WorldWideScience

Sample records for experiment facility project

  1. Chemical facility vulnerability assessment project.

    Science.gov (United States)

    Jaeger, Calvin D

    2003-11-14

    Sandia National Laboratories, under the direction of the Office of Science and Technology, National Institute of Justice, conducted the chemical facility vulnerability assessment (CFVA) project. The primary objective of this project was to develop, test and validate a vulnerability assessment methodology (VAM) for determining the security of chemical facilities against terrorist or criminal attacks (VAM-CF). The project also included a report to the Department of Justice for Congress that in addition to describing the VAM-CF also addressed general observations related to security practices, threats and risks at chemical facilities and chemical transport. In the development of the VAM-CF Sandia leveraged the experience gained from the use and development of VAs in other areas and the input from the chemical industry and Federal agencies. The VAM-CF is a systematic, risk-based approach where risk is a function of the severity of consequences of an undesired event, the attack potential, and the likelihood of adversary success in causing the undesired event. For the purpose of the VAM-CF analyses Risk is a function of S, L(A), and L(AS), where S is the severity of consequence of an event, L(A) is the attack potential and L(AS) likelihood of adversary success in causing a catastrophic event. The VAM-CF consists of 13 basic steps. It involves an initial screening step, which helps to identify and prioritize facilities for further analysis. This step is similar to the prioritization approach developed by the American Chemistry Council (ACC). Other steps help to determine the components of the risk equation and ultimately the risk. The VAM-CF process involves identifying the hazardous chemicals and processes at a chemical facility. It helps chemical facilities to focus their attention on the most critical areas. The VAM-CF is not a quantitative analysis but, rather, compares relative security risks. If the risks are deemed too high, recommendations are developed for

  2. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1:The LBNF and DUNE Projects

    OpenAIRE

    Acciarri, R.; Acero, M. A.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C. H.; Alion, T.; Amador, E.; Anderson, J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.

    2016-01-01

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF m...

  3. Heritage Park Facilities PV Project

    Energy Technology Data Exchange (ETDEWEB)

    Hobaica, Mark [City of Henderson Nevada, Henderson, NV (United States)

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  4. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adams, N

    2007-07-08

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to

  5. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  6. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects

