and radial E-field, E r . Within the framework of neo-classical theory, higher edge plasma flow, and hence E r , are predicted when fuelling from the HFS-rather than from the more usual low-field side (LFS)-provided neutral viscosity dominates the transport of toroidal angular momentum. Here, these predictions are compared with experiments on MAST, where the influence of the gas-puff location on the edge E r profile is measured spectroscopically. An increase in E r is indeed observed with HFS refuelling in the region where the edge transport barrier forms, provided the neutral density at the LFS is sufficiently low so as not to damp the toroidal flow

  9. Essential elements of the high density H-mode on W7-AS

    International Nuclear Information System (INIS)

    McCormick, K.; Burhenn, R.; Grigull, P.

    2003-01-01

    The High Density H-Mode (HDH), discovered during the run-in phase of W7-AS divertor operation/1-3/, rapidly became the workhorse of the divertor program, combining optimal core behavior along with edge parameters necessary for successful operation of an Island Divertor. Its unique properties of high energy confinement along with low impurity retention and radiation localized at the edge under ELM-free steady-state conditions at high densities (to 4 x 10 20 m -3 ) and heating powers (to 1.7 MWm -3 ) make the HDH H-mode ideal for a reactor scenario, given it can be extended to higher temperatures in a larger machine. Hence, considerable effort has been invested to understand the nature of the HDH-mode in order to be able to extrapolate to next generation devices. To this end the present paper reports on experiments where two globally-similar ELM-free H-modes are compared: the classic quiescent H-mode H* where both impurity and density control are a severe problem and the HDH-mode with its contrasting steady-state behavior. Through modeling of the temporal behavior of laser-ablated aluminum spectral lines, as well as that of background impurities, it is concluded that a principle difference between the two H-modes is that of enhanced impurity diffusion in the edge gradient region of the HDH-mode. However, no direct indicators of enhanced diffusion have yet been identified. (orig.)

  10. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    Science.gov (United States)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  11. Operational limits of high density H-modes in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mertens, V.; Borrass, K.; Kaufmann, M.; Lang, P.T.; Lang, R.; Mueller, H.W.; Neuhauser, J.; Schneider, R.; Schweinzer, J.; Suttrop, W.

    2001-01-01

    Systematic investigations of H-mode density limit (H→L-mode back transition) plasmas with gas fuelling and alternatively with additional pellet injection from the magnetic high-field-side HFS are being performed in the new closed divertor configuration DV-II. The resulting database covering a wide range of the externally controllable plasma parameters I p , B t and P heat confirms that the H-mode threshold power exceeds the generally accepted prediction P L→H heat ∝B-bar t dramatically when one approaches Greenwald densities. Additionally, in contrast to the Greenwald scaling a moderate B t -dependence of the H-mode density limit is found. The limit is observed to coincide with divertor detachment and a strong increase of the edge thermal transport, which has, however, no detrimental effect on global τ E . The pellet injection scheme from the magnetic high-field-side HFS, developed recently on ASDEX Upgrade, leads to fast particle drifts which are, contrary to the standard injection from the low-field-side, directed into the plasma core. This improves markedly the pellet particle fuelling efficiency. The responsible physical mechanism, the diamagnetic particle drift of the pellet ablatant was successfully verified recently. Other increased particle losses on respectively different time scales after the ablation process, however, still persist. Generally, a clear gain in achievable density and plasma stored energy is achieved with stationary HFS pellet injection compared to gas-puffing. (author)

  12. H-mode regimes and observators of central toroidal rotation in Alcator C-Mod

    International Nuclear Information System (INIS)

    Greenwald, M.; Rice, J.; Boivin, R.

    1999-01-01

    The Enhanced D α or EDA H-mode regime in Alcator C-Mod has been investigated and compared in detail to ELM-free plasmas. (In this paper, ELM-free will refer to discharges with no type I ELMs and with no sign of EDA, though technically, most EDA plasmas are ELM-free as well.) EDA discharges have only slightly lower energy confinement than comparable ELM-free ones, but show markedly reduced impurity confinement. Thus EDA discharges do not accumulate impurities and typically have a lower fraction of radiated power. EDA plasmas are seen to be more likely at low plasma current (q > 3.7 - 4), for moderate plasma shaping (0.35 - 0.55), and for high neutral pressures. No obvious trends were observed with input power or pressure (β). In both H-mode regimes, and in ICRF heated L-modes, central impurity toroidal rotation has been deduced, from the Doppler shifts of argon x-ray lines. Rotation velocities up to 1.3 x 10 5 m/s in the co-current direction have been observed in H-mode discharges that had no direct momentum input. There is a strong correlation between the increase in the central impurity rotation velocity and the increase in the plasma stored energy, induced by ICRF heating. In otherwise similar discharges with the same stored energy increase, plasmas with lower current rotate faster. The ion pressure gradient is an unimportant contributor to the central impurity rotation and the presence of a substantial core radial electric field is inferred during the ICRF pulse. An inward shift of ions induced by ICRF waves could give rise to a non-ambipolar electric field in the plasma core. Comparisons with a neo-classical ion orbit shift model show good agreement with the observations, both in magnitude, and in the scaling with plasma current. (author)

  13. The role of MHD instabilities in the improved H-mode scenario

    International Nuclear Information System (INIS)

    Flaws, Asher

    2009-01-01

    Recently a regime of tokamak operation has been discovered, dubbed the improved H-mode scenario, which simultaneously achieves increased energy confinement and stability with respect to standard H-mode discharges. It has been suggested that magnetohydrodynamic (MHD) instabilities play some role in establishing this regime. In this thesis MHD instabilities were identified, characterised, and catalogued into a database of improved H-mode discharges in order to statistically examine their behaviour. The onset conditions of MHD instabilities were compared to existing models based on previous H-mode studies. Slight differences were found, most notably a reduced β N onset threshold for the frequently interrupted regime for neoclassical tearing modes (NTM). This reduced threshold is due to the relatively low magnetic shear of the improved H-mode regime. This study also provided a first-time estimate for the seed island size of spontaneous onset NTMs, a phenomenon characteristic of the improved H-mode scenario. Energy confinement investigations found that, although the NTM impact on confinement follows the same model applicable to other operating regimes, the improved H-mode regime acts to mitigate the impact of NTMs by limiting the saturated island sizes for NTMs with toroidal mode number n ≥ 2. Surprisingly, although a significant loss in energy confinement is observed during the sawtooth envelope, it has been found that discharges containing fishbones and low frequency sawteeth achieve higher energy confinement than those without. This suggests that fishbone and sawtooth reconnection may indeed play a role in establishing the high confinement regime. It was found that the time evolution of the central magnetic shear consistently locks in the presence of sawtooth and fishbone reconnection. Presumably this is due to the periodic redistribution of the central plasma current, an effect which is believed to help establish and maintain the characteristic current profile

  14. The role of MHD instabilities in the improved H-mode scenario

    Energy Technology Data Exchange (ETDEWEB)

    Flaws, Asher

    2009-02-16

    Recently a regime of tokamak operation has been discovered, dubbed the improved H-mode scenario, which simultaneously achieves increased energy confinement and stability with respect to standard H-mode discharges. It has been suggested that magnetohydrodynamic (MHD) instabilities play some role in establishing this regime. In this thesis MHD instabilities were identified, characterised, and catalogued into a database of improved H-mode discharges in order to statistically examine their behaviour. The onset conditions of MHD instabilities were compared to existing models based on previous H-mode studies. Slight differences were found, most notably a reduced {beta}{sub N} onset threshold for the frequently interrupted regime for neoclassical tearing modes (NTM). This reduced threshold is due to the relatively low magnetic shear of the improved H-mode regime. This study also provided a first-time estimate for the seed island size of spontaneous onset NTMs, a phenomenon characteristic of the improved H-mode scenario. Energy confinement investigations found that, although the NTM impact on confinement follows the same model applicable to other operating regimes, the improved H-mode regime acts to mitigate the impact of NTMs by limiting the saturated island sizes for NTMs with toroidal mode number n {>=} 2. Surprisingly, although a significant loss in energy confinement is observed during the sawtooth envelope, it has been found that discharges containing fishbones and low frequency sawteeth achieve higher energy confinement than those without. This suggests that fishbone and sawtooth reconnection may indeed play a role in establishing the high confinement regime. It was found that the time evolution of the central magnetic shear consistently locks in the presence of sawtooth and fishbone reconnection. Presumably this is due to the periodic redistribution of the central plasma current, an effect which is believed to help establish and maintain the characteristic current

  15. Study on H-mode access at low density with lower hybrid current drive and lithium-wall coatings on the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Wan, B.N.; Li, J.G.

    2011-01-01

    The first high-confinement mode (H-mode) with type-III edge localized modes at an H factor of HIPB98(y,2) ~ 1 has been obtained with about 1 MW lower hybrid wave power on the EAST superconducting tokamak. The first H-mode plasma appeared after wall conditioning by lithium (Li) evaporation before ...

  16. Thermo-mechanical and damage analyses of EAST carbon divertor under type-I ELMy H-mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.X. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Ye, M.Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu, S.T. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Qian, X.Y.; Zhu, C.C. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-15

    Highlights: • Type-I ELMy H-mode is one of the most severe operating environment in tokamak. • An actual time-history heat load has been used in thermo-mechanical analysis. • The analysis results are time-dependent during the whole discharge process. • The analysis could be very useful in evaluating the operational capability of the divertor. - Abstract: The lower carbon divertor has been used since 2008 in EAST, and many significant physical results, like the 410 s long pulse discharge and the 32 s H-mode operation, have been achieved. As the carbon divertor will still be used in the next few years while the injected auxiliary heating power would be increased gradually, it’s necessary to evaluate the operational capability of the carbon divertor under the heat loads during future operation. In this paper, an actual time-history heat load during type-I ELMy H-mode from EAST experiment, as one of the most severe operating environment in tokamak, has been used in the calculation and analysis. The finite element (FE) thermal and mechanical calculations have been carried out to analysis the stress and deformation of the carbon divertor during the heat loads. According to the results, the main impact on the overall temperature comes from the relative stable phase before and after the type-I ELMs and local peak load, and the transient thermal load such as type-I ELMy only has a significant effect on the surface temperature of the graphite tiles. The carbon divertor would work with high stress near the screw bolts in the current operational conditions, because of high preload and conservative frictional coefficient between the bolts and heatsink. For the future operation, new plasma facing materials (PFM) and divertor technology should be developed.

  17. VH mode accessibility and global H-mode properties in previous and present JET configurations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T T.C.; Ali-Arshad, S; Bures, M; Christiansen, J P; Esch, H P.L. de; Fishpool, G; Jarvis, O N; Koenig, R; Lawson, K D; Lomas, P J; Marcus, F B; Sartori, R; Schunke, B; Smeulders, P; Stork, D; Taroni, A; Thomas, P R; Thomsen, K [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    In JET VH modes, there is a distinct confinement transition following the cessation of ELMs, observed in a wide variety of tokamak operating conditions, using both NBI and ICRF heating methods. Important factors which influence VH mode accessibility such as magnetic configuration and vessel conditions have been identified. The new JET pumped divertor configuration has much improved plasma shaping control and power and particle exhaust capability and should permit exploitation of plasmas with VH confinement properties over an even wider range of operating regimes, particularly at high plasma current; first H-modes have been obtained in the 1994 JET operating period and initial results are reported. (authors). 7 refs., 6 figs.

  18. Scaling of H-mode pedestal characteristics in DIII-D and C-Mod

    International Nuclear Information System (INIS)

    Granetz, R.S.; Boivin, R.L.; Osborne, T.H.

    1999-01-01

    Since the H-mode edge pedestal effectively sets the boundary conditions for energy transport throughout the core, a better understanding of the pedestal region is necessary in order to fully predict H-mode performance. Pedestal characteristics in the DIII-D and Alcator C-Mod tokamaks are described, and scalings of the pedestal width with various plasma parameters are shown. The pedestal width in both tokamaks varies in an inverse sense with plasma current, and is independent of toroidal field. Other similarities, as well as differences, are discussed. It is also found that the pedestal widths of the various physical quantities involved (T e , T i , n e , n i ) may be different. (author)

  19. Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges

    Science.gov (United States)

    Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2018-04-01

    The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.

  20. Characteristics of edge localized mode in JFT-2M H-mode

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi; Funahashi, Akimasa; Goldston, R.J.

    1989-03-01

    Characteristics of edge localized mode (ELM/ERP) during H-mode plasma of JFT-2M were investigated. It was found that ELM/ERP is mainly a density fluctuation phenomena in the edge, and electron temperature in the edge except just near the separatrix is not very much perturbed. Several experimental conditions to controll ELM/ERP are, plasma density, plasma ion species, heating power, and plasma current ramping. ELM/ERPs found in low density deuterium discharge are suppressed by raising the density. ELM/ERPs are pronounced in hydrogen plasma compared with deuterium plasma. ELM/ERPs seen in hydrogen plasma or in near marginal H-mode conditions are suppressed by increasing the heating power. ELM/ERPs are found to be suppressed by plasma current ramp down, whereas they are enhanced by current ramp up. MHD aspect of ELM/ERP was investigated. No clear MHD features of ELM/ERP were found. However, reversal of mode rotation seen imediately after ELM/ERP suggests the temporal return to L-mode during the ELM/ERP event. (author)

  1. X-Divertor Geometries for Deeper Detachment Without Degrading the DIII-D H-Mode

    Science.gov (United States)

    Covele, Brent; Kotschenreuther, M. T.; Valanju, P. M.; Mahajan, S. M.; Leonard, A. W.; Hyatt, A. W.; McLean, A. G.; Thomas, D. M.; Guo, H. Y.; Watkins, J. G.; Makowski, M. A.; Hill, D. N.

    2015-11-01

    Recent DIII-D experiments comparing the standard divertor (SD) and X-Divertor (XD) geometries show heat and particle flux reduction at the divertor target plate. The XD features large poloidal flux expansion, increased connection length, and poloidal field line flaring, quantified by the Divertor Index. Both SD and XD were pushed deep into detachment with increased gas puffing, until core energy confinement and pedestal pressure were substantially reduced. As expected, outboard target heat fluxes are significantly reduced in the XD compared to the SD under similar upstream plasma conditions, even at low Greenwald fraction. The high-triangularity (floor) XD cases show larger reduction in temperature, heat, and particle flux relative to the SD in all cases, while low-triangularity (shelf) XD cases show more modest reductions over the SD. Consequently, heat flux reduction and divertor detachment may be achieved in the XD with less gas puffing and higher pedestal pressures. Further causative analysis, as well as detailed modeling with SOLPS, is underway. These initial experiments suggest the XD as a promising candidate to achieve divertor heat flux control compatible with robust H-mode operation. Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54754, and DE-FG02-04ER54742.

  2. Structure, stability and ELM dynamics of the H-mode pedestal in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Leonard, A.W.; Osborne, T.H.

    2005-01-01

    Experiments are described that have increased understanding of the transport and stability physics that set the H-mode edge pedestal width and height, determine the onset of Type-I edge localized modes (ELMs), and produce the nonlinear dynamics of the ELM perturbation in the pedestal and scrape-off layer (SOL). Predictive models now exist for the n e pedestal profile and the p e height at the onset of Type-I ELMs, and progress has been made toward predictive models of the T e pedestal width and nonlinear ELM evolution. Similarity experiments between DIII-D and JET suggested that neutral penetration physics dominates in the relationship between the width and height of the n e pedestal while plasma physics dominates in setting the T e pedestal width. Measured pedestal conditions including edge current at ELM onset agree with intermediate-n peeling-ballooning (P-B) stability predictions. Midplane ELM dynamics data show the predicted (P-B) structure at ELM onset, large rapid variations of the SOL parameters, and fast radial propagation in later phases, similar to features in nonlinear ELM simulations. (author)

  3. Comparison between dominant NB and dominant IC heated ELMy H-mode discharges in JET

    NARCIS (Netherlands)

    Versloot, T.W.; Sartori, R.; de Vries, P.C.; et al, [No Value

    2011-01-01

    Abstract The experiment described in this paper is aimed at characterization of ELMy H-mode discharges with varying momentum input, rotation, power deposition profiles and ion to electron heating ratio obtained by varying the proportion between ion cyclotron (IC) and neutral beam (NB) heating. The

  4. Comparison between dominant NB and dominant IC heated ELMy H-mode discharges in JET

    NARCIS (Netherlands)

    Versloot, T. W.; Sartori, R.; Rimini, F.; de Vries, P. C.; Saibene, G.; Parail, V.; Beurskens, M. N. A.; Boboc, A.; Budny, R.; Crombe, K.; de la Luna, E.; Durodie, F.; Eich, T.; Giroud, C.; Kiptily, V.; Johnson, T.; Mantica, P.; Mayoral, M. L.; McDonald, D. C.; Monakhov, I.; Nave, M. F. F.; Voitsekhovitch, I.; Zastrow, K. D.

    2011-01-01

    The experiment described in this paper is aimed at characterization of ELMy H-mode discharges with varying momentum input, rotation, power deposition profiles and ion to electron heating ratio obtained by varying the proportion between ion cyclotron (IC) and neutral beam (NB) heating. The motivation

  5. Progress in qualifying the edge physics of the H-mode regime in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R.; Boedo, J.A.

    2001-01-01

    Edge conditions in DIII-D are being quantified in order to provide insight into the physics of the H-mode regime. Electron temperature is not the key parameter that controls the L-H transition. Gradients of edge temperature and pressure are much more promising candidates for such parameters. The quality of H-mode confinement is strongly correlated with the height of the H-mode pedestal for the pressure. The gradient of the pressure appears to be controlled by MHD modes, in particular by kink-ballooning modes with finite mode number n. For a wide variety of discharges, the width of the barrier is well described with a relationship that is proportional to (β p ped ) 1/2 . An attractive regime of confinement has been discovered which provides steady-state operation with no ELMs, low impurity content and normal H-mode confinement. A coherent edge MHD-mode evidently provides adequate particle transport to control the plasma density and impurity content while permitting the pressure pedestal to remain almost identical to that observed in ELMing discharges. (author)

  6. Influence of the wall material on the H-mode performance

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.

    1994-06-01

    Theory on the influence of the wall material on the level of the enhanced confinement in H-mode is discussed. When the high-Z material is employed as the wall, the reflection of the neutral particles causes the higher neutral particle density in the plasma. The increased neutral particles lead to the loss of the ion momentum, decrease the radial electric field and degrade the confinement improvement. (author)

  7. Density fluctuation measurements via reflectometry on DIII-D during L- and H-mode operation

    International Nuclear Information System (INIS)

    Doyle, E.J.; Lehecka, T.; Luhmann, N.C. Jr.; Peebles, W.A.; Philipona, R.

    1990-01-01

    The unique ability of reflectometers to provide radial density fluctuation measurements with high spatial resolution (of the order of ≤ centimeters, is ideally suited to the study of the edge plasma modifications associated with H-mode operation. Consequently, attention has been focused on the study of these phenomena since an improved understanding of the physics of H-mode plasmas is essential if a predictive capability for machine performance is to be developed. In addition, DIII-D is ideally suited for such studies since it is a major device noted for its robust H-mode operation and excellent basic plasma profile diagnostic information. The reflectometer system normally used for fluctuation studies is an O-mode, homodyne, system utilizing 7 discrete channels spanning 15-75 GHz, with corresponding critical densities of 2.8x10 18 to 7x10 19 m -3 . The Gunn diode sources in this system are only narrowly tunable in frequency, so the critical densities are essentially fixed. An X-mode system, utilizing a frequency tunable BWO source, has also been used to obtain fluctuation data, and in particular, to 'fill in the gaps' between the discrete O-mode channels. (author) 12 refs., 5 figs

  8. Recent LHCD experiments in EAST

    International Nuclear Information System (INIS)

    Ding, B.J.

    2013-01-01

    LHCD system of 2.45 GHz in EAST has been updated to 4MW in last campaign. Aimed at high confinement (H-mode) plasma in EAST, the LHW-plasma coupling and current drive experiments were continued. Experiments of local gas puffing near LHW antenna shows that gas puffing from electron side is better to improve LHW-plasma coupling than that from ion side. LHCD experiments at high density are also performed, demonstrating that the decrease of current efficiency at high density may be related to the parametric decay instability (PDI) effect. Lithiation and local gas puffing near LHW antenna are utilized so as to sustain H-mode plasma. H-mode plasma is obtained by LHCD with a wide range of parameters: Ip=0.4∼0.8MA, B_t=1.35∼1.81T, n_e=1.5∼2.5x10"1"9 m"-"3, P_L_H_W>=0.5MW. LHW power deposition and driven current profile with C3PO/LUKE are calculated with the experimental parameters, showing that central and large driven current seems not a necessary condition for the H-mode plasma. H-mode is reproduced with CRONOS. Long pulse plasmas, >400s L mode fully driven by LHCD and >30s H-mode with LHCD and ICRF, have been achieved and demonstrated in EAST. (author)

  9. Interrelated experiments in laboratory and space plasmas

    International Nuclear Information System (INIS)

    Koepke, M. E.

    2005-01-01

    Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modelling and/or laboratory experiments. Here are discussed advances for which laboratory experiments played an important role. How the interpretation of the space plasma data was influenced by one or more laboratory experiments is described. The space-motivation of laboratory investigations and the scaling of laboratory plasma parameters to space plasma conditions are discussed. Examples demonstrating how laboratory experiments develop physical insight, benchmark theoretical models, discover unexpected behaviour, establish observational signatures, and pioneer diagnostic methods for the space community are presented. The various device configurations found in space-related laboratory investigations are outlined. A primary objective of this review is to articulate the overlapping scientific issues that are addressable in space and lab experiments. A secondary objective is to convey the wide range of laboratory and space plasma experiments involved in this interdisciplinary alliance. The interrelation ship between plasma experiments in the laboratory and in space has a long history, with numerous demonstrations of the benefits afforded the space community by laboratory results. An experiment's suitability and limitations for investigating space processes can be quantitatively established using dimensionless parameters. Even with a partial match of these parameters, aspects of waves, instabilities, nonlinearities, particle transport, reconnection, and hydrodynamics are addressable in a way useful to observers and modelers of space phenomena. Because diagnostic access to space plasmas, laboratory-experimentalists awareness of space phenomena, and efforts by theorists and funding agencies to help scientists bridge the gap between the space and laboratory communities are increasing, the range of laboratory and space plasma experiments with overlapping scientific

  10. Plasma crowbars in cylindrical flux compression experiments

    International Nuclear Information System (INIS)

    Suter, L.J.

    1979-01-01

    We have done a series of one- and two-dimensional calculations of hard-core Z-pinch flux compression experiments in order to study the effect of a plasma on these systems. These calculations show that including a plasma can reduce the amount of flux lost during the compression. Flux losses to the outer wall of such experiments can be greatly reduced by a plasma conducting sheath which forms along the wall. This conducting sheath consists of a cold, dense high β, unmagnetized plasma which has enough pressure to balance a large field gradient. Flux which is lost into the center conductor is not effectively stopped by this plasma sheath until late in the implosion, at which time a layer similar to the one formed at the outer wall is created. Two-dimensionl simulations show that flux losses due to arching along the sliding contact of the experiment can be effectively stopped by the formation of a plasma conducting sheath

  11. Edge operational space for high density/high confinement ELMY H-modes in JET

    International Nuclear Information System (INIS)

    Sartori, R.; Saibene, G.; Loarte, A.

    2002-01-01

    This paper discusses how the proximity to the L-H threshold affects the confinement of ELMy H-modes at high density. The largest reduction in confinement at high density is observed at the transition from the Type I to the Type III ELMy regime. At medium plasma triangularity, δ≅0.3 (where δ is the average triangularity at the separatrix), JET experiments show that by increasing the margin above the L-H threshold power and maintaining the edge temperature above the critical temperature for the transition to Type III ELMs, it is possible to avoid the degradation of the pedestal pressure with density, normally observed at lower power. As a result, the range of achievable densities (both in the core and in the pedestal) is increased. At high power above the L-H threshold power the core density was equal to the Greenwald limit with H97≅0.9. There is evidence that a mixed regime of Type I and Type II ELMs has been obtained at this intermediate triangularity, possibly as a result of this increase in density. At higher triangularity, δ≅0.5, the power required to achieve similar results is lower. (author)

  12. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R., E-mail: rmaingi@pppl.gov [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Boyle, D.P. [Princeton University, Princeton, NJ (United States); Diallo, A.; Kaita, R.; Kaye, S.M.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Scotti, F.; Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-04-15

    A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (‘dose’) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10–30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which is optimized for a boundary shape similar to the one in this experiment.

  13. Integrated predictive modelling simulations of burning plasma experiment designs

    International Nuclear Information System (INIS)

    Bateman, Glenn; Onjun, Thawatchai; Kritz, Arnold H

    2003-01-01

    Models for the height of the pedestal at the edge of H-mode plasmas (Onjun T et al 2002 Phys. Plasmas 9 5018) are used together with the Multi-Mode core transport model (Bateman G et al 1998 Phys. Plasmas 5 1793) in the BALDUR integrated predictive modelling code to predict the performance of the ITER (Aymar A et al 2002 Plasma Phys. Control. Fusion 44 519), FIRE (Meade D M et al 2001 Fusion Technol. 39 336), and IGNITOR (Coppi B et al 2001 Nucl. Fusion 41 1253) fusion reactor designs. The simulation protocol used in this paper is tested by comparing predicted temperature and density profiles against experimental data from 33 H-mode discharges in the JET (Rebut P H et al 1985 Nucl. Fusion 25 1011) and DIII-D (Luxon J L et al 1985 Fusion Technol. 8 441) tokamaks. The sensitivities of the predictions are evaluated for the burning plasma experimental designs by using variations of the pedestal temperature model that are one standard deviation above and below the standard model. Simulations of the fusion reactor designs are carried out for scans in which the plasma density and auxiliary heating power are varied

  14. A quantitative analysis of the effect of ELMs on H-mode thermal energy confinement in DIII-D

    International Nuclear Information System (INIS)

    Schissel, D.P.; Osborne, T.H.; Carlstrom, T.N.; Zohm, H.

    1992-06-01

    The desire to reach ignition in future tokamaks the energy confinement time critical parameter. The most promising enhanced (over L-mode) confinement regime is the H-mode, discovered on ASDEX with neutral beam heating, and then confirmed with various auxiliary heating sources on numerous machines. The knowledge of how H-mode τ E depends on different parameters is of chemical importance to the performance predictions for next generation devices. Inter-machine H-mode total and thermal energy confinement (τ th ) scalings, which are being utilized to predict ITER thermal energy confinement, have been created for discharges where the Edge Localized Mode (ELM) instability has not been present. Confinement scaling research hm concentrated on this ELM-free H-mode phase mostly owing to the difficulty of characterizing ELM behavior. To date, long pulse H-mode operation has only been achieved by utilizing ELMs to flush out unpurities and prevent radiative collapse of the discharge. Unfortunately, accompanying the ELMS is a decrease of the plasma stored energy due to the expulsion of particles near the edge of the discharge resulting in a reduction of the steep edge electron density gradient. In order to predict ITER's H-mode τ th in the presence of ELMS, an estimated 25% confinement degradation factor has been applied to the ELM-free predictions. Our work, summarized in this paper, indicates that this 25% reduction factor is too large and instead a value of approximately 15% would be more appropriate

  15. PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers

    Science.gov (United States)

    Takizuka, Tomonori

    2008-07-01

    This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in

  16. Ball-Pen Probe Measurements in L-Mode and H-Mode on ASDEX Upgrade

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Horáček, Jan; Müller, H. W.; Rohde, V.; Ionita, C.; Schrittwieser, R.; Mehlmann, F.; Kurzan, B.; Stöckel, Jan; Dejarnac, Renaud; Weinzettl, Vladimír; Seidl, Jakub; Peterka, M.

    2010-01-01

    Roč. 50, č. 9 (2010), s. 854-859 ISSN 0863-1042. [International Workshop on Electric Probes in Magnetized Plasmas/8th./. Innsbruck, 21.09.2009-24.09.2009] R&D Projects: GA AV ČR KJB100430901; GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * ball- pen probe * electron temperature * L-mode * H-mode * ELMs Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.006, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201010145/pdf

  17. Papers presented at the 6th H-mode workshop (Seeon, Germany)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The 6th H-mode workshop was held at Kloster Seeon (Germany) during the period of September 22-24, 1997. Contribution to this workshop is reported. Reports include. 1. Role of Nonuniform Superthermal Ions for Internal Transport Barriers. 2. Electric Field Bifurcation and Transition in the Core Plasma of CHS. 3. Formation and Termination of High Ion Temperature Mode in Heliotron/torsatron Plasmas. 4. Transition to an Enhanced Internal Transport Barrier. 5. Physics of Collapses - Probabilistic Occurrence of ELMs and Crashes -. (J.P.N.)

  18. Status of the COMPASS tokamak and characterization of the first H-mode

    Czech Academy of Sciences Publication Activity Database

    Pánek, Radomír; Adámek, Jiří; Aftanas, Milan; Bílková, Petra; Böhm, Petr; Brochard, F.; Cahyna, Pavel; Cavalier, Jordan; Dejarnac, Renaud; Dimitrova, Miglena; Grover, O.; Harrison, J.; Háček, Pavel; Havlíček, Josef; Havránek, Aleš; Horáček, Jan; Hron, Martin; Imríšek, Martin; Janky, Filip; Kirk, A.; Komm, Michael; Kovařík, Karel; Krbec, Jaroslav; Kripner, Lukáš; Markovič, Tomáš; Mitošinková, Klára; Mlynář, Jan; Naydenkova, Diana; Peterka, Matěj; Seidl, Jakub; Stöckel, Jan; Štefániková, Estera; Tomeš, Matěj; Urban, Jakub; Vondráček, Petr; Varavin, Mykyta; Varju, Jozef; Weinzettl, Vladimír; Zajac, Jaromír

    2016-01-01

    Roč. 58, č. 1 (2016), č. článku 014015. ISSN 0741-3335 R&D Projects: GA MŠk(CZ) LM2011021; GA ČR(CZ) GAP205/12/2327; GA ČR(CZ) GA15-10723S Institutional support: RVO:61389021 Keywords : COMPASS * ELM * tokamak * H-mode Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016

  19. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    Science.gov (United States)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  20. The physics of transport barrier formation in the PBX-M H-mode

    International Nuclear Information System (INIS)

    Tynan, G.R.; Schmitz, L.; Blush, L.

    1994-01-01

    Measurements of edge profiles, turbulence, and turbulent-driven transport were made inside the last-closed flux surface (LCFS) and in the scrape-off layer (SOL) of PBX-M L-mode and H-mode plasmas using a fast reciprocating Langmuir probe diagnostic. Direct measurements of the potential profile confirm the generation of a strong inward radial electric field (E r ∼ -100 V/cm) just inside the LCFS in H-mode. Density and potential fluctuations levels are reduced at the L-H transition, resulting in significantly lower turbulent transport. The reduction in turbulent transport occurs across the LCFS and SOL regions and is not localized to the region of strong radial electric field. (author)

  1. Coherent edge fluctuation measurements in H-mode discharges on JFT-2M

    International Nuclear Information System (INIS)

    Nagashima, Y; Shinohara, K; Hoshino, K; Ejiri, A; Tsuzuki, K; Ido, T; Uehara, K; Kawashima, H; Kamiya, K; Ogawa, H; Yamada, T; Shiraiwa, S; Ohara, S; Takase, Y; Asakura, N; Oyama, N; Fujita, T; Ide, S; Takenaga, H; Kusama, Y; Miura, Y

    2004-01-01

    Results of coherent edge fluctuation measurements using three diagnostics (a reciprocating Langmuir probe, a two channel O-mode reflectometer, and fast magnetic probes) in H-mode discharges on JFT-2M are presented. In discharges in which a high recycling steady (HRS) H-mode phase is obtained through a transient phase with slightly enhanced D α intensity, two types of coherent fluctuations are observed. The higher frequency mode (around 300 kHz) is the high frequency mode (HFM) observed in the HRS H-mode (Kamiya K et al 2003 9th IAEA Tech. Meeting H-mode Workshop Topic B-14). The lower frequency mode has a frequency of around 80 kHz. The HFM is detected by a Langmuir probe over a wide region in the SOL, as well as by the reflectometer and magnetic probes. However, the HFM is not detected by the higher frequency (38 GHz) channel of the reflectometer after the HRS transition, suggesting that the HFM is not located deeply inside the plasma. The 80 kHz mode is detected by both channels of the reflectometer and by a Langmuir probe, but not by magnetic probes, suggesting that it is an electrostatic mode. In contrast to the HFM, the 80 kHz mode is detected by the Langmuir probe only near the separatrix during the transient phase, which leads to either the HRS phase or the ELMy phase, and is similar to the fluctuations reported in Shinohara K et al (1998 J. Plasma Fusion Res. 74 607)

  2. A new boundary control scheme for simultaneous achievement of H-mode and radiative cooling (SHC boundary)

    International Nuclear Information System (INIS)

    Ohyabu, N.