    CERN Document Server

    Acciarri, R.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; Anderson, J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Anghel, I.; Anjos, J. d.; Ankowski, A.; Antonello, M.; Aranda Fernandez, A.; Ariga, A.; Ariga, T.; Aristizabal, D.; Arrieta-Diaz, E.; Aryal, K.; Asaadi, J.; Asner, D.; Athar, M.S.; Auger, M.; Aurisano, A.; Aushev, V.; Autiero, D.; Avila, M.; Back, J.J.; Bai, X.; Baibussinov, B.; Baird, M.; Balantekin, B.; Baller, B.; Ballett, P.; Bambah, B.; Bansal, M.; Bansal, S.; Barker, G.J.; Barletta, W.A.; Barr, G.; Barros, N.; Bartosz, B.; Bartoszek, L.; Bashyal, A.; Bass, M.; Bay, F.; Beacom, J.; Behera, B.R.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Benetti, P.A.; Bercellie, A.; Bergevin, M.; Berman, E.; Berns, H.; Bernstein, R.; Bertolucci, S.; Bhandari, B.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Biery, K.; Bishai, M.; Blackburn, T.; Blake, A.; Blaszczyk, F. d. M.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Bocean, V.; Boffelli, F.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bonesini, M.; Boone, T.; Booth, C.; Bordoni, S.; Borysova, M.; Bourguille, B.; Boyd, S.B.; Brailsford, D.; Brandt, A.; Bremer, J.; Brice, S.; Bromberg, C.; Brooijmans, G.; Brown, G.; Brown, R.; Brunetti, G.; Bu, X.; Buchanan, N.; Budd, H.; Bugg, B.; Calafiura, P.; Calligarich, E.; Calvo, E.; Camilleri, L.; Campanelli, M.; Cantini, C.; Carls, B.; Carr, R.; Cascella, M.; Castromonte, C.; Mur, E.Catano; Cavanna, F.; Centro, S.; Cervera Villanueva, A.; Chalifour, M.; Chandratre, V.B.; Chatterjee, A.; Chattopadhyay, S.; Chattopadhyay, S.; Chaussard, L.; Chembra, S.; Chen, H.; Chen, K.; Chen, M.; Cherdack, D.; Chi, C.; Childress, S.; Choubey, S.; Choudhary, B.C.; Christodoulou, G.; Christofferson, C.; Church, E.; Cianci, D.; Cline, D.; Coan, T.; Cocco, A.; Coelho, J.; Cole, P.; Collin, G.; Conrad, J.M.; Convery, M.; Corey, R.; Corwin, L.; Cranshaw, J.; Crivelli, P.; Cronin-Hennessy, D.; Curioni, A.; Cushing, J.; Adams, D.L.; Dale, D.; Das, S.R.; Davenne, T.; Davies, G.S.; Davies, J.; Dawson, J.; De, K.; de Gouvea, A.; de Jong, J.K.; de Jong, P.; De Lurgio, P.; Decowski, M.; Delbart, A.; Densham, C.; Dharmapalan, R.; Dhingra, N.; Di Luise, S.; Diamantopoulou, M.; Diaz, J.S.; Diaz Bautista, G.; Diwan, M.; Djurcic, Z.; Dolph, J.; Drake, G.; Duchesneau, D.; Duvernois, M.; Duyang, H.; Dwyer, D.A.; Dye, S.; Dytman, S.; Eberly, B.; Edgecock, R.; Edmunds, D.; Elliott, S.; Elnimr, M.; Emery, S.; Endress, E.; Eno, S.; Ereditato, A.; Escobar, C.O.; Evans, J.; Falcone, A.; Falk, L.; Farbin, A.; Farnese, C.; Farzan, Y.; Fava, A.; Favilli, L.; Felde, J.; Felix, J.; Fernandes, S.; Fields, L.; Finch, A.; Fitton, M.; Fleming, B.; Forest, T.; Fowler, J.; Fox, W.; Fried, J.; Friedland, A.; Fuess, S.; Fujikawa, B.; Gago, A.; Gallagher, H.; Galymov, S.; Gamble, T.; Gandhi, R.; Garcia-Gamez, D.; Gardiner, S.; Garvey, G.; Gehman, V.M.; Gendotti, A.; Geronimo, G. d.; Ghag, C.; Ghoshal, P.; Gibin, D.; Gil-Botella, I.; Gill, R.; Girardelli, D.; Giri, A.; Glavin, S.; Goeldi, D.; Golapinni, S.; Gold, M.; Gomes, R.A.; Gomez Cadenas, J.J.; Goodman, M.C.; Gorbunov, D.; Goswami, S.; Graf, N.; Graf, N.; Graham, M.; Gramelini, E.; Gran, R.; Grant, C.; Grant, N.; Greco, V.; Greenlee, H.; Greenler, L.; Greenley, C.; Groh, M.; Grullon, S.; Grundy, T.; Grzelak, K.; Guardincerri, E.; Guarino, V.; Guarnaccia, E.; Guedes, G.P.; Guenette, R.; Guglielmi, A.; Habig, A.T.; Hackenburg, R.W.; Hackenburg, A.; Hadavand, H.; Haenni, R.; Hahn, A.; Haigh, M.D.; Haines, T.; Hamernik, T.; Handler, T.; Hans, S.; Harris, D.; Hartnell, J.; Hasegawa, T.; Hatcher, R.; Hatzikoutelis, A.; Hays, S.; Hazen, E.; Headley, M.; Heavey, A.; Heeger, K.; Heise, J.; Hennessy, K.; Hewes, J.; Higuera, A.; Hill, T.; Himmel, A.; Hogan, M.; Holanda, P.; Holin, A.; Honey, W.; Horikawa, S.; Horton-Smith, G.; Howard, B.; Howell, J.; Hurh, P.; Huston, J.; Hylen, J.; Imlay, R.; Insler, J.; Introzzi, G.; Ioanisyan, D.; Ioannisian, A.; Iwamoto, K.; Izmaylov, A.; Jackson, C.; Jaffe, D.E.; James, C.; James, E.; Jediny, F.; Jen, C.; Jhingan, A.; Jimenez, S.; Jo, J.H.; Johnson, M.; Johnson, R.; Johnstone, J.; Jones, B.J.; Joshi, J.; Jostlein, H.; Jung, C.K.; Junk, T.; Kaboth, A.; Kadel, R.; Kafka, T.; Kalousis, L.; Kamyshkov, Y.; Karagiorgi, G.; Karasavvas, D.; Karyotakis, Y.; Kaur, A.; Kaur, P.; Kayser, B.; Kazaryan, N.; Kearns, E.; Keener, P.; Kemboi, S.; Kemp, E.; Kettell, S.H.; Khabibullin, M.; Khandaker, M.; Khotjantsev, A.; Kirby, B.; Kirby, M.; Klein, J.; Kobilarcik, T.; Kohn, S.; Koizumi, G.; Kopylov, A.; Kordosky, M.; Kormos, L.; Kose, U.; Kostelecky, A.; Kramer, M.; Kreslo, I.; Kriske, R.; Kropp, W.; Kudenko, Y.; Kudryavtsev, V.A.; Kulagin, S.; Kumar, A.; Kumar, G.; Kumar, J.; Kumar, L.; Kutter, T.; Laminack, A.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Learned, J.; Lebrun, P.; Lee, D.; Lee, H.; Lee, K.; Lee, W.M.; Leigui de Oliveira, M.A.; Li, Q.; Li, S.; Li, S.; Li, X.; Li, Y.; Li, Z.; Libo, J.; Lin, C.S.; Lin, S.; Ling, J.; Link, J.; Liptak, Z.; Lissauer, D.; Littenberg, L.; Littlejohn, B.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N.; Loew, T.; Lokajicek, M.; Long, K.; Lopes, M.D.L.; Lopez, J.P.; Losecco, J.; Louis, W.; Lowery, J.; Luethi, M.; Luk, K.; Lundberg, B.; Lundin, T.; Luo, X.; Lux, T.; Lykken, J.; Machado, A.A.; Macier, J.R.; Magill, S.; Mahler, G.; Mahn, K.; Malek, M.; Malhotra, S.; Malon, D.; Mammoliti, F.; Mancina, S.; Mandal, S.K.; Mandodi, S.; Manly, S.L.; Mann, A.; Marchionni, A.; Marciano, W.; Mariani, C.; Maricic, J.; Marino, A.; Marshak, M.; Marshall, C.; Marshall, J.; Marteau, J.; Martin-Albo, J.; Martinez, D.; Matsuno, S.; Matthews, J.; Mauger, C.; Mavrokoridis, K.; Mayilyan, D.; Mazzucato, E.; McCauley, N.; McCluskey, E.; McConkey, N.; McDonald, K.; McFarland, K.S.; McGowan, A.M.; McGrew, C.; McKeown, R.; McNulty, D.; McTaggart, R.; Mefodiev, A.; Mehrian, M.; Mehta, P.; Mei, D.; Mena, O.; Menary, S.; Mendez, H.; Menegolli, A.; Meng, G.; Meng, Y.; Mertins, D.; Merritt, H.; Messier, M.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Milincic, R.; Miller, W.; Mills, G.; Mineev, O.; Miranda, O.; Mishra, C.S.; Mishra, S.R.; Mitrica, B.; Mladenov, D.; Mocioiu, I.; Mohanta, R.; Mokhov, N.; Montanari, C.; Montanari, D.; Moon, J.; Mooney, M.; Moore, C.; Morfin, J.; Morgan, B.; Morris, C.; Morse, W.; Moss, Z.; Mossey, C.; Moura, C.A.; Mousseau, J.; Mualem, L.; Muether, M.; Mufson, S.; Murphy, S.; Musser, J.; Musser, R.; Nakajima, Y.; Naples, D.; Napolitano, J.; Navarro, J.; Navas, D.; Nelson, J.; Nessi, M.; Newcomer, M.; Ng, Y.; Nichol, R.; Nicholls, T.C.; Nikolics, K.; Niner, E.; Norris, B.; Noto, F.; Novakova, P.; Novella, P.; Nowak, J.; Nunes, M.S.; O'Keeffe, H.; Oldeman, R.; Oliveira, R.; Olson, T.; Onishchuk, Y.; Osta, J.; Ovsjannikova, T.; Page, B.; Pakvasa, S.; Pal, S.; Palamara, O.; Palazzo, A.; Paley, J.; Palomares, C.; Pantic, E.; Paolone, V.; Papadimitriou, V.; Park, J.; Parke, S.; Parsa, Z.; Pascoli, S.; Patterson, R.; Patton, S.; Patzak, T.; Paulos, B.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Peeters, S.; Pennacchio, E.; Perch, A.; Perdue, G.N.; Periale, L.; Perkin, J.D.; Pessard, H.; Petrillo, G.; Petti, R.; Petukhov, A.; Pietropaolo, F.; Plunkett, R.; Pordes, S.; Potekhin, M.; Potenza, R.; Potukuchi, B.; Poudyal, N.; Prokofiev, O.; Pruthi, N.; Przewlocki, P.; Pushka, D.; Qian, X.; Raaf, J.L.; Raboanary, R.; Radeka, V.; Radovic, A.; Raffelt, G.; Rakhno, I.; Rakotondramanana, H.T.; Rakotondravohitra, L.; Ramachers, Y.A.; Rameika, R.; Ramsey, J.; Rappoldi, A.; Raselli, G.; Ratoff, P.; Rebel, B.; Regenfus, C.; Reichenbacher, J.; Reitzner, D.; Remoto, A.; Renshaw, A.; Rescia, S.; Richardson, M.; Rielage, K.; Riesselmann, K.; Robinson, M.; Rochester, L.; Rodrigues, O.B.; Rodrigues, P.; Roe, B.; Rosen, M.; Roser, R.M.; Ross-Lonergan, M.; Rossella, M.; Rubbia, A.; Rubbia, C.; Rucinski, R.; von Rohr, C.Rudolph; Russell, B.; Ruterbories, D.; Saakyan, R.; Sahu, N.; Sala, P.; Samios, N.; Sanchez, F.; Sanchez, M.; Sands, B.; Santana, S.; Santorelli, R.; Santucci, G.; Saoulidou, N.; Scaramelli, A.; Schellman, H.; Schlabach, P.; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Schukraft, A.; Schwehr, J.; Segreto, E.; Seibert, S.; Sepulveda-Quiroz, J.A.; Sergiampietri, F.; Sexton-Kennedy, L.; Sgalaberna, D.; Shaevitz, M.; Shahi, J.; Shahsavarani, S.; Shanahan, P.; Shankar, S.U.; Sharma, R.; Sharma, R.K.; Shaw, T.; Shrock, R.; Shyrma, I.; Simos, N.; Sinev, G.; Singh, I.; Singh, J.; Singh, J.; Singh, V.; Sinnis, G.; Sippach, W.; Smargianaki, D.; Smy, M.; Snider, E.; Snopok, P.; Sobczyk, J.; Sobel, H.; Soderberg, M.; Solomey, N.; Sondheim, W.; Sorel, M.; Sousa, A.; Soustruznik, K.; Spitz, J.; Spooner, N.J.; Stancari, M.; Stancu, I.; Stefan, D.; Steiner, H.M.; Stewart, J.; Stock, J.; Stoica, S.; Stone, J.; Strait, J.; Strait, M.; Strauss, T.; Striganov, S.; Sulej, R.; Sullivan, G.; Sun, Y.; Suter, L.; Sutera, C.M.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Soldner-Rembold, S.; Talaga, R.; Tamsett, M.; Tariq, S.; Tatar, E.; Tayloe, R.; Taylor, C.; Taylor, D.; Terao, K.; Thiesse, M.; Thomas, J.; Thompson, L.F.; Thomson, M.; Thorn, C.; Thorpe, M.; Tian, X.; Tiedt, D.; Timm, S.C.; Tonazzo, A.; Tope, T.; Topkar, A.; Torres, F.R.; Torti, M.; Tortola, M.; Tortorici, F.; Toups, M.; Touramanis, C.; Tripathi, M.; Tropin, I.; Tsai, Y.; Tsang, K.V.; Tsenov, R.; Tufanli, S.; Tull, C.; Turner, J.; Tzanov, M.; Tziaferi, E.; Uchida, Y.; Urheim, J.; Usher, T.; Vagins, M.; Vahle, P.; Valdiviesso, G.A.; Valerio, L.; Vallari, Z.; Valle, J.; Van Berg, R.; Van de Water, R.; Van Gemmeren, P.; Varanini, F.; Varner, G.; Vasseur, G.; Vaziri, K.; Velev, G.; Ventura, S.; Verdugo, A.; Viant, T.; Vieira, T.V.; Vignoli, C.; Vilela, C.; Viren, B.; Vrba, T.; Wachala, T.; Wahl, D.; Wallbank, M.; Walsh, N.; Wang, B.; Wang, H.; Wang, L.; Wang, T.; Warburton, T.K.; Warner, D.; Wascko, M.; Waters, D.; Watson, T.B.; Weber, A.; Weber, M.; Wei, W.; Weinstein, A.; Wells, D.; Wenman, D.; Wetstein, M.; White, A.; Whitehead, L.; Whittington, D.; Wilking, M.; Willhite, J.; Wilson, P.; Wilson, R.J.; Winslow, L.; Wittich, P.; Wojcicki, S.; Wong, H.H.; Wood, K.; Worcester, E.; Worcester, M.; Wu, S.; Xin, T.; Yanagisawa, C.; Yang, S.; Yang, T.; Yarritu, K.; Ye, J.; Yeh, M.; Yershov, N.; Yonehara, K.; Yu, B.; Yu, J.; Zalesak, J.; Zalewska, A.; Zamorano, B.; Zang, L.; Zani, A.; Zani, A.; Zavala, G.; Zeller, G.; Zhang, C.; Zhang, C.; Zimmerman, E.D.; Zito, M.; Zwaska, R.