    1995-05-01

    We have proposed a new boundary control scheme (SHC boundary), which could allow simultaneous achievement of the H-mode type confinement improvement and radiative cooling with wide heat flux distribution. In our proposed configuration, a low m island layer sharply separates a plasma confining region from an open 'ergodic' boundary. The degree of openness in the ergodic boundary must be high enough to make the plasma pressure constant along the field line, which in turn separates low density plasma just outside the plasma confining region (the key external condition for achieving a good H-mode discharge) from very high density, cold radiative plasma near the wall (required for effective edge radiative cooling). Examples of such proposed SHC boundaries for Heliotron typed devices and tokamaks are presented. (author)

  3. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Eldon, D., E-mail: deldon@princeton.edu [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0964 (United States); Princeton University, Princeton, New Jersey 08543 (United States); Boivin, R. L.; Groebner, R. J.; Osborne, T. H.; Snyder, P. B.; Turnbull, A. D.; Burrell, K. H. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Tynan, G. R.; Boedo, J. A. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0964 (United States); Kolemen, E. [Princeton University, Princeton, New Jersey 08543 (United States); Schmitz, L. [University of California Los Angeles, Los Angeles, California 90095-7099 (United States); Wilson, H. R. [University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-05-15

    The H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized by significant (up to ∼50%) reduction of pedestal height on short (∼1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important of planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.

  4. H-mode transition physics close to DN on MAST and its applications to other tokamaks

    International Nuclear Information System (INIS)

    Meyer, H.

    2004-01-01

    Full text: ELMy H-mode is the base-line operating scenario for the next step fusion device ITER. To improve active and passive pedestal control a deeper understanding of H- mode physics is desirable. MAST contributes towards this understanding with good edge diagnostics, and by accessing extreme parameter regimes. The first inter-machine comparisons with respect to the influence of the magnetic topology on the power threshold with ASDEX-Upgrade and NSTX reveal a reduction of the power threshold in true double null (C-DN) configuration opening new operation regimes in both devices. The 30% reduction in threshold power close to C-DN observed on ASDEX-Upgrade, though significant, is less than the factor of two or more observed in both large spherical tokamaks, MAST and NSTX. This points towards the importance of field line curvature for this effect. The power thresholds measured in C-DN on MAST and NSTX are very similar. Despite this strong effect on the power threshold, changes in most edge parameters in L-mode due to the different magnetic configurations are small. However, significant changes are seen in the toroidal impurity flow velocity, related to the radial electric field, and in the scrape-off-layer temperature decay length at the high field side. The statistical comparison of MAST data with various H-mode theories suggests that different instabilities need to be stabilised at different spatial positions in the region where the pedestal forms to access H-mode. Pedestal temperatures observed on MAST are two to five times lower than in MAST equivalent discharges at ASDEX-Upgrade. However, the pedestal densities are similar. The differences in L-mode are less significant. The usual DN operating regime with co current NBI in MAST has been extended to include single null (SN) configurations, to provide more direct comparisons with conventional tokamaks. The plasma edge in SN on MAST is more stable to ELMs and the typical type-III ELMs, often observed in C-DN, are

  5. Edge ion dynamics in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Burrell, K.H.; Gohil, P.; Kim, J.; Seraydarian, R.P.

    1992-05-01

    The goal of this paper is to present detailed measurements of T i and E r at the plasma edge in L- and H-mode with high spatial resolution in order the study the edge ion dynamics. Of primary interest is the relationship between T i and E r and the behavior of the edge T i profile in H-mode. The principle findings are: there appears to be a threshold temperature for T i required for the transition to occur with T i at the LCFS in the range of 0.2--0.3 keV at the transition; a correlation between the edge E r profile and the edge T i profile has been observed; and values of T i of 2--3 keV within a few cm of the LCFS and of dT i /dr of up to 1 keV/cm are observed in the transport barrier in H-mode, with the scale length for T i being of the order of a poloidal gyroradius

  6. Comparison of H-mode barrier width with a model of neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.; Mahdavi, M.A.; Leonard, A.W.; Osborne, T.H.; Brooks, N.S.; Wolf, N.S.; Porter, G.D.; Stangeby, P.C.; Colchin, R.J.; Owen, L.W.

    2004-01-01

    Pedestal studies in DIII-D find that the width of the region of steep gradient in the H-mode density is comparable with the neutral penetration length, as computed from a simple analytic model. This model has analytic solutions for the edge plasma and neutral density profiles, which are obtained from the coupled particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40 and 500 eV), the analytic model quantitatively predicts the observed decrease in the width as the pedestal density increases and the observed strong increase in the gradient of the density as the pedestal density increases. The model successfully predicts that L-mode and H-mode profiles with the same pedestal density have gradients that differ by less than a factor of 2. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fuelling is an important part of the physics that determines the structure of the H-mode transport barrier. (author)

  7. Plasma opening switch experiments on supermite

    International Nuclear Information System (INIS)

    Mendel, C.W.; Quintenz, J.P.; Rosenthal, S.E.; Savage, M.E.

    1988-01-01

    Experiments using plasma opening switches with fast field coils and plasmas injected on slow magnetic fields are described. Data showing the measurement of the field penetration into the volume that initially held the plasma fill will be shown. Assuming the plasma is mostly pushed back from the coil, rather than being penetrated by the magnetic field allows the density to be calculated, and gives densities of a few times 10 13 cm -3 for our usual operating range. The data makes it clear that the switch is open well before the initial plasma volume is completely penetrated by the magnetic fields. Additional measurements relating to the magnetic field penetration distance and physical penetration mechanism are presented. Other data presented show a magnetic insulation problem which must be solved before very large voltage multiplication can be accomplished with sufficient switch efficiency

  8. A laser plasma beatwave accelerator experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.

    1987-03-01

    An experiment to test the laser plasma beatware accelerator concept is outlined. A heuristic estimate of the relevant experimental parameters is obtained from fluid theory and considerations of wave-particle interactions. Acceleration of 10 MeV electrons to approximately 70 MeV over a plasma length of 3 cm appears to be feasible. This corresponds to an accelerating gradient of approximately 2.5 GeV/m

  9. Status of 2XIIB plasma confinement experiments

    International Nuclear Information System (INIS)

    Coensgen, F.J.; Clauser, J.F.; Correll, D.L.

    1976-01-01

    This report describes the status of 2XIIB neutral beam injection experiments with stabilizing plasma. The stream suppresses ion-cyclotron fluctuations and permits density to 5 x 10 13 cm -3 . The ion energy is 13 keV, and electron temperature reaches 140 eV. Plasma confinement increases with ion energy and n tau reaches 7 x 10 10 cm -3 .s at 13 keV. The n tau energy scaling is consistent with electron drag and ion-ion scattering losses. Buildup on a streaming plasma in a steady-state magnetic field is described

  10. Status of the COMPASS tokamak and characterization of the first H-mode

    Science.gov (United States)

    Pánek, R.; Adámek, J.; Aftanas, M.; Bílková, P.; Böhm, P.; Brochard, F.; Cahyna, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Grover, O.; Harrison, J.; Háček, P.; Havlíček, J.; Havránek, A.; Horáček, J.; Hron, M.; Imríšek, M.; Janky, F.; Kirk, A.; Komm, M.; Kovařík, K.; Krbec, J.; Kripner, L.; Markovič, T.; Mitošinková, K.; Mlynář, J.; Naydenkova, D.; Peterka, M.; Seidl, J.; Stöckel, J.; Štefániková, E.; Tomeš, M.; Urban, J.; Vondráček, P.; Varavin, M.; Varju, J.; Weinzettl, V.; Zajac, J.; the COMPASS Team

    2016-01-01

    This paper summarizes the status of the COMPASS tokamak, its comprehensive diagnostic equipment and plasma scenarios as a baseline for the future studies. The former COMPASS-D tokamak was in operation at UKAEA Culham, UK in 1992-2002. Later, the device was transferred to the Institute of Plasma Physics of the Academy of Sciences of the Czech Republic (IPP AS CR), where it was installed during 2006-2011. Since 2012 the device has been in a full operation with Type-I and Type-III ELMy H-modes as a base scenario. This enables together with the ITER-like plasma shape and flexible NBI heating system (two injectors enabling co- or balanced injection) to perform ITER relevant studies in different parameter range to the other tokamaks (ASDEX-Upgrade, DIII-D, JET) and to contribute to the ITER scallings. In addition to the description of the device, current status and the main diagnostic equipment, the paper focuses on the characterization of the Ohmic as well as NBI-assisted H-modes. Moreover, Edge Localized Modes (ELMs) are categorized based on their frequency dependence on power density flowing across separatrix. The filamentary structure of ELMs is studied and the parallel heat flux in individual filaments is measured by probes on the outer mid-plane and in the divertor. The measurements are supported by observation of ELM and inter-ELM filaments by an ultra-fast camera.

  11. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation

    International Nuclear Information System (INIS)

    Li Xin-Xia; Xiang Nong; Gan Chun-Yun

    2015-01-01

    The effect of the wave accessibility condition on the lower hybrid current drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n ‖ = 2.1 or n ‖ = 2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroidal geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n ‖ = 2.1 if a toroidal magnetic field B T = 2.5 T is applied. (paper)

  12. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  13. NSTX plasma response to lithium coated divertor

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Allain, J.P.; Bell, R.E.; Ding, S.; Gerhardt, S.P.; Jaworski, M.A.; Kaita, R.; Kallman, J.; Kaye, S.M.; LeBlanc, B.P.; Maingi, Rajesh; Majeski, R.; Maqueda, R.J.; Mansfield, D.K.; Mueller, D.; Nygren, R.E.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Sabbagh, S.A.; Schneider, H.; Skinner, C.H.; Soukhanovskii, V.A.; Taylor, C.N.; Timberlake, J.; Wampler, W.R.; Zakharov, L.E.; Zweben, S.J.

    2011-01-01

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma-facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, < 0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  14. Diagnostics for the Plasma Liner Experiment

    International Nuclear Information System (INIS)

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-01-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n i ∼10 16 cm -3 , T e ≅T i ∼1 eV at the plasma gun mouth to n i >10 19 cm -3 , T e ≅T i ∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  15. Diagnostics for the plasma liner experiment.

    Science.gov (United States)

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  16. Diagnostics for Pioneer I imploding plasma experiments

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Benjamin, R.F.; Brownell, J.H.

    1985-01-01

    The Pioneer I series of imploding plasma experiments are aimed at collapsing a thin aluminum foil with a multimegampere, submicrosecond electrical pulse produced by an explosive flux compression generator and fast plasma compression opening switch. Anticipated experimental conditions are bounded by implosion velocities of 2 x 10 7 cm/s and maximum plasma temperatures of 100 eV. A comprehensive array of diagnostics have been deployed to measure implosion symmetry (gated microchannel plate array and other time-resolved imaging), temperature of the imploding plasma (visible/uv spectroscopy), stagnation geometry (x-ray pinhole imaging), radiation emission characteristics at pinch (XRD's, fast bolometry), and electrical drive history (Rogowski loops, Faraday rotation current detectors, and capacitive voltage probes). Diagnostic performance is discussed and preliminary results are presented

  17. The plasma focus - numerical experiments leading technology

    International Nuclear Information System (INIS)

    Saw, S.H.; Lee, S.

    2013-01-01

    Numerical experiments on the plasma focus are now used routinely to assist design and provide reference points for diagnostics. More importantly guidance has been given regarding the implementation of technology for new generations of plasma focus devices. For example intensive series of experiments have shown that it is of no use to reduce static bank inductance L0 below certain values because of the consistent loading effects of the plasma focus dynamics on the capacitor bank. Thus whilst it was thought that the PF1000 could receive major benefits by reducing its bank inductance L 0 , numerical experiments have shown to the contrary that its present L 0 of 30 nH is already optimum and that reducing L 0 would be a very expensive fruitless exercise. This knowledge gained from numerical experiments now acts as a general valuable guideline to all high performance (ie low inductance) plasma focus devices not to unnecessarily attempt to further lower the static inductance L 0 . The numerical experiments also show that the deterioration of the yield scaling law (e.g. the fusion neutron yield scaling with storage energy) is inevitable again due to the consistent loading effect of the plasma focus, which becomes more and more dominant as capacitor bank impedance reduces with increasing capacitance C 0 as storage energy is increased. This line of thinking has led to the suggestion of using higher voltages (as an alternative to increasing C 0 ) and to seeding of Deuterium with noble gases in order to enhance compression through thermodynamic mechanisms and through radiation cooling effects of strong line radiation. Circuit manipulation e.g. to enhance focus pinch compression by current-stepping is also being numerically experimented upon. Ultimately however systems have to be built, guided by numerical experiments, so that the predicted technology may be proven and realized. (author)

  18. H-mode transition physics close to double null on MAST and its applications to other tokamaks

    International Nuclear Information System (INIS)

    Meyer, H.; Carolan, P.G.; Cunningham, G.; Kirk, A.; Lloyd, B.; Saarelma, S.; Wilson, H.R.; Conway, G.D.; Horton, L.D.; Ryter, F.; Schirmer, J.; Suttrop, W.; Maingi, R.

    2005-01-01

    By accessing extreme parameter regimes combined with well diagnosed edge MAST data contribute towards the understanding of H-mode physics. The first inter-machine comparisons with respect to the influence of the magnetic topology on the power threshold with ASDEX Upgrade and NSTX reveal a reduction of the power threshold in true double null (C-DN) configuration opening new operation regimes in both devices. In L-mode, the negative radial electric field close to the separatrix was found to be more negative in C-DN than in single null (SN), whilst most of the other edge parameters are similar. Pedestal temperatures in MAST are lower than in ASDEX Upgrade in MAST-equivalent discharges, whereas the pedestal densities can be similar, although in long inter ELM periods the MAST density pedestal is higher than on ASDEX Upgrade. In order to test four leading H-mode theories MAST data are compared statistically to their H-mode access criteria. The usual DN operating regime with co current NBI in MAST has been extended to include single null (SN) configurations, to provide more direct comparisons with conventional tokamaks. The plasma edge in SN on MAST is more stable to ELMs and the typical type-III ELMs, often observed in C-DN, are absent, despite input powers close to the H-mode threshold power. In this respect, the stability of measured plasma edge profiles in SN and DN against ideal peeling-ballooning modes will be discussed. (author)

  19. US plans for burning plasma experiments

    International Nuclear Information System (INIS)

    Nelson, D.

    1982-01-01

    The first US burning plasma experiment will be the TFTR at Princeton Plasma Physics Laboratory. The initial start-up with hydrogen is expected in December, 1983. The experiment by D-T reaction will begin in 1986. Because of the lack of shielding capability, later experiment is not yet defined. The informal scientific interaction with JET (European project) is kept. The design work on the Fusion Engineering Device (FED) continues, but is delayed. US fusion laboratories collaborated with IPP-Garching on the conceptual design of Zephyr experiment. The US continues to participate in INTOR activities, and will investigate into the critical issues relevant to both INTOR and FED in coming years. (Kato, T.)

  20. Additional heating experiments of FRC plasmas

    International Nuclear Information System (INIS)

    Okada, S.; Asai, T.; Kodera, F.; Kitano, K.; Suzuki, T.; Yamanaka, K.; Kanki, T.; Inomoto, M.; Yoshimura, S.; Okubo, M.; Sugimoto, S.; Ohi, S.; Goto, S.

    2001-01-01

    Additional heating experiments of neutral beam (NB) injection and application of low frequency wave on a plasma with extremely high averaged beta value of about 90% - a field reversed configuration (FRC) plasma - are carried out on the FRC Injection experiment (FIX) apparatus. These experiments are made possible by translating the FRC plasma produced in a formation region of a theta pinch to a confinement region in order to secure better accessibility to heating facilities and to control plasma density. By appropriate choice of injection geometry and the mirror ratio of the confinement region, the NB with the energy of 14keV and the current of 23A is enabled to be injected into the FRC in the solenoidal confining field of only 0.04-0.05T. Confinement is improved by this experiment. Ion heating is observed by the application of low frequency (80kHz ; about 1/4 of the ion gyro frequency) compressional wave. A shear wave, probably mode converted from the compressional wave, is detected to propagate axially. (author)

  1. SPDE: Solar Plasma Diagnostic Experiment

    Science.gov (United States)

    Bruner, Marilyn E.

    1995-01-01

    The physics of the Solar corona is studied through the use of high resolution soft x-ray spectroscopy and high resolution ultraviolet imagery. The investigation includes the development and application of a flight instrument, first flown in May, 1992 on NASA sounding rocket 36.048. A second flight, NASA founding rocket 36.123, took place on 25 April 1994. Both flights were successful in recording new observations relevant to the investigation. The effort in this contract covers completion of the modifications to the existing rocket payload, its reflight, and the preliminary day reduction and analysis. Experience gained from flight 36.048 led us to plan several payload design modifications. These were made to improve the sensitivity balance between the UV and EUV spectrographs, to improve the scattered light rejection in the spectrographs, to protect the visible light rejection filter for the Normal Incidence X-ray Imager instrument (NIXI), and to prepare one new multilayer mirror coating to the NIXI. We also investigated the addition of a brassboard CCD camera to the payload to test it as a possible replacement for the Eastman type 101-07 film used by the SPDE instruments. This camera was included in the experimeter's data package for the Project Initiation Conference for the flight of NASA Mission 36.123, held in January, 1994, but for programmatic reasons was deleted from the final payload configuration. The payload was shipped to the White Sands Missile Range on schedule in early April. The launch and successful recovery took place on 25 April, in coordination with the Yohkoh satellite and a supporting ground-based observing campaign.

  2. Correlation of H-mode density barrier width and neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.

    2002-01-01

    Pedestal studies in DIII-D find a good correlation between the width of the H-mode particle barrier width(ne) and the neutral penetration length. These results are obtained by comparing experimental n e profiles to the predictions of an analytic model for the density profile, obtained from a solution of the particle continuity equations for electrons and deuterium atoms. Initial bench-marking shows that the model is consistent with the fluid neutrals model of the UEDGE code. In its range of validity (edge temperature between 0.02-0.3 keV), the model quantitatively predicts the observed values of width(ne), the observed decrease of width(ne) as the pedestal density n e,ped increases, the observed increase of the gradient of n e with the square of n e,ped , and the observation that L-mode and H-mode profiles with the same n e,ped have very similar widths. In the model, width(ne) depends on the fuelling source and on the plasma transport. Thus, these results provide evidence that the width of the particle barrier depends on both plasma physics and atomic physics. (author)

  3. Development of ITER 15 MA ELMy H-mode Inductive Scenario

    International Nuclear Information System (INIS)

    C. E. Kessel, D. Campbell, Y. Gribov, G. Saibene, G. Ambrosino, T. Casper, M. Cavinato, H. Fujieda, R. Hawryluk, L. D. Horton, A. Kavin, R. Kharyrutdinov, F. Koechl, J. Leuer, A. Loarte, P. J. Lomas, T. Luce, V. Lukash, M. Mattei, I.Nunes, V. Parail, A. Polevoi, A. Portone, R. Sartori, A.C.C. Sips, P. R. Thomas, A. Welander and J. Wesley

    2008-01-01

    The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low li (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation

  4. Reactor-relevant quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    International Nuclear Information System (INIS)

    Burrell, K. H.; Garofalo, A. M; Osborne, T. H.; Schaffer, M. J.; Snyder, P. B.; Solomon, W. M.; Park, J.-K.; Fenstermacher, M. E.

    2012-01-01

    Results from recent experiments demonstrate that quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas. Using magnetic torque from n=3 fields to replace counter-I p torque from neutral beam injection (NBI), we have achieved long duration, counter-rotating QH-mode operation with NBI torque ranging from counter-I p to up to co-I p values of 1-1.3 Nm. This co-I p torque is 3 to 4 times the scaled torque that ITER will have. These experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values of ν ped * and β N ped . These discharges exhibited confinement quality H 98y2 =1.3, in the range required for ITER. In preliminary experiments using n=3 fields only from a coil outside the toroidal coil, QH-mode plasmas with low q 95 =3.4 have reached fusion gain values of G=β N H 89 /q 95 2 =0.4, which is the desired value for ITER. Shots with the same coil configuration also operated with net zero NBI torque. The limits on G and co-I p torque have not yet been established for this coil configuration. QH-mode work to has made significant contact with theory. The importance of edge rotational shear is consistent with peeling-ballooning mode theory. Qualitative and quantitative agreements with the predicted neoclassical toroidal viscosity torque is seen.

  5. Bifurcation to Enhanced Performance H-mode on NSTX

    Science.gov (United States)

    Battaglia, D. J.; Chang, C. S.; Gerhardt, S. P.; Kaye, S. M.; Maingi, R.; Smith, D. R.

    2015-11-01

    The bifurcation from H-mode (H98 Performance (EP)H-mode (H98 = 1.2 - 2.0) on NSTX is found to occur when the ion thermal (χi) and momentum transport become decoupled from particle transport, such that the ion temperature (Ti) and rotation pedestals increase independent of the density pedestal. The onset of the EPH-mode transition is found to correlate with decreased pedestal collisionality (ν*ped) and an increased broadening of the density fluctuation (dn/n) spectrum in the pedestal as measured with beam emission spectroscopy. The spectrum broadening at decreased ν*ped is consistent with GEM simulations that indicate the toroidal mode number of the most unstable instability increases as ν*ped decreases. The lowest ν*ped, and thus largest spectrum broadening, is achieved with low pedestal density via lithium wall conditioning and when Zeff in the pedestal is significantly reduced via large edge rotation shear from external 3D fields or a large ELM. Kinetic neoclassical transport calculations (XGC0) confirm that Zeff is reduced when edge rotation braking leads to a more negative Er that shifts the impurity density profiles inward relative to the main ion density. These calculations also describe the role kinetic neoclassical and anomalous transport effects play in the decoupling of energy, momentum and particle transport at the bifurcation to EPH-mode. This work was sponsored by the U.S. Department of Energy.

  6. EDITORIAL: The interaction of radio-frequency fields with fusion plasmas: the JET experience The interaction of radio-frequency fields with fusion plasmas: the JET experience

    Science.gov (United States)

    Ongena, Jef

    2012-07-01

    The JET Task Force Heating is proud to present this special issue. It is the result of hard and dedicated work by everybody participating in the Task Force over the last four years and gives an overview of the experimental and theoretical results obtained in the period 2008-2010 with radio frequency heating of JET fusion plasmas. Topics studied and reported in this issue are: investigations into the operation of lower hybrid heating accompanied by new modeling results; new experimental results and insights into the physics of various ion cyclotron range of frequencies (ICRF) heating scenarios; progress in studies of intrinsic and ion cyclotron wave-induced plasma rotation and flows; a summary of the developments over the last years in designing an ion cyclotron radiofrequency heating (ICRH) system that can cope with the presence of fast load variations in the edge, as e.g. caused by pellets or edge localized modes (ELMs) during H-Mode operation; an overview of the results obtained with the ITER-like antenna operating in H-Mode with a packed array of straps and power densities close to those of the projected ITER ICRH antenna; and, finally, a summary of the results obtained in applying ion cyclotron waves for wall conditioning of the tokamak. This issue would not have been possible without the strong motivation and efforts (sometimes truly heroic) of all colleagues of the JET Task Force Heating. A sincere word of thanks, therefore, to all authors and co-authors involved in the experiments, analysis and compilation of the papers. It was a special privilege to work with all of them during the past very intense years. Thanks also to all other European and non-European scientists who contributed to the JET scientific programme, the operations team of JET and the colleagues of the Close Support Unit in Culham. Thanks also to the editors, Editorial Board and referees of Plasma Physics and Controlled Fusion, together with the publishing staff of IOPP, who have not only

  7. Stability of Microturbulent Drift Modes during Internal Transport Barrier Formation in the Alcator C-Mod Radio Frequency Heated H-mode

    International Nuclear Information System (INIS)

    Redi, M.H.; Fiore, C.L.; Dorland, W.; Mikkelsen, D.R.; Rewoldt, G.; Bonoli, P.T.; Ernst, D.R.; Rice, J.E.; Wukitch, S.J.

    2003-01-01

    Recent H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasmas 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with flux tube geometry gyrokinetic simulations, using the massively parallel code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88 (1995) 128]. The simulations support the picture of ion/electron temperature gradient (ITG/ETG) microturbulence driving high xi/ xe and that suppressed ITG causes reduced particle transport and improved ci on C-Mod. Nonlinear calculations for C-Mod confirm initial linear simulations, which predicted ITG stability in the barrier region just before ITB formation, without invoking E x B shear suppression of turbulence. Nonlinear fluxes are compared to experiment, which both show low heat transport in the ITB and higher transport within and outside of the barrier region

  8. Evaluation of Particle Pinch and Diffusion Coefficients in the Edge Pedestal of DIII-D H-mode Discharges

    Science.gov (United States)

    Stacey, W. M.; Groebner, R. J.

    2009-11-01

    Momentum balance requires that the radial particle flux satisfy a pinch-diffusion relationship. The pinch can be evaluated in terms of measurable quantities (rotation velocities, Er, etc.) by the use of momentum and particle balance [1,2], the radial particle flux can be determined by momentum balance, and then the diffusion coefficient can be evaluated from the pinch diffusion relation using the measured density gradient. Applications to several DIII-D H-mode plasmas are presented. 6pt [1] W.M. Stacey, Contr. Plasma Phys. 48, 94 (2008). [2] W.M. Stacey and R.J. Groebner, Phys. Plasmas 15, 012503 (2008).

  9. Fuel ion rotation measurement and its implications on H-mode theories

    International Nuclear Information System (INIS)

    Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Hinton, F.L.; Kim, Y.B.; Seraydarian, R.; Mandl, W.

    1993-10-01

    Poloidal and toroidal rotation of the fuel ions (He 2+ ) and the impurity ions (C 6+ and B 5+ ) in H-mode helium plasmas have been investigated in the DIII-D tokamak by means of charge exchange recombination spectroscopy, resulting in the discovery that the fuel ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction. The radial electric field obtained from radial force balance analysis of the measured pressure gradients and rotation velocities is shown to be the same regardless of which ion species is used and therefore is a more fundamental parameter than the rotation flows in studying H-mode phenomena. It is shown that the three contributions to the radial electric field (diamagnetic, poloidal rotation, and toroidal rotation terms) are comparable and consequently the poloidal flow does not solely represent the E x B flow. In the high-shear edge region, the density scale length is comparable to the ion poloidal gyroradius, and thus neoclassical theory is not valid there. In view of this new discovery that the fuel and impurity ions rotate in opposite sense, L-H transition theories based on the poloidal rotation may require improvement

  10. Experimental study of the β-limit in ohmic H-mode in the TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Krikunov, S.V.; Levin, L.S.; Rozhdestvensky, V.V.; Tukachinsky, A.S.; Yaroshevich, S.P.

    1998-01-01

    Because of its high confinement properties, the H-mode provides good opportunities to achieve high beta values in a tokamak. In this paper the results of an experimental study of β T and β N limits in the H-mode, obtained in a circular cross section tokamak without auxiliary heating are presented. The experiments were performed in the TUMAN-3M tokamak. The device has the following parameters: R 0 =0.53m, a s =0.22m (limiter configuration), B T ≤1.2T, I p ≤175kA, n-bar e ≤6.2x10 19 m -3 . The stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with fast current ramp-down in ohmic H-mode. A maximum value of β T of 2.0% and β N of 2.0 were achieved. The β N limit achieved reveals itself as a 'soft' (non-disruptive) limit. The stored energy slowly decays after the current ramp-down. No correlation was found between beta restriction and MHD phenomena. Internal transport barrier (ITB) formation was observed in ohmic H-mode. An enhancement factor of 2.0 over ITER93H(ELM-free) was found in the ohmic H-mode with ITB. (author)

  11. Plasma focus system: Design, construction and experiments

    International Nuclear Information System (INIS)

    Alacakir, A.; Akguen, Y.; Boeluekdemir, A. S.

    2007-01-01

    The aim of this work is to construct a compact experimental system for fusion research. The design, construction and experiments of the 3 kJ Mather type plasma focus machine is described. This machine is established for neutron yield and fast neutron radiography by D-D reaction which is given by D + D→ 3 He (0.82 MeV) + n (2.45 MeV) . Investigation of the geometry of plasma focus machine in the presence of high voltage drive and vacuum system setup is shown. 108 neutron per pulse and 200 kA peak current is obtained for many shots. Scintillator screen for fast neutron imaging, sensitive to 2.45 MeV neutrons, is also manufactured in our labs. Structural neutron shielding computations for safety is also completed

  12. Laser fusion implosion and plasma interaction experiments

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1977-08-01

    Results related to the propagation, absorption and scattering of laser light by both spherical and planar targets are described. The absorption measurements indicate that for intensities of interest, inverse bremsstrahlung is not the dominant absorption mechanism. The laser light scattered by the plasma is polarization dependent and provides evidence that Brillouin scattering and resonance absorption are operative. Special diagnostics have been designed and experiments have been performed to elucidate the nature of these two processes. Implosion results on glass microshell targets filled with DT gas are also summarized. These experiments are for targets intentionally operated in the portion of parameter space characteristic of exploding pusher events. Experiments have been performed over a yield range from 0 to 10 9 neutrons per event. It is shown how this data can be normalized with a simple scaling law

  13. Physics of the L-mode to H-mode transition in tokamaks

    International Nuclear Information System (INIS)

    Burrell, K.H.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Kim, J.; Osborne, T.H.; St. John, H.; Stambaugh, R.D.; Doyle, E.J.; Moyer, R.A.; Rettig, C.L.; Peebles, W.A.; Rhodes, T.L.; Finkenthal, D.; Hillis, D.L.; Wade, M.R.; Matsumoto, H.; Watkins, J.G.

    1992-07-01

    Combined theoretical and experimental work has resulted in the creation of a paradigm which has allowed semi-quantitative understanding of the edge confinement improvement that occurs in the H-mode. Shear in the E x B flow of the fluctuations in the plasma edge can lead to decorrelation of the fluctuations, decreased radial correlation lengths and reduced turbulent transport. Changes in the radial electric field, the density fluctuations and the edge transport consistent with shear stabilization of turbulence have been seen in several tokamaks. The purpose of this paper is to discuss the most recent data in the light of the basic paradigm of electric field shear stabilization and to critically compare the experimental results with various theories

  14. Dependence of H-mode power threshold on global and local edge parameters

    International Nuclear Information System (INIS)

    Groebner, R.J.; Carlstrom, T.N.; Burrell, K.H.