    2016-01-01

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  7. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    Science.gov (United States)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  8. The National Ignition Facility project

    Energy Technology Data Exchange (ETDEWEB)

    Paisner, J.A.; Boyes, J.D.; Kumpan, S.A.; Sorem, M.

    1996-06-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a Conceptual Design Report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a Key Decision Zero (KD0), justification of Mission Need. Motivated by the progress to date by the Inertial Confinement Fusion (ICF) program in meeting the Nova Technical Contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 {mu}m) of neodymium (Nd) glass. The participating ICF laboratories signed a Memorandum of Agreement in August 1993, and established a Project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, the authors completed the NIF conceptual design, based on standard construction at a generic DOE Defense Program`s site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a Facilities Requirements Document, a Conceptual Design Scope and Plan, a Target Physics Design Document, a Laser Design Cost Basis Document, a Functional Requirements Document, an Experimental Plan for Indirect Drive Ignition, and a Preliminary Hazards Analysis (PHA) Document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. This article presents an overview of the NIF project.

  9. The GUINEVERE project at the VENUS facility

    Energy Technology Data Exchange (ETDEWEB)

    Baeten, P.; Ait Abderrahim, H.; Bergmans, G.; Heyse, J.; Maes, D.; Verboomen, B.; Vermeersch, F.; Vittiglio, G. [SCK.CEN, Boeretang 200, 2400 Mol (Belgium); Aoust, T.; Baylac, M.; Billebaud, A.; Bondoux, D.; Bouvier, J.; De Conto, J.M.; Grondin, D.; Marchand, D.; Micoud, R.; Planet, M. [LPSC-CNRS-IN2P3/UJF/INPG, 53 Avenue des Martyrs. 38026 Grenoble cedex (France); Ban, G.; Gautier, J.M.; Lecolley, F.R.; Lecouey, J.L.; Marie, N.; Merrer, Y.; Steckmeyer, J.C. [LPC Caen, ENSICAEN/Universite de Caen/ CNRS-IN2P3, Caen (France); Dessagne, P.; Gaudiot, G.; Heitz, G.; Kerveno, M.; Ruescas, C. [IPHC-DRS/ULP/CNRS-IN2P3, Strasbourg (France); Laune, B.; Reynet, D. [IPNO, CNRS-IN2P3/UPS, Orsay (France); Granget, G.; Mellier, F.; Rimpault, G. [CEA-Cadarache, 13108 Saint Paul lez Durance (France)

    2008-07-01

    The GUINEVERE project is an international project in the framework of IP-EUROTRANS, the FP6 program which aims at addressing the main issues for ADS development in the framework of partitioning and transmutation for nuclear waste volume and radiotoxicity reduction. The GUINEVERE project is carried out in the context of domain 2 of IP-EUROTRANS, ECATS, devoted to specific experiments for the coupling of an accelerator, a target and a subcritical core. These experiments should provide an answer to the questions of online reactivity monitoring, sub-criticality determination and operational procedures (loading, start-up, shutdown,...) in an ADS by 2009-2010. The project has the objective to couple a fast lead core, within the VENUS building operated by the SCK.CEN, with a neutron generator able to work in three different modes: pulsed, continuous and continuous with beam interruptions at the millisecond scale. In order to achieve this goal, the VENUS facility has to be adapted and a modified GENEPI-3C accelerator has to be designed and constructed. The paper describes the main modifications to the reactor core and facility and to the accelerator, which will be executed during the years 2008 and 2009, and the experimental programme which will start in 2009. (authors)

  10. Facility Interface Capability Assessment (FICA) project report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States); MacDonald, R.R. [ed.] [Civilian Radioactive Waste Management System, Vienna, VA (United States); Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  11. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  12. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  13. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  14. World-Wide Experience with SRF Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Hutton, Adam Carpenter

    2011-03-01

    The speaker will review and analyze the performance of existing SRF facilities in the world, addressing issues of usage and availability for different customers (HEP research, material sciences, ADS). Lessons learned should be summarized for proposed future facilities (ILC, Project X, Muon Collider). The first use of superconducting cavities for accelerating beams was at HEPL, Stanford University in the early sixties. Rather quickly, other laboratories followed suit, notably the University of Illinois at Champagne, Urbana and Cornell University. There were two main uses, which still persist today. The first is to provide accelerated particles as an injector or for fixed target experiments. The second is to maintain circulating beams, either for synchrotron light sources or for colliding beam experiments. Given the differing requirements, these two uses led to rather different implementations and, in particular, different average operating gradients. A second difference in the implementation is the speed of the particle being accelerated. Electrons are sufficiently relativistic at low beam energies (> {approx} 5 MeV) that cavities designed for relativistic beams can also function acceptably at low energy. This is not the case for protons or ion accelerators so, until recently, copper cavities were used to cover the first {approx} 100 MeV. Superconducting cavities are now also being proposed to cover this energy range as well using a series of superconducting cavities, each of which is matched to the particle velocity.

  15. Sandia National Laboratories participation in the National Ignition Facility project

    Energy Technology Data Exchange (ETDEWEB)

    Boyes, J.; Boyer, W.; Chael, J.; Cook, D.; Cook, W.; Downey, T.; Hands, J.; Harjes, C.; Leeper, R.; McKay, P.; Micano, P.; Olson, R.; Porter, J.; Quintenz, J.; Roberts, V.; Savage, M.; Simpson, W.; Seth, A.; Smith, R.; Wavrik, M.; Wilson, M.