    1995-12-01

    Measurements of local electron density n e , electron temperature T e , and ion temperature T i have been made at the very edge of the plasma just prior to the transition into H-mode for four different single parameter scans in the DIII-D tokamak. The means and standard derivations of n e , T e , and T i under these conditions for a value of the normalized toroidal flux of 0.98 are respectively, 1.5 ± 0.7 x 10 19 m -3 , 0.051 ± 0.016 keV, and 0.14 ± 0.03 keV. The threshold condition for the transition is more sensitive to temperature than to density. The data indicate that the dependence is not as simple as a requirement for a fixed value of the ion collisionality

  15. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  16. Suppression of tungsten accumulation during ELMy H-mode by lower hybrid wave heating in the EAST tokamak

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-08-01

    Full Text Available EAST tokamak has been equipped with upper tungsten divertor since 2014. The tungsten accumulation has been often observed in NBI-heated H-mode discharges suggesting deleterious tungsten confinement in the plasma core. It causes not only H-L back transition but also plasma disruption in several discharges. Suppression of the tungsten accumulation is therefore the most important issue in EAST to achieve a long pulse H-mode discharge. In order to study the tungsten behavior in the long pulse discharge, tungsten spectra have been measured at 20–140Å. The tungsten density, nw, is evaluated from the intensity of tungsten unresolved transition array (W-UTA in a wavelength range of 45–70Å which is composed of several ionization stages of tungsten, e.g. W27+-W45+ at Te0∼2.5keV. It is found that the tungsten accumulation can be suppressed when the 4.6GHz LHW with PLHW∼0.8MW is superimposed on the NBI phase (PNBI= 1.9MW. During the superimposed phase the ELM frequency, fELM, increases from ∼30Hz to ∼60Hz and the tungsten density is halved compared to the NBI-heated discharge. The H-mode discharge can be thus steadily sustained for longer period. It is found that the nw is a large function of the ratio of LHW power to the total injection power, PLHW/(PLHW+PNBI, and the nw can be reduced, at least, in an order of magnitude smaller than that in NBI-heated discharges at PLHW/(PLHW+PNBI≥0.8. The result strongly suggests a possible way toward the steady H-mode discharge.

  17. Heuristic Drift-based Model of the Power Scrape-off width in H-mode Tokamaks

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch-Shlueter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of ∼ 2αρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Haerm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data from deuterium plasmas. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  18. Divertor plasma physics experiments on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E.

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model

  19. Electron density and plasma dynamics of a colliding plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  20. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  1. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1985-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8 to 12 T) and high toroidal currents (7 to 10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  2. Chaos in plasma simulation and experiment

    International Nuclear Information System (INIS)

    Watts, C.; Sprott, J.C.

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system

  3. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1986-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8-12 T) and high toroidal currents (7-10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  4. Chaos in plasma simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Watts, C. [Texas Univ., Austin, TX (United States). Fusion Research Center; Newman, D.E. [Oak Ridge National Lab., TN (United States); Sprott, J.C. [Wisconsin Univ., Madison, WI (United States). Plasma Physics Research

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  5. TMX: a new fusion plasma experiment

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The primary goal of the magnetic fusion energy program at LLL is the development of a technically and economically feasible approach to the generation of fusion energy. Results from our earlier 2XIIB experiment lead us to believe that a fusion power plant based on a mirror system is technically feasible, assuming a favorable extrapolation to plasmas of reactor size. Achieving economic feasibility is more difficult. For power-producing applications, a reactor needs a large Q, the ratio of fusion power output to the power injected to sustain the system. In a conventional mirror reactor, the fusion power is only about equal to the power injected by the neutral beams--that is, Q is only about unity. A new idea, the tandem mirror concept described in this article, promises to increase this gain, enhancing Q by at least a factor of 5

  6. Observation of precursor magnetic oscillations to the H-mode transition of ASDEX

    International Nuclear Information System (INIS)

    Toi, K.; Gernhardt, J.; Klueber, O.; Kornherr, M.

    1988-05-01

    Precursor oscillations to the H-mode transition are identified in magnetic fluctuations of the ASDEX H-mode discharges initiated without a sawtooth. This precursor is m=4/n=1 mode, rotating with f ≅ 10 kHz in the opposite direction to co-injected neutral beams. Time behaviour of the amplitude suggests that the H-mode transition is caused, not by the edge electron temperature, but by the edge current density. (orig.)

  7. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Labs., Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Lab. to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 23 ions/m 2 .s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures

  8. An Heuristic Drift-Based Model of the Power Scrape-Off Width in H-Mode Tokamaks

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall mass flow pattern posited is a modification for open field lines of Pfirsch-Shlueter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of 2αρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Haerm parallel thermal conduction losses to the divertor. This results in an heuristic closed-form prediction for the power scrape-off width that is in remarkable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  9. Plasma radiation in tokamak disruption simulation experiments

    International Nuclear Information System (INIS)

    Arkhipov, N.; Bakhtin, V.; Safronov, V.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A.; Wuerz, H.

    1995-01-01

    Plasma impact results in sudden evaporation of divertor plate material and produces a plasma cloud which acts as a protective shield. The incoming energy flux is absorbed in the plasma shield and is converted mainly into radiation. Thus the radiative characteristics of the target plasma determine the dissipation of the incoming energy and the heat load at the target. Radiation of target plasma is studied at the two plasma gun facility 2MK-200 at Troitsk. Space- and time-resolved spectroscopy and time-integrated space-resolved calorimetry are employed as diagnostics. Graphite and tungsten samples are exposed to deuterium plasma streams. It is found that the radiative characteristics depend strongly on the target material. Tungsten plasma arises within 1 micros close to the surface and shows continuum radiation only. Expansion of tungsten plasma is restricted. For a graphite target the plasma shield is a mixture of carbon and deuterium. It expands along the magnetic field lines with a velocity of v = (3--4) 10 6 cm/s. The plasma shield is a two zone plasma with a hot low dense corona and a cold dense layer close to the target. The plasma corona emits intense soft x-ray (SXR) line radiation in the frequency range from 300--380 eV mainly from CV ions. It acts as effective dissipation system and converts volumetrically the incoming energy flux into SXR radiation

  10. H-mode threshold power scaling and the ∇B drift effect

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.; Staebler, G.M.

    1997-06-01

    One of the largest influences on the H-mode power threshold (P TH ) is the direction of the ion ∇B drift relative to the X-point location, where factors of 2--3 increase in P TH are observed for the ion ∇B drift away from the X-point. It is proposed that the threshold power scaling observed in single-null configurations with the ion ∇B drift toward the X-point location (P TH ∼ nB, where n is the plasma density, and B is the toroidal field) is due to the scaling of the magnitude of the ∇B drift effect. Hinton and later Hinton and Stebler have modeled this effect as neoclassical cross field fluxes of both heat and particles driven by poloidal temperature gradients on the open field lines in the scrape-off layer (SOL). The ∇B drift effect influences the power threshold by affecting the edge conditions needed for the L-H transition. It is not essential for the L-H transition itself since transitions are observed with either direction of B. Predictions of this model include saturation of the B scaling of P TH at high field, 1/B scaling of P TH with reverse B, and no B scaling of P TH in balanced double-null configurations. This last prediction is consistent with the observed scaling of p TH in double-null plasma sin DIII-D

  11. Beta II compact torus experiment plasma equilibrium and power balance

    International Nuclear Information System (INIS)

    Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Prono, D.S.; Hartman, C.W.; Taska, J.

    1982-01-01

    In this paper we follow up some of our earlier work that showed the compact torus (CT) plasma equilibrium produced by a magnetized coaxial plasma gun is nearly force free and that impurity radiation plays a dominant role in determining the decay time of plasma currents in present generation experiments

  12. First results of the plasma wakefield acceleration experiment at PITZ

    International Nuclear Information System (INIS)

    Lishilin, O.; Gross, M.; Brinkmann, R.; Engel, J.; Grüner, F.; Koss, G.; Krasilnikov, M.; Martinez de la Ossa, A.; Mehrling, T.; Osterhoff, J.; Pathak, G.; Philipp, S.; Renier, Y.; Richter, D.; Schroeder, C.; Schütze, R.; Stephan, F.

    2016-01-01

    The self-modulation instability of long particle beams was proposed as a new mechanism to produce driver beams for proton driven plasma wakefield acceleration (PWFA). The PWFA experiment at the Photo Injector Test facility at DESY, Zeuthen site (PITZ) was launched to experimentally demonstrate and study the self-modulation of long electron beams in plasma. Key aspects for the experiment are the very flexible photocathode laser system, a plasma cell and well-developed beam diagnostics. In this contribution we report about the plasma cell design, preparatory experiments and the results of the first PWFA experiment at PITZ. - Highlights: • A self-modulation mechanism for producing driver beams for PWFA is proposed. • A proof-of-principle experiment is launched at the Photo Injector Test facility at DESY. • The self-modulation instability occurs in long particle beams passing through plasma. • A heat pipe oven and a laser are used to produce plasma.

  13. Modification of H-Mode Pedestal Instabilities in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    J.R. Ferron; M.S. Chu; G.L. Jackson; L.L. Lao; R.L. Miller; T.H. Osborne; P.B. Snyder; E.J. Strait; T.S. Taylor; A.D. Turnbull; A.M. Garofalo; M.A. Makowski; B.W. Rice; M.S. Chance; L.R. Baylor; M. Murakami; M.R. Wade

    1999-01-01

    Through comparison of experiment and ideal magnetohydrodynamic (MHD) theory, modes driven in the edge region of tokamak H-mode discharges [Type I edge-localized modes (ELMs)] are shown to result from low toroidal mode number (n) instabilities driven by pressure gradient and current density. The mode amplitude and frequency are functions of the discharge shape. Reductions in mode amplitude are observed in discharge shapes with either high squareness or low triangularity where the low-n stability threshold in the edge pressure gradient is predicted to be reduced and the most unstable mode is expected to have higher values of n. The importance of access to the ballooning mode second stability regime is demonstrated through the changes in the ELM character that occur when second regime access is not available. An edge stability model is presented that predicts that there is a threshold value of n for second regime access and that the most unstable mode has n near this threshold

  14. Ohmic H-mode and confinement in TCV

    Czech Academy of Sciences Publication Activity Database

    Moret, J. M.; Anton, M.; Barry, S.; Behn, R.; Besson, G.; Buhlmann, F.; Burri, A.; Chavan, R.; Corboz, M.; Deschenaux, C.; Dutch, M. J.; Duval, B. P.; Fasel, A.; Favre, A.; Franke, S.; Hirt, A.; Hofmann, F.; Hollenstein, C.; Isoz, P. F.; Joye, B.; Lister, J. B.; Llobet, X.; Magnin, J. C.; Mandrin, P.; Marletaz, B.; Marmillod, P.; Martin, Y.; Mayor, J. M.; Moravec, Jaroslav; Nieswand, C.; Paris, P. J.; Perez, A.; Pietrzyk, Z. A.; Piffl, Vojtěch; Pitts, R. A.; Pochelon, A.; Sauter, O.; Toledo van, W.; Tonetti, G.; Tran, M. Q.; Troyon, F.; Ward, D. J.; Weisen, H.

    1995-01-01

    Roč. 37, 11A (1995), s. A215-A226 ISSN 0741-3335. [EPS Conference on Controlled Fusion and Plasma Physics /22./. Bournemouth, 03.07.1995-07.07.1995] R&D Projects: GA AV ČR IAA1043501 Impact factor: 2.020, year: 1995

  15. Papers presented at the IAEA technical committee meeting on H-mode physics

    International Nuclear Information System (INIS)

    TCV team

    1995-11-01

    The two papers contained in this report deal with ohmic H-modes and effect on confinement of edge localized modes in the TCV tokamak. They were presented by the TCV team at the 1995 IAEA technical committee meeting on H-mode physics. figs., tabs., refs

  16. MTX [Microwave Tokamak Experiment] plasma diagnostic system

    International Nuclear Information System (INIS)

    Rice, B.W.; Hooper, E.B.; Brooksby, C.A.

    1987-01-01

    In this paper, a general overview of the MTX plasma diagnostics system is given. This includes a description of the MTX machine configuration and the overall facility layout. The data acquisition system and techniques for diagnostic signal transmission are also discussed. In addition, the diagnostic instruments planned for both an initial ohmic-heating set and a second FEL-heating set are described. The expected range of plasma parameters along with the planned plasma measurements will be reviewed. 7 refs., 5 figs

  17. The Burning Plasma Experiment conventional facilities

    International Nuclear Information System (INIS)

    Commander, J.C.

    1991-01-01

    The Burning Program Plasma Experiment (BPX) is phased to start construction of conventional facilities in July 1994, in conjunction with the conclusion of the Tokamak Fusion Test Reactor (TFTR) project. This paper deals with the conceptual design of the BPX Conventional Facilities, for which Functional and Operational Requirements (F ampersand ORs) were developed. Existing TFTR buildings and utilities will be adapted and used to satisfy the BPX Project F ampersand ORs to the maximum extent possible. However, new conventional facilities will be required to support the BPX project. These facilities include: The BPX building; Site improvements and utilities; the Field Coil Power Conversion (FCPC) building; the TFTR modifications; the Motor Generation (MG) building; Liquid Nitrogen (LN 2 ) building; and the associated Instrumentation and Control (I ampersand C) systems. The BPX building will provide for safe and efficient shielding, housing, operation, handling, maintenance and decontamination of the BPX and its support systems. Site improvements and utilities will feature a utility tunnel which will provide a space for utility services--including pulse power duct banks and liquid nitrogen coolant lines. The FCPC building will house eight additional power supplied for the Toroidal Field (TF) coils. The MG building will house the two MG sets larger than the existing TFTR MG sets. This paper also addresses the conventional facility cost estimating methodology and the rationale for the construction schedule developed. 6 figs., 1 tab

  18. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 19 ions/cm 2 · s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment

  19. H-mode WEST tungsten divertor operation: deuterium and nitrogen seeded simulations with SOLEDGE2D-EIRENE

    Directory of Open Access Journals (Sweden)

    G. Ciraolo

    2017-08-01

    Full Text Available Simulations of WEST H-mode divertor scenarios have been performed with SOLEDGE2D-EIRENE edge plasma transport code, both for pure deuterium and nitrogen seeded discharge. In the pure deuterium case, a target heat flux of 8 MW/m2 is reached, but misalignment between heat and the particle outflux yields 50 eV plasma temperature at the target plates. With nitrogen seeding, the heat and particle outflux are observed to be aligned so that lower plasma temperatures at the target plates are achieved together with the required high heat fluxes. This change in heat and particle outflux alignment is analysed with respect to the role of divertor geometry and the impact of vertical vs horizontal target plates on neutrals spreading.

  20. Studies of energy transport in Jet H-modes

    International Nuclear Information System (INIS)

    Keilhacker, M.; Balet, B.; Cordey, J.; Gottardi, N.; Muir, D.; Thomsen, K.; Watkins, M.

    1989-01-01

    The local heat transport properties in the interior of ohmic, L- and H-phases of 2MA discharges, are determined. Time dependent energy balance code, TRANSP, and timeslice code, QFLUX are used. The global confinement properties of higher current discharges (≤ 3.8MA) are analyzed. The results indicate that during the L-phase of JET single null X-point discharges, the total heat transport coefficient in the plasma decreases to a level close to the ohmic value. Moreover, confinement during the H-phase continues to improve with current (up to 3.8MA), but degrades with increasing neutral beam power

  1. Differences in the H-mode pedestal width of temperature and density

    International Nuclear Information System (INIS)

    Schneider, P A; Wolfrum, E; Günter, S; Kurzan, B; Lackner, K; Zohm, H; Groebner, R J; Osborne, T H; Ferron, J R; Snyder, P B; Beurskens, M N A; Dunne, M G

    2012-01-01

    A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade, DIII-D and JET. ELM synchronized pedestal data were analysed with the two-line method. The two-line method is a bilinear fit which shows better reproducibility of pedestal parameters than a modified hyperbolic tangent fit. This was tested with simulated and experimental data. The influence of the equilibrium reconstruction on pedestal parameters was investigated with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No systematic deviation between the codes could be observed. The flux coordinate system is influenced by machine size, poloidal field and plasma shape. This will change the representation of the width in different coordinates, in particular, the two normalized coordinates Ψ N and r/a show a very different dependence on the plasma shape. The scalings derived for the pedestal width, Δ, of all machines suggest a different scaling for the electron temperature and the electron density. Both cases show similar dependence with machine size, poloidal magnetic field and pedestal electron temperature and density. The influence of ion temperature and toroidal magnetic field is different on each of Δ T e and Δ n e . In dimensionless form the density pedestal width in Ψ N scales with ρ 0.6 i* , the temperature pedestal width with β p,ped 0.5 . Both widths also show a strong correlation with the plasma shape. The shape dependence originates from the coordinate transformation and is not visible in real space. The presented scalings predict that in ITER the temperature pedestal will be appreciably wider than the density pedestal. (paper)

  2. Pellet injection into ASDEX upgrade plasmas

    International Nuclear Information System (INIS)

    Lang, P.T.; Zohm, H.; Buechl, K.; Fuchs, J.C.; Gehre, O.; Gruber, O.; Lang, R.S.; Mertens, V.; Neuhauser, J.; Salzmann, H.

    1996-04-01

    This work comprises results obtained using the new centrifuge injection system for the two first years of pellet injection experiments at Asdex Upgrade until the end of the 1995 experimental campaign. The main aim of the pellet injection investigation is to develop scenarios allowing for a more flexible plasma density control means of injection of cryogenic solid hydrogen pellets. Efforts have been made to develop scenarios allowing more flexible plasma density control by injecting cryogenic solid hydrogen pellets. While the injection of pellets during ohmic discharges was found to be most efficient and also improves the plasma performance, increasing the auxiliary heating power causes a detoriation of the pellet fuelling efficiency. A further strong reduction of the pellet fuelling efficiency by an additional process was observed for the more reactor-relevant conditions of shallow particle deposition during H-mode phases. With injection during type I ELMy H-mode phases, each pellet was found to trigger the release of an ELM and therefore cause particle losses mainly from the edge region. In the type I ELMy H-mode, only sufficient pellet penetration allowed noticeable, persistent particle deposition in the plasma by the pellets. Applying adequate pellet injection conditions and favourable scenarios using combined pellet/gas puff refuelling, significant density ramp-up to densities exceeding the empirical Greenwald limit by up to a factor of two was achieved even for strongly heated H-mode plasmas. (orig.)

  3. Magnum-PSI: A new plasma-wall interaction experiment

    International Nuclear Information System (INIS)

    Koppers, W.; Eck, H. van; Scholten, J.

    2006-01-01

    The FOM-Institute for Plasma Physics Rijnhuizen is preparing the construction of Magnum-PSI, a magnetized (3 T), steady-state, large area (diameter 10 cm), high-flux plasma (10 24 ions m -2 s -1 generator. The aim of the linear plasma device Magnum-PSI is to provide a controlled, highly accessible laboratory experiment in which the interaction of a magnetized plasma with different surfaces can be studied in detail. Plasma parameters can be varied over a wide range, in particular covering the high-density, low-temperature conditions expected for the detached divertor plasma of ITER. The target set-up will be extremely flexible allowing the investigation of different materials under a large variety of conditions (temperatures, inclination, biasing, coatings, etc.). A range of target materials will be used, including carbon, tungsten and other metals, and mixed materials. Because of the large plasma beam of 10 cm diameter and spacious vacuum tank, even the test of whole plasma-facing component mock-ups will be possible. Dedicated diagnostics will be installed to allow for detailed studies of the fundamental physics and chemistry of plasma-surface interaction, such as erosion and deposition, hydrogen recycling, retention and removal, dust and layer formation, plasma sheath physics and heat loads (steady-state or transient). Magnum-PSI will be a unique experiment to address the ITER divertor physics which will essentially differ from present day Tokamak and/or linear plasma generator physics. In this contribution, we will present the pre-design of the Magnum-PSI experiment. We will discuss the requirements on the vacuum system, 3T superconducting magnet, plasma source, target manipulator and additional plasma heating. In addition, we will briefly introduce the plasma and surface diagnostics that will be used in the Magnum-PSI experiment. (author)

  4. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D.

    Science.gov (United States)

    Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  5. Application of the H-Mode, a Design and Interaction Concept for Highly Automated Vehicles, to Aircraft

    Science.gov (United States)

    Goodrich, Kenneth H.; Flemisch, Frank O.; Schutte, Paul C.; Williams, Ralph A.

    2006-01-01

    Driven by increased safety, efficiency, and airspace capacity, automation is playing an increasing role in aircraft operations. As aircraft become increasingly able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help us understand their use and guide their design using new forms of automation and interaction. We propose a novel design metaphor to aid the conceptualization, design, and operation of highly-automated aircraft. Design metaphors transfer meaning from common experiences to less familiar applications or functions. A notable example is the "Desktop metaphor" for manipulating files on a computer. This paper describes a metaphor for highly automated vehicles known as the H-metaphor and a specific embodiment of the metaphor known as the H-mode as applied to aircraft. The fundamentals of the H-metaphor are reviewed followed by an overview of an exploratory usability study investigating human-automation interaction issues for a simple H-mode implementation. The envisioned application of the H-mode concept to aircraft is then described as are two planned evaluations.

  6. Review of DIII-D H-Mode Density Limit Studies

    International Nuclear Information System (INIS)

    Maingi, R.; Mahdavi, M.A.

    2005-01-01

    Density limit studies over the past 10 yr on DIII-D have successfully identified several processes that limit plasma density in various operating modes. The recent focus of these studies has been on maintenance of the high-density operational window with good H-mode level energy confinement. We find that detachment and onset of multifaceted axisymmetric radiation from the edge (MARFE), fueling efficiency, particle confinement, and magnetohydrodynamic activity can impose density limits in certain regimes. By studying these processes, we have devised techniques with either pellets or gas fueling and divertor pumping to achieve line average density above Greenwald scaling, relying on increasing the ratio of pedestal to separatrix density, as well as density profile peaking. The scaling of several of these processes to next-step devices (e.g., the International Thermonuclear Experimental Reactor) has indicated that sufficiently high pedestal density can be achieved with conventional fueling techniques while ensuring divertor partial detachment needed for heat flux reduction. One density limit process requiring further study is neoclassical tearing mode (NTM) onset, and techniques for avoidance/mitigation of NTMs need additional development in present-day devices operated at high density

  7. Comparison of H-mode pedestals in different confinement regimes in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, R J [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Fenstermacher, M E [Lawrence Livermore National Laboratory, Livermore, California (United States); Jackson, G L [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Osborne, T H [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Wade, M R [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States)

    2006-05-15

    A survey of global performance parameters and their correlation with pedestal parameters is performed for standard H-mode, QH-mode and the enhanced confinement regimes of VH-mode, hybrid and advanced tokamak in the DIII-D tokamak. This study shows that there is a trend for global confinement quality or global beta to increase as the pedestal electron pressure or beta increases. However, there are also improvements in core confinement and beta, observed at fixed pedestal pressure or beta, which indicate that factors other than pedestal parameters also contribute to the best core performance. Several other pedestal structure parameters are found to be similar among these regimes. The scale lengths for electron pressure in the pedestal are in the range 0.8-1.6 cm at the outer midplane, most {eta}{sub e} values are in the range 1-3 in the middle of the T{sub e} pedestal and the T{sub e} and n{sub e} pedestals tend to penetrate the same distance into the plasma.

  8. Experimental evidence for the suitability of ELMing H-mode operation in ITER with regard to core transport of helium

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Burrell, K.H.

    1996-09-01

    Studies have been conducted in DIII-D to assess the viability of the ITER design with regard to helium ash removal, including both global helium exhaust studies and detailed helium transport studies. With respect to helium ash accumulation, the results are encouraging for successful operation of ITER in ELMing H-mode plasmas with conventional high-recycling divertor operation. Helium can be removed from the plasma core with a characteristic time constant of ∼ 8 energy confinement times, even with a central source of helium. Furthermore, the exhaust rate is limited by the pumping efficiency of the system and not by transport of helium within the plasma core. Helium transport studies have shown that D He /X eff ∼ 1 in all confinement regimes studied to date and there is little dependence of D He /X eff on normalized gyroradius in dimensionless scaling studies, suggesting that D He /X eff will be ∼ 1 in ITER. These observations suggest that helium transport within the plasma core should be sufficient to prevent unacceptable fuel dilution in ITER. However, helium exhaust is also strongly dependent on many factors (e.g., divertor plasma conditions, plasma and baffling geometry, flux amplification, pumping speed, etc.) that are difficult to extrapolate. Studies have revealed the helium diffusivity decreases as the plasma density increases, which is unfavorable to ITER's extremely high density operation

  9. Hot-electron-plasma accumulation in the CIRCE mirror experiment

    International Nuclear Information System (INIS)

    Bardet, R.; Briand, P.; Dupas, L.; Gormezano, C.; Melin, G.

    1975-01-01

    In the CIRCE experiment, the plasma is obtained by the trapping of a plasma injected into a magnetic bottle by electron heating at cyclotron resonance. The plasma density lies between 5x10 11 cm -3 and 10 12 cm -3 , the electron temperature is about 100 keV and the ion temperature is in the range of few hundred electronvolts. Gross instabilities are not observed. The ratio of the plasma density to the neutral-gas density inside the plasma is higher than 100. A few kilowatts of r.f. power at 8 GHz are sufficient to obtain these results, a fact which looks encouraging as far as the creation of a more effective fast-neutral-target plasma using the CIRCE-experiment concept is concerned. (author)

  10. Review of recent experiments on magnetic reconnection in laboratory plasmas

    International Nuclear Information System (INIS)

    Yamada, M.

    1995-02-01

    The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10 7 . These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed

  11. Divertor plasma studies on DIII-D: Experiment and modeling

    International Nuclear Information System (INIS)

    West, W.P.; Brooks, N.H.; Allen, S.L.

    1996-09-01

    In a magnetically diverted tokamak, the scrape-off layer (SOL) and divertor plasma provides separation between the first wall and the core plasma, intercepting impurities generated at the wall before they reach the core plasma. The divertor plasma can also serve to spread the heat and particle flux over a large area of divertor structure wall using impurity radiation and neutral charge exchange, thus reducing peak heat and particle fluxes at the divertor strike plate. Such a reduction will be required in the next generation of tokamaks, for without it, the divertor engineering requirements are very demanding. To successfully demonstrate a radiative divertor, a highly radiative condition with significant volume recombination must be achieved in the divertor, while maintaining a low impurity content in the core plasma. Divertor plasma properties are determined by a complex interaction of classical parallel transport, anomalous perpendicular transport, impurity transport and radiation, and plasma wall interaction. In this paper the authors describe a set of experiments on DIII-D designed to provide detailed two dimensional documentation of the divertor and SOL plasma. Measurements have been made in operating modes where the plasma is attached to the divertor strike plate and in highly radiating cases where the plasma is detached from the divertor strike plate. They also discuss the results of experiments designed to influence the distribution of impurities in the plasma using enhanced SOL plasma flow. Extensive modeling efforts will be described which are successfully reproducing attached plasma conditions and are helping to elucidate the important plasma and atomic physics involved in the detachment process

  12. Motivation, procedures and aims of reacting plasma experiments

    International Nuclear Information System (INIS)

    Miyahara, Akira

    1982-01-01

    A project of reacting plasma experiment (R-project) was proposed at the Institute of Plasma Physics (IPP), Nagoya University. It is necessary to bridge plasma physics and fusion engineering by means of a messenger wire like burning plasma experiment. This is a motivation of the R-project. The university linkage organization of Japan for fusion engineering category carried out a lot of contribution to R-tokamak design. The project consists of four items, namely, R-tokamak design, research and development (R and D), site and facilities, and international collaboration. The phase 1 experiment (R 1 - phase) corresponds to burning plasma experiment without D + T fuel, while the phase-2 experiment (R 2 -phase) with D + T fuel. One reference design was finished. Intensive efforts have been carried out by the R and D team on the following items, wall material, vacuum system, tritium system, neutronics, remote control system, pulsed superconducting magnet development, negative ion source, and alpha-particle diagnostics. The problems concerning site and major facilities are also important, because tritium handling, neutron and gamma-ray sky shines and the activation of devices cause impact to surrounding area. The aims of burning plasma experiment are to enter tritium into the fusion device, and to study burning plasma physics. (Kato, T.)

  13. New features of L-H transition in limiter H-modes of JIPP T-IIU

    International Nuclear Information System (INIS)

    Toi, K.; Morita, S.; Kawahata, K.

    1992-09-01

    In limiter H-modes of JIPP T-IIU, a new type of L-H transition preceded by an ELM is observed. The preceding ELM (pre-ELM) appears just prior to the L-H transition. This type of transition is usually observed in H-modes of JIPP T-IIU. The L-H transition without the pre-ELM is triggered only in the case when a sufficiently large rapid current ramp down is emploied. In H-modes with constant q(a)∼3.5-4.5, coherent magnetic oscillations with m=3/n=1 destabilized during L-phase are further enhanced at the pre-ELM, and suppressed suddenly at the transition. This mode is situated in the region of the transport barrier. Propagation frequency of the m=3/n=1 mode, which may be affected by plasma mass rotation, rises appreciably (by ∼ 10 %) during H-phase with frequent ELMs, but remains unchanged for at least 200 μs after the transition. Behaviours of the m=3/n=1 and m=2/n=1 modes are well explained by quasi-linear resistive tearing mode analysis for modelled toroidal current density profiles slightly detached from the limiter. These experimental results suggest that the transition is controlled by the change of a magnetic field structure relating to the modification of a toroidal current density profile near the edge. The possibility for the development of edge radial electric field as a consequence of the transition is discussed. (author)

  14. Long sustainment of quasi-steady-state high βp H mode discharges in JT-60U

    International Nuclear Information System (INIS)

    Isayama, A.; Kamada, Y.; Ozeki, T.; Ide, S.; Fujita, T.; Oikawa, T.; Suzuki, T.; Neyatani, Y.; Isei, N.; Hamamatsu, K.; Ikeda, Y.; Takahashi, K.; Kajiwara, K.

    2001-01-01

    Quasi-steady-state high β p H mode discharges performed by suppressing neoclassical tearing modes (NTMs) are described. Two operational scenarios have been developed for long sustainment of the high β p H mode discharge: NTM suppression by profile optimization, and NTM stabilization by local electron cyclotron current drive (ECCD)/electron cyclotron heating (ECH) at the magnetic island. Through optimization of pressure and safety factor profiles, a high β p H mode plasma with H 89PL = 2.8, HH y,2 = 1.4, β p ∼ 2.0 and β N ∼ 2.5 has been sustained for 1.3 s at small values of collisionality ν e* and ion Larmor radius ρ i* without destabilizing the NTMs. Characteristics of the NTMs destabilized in the region with central safety factor above unity are investigated. The relation between the beta value at the mode onset β N on and that at the mode disappearance β N off can be described as β N off /β N on =0.05-0.4, which shows the existence of hysteresis. The value of β N /ρ i* at the onset of an m/n = 3/2 NTM has a collisionality dependence, which is empirically given by β N /ρ i* ∝ ν e* 0.36 . However, the profile effects such as the relative shapes of pressure and safety factor profiles are equally important. The onset condition seems to be affected by the strength of the pressure gradient at the mode rational surface. Stabilization of the NTM by local ECCD/ECH at the magnetic island has been attempted. A 3/2 NTM has been completely stabilized by EC wave injection of 1.6 MW. (author)

  15. Experiments on screw-pinch plasmas with elongated cross section

    International Nuclear Information System (INIS)

    Lassing, H.W.

    1989-01-01

    In this thesis experiments are described carried out with SPICA II, a toroidal screw-pinch plasma device. this device is the last one in a series of plasma machines of the toroidal screw-pinch differing from its predecessor in its race-track shaped section. In devices of the type toroidal screw-pinch stable confinement is possible of plasmas with larger β values than in a tokamak discharge. In a pinch the plasma is screwed up, during the formation, in such a way that in a relatively small volume a plasma is formated with a high pressure. During the screwing up the plasma is heated by shock heating as well as adiabatic compression. With the modified snowplow model the density and temperature after the formation can be calculated, starting from the initial conditions. When all ions arrive into the plasma column, the density in the column is determined by the volume compression. First purpose of the experiments was to find a stable discharge. Subsequently discharges have been made with a high as possible β in order to investigate at which maximum β it is possible to confine screw-pinch plasmas stably. When these had been found, the nature and importance could be investigated of the processes following which the screw-pinch plasma looses its energy. (author), 75 res.; 95 figs.; 8 tabs

  16. Contoured-gap coaxial guns for imploding plasma liner experiments

    Science.gov (United States)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  17. Kinetic neoclassical transport in the H-mode pedestal

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, D. J.; Chang, C. S.; Ku, S.; Grierson, B. A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08540 (United States); Burrell, K. H.; Grassie, J. S. de [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2014-07-15

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrape-off layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density, and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. The radial electric field (E{sub r}) that maintains ambipolar transport across flux surfaces and to the wall is computed self-consistently on closed and open magnetic field lines and is in excellent agreement with experiment. The E{sub r} inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport are primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-I{sub p} parallel flows in the pedestal, ion temperature anisotropy, and large impurity temperatures in the scrape-off layer.

  18. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    International Nuclear Information System (INIS)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-01

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a “black out” phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm× 260 mm× 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  19. LLNL large-area inductively coupled plasma (ICP) source: Experiments

    International Nuclear Information System (INIS)

    Richardson, R.A.; Egan, P.O.; Benjamin, R.D.

    1995-05-01

    We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N 2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable

  20. Plasma wave observations during electron and ion gun experiments

    International Nuclear Information System (INIS)

    Olsen, R.C.; Lowery, D.R.; Weddle, L.E.

    1988-01-01

    Plasma wave instruments with high temporal and frequency resolution in the 0-6 kHz frequency range have been used to monitor electron gun-employing charge control experiments with the USAF/NASA p78-2 satellite, in order to determine whether plasma wave signatures consistent with the previous inference of electron heating were present. Strong plasma waves were noted near the electron gyrofrequency; these waves can heat ambient low energy electrons, as previously inferred. Attention is given to the two distinct classes of behavior revealed by the ion gun experiments. 16 references

  1. Near-wall effects in improved plasma confinement regimes in tokamak FT-2

    International Nuclear Information System (INIS)

    Budnikov, V.N.; D'yachenko, V.V.; Esipov, L.A.

    1997-01-01

    Transition to the regime of improved plasma confinement (H-mode) revealed in experiments on low hybrid heating in tokamak ft-2 is analyzed. Main attention is paid to processes, taking place in near-wall region. The data are correlated with results of experiments in large tokamaks

  2. Effects of triangularity on confinement, density limit and profile stiffness of H-modes on ASDEX upgrade

    International Nuclear Information System (INIS)

    Stober, J.; Gruber, O.; Kallenbach, A.; Mertens, V.; Ryter, F.; Staebler, A.; Suttrop, W.; Treutterer, W.

    2000-01-01

    At ASDEX Upgrade the influence of triangularity on the H-mode performance has been studied intensively. It has been found that confinement increases with δ for a fixed line-averaged density. Though confinement decreases with increasing density for all analysed values of δ, H-factors (ITERH-98P) at the Greenwald density could be raised to 1 for the highest δ values achieved so far. The H-mode density limit could be increased by approx. 20%. There is a scatter of about 30% on the confinement data, which is anti-correlated to the average density in the scrape-off layer or the neutral fluxes outside the plasma. For nearly all discharges analysed so far, the temperature profiles are self-similar. This indication of profile stiffness could be verified by changing the heat-flux profile by changing the beam-voltage of the neutral-beam injection (NBI) at high density. At low density, first results indicate a deviation from this stiff behaviour. (author)

  3. Study of the conditions for spontaneous H-mode transitions in DIII-D

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Groebner, R.J.

    1996-01-01

    A series of scaling studies attempting to correlate the H(high)-mode power threshold (P TH ) with global parameters have been conducted. Data from these discharges is also being used to look for dependence of P TH on local edge parameters and to test theories of the transition. Boronization and better operational techniques have resulted in lower power thresholds and weaker density scaling. Neon impurity injection experiments show that radiation also plays a role in determining P TH . A low density threshold for the L(low)-H(high) transition has been linked with the locked mode low density limit, and can be reduced with the use of an error field correcting coil. Highly developed edge diagnostics, with spatial resolution as low as 5 mm, are used to evaluate how the power threshold depends on local edge conditions. Preliminary analysis of local edge conditions for parameter scans of n e , B T , and I p in single-null discharges, and the X-point imbalance in double-null discharges-show that, just before the transition to H-mode, the edge temperatures near the separatrix are approximately constant at 100 i e *i , varied from 2 to 17, demonstrating that a transition condition as simple as v *i = constant is inconsistent with the data. The local edge parameters of n e , T e , and T i do not always follow the same global scaling as P TH . Therefore, theories of the L-H transition need not be constrained by these scalings

  4. H-mode pedestal characteristics in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Burrell, K.H.; Groebner, R.J.

    1998-09-01

    Characteristics of the H-mode pedestal are studied in Type 1 ELM discharges with ITER cross-sectional shape and aspect ratio. The scaling of the width of the edge step gradient region, δ, which is most consistent with the data is with the normalized edge pressure, (β POL PED ) 0.4 . Fits of δ to a function of temperature, such as ρ POL , are ruled out in divertor pumping experiments. The edge pressure gradient is found to scale as would be expected from infinite n ballooning mode theory; however, the value of the pressure gradient exceeds the calculated first stable limit by more than a factor of 2 in some discharges. This high edge pressure gradient is consistent with access to the second stable regime for ideal ballooning for surfaces near the edge. In lower q discharges, including discharges at the ITER value of q, edge second stability requires significant edge current density. Transport simulations give edge bootstrap current of sufficient magnitude to open second stable access in these discharges. Ideal kink analysis using current density profiles including edge bootstrap current indicate that before the ELM these discharges may be unstable to low n, edge localized modes

  5. Comparing simulation of plasma turbulence with experiment

    International Nuclear Information System (INIS)

    Ross, David W.; Bravenec, Ronald V.; Dorland, William; Beer, Michael A.; Hammett, G. W.; McKee, George R.; Fonck, Raymond J.; Murakami, Masanori; Burrell, Keith H.; Jackson, Gary L.; Staebler, Gary M.

    2002-01-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for ExB low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement

  6. Laser light scatter experiments on plasma focus plant

    International Nuclear Information System (INIS)

    Wenzel, N.

    1985-01-01

    The plasma focus plant is an experiment on nuclear fusion, which is distinguished by a high neutron yield. Constituting an important method of diagnosis in plasma focussing, the laser light scatter method makes it possible, apart from finding the electron temperature and density, to determine the ion temperature resolved according to time and place and further, to study the occurrence of micro-turbulent effects. Starting from the theoretical basis, this dissertation describes light scatter measurements with ruby lasers on the POSEIDON plasma focus. They are given, together with earlier measurements on the Frascati 1 MJ plant and the Heidelberg 12 KJ plant. The development of the plasma parameters and the occurrence of superthermal light scatter events are discussed in connection with the dynamics of the plasma and the neutron emission characteristics of the individual plants. The results support the view that the thermo-nuclear neutron production at the plasma focus is negligible. Although the importance of micro-turbulent mechanisms in producing neutrons cannot be finally judged, important guidelines are given for the spatial and time relationships with plasma dynamics, plasma parameters and neutron emission. The work concludes with a comparison of all light scatter measurements at the plasma focus described in the literature. (orig.) [de

  7. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    International Nuclear Information System (INIS)

    Filippi, F.; Mostacci, A.; Palumbo, L.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Ferrario, M.; Cianchi, A.; Zigler, A.

    2016-01-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC-LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 10 16 –10 17  cm −3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  8. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  9. Plasma experiments on staged theta pinch, implosion heating experiment and Scyllac feedback-sector experiment

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Buchenauer, C.J.; Cantrell, E.L.

    1977-01-01

    Results of the Los Alamos theta-pinch program in three areas of investigation are summarized: 1) In the Staged Theta Pinch, results are reported on the effects of magnetic field amplitude and time history of plasma formation. 2) In the Implosion Heating Experiment, density, internal-magnetic field and neutron measurements yield a consistent picture of the implosion which agrees with kinetic computations and with a simple dynamic model of the ions and magnetic piston. 3) In the Scyllac Feedback-Sector Experiment, the l=1, 0 equilibrium plasma parameters have been adjusted to accommodate the feedback stabilization system. With a uniform toroidal discharge tube the m=1 instability is feedback-stabilized in the vertical direction, and confinement in the toroidal direction is extended by feedback control. Results with a helical discharge tube are also reported. (author)

  10. ICRF heating on the burning plasma experiment (BPX)

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.; Goulding, R.H.; Hoffman, D.J.; Jaeger, E.F.; Ryan, P.M.; Swain, D.W.; Tolliver, J.S.; Yugo, J.J.; Goldston, R.J.; Hosea, J.C.; Kaye, S.M.; Phillips, C.K.; Wilson, J.R.; Mau, T.K.

    1991-01-01

    RF power in the ion cyclotron range of frequencies (ICRF) has been chosen as the primary heating technique for BPX. This decision is based on the wide success of ICRF heating in existing experiments (JET, TFTR, JT-60), the capability of ion cyclotron waves to penetrate the high-density plasmas of BPX, the ability to concentrate ICRF power deposition near the plasma center, and the ready availability of high-power sources at the appropriate frequency. The primary task of the ICRF system is to heat the plasma to ignition. However, other important roles are envisaged; these include the stabilization of sawteeth, preheating of the plasma during current ramp-up, and possible control of the plasma current profile by means of fast-wave current drive. We give a brief overview of the RF system, describe the operating scenarios planned for BPX, and discuss some of the antenna design issues for BPX. 4 refs., 3 figs

  11. Theory of Rapid Formation of Pedestal and Pedestal width due to Anomalous Particle Pinch in the Edge of H-mode Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kaw, P.K., E-mail: kaw@ipr.res.in [Institute for Plasma Research, Bhat (India); Singh, R. [Institute for Plasma Research, Bhat (India); ITER Organization, Saint Paul-lez-Durance [France; Nordman, H. [Chamlers Institute of Technology, Goteborg (Sweden); Garbet, X.; Bourdelle, C. [CEA, Saint Paul-lez-Durance (France); Campbell, D.; Loarte, A.; Bora, D. [ITER Organization, Saint Paul-lez-Durance (France)

    2012-09-15

    Full text: A theory based on a turbulent particle pinch is proposed to explain the rapid formation of sharp density gradients in tokamak edge plasmas, in particular the pedestal region. The inward radial particle flux in the pedestal results from the interaction between small scale electron temperature gradient driven (ETG) turbulence and self-consistently formed 'electron geodesic acoustic modes' (el-GAMs). To address this phenomenon, the el-GAM modulational instability driven by the ETG turbulence background is studied. The ETG level of fluctuations and particle pinch are estimated through the back reaction of eGAMs on ETG turbulence. It is found that the particle pinch is quite sensitive to magnetic shear, safety factor, ratio of electron to ion temperatures and atomic mass number. In the absence of particle source in the pedestal, the density gradient length scale, of the order of the pedestal width, is estimated. It is shown that it is proportional to the major radius, up to some dependence on the poloidal beta. Moreover it does not depend on the normalized gyro-radius. This scaling agrees with DIII-D and JET similarity experiments. This dependence is favorable when extrapolated to the pedestal width in ITER in spite of its low normalized gyro radius. It is also shown that the density scale length becomes sharper by increasing the magnetic shear. A new H-mode pedestal pressure scaling is derived assuming that the pressure gradient is limited by the ballooning instability. (author)

  12. Preliminary experiments on wastes degradation by thermal plasma

    International Nuclear Information System (INIS)

    Cota S, G.; Pacheco S, J.; Segovia R, A.; Pena E, R.; Merlo S, L.

    1996-01-01

    This work presents the fundamental aspects involved in the installation and start up of an experimental equipment for the hazardous wastes degradation using the thermal plasma technology. It is mentioned about the form in which the thermal plasma is generated and the characteristics that its make to be an appropriate technology for the hazardous wastes degradation. Just as the installed structures for to realize the experiments and results of the first studies on degradation, using nylon as problem sample. (Author)

  13. Nonneutral plasma diagnostic commissioning for the ALPHA Antihydrogen experiment

    Science.gov (United States)

    Konewko, S.; Friesen, T.; Tharp, T. D.; Alpha Collaboration

    2017-10-01

    The ALPHA experiment at CERN creates antihydrogen by mixing antiproton and positron plasmas. Diagnostic measurements of the precursor plasmas are performed using a diagnostic suite, colloquially known as the ``stick.'' This stick has a variety of sensors and is able to move to various heights to align the desired diagnostic with the beamline. A cylindrical electrode, a faraday cup, an electron gun, and a microchannel-plate detector (MCP) are regularly used to control and diagnose plasmas in ALPHA. We have designed, built, and tested a new, upgraded stick which includes measurement capabilities in both beamline directions.

  14. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    Science.gov (United States)

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  15. Translation experiment of a plasma with field reversed configuration

    International Nuclear Information System (INIS)

    Tanjyo, Masayasu; Okada, Shigefumi; Ito, Yoshifumi; Kako, Masashi; Ohi, Shoichi

    1984-01-01

    Experiments to translate the FRC plasma from is formation area (pinch coil) into two kinds of metal vessels (magnetic flux conservers) with larger and smaller bore than that of the pinch coil have been carried out in OCT with an aim of improving the particle confinement time tau sub(N) by increasing xsub(s) (ratio of the plasma radius to that of the conducting wall). Demonstrated were successful translations of the plasma into both vessels. The xsub(s) of the translated plasma increased to 0.6 in the larger bore vessel and to 0.7 in the smaller one from 0.4 of the source plasma in the pinch coil. With the increase in xsub(s), tau sub(N) and also decay time of the trapped magnetic flux are extended from 15 - 20 μs of the source plasma to 50 - 80 μs. The tau sub(N) is found to have stronger dependence on xsub(s) than on rsub(s). During the translation phase, almost half of the total particle and the plasma energy are lost. The plasma volume is, therefore, about half of that expected from the analysis on the ideal translation process. It is also found that the translation process is nearly isothermal as is expected from the analysis. (author)

  16. Critical edge parameters for H-mode transition in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Carlstrom, T.N.

    1997-11-01

    Measurements in DIII-D of edge ion and electron temperatures (T i and T e ) just prior to the transition to H-mode are presented. A fitting model based on a hyperbolic tangent function is used in the analysis. The edge temperatures are observed to increase during the L-phase with the application of auxiliary heating. The temperature rise is small if the H-mode power threshold is close to the Ohmic power level in the absence of auxiliary heating and is large if the H-mode threshold is well above the Ohmic power level. The edge temperatures just prior to the transition are approximately proportional to the toroidal magnetic field Bt for the field either in the reversed or forward direction. However, for the reversed magnetic field, the temperatures are at least a factor of two higher than for the forward direction

  17. Plasma thermal energy transport: theory and experiments

    International Nuclear Information System (INIS)

    Coppi, B.

    Experiments on the transport across the magnetic field of electron thermal energy are reviewed (Alcator, Frascati Torus). In order to explain the experimental results, a transport model is described that reconfirmed the need to have an expression for the local diffusion coefficient with a negative exponent of the electron temperature

  18. Dependence of the L- to H-mode Power Threshold on Toroidal Rotation and the Link to Edge Turbulence Dynamics

    International Nuclear Information System (INIS)

    McKee, G.; Gohil, P.; Schlossberg, D.; Boedo, J.; Burrell, K.; deGrassie, J.; Groebner, R.; Makowski, M.; Moyer, R.; Petty, C.; Rhodes, T.; Schmitz, L.; Shafer, M.; Solomon, W.; Umansky, M.; Wang, G.; White, A.; Xu, X.

    2008-01-01

    The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion (del)B drift away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW with near zero net injected torque, and to <2 MW with counter injection. Plasmas with the ion (del)B drift towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. At low rotation, the poloidal flow of turbulent eddies near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear may facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The poloidal turbulence velocity spectrum exhibits a transition from a Geodesic Acoustic Mode zonal flow to a higher-power, lower frequency, zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER

  19. Trends in laser-plasma-instability experiments for laser fusion

    International Nuclear Information System (INIS)

    Drake, R.P.

    1991-01-01

    Laser-plasma instability experiments for laser fusion have followed three developments. These are advances in the technology and design of experiments, advances in diagnostics, and evolution of the design of high-gain targets. This paper traces the history of these three topics and discusses their present state. Today one is substantially able to produce controlled plasma conditions and to diagnose specific instabilities within such plasmas. Experiments today address issues that will matter for future laser facilities. Such facilities will irradiate targets with ∼1 MJ of visible or UV light pulses that are tens of nanoseconds in duration, very likely with a high degree of spatial and temporal incoherence. 58 refs., 4 figs

  20. H-mode confinement properties close to the power threshold in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Ryter, F; Fuchs, J; Schneider, W; Sips, A; Staebler, A; Stober, J

    2008-01-01

    Confinement properties close to the H-mode power threshold are studied in the ASDEX Upgrade tokamak. The results show that good confinement can be obtained close to the threshold with Type-I ELMs. The existence of Type-I ELMs does not necessarily require the heating power to be higher than the H-Mode power threshold, but it requires collisionality to be low enough. At higher collisionality Type-III ELMs replace the Type-I ELMs and confinement time is reduced by about 20%

  1. Plasma production for the 50 MeV plasma lens experiment at LBL

    International Nuclear Information System (INIS)

    Leemans, W.; van der Geer, B.; de Loos, M.; Conde, M.; Govil, R.; Chattopadhyay, S.

    1994-06-01

    The Center for Beam Physics at LBL has constructed a Beam Test Facility (BTF) housing a 50 MeV electron beam transport line, which uses the linac injector from the Advanced Light Source, and a terawatt Ti:Al 2 O 3 laser system. The linac operates at 50 MeV and generates 15 ps long electron bunches containing a charge of up to 2 nC. The measured unnormalized beam emittance is 0.33 mm-mrad. These parameters allow for a comprehensive study of focusing of relativistic electron beams with plasma columns, in both the overdense and underdense regime (adiabatic and tapered lenses). A study of adiabatic and/or tapered lenses requires careful control of plasma density and scale lengths of the plasma. We present experimental results on the production of plasmas through resonant two-photon ionization, with parameters relevant to an upcoming plasma lens experiment

  2. Scintillation detectors in experiments on plasma accelerators

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Gerasimov, V.V.; Kublikov, R.V.; Parzhitskij, S.S.; Smirnov, V.S.; Wozniak, J.; Dudkin, G.N.; Nechaev, B.A.; Padalko, V.M.

    2005-01-01

    The gating circuits for photomultipliers of scintillation detectors operating in powerful pulsed electromagnetic and nuclear radiation fields are investigated. PMTs with the jalousie-type dynode system and with the linear dynode system are considered. The basic gating circuits of the photomultipliers involving active and resistor high-voltage dividers are given. The results of the investigations are important for experiments in which it is necessary to discriminate in time the preceding background radiation and the process of interest. (author)

  3. A Burning Plasma Experiment: the role of international collaboration

    Science.gov (United States)

    Prager, Stewart

    2003-04-01

    The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.

  4. Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control

    Science.gov (United States)

    Polevoi, A. R.; Loarte, A.; Dux, R.; Eich, T.; Fable, E.; Coster, D.; Maruyama, S.; Medvedev, S. Yu.; Köchl, F.; Zhogolev, V. E.

    2018-05-01

    ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1  +  SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5–7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on

  5. QUICK-FIRE: Plasma flow driven implosion experiments

    International Nuclear Information System (INIS)

    Baker, W.L.; Bigelow, W.S.; Degnan, J.H.

    1985-01-01

    High speed plasma implosions involving megajoules of energy, and sub-microsecond implosion times are expected to require additional stages of power conditioning between realistic primary energy sources and the implosion system. Plasma flow switches and vacuum inductive stores represent attractive alternates to the high speed fuse and atmospheric store techniques which have been previously reported for powering such plasma experiments. In experiments being conducted at the Air Force Weapons Lab, a washer shaped plasma accelerated to 7-10 cm/microsecond in a coaxial plasma gun configuration, represents the moving element in a vacuum store/power conditioning system of 16.5 nH inductance which stores 1-1.5 MJ at 12-14 MA. At the end of the coaxial gun, the moving element transits the 2cm axial length of the cylindrical implosion gap in 200-400 nS, delivering the magnetic energy to the implosion foil, accelerating the imploding plasma to speeds of 30-40 cm/microsecond in 350-450 nS, and delivering a projected 400 KJ of kinetic energy to the implosion

  6. The Material Plasma Exposure eXperiment (MPEX)

    Science.gov (United States)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.

    2014-10-01

    Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  7. A structured architecture for advanced plasma control experiments

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.

    1996-10-01

    Recent new and improved plasma control regimes have evolved from enhancements to the systems responsible for managing the plasma configuration on the DIII-D tokamak. The collection of hardware and software components designed for this purpose is known at DIII-D as the Plasma Control System or PCS. Several new user requirements have contributed to the rapid growth of the PCS. Experiments involving digital control of the plasma vertical position have resulted in the addition of new high performance processors to operate in real-time. Recent studies in plasma disruptions involving the use of neural network based software have resulted in an increase in the number of input diagnostic signals sampled. Better methods for estimating the plasma shape and position have brought about numerous software changes and the addition of several new code modules. Furthermore, requests for performing multivariable control and feedback on the current profile are continuing to add to the demands being placed on the PCS. To support all of these demands has required a structured yet flexible hardware and software architecture for maintaining existing capabilities and easily adding new ones. This architecture along with a general overview of the DIII-D Plasma Control System is described. In addition, the latest improvements to the PCS are presented

  8. Experiment and simulation on one-dimensional plasma photonic crystals

    International Nuclear Information System (INIS)

    Zhang, Lin; Ouyang, Ji-Ting

    2014-01-01

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range

  9. Microsecond plasma opening switch experiments on GIT-4

    Energy Technology Data Exchange (ETDEWEB)

    Bystritskij, V M; Lisitsyn, I V; Sinebryukhov, A A; Sinebryukhov, V A [Russian Academy of Sciences, Tomsk (Russian Federation). Inst. of Electrophysics; Kim, A A; Kokshenev, V A; Koval` chuk, B M [Russian Academy of Sciences, Tomsk (Russian Federation). High Current Electronics Inst.

    1997-12-31

    The plasma opening switch (POS) operation at the current level up to 2 MA was studied at the terawatt power GIT-4 generator. The experiments are described in which the electrode diameter and the strength of the applied magnetic field were varied, and different plasma sources were used. It is shown that the high voltage / low impedance switch operation can be achieved if the linear current density at the POS cathode does not exceed 20 kA/cm. This value limits the maximum cathode diameter of the magnetically insulated transmission line. The anode diameter is limited by the requirement of no gap closure with a dense electrode plasma. The application of external magnetic field decreases the plasma density necessary for achieving a long POS conduction time operation regime. (J.U.). 1 tab., 4 refs.

  10. Plasma boundary considerations for the national compact stellarator experiment

    International Nuclear Information System (INIS)

    Mioduszewski, P.; Grossman, A.; Fenstermacher, M.; Koniges, A.; Owen, L.; Rognlien, T.; Umansky, M.

    2003-01-01

    The national compact stellarator experiment (NCSX) [EPS 2001, Madeira, Portugal, 18-22 June 2001] is a new fusion project located at Princeton Plasma Physics Laboratory, Princeton, NJ. Plasma boundary control in stellarators has been shown to be very effective in improving plasma performance [EPS 2001, Madeira, Portugal, 18-22 June 2001] and, accordingly, will be an important element from the very beginning of the NCSX design. Plasma-facing components will be developed systematically according to our understanding of the NCSX boundary, with the eventual goal to develop a divertor with all the benefits for impurity and neutrals control. Neutrals calculations have been started to investigate the effect of neutrals penetration at various cross-sections

  11. Microsecond plasma opening switch experiments on GIT-4

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Lisitsyn, I.V.; Sinebryukhov, A.A.; Sinebryukhov, V.A.; Kim, A.A.; Kokshenev, V.A.; Koval'chuk, B.M.

    1996-01-01

    The plasma opening switch (POS) operation at the current level up to 2 MA was studied at the terawatt power GIT-4 generator. The experiments are described in which the electrode diameter and the strength of the applied magnetic field were varied, and different plasma sources were used. It is shown that the high voltage / low impedance switch operation can be achieved if the linear current density at the POS cathode does not exceed 20 kA/cm. This value limits the maximum cathode diameter of the magnetically insulated transmission line. The anode diameter is limited by the requirement of no gap closure with a dense electrode plasma. The application of external magnetic field decreases the plasma density necessary for achieving a long POS conduction time operation regime. (J.U.). 1 tab., 4 refs

  12. Real time plasma control experiments using the JET auxiliary plasma heating systems as the actuator

    International Nuclear Information System (INIS)

    Zornig, N.H.

    1999-01-01

    The role of the Real Time Power Control system (RTPC) in the Joint European Torus (JET) is described in depth. The modes of operation are discussed in detail and a number of successful experiments are described. These experiments prove that RTPC can be used for a wide range of experiments, including: (1) Feedback control of plasma parameters in real time using Ion Cyclotron Resonance Heating (ICRH) or Neutral Beam Heating (NBH) as the actuator in various JET operating regimes. It is demonstrated that in a multi-parameter space it is not sufficient to control one global plasma parameter in order to avoid performance limiting events. (2) Restricting neutron production and subsequent machine activation resulting from high performance pulses. (3) The simulation of α-particle heating effects in a DT-plasma in a D-only plasma. The heating properties of α-particles are simulated using ICRH-power, which is adjusted in real time. The simulation of α-particle heating in JET allows the effects of a change in isotopic mass to be separated from α-particle heating. However, the change in isotopic mass of the plasma ions appears to affect not only the global energy confinement time (τ E ) but also other parameters such as the electron temperature at the plasma edge. This also affects τ E , making it difficult to make a conclusive statement about any isotopic effect. (4) For future JET experiments a scheme has been designed which simulates the behaviour of a fusion reactor experimentally. The design parameters of the International Thermonuclear Experimental Reactor (ITER) are used. In the proposed scheme the most relevant dimensionless plasma parameters are similar in JET and ITER. It is also shown how the amount of heating may be simulated in real time by RTPC using the electron temperature and density as input parameters. The results of two demonstration experiments are presented. (author)

  13. Particle and power deposition on divertor targets in EAST H-mode plasmas

    DEFF Research Database (Denmark)

    Wang, L.; Xu, G.S.; Guo, H.Y.

    2012-01-01

    ELMs were chosen for analysis in order to reduce the uncertainty resulting from the influence of fast electrons on Langmuir triple-probe evaluation during ELMs. The power deposition obtained from Langmuir triple probes was consistent with that from the divertor infra-red camera during an ELM...

  14. Poloidal rotation and the evolution of H-mode and VH-mode profiles

    International Nuclear Information System (INIS)

    Hinton, F.L.; Staebler, G.M.; Kim, Y.B.

    1993-12-01

    The physics which determines poloidal rotation, and its role in the development of profiles during H- and VH-modes, is discussed. A simple phenomenological transport model, which incorporates the rvec E x rvec B flow shear suppression of turbulence, is shown to predict profile evolution similar to that observed experimentally during H-mode and VH-mode

  15. CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENETRATION LENGTH

    International Nuclear Information System (INIS)

    GROEBNER, R.J.; MAHDAVI, M.A.; LEONARD, A.W.; OSBORNE, T.H.; WOLF, N.S.; PORTER, G.D.; STANGEBY, P.C.; BROOKS, N.H.; COLCHIN, R.J.; HEIDBRINK, W.W.; LUCE, T.C.; MCKEE, G.R.; OWEN, L.W.; WANG, G.; WHYTE, D.G.

    2002-01-01

    OAK A271 CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENETRATION LENGTH. Pedestal studies in DIII-D find a good correlation between the width of the H-mode density barrier and the neutral penetration length. These results are obtained by comparing experimental density profiles to the predictions of an analytic model for the profile, obtained from the particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40-500 eV), the analytic model quantitatively predicts the observed decrease of the width as the pedestal density increases, the observed strong increase of the gradient of the density as the pedestal density increases and the observation that L-mode and H-mode profiles with the same pedestal density have very similar shapes. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fueling provides the dominant control for the size of the H-mode transport barrier

  16. CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENTRATION LENGTH

    International Nuclear Information System (INIS)

    GROEBNER, R.J.; MAHDAVI, M.A.; LEONARD, A.W.; OSBORNE, T.H.; WOLF, N.S.; PORTER, G.D.; STANGEBY, P.C.; BROOKS, N.H.; COLCHIN, R.J.; HEIDBRINK, W.W.; LUCE, T.C.; MCKEE, G.R.; OWEN, L.W.; WANG, G.; WHYTE, D.G.

    2002-01-01

    OAK A271 CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENTRATION LENGTH. Pedestal studies in DIII-D find a good correlation between the width of the region of steep gradient in the H-mode density and the neutral penetration length. These results are obtained by comparing experimental density profiles to the predictions of an analytic model for the profile, obtained from the particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40-500 eV), the analytic model quantitatively predicts the observed decrease of the width as the pedestal density increases, the observed strong increase of the gradient of the density as the pedestal density increases and the observation that L-mode and H-mode profiles with the same pedestal density have very similar shapes. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fueling provides a dominant control for the size of the H-mode transport barrier

  17. L to H mode transitions and associated phenomena in divertor tokamaks

    International Nuclear Information System (INIS)

    Punjabi, A.

    1990-09-01

    This is the final report for the research project titled ''L to H Mode Transitions and Associated Phenomena in Divertor Tokamaks.'' The period covered by this project is the fiscal year 1990. This report covers the development of Advanced Two Chamber Model

  18. Plasma boundary experiments on DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Brooks, N.; Jackson, G.L.; Langhorn, A.; Leikind, B.; Lippmann, S.; Luxon, J.; Petersen, P.; Petrie, P.; Stambaugh, R.D.; Simonen, T.C.; Staebler, G.; Buchenauer, D.; Futch, A.; Hill, D.N.; Rensink, M.; Hogan, J.; Menon, M.; Mioduszewski, P.K.; Owen, L.; Matthews, G.

    1990-01-01

    A survey of the boundary physics research on the DIII-D tokamak and an outline of the DIII-D Advanced Divertor Program (ADP) is presented. We will present results of experiments on impurity control, impurity transport, neutral particle transport, and particle effects on core confinement over a wide range of plasma parameters, I p T < or approx.10.7%, P(auxiliary)< or approx.20 MW. Based on the understanding gained in these studies, we in collaboration with a number of other laboratories have devised a series of experiments (ADP) to modify the core plasma conditions through changes in the edge electric field, neutral recycling, and plasma-surface interactions. (orig.)

  19. Plasma boundary experiments on DIII-D tokamak

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Brooks, N.; Jackson, G.L.; Langhorn, A.; Leikind, B.; Lippmann, S.; Luxon, J.; Petersen, P.; Petrie, T.; Stambaugh, R.D.; Simonen, T.C.; Staebler, G.; Buchenauer, D.; Futch, A.; Hill, D.N.; Rensink, M.; Hogan, J.; Menon, M.; Mioduszewski, P.; Owen, L.; Matthews, G.

    1990-06-01

    A survey of the boundary physics research on the DIII-D tokamak and an outline of the DIII-D Advanced Divertor Program (ADP) is presented. We will present results of experiments on impurity control, impurity transport, neutral particle transport, and particle effects on core confinement over a wide range of plasma parameters, I p approx-lt 3 MA, β T approx-lt 10.7%, P(auxiliary) approx-lt 20 MW. Based on the understanding gained in these studies, we in collaboration with a number of other laboratories have devised a series of experiments (ADP) to modify the core plasma conditions through changes in the edge electric field, neutral recycling, and plasma surface interactions. 41 refs., 8 figs., 1 tab

  20. Plasma flow switch and foil implosion experiments on Pegasus II

    International Nuclear Information System (INIS)

    Cochrane, J.C.; Bartsch, R.R.; Benage, J.R.; Forman, P.R.; Gribble, R.F.; Ladish, J.S.; Oona, H.; Parker, J.V.; Scudder, D.W.; Shlachter, J.S.; Wysocki, F.J.