    1996-08-01

    The National Ignition Facility is a $1.1B DOE Defense Programs Inertial Confinement Fusion facility supporting the Science Based Stockpile Stewardship Program. The goal of the facility is to achieve fusion ignition and modest gain in the laboratory. The NIF project is responsible for the design and construction of the 192 beam, 1.8 MJ laser necessary to meet that goal. - The project is a National project with participation by Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester Laboratory for Laser Energetics (URLLE) and numerous industrial partners. The project is centered at LLNL which has extensive expertise in large solid state lasers. The other partners in the project have negotiated their participation based on the specific expertise they can bring to the project. In some cases, this negotiation resulted in the overall responsibility for a WBS element; in other cases, the participating laboratories have placed individuals in the project in areas that need their individual expertise. The main areas of Sandia`s participation are in the management of the conventional facility design and construction, the design of the power conditioning system, the target chamber system, target diagnostic instruments, data acquisition system and several smaller efforts in the areas of system integration and engineering analysis. Sandia is also contributing to the technology development necessary to support the project by developing the power conditioning system and several target diagnostics, exploring alternate target designs, and by conducting target experiments involving the ``foot`` region of the NIF power pulse. The project has just passed the mid-point of the Title I (preliminary) design phase. This paper will summarize Sandia`s role in supporting the National Ignition Facility and discuss the areas in which Sandia is contributing. 3 figs.

  16. National Ignition Facility Project Site Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Dun, C

    2003-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

  17. National Ignition Facility Project Site Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E

    2001-09-30

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during the construction, equipment installation, and commissioning activities. As the NIF Project transitions from a conventional facility construction activity to one of equipment installation, commissioning, initial laser operations, and other more routine-like operations, new safety requirements are needed. The NIF Project Site Safety Program (NPSSP) requires that all activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'', and the augmented set of controls and processes described in this NIF Project Site Safety Program. More specific requirements for construction activities under the Integration Management and Installation (IMI) contract are provided in the ''NIF Infrastructure Health and Safety Plan'', subtier to this program. Specifically this document: Defines the fundamental NIF site safety philosophy, Defines the areas covered by this safety program (see Appendix B), Identifies management roles and responsibilities, Defines core safety management processes, and Identifies NIF site-specific safety requirements.

  18. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  19. Aeroelastic Benchmark Experiments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M4 Engineering proposes to conduct canonical aeroelastic benchmark experiments. These experiments will augment existing sources for aeroelastic data in the transonic...

  20. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  1. Peak Experience Project

    Science.gov (United States)

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  2. National Ignition Facility project acquisition plan revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Clobes, A.R.

    1996-10-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

  3. Experiments in the HAW project

    Energy Technology Data Exchange (ETDEWEB)

    Vonka, V.

    1992-11-01

    In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in a one-to-one scale test facility. Such a facility has been established in the Asse salt mine (FRG). The HAW project is carried out by the Institut fuer Tieflagerung (IfT) of the Gesellschaft fuer Strahlen- und Umweltforschung (GSF) in close co-operation with the Netherlands Energy Research Foundation (ECN). 17 refs., 8 figs., 2 tabs.

  4. Education & Collection Facility GSHP Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Joplin, Jeff [Denver Museum of Nature and Science, Denver, CO (United States)

    2015-03-28

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to a recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient

  5. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  6. Vitrification facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  7. SNOLAB: Review of the facility and experiments

    Science.gov (United States)

    Ford, R.

    2012-09-01

    SNOLAB is Canada's new state of the art facility for astroparticle physics and is an expansion of the highly successful Sudbury Neutrino Observatory (SNO) located near Sudbury, Ontario. Situated 2070m underground (6010m mwe), SNOLAB is the deepest ultra-clean facility in the world, and is a leading location for conducting frontier experiments in astroparticle physics with rare event and low background detectors. The laboratory has 4980m2 of climate-controlled class-2000 clean-room space, a chilled water loop, ultra-pure water, nitrogen cover gas, fire detection and suppression, with personnel and refuge facilities for over 80 occupants. The surface building also provides 520 m2 of clean-room space for detector assembly, chemistry and optics labs, low background counting, and also includes a warehouse, machine shop, offices, and meeting rooms. Current experiments under construction include detectors for cosmological dark matter (COUPP, DEAP, MiniCLEAN, PICASSO), neutrino-less double-beta decay (EXO, SNO+), solar neutrinos, geo-neutrinos, and reactor neutrinos (SNO+), and supernovae monitoring (HALO), in addition to other experiment collaborations with proposals requesting space.

  8. Fast flux test facility, transition project plan

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  9. Material science experiments at the ATLAS facility

    CERN Document Server

    Keinigs, R K; Atchison, W L; Bartsch, R R; Faehl, R J; Flower-Maudlin, E C; Hammerberg, J E; Holtkamp, D B; Kyrala, G A; Oro, D M; Parker, J V; Preston, D L; Removsky, R E; Scudder, D W; Sheehey, P T; Shlachter, J S; Taylor, A J; Tonks, D L; Turchi, P J; Chandler, E A

    2001-01-01

    Summary form only given, as follows. Three experimental campaigns designed for fielding on the Atlas Pulsed Power Facility are discussed. The foci of these experiments are directed toward a better understanding of three material science issues; (1) strength at high strain and high strain rate, (2) friction at material interfaces moving at high relative velocities, and (3) material failure in convergent geometry. Atlas provides an environment for investigating these problems in parameter regimes and geometries that are inaccessible with standard techniques. For example, flow stress measurements of material strength using conventional Hopkinson bar experiments are limited to strain rates ~10/sup 4/ sec/sup -1/. Atlas will be capable of imploding metal shells to combined strains of 200% and strain rates >10/sup 6/ sec/sup -1/. Data obtained regimes is used to test different constitutive strength models used in several Los Alamos hydrocodes. Dynamic friction has been investigated for nearly 300 years, but a first...

  10. National Biomedical Tracer Facility. Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  11. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  12. The GUINEVERE project at the VENUS-F Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baeten, P.; Ait Abderrahim, H.; Bergmans, G.; Kochetkov, A.; Uyttenhove, W.; Vandeplassche, D.; Vermeersch, F.; Vittiglio, G. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Ban, G.; Baylac, M.; Billebaud, A.; Bondoux, D.; Bouvier, J.; Chabod, S.; De Conto, J.M.; Dessagne, P.; Gaudiot, G.; Gautier, J.M.; Heitz, G.; Kerveno, M.; Laune, B.; Lecolley, F.R.; Lecouey, J.L.; Marie, N.; Merrer, Y.; Nuttin, A.; Reynet, D.; Steckmeyer, J.C. [CNRS-IN2P3 (France); Mellier, F. [CEA/DEN/SPeX/LPE, CEN Cadarache, F-13104 Saint-Paul-lez-Durance (France)

    2010-07-01

    Within the framework of the ECATS (Experimental activities on the Coupling of an Accelerator, a spallation Target and a Sub-critical blanket) research domain of the FP6 IP-EUROTRANS program, the GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 in order to check in the experiments an open questions stay for the techniques used in the MUSE programme (CEA Cadarache, France, 2000-2004), related to the online reactivity monitoring, sub-criticality determination and operational procedure of an Accelerator Driven System. For this purpose, the VENUS light water critical reactor at the SCK-CEN site of Mol (Belgium) was modify into a subcritical fast core (VENUS-F) and the GENEPI accelerator, designed for the MUSE experiment was up-graded to the new GENEPI-3C accelerator. The VENUS-F coupled with the GENEPI-3C and a TiT target will provide a unique facility in Europe for fast sub-critical and critical reactor physics investigations. This paper describes the present status of the facility. (authors)

  13. High temperature engineering research facilities and experiments in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kodochigov, N.G.; Kuzavkov, N.G.; Sukharev, Y.P.; Chudin, A.G. [OKBM, Nizhny Novgorod (Russian Federation)

    1998-09-01

    An overview is given of the characteristics of the experimental facilities and experiments in the Russian Federation: the HTGR neutron-physical investigation facilities ASTRA and GROG; facilities for fuel, graphite and other elements irradiation; and thermal hydraulics experimental facilities. The overview is presented in the form of copies of overhead sheets

  14. Beam dynamics simulations and measurements at the Project X Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

    2011-03-01

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  15. Project W-441, cold vacuum drying facility design requirements document

    Energy Technology Data Exchange (ETDEWEB)

    O`Neill, C.T.

    1997-05-08

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage.

  16. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  17. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  18. Experiments in the HAW project

    Energy Technology Data Exchange (ETDEWEB)

    Vonka, V.