    1993-01-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground EXperiments) program. A goal of the program is to produce an intense (> 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy

  1. Experiments on CT plasma merging in the CTCC-1

    International Nuclear Information System (INIS)

    Watanabe, K.; Ikegami, K.; Nishikawa, M.; Ozaki, A.; Satomi, N.; Uyama, T.

    1982-01-01

    A compact toroid (CT) plasma merging experiment has been tried preliminarily in the CTCC-1 experiment as a method for further-heating of CT, on producing two CT plasmas in the flux conserver successively. Two CT plasmas were observed really to merge with each other in the flux conserver. In the merging process, it is found that the field reconnection of surface magnetic field lines of CT is completed until 30 μs after the second CT injection, but magnetic field lines around the center of CT merge slowly, taking about 100 μs. Experimental results indicate that merging of CT results in doubled addition of toroidal fluxes and no-addition of poloidal fluxes

  2. Plasma opening switch experiments on the Particle Beam Accelerator II

    International Nuclear Information System (INIS)

    Sweeney, M.A.; McDaniel, D.H.; Mendel, C.W.; Rochau, G.E.; Moore, W.B.S.; Mowrer, G.R.; Simpson, W.W.; Zagar, D.M.; Grasser, T.; McDougal, C.D.

    1989-01-01

    Plasma opening switch (POS) experiments have been done since 1986 on the PBFA-II ion beam accelerator to develop a rugged POS that will open rapidly ( 80%) into a high impedance (> 10 ohm) load. In a recent series of experiments on PBFA II, the authors have developed and tested three different switch designs that use magnetic fields to control and confine the injected plasma. All three configurations couple current efficiently to a 5-ohm electron beam diode. In this experimental series, the PBFA-II Delta Series, more extensive diagnostics were used than in previous switch experiments on PBFA II or on the Blackjack 5 accelerator at Maxwell Laboratories. Data from the experiments with these three switch designs is presented

  3. Experiments on microsecond conduction time plasma opening switch mechanisms

    International Nuclear Information System (INIS)

    Rix, W.; Coleman, M.; Miller, A.R.; Parks, D.; Robertson, K.; Thompson, J.; Waisman, E.; Wilson, A.

    1993-01-01

    The authors describe a series of experiments carried out on ACE 2 and ACE 4 to elucidate the mechanisms controlling the conduction and opening phases on plasma opening switches in a radial geometry with conduction times on the order of a microsecond. The results indicate both conduction and opening physics are similar to that observed on lower current systems in a coaxial geometry

  4. Numerical experiments on 2D strongly coupled complex plasmas

    International Nuclear Information System (INIS)

    Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E

    2010-01-01

    The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.

  5. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    International Nuclear Information System (INIS)

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-01-01

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed

  6. SPQR II: A beam-plasma interaction experiment

    International Nuclear Information System (INIS)

    Bimbot, R.; Della-Negra, S.; Gardes, D.

    1986-01-01

    SPQR II is an interaction experiment designed to probe energy -and charge-exchange of C/sup n/ + ions at 2 MeV/a.m.u., flowing through a fully ionized plasma column of hydrogen with nl-script = 10 19 e-cm -2 at T = 5 eV

  7. SPQR II: A beam-plasma interaction experiment

    Science.gov (United States)

    Bimbot, R.; Della-Negra, S.; Gardès, D.; Rivet, M. F.; Fleurier, C.; Dumax, B.; Hoffman, D. H. H.; Weyrich, K.; Deutsch, C.; Maynard, G.

    1986-01-01

    SPQR II is an interaction experiment designed to probe energy -and charge-exchange of Cn+ ions at 2 MeV/a.m.u., flowing through a fully ionized plasma column of hydrogen with nℓ=1019 e-cm-2 at T=5 eV. One expects a factor of two enhanced stopping over the cold gas case.

  8. Experiments on plasma turbulence induced by strong, steady electric fields

    International Nuclear Information System (INIS)

    Hamberger, S.M.

    1975-01-01

    The author discusses the effect of applying a strong electric field to collisionless plasma. In particular are compared what some ideas and prejudices lead one to expect to happen, what computer simulation experiments tell one ought to happen, and what actually does happen in two laboratory experiments which have been designed to allow the relevant instability and turbulent processes to occur unobstructed and which have been studied in sufficient detail. (Auth.)

  9. Lateral deflection of the SOL plasma during a giant ELM

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2001-01-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation. Based on the MHD model for the vapor shield plasma and the hot plasma, the Seebeck effect is analyzed for explanation of the deflection. At t=-∞ both plasmas are at rest and separated by a boundary parallel to the target. The interaction between plasmas develops gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∼10 2 μs the ELM duration time. At inclined impact of the magnetized hot plasma a toroidal current develops in the interaction zone of the plasmas. The JxB force accelerates the interacting plasmas in the lateral direction. The cold plasma motion essentially compensates the current. The magnitude of the hot plasma deflection is comparable to the observed one

  10. Observation of a new turbulence-driven limit-cycle state in H-modes with lower hybrid current drive and lithium-wall conditioning in the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Guo, H.Y.

    2012-01-01

    The first high confinement H-mode plasma has been obtained in the Experimental Advanced Superconducting Tokamak (EAST) with about 1 MW lower hybrid current drive after wall conditioning by lithium evaporation and real-time injection of Li powder. Following the L–H transition, a small-amplitude, low...

  11. EDITORIAL: Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers

    Science.gov (United States)

    Hahm, T. S.

    2010-06-01

    The 12th International Workshop on H-mode Physics and Transport Barriers was held at the Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA between September 30 and October 2, 2009. This meeting was the continuation of a series of previous meetings which was initiated in 1987 and has been held bi-annually since then. Following the recent tradition at the last few meetings, the program was sub- divided into six sessions. At each session, an overview talk was presented, followed by two or three shorter oral presentations which supplemented the coverage of important issues. These talks were followed by discussion periods and poster sessions of contributed papers. The sessions were: Physics of Transition to/from Enhanced Confinement Regimes, Pedestal and Edge Localized Mode Dynamics, Plasma Rotation and Momentum Transport, Role of 3D Physics in Transport Barriers, Transport Barriers: Theory and Simulations and High Priority ITER Issues on Transport Barriers. The diversity of the 90 registered participants was remarkable, with 22 different nationalities. US participants were in the majority (36), followed by Japan (14), South Korea (7), and China (6). This special issue of Nuclear Fusion consists of a cluster of 18 accepted papers from submitted manuscripts based on overview talks and poster presentations. The paper selection procedure followed the guidelines of Nuclear Fusion which are essentially the same as for regular articles with an additional requirement on timeliness of submission, review and revision. One overview paper and five contributed papers report on the H-mode pedestal related results which reflect the importance of this issue concerning the successful operation of ITER. Four papers address the rotation and momentum transport which play a crucial role in transport barrier physics. The transport barrier transition condition is the main focus of other four papers. Finally, four additional papers are devoted to the behaviour and control of

  12. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    International Nuclear Information System (INIS)

    WEST, WP; BURRELL, KH; DeGRASSIE, JS; DOYLE, EJ; GREENFIELD, CM; LASNIER, CJ; SNYDER, PB; ZENG, L.

    2003-01-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D α time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with β N *H 89L product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved

  13. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L

    2003-08-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

  14. Development of a plasma driven permeation experiment for TPE

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean, E-mail: dabuche@sandia.gov [Sandia National Laboratories, Livermore, CA (United States); Kolasinski, Robert [Sandia National Laboratories, Livermore, CA (United States); Shimada, Masa [Idaho National Laboratory, Idaho Falls, ID (United States); Donovan, David [Sandia National Laboratories, Livermore, CA (United States); Youchison, Dennis [Sandia National Laboratories, Albuquerque, NM (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • We have designed and fabricated a novel tritium permeation membrane holder for use in the Tritium Plasma Experiment (TPE). • The membrane temperature is controlled by varying the cooling flow rate and proximity of a spiral cooling channel. • Sealing tests have demonstrated adequate helium leak rates up to temperatures of 1000 °C. • Flow modeling indicates a minimal helium pressure drop across the membrane holder (<700 Pa). • Thermal modeling shows good heat removal and minimal membrane temperature variation (±2%) even up to peak TPE ion fluxes. - Abstract: Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 °C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 °C, a new TPE membrane holder has been built to hold test specimens (≤1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE's vacuum chamber has been demonstrated by sealing tests performed up to 1000 °C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (∼700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 °C are expected at the highest TPE fluxes.

  15. Quick-fire: Plasma flow driven implosion experiments

    International Nuclear Information System (INIS)

    Baker, W.L.; Bigelow, W.S.; Degnan, J.H.

    1985-01-01

    High speed plasma implosions involving megajoules of energy, and sub-microsecond implosion times are expected to require additional stages of power conditioning between realistic primary energy sources and the implosion system. Plasma flow switches and vacuum inductive stores represent attractive alternates to the high speed fuse and atmospheric store techniques which have been previously reported for powering such plasma experiments. In experiments being conducted at the Air Force Weapons Lab, a washer shaped plasma accelerated to 7-10 cm/microsecond in a coaxial plasma gun configuration, represents the moving element in a vacuum store/power conditioning system of 16.5 nH inductance which stores 1-1.5 MJ at 12-14 MA. At the end of the coaxial gun, the moving element transits the 2cm axial length of the cylindrical implosion gap in 200-400 nS, delivering the magnetic energy to the implosion foil, accelerating the imploding plasma to speeds of 30-40 cm/microsecond in 350-450 nS, and delivering a projected 400 KJ of kinetic energy to the implosion. Experiments have been conducted using the SHIVA STAR capacitor bank operating at 6 MJ stored energy in which performance has been monitored by electrical diagnostics, magnetic probes, and axial and radial viewing high speed visible and X-Ray photographs to assess the performance of the coaxial run and coaxial to radial transition. Time and spectrally resolved X-Ray diagnostics are used to assess implosion quality and performance and results are compared to kinematic and MHD models

  16. Development of a plasma driven permeation experiment for TPE

    International Nuclear Information System (INIS)

    Buchenauer, Dean; Kolasinski, Robert; Shimada, Masa; Donovan, David; Youchison, Dennis; Merrill, Brad

    2014-01-01

    Highlights: • We have designed and fabricated a novel tritium permeation membrane holder for use in the Tritium Plasma Experiment (TPE). • The membrane temperature is controlled by varying the cooling flow rate and proximity of a spiral cooling channel. • Sealing tests have demonstrated adequate helium leak rates up to temperatures of 1000 °C. • Flow modeling indicates a minimal helium pressure drop across the membrane holder (<700 Pa). • Thermal modeling shows good heat removal and minimal membrane temperature variation (±2%) even up to peak TPE ion fluxes. - Abstract: Experiments on retention of hydrogen isotopes (including tritium) at temperatures less than 800 °C have been carried out in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory [1,2]. To provide a direct measurement of plasma driven permeation in plasma facing materials at temperatures reaching 1000 °C, a new TPE membrane holder has been built to hold test specimens (≤1 mm in thickness) at high temperature while measuring tritium permeating through the membrane from the plasma facing side. This measurement is accomplished by employing a carrier gas that transports the permeating tritium from the backside of the membrane to ion chambers giving a direct measurement of the plasma driven tritium permeation rate. Isolation of the membrane cooling and sweep gases from TPE's vacuum chamber has been demonstrated by sealing tests performed up to 1000 °C of a membrane holder design that provides easy change out of membrane specimens between tests. Simulations of the helium carrier gas which transports tritium to the ion chamber indicate a very small pressure drop (∼700 Pa) with good flow uniformity (at 1000 sccm). Thermal transport simulations indicate that temperatures up to 1000 °C are expected at the highest TPE fluxes

  17. Role of the plasma shaping in ITB experiments on JET

    Energy Technology Data Exchange (ETDEWEB)

    Crisanti, F [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy); Lomas, P J [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Tudisco, O [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy); Becoulet, A [Association Euratom-CEA, CE de Cadarache, F-13108, St Paul lez Durance (France); Becoulet, M [Association Euratom-CEA, CE de Cadarache, F-13108, St Paul lez Durance (France); Bertalot, L [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy); Bolzonella, T [Associazione EURATOM-ENEA sulla Fusione, Consorzio RFX, Padua (Italy); Bracco, G [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy); De Benedetti, M [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy); Esposito, B [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy); Giroud, C [Association Euratom-CEA, CE de Cadarache, F-13108, St Paul lez Durance (France); Hawkes, N C [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Hender, T C [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Jarvis, O N [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Joffrin, E [Association Euratom-CEA, CE de Cadarache, F-13108, St Paul lez Durance (France); Pacella, D [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Frascati (Italy); Riccardo, V [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Rimini, F [Association Euratom-CEA, CE de Cadarache, F-13108, St Paul lez Durance (France); Zastrow, K D [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2003-04-01

    A set of dedicated JET experiments is described where the plasma elongation (k) and triangularity ({delta}) were varied separately in order to study the influence of plasma magnetic topology on the internal transport barrier (ITB). With low {delta}, type III ELMs were observed and ITBs readily generated. At the highest {delta}, large type I ELMs and ELM free phases were observed but, at best, only marginal ITBs. At fixed {delta} the increase of the elongation of internal magnetic surface have a beneficial effect on the transport quality of the ITB.

  18. High speed photography diagnostics in laser-plasma interaction experiments

    International Nuclear Information System (INIS)

    Andre, M.L.

    1988-01-01

    The authors report on their effort in the development of techniques involved in laser-plasma experiments. This includes not only laser technology but also diagnostics studies and targets design and fabrication. Among the different kind of diagnostics currently used are high speed streak cameras, fast oscilloscopes and detectors sensitive in the i.r., visible, the u.v. region and the x-rays. In this presentation the authors describe the three high power lasers which are still in operation (P 102, OctAL and PHEBUS) and the main diagnostics used to characterize the plasma

  19. Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    2012-01-01

    A heuristic model for the plasma scrape-off width in low-gas-puff tokamak H-mode plasmas is introduced. Grad B and curv B drifts into the scrape-off layer (SOL) are balanced against near-sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch–Schlüter flows to include order-unity sinks to the divertors. These assumptions result in an estimated SOL width of ∼2aρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, derived above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer–Härm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  20. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    International Nuclear Information System (INIS)

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  1. Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite

    Science.gov (United States)

    Stevens, N. J.

    1974-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

  2. The role of the radial electric field in confinement and transport in H-mode and VH-mode discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Osborne, T.H.; Doyle, E.J.; Rettig, C.L.

    1993-08-01

    Measurements of the radial electric field, E r , with high spatial and high time resolution in H-mode and VH-mode discharges in the DIII-D tokamak have revealed the significant influence of the shear in E r on confinement and transport in these discharges. These measurements are made using the DIII-D Charge Exchange Recombination (CER) System. At the L-H transition in DIII-D plasmas, a negative well-like E r profile develops just within the magnetic separatrix. A region of shear in E r results, which extends 1 to 2 cm into the plasma from the separatrix. At the transition, this region of sheared E r exhibits the greatest increase in impurity ion poloidal rotation velocity and the greatest reduction in plasma fluctuations. A transport barrier is formed in this same region of E x B velocity shear as is signified by large increases in the observed gradients of the ion temperature, the carbon density, the electron temperature and electron density. The development of the region of sheared E r , the increase in impurity ion poloidal rotation, the reduction in plasma turbulence, and the transport barrier all occur simultaneously at the L-H transition. Measurements of the radial electric field, plasma turbulence, thermal transport, and energy confinement have been performed for a wide range of plasma conditions and configurations. The results support the supposition that the progression of improving confinement at the L-H transition, into the H-mode and then into the VH-mode can be explained by the hypothesis of the suppression of plasma turbulence by the increasing penetration of the region of sheared E x B velocity into the plasma interior

  3. Velocity limitations in coaxial plasma gun experiments with gas mixtures

    International Nuclear Information System (INIS)

    Axnaes, I.

    1976-04-01

    The velocity limitations found in many crossed field plasma experiments with neutral gas present are studied for binary mixtures of H 2 , He, N 2 O 2 , Ne and Ar. The apparatus used is a coaxial plasma gun with an azimuthal magnetic bias field. The discharge parameters are chosen so that the plasma is weakly ionized. In some of the mixtures it is found that one of the components tends to dominate in the sense that only a small amount (regarding volume) of that component is needed for the discharge to adopt a limiting velocity close to that for the pure component. Thus in a mixture between a heavy and a light component having nearly equal ionization potentials the heavy component dominates. Also if there is a considerable difference in ionization potential between the components, the component with the lowest ionization potential tends to dominate. (author)

  4. Numerical Experiments Providing New Insights into Plasma Focus Fusion Devices

    Directory of Open Access Journals (Sweden)

    Sing Lee

    2010-04-01

    Full Text Available Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1 a plasma current limitation effect, as device static inductance is reduced towards very small values; (2 scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3 a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron ‘saturation’; and (4 a fundamental cause of neutron ‘saturation’. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research.

  5. Numerical modeling of the plasma ring acceleration experiment

    International Nuclear Information System (INIS)

    Eddleman, J.L.; Hammer, J.H.; Hartman, C.W.

    1987-01-01

    Modeling of the LLNL RACE experiment and its many applications has necessitated the development and use of a wide array of computational tools. The two-dimensional MHD code, HAM, has been used to model the formation of a compact torus plasma ring in a magnetized coaxial gun and its subsequent acceleration by an additional applied toroidal field. Features included in the 2-D calculations are self-consistent models for (1) the time-dependent poloidal field produced by a capacitor bank discharge through a solenoid field coil (located either inside the gun inner electrode or outside the outer gun electrode) and the associated diffusion of magnetic flux through neighboring conductors, (2) gas flow into the gun annular region from a simulated puffed gas valve plenum, (3) formation and motion of a current sheet produced by J x B forces resulting from discharge of the gun capacitor bank through the plasma load between the coaxial gun electrodes, (4) the subsequent stretching and reconnection of the poloidal field lines to form a compact torus plasma ring, and (5) finally the discharge of the accelerator capacitor bank producing an additional toroidal field for acceleration of the plasma ring. The code has been extended to include various models for gas breakdown, plasma anomalous resistivity, and mass entrainment from ablation of electrode material

  6. A Proton-Driven Plasma Wakefield Acceleration experiment at CERN

    CERN Multimedia

    The AWAKE Collaboration has been formed in order to demonstrate protondriven plasma wakefield acceleration for the first time. This technology could lead to future colliders of high energy but of a much reduced length compared to proposed linear accelerators. The SPS proton beam in the CNGS facility will be injected into a 10m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial 3–4 yea...

  7. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  8. Impurity transport model for the normal confinement and high density H-mode discharges in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Ida, K; Burhenn, R; McCormick, K; Pasch, E; Yamada, H; Yoshinuma, M; Inagaki, S; Murakami, S; Osakabe, M; Liang, Y; Brakel, R; Ehmler, H; Giannone, L; Grigull, P; Knauer, J P; Maassberg, H; Weller, A

    2003-01-01

    An impurity transport model based on diffusivity and the radial convective velocity is proposed as a first approach to explain the differences in the time evolution of Al XII (0.776 nm), Al XI (55 nm) and Al X (33.3 nm) lines following Al-injection by laser blow-off between normal confinement discharges and high density H-mode (HDH) discharges. Both discharge types are in the collisional regime for impurities (central electron temperature is 0.4 keV and central density exceeds 10 20 m -3 ). In this model, the radial convective velocity is assumed to be determined by the radial electric field, as derived from the pressure gradient. The diffusivity coefficient is chosen to be constant in the plasma core but is significantly larger in the edge region, where it counteracts the high local values of the inward convective velocity. Under these conditions, the faster decay of aluminium in HDH discharges can be explained by the smaller negative electric field in the bulk plasma, and correspondingly smaller inward convective velocity, due to flattening of the density profiles

  9. Tokamak-7 operation in experiments with a plasma

    International Nuclear Information System (INIS)

    Buzanki, V.V.; Bychkov, A.V.; Denisov, V.F.

    1982-01-01

    The results of experiments with plasma at the Tokamak-7 (T-7) device are presented. The experiments have been carried out with a constant diaphragm of 31,5 cm radius and two movable graphite diaphragms at the 26-28 cm plasma filament radius and 1,6-1,9 T magnetic field. Two stable regimes with 150 and 200 kA and 250 ms discharge current length have been investigated. It is shown that the strongest poloidal filed perturhations have been observed at the beginning of the discharge. Electron plasma temperature Tsub(e) has been determined from the spectrum analysis of soft X radiation by the foil method. Stable plasma regimes with current up to 200 kA, bypass voltage being equal 1,58V electron density -0,5-5,0 x 10 13 cm -3 , Tsub(e)=1,1-1,3 keV ion temperature-490 eV. The range between discharge pulses has reached 3 min. at the discharge current-240 kA. No considerable effect of magnetic field variables on the superconducting magnetic system has been observed

  10. Atomic kinetics of a neon photoionized plasma experiment at Z

    Science.gov (United States)

    Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration

    2018-06-01

    We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.

  11. Chapter 7: High-Density H-Mode Operation in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Stober, Joerg Karl; Lang, Peter Thomas; Mertens, Vitus

    2003-01-01

    Recent results are reported on the maximum achievable H-mode density and the behavior of pedestal density and central density peaking as this limit is approached. The maximum achievable H-mode density roughly scales as the Greenwald density, though a dependence on B t is clearly observed. In contrast to the stiff temperature profiles, the density profiles seem to allow more shape variation and especially with high-field-side pellet-injection, strongly peaked profiles with good confinement have been achieved. Also, spontaneous density peaking at high densities is observed in ASDEX Upgrade, which is related to the generally observed large time constants for the density profile equilibration. The equilibrated density profile shapes depend strongly on the heat-flux profile in the sense that central heating leads to significantly flatter profiles

  12. Edge Pedestal Control in Quiescent H-Mode Discharges in DIII-D Using Co Plus Counter Neutral Beam Injection

    International Nuclear Information System (INIS)

    Burrell, K.H.; Osborne, T.H.; Snyder, P.B.; West, W.P.; Chu, M.S.; Fenstermacher, M.E.; Gohil, P.; Solomon, W.M.

    2008-01-01

    We have made two significant discoveries in our recent studies of quiescent H-mode (QH-mode) plasmas in DIII-D. First, we have found that we can control the edge pedestal density and pressure by altering the edge particle transport through changes in the edge toroidal rotation. This allows us to adjust the edge operating point to be close to, but below the ELM stability boundary, maintaining the ELM-free state while allowing up to a factor of two increase in edge pressure. The ELM boundary is significantly higher in more strongly shaped plasmas, which broadens the operating space available for QH-mode and leads to improved core performance. Second, for the first time on any tokamak, we have created QH-mode plasmas with strong edge co-rotation; previous QH-modes in all tokamaks had edge counter rotation. This result demonstrates that counter NBI and edge counter rotation are not essential conditions for QH-mode. Both these investigations benefited from the edge stability predictions based on peeling-ballooning mode theory. The broadening of the ELM-stable region with plasma shaping is predicted by that theory. The theory has also been extended to provide a model for the edge harmonic oscillation (EHO) that regulates edge transport in the QH-mode. Many of the features of that theory agree with the experimental results reported either previously or in the present paper. One notable example is the prediction that co-rotating QH-mode is possible provided sufficient shear in the edge rotation can be created

  13. Confinement projections for the Burning Plasma Experiment (BPX)

    International Nuclear Information System (INIS)

    Goldston, R.J.; Bateman, G.; Kaye, S.M.; Perkins, F.W.; Pomphrey, N.; Stotler, D.P.; Zarnstorff, M.C.; Porkolab, M.; Reidel, K.S.; Stambaugh, R.D.; Waltz, R.E.

    1991-01-01

    The mission of the Burning Plasma Experiment (BPX, formerly CIT) is to study the physics of self-heated fusion plasmas (Q = 5 to ignition), and to demonstrate the production of substantial amounts of fusion power (P fus = 100 to 500 MW). Confinement projections for BPX have been made on the basis of (1) dimensional extrapolation (2) theory-based modeling calibrated to experiment, and (3) statistical scaling from the available empirical data base. The results of all three approaches, discussed in this paper, roughly coincide. We presently view the third approach, statistical scaling, as the most reliable means for projecting the confinement performance of BPX, and especially for assessing the uncertainty in the projection. 11 refs., 2 figs., 1 tab

  14. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  15. Correlation of H-mode barrier width and neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.; Mahdavi, M.A.; Leonard, A.W.

    2003-01-01

    Pedestal studies in DIII-D find a good correlation between the width of the H-mode density barrier and the neutral penetration length. These results are obtained by comparing experimental density profiles to the predictions of an analytic model for the profile, obtained from the particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40-500 eV), the analytic model quantitatively predicts the observed decrease of the width as the pedestal density increases, the observed strong increase of the gradient of the density as the pedestal density increases and the observation that L-mode and H-mode profiles with the same pedestal density have very similar shapes. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fueling provides the dominant control for the size of the H-mode transport barrier. (author)

  16. Plasma experiments with relevance for other branches of science

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Lozneanu, E.

    2000-01-01

    A new scenario of self-organization, suggested by plasma experiments, is presented as an enlightening model able to illustrate, on some examples, the necessity of a paradigm shift in science. Thus, self-organization at criticality in fusion devices, differential negative resistance of semi-conductors, generation of complex space charge configurations under controllable laboratory conditions and in nature are mentioned as phenomena potentially explicable in the frame of a unique framework in which self-organization is the central concept. (authors)

  17. A two term model of the confinement in Elmy H-modes using the global confinement and pedestal databases

    International Nuclear Information System (INIS)

    2003-01-01

    Two different physical models of the H-mode pedestal are tested against the joint pedestal-core database. These models are then combined with models for the core and shown to give a good fit to the ELMy H-mode database. Predictions are made for the next step tokamaks ITER and FIRE. (author)

  18. Testing program for burning plasma experiment vacuum vessel bolted joint

    International Nuclear Information System (INIS)

    Hsueh, P.K.; Khan, M.Z.; Swanson, J.; Feng, T.; Dinkevich, S.; Warren, J.

    1992-01-01

    As presently designed, the Burning Plasma Experiment vacuum vessel will be segmentally fabricated and assembled by bolted joints in the field. Due to geometry constraints, most of the bolted joints have significant eccentricity which causes the joint behavior to be sensitive to joint clamping forces. Experience indicates that as a result of this eccentricity, the joint will tend to open at the side closest to the applied load with the extent of the opening being dependent on the initial preload. In this paper analytical models coupled with a confirmatory testing program are developed to investigate and predict the non-linear behavior of the vacuum vessel bolted joint

  19. Emissive limiter bias experiment for improved confinement of tokamaks

    International Nuclear Information System (INIS)

    Choe, W.; Ono, M.; Darrow, D.S.; Pribyl, P.A.; Liberati, J.R.; Taylor, R.J.

    1992-01-01

    Experiments have been performed in Ohmic discharges of the UCLA CCT tokamak with a LaB 6 biased limiter, capable of emitting energetic electrons as a technique to improve confinement in tokamaks. To study the effects of emitted electrons, the limiter position, bias voltage, and plasma position were varied. The results have shown that the plasma positioning with respect to the emissive limiter plays an important role in obtaining H-mode plasmas. The emissive cathode must be located close to the last closed flux surface in order to charge up the plasma. As the cathode is moved closer to the wall, the positioning of the plasma becomes more critical since the plasma can easily detach from the cathode and reattach to the wall, resulting in the termination of H-mode. The emissive capability appears to be important for operating at lower bias voltage and reducing impurity levels in the plasma. With a heated cathode, transition to H-mode was observed for V bias ≤ 50 V and I inj ≥ 30 A. At a lower cathode heater current, a higher bias voltage is required for the transition. Moreover, with a lower cathode heater current, the time delay for inducing H-mode becomes longer, which can be attributed to the required time for the self-heating of the cathode to reach the emissive temperature. From this result, we conclude that the capacity for emission can significantly improve the performance of limiter biasing for inducing H-mode transition. With L-mode plasmas, the injection current flowing out of the cathode was generally higher than 100 A

  20. Initial Thomson Scattering Survey of Local Helicity Injection and Ohmic Plasmas at the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.

    2014-10-01

    A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.

  1. Dimensionally similar studies of confinement and H-mode transition in ASDEX Upgrade and JET

    International Nuclear Information System (INIS)

    Ryter, F.; Stober, J.; Suttrop, W.

    2001-01-01

    Joint experiments on confinement and L-H transition were performed in ASDEX Upgrade and JET. The confinement experiments suggest that the invariance principle is not always fulfilled at high density. For the L-H transition studies, the dimensionless variables taken at the plasma edge can be in general only made identical per pair, due to the condition imposed by the L-H transition. This new approach to investigate the L-H physics suggests a weak dependence of the L-H transition mechanism on collisionality. (author)

  2. Dimensionally similar studies of confinement and H-mode transition in ASDEX Upgrade and JET

    International Nuclear Information System (INIS)

    Ryter, F.; Stober, J.; Suttrop, W.

    1999-01-01

    Joint experiments on confinement and L-H transition were performed in ASDEX Upgrade and JET. The confinement experiments suggest that the invariance principle is not always fulfilled at high density. For the L-H transition studies, the dimensionless variables taken at the plasma edge can be in general only made identical per pair, due to the condition imposed by the L-H transition. This new approach to investigate the L-H physics suggests a weak dependence of the L-H transition mechanism on collisionality. (author)

  3. The role of electric field shear stabilization of turbulence in the H-mode to VH-mode transition in DIII-D

    International Nuclear Information System (INIS)

    Burrell, K.H.; Osborne, T.H.; Groebner, R.J.; Rettig, C.L.

    1993-01-01

    VH-mode plasma exhibit energy confinement times up to 2.4 times the DIII-D/JET H-mode scaling relation and up to 3.9 times the value given by ITER89-P L-mode scaling. If this confinement improvement can be exploited in reactor plasmas, smaller prototype reactors with significantly lower unit cost can be produced. Accordingly, understanding and optimizing the confinement improvement is of significant interest. One of the possible explanations for this bulk confinement improvement is stabilization of turbulence by shear in the radial electric field, similar to the present explanation for the confinement improvement at the extreme plasma edge at the L to H transition. Preliminary measurements have shown that the region of the plasma where the electric field gradient is steepest broadens when the plasma goes from H-mode to VH-mode. More recent measurements have confirmed this broadening and have shown that the change in the electric field gradient occurs prior to the change in the thermal transport. In addition, transport analysis shows that the electric field shear increases in the same region between magnetic flux coordinate p=0.6 and 0.9 where the local thermal transport decreases. Furthermore, far infra-red (FIR) scattering measurements have detected density fluctuations in the region around p=0.8 which could be responsible for enhanced transport and which disappear at the time that the electric shear increases. These fluctuations appear as bursts of density fluctuations in the 0.5 to 1.5 MHz range. The time between bursts increases as the electric field shear increases. Once these bursts disappear, the major change in confinement takes place in most discharges. When isolated bursts occur, the heat and angular momentum pulse connected with the burst are detectable on the plasma profile diagnostics. (author) 13 refs., 4 figs

  4. Baseball II-T, a new target plasma startup experiment

    International Nuclear Information System (INIS)

    Chargin, A.; Denhoy, B.; Frank, A.; Thomas, S.

    1975-01-01

    A brief description is given of modifications and additions to the existing Baseball II experiment. These changes will make it possible to study target plasma buildup in a steady-state magnetic field. This experiment, now called Baseball II-T + will use a pellet generator to deliver ammonia pellets into the center of the magnetic mirror field where they will be heated with a 300-J, 50-ns, CO 2 laser. The plasma created by this method will have a density of approximately 10 13 cm -3 and a temperature of about 1 keV. This target plasma will be used for neutral beam injection startup studies with a 50-A, 20-keV neutral beam. Later, the beam power will be increased to study buildup. With ion injection energies of up to 50 keV, it may be possible to achieve etatau as high as 10 12 cm -3 s. The new components necessary to achieve these goals are described

  5. Experiments and simulations of flux rope dynamics in a plasma

    Science.gov (United States)

    Intrator, Thomas; Abbate, Sara; Ryutov, Dmitri

    2005-10-01

    The behavior of flux ropes is a key issue in solar, space and astrophysics. For instance, magnetic fields and currents on the Sun are sheared and twisted as they store energy, experience an as yet unidentified instability, open into interplanetary space, eject the plasma trapped in them, and cause a flare. The Reconnection Scaling Experiment (RSX) provides a simple means to systematically characterize the linear and non-linear evolution of driven, dissipative, unstable plasma-current filaments. Topology evolves in three dimensions, supports multiple modes, and can bifurcate to quasi-helical equilibria. The ultimate saturation to a nonlinear force and energy balance is the link to a spectrum of relaxation processes. RSX has adjustable energy density β1 to β 1, non-negligible equilibrium plasma flows, driven steady-state scenarios, and adjustable line tying at boundaries. We will show magnetic structure of a kinking, rotating single line tied column, magnetic reconnection between two flux ropes, and pictures of three braided flux ropes. We use computed simulation movies to bridge the gap between the solar physics scales and experimental data with computational modeling. In collaboration with Ivo Furno, Tsitsi Madziwa-Nussinovm Giovanni Lapenta, Adam Light, Los Alamos National Laboratory; Sara Abbate, Torino Polytecnico; and Dmitri Ryutov, Lawrence Livermore National Laboratory.

  6. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1994-07-01

    experiments; locked modes and impurity influxes; fast wave heating and current drive experiments; H-mode power threshold; density limit in diverted plasmas

  7. Structure and motion of edge turbulence in the National Spherical Torus Experiment and Alcator C-Moda)

    Science.gov (United States)

    Zweben, S. J.; Maqueda, R. J.; Terry, J. L.; Munsat, T.; Myra, J. R.; D'Ippolito, D.; Russell, D. A.; Krommes, J. A.; LeBlanc, B.; Stoltzfus-Dueck, T.; Stotler, D. P.; Williams, K. M.; Bush, C. E.; Maingi, R.; Grulke, O.; Sabbagh, S. A.; White, A. E.

    2006-05-01

    In this paper we compare the structure and motion of edge turbulence observed in L-mode vs. H-mode plasmas in the National Spherical Torus Experiment (NSTX) [M. Ono, M. G. Bell, R. E. Bell et al., Plasma Phys. Controlled Fusion 45, A335 (2003)]. The radial and poloidal correlation lengths are not significantly different between the L-mode and the H-mode in the cases examined. The poloidal velocity fluctuations are lower and the radial profiles of the poloidal turbulence velocity are somewhat flatter in the H-mode compared with the L-mode plasmas. These results are compared with similar measurements Alcator C-Mod [E. Marmar, B. Bai, R. L. Boivin et al., Nucl. Fusion 43, 1610 (2003)], and with theoretical models.

  8. Progress of plasma experiments and superconducting technology in LHD

    International Nuclear Information System (INIS)

    Motojima, O.; Sakakibara, S.; Imagawa, S.; Sagara, A.; Seki, T.; Mutoh, T.; Morisaki, T.; Komori, A.; Ohyabu, N.; Yamada, H.

    2006-01-01

    The large helical device is a heliotron device with L = 2 and M = 10 continuous helical coils and three pairs of poloidal coils, and all of coils are superconductive. Since the experiments started in 1998, the development of engineering technologies and the demonstration of large-superconducting-machine operations have greatly contributed to an understanding of physics in currentless plasmas and a verification of the capability of fully steady-state operation. In recent plasma experiments, the steady state and high-beta experiments, which are the most important subjects for the realization of attractive fusion reactors, have progressed remarkably and produced two world-record parameters, i.e. the highest average beta of 4.5% in helical devices and the highest total input energy of 1.6 GJ in all magnetic confinement devices. No degradation has been observed in the coil performance, and stable cryogenic operational schemes at 4.4 K have been established. The physics and engineering results from the LHD experiment directly contribute to the design study for a D-T fusion demo reactor FFHR with a LHD-type heliotron configuration

  9. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  10. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    International Nuclear Information System (INIS)

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van; Bradley, Craig; Stone, Chris

    2017-01-01

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breaking vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.

  11. Laboratory Experiments Enabling Electron Beam use in Tenuous Space Plasmas

    Science.gov (United States)

    Miars, G.; Leon, O.; Gilchrist, B. E.; Delzanno, G. L.; Castello, F. L.; Borovsky, J.

    2017-12-01

    A mission concept is under development which involves firing a spacecraft-mounted electron beam from Earth's magnetosphere to connect distant magnetic field lines in real time. To prevent excessive spacecraft charging and consequent beam return, the spacecraft must be neutralized in the tenuous plasma environment of the magnetosphere. Particle-In-Cell (PIC) simulations suggest neutralization can be accomplished by emitting a neutral plasma with the electron beam. Interpretation of these simulations also led to an ion emission model in which ion current is emitted from a quasi-neutral plasma as defined by the space charge limit [1,2]. Experiments were performed at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL) to help validate the ion emission model. A hollow cathode plasma contactor was used as a representative spacecraft and charged with respect to the chamber walls to examine the effect of spacecraft charging on ion emission. Retarding Potential Analyzer (RPA) measurements were performed to understand ion flow velocity as this parameter relates directly to the expected space charge limit. Planar probe measurements were also made to identify where ion emission primarily occurred and to determine emission current density levels. Evidence of collisions within the plasma (particularly charge exchange collisions) and a simple model predicting emitted ion velocities are presented. While a detailed validation of the ion emission model and of the simulation tools used in [1,2] is ongoing, these measurements add to the physical understanding of ion emission as it may occur in the magnetosphere. 1. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, and E.A. MacDonald, J. Geophys. Res. Space Physics 120, 3647, 2015. 2. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, and J.D. Moulton, J. Geophys. Res. Space Physics 120, 3588, 2015. ________________________________ * This work is supported by Los Alamos National Laboratory.

  12. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S. M., E-mail: skaye@pppl.gov; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2014-08-15

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as β{sub e}, ν{sub e}{sup ∗}, the MHD α parameter, and the gradient scale lengths of T{sub e}, T{sub i}, and n{sub e} were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when β{sub e} and ν{sub e}{sup ∗} were relatively low, ballooning parity modes were dominant. As time progressed and both β{sub e} and ν{sub e}{sup ∗} increased, microtearing became the dominant low-k{sub θ} mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-k{sub θ}, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting T{sub e} for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

  13. Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

    Science.gov (United States)

    Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.

    2017-07-01

    We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

  14. Developments in remote participation in plasma physics experiments

    International Nuclear Information System (INIS)

    Blackwell, B.

    1999-01-01

    Recent growth in the size of plasma experiments and developments in network based software have contributed to a high level of interest in remote participation. Highlights of the recent conferences on this subject, and the ensuing 'white paper' are presented, with demonstrations of various Data Server/Web/Java based remote access techniques. These not only allow AINSE/AFRG users convenient access to H-1NF data from their home laboratory, but are (or soon will be) available to and from many overseas laboratories with similar systems. Many large plasma laboratories predict a large increase in remote access in the next two years. Several demonstrations of remote experiment control have been performed over medium speed networks, and several new experiments are planning on remote access from the beginning. In this paper we consider data access rights and security, access to common documents, and access to processed and raw data. The full version of this document can be viewed on the ANU's H-1NF web page at: http://rsphysse.anu.edu.au/

  15. Computer modeling of active experiments in space plasmas

    International Nuclear Information System (INIS)

    Bollens, R.J.

    1993-01-01

    The understanding of space plasmas is expanding rapidly. This is, in large part, due to the ambitious efforts of scientists from around the world who are performing large scale active experiments in the space plasma surrounding the earth. One such effort was designated the Active Magnetospheric Particle Tracer Explorers (AMPTE) and consisted of a series of plasma releases that were completed during 1984 and 1985. What makes the AMPTE experiments particularly interesting was the occurrence of a dramatic anomaly that was completely unpredicted. During the AMPTE experiment, three satellites traced the solar-wind flow into the earth's magnetosphere. One satellite, built by West Germany, released a series of barium and lithium canisters that were detonated and subsequently photo-ionized via solar radiation, thereby creating an artificial comet. Another satellite, built by Great Britain and in the vicinity during detonation, carried, as did the first satellite, a comprehensive set of magnetic field, particle and wave instruments. Upon detonation, what was observed by the satellites, as well as by aircraft and ground-based observers, was quite unexpected. The initial deflection of the ion clouds was not in the ambient solar wind's flow direction (rvec V) but rather in the direction transverse to the solar wind and the background magnetic field (rvec V x rvec B). This result was not predicted by any existing theories or simulation models; it is the main subject discussed in this dissertation. A large three dimensional computer simulation was produced to demonstrate that this transverse motion can be explained in terms of a rocket effect. Due to the extreme computer resources utilized in producing this work, the computer methods used to complete the calculation and the visualization techniques used to view the results are also discussed

  16. Structure formation in turbulent plasmas - test of nonlinear processes in plasma experiments

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, Masatoshi; Inagaki, Shigeru

    2009-01-01

    Full text: Recent developments in plasma physics, either in the fusion research in a new era of ITER, or in space and in astro-physics, the world-wide and focused research has been developed on the subject of structural formation in turbulent plasma being associated with electro-magnetic field formation. Keys for the progress were a change of the physics view from the 'linear, local and deterministic' picture to the description based on 'nonlinear instability, nonlocal interaction and probabilistic excitation' for the turbulent state, and the integration of the theory-simulation-experiment. In this presentation, we first briefly summarize the theory of microscopic turbulence and mesoscale fluctuations and selection rules. In addition, the statistical formation of large-scale structure/deformation by turbulence is addressed. Then, the experimental measurements of the mesoscale structures (e.g., zonal flows, zonal fields, streamer and transport interface) and of the nonlinear interactions among them in turbulent plasmas are reported. Confirmations by, and new challenges from, the experiments are overviewed. Work supported by the Grant-in-Aid for Specially-Promoted Research (16002005). (author)

  17. Plasma-wall impurity experiments in ISX-A

    International Nuclear Information System (INIS)

    Colchin, R.J.; Bush, C.E.; Edmonds, P.H.

    1978-08-01

    The ISX-A was a tokamak designed for studying plasma-wall interactions and plasma impurities. It fulfilled this role quite well, producing reliable and reproducible plasmas which had currents up to 175 kA and energy containment times up to 30 msec. With discharge precleaning, Z/sub eff/ was as low as 1.6; with titanium evaporation, Z/sub eff/ approached 1.0. Values of Z/sub eff/ greater than or equal to 2.0 were found to be proportional to residual impurity gases in the vacuum system immediately following a discharge. However, there was no clear dependence of Z/sub eff/ on base pressure. Stainless steel limiters were used in most of the ISX-A experiments. When carbon limiters were introduced into the vacuum system, Z/sub eff/ increased to 5.6. After twelve days of cleanup with tokamak discharges, during which time Z/sub eff/ steadily decreased, the carbon limiters tended to give slightly higher values of Z/sub eff/ than stainless steel limiters. Injection of less than 10 16 atoms of tungsten into discharges caused the power incident on the wall to double and the electron temperature profile to become hollow

  18. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    International Nuclear Information System (INIS)

    Stallard, B.W.; Hooper, E.B.; Woodruff, S.; Bulmer, R.H.; Hill, D.N.; McLean, H.S.; Wood, R.D.

    2003-01-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX

  19. Plasma-wall impurity experiments in ISX-A

    International Nuclear Information System (INIS)

    Colchin, R.J.; Bush, C.E.; Edmonds, P.H.; England, A.; Hill, K.W.; Isler, R.C.; Jernigan, T.C.; King, P.W.; Langley, R.A.; McNeill, D.H.; Murakami, M.; Neidigh, R.V.; Neilson, C.H.; Simpkins, J.E.; Wilgen, J.; DeBoo, J.C.; Burrell, K.H.; Ensberg, E.S.

    1978-01-01

    The ISX-A was a tokamak designed for studying plasma-wall interactions and plasma impurities. It fulfilled this role quite well, producing reliable and reproducible plasmas which had currents up to 175 kA and energy containment times up to 30 ms. With discharge precleaning, Zsub(eff) was as low as 1.6; with titanium evaporation. Zsub(eff) approached 1.0. Values of Zsub(eff) > approximately 2.0 were found to be proportional to residual impurity gases in the vacuum system immidiately following a discharge. However, there was no clear dependence of Zsub(eff) on base pressure. Stainless steel limiters were used in most of the ISX-A experiments. Upon introducing carbon limiters into the vacuum system, Zsub(eff) increased to 5.6. After twelve days of clean-up with tokamak discharges, during which time Zsub(eff) steadily decreased, the carbon limiters tended to give slightly higher values of Zsub(eff) than stainless steel limiters. Injection of 16 atoms of tungsten into discharges caused the power incident on the wall to double and the electron temperature profile to become hollow. (Auth.)

  20. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  1. Pellet injection in a tokamak hot plasma. Theory and experiment

    International Nuclear Information System (INIS)

    Picchiottino, J.M.

    1994-01-01

    The ultimate aim of pellet ablation studies is to predict what the plasma temperature and density profiles are just after a pellet injection. This requires description of the pellet ablation process, the parallel expansion of the ablatant and the fast outward motion of the deposited material since these three phenomena successively occur from the time of pellet injection to the moment when new axisymmetric profiles are reached. Only the two first points have been quantitatively modelled. If the most important processes of ablation physics are identified and although current models reproduce both measured penetrations and averaged characteristics of ablation clouds, some debatable points remain, mainly bearing on the drifts associated with the pellet motion and, consequently, on the effective shielding efficiency of the ionized part of the ablation cloud. During its parallel expansion, the ablated material experiences a strong poloidal rotation which depends on the ratio of the pellet and plasma masses and is due to the total kinetic momentum conservation on each magnetic surface. The fact that this rotation occurs on the same timescale as the outward motion suggests that both phenomena can be linked and that a comprehensive model of the whole fuelling process may emerge from considering the pellet and the plasma as a unique system. (author). 94 refs., 142 figs., 4 annexes

  2. Plasma decontamination during ergodic divertor experiments in TORE SUPRA

    International Nuclear Information System (INIS)

    Monier-Garbet, P.; DeMichelis, C.; Fall, T.; Ghendrih, Ph.; Goniche, M.; Grosman, A.; Hess, W.; Mattioli, M.

    1991-01-01

    In Tore Supra an ergodic divertor (ED) has been integrated in the machine design and successfully operated, as already reported. This paper analyses the decontamination effect resulting from the creation of an ergodic boundary zone. Two plasma geometrical configurations (outboard and inboard) are studied, the plasma being limited respectively either, on the low field side (lfs), by an outboard limiter (3 to 5 cm ahead of the ED modules) or, on the high field side (hfs), by the graphite inner wall. Strong decontamination effects have already been reported for the first configuration by observing line emission of the intrinsic (carbon and oxygen) and purposely injected (nitrogen) impurities. When limited by the inner wall, the plasma is several centimeters farther from the ED modules than in the lfs configuration. The magnetic perturbation is then greatly reduced, and much smaller decontamination effects should be expected. In this paper, the hfs configuration data is compared with that from the lfs configuration. Preliminary experiments combining lower hybrid current drive and ED operation in the hfs configuration are also reported. (author) 5 refs., 4 figs

  3. Perturbative transport experiments in JET Advanced Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantica, P.; Gorini, G.; Sozzi, C. [Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Milan (Italy); Imbeaux, F.; Sarazin, Y.; Garbet, X. [Association Euratom-CEA, St. Paul-lez-Durance Cedex (France); Kinsey, J. [Lehigh Univ., Bethlehem, Pennsylvania (United States); Budny, R. [Princeton Plasma Physics Lab, New Jersey (United States); Coffey, I.; Parail, V.; Walden, A. [Euratom/UKAEA Fusion Association, Abingdon, Oxon (United Kingdom); Dux, R. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Garzotti, L. [Istituto Gas Ionizzati, Padova (Italy); Ingesson, C. [FOM-Instituut voor Plasmafysica, Nieuwegein (Netherlands); Kissick, M. [University of California, Los Angeles (United States)

    2003-07-01

    Perturbative transport experiments have been performed in JET Advanced Tokamak plasmas either in conditions of fully developed Internal Transport Barrier (ITB) or during a phase where an ITB was not observed. Transient peripheral cooling was induced by either Laser Ablation or Shallow Pellet Injection and the ensuing travelling cold pulse was used to probe the plasma transport in the electron and, for the first time, also in the ion channel. Cold pulses travelling through ITBs are observed to erode the ITB outer part, but, if the inner ITB portion survives, it strongly damps the propagating wave. The result is discussed in the context of proposed possible pictures for ITB formation. In the absence of an ITB, the cold pulse shows a fast propagation in the outer plasma half, which is consistent with a region of stiff transport, while in the inner half it slows down but shows the peculiar feature of amplitude growing while propagating. The data are powerful tests for the validation of theoretical transport models. (author)

  4. TCV experiments towards the development of a plasma exhaust solution

    Science.gov (United States)

    Reimerdes, H.; Duval, B. P.; Harrison, J. R.; Labit, B.; Lipschultz, B.; Lunt, T.; Theiler, C.; Tsui, C. K.; Verhaegh, K.; Vijvers, W. A. J.; Boedo, J. A.; Calabro, G.; Crisanti, F.; Innocente, P.; Maurizio, R.; Pericoli, V.; Sheikh, U.; Spolare, M.; Vianello, N.; the TCV Team; the EUROfusion MST1 Team

    2017-12-01

    Research towards a plasma exhaust solution for a fusion power plant aims at validating edge physics models, strengthening predictive capabilities and improving the divertor configuration. The TCV tokamak is extensively used to investigate the extent that geometric configuration modifications can affect plasma exhaust performance. Recent TCV experiments continue previous detachment studies of Ohmically heated L-mode plasmas in standard single-null configurations, benefitting from a range of improved diagnostic capabilities. Studies were extended to nitrogen seeding and an entire suite of alternative magnetic configurations, including flux flaring towards the target (X divertor), increasing the outer target radius (Super-X) and movement of a secondary x-point inside the vessel (X-point target) as well as the entire range of snowflake configurations. Nitrogen seeding into a snowflake minus configuration demonstrated a regime with strong radiation in the large region between the two x-points, confirming EMC3-Eirene simulations, and opening a promising path towards highly radiating regimes with limited adverse effects on core performance.

  5. Theory for beam-plasma millimeter-wave radiation source experiments

    International Nuclear Information System (INIS)

    Rosenberg, M.; Krall, N.A.

    1989-01-01

    This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed

  6. Therapeutic plasma exchange in a single center: Ibni Sina experience.

    Science.gov (United States)

    Arslan, Onder; Arat, Mutlu; Tek, Ibrahim; Ayyildiz, Erol; Ilhan, Osman

    2004-06-01

    The number of therapeutic procedures is increasing steadily year by year with growing collaboration of departments other than Hematology. In the aim to demonstrate our single center activity we analyzed our data since four years. Between years 1998 and 2001, 658 therapeutic plasma exchange (TPE) procedures were performed on 158 patients. Median age and male/female ratio were 37 (range, 15-87) and 80/78, respectively. Main indications were myastenia gravis (n=55, 34%), TTP (n=13, 8.5%), post ABO mismatched allogeneic hematopoietic cell transplantation aregeneratoric anemia (n=6, 7.5%), progressive systemic sclerosis (n=10, 6.5%), multiple myeloma (n=10, 6.5%), Gullian Barre Syndrome (n=9, 5.9%), multiple sclerosis (n=7, 4.6%), Waldenström Macroglobulinemia (n=5, 3.4%), polymyositis (n=4, 2.7%), sepsis and disseminated intravascular coagulation (n=4, 2.7%). Departments who referred the majority of the patients for TPE were neurology (n=199), hematology (n=153), immunology (n=78), intensive care unit (n=78) and thorax surgery (n=51). The median TPE procedure per patient was 4 (range, 1-50). All the procedures were performed on continuous flow cell separators and median plasma volume processed per cycle was 2471 ml (range 436-5000). The replacement fluids used were 3% hydroxyethylstarch (HES) (24%), 5% albumin (35%), fresh frozen plasma (25%), and HES and albumin (16%). HES was tolerated well even as a sole replacement fluid with acceptable minor side effects. In three patients with progressing hypoalbuminemia HES was replaced or combined with 5% albumin. Close monitoring of serum albumin and fibrinogen levels after repeated procedures is mandatory. In our four years of TPE experience we have increased our collaboration with other departments. 3% HES+/-5% Albumin is a feasible, well tolerated and cost effective replacement fluid combination especially for short-term plasma exchange therapy.

  7. Plasma-filled diode experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Rochau, G.E.; McDaniel, D.H.; Moore, W.B.; Zuchowski, N.; Padilla, R.

    1987-01-01

    The PBFA-II accelerator is designed to use a Plasma Opening Switch (POS) for pulse shaping and voltage multiplication using inductive storage. The vacuum section of the machine consists of a set of short magnetically insulated transmission lines (MITLs) that both act as a voltage adder for series stacking of the pulses out of the 72 parallel plate water lines, and as a 100 nH (total) storage inductor upstream of a biconically shaped POS region. There are two POS plasma injection areas, located above and below an equatorial load, which has consisted of either a short circuit, a blade (electron beam) diode, or an Applied B magnetically insulated ion diode. The POS is designed to conduct up to 6 MA, and open into a 5 ohm diode load in 10 ns or less. Under these conditions, the voltage at the load is predicted to exceed 24 MV. Initial POS experiments using these loads have produced 1) opening times of typically 20 ns or longer, 2) poor current transfer efficiency (less than 50%) when load impedances averaged 2 ohms or more, and 3) differential switch opening in azimuthal segments of the power feed, thought to be caused by poor plasma uniformity across the flashboard plasma source. One possible explanation for 2) is that efficient transfer out of the POS requires that the current carried to the load be magnetically insulated, or else considerable energy will be deposited in the feed region between the POS and load. This had indeed been observed. The problem is further exacerbated by the longer current turn-on times that occur when an ion diode is used as the load

  8. Parametric dependencies of the experimental tungsten transport coefficients in ICRH and ECRH assisted ASDEX Upgrade H-modes

    Science.gov (United States)

    Sertoli, M.; Angioni, C.; Odstrcil, T.; ASDEX Upgrade Team; Eurofusion MST1 Team

    2017-11-01

    The profiles of the W transport coefficients have been experimentally calculated for a large database of identical ASDEX Upgrade H-mode discharges where only the radio-frequency (RF) power characteristics have been varied [Angioni et al., Nucl. Fusion 57, 056015 (2017)]. Central ion cyclotron resonance heating (ICRH) in the minority heating scheme has been compared with central and off-axis electron cyclotron resonance heating (ECRH), using both localized and broad heat deposition profiles. The transport coefficients have been calculated applying the gradient-flux relation to the evolution of the intrinsic W density in-between sawtooth cycles as measured using the soft X-ray diagnostic. For both ICRH and ECRH, the major player in reducing the central W density peaking is found to be the reduction of inward pinch and, in the case of ECRH, the rise of an outward convection. The impurity convection increases, from negative to positive, almost linearly with RF-power, while no appreciable changes are observed in the diffusion coefficient, which remains roughly at neoclassical levels independent of RF power or background plasma conditions. The ratio vW/DW is consistent with the equilibrium ∇ n W / n W prior to the sawtooth crash, corroborating the separate estimates of diffusion and convection. These experimental findings are slightly different from previous results obtained analysing the evolution of impurity injections over many sawtooth cycles. Modelling performed using the drift-kinetic code NEO and the gyro-kinetic code GKW (assuming axisymmetry) overestimates the diffusion coefficient and underestimates the experimental positive convection. This is a further indication that magneto-hydrodynamic/neoclassical models accounting for 3D effects may be needed to characterize impurity transport in sawtoothing tokamak plasmas.

  9. Results from core-edge experiments in high Power, high performance plasmas on DIII-D

    Directory of Open Access Journals (Sweden)

    T.W. Petrie

    2017-08-01

    Full Text Available Significant challenges to reducing divertor heat flux in highly powered near-double null divertor (DND hybrid plasmas, while still maintaining both high performance metrics and low enough density for application of RF heating, are identified. For these DNDs on DIII-D, the scaling of the peak heat flux at the outer target (q⊥P ∝ [PSOL x IP] 0.92 for PSOL= 8−19MW and IP= 1.0–1.4MA, and is consistent with standard ITPA scaling for single-null H-mode plasmas. Two divertor heat flux reduction methods were tested. First, applying the puff-and-pump radiating divertor to DIII-D plasmas may be problematical at high power and H98 (≥ 1.5 due to improvement in confinement time with deuterium gas puffing which can lead to unacceptably high core density under certain conditions. Second, q⊥P for these high performance DNDs was reduced by ≈35% when an open divertor is closed on the common flux side of the outer divertor target (“semi-slot” but also that heating near the slot opening is a significant source for impurity contamination of the core.

  10. A 3-MA compact-toroid-plasma-flow-switched plasma focus demonstration experiment on Shiva Star

    Energy Technology Data Exchange (ETDEWEB)

    Kiuttu, G F; Degnan, J H [Phillips Lab., Kirtland AFB, NM (United States). High Energy Sources Div.; Graham, J D [Maxwell Labs., Albuquerque, NM (United States); and others

    1997-12-31

    A novel dense plasma focus experiment using the Shiva Star capacitor bank is described. The experiment uses a compact toroid (CT) magnetized plasma flow switch (PFS) to initiate the focus implosion. The CT armature stably and reproducibly translates up to 3 MA from the vacuum feed region through coaxial electrodes to the gas puff central load. The inertia of the 1 mg CT and the work that must be done in compressing the internal magnetic fields during the translation provide a delay in current delivery to the pinch of 5 - 10 {mu}s, which matches the bank quarter cycle time relatively well. Effectiveness of the current delivery was monitored primarily by inductive probes in the PFS region, fast photography of the focus, and x-ray and neutron measurements of the pinch. K shell x-ray yields using neon gas were as high as 1 kJ, and 10{sup 8} neutrons were produced in a deuterium gas focus. (author). 4 figs., 10 refs.

  11. A 3-MA compact-toroid-plasma-flow-switched plasma focus demonstration experiment on Shiva Star

    International Nuclear Information System (INIS)

    Kiuttu, G.F.; Degnan, J.H.

    1996-01-01

    A novel dense plasma focus experiment using the Shiva Star capacitor bank is described. The experiment uses a compact toroid (CT) magnetized plasma flow switch (PFS) to initiate the focus implosion. The CT armature stably and reproducibly translates up to 3 MA from the vacuum feed region through coaxial electrodes to the gas puff central load. The inertia of the 1 mg CT and the work that must be done in compressing the internal magnetic fields during the translation provide a delay in current delivery to the pinch of 5 - 10 μs, which matches the bank quarter cycle time relatively well. Effectiveness of the current delivery was monitored primarily by inductive probes in the PFS region, fast photography of the focus, and x-ray and neutron measurements of the pinch. K shell x-ray yields using neon gas were as high as 1 kJ, and 10 8 neutrons were produced in a deuterium gas focus. (author). 4 figs., 10 refs

  12. Chaos in reversed-field-pinch plasma simulation and experiment

    International Nuclear Information System (INIS)

    Watts, C.; Newman, D.E.; Sprott, J.C.

    1994-01-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed-field-pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear-analysis techniques is used to identify low-dimensional chaos. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents, and short-term predictability. In addition, nonlinear-noise-reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS computer code, which models global RFP dynamics, and the dissipative trapped-electron-mode model, which models drift-wave turbulence. Data from both simulations show strong indications of low-dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low-dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate that the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system

  13. Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments

    International Nuclear Information System (INIS)

    Donkó, Z; Derzsi, A; Hartmann, P; Korolov, I; Schulze, J; Czarnetzki, U; Schüngel, E

    2012-01-01

    Capacitive radio frequency (RF) discharge plasmas have been serving hi-tech industry (e.g. chip and solar cell manufacturing, realization of biocompatible surfaces) for several years. Nonetheless, their complex modes of operation are not fully understood and represent topics of high interest. The understanding of these phenomena is aided by modern diagnostic techniques and computer simulations. From the industrial point of view the control of ion properties is of particular interest; possibilities of independent control of the ion flux and the ion energy have been utilized via excitation of the discharges with multiple frequencies. ‘Classical’ dual-frequency (DF) discharges (where two significantly different driving frequencies are used), as well as discharges driven by a base frequency and its higher harmonic(s) have been analyzed thoroughly. It has been recognized that the second solution results in an electrically induced asymmetry (electrical asymmetry effect), which provides the basis for the control of the mean ion energy. This paper reviews recent advances on studies of the different electron heating mechanisms, on the possibilities of the separate control of ion energy and ion flux in DF discharges, on the effects of secondary electrons, as well as on the non-linear behavior (self-generated resonant current oscillations) of capacitive RF plasmas. The work is based on a synergistic approach of theoretical modeling, experiments and kinetic simulations based on the particle-in-cell approach. (paper)

  14. Tokamak fluidlike equations, with applications to turbulence and transport in H mode discharges

    International Nuclear Information System (INIS)

    Kim, Y.B.; Biglari, H.; Carreras, B.A.; Diamond, P.H.; Groebner, R.J.; Kwon, O.J.; Spong, D.A.; Callen, J.D.; Chang, Z.; Hollenberg, J.B.; Sundaram, A.K.; Terry, P.W.; Wang, J.F.

    1990-01-01

    Significant progress has been made in developing tokamak fluidlike equations which are valid in all collisionality regimes in toroidal devices, and their applications to turbulence and transport in tokamaks. The areas highlighted in this paper include: the rigorous derivation of tokamak fluidlike equations via a generalized Chapman-Enskog procedure in various collisionality regimes and on various time scales; their application to collisionless and collisional drift wave models in a sheared slab geometry; applications to neoclassical drift wave turbulence; i.e. neoclassical ion-temperature-gradient-driven turbulence and neoclassical electron-drift-wave turbulence; applications to neoclassical bootstrap-current-driven turbulence; numerical simulation of nonlinear bootstrap-current-driven turbulence and tearing mode turbulence; transport in Hot-Ion H mode discharges. 20 refs., 3 figs

  15. Reciprocating Probe Measurements of L-H Transition in LHCD H-mode on EAST

    DEFF Research Database (Denmark)

    Peng, Liu; Guosheng, Xu; Huiqian, Wang

    2013-01-01

    that the power loss P loss was comparable during the L-H transition, by comparing the adjacent L-mode and H-mode discharge. The Dα emission, Te and ne decreased rapidly in the time scale of about 1 ms, and the radial electric field Er turned positive in this process near the last closed flux surface. Multiple L......-H-L transitions were observed during a single shot when the applied LHW power was marginal to the threshold. The floating potential (Vf) had negative spikes corresponding with the Dα signal, and Er oscillation evolved into several intermittent negative spikes just before the L-H transition. In some shots......, dithering was observed just before the L-H transition....

  16. Transport modeling of L- and H-mode discharges with LHCD on EAST

    Science.gov (United States)

    Li, M. H.; Ding, B. J.; Imbeaux, F.; Decker, J.; Zhang, X. J.; Kong, E. H.; Zhang, L.; Wei, W.; Shan, J. F.; Liu, F. K.; Wang, M.; Xu, H. D.; Yang, Y.; Peysson, Y.; Basiuk, V.; Artaud, J.-F.; Yuynh, P.; Wan, B. N.

    2013-04-01

    High-confinement (H-mode) discharges with lower hybrid current drive (LHCD) as the only heating source are obtained on EAST. In this paper, an empirical transport model of mixed Bohm/gyro-Bohm for electron and ion heat transport was first calibrated against a database of 3 L-mode shots on EAST. The electron and ion temperature profiles are well reproduced in the predictive modeling with the calibrated model coupled to the suite of codes CRONOS. CRONOS calculations with experimental profiles are also performed for electron power balance analysis. In addition, the time evolutions of LHCD are calculated by the C3PO/LUKE code involving current diffusion, and the results are compared with experimental observations.

  17. Experiments on Alignment of Dust Particles in Plasma Sheath

    International Nuclear Information System (INIS)

    Samarian, A.A.; Vladimirov, S.V.; James, B.W.