    1992-09-01

    In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in a one-to-one scale test facility. Such a facility has been established in the Asse salt mine (FRG). Thirty canisters containing glass blocks with highly radioactive radionuclides Cs-137 and Sr-90 will be placed in six boreholes located in two test galleries A and B at the-800 m level in the Asse salt mine. The research programme is aimed at the observation and measurement of the interaction between the canisters with the radioactive content and the rock salt. Because of the requirement to retrieve the canisters when necessary during the five years' test period, the canisters are loaded in boreholes lined with tubes. Thermally induced pressure stresses in the salt will cause the tube to deform. The canister will be retrieved when the deformation exceeds a maximum set value. The Netherlands Energy Research Foundation (ECN), Petten, Netherlands, has designed special canister guiding systems for loading and unloading the boreholes together with a monitoring system that continuously monitors the gap between the canisters and the inner wall of the tube. This progress report is the tenth of a series intended to document the progress obtained from HAW in situ experiment. (A.S.). 14 refs.; 10 figs.

  19. How to reevaluate your capital facility project to reduce costs.

    Science.gov (United States)

    Weitzner, Wendy M

    2009-11-01

    Strategies for reducing the costs of facility building projects include: Reconsidering the business case for the project. Reviewing alternative clinical equipment options. Demanding greater "asset productivity". Reducing room sizes and space that does not generate net income. Using an integrated architecture, engineering, and construction team.

  20. Project report - an overview of the project and experiences with project management

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Mikkelsen, Bent Egberg

    1996-01-01

    A collection of the project planning and the experiences with project management from the Catering 2000 project.As appendieces articles etc. from journals, newspapers etc. about the project.......A collection of the project planning and the experiences with project management from the Catering 2000 project.As appendieces articles etc. from journals, newspapers etc. about the project....

  1. MAUDE (Manufacturer and User Facility Device Experience)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MAUDE data represents reports of adverse events involving medical devices. The data consists of all voluntary reports since June, 1993, user facility reports since...

  2. Water Channel Facility for Fluid Dynamics Experiments

    Science.gov (United States)

    Eslam-Panah, Azar; Sabatino, Daniel

    2016-11-01

    This study presents the design, assembly, and verification process of the circulating water channel constructed by undergraduate students at the Penn State University at Berks. This work was significantly inspired from the closed-loop free-surface water channel at Lafayette College (Sabatino and Maharjan, 2015) and employed for experiments in fluid dynamics. The channel has a 11 ft length, 2.5 ft width, and 2 ft height glass test section with a maximum velocity of 3.3 ft/s. First, the investigation justifies the needs of a water channel in an undergraduate institute and its potential applications in the whole field of engineering. Then, the design procedures applied to find the geometry and material of some elements of the channel, especially the contraction, the test section, the inlet and end tanks, and the pump system are described. The optimization of the contraction design, including the maintenance of uniform exit flow and avoidance of flow separation, is also included. Finally, the discussion concludes by identifying the problems with the undergraduate education through this capstone project and suggesting some new investigations to improve flow quality.

  3. Educational Facility Design and Project Based Learning: "The Real Connection"

    Science.gov (United States)

    Schrader, David L.; Sole, John

    2009-01-01

    There is a case to be made for the integration of the Project Based Service Learning (PBSL) process and the design and construction of educational facilities. A growing body of research supports the notion that the formulaic educational system of the last hundred years may no longer serve the learning styles of new and future generations. Their…

  4. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  5. Magnetohydrodynamic projects at the CDIF (Component Development and Integration Facility)

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This quarterly technical progress report presents the tasks accomplished at the Component Development and Integration Facility during the fourth quarter of FY90. Areas of technical progress this quarter included: coal system development; seed system development; test bay modification; channel power dissipation and distribution system development; oxygen system storage upgrade; iron core magnet thermal protection system oxygen checkout; TRW slag rejector/CDIF slag removal project; stack gas/environmental compliance upgrade; coal-fired combustor support; 1A channels fabrication and assembly; support of Mississippi State University diagnostic testing; test operations and results; data enhancement; data analysis and modeling; technical papers; and projected activities. 2 tabs.

  6. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    Science.gov (United States)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  7. NASDA aquatic animal experiment facilities for space shuttle and ISS

    Science.gov (United States)

    Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

    National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).

  8. A Facile and Effective Chemiluminescence Demonstration Experiment

    Science.gov (United States)

    Mohan, Arthur G.; Turro, Nicholas J.

    1974-01-01

    Describes a chemiluminescence system which can be used to demonstrate the effects of certain factors which affect the rate of reaction (temperature, concentration, catalysis, solvent, etc.), and to perform experiments relevant to the mechanism of the system. (SLH)

  9. Facilities as teaching tools: A transformative participatory professional development experience

    Science.gov (United States)

    Wilson, Eric A.

    Resource consumption continues to increase as the population grows. In order to secure a sustainable future, society must educate the next generation to become "sustainability natives." Schools play a pivotal role in educating a sustainability-literate society. However, a disconnect exists between the hidden curriculum of the built environment and the enacted curriculum. This study employs a transformative participatory professional development model to instruct teachers on how to use their school grounds as teaching tools for the purpose of helping students make explicit choices in energy consumption, materials use, and sustainable living. Incorporating a phenomenological perspective, this study considers the lived experience of two sustainability coordinators. Grounded theory provides an interpretational context for the participants' interactions with each other and the professional development process. Through a year long professional development experience - commencing with an intense, participatory two-day workshop -the participants discussed challenges they faced with integrating facilities into school curriculum and institutionalizing a culture of sustainability. Two major needs were identified in this study. For successful sustainability initiatives, a hybrid model that melds top-down and bottom-up approaches offers the requisite mix of administrative support, ground level buy-in, and excitement vis-a-vis sustainability. Second, related to this hybrid approach, K-12 sustainability coordinators ideally need administrative capabilities with access to decision making, while remaining connected to students in a meaningful way, either directly in the classroom, as a mentor, or through work with student groups and projects.

  10. Staged Z-pinch Experiments on the NTF Zebra Facility

    Science.gov (United States)

    Conti, Fabio; Anderson, A.; Darling, T. W.; Dutra, E.; Glebov, V.; Ross, M. P.; Ruskov, E.; Valenzuela, J. C.; Wessel, F. J.; Beg, F.; Covington, A.; Narkis, J.; Rahman, H. U.

    2017-10-01

    We report results from the latest Staged Z-pinch experiments conducted on the 1 MA, 100 ns Zebra facility at the University of Nevada, Reno. In these experiments, a high-Z annular gas liner (Ar, Kr) with initial radius of 1.2 cm implodes onto a deuterium target on axis. Measurements are presented, including data from pinch current, X-ray photodiodes and PCDs signals, visible streak imaging, XUV gated imaging, laser shadowgraphy, neutron time-of-flight and neutron yield detectors, and preliminary data analysis is discussed. The implosion velocity exceeding 300 km/s, and pinch time are consistent with MHD simulations performed with the MACH2 code. The imaging diagnostics indicates that the target column is more stable than the surrounding liner during the implosion. Primary (DD) neutrons of thermonuclear nature were produced with yields higher than 1x109 per shot, reproducibly. In addition, preliminary neutron time-of-flight results indicate that secondary (DT) neutrons can be produced above the detection threshold. Funded by the Advanced Research Projects Agency - Energy, Grant DE-AR0000569.