    2005-01-01

    Here, we report an experimental investigation of the stability of vertical and horizontal confinement of dust particles levitated in an rf sheath. The experiments were carried out in argon plasma with micron-sized dust particles. Changes of particle arrangement were triggered by changing the discharge parameters, applying an additional bias to the confining electrode and by laser beam. The region where the transition was triggered by changes of discharge parameters and the transition from horizontal to vertical alignment has been found to be more pronounced than for the reverse transition. A clear hysteretic effect was observed for transitions triggered by changes of the confining voltage. A vertical alignment occurs in a system of two dust horizontally arranged particles with the decrease of the particle separation. This disruption is attributed to the formation of the common ion wake in the system

  18. Interrelationship between Plasma Experiments in the Laboratory and in Space

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, Mark E. [West Virginia Univ., Morgantown, WV (United States)

    2017-05-25

    Funds were expended to offset the travel costs of three students and three postdoctoral research associates to participate in and present work at the 2015 International Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS2015), 23-28 August 2015, Pitlochry, Scotland, UK. Selection was priority-ranked by lab-space engagement, first, and topic relevance, second. Supplementary selection preference was applied to under-represented populations, applicants lacking available travel-resources in their home research group, applicants unusually distant from the conference venue, and the impact of the applicant’s attendance in increasing the diversity of conference participation. One support letter per student was required. The letters described the specific benefit of IPELS2015 to the student dissertation or the postdoc career development, and document the evidence for the ordering criteria.

  19. Detection of inverse Compton scattering in plasma wakefield experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bohlen, Simon

    2016-12-15

    Inverse Compton scattering (ICS) is the process of scattering of photons and electrons, where the photons gain a part of the electrons energy. In combination with plasma wakefield acceleration (PWA), ICS offers a compact MeV γ-ray source. A numerical study of ICS radiation produced in PWA experiments at FLASHForward was performed, using an ICS simulation code and the results from particle-in-cell modelling. The possibility of determining electron beam properties from measurements of the γ-ray source was explored for a wide range of experimental conditions. It was found that information about the electron divergence, the electron spectrum and longitudinal information can be obtained from measurements of the ICS beams for some cases. For the measurement of the ICS profile at FLASHForward, a CsI(Tl) scintillator array was chosen, similar to scintillators used in other ICS experiments. To find a suitable detector for spectrum measurements, an experimental test of a Compton spectrometer at the RAL was conducted. This test showed that a similar spectrometer could also be used at FLASHForward. However, changes to the spectrometer could be needed in order to use the pair production effect. In addition, further studies using Geant4 could lead to a better reconstruction of the obtained data. The studies presented here show that ICS is a promising method to analyse electron parameters from PWA experiments in further detail.

  20. Characteristics of H-mode-like discharges and ELM activities in the presence of {iota}/2{pi} = 1 surface at the ergodic layer in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Morita, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Morisaki, T [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Tanaka, K [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Masuzaki, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Goto, M [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Sakakibara, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Michael, C [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Narihara, K [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Ohdachi, S [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Sakamoto, R [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Sanin, A [Budker Institute of Nuclear Physics, 630090, Novosibirsk (Russian Federation); Toi, K [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Tokuzawa, T [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Vyacheslavov, L N [Budker Institute of Nuclear Physics, 630090, Novosibirsk (Russian Federation); Watanabe, K Y [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

    2006-05-15

    Magnetic configurations of LHD are characterized by the presence of chaotic magnetic field, the so-called ergodic layer, surrounding the core plasma. H-mode-like discharges have been obtained at an outwardly shifted configuration of R{sub ax} = 4.00 m with a thick ergodic layer, where the {iota}/2{pi} = 1 position is located in the middle of the ergodic layer. A clear density rise and a reduction of magnetic fluctuation were observed. ELM-like H{alpha} bursts also appeared with a radial propagation of density bursts. These H-mode-like discharges can be triggered by changing P{sub NBI}(<12 MW) from three beams to two beams in a density range (4-8) x 10{sup 13} cm{sup -3}. The ELM-like bursts vanished with a small change of the edge rotational transform. A precise profile measurement of the edge density bursts confirmed that ELM-like bursts occur at the {iota}/2{pi} = 1 position.

  1. Beam-plasma coupling physics in support of active experiments

    Science.gov (United States)

    Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.

    2017-12-01

    The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.

  2. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  3. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  4. Confinement studies of helical-axis Heliotron plasmas

    International Nuclear Information System (INIS)

    Sano, F.; Mizuuchi, T.; Kondo, K.

    2005-01-01

    The L-H transition in the helical-axis heliotron, Heliotron J, was investigated. For ECH-only, NBI-only and ECH+NBI combination heating plasmas, the confinement quality of the H-mode was examined with special regard to the magnetic configuration, the vacuum edge iota value of which was chosen as a label of the configuration. The experimental iota dependence of the H ISS95 -factor (τ E exp /τ E ISS95 ) has revealed that there exist the specific configurations for which the high-quality H-modes (1.3 ISS95 p , was calculated and compared with the experiment. Edge plasma characteristics are also measured and discussed with regard to the E r -shear formation at the transition. (author)

  5. Plasma science and technology for emerging economies an AAAPT experience

    CERN Document Server

    2017-01-01

    This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing.   With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs.   These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energy source development using high-temperature, high- density plasmas and (ii...

  6. Initial measurements of two- and three-dimensional ordering, waves, and plasma filamentation in the Magnetized Dusty Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-05-15

    The Magnetized Dusty Plasma Experiment at Auburn University has been operational for over one year. In that time, a number of experiments have been performed at magnetic fields up to B = 2.5 T to explore the interaction between magnetized plasmas and charged, micron-sized dust particles. This paper reports on the initial results from studies of: (a) the formation of imposed, ordered structures, (b) the properties of dust wave waves in a rotating frame, and (c) the generation of plasma filaments.

  7. Progress in the Development of a High Power Helicon Plasma Source for the Materials Plasma Exposure Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, Richard Howell [ORNL; Caughman, John B. [ORNL; Rapp, Juergen [ORNL; Biewer, Theodore M. [ORNL; Bigelow, Tim S. [ORNL; Campbell, Ian H. [ORNL; Caneses Marin, Juan F. [ORNL; Donovan, David C. [ORNL; Kafle, Nischal [ORNL; Martin, Elijah H. [ORNL; Ray, Holly B. [ORNL; Shaw, Guinevere C. [ORNL; Showers, Melissa A. [ORNL

    2017-09-01

    Proto-MPEX is a linear plasma device being used to study a novel RF source concept for the planned Material Plasma Exposure eXperiment (MPEX), which will address plasma-materials interaction (PMI) for nuclear fusion reactors. Plasmas are produced using a large diameter helicon source operating at a frequency of 13.56 MHz at power levels up to 120 kW. In recent experiments the helicon source has produced deuterium plasmas with densities up to ~6 × 1019 m–3 measured at a location 2 m downstream from the antenna and 0.4 m from the target. Previous plasma production experiments on Proto-MPEX have generated lower density plasmas with hollow electron temperature profiles and target power deposition peaked far off axis. The latest experiments have produced flat Te profiles with a large portion of the power deposited on the target near the axis. This and other evidence points to the excitation of a helicon mode in this case.

  8. A simulated plasma disruption experiment using a magneto-plasma-dynamic arcjet

    International Nuclear Information System (INIS)

    Madarame, H.; Sukegawa, T.; Okamoto, K.

    1991-01-01

    If a melt layer is expelled by a strong electromagnetic force from some places during a plasma disruption, the wall thickness is reduced there remarkably. Although this phenomenon is considered as a very important issue, it has not been studied so far because of its difficulty and complexity. In this study, the phenomenon was simulated using a magneto-plasma-dynamic (MPD) arcjet. The MPD arcjet was used as both a heat source and an electric current source. The current flowed radially in a stainless steel test piece installed in a transverse magnetic field. The circumferential electromagnetic force generated a swirl flow in the melt layer, causing a centrifugal force, which thinned the central part of the round region and formed a circular embankment on the fringe. A numerical code was developed which could calculate the melting, the evaporation and the melt layer movement by the centrifugal force and the beam pressure. The calculational results on the melting depth and the thickness reduction in the central part were compared with experiment. (orig.)

  9. Solenoid for Laser Induced Plasma Experiments at Janus

    Science.gov (United States)

    Klein, Sallee; Leferve, Heath; Kemp, Gregory; Mariscal, Derek; Rasmus, Alex; Williams, Jackson; Gillespie, Robb; Manuel, Mario; Kuranz, Carolyn; Keiter, Paul; Drake, R.

    2017-10-01

    Creating invariant magnetic fields for experiments involving laser induced plasmas is particularly challenging due to the high voltages at which the solenoid must be pulsed. Creating a solenoid resilient enough to survive through large numbers of voltage discharges, enabling it to endure a campaign lasting several weeks, is exceptionally difficult. Here we present a solenoid that is robust through 40 μs pulses at a 13 kV potential. This solenoid is a vast improvement over our previously fielded designs in peak magnetic field capabilities and robustness. Designed to be operated at small-scale laser facilities, the solenoid housing allows for versatility of experimental set-ups among diagnostic and target positions. Within the perpendicular field axis at the center there is 300 degrees of clearance which can be easily modified to meet the needs of a specific experiment, as well as an f/3 cone for transmitted or backscattered light. After initial design efforts, these solenoids are relatively inexpensive to manufacture.

  10. Pre-launch simulation experiment of microwave-ionosphere nonlinear interaction rocket experiment in the space plasma chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N. (Kobe University, Kobe, Japan); Tsutsui, M. (Kyoto University, Uji, Japan); Matsumoto, H. (Kyoto University, Kyoto, Japan)

    1980-09-01

    A pre-flight test experiment of a microwave-ionosphere nonlinear interaction rocket experiment (MINIX) has been carried out in a space plasma simulation chamber. Though the first rocket experiment ended up in failure because of a high voltage trouble, interesting results are observed in the pre-flight experiment. A significant microwave heating of plasma up to 300% temperature increase is observed. Strong excitations of plasma waves by the transmitted microwaves in the VLF and HF range are observed as well. These microwave effects may have to be taken into account in solar power satellite projects in the future.

  11. Systems Analysis of a Compact Next Step Burning Plasma Experiment

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Meade, D.; Neumeyer, C.

    2002-01-01

    A new burning plasma systems code (BPSC) has been developed for analysis of a next step compact burning plasma experiment with copper-alloy magnet technology. We consider two classes of configurations: Type A, with the toroidal field (TF) coils and ohmic heating (OH) coils unlinked, and Type B, with the TF and OH coils linked. We obtain curves of the minimizing major radius as a function of aspect ratio R(A) for each configuration type for typical parameters. These curves represent, to first order, cost minimizing curves, assuming that device cost is a function of major radius. The Type B curves always lie below the Type A curves for the same physics parameters, indicating that they lead to a more compact design. This follows from that fact that a high fraction of the inner region, r < R-a, contains electrical conductor material. However, the fact that the Type A OH and TF magnets are not linked presents fewer engineering challenges and should lead to a more reliable design. Both the Type A and Type B curves have a minimum in major radius R at a minimizing aspect ratio A typically above 2.8 and at high values of magnetic field B above 10 T. The minimizing A occurs at larger values for longer pulse and higher performance devices. The larger A and higher B design points also have the feature that the ratio of the discharge time to the current redistribution time is largest so that steady-state operation can be more realistically prototyped. A sensitivity study is presented for the baseline Type A configuration showing the dependence of the results on the parameters held fixed for the minimization study

  12. Experiments on helical modes in magnetized thin foil-plasmas

    Science.gov (United States)

    Yager-Elorriaga, David

    2017-10-01

    This paper gives an in-depth experimental study of helical features on magnetized, ultrathin foil-plasmas driven by the 1-MA linear transformer driver at University of Michigan. Three types of cylindrical liner loads were designed to produce: (a) pure magneto-hydrodynamic (MHD) modes (defined as being void of the acceleration-driven magneto-Rayleigh-Taylor instability, MRT) using a non-imploding geometry, (b) pure kink modes using a non-imploding, kink-seeded geometry, and (c) MRT-MHD coupled modes in an unseeded, imploding geometry. For each configuration, we applied relatively small axial magnetic fields of Bz = 0.2-2.0 T (compared to peak azimuthal fields of 30-40 T). The resulting liner-plasmas and instabilities were imaged using 12-frame laser shadowgraphy and visible self-emission on a fast framing camera. The azimuthal mode number was carefully identified with a tracking algorithm of self-emission minima. Our experiments show that the helical structures are a manifestation of discrete eigenmodes. The pitch angle of the helix is simply m / kR , from implosion to explosion, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Thus, the pitch angle increases (decreases) during implosion (explosion) as R becomes smaller (larger). We found that there are one, or at most two, discrete helical modes that arise for magnetized liners, with no apparent threshold on the applied Bz for the appearance of helical modes; increasing the axial magnetic field from zero to 0.5 T changes the relative weight between the m = 0 and m = 1 modes. Further increasing the applied axial magnetic fields yield higher m modes. Finally, the seeded kink instability overwhelms the intrinsic instability modes of the plasma. These results are corroborated with our analytic theory on the effects of radial acceleration on the classical sausage, kink, and higher m modes. Work supported by US DOE award DE-SC0012328, Sandia National Laboratories

  13. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  14. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Directory of Open Access Journals (Sweden)

    Nishio K.

    2013-11-01

    Full Text Available The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  15. Noncircular plasma shape analysis in long-pulse current drive experiment in TRIAM-1M

    International Nuclear Information System (INIS)

    Minooka, Mayumi; Kawasaki, Shoji; Jotaki, Eriko; Moriyama, Shin-ichi; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1991-01-01

    Plasma cross section was noncircularized and the plasma shape was analyzed in order to study the characteristics of the plasma in long-pulse current drive experiments in high-field superconducting tokamak TRIAM-1M. Filament approximation method was adopted, since on-line processing by data processing computer is possible. The experiments of the noncircularization were carried out during 30-to 60-sec discharges. As a result, it became clear that D-shape plasma of elongation ratio 1.4 was maintained stably. By the analysis the internal inductance and poloidal beta were assessed, and so informations about the plasma current profile and internal pressure were obtained. (author)

  16. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Wang, H. Q.; Wan, B. N.

    2012-01-01

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1MHz) turbulence was observed in the steep-gradient region...... leading to intermittent transport events across the edge transport barrier. Good confinement (H-98y,H-2 similar to 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows...... reproduced this state well. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769852]...

  17. A laboratory plasma experiment for studying magnetic dynamics of accretion discs and jets

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  18. Measurements of Plasma Expansion due to Background Gas in the Electron Diffusion Gauge Experiment

    International Nuclear Information System (INIS)

    Morrison, Kyle A.; Paul, Stephen F.; Davidson, Ronald C.

    2003-01-01

    The expansion of pure electron plasmas due to collisions with background neutral gas atoms in the Electron Diffusion Gauge (EDG) experiment device is observed. Measurements of plasma expansion with the new, phosphor-screen density diagnostic suggest that the expansion rates measured previously were observed during the plasma's relaxation to quasi-thermal-equilibrium, making it even more remarkable that they scale classically with pressure. Measurements of the on-axis, parallel plasma temperature evolution support the conclusion

  19. H-mode-like discharge under the presence of 1/1 rational surface at ergodic layer in LHD

    International Nuclear Information System (INIS)

    Morita, Shigeru; Morisaki, Tomohiro; Tanaka, Kenji

    2004-01-01

    H-mode-like discharge was found in LHD with a full B t field of 2.5T at an outwardly shifted configuration of R ax = 4.00 m where the m/n = 1/1 rational surface is located at the ergodic layer. The H-mode-like discharge was triggered by changing the P NBI from 9MW to 5 MW in a density range of 4-8 x 10 13 cm -3 , followed by a clear density rise, ELM-like H α bursts, and a reduction of magnetic fluctuation. These H-mode-like features vanished with a small radial movement of the 1/1 surface. (author)

  20. Development of superconducting crossbar-H-mode cavities for proton and ion accelerators

    Directory of Open Access Journals (Sweden)

    F. Dziuba

    2010-04-01

    Full Text Available The crossbar-H-mode (CH structure is the first superconducting multicell drift tube cavity for the low and medium energy range operated in the H_{21} mode. Because of the large energy gain per cavity, which leads to high real estate gradients, it is an excellent candidate for the efficient acceleration in high power proton and ion accelerators with fixed velocity profile. A prototype cavity has been developed and tested successfully with a gradient of 7  MV/m. A few new superconducting CH cavities with improved geometries for different high power applications are under development at present. One cavity (f=325  MHz, β=0.16, seven cells is currently under construction and studied with respect to a possible upgrade option for the GSI UNILAC. Another cavity (f=217  MHz, β=0.059, 15 cells is designed for a cw operated energy variable heavy ion linac application. Furthermore, the EUROTRANS project (European research program for the transmutation of high level nuclear waste in an accelerator driven system, 600 MeV protons, 352 MHz is one of many possible applications for this kind of superconducting rf cavity. In this context a layout of the 17 MeV EUROTRANS injector containing four superconducting CH cavities was proposed by the Institute for Applied Physics (IAP Frankfurt. The status of the cavity development related to the EUROTRANS injector is presented.

  1. A model for a scrape-off-layer low-high (L-H) mode transition

    International Nuclear Information System (INIS)

    Cohen, R.H.; Xu, X.

    1995-01-01

    Increasing the radial mode number has a stabilizing effect on the conducting-wall and curvature-driven interchange modes in a tokamak scrape-off layer (SOL), arising from the increased polarization response. Such an effect is naturally imposed as the SOL width is decreased, and for a narrow-enough SOL, the stabilizing effect is stronger than the increase in the instability drives. By combining a mixing-length estimate for the thermal diffusivity with energy conservation and heat conduction equations and the condition of continuity of the heat flux at the separatrix, it is found that the resultant turbulence-transport system admits two solutions, one stable and one unstable, at different SOL widths; the inclusion of additional physics can add a second stable root at lower width. These roots are plausibly identified with SOL behavior in low (L) and high (H) modes. Particularly when a model is introduced for finite-β, finite-k parallel effects on the modes, a power threshold for transition to the narrower root is obtained, suggesting a possible L-H transition mechanism. The non-monotonic dependence of the turbulent heat flux vs SOL width and the possibility of multiple solutions for the equilibrium SOL width are verified with nonlinear simulations. copyright 1995 American Institute of Physics

  2. Global gyrokinetic simulations of the H-mode tokamak edge pedestal

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Weigang; Parker, Scott E.; Chen, Yang [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Yan, Zheng [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Pankin, Alexei Y.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80305 (United States)

    2013-05-15

    Global gyrokinetic simulations of DIII-D H-mode edge pedestal show two types of instabilities may exist approaching the onset of edge localized modes: an intermediate-n, high frequency mode which we identify as the “kinetic peeling ballooning mode (KPBM),” and a high-n, low frequency mode. Our previous study [W. Wan et al., Phys. Rev. Lett. 109, 185004 (2012)] has shown that when the safety factor profile is flattened around the steep pressure gradient region, the high-n mode is clearly kinetic ballooning mode and becomes the dominant instability. Otherwise, the KPBM dominates. Here, the properties of the two instabilities are studied by varying the density and temperature profiles. It is found that the KPBM is destabilized by density and ion temperature gradient, and the high-n mode is mostly destabilized by electron temperature gradient. Nonlinear simulations with the KPBM saturate at high levels. The equilibrium radial electric field (E{sub r}) reduces the transport. The effect of the parallel equilibrium current is found to be weak.

  3. Experiments on Plasma Physics : Experience is the Mother of Wisdom 5.What We Expect with Nonneutral Plasmas

    Science.gov (United States)

    Kiwamoto, Yasuhito

    The present status of nonneutral plasma science is reviewed with a particular interest in the pursuit of a new frontier for plasma physicists engaged in basic researches. The author does not intend to be exhaustive nor well balanced in the description, but tries to discuss where we are positioned and what we might be able to do to fruitfully enjoy plasma physics and extend its field of activity. Leaving most of topics to the cited references, the author describes characteristic features of nonneutral plasmas appearing in distinct confinement properties, equilibria, transport, nonlinear evolution of Kelvin-Helmholtz instability, and fluid echo phenomena. These examples may convey the significance of nonneutral plasma science as one of newly-rising branches of plasma physics and as a potentially relevant channel through which plasma physics could explore new dimensions.

  4. Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.

    Science.gov (United States)

    Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G

    2012-04-13

    Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

  5. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  6. Strangeness and quark gluon plasma: Aspects of theory and experiment

    International Nuclear Information System (INIS)

    Eggers, H.C.; Rafelski, J.

    1990-07-01

    A survey of our current understanding of the strange particle signature of quark gluon plasma is presented. Emphasis is placed on the theory of strangeness production in the plasma and recent pertinent experimental results. Useful results on spectra of thermal particles are given. (orig.)

  7. LHCD current profile control experiments towards steady state improved confinement on JT-60U

    International Nuclear Information System (INIS)

    Ide, S.; Naito, O.; Oikawa, T.; Fujita, T.; Kondoh, T.; Seki, M.; Ushigusa, K.

    2001-01-01

    In JT-60U lower hybrid current drive (LHCD) experiments, a reversed magnetic shear configuration that was accompanied by the internal transport barriers was successfully maintained by means of LHCD almost in the full current drive quasi-steady state for 4.7 s. The normalized beta was kept near 1 and the neutron emission rate was almost steady as well indicating no accumulation of impurities into the plasma. Diagnostics data showed that all the profiles of the electron and ion temperatures, the electron density and the current profile were almost unchanged during the LHCD phase. Moreover, capability of LHCD in H-mode plasmas has been also investigated. It was found that the lower hybrid waves can be coupled to an H-mode edge plasma even with the plasma wall distance of about 14 cm. The maximum coupling distance was found to depend on the edge recycling. (author)

  8. The first experiment of MPD Jet injection into GAMMA 10 plasma

    International Nuclear Information System (INIS)

    Ichimura, Kazuya; Nakashima, Yousuke; Takeda, Hisato

    2014-01-01

    Results of the first experiment of short pulse plasma injection by MPD (magneto plasma dynamic) Jet into GAMMA 10/PDX's longer pulse plasma are reported. In the experiment, a new method for plasma start-up without using plasma guns was applied. In this method, the main plasma of GAMMA 10/PDX was produced by ECRH (electron cyclotron resonance heating) and ICRF (ion cyclotron range of frequency). Then, MPD Jet plasma was injected into the main plasma along magnetic field line. As a result, density of the main plasma was increased and the end-loss flux was doubled. Flow velocity of the plasmoid injected by the MPD Jet was evaluated from the change of plasma density in each cell of the tandem mirror. The result indicated that the flow speed is several km/s. It is found that the plasmoid worked as strong fueling device which dramatically raises the density of plasma. Therefore injection of MPD Jet plasma into tandem mirror can be a useful tool to study physical phenomena of divertor and PWI. (author)

  9. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  10. Simulations of particle and heat fluxes in an ELMy H-mode discharge on EAST using BOUT++ code

    Science.gov (United States)

    Wu, Y. B.; Xia, T. Y.; Zhong, F. C.; Zheng, Z.; Liu, J. B.; team3, EAST

    2018-05-01

    In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts on the Experimental Advanced Superconducting Tokamak (EAST), the BOUT++ six-field two-fluid model is used to simulate the pedestal collapse. The profiles from the EAST H-mode discharge #56129 are used as the initial conditions. Linear analysis shows that the resistive ballooning mode and drift-Alfven wave are two dominant instabilities for the equilibrium, and play important roles in driving ELMs. The evolution of the density profile and the growing process of the heat flux at divertor targets during the burst of ELMs are reproduced. The time evolution of the poloidal structures of T e is well simulated, and the dominant mode in each stage of the ELM crash process is found. The studies show that during the nonlinear phase, the dominant mode is 5, and it changes to 0 when the nonlinear phase goes to saturation after the ELM crash. The time evolution of the radial electron heat flux, ion heat flux, and particle density flux at the outer midplane (OMP) are obtained, and the corresponding transport coefficients D r, χ ir, and χ er reach maximum around 0.3 ∼ 0.5 m2 s‑1 at ΨN = 0.9. The heat fluxes at outer target plates are several times larger than that at inner target plates, which is consistent with the experimental observations. The simulated profiles of ion saturation current density (j s) at the lower outboard (LO) divertor target are compared to those of experiments by Langmuir probes. The profiles near the strike point are similar, and the peak values of j s from simulation are very close to the measurements.

  11. Study of the thermal and suprathermal electron density fluctuations of the plasma in the Focus experiment

    International Nuclear Information System (INIS)

    Jolas, A.

    1981-10-01

    An experiment on Thomson scattering of ruby laser light by the electrons of a plasma produced by an intense discharge between the electrodes of a coaxial gun in a gas at low pressure has been carried out. It is shown that the imploding plasma is made up of layers with different characteristics: a dense plasma layer where the density fluctuations are isotropic and have a thermal level, and a tenuous plasma layer where the fluctuations are anisotropic, and strongly suprathermal. The suprathermal fluctuations are attributed to microscopic instabilities generated by the electric current circulating in the transition zone where the magnetic field penetrates the plasma [fr

  12. Experiments on resonator concept of plasma wakefield accelerator driven by a train of relativistic electron bunches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirny, V. I; Onishchenko, I.N.; Uskov, V.V.

    2008-01-01

    The experimental installation was elaborated to increase plasma wakefield amplitude by means of using plasma resonator that allows all bunches of the train to participate in wakefield build-up contrary to waveguide case, in which due to group velocity effect only a part of the bunches participates. Experiments on plasma producing with resonant density, at which a coincidence of the plasma frequency and bunch repetition frequency is provided, are carried out. The first results of the measurements of beam energy loss on plasma wakefield excitation and energy gain by accelerated electrons are presented

  13. Ballooning mode stability for self-consistent pressure and current profiles at the H-mode edge

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Osborne, T.H.; Taylor, T.S.

    1997-11-01

    The edge pressure gradient (H-mode pedestal) for computed equilibria in which the current density profile is consistent with the bootstrap current may not be limited by the first regime ballooning limit. The transition to second stability is easier for: higher elongation, intermediate triangularity, larger ratio, pedestal at larger radius, narrower pedestal width, higher q 95 , and lower collisionality

  14. H-mode pedestal characteristics, ELMs, and energy confinement in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-12-01

    The H-mode confinement enhancement factor, H, is found to be strongly correlated with the height of the edge pressure pedestal in ITER shape discharges. In discharges with Type I ELMs the pedestal pressure is set by the maximum pressure gradient before the ELM and the width of the H-mode transport barrier. The pressure gradient before Type I ELMs is found to scale as would be expected for a stability limit set by ideal ballooning modes, but with values significantly in excess of that predicted by stability code calculations. The width of the H-mode transport barrier is found to scale equally well with pedestal P(POL)(2/3) or B(POL)(1/2). The improved H value in high B(POL) discharges may be due to a larger edge pressure gradient and wider H-mode transport barrier consistent with their higher edge ballooning mode limit. Deuterium puffing is found to reduce H consistent with the smaller pedestal pressure which results from the reduced barrier width and critical pressure gradient. Type I ELM energy loss is found to be proportional to the change in the pedestal energy

  15. Temporal evolution of H-mode pedestal in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Osborne, T.H.; Leonard, A.W.; Fenstermacher, M.E.

    2009-01-01

    The temporal evolution of pedestal parameters is examined in the initial edge localized mode (ELM)-free phase and inter-ELM phases of H-mode discharges in the DIII-D tokamak. These discharges are heated by deuterium neutral beam injection and achieve type-I ELMing conditions. Pedestal parameters exhibit qualitatively similar behaviour in both the ELM-free and inter-ELM phases. There is a trend for the widths and heights of pedestals for electron density, temperature and pressure to increase during these phases; the increase in width is most pronounced in the density and least pronounced in electron temperature. Near the separatrix, the ion temperature achieves higher values but a flatter profile as compared with the electron temperature. Higher heating powers lead to a faster evolution of the pedestal and to a shorter period until the onset of an ELM. For sufficiently long ELM-free or inter-ELM periods, some parameters, particularly gradients, approach a steady state. However, a simultaneous steady state in all parameters is not observed. The simultaneous increase in density width and pedestal density is opposite to the predictions of a simple model, which predicts that the density width is set by neutral penetration. Thus, additional physics must be added to the simple model to provide a more general description of pedestal behaviour. However, the barrier growth is qualitatively consistent with time-dependent theoretical models that predict a self-consistent temporal growth of the pedestal due to E x B shearing effects. In addition, an approximate linear correlation is observed between the density width and the square root of the pedestal ion temperature and also between the density width and the square root of the pedestal beta poloidal. These pedestal studies suggest that a complete model of the pedestal width in type-I ELMing discharges must be time dependent, include transport physics during inter-ELM periods and include the limits to pedestal evolution

  16. W7-AS contributions to: 10. topical conference on radio frequency power in plasmas, Boston, 1993 - Local transport studies on fusion plasmas, Varenna, 1993 - 5. European theory conference, El Escorial, 1993 - 4. int. workshop on plasma edge theory in fusion devices, Varenna, 1993 - 5. international Toki conference on plasma physics and controlled nuclear fusion, physics and technology of plasma heating and current drive, Toki, 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The report contains the following contribution (titles and authors): High Power 140 GHz ECRH Experiments on W7-AS (V. Erckmann); Heat Wave Studies on W7-AS Stellarator (H.J. Hartfuss); Evidence for Temperature Fluctuations in the W7-AS Stellarator (H.J. Hartfuss); Transient Transport Studies in W7-AS (U. Stroth); Open Magnetic Surfaces for Modelling Plasma Transport in the Boundary of Stellarators (F. Sardei); Electron Cyclotron Current Drive and Bootstrap Current (U. Gasparino); Parametrization of Open Magnetic Structures for Modelling Plasma Transport in the Boundary of W7-AS (F. Sardei); 140 GHz ECRH Experiments at the W7-AS Stellarator (V. Erckmann); H.-Mode of W7-AS Stellarator (F. Wagner); New Subjects of H-Mode (F. Wagner); Recent Results with 140 GHz ECRH at the W7-AS Stellarator (V. Erckmann). (orig./HP)

  17. Plasma skin resurfacing: personal experience and long-term results.

    Science.gov (United States)

    Bentkover, Stuart H

    2012-05-01

    This article presents a comprehensive clinical approach to plasma resurfacing for skin regeneration. Plasma technology, preoperative protocols, resurfacing technique, postoperative care, clinical outcomes, evidence-based results, and appropriate candidates for this procedure are discussed. Specific penetration depth and specific laser energy measurements are provided. Nitrogen plasma skin regeneration is a skin-resurfacing technique that offers excellent improvement of mild to moderate skin wrinkles and overall skin rejuvenation. It also provides excellent improvement in uniformity of skin color and texture in patients with hyperpigmentation with Fitzpatrick skin types 1 through 4. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Analysis of stochastic magnetic fields formed by the application of resonant magnetic perturbations on MAST and comparison with experiment

    International Nuclear Information System (INIS)

    Denner, P.; Liu, Yueqiang; Kirk, A.; Nardon, E.