  11. Project Ida: Manitoba's Telecommunications Experiment.

    Science.gov (United States)

    Hlynka, Denis; Hurly, Paul

    1981-01-01

    The Manitoba Telephone System has established an experimental integrated home information system called Project Ida in a trial group of 100 homes. Discussed here are the origin, current operation, and future prospects of this system, which includes videotex, fire monitoring, telemetering, and educational television. (Author/JJD)

  12. Experiment Needs and Facilities Study Appendix A Transient Reactor Test Facility (TREAT) Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-09-01

    The TREAT Upgrade effort is designed to provide significant new capabilities to satisfy experiment requirements associated with key LMFBR Safety Issues. The upgrade consists of reactor-core modifications to supply the physics performance needed for the new experiments, an Advanced TREAT loop with size and thermal-hydraulics capabilities needed for the experiments, associated interface equipment for loop operations and handling, and facility modifications necessary to accommodate operations with the Loop. The costs and schedules of the tasks to be accomplished under the TREAT Upgrade project are summarized. Cost, including contingency, is about 10 million dollars (1976 dollars). A schedule for execution of 36 months has been established to provide the new capabilities in order to provide timely support of the LMFBR national effort. A key requirement for the facility modifications is that the reactor availability will not be interrupted for more than 12 weeks during the upgrade. The Advanced TREAT loop is the prototype for the STF small-bundle package loop. Modified TREAT fuel elements contain segments of graphite-matrix fuel with graded uranium loadings similar to those of STF. In addition, the TREAT upgrade provides for use of STF-like stainless steel-UO{sub 2} TREAT fuel for tests of fully enriched fuel bundles. This report will introduce the Upgrade study by presenting a brief description of the scope, performance capability, safety considerations, cost schedule, and development requirements. This work is followed by a "Design Description". Because greatly upgraded loop performance is central to the upgrade, a description is given of Advanced TREAT loop requirements prior to description of the loop concept. Performance requirements of the upgraded reactor system are given. An extensive discussion of the reactor physics calculations performed for the Upgrade concept study is provided. Adequate physics performance is essential for performance of experiments with

  13. ALPHA experiment facility and Prof. Jeffrey Hangst.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    Picture 01-07: General views of the ALPHA experiment Picture 5: Andrea Gutierrez, a PhD student from UBC, transfers liquid helium from a storage dewar into the cryostat containing the superconducting magnetic trap used by the ALPHA experiment.Picture 08-11: Jeffery Hangst, spokesperson for ALPHA Picture 12: The ALPHA silicon detector, which surrounds the trapping resion and is used for imaging antiproton annihilations (Credit University of Liverpool) Picture 13: Untrapped antihydrogen atoms annihilating on the inner surface of the ALPHA trap. These are measured by the ALPHA annihilation detector. The events are concentrated at the electrode radius of about 22.3 mm. The coordinates are defined in the Nature article, Figure 1b. Picture 14: The electrodes (gold) for the ALPHA Penning trap being inserted into the vacuum chamber and cryostat assembly. This is the trap used to combine or "mix" positrons and antiprotons to make antihydrogen. (Credit: Niels Madsen ALPHA/Swansea.) Picture 15: Top, a diagram of the...

  14. GENIUS-TF: a test facility for the GENIUS project

    Science.gov (United States)

    Klapdor-Kleingrothaus, H. V.; Baudis, L.; Dietz, A.; Heusser, G.; Krivosheina, I.; Majorovits, B.; Strecker, H.

    2002-04-01

    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the Genius Test-Facility will be built at the Laboratori Nazionali del Gran Sasso. With about 40kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation seasonal modulation signature within about 2yr of measurement using both, signal and signature of the claimed WIMP Dark Matter. The construction of the experiment has already been started, and four 2.5kg germanium detectors with an extreme low threshold of 500eV have been produced.

  15. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  16. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    Energy Technology Data Exchange (ETDEWEB)

    MCLELLAN, G.W.

    2007-02-07

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal

  17. Mission Need Statement: Idaho Spent Fuel Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  18. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  19. The SPES project of INFN: Facility and detectors

    Science.gov (United States)

    de Angelis, G.; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2015-04-01

    The SPES Radioactive Ion Beam facility at INFN-LNL is presently in the construction phase. The facility is based on the Isol (Isotope separation on-line) method with an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced Uranium fission at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting Linac at energies of 10A MeV for masses in the region A = 130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES project is to provide a facility for high intensity radioactive ion beams for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam.

  20. The SPES project of INFN: Facility and detectors

    Directory of Open Access Journals (Sweden)

    de Angelis G.

    2015-01-01

    Full Text Available The SPES Radioactive Ion Beam facility at INFN-LNL is presently in the construction phase. The facility is based on the Isol (Isotope separation on-line method with an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced Uranium fission at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting Linac at energies of 10A MeV for masses in the region A = 130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES project is to provide a facility for high intensity radioactive ion beams for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam.

  1. National Biomedical Tracer Facility (NBTF). Project definition study: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Lagunas-Solar, M.C.

    1995-02-15

    This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).

  2. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  3. Investigating Conscious Experience through the Beeper Project

    Science.gov (United States)

    Punzo, Vincent A.; Miller, Emily

    2002-01-01

    The Experience Sampling Method (ESM; Larson & Csikszentmihalyi, 1983) is a means to investigate the subjective experiences of individuals as they go about their daily lives. Students from 2 Adolescent Psychology courses used the ESM in a required "beeper project." Student research teams investigated a typical week in the life of an adolescent by…

  4. Dosimetry experiments at the MEDUSA Facility (Little Mountain).

    Energy Technology Data Exchange (ETDEWEB)

    Harper-Slaboszewicz, Victor Jozef; Shaneyfelt, Marty Ray; Sheridan, Timothy J.; Hartman, E. Frederick; Schwank, James Ralph

    2010-10-01

    A series of experiments on the MEDUSA linear accelerator radiation test facility were performed to evaluate the difference in dose measured using different methods. Significant differences in dosimeter-measured radiation dose were observed for the different dosimeter types for the same radiation environments, and the results are compared and discussed in this report.

  5. CHARM 2010: Experiment Summary and Future Charm Facilities

    CERN Document Server

    Appel, Jeffrey A

    2010-01-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time even to summarize all that has been shown from experiments and to recognize all the memorable plots and results, this summary will give a few personal observations, an overview at a fairly high level of abstraction.

  6. 76 FR 20707 - Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas County, WA

    Science.gov (United States)

    2011-04-13

    ... Bureau of Reclamation Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas... Environmental Impact Statement (FEIS) for the Cle Elum Dam Fish Passage Facilities and Fish Reintroduction... FEIS on the proposed Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project. The...

  7. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    Energy Technology Data Exchange (ETDEWEB)

    Austad, Stephanie Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  8. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  9. National Ignition Facility Project Site Safety Program Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E

    2001-09-30

    These rules apply to all National Ignition Facility (NIF) workers (workers), which include Lawrence Livermore National Laboratory (LLNL) employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other national laboratories, participating guests, visitors and students) and contractors/subcontractors. The General Rules and NIF Code of Safe Practices shall be used by management to promote the prevention of incidents through indoctrination, safety and health training, and on-the-job application. As a condition for contract award, all employers shall conduct an orientation for all newly hired and rehired employees before those workers will be permitted to start work in this facility. This orientation shall include a discussion of the following information. The General Rules and NIF Code of Safe Practices must be posted at a conspicuous location at the job site office or be provided to each supervisory worker who shall have it readily available. Copies of the General Rules and NIF Code of Safe Practices can also be included in employee safety pamphlets. The Environmental, Safety, and Health (ES&H) rules at the NIF Project site are based upon compliance with the most stringent of Department of Energy (DOE), LLNL, Federal Occupational Safety and Health Administration (OSHA), California (Cal)/OSHA, and federal and state environmental requirements.

  10. Space Station Furnace Facility. Experiment/Facility Requirements Document (E/FRD), volume 2, appendix 5

    Science.gov (United States)

    Kephart, Nancy

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidifcation conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment, and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace.

  11. Ten years of the project Chain Experiment

    Science.gov (United States)

    Susman, Katarina; Ziherl, Saša; Bajc, Jurij

    2017-05-01

    In this paper the project Chain Experiment is presented. It can be viewed as a competition or as a popularization activity for science, technology, and physics in particular. We present the basic idea of a toppling-domino-like chain of contraptions that are operated one after another, and each demonstrates different physical phenomena. The evolution into its current form with three different types of activities is briefly described. The emphasis of the paper is on the impact of the project on physics education. The ways in which physics students, physics teachers, and participating pupils profit from the different project activities are presented in detail.

  12. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  13. West Valley facility spent fuel handling, storage, and shipping experience

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  14. Project Nuclotron-based Ion Collider fAcility at JINR

    Science.gov (United States)

    Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.

    2017-09-01

    The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.

  15. The Lead-Based VENUS-F Facility: Status of the FREYA Project

    Directory of Open Access Journals (Sweden)

    Kochetkov Anatoly

    2016-01-01

    Full Text Available The GUINEVERE project in the 6th European Framework Program (FP6 [1] aimed to check the methods for sub-criticality monitoring. To execute the project, the water-moderated thermal VENUS facility was modified into the lead fast VENUS-F facility in the period 2007–2010. To prove the reliability of the reactivity monitoring methods, first of all a critical reference configuration was assembled and characterized by measurements of criticality, power distribution, and spectral indexes. These experiments were communicated for benchmarking at ISRD-14 [2]. The Monte Carlo MCNP 5-1.60 code with the JEFF 3.1.2 data library is used to perform simulations of the VENUS-F core, in particular to obtain Calculated-to-Experimental ratios (C/E for fission rates and spectral indices. A sensitivity study is performed focusing on the impact of global and local parameters on C/E. In most cases C/E is close to unity within the uncertainties. Only a few exceptions were found, e.g. for the F28/F25 spectral index [3]. In order to investigate the discrepancies, a new measurement campaign with the same critical configuration was included in the currently ongoing FREYA project in FP7 [4]. The facility status, experimental plans, and the sensitivity study are presented in this paper.

  16. Report on Beryllium Strength Experiments Conducted at the TA-55 40 mm Impact Test Facility, Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollowell, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Todd P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Owens, Charles Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Joseph Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-10

    A series of experiments is currently in progress at eth 40 mm Impact Test Facility (ITF), located at TA-55, to understand the strength behavior of Beryllium metal at elevated temperature and pressure. In FY 2017, three experiments were conducted as a part of this project.

  17. National Ignition Facility Project Completion and Control System Status

    Energy Technology Data Exchange (ETDEWEB)

    Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

    2009-10-02

    The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

  18. Commercial experience with facility deactivation to safe storage

    Energy Technology Data Exchange (ETDEWEB)

    Sype, T.T. [Sandia National Labs., Albuquerque, NM (United States); Fischer, S.R. [Los Alamos National Lab., NM (United States); Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

  19. The First Experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J; Mertens, E; Munro, D; Murray, J; Neumann, J; Newton, M; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rinnert, R; Riordan, B; Ross, G; Robert, V; Tobin, M; Sailors, S; Saunders, R; Schmitt, M; Shaw, M; Singh, M; Spaeth, M; Stephens, A; Tietbohl, G; Tuck, J; Van Wonterghem, B; Vidal, R; Wegner, P; Whitman, P; Williams, K; Winward, K; Work, K

    2005-11-11

    A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options.

  20. Danish experiences on EIA of livestock projects

    DEFF Research Database (Denmark)

    Christensen, Per

    2006-01-01

    , especially when it comes to livestock projects. In an evaluation of the Danish EIA experience, we have looked more closely at how the EIA instruments function regarding livestock projects. This article addresses both the EIA process as well as the EIA screening. It is demonstrated that the EIA screening......Since its introduction into Danish planning in 1989, Environmental Impact Assessment (EIA) has been widely discussed. At the centre of the debate has been the question of whether EIA actually offered anything new and there has been a great deal of scepticism about the efficacy of the instrument...... that these changes definitely address some of the shortcomings found in the evaluation....

  1. Experiment/facility requirements document for the Space Station Furnace Facility. Section 1: Integrated configuration

    Science.gov (United States)

    1992-01-01

    The function of the Space Station Furnace Facility (SSFF) is to support materials research into the crystal growth and solidification processes of electronic and photonic materials, metals and alloys, and glasses and ceramics. To support this broad base of research requirements, the SSFF will employ a variety of furnace modules which will be operated, regulated, and supported by a core of common subsystems. Furnace modules may be reconfigured or specifically developed to provide unique solidification conditions for each set of experiments. The SSFF modular approach permits the addition of new or scaled-up furnace modules to support the evolution of the facility as new science requirements are identified. The SSFF Core is of modular design to permit augmentation for enhanced capabilities. The fully integrated configuration of the SSFF will consist of three racks with the capability of supporting up to two furnace modules per rack. The initial configuration of the SSFF will consist of two of the three racks and one furnace module. This Experiment/Facility Requirements Document (E/FRD) describes the integrated facility requirements for the Space Station Freedom (SSF) Integrated Configuration-1 (IC1) mission. The IC1 SSFF will consist of two racks: the Core Rack, with the centralized subsystem equipment; and the Experiment Rack-1, with Furnace Module-1 and the distributed subsystem equipment to support the furnace. The SSFF support functions are provided by the following Core subsystems: power conditioning and distribution subsystem (SSFF PCDS); data management subsystem (SSFF DMS); thermal control Subsystem (SSFF TCS); gas distribution subsystem (SSFF GDS); and mechanical structures subsystem (SSFF MSS).

  2. Experiences in managing the Prometheus Project

    Science.gov (United States)

    Lehman, David H.; Clark, Karla B.; Cook, Beverly A.; Gavit, Sarah A.; Kayali, Sammy A.; McKinney, John C.; Milkovich, David C.; Reh, Kim R.; Taylor, Randall L.; Casani, John R.

    2006-01-01

    Congress authorized NASA?s Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter. The Project had two major objectives: (1) to develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration, deep-space exploration and (2) to explore the three icy moons of Jupiter - Callisto, Ganymede, and Europa - and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences. Early in Project planning, it was determined that the development of the Prometheus nuclear powered Spaceship would be complex and require the intellectual knowledge residing at numerous organizations across the country. In addition, because of the complex nature of the Project and the multiple partners, approaches beyond those successfully used to manage a typical JPL project would be needed. This paper1 will describe the key experiences in managing Prometheus that should prove useful for future projects of similar scope and magnitude

  3. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    Energy Technology Data Exchange (ETDEWEB)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.

  4. Mixed and Low-Level Treatment Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  5. A prototype of a virtual analysis facility: First experiences

    Science.gov (United States)

    Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.

    2010-04-01

    Current Grid deployments for LHC computing (namely the WLCG infrastructure) do not allow efficient parallel interactive processing of data. In order to allow physicists to interactively access subsets of data (e.g. for algorithm tuning and debugging before running over a full dataset) parallel analysis facilities based on PROOF have been deployed by the ALICE experiment at CERN and elsewhere. Whereas large Tier-1 centres may afford to build such facilities at the expense of their Grid farms, or exploit the large number of jobs finishing at any given time to quickly collect a number of nodes to temporarily allocate for interactive work, this is likely not to be true for smaller Tier-2 centres. Leveraging on the virtualization of highly performant multi-core machines it is possible to build a fully virtual analysis facility on the same Worker Nodes that compose an existing LCG Grid Farm. Using the Xen paravirtualization hypervisor, it is then possible to dynamically move resources from the batch instance to the interactive one when needed, minimizing latencies and wasted resources. We present the status of the prototype being developed, and some experience from the very first users.

  6. Project LITE - Light Inquiry Through Experiments

    Science.gov (United States)

    Brecher, K.

    2004-12-01

    Hands-on, inquiry-based, constructivist activity offers students a powerful way to explore, uncover and ultimately gain a feel for the nature of science. In order to make practicable a more genuine approach to learning astronomy, we have undertaken the development of hands-on (and eyes-on) materials that can be used in introductory undergraduate astronomy courses. These materials focus on light and optics. Over the past several years as part of Project LITE (Light Inquiry Through Experiments), we have developed a kit of optical materials that is integrated with a set of Java applets. The combined kit and software allows students to do actual experiments concerning geometrical optics, fluorescence, phosphorescence, polarization and other topics by making use of the photons that are emitted by their computer screens. We have also developed a suite of over 100 Flash applets that allow students to directly explore many aspects of visual perception. A major effort of the project concerns spectroscopy, since it is arguably the most important tool used by astronomers to disentangle the nature of the universe. It is also one of the most challenging subjects to teach in undergraduate astronomy courses. The spectroscopy component of Project LITE includes take-home laboratory materials and experiments that are integrated with web-based software. We have also developed a novel quantitative handheld binocular spectrometer (patent pending). Our major spectroscopic software is called the Spectrum Explorer (SPEX). It allows students to create, manipulate and explore all types of spectra including blackbody, power law, emission and absorption. We are now extending the SPEX capabilities to help students gain easy access to the astronomical spectra included in the NVO databases. All of the Project LITE software can be found http://lite.bu.edu. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  7. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  8. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-14

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  9. Beam studies and experimental facility for the AWAKE experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, Chiara, E-mail: chiara.bracco@cern.ch; Gschwendtner, Edda, E-mail: edda.gschwendtner@cern.ch; Petrenko, Alexey, E-mail: alexey.petrenko@cern.ch; Timko, Helga, E-mail: helga.timko@cern.ch; Argyropoulos, Theodoros, E-mail: theodoros.argyropoulos@cern.ch; Bartosik, Hannes, E-mail: hannes.bartosik@cern.ch; Bohl, Thomas, E-mail: thomas.bohl@cern.ch; Esteban Müller, Juan, E-mail: juan.esteban.muller@cern.ch; Goddard, Brennan, E-mail: brennan.goddard@cern.ch; Meddahi, Malika, E-mail: malika.meddahi@cern.ch; Pardons, Ans, E-mail: ans.pardons@cern.ch; Shaposhnikova, Elena, E-mail: elena.chapochnikova@cern.ch; Velotti, Francesco M., E-mail: francesco.maria.velotti@cern.ch; Vincke, Helmut, E-mail: helmut.vincke@cern.ch

    2014-03-11

    A Proton Driven Plasma Wakefield Acceleration Experiment has been proposed as an approach to eventually accelerate an electron beam to the TeV energy range in a single plasma section. To verify this novel technique, a proof of principle R and D experiment, AWAKE, is planned at CERN using 400 GeV proton bunches from the SPS. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility profiting from existing infrastructure where only minor modifications need to be foreseen. The design of the experimental area and the proton and electron beam lines are shown. The achievable SPS proton bunch properties and their reproducibility have been measured and are presented. - Highlights: • A proton driven plasma wakefield experiment using the first time protons as drive beam is proposed. • The integration of AWAKE experiment, the proton, laser and electron beam line in an existing CERN facility is demonstrated. • The necessary modifications in the experimental facility are presented. • Proton beam optics and a new electron beam line are adapted to match with the required beam parameters. • Short high-intensity bunches were studied in the SPS to guide the design parameters of the AWAKE project.

  10. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2011-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS Trigger and DAQ(TDAQ) community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available ...

  11. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2010-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS TDAQ community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available to remote users t...

  12. The first target experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O.L.; Glenzer, S.H.; Froula, D.H.; Dewald, E.L.; Suter, L.J.; Schneider, M.B.; Hinkel, D.E.; Fernandez, J.C.; Kline, J.L.; Goldman, S.R.; Braun, D.G.; Celliers, P.M.; Moon, S.J.; Robey, H.S.; Lanier, N.E.; Glendinning, S.G.; Blue, B.E.; Wilde, B.H.; Jones, O.S.; Schein, J.; Divol, L.; Kalantar, D.H.; Campbell, K.M.; Holder, J.P.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Collins, G.W.; Bradley, D.K.; Eggert, J.H.; Hicks, D.G.; Gregori, G.; Kirkwood, R.K.; Young, B.K.; Foster, J.M.; Hansen, J.F.; Perry, T.S.; Munro, D.H.; Baldis, H.A.; Grim, G.P.; Heeter, R.F.; Hegelich, M.B.; Montgomery, D.S.; Rochau, G.A.; Olson, R.E.; Turner, R.E.; Workman, J.B.; Berger, R.L.; Cohen, B.I.; Kruer, W.L.; Langdon, A.B.; Langer, S.H.; Meezan, N.B.; Rose, H.A.; Still, C.H.; Williams, E.A.; Dodd, E.A.; Edwards, M.J.; Monteil, M.C.; Stevenson, R.M.; Thomas, B.R.; Coker, R.F.; Magelssen, G.R.; Rosen, P.A.; Stry, P.E.; Woods, D.; Weber, S.V.; Young, P.E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, G.L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F.D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P

    2007-08-15

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3-dimensional codes by extending the study of laser driven hydrodynamic jets to 3-dimensional geometries. (authors)

  13. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  14. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.

    Science.gov (United States)

    Hinners, A. H., Jr.; Correale, J. V.

    1973-01-01

    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  15. Computational Modeling in Support of High Altitude Testing Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in rocket engine test facility design and development by assessing risks, identifying failure modes and predicting...

  16. Computational Modeling in Support of High Altitude Testing Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in propulsion test facility design and development by assessing risks, identifying failure modes and predicting...

  17. Data assimilation experiments within the POGEQA project

    Science.gov (United States)

    Peuch, V.; Attie, J. E.; Claeyman, M.; El Amroui, L.; Ricaud, P.; Semane, N.; Massart, S.; Piacentini, A.; Cariolle, D.; Flaud, J.; Bergametti, G.; Cantie, R.; Pasternak, F.; Lehors, L.; von Clarmann, T.; Hoepfner, M.; Orphal, J.

    2009-12-01

    The POGEQA (Observation of Air Quality from a Geostationary Platform) project is a French and German initiative currently funded by RTRA STAE (Midi-Pyrenees region). It links also with other international teams and initiatives sharing similar objectives, such as GEOCAPE. Using a sophisticated chemical data assimilation system, MOCAGE-PALM, POGEQA aims at defining optimal characteristics for a future instrument in geostationary orbit complementing orbiting instruments and surface observations for Air Quality monitoring and forecasting. POGEQA sits also in the context of the european initiative GMES (Global Monitoring for Environment and Security) and the project MACC, which aims at assembling operational atmospheric services ; MOCAGE-PALM is indeed one of the pre-operational systems upon which the production of regional Air Quality products is based. These experiments comprise both assimilation of currently existing sensors for tropospheric ozone and CO, such as IASI and MOPITT, and assimilation of synthetic data (OSSEs, Observing System Simulation Experiments) representative of possible geostationary instrumental concepts. These numerical experiments, though representing a very small fraction of the cost compared to the development of a real test instrument, will allow to justify quantitatively the requirements (geometry, sensitivity, errors,…). Differents aspects of operating such an instrument in real conditions (clouds, observations with representativeness errors, radiances…) can also be considered. We will show highlights from the first results obtained in the project. In particular, we will present the synthetic observations generating tool, which is based upon the KOPRA and KOPRAFIT models and 3D chemical scenes produced with chemical models CHIMERE and/or MOCAGE. We will discuss also findings from assimilation experiments and OSSEs.

  18. Genome project: An experiment in sharing

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L.

    1990-05-25

    The Human Genome Project is in many respects a gigantic experiment in data sharing. Around the world, investigators are working on pieces of the same puzzle. And whether the project succeeds will depend in large measure on these investigators making available their data and materials - cell lines, probes, and clones - to their colleagues and competitors. While sharing may be the norm in, say, immunology or bacterial genetics, human genetics has always been intensely competitive. So should the National Institutes of Health and the Department of Energy, which both fund the genome project, promulgate rules to govern access to data and sharing of materials A DOE committee has drafted some guidelines, which have yet to be formally endorsed. They stipulate that data and materials must be publicly available 6 months after they are generated or characterized. But at NIH, James Watson, who heads the genome project, is shying away from setting rules. He points to the new collaborative plans to map chromosome 21 as evidence that the community will develop its own ways of sharing data. Because of its known role in Down syndrome and its suspected role in Alzheimer's disease, chromosome 21 has generated a vast amount of interest. Lots of groups are already hard at work constructing maps of the chromosome - first developing a series of landmarks spaced along the chromosome, and then a collection of ordered DNA fragments. But the maps all these groups generate will be essentially useless unless they pool their data and adopt a common language.

  19. Shock timing on the National Ignition