    2012-01-01

    In MAST experiments with applied resonant magnetic perturbations (RMPs), clear reduction in line-averaged density has been observed in a wide range of L-mode plasmas when there is an alignment between the perturbation and the equilibrium magnetic field that maximizes the size of the resonant components of the applied magnetic field, as well as in a few H-mode plasmas but with a much stronger sensitivity to this alignment. This density pump-out is the result of increased particle transport, which is thought to be caused by the formation of a stochastic magnetic field in the plasma edge. This paper presents an analysis of the magnetic field structures formed by the application of n = 3 RMPs on MAST, including various parameters characterizing the degree of stochasticity in the plasma edge. Values for these parameters are calculated and compared with the amount of density pump-out observed in MAST experiments. It is found that density pump-out is fairly well correlated with some of the parameters calculated using vacuum modelling, but none of them provides a single threshold value for pump-out that applies to both L- and H-mode plasmas. Plasma response modelling provides a robust criterion for density pump-out that applies both to L- and H-mode plasmas. (paper)

  19. Experiment and research on materials irradiated by plasma radiation

    International Nuclear Information System (INIS)

    Hong Wenyu; Yao Lianghua; Tang Sujun; Chang Shufen; Li Guodong

    1992-08-01

    The TiC and SiC coating on the graphite substrate and wall carbonization were studied by plasma radiation in HL-1 tokamak. Samples were analysed with AES (auger electron spectroscopy), SEM (scanning electron microscopy), XPS (X-ray photoelectron spectroscopy) and XDS (X-ray diffraction spectroscopy). The results show that the TiC and SiC materials coated on limiter and wall and wall carbonization can reduce the metal and oxygen impurities and improve the plasma merit

  20. Effect of ELMs on rotation and momentum confinement in H-mode discharges in JET

    DEFF Research Database (Denmark)

    Versloot, T.W.; de Vries, P.C.; Giroud, C.

    2010-01-01

    . An increase in profile peaking of ion temperature and angular frequency is observed. At the same time the plasma confinement is reduced while the ratio of confinement times (Rτ = τE/τ) increases noticeably with ELM frequency. This change could be explained by the relatively larger ELM induced losses......The loss of plasma toroidal angular momentum and thermal energy by edge localized modes (ELMs) has been studied in JET. The analysis shows a consistently larger drop in momentum in comparison with the energy loss associated with the ELMs. This difference originates from the large reduction...... in angular frequency at the plasma edge, observed to penetrate into the plasma up to r/a ~ 0.65 during large type-I ELMs. As a result, the time averaged angular frequency is lowered near the top of the pedestal with increasing ELM frequency, resulting in a significant drop in thermal Mach number at the edge...

  1. Predictive transport modelling of type I ELMy H-mode dynamics using a theory-motivated combined ballooning-peeling model

    International Nuclear Information System (INIS)

    Loennroth, J-S; Parail, V; Dnestrovskij, A; Figarella, C; Garbet, X; Wilson, H

    2004-01-01

    This paper discusses predictive transport simulations of the type I ELMy high confinement mode (H-mode) with a theory-motivated edge localized mode (ELM) model based on linear ballooning and peeling mode stability theory. In the model, a total mode amplitude is calculated as a sum of the individual mode amplitudes given by two separate linear differential equations for the ballooning and peeling mode amplitudes. The ballooning and peeling mode growth rates are represented by mutually analogous terms, which differ from zero upon the violation of a critical pressure gradient and an analytical peeling mode stability criterion, respectively. The damping of the modes due to non-ideal magnetohydrodynamic effects is controlled by a term driving the mode amplitude towards the level of background fluctuations. Coupled to simulations with the JETTO transport code, the model qualitatively reproduces the experimental dynamics of type I ELMy H-mode, including an ELM frequency that increases with the external heating power. The dynamics of individual ELM cycles is studied. Each ELM is usually triggered by a ballooning mode instability. The ballooning phase of the ELM reduces the pressure gradient enough to make the plasma peeling unstable, whereby the ELM continues driven by the peeling mode instability, until the edge current density has been depleted to a stable level. Simulations with current ramp-up and ramp-down are studied as examples of situations in which pure peeling and pure ballooning mode ELMs, respectively, can be obtained. The sensitivity with respect to the ballooning and peeling mode growth rates is investigated. Some consideration is also given to an alternative formulation of the model as well as to a pure peeling model

  2. Asymmetry of edge plasma turbulence in biasing experiments on tokamak TF-2

    International Nuclear Information System (INIS)

    Budaev, V.P.

    1994-01-01

    It was observed in tokamaks the suppression of edge turbulence causes by setting a radial electric field at the plasma edge. The poloidal plasma rotation governed by this electric field is likely to result in changes in edge convention and poloidal asymmetry, however there is no experimental evidence about that of the experimental database concerning the biasing and conditions of edge plasma electrostatic turbulence excitation is not still complete. Also a relation between macroscopic convection and small-scale electrostatic turbulence have not yet revealed both in biasing and non biasing plasmas. In this paper results from biasing experiments carried on on ohmically heated tokamak TF-2 are presented. Changes in both equilibrium and fluctuated edge plasma parameters also convection and turbulence driven particle flux were demonstrated in probe measurements with biasing of electrode immersed within Last Closed Flux Surface (LCFS). Poloidal edge plasma structure and charge in asymmetry have demonstrated in the biasing experiments. (author). 6 refs, 4 figs

  3. Flow structure formation in an ion-unmagnetized plasma: The HYPER-II experiments

    Science.gov (United States)

    Terasaka, K.; Tanaka, M. Y.; Yoshimura, S.; Aramaki, M.; Sakamoto, Y.; Kawazu, F.; Furuta, K.; Takatsuka, N.; Masuda, M.; Nakano, R.

    2015-01-01

    The HYPER-II device has been constructed in Kyushu University to investigate the flow structure formation in an ion-unmagnetized plasma, which is an intermediate state of plasma and consists of unmagnetized ions and magnetized electrons. High density plasmas are produced by electron cyclotron resonance heating, and the flow field structure in an inhomogeneous magnetic field is investigated with a directional Langmuir probe method and a laser-induced fluorescence method. The experimental setup has been completed and the diagnostic systems have been installed to start the experiments. A set of coaxial electrodes will be introduced to control the azimuthal plasma rotation, and the effect of plasma rotation to generation of rectilinear flow structure will be studied. The HYPER-II experiments will clarify the overall flow structure in the inhomogeneous magnetic field and contribute to understanding characteristic feature of the intermediate state of plasma.

  4. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Igumenshchev, I.; Stoeckl, C.; Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  5. Commercialization of Plasma-Assisted Technologies: The Indian Experience

    Science.gov (United States)

    John, P. I.

    The paper describes an initiative by the Institute for Plasma Research (IPR), India in establishing links with the Indian industry for developing and commercialising advanced plasma-based industrial technologies. This has culminated in the creation of a self-financing technology development, incubation, demonstration and delivery facility. A business plan for converting the knowledge base to commercially viable technologies conceived technology as a product and the industry as the market and addressed issues like resistance to new technologies, the key role of entrepreneur, thrust areas and the necessity of technology incubation and delivery. Success of this strategy is discussed in a few case studies. We conclude by identifying the cost, environmental, strategic and techno-economic aspects, which would be the prime drivers for plasma-assisted manufacturing technology in India.

  6. First experiments at the QSPA-Be plasma gun facility

    International Nuclear Information System (INIS)

    Kovalenko, D V; Klimov, N S; Podkovyrov, V L; Muzichenko, A D; Zhitlukhin, A M; Khimchenko, L N; Kupriyanov, I B; Giniyatulin, R N

    2011-01-01

    This paper presents preliminary results on the erosion of beryllium under hydrogen plasma flow. Two samples made of two types of beryllium, TGP-56PS and S-65C, were exposed to plasma heat loads up to 1 MJ m - 2 and a pulse duration of 0.5 ms at the QSPA-Be facility in Bochvar Institute, Russia. The melting threshold for both beryllium types was experimentally determined to be 0.5 MJ m - 2. The dependence of the specific mass loss and erosion rate on pulse number for both beryllium types was measured. The possibility of generating radiation fluxes with parameters corresponding to mitigated ITER disruptions by means of plasma flow shock braking on a solid bar is shown.

  7. First experiments at the QSPA-Be plasma gun facility

    Science.gov (United States)

    Kovalenko, D. V.; Klimov, N. S.; Podkovyrov, V. L.; Muzichenko, A. D.; Zhitlukhin, A. M.; Khimchenko, L. N.; Kupriyanov, I. B.; Giniyatulin, R. N.

    2011-12-01

    This paper presents preliminary results on the erosion of beryllium under hydrogen plasma flow. Two samples made of two types of beryllium, TGP-56PS and S-65C, were exposed to plasma heat loads up to 1 MJ m-2 and a pulse duration of 0.5 ms at the QSPA-Be facility in Bochvar Institute, Russia. The melting threshold for both beryllium types was experimentally determined to be 0.5 MJ m-2. The dependence of the specific mass loss and erosion rate on pulse number for both beryllium types was measured. The possibility of generating radiation fluxes with parameters corresponding to mitigated ITER disruptions by means of plasma flow shock braking on a solid bar is shown.

  8. CO laser interferometer for REB-plasma experiments

    International Nuclear Information System (INIS)

    Burmasov, V.S.; Kruglyakov, E.P.

    1996-01-01

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF 2 prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at λ 5.34 μm coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser (λ = 3.39 μm) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs

  9. Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations

    Science.gov (United States)

    Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul

    2017-10-01

    Hypervelocity micro particles, including meteoroids and space debris with masses produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.

  10. CO laser interferometer for REB-plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Burmasov, V S; Kruglyakov, E P [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-12-31

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF{sub 2} prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at {lambda} 5.34 {mu}m coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser ({lambda} = 3.39 {mu}m) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs.

  11. Experiments on Ion-Ion Plasmas From Discharges

    Science.gov (United States)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  12. Positional stability experiment and analysis of elongated plasmas in Doublet III

    International Nuclear Information System (INIS)

    Yokomizo, Hideaki

    1984-04-01

    Control systems of the plasma position and shape on Doublet III are explained and experimental results of vertical stability of elongated plasmas are reviewed. Observed results of the vertical instability are qualitatively compared with the predictions from the simplified model and quantitatively compared with the numerical calculations based on a more realistic model. Experiments are in reasonable agreement with the theoretical analyses. (author)

  13. Plasma jet source parameter optimisation and experiments on injection into Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Gusev, V.K.; Petrov, Yu.V.; Sakharov, N.V.; Semenov, A.A.; Voronin, A.V.

    2005-01-01

    Results of theoretical and experimental research on the plasma sources and injection of plasma and gas jet produced by the modified source into tokamak Globus-M are presented. An experimental test stand was developed for investigation of intense plasma jet generation. Optimisation of pulsed coaxial accelerator parameters by means of analytical calculations is performed with the aim of achieving the highest flow velocity at limited coaxial electrode length and discharge current. The optimal parameters of power supply to generate a plasma jet with minimal impurity contamination and maximum flow velocity were determined. A comparison of experimental and calculation results is made. Plasma jet parameters are measured, such as: impurity species content, pressure distribution across the jet, flow velocity, plasma density, etc. Experiments on the interaction of a higher kinetic energy plasma jet with the magnetic field and plasma of the Globus-M tokamak were performed. Experimental results on plasma and gas jet injection into different Globus-M discharge phases are presented and discussed. Results are presented on the investigation of plasma jet injection as the source for discharge breakdown, plasma current startup and initial density rise. (author)

  14. Design and preliminary results of the IMA plasma focus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H M; Masoud, M M [Arab Republic of Egypt, Atomic Energy Authority Plasma physics and Nuclear Fusion department, Cairo (Egypt)

    1994-12-31

    The present paper describes the design, operation and characteristics of aton 1MA plasma focus device, which built in egypt at the plasma physics department, N.R.C., atomic energy authority. The main parts of the system are: the coaxial electrodes of mather type, the expansion chamber, the condenser bank of 75 kJ stored energy, the pressurized spark gap switches and Blumlein trigger system. Measurement of the breakdown voltage between plasma focus electrodes and discharge current, using half of the condenser bank, showed that, for U{sub c} h = 32 kV, the discharge current was 0.5 Ma. In the discharge current and voltage traces a sharp drop in discharge current correspondingly to a sudden rise in voltage have been observed, which characterize the focus regime. Time structure of the x-ray emission measurements have been performed by means of scintillation detectors. by using a hydrogen gas the results showed that, the x-ray intensity is increased with increasing the hydrogen gas pressure. plasma sheath current density, J-Z distribution in axial direction during the acceleration phase of the discharge is studied, using a miniature Rogovsky coil. The results cleared that J{sub z} is increased with the axial distance from breech to muzzle at different hydrogen gas pressures. 12 figs.

  15. Large vacuum system for experiences in magnetic confined plasmas

    International Nuclear Information System (INIS)

    Honda, R.Y.; Kayama, M.E.; Boeckelmann, H.K.; Aihara, S.

    1984-01-01

    It is presented the operation method of a theta-pinch system capable of generating and confine plasmas with high densities and temperatures. Some characteristics of Tupa theta-pinch, which is operating at UNICAMP, emphasizing the cleaning mode of the vacuum chamber, are also presented. (M.C.K.) [pt

  16. Design and preliminary results of the IMA plasma focus experiment

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1993-01-01

    The present paper describes the design, operation and characteristics of aton 1MA plasma focus device, which built in egypt at the plasma physics department, N.R.C., atomic energy authority. The main parts of the system are: the coaxial electrodes of mather type, the expansion chamber, the condenser bank of 75 kJ stored energy, the pressurized spark gap switches and Blumlein trigger system. Measurement of the breakdown voltage between plasma focus electrodes and discharge current, using half of the condenser bank, showed that, for U c h = 32 kV, the discharge current was 0.5 Ma. In the discharge current and voltage traces a sharp drop in discharge current correspondingly to a sudden rise in voltage have been observed, which characterize the focus regime. Time structure of the x-ray emission measurements have been performed by means of scintillation detectors. by using a hydrogen gas the results showed that, the x-ray intensity is increased with increasing the hydrogen gas pressure. plasma sheath current density, J-Z distribution in axial direction during the acceleration phase of the discharge is studied, using a miniature Rogovsky coil. The results cleared that J z is increased with the axial distance from breech to muzzle at different hydrogen gas pressures. 12 figs

  17. Plasma Chamber and First Wall of the Ignitor Experiment^*

    Science.gov (United States)

    Cucchiaro, A.; Coppi, B.; Bianchi, A.; Lucca, F.

    2005-10-01

    The new designs of the Plasma Chamber (PC) and of the First Wall (FW) system are based on updated scenarios for vertical plasma disruption (VDE) as well as estimates for the maximum thermal wall loadings at ignition. The PC wall thickness has been optimized to reduce the deformation during the worst disruption event without sacrificing the dimensions of the plasma column. A non linear dynamic analysis of the PC has been performed on a 360^o model of it, taking into account possible toroidal asymmetries of the halo current. Radial EM loads obtained by scaling JET measurements have been also considered. The low-cycle fatigue analysis confirms that the PC is able to meet a lifetime of few thousand cycles for the most extreme combinations of magnetic fields and plasma currents. The FW, made of Molybdenum (TZM) tiles covering the entire inner surface of the PC, has been designed to withstand thermal and EM loads, both under normal operating conditions and in case of disruption. Detailed elasto-plastic structural analyses of the most (EM) loaded tile-carriers show that these are compatible with the adopted fabrication requirements. ^*Sponsored in part by ENEA of Italy and by the U.S. DOE.

  18. Laboratory and space experiments as a key to the plasma universe

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1993-08-01

    Almost all of the known matter in our universe is in the state of plasma. Because of the complexity of the plasma state, a reliable understanding has to be built on empirical knowledge, since theoretical models easily become misleading unless guided by experiment or observation. Cosmical plasmas cover a vast range of densities and temperatures, but in important respects they can be classified into three main categories: high, medium, and low density plasmas. The ability of a plasma to carry electric current is very different in different kinds of plasma, varying from high density plasmas, where the ordinary Ohms law applies to low density plasmas, where no local macroscopic relation needs to exist between electric field and current density. According to classical formulas, the electrical conductivity of many plasmas should be practically infinite. But on the basis of laboratory experiments and in situ measurements in space we now know that in important cases the plasmas ability to carry electric current can be reduced by many powers of ten, and even collisionless plasmas may support significant magnetic-field aligned electric fields. A small number of processes responsible for this have been identified. They include anomalous resistivity, magnetic mirror effect and electric double layers. One of the consequences is possible violation of the frozen field condition, which greatly simplifies the analysis but can be dangerously misleading. Another is the possibility of extremely efficient release of magnetically stored energy. Cosmical plasmas have a strong tendency to form filamentary and cellular structures, which complicates their theoretical description by making homogeneous models inappropriate. In situ observations in the Earths magnetosphere have revealed completely unexpected and still not fully understood chemical separation processes that are likely to be important also in astrophysical plasmas. 108 refs

  19. Plasma heating by relativistic electron beams: correlations between experiment and theory

    International Nuclear Information System (INIS)

    Thode, L.E.; Godfrey, B.B.

    1975-01-01

    The streaming instability is the primary heating mechanism in most, if not all, experiments in which the beam is injected into partially or fully ionized gas. In plasma heating experiments, the relativistic beam must traverse an anode foil before interacting with the plasma. The linear theory for such a scattered beam is discussed, including a criterion for the onset of the kinetic interaction. A nonlinear model of the two-stream instability for a scattered beam is developed. Using this model, data from ten experiments are unfolded to obtain the following correlations: (i) for a fixed anode foil, the dependence of the plasma heating on the beam-to-plasma density ratio is due to anode foil scattering, (ii) for a fixed beam-to-plasma density ratio, the predicted change in the magnitude of plasma heating as a function of the anode foil is in agreement with experiment, and (iii) the plasma heating tentatively appears to be proportional to the beam kinetic energy density and beam pulse length. For a fixed anode foil, theory also predicts that the energy deposition is improved by increasing the beam electron energy γmc 2 . Presently, no experiment has been performed to confirm this aspect of the theory

  20. Influence of Li conditioning on Lower Hybrid Current Drive efficiency in H-mode and L- mode plasmas on EAST

    Directory of Open Access Journals (Sweden)

    Goniche Marc

    2017-01-01

    Full Text Available The lower hybrid current drive efficiency on the EAST tokamak is estimated on a large database of low loop voltage discharges (VL of these discharges, can account for the high efficiency according to the expected scaling with Zeff and . Modelling with a ray-tracing code coupled to a Fokker-Planck solver supports this result, assuming that the fast electron transport is reduced in the zero loop voltage discharge with high efficiency.

  1. Effect of ELMs on rotation and momentum confinement in H-mode discharges in JET

    NARCIS (Netherlands)

    Versloot, T.W.; de Vries, P.C.; Giroud, C.; Hua, M.D.; Beurskens, M.N.A.; Brix, M.; Eich, T.; Luna, de la E.; Tala, T.; Naulin, V.; Zastrov, K.D.

    2010-01-01

    The loss of plasma toroidal angular momentum and thermal energy by edge localized modes (ELMs) has been studied in JET. The analysis shows a consistently larger drop in momentum in comparison with the energy loss associated with the ELMs. This difference originates from the large reduction in

  2. On L to H-mode transitions of the tokamak and entropy reduction

    Directory of Open Access Journals (Sweden)

    Rastović Danilo

    2006-01-01

    Full Text Available In an ideal case, it is assumed that the models for tokamak and stellarator plasma behaviour lead to the theory of invariant manifolds by Rastović [Chaos, Solitons & Fractals, 2007]. But, at the present state of knowledge a more realistic concept for describing L to H transitions and edge localized modes is the reduction of entropy and appropriate methods.

  3. One-dimensional modelling of limit-cycle oscillation and H-mode power scaling

    DEFF Research Database (Denmark)

    Wu, Xingquan; Xu, Guosheng; Wan, Baonian

    2015-01-01

    To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equati...

  4. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    Energy Technology Data Exchange (ETDEWEB)

    Gillman, Eric D., E-mail: eric.gillman.ctr@nrl.navy.mil [National Research Council Postdoctoral Associate at the U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Amatucci, W. E. [U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  5. Characterisation of the ELM synchronized H-mode edge pedestal in ASDEX upgrade and DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Philip A.; Wolfrum, Elisabeth; Guenter, Sibylle; Kurzan, Bernd; Zohm, Hartmut [Max Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Groebner, Rich; Osborne, Tom H.; Ferron, John; Snyder, Philip B. [General Atomics, San Diego, CA (United States); Dunne, Mike G. [Department of Physics, University College Cork, Association Euratom-DCU, Cork (Ireland); Collaboration: ASDEX Upgrade Team; DIII-D Team

    2011-07-01

    The results of a large database of edge pedestal data from type-I ELMy H-mode discharges from ASDEX Upgrade and DIII-D are presented. The data from high resolution edge diagnostics of both devices is analysed with the same analysis code in order to avoid systematic differences. Furthermore, sophisticated equilibrium reconstructions are used to asses uncertainties which arise during mapping from 2D real space coordinates to 1D flux coordinates. ELM synchronization allows the study of the pedestal structure at the ELM stability boundary. The pedestal is characterized by its top value, the gradient and the width. A large parameter range is covered by the two devices. Over this parameter range the profile shape of edge electron density differs from that of the temperature, irrespective of the device. However, the resulting electron pressure profile shape remains similar for all analysed H-Mode discharges.

  6. Scaling of ELM and H-mode pedestal characteristics in ITER shape discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-07-01

    The authors have shown a correlation between the H-mode pressure pedestal height and the energy confinement enhancement in ITER shape discharges on DIII-D which is consistent with the behavior of H in different ELM classes. The width of the steep gradient region was found to equally well fit the scalings δ/R ∝ (ρ POL /R) 2/3 and δ/R ∝ (β POL PED /R) 1/2 . The normalized pressure gradient α MHD was found to be relatively constant just before a type I ELM. An estimate of T PED for ITER gave 1 to 5 keV. They also estimate ΔE ELM ≅ 26 MJ for ITER. They identified a distinct class of type III ELM at low density which may play a role in setting H at powers near the H-mode threshold power

  7. Hypervelocity dust particle impacts observed by the Giotto Magnetometer and Plasma Experiments

    OpenAIRE

    Neubauer, F. M.; Glassmeier, K. H.; Coates, A. J.; Goldstein, R.; Acuña, M. H.; Musmann, G.

    1990-01-01

    We report thirteen very short events in the magnetic field of the inner magnetic pile‐up region of comet Halley observed by the Giotto magnetometer experiment together with simultaneous plasma data obtained by the Johnstone plasma analyzer and the ion mass spectrometer experiments. The events are due to dust impacts in the milligram range on the spacecraft at the relative velocity between the cemetery dust and the spacecraft of 68 km/sec. They are generally consistent with dust impact events ...

  8. Improvement in Plasma Performance with Lithium Coatings in NSTX

    International Nuclear Information System (INIS)

    Kaita, R.

    2009-01-01

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  9. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    Science.gov (United States)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  10. Preliminary experiment of non-induced plasma current startup on SUNIST spherical tokamak

    International Nuclear Information System (INIS)

    He Yexi; Zhang Liang; Xie Lifeng; Tang Yi; Yang Xuanzong; Fu Hongjun

    2005-01-01

    Non-inductive plasma current startup is an important motivation on the SUNIST spherical tokamak. In this experiment, a 100 kW, 2.45 GHz magnetron microwave system has been applied to the plasma current startup. Besides the toroidal field, a vertical field was applied to generate a preliminary toroidal plasma current without action of the central solenoid. As the evidence of the plasma current startup by the vertical field drift effect, the direction of the plasma current is changed with the changing direction of the vertical field during ECR startup discharge. We have also observed the plasma current maximum by scanning the vertical field in both directions. Additionally, we have used electrode discharge to assist the ECR current startup. (author)

  11. Registration of ELF waves in rocket-satellite experiment with plasma injection

    Science.gov (United States)

    Korobeinikov, V. G.; Oraevskii, V. N.; Ruzhin, Iu. Ia.; Sobolev, Ia. P.; Skomarovskii, V. S.; Chmyrev, V. M.; Namazov, C. A.; Pokhunkov, A. A.; Nesmeianov, V. I.

    1992-12-01

    Two rocket KOMBI-SAMA experiments with plasma injection at height 100-240 km were performed in August 1987 in the region of Brazilian magnetic anomaly (L = 1.25). The launching time of the rocket was determined so that plasma injection was at the time when COSMOS 1809 satellite passed as close as possible to magnetic tube of injection. Caesium plasma jet was produced during not less than 300 s by an electric plasma generator separated from the payload. When the satellite passed the geomagnetic tube intersecting the injection region an enhancement of ELF emission at 140 Hz, 450 Hz by a factor of 2 was registered on board the satellite. An enhancement of energetic particle flux by a factor of 4-5 was registered on board the rocket. Observed ELF emission below 100 Hz is interpreted as the generation of oblique electromagnetic ion-cyclotron waves due to drift plasma instability at the front of the plasma jet.

  12. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    International Nuclear Information System (INIS)

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-01-01

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered

  13. Initial Studies of Core and Edge Transport of NSTX Plasmas

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Bourdelle, C.; Darrow, D.; Dorland, W.; Ejiri, A.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.J.; Menard, J.E.; Mueller, D.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Ono, M.; Paoletti, F.; Peebles, W.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.

    2001-01-01

    Rapidly developing diagnostic, operational, and analysis capability is enabling the first detailed local physics studies to begin in high-beta plasmas of the National Spherical Torus Experiment (NSTX). These studies are motivated in part by energy confinement times in neutral-beam-heated discharges that are favorable with respect to predictions from the ITER-89P scaling expression. Analysis of heat fluxes based on profile measurements with neutral-beam injection (NBI) suggest that the ion thermal transport may be exceptionally low, and that electron thermal transport is the dominant loss channel. This analysis motivates studies of possible sources of ion heating not presently accounted for by classical collisional processes. Gyrokinetic microstability studies indicate that long wavelength turbulence with k(subscript ''theta'') rho(subscript ''i'') ∼ 0.1-1 may be suppressed in these plasmas, while modes with k(subscript ''theta'') rho(subscript ''i'') ∼ 50 may be robust. High-harmonic fast-wave (HHFW) heating efficiently heats electrons on NSTX, and studies have begun using it to assess transport in the electron channel. Regarding edge transport, H-mode [high-confinement mode] transitions occur with either NBI or HHFW heating. The power required for low-confinement mode (L-mode) to H-mode transitions far exceeds that expected from empirical edge-localized-mode-free H-mode scaling laws derived from moderate aspect ratio devices. Finally, initial fluctuation measurements made with two techniques are permitting the first characterizations of edge turbulence

  14. Operation of a quadripole probe on magnetospheric satellite (GEOS experiment). Contribution to cold plasma behaviour study near equatorial plasma pause

    International Nuclear Information System (INIS)

    Decreau-Prior, P.

    1983-06-01

    This thesis is concerned with the exploitation of GEOS Satellite RF quadripole probe measurements, GEOS satellites have explored magnetosphere on the geostationary orbit and around it. Results a low to qualify the instrument in magnetospheric plasma (previously, it had been used only in ionosphere). Furthermore existence, outside the outer plasmasphere, of a cold population (from 0,4 to 8 eV) with medium density (from 2 to 50 particles cm -3 ) is shown. This population had been ignored until then, by in situ particle measure experiment. So, new perspectives on coupling nature of the explored region with ionosphere, and with plasma sheet, more particularly because the temperature measured at the equator is on an average, clearly higher than in high ionosphere the principal source of magnetospheric cold plasma [fr

  15. Plasma facing surface composition during NSTX Li experiments

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, POB 451, Princeton, NJ 08543 (United States); Sullenberger, R. [Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08540 (United States); Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, NJ 08540 (United States); Jaworski, M.A.; Kugel, H.W. [Princeton Plasma Physics Laboratory, POB 451, Princeton, NJ 08543 (United States)

    2013-07-15

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices. However, the nature of the plasma–lithium surface interaction has been obscured by the difficulty of in-tokamak surface analysis. We report laboratory studies of the chemical composition of lithium surfaces exposed to typical residual gases found in tokamaks. Solid lithium and a molybdenum alloy (TZM) coated with lithium have been examined using X-ray photoelectron spectroscopy, temperature programmed desorption, and Auger electron spectroscopy both in ultrahigh vacuum conditions and after exposure to trace gases. Lithium surfaces near room temperature were oxidized after exposure to 1–2 Langmuirs of oxygen or water vapor. The oxidation rate by carbon monoxide was four times less. Lithiated PFC surfaces in tokamaks will be oxidized in about 100 s depending on the tokamak vacuum conditions.

  16. Sheath impedance effects in very high frequency plasma experiments

    International Nuclear Information System (INIS)

    Schwarzenbach, W.; Howling, A.A.; Fivaz, M.; Brunner, S.; Hollenstein, C.

    1995-05-01

    The frequency dependence (13.56 MHz to 70 MHz) of the ion energy distribution at the ground electrode was measured by mass spectrometry in a symmetrical capacitive argon discharge. Reduced sheath impedance at Very High Frequency allows high levels of plasma power and substrate ion flux whilst maintaining low levels of ion energy and electrode voltage. The lower limit of ion bombardment energy is fixed by the sheath floating potential at high frequency, in contrast to low frequencies where only the rf voltage amplitude is determinant. The capacitive sheaths are thinner at high frequencies which accentuates the high frequency reduction in sheath impedance. It is argued that the frequency dependence of sheath impedance is responsible for the principal characteristics of Very High Frequency plasmas. The measurements are summarised by simple physical descriptions and compared with a Particle-In-Cell simulation. (author) figs., tabs., refs

  17. Experiments on two-step heating of a dense plasma in the GOL-3 facility

    International Nuclear Information System (INIS)

    Astrelin, V.T.; Burdakov, A.V.; Koidan, V.S.; Mekler, K.I.; Mel'nikov, P.I.; Postupaev, V.V.; Shcheglov, M.A.

    1998-01-01

    This paper presents the results of experiments on two-stage heating of a dense plasma by a relativistic electron beam in the GOL-3 facility. A dense plasma with a length of about a meter and a hydrogen density up to 10 17 cm -3 was created in the main plasma, whose density was 10 15 cm -3 . In the process of interacting with the plasma, the electron beam (1 MeV, 40 kA, 4 μs) imparts its energy to the electrons of the main plasma through collective effects. The heated electrons, as they disperse along the magnetic field lines, in turn reach the region of dense plasma and impart their energy to it by pairwise collisions. Estimates based on experimental data are given for the parameters of the flux of hot plasma electrons, the energy released in the dense plasma, and the energy balance of the beam-plasma system. The paper discusses the dynamics of the plasma, which is inhomogeneous in density and temperature, including the appearance of pressure waves

  18. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    Pollock, B. B.; Froula, D. H.; Davis, P. F.; Ross, J. S.; Fulkerson, S.; Bower, J.; Satariano, J.; Price, D.; Krushelnick, K.; Glenzer, S. H.

    2006-01-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  19. Explanation of L→H mode transition based on gradient stabilization of edge thermal fluctuations

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1996-01-01

    A linear analysis of thermal fluctuations, using a fluid model which treats the large radial gradient related phenomena in the plasma edge, leads to a constraint on the temperature and density gradients for stabilization of edge temperature fluctuations. A temperature gradient, or conductive edge heat flux, threshold is identified. It is proposed that the L→H transition takes place when the conductive heat flux to the edge produces a sufficiently large edge temperature gradient to stabilize the edge thermal fluctuations. The consequences following from this mechanism for the L→H transition are in accord with observed phenomena associated with the L→H transition and with the observed parameter dependences of the power threshold. First, a constraint is established on the edge temperature and density gradients that are sufficient for the stability of edge temperature fluctuations. A slab approximation for the thin plasma edge and a fluid model connected to account for the large radial gradients present in the plasma edge are used. Equilibrium solutions are characterized by the value of the density and of its gradient L n -1 double-bond - n -1 , etc. Temperature fluctuations expanded about the equilibrium value are then used in the energy balance equation summed over plasma ions, electrons and impurities to obtain, after linearization, an expression for the growth rate ω of edge localized thermal fluctuations. Thermal stability of the equilibrium solution requires ω ≤ 0, which establishes a constraint that must be satisfied by L n -1 and L T -1 . The limiting value of the constraint (ω = 0) leads to an expression for the minimum value of that is sufficient for thermal stability, for a given value of L T -1. It is found that there is a minimum value of the temperature gradient, (L T -1 ) min that is necessary for a stable solution to exist for any value of L n -1

  20. Pre-conceptual design activities for the materials plasma exposure experiment

    International Nuclear Information System (INIS)

    Lumsdaine, Arnold; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-01-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m"2 with ion fluxes up to 10"2"4/m"2 s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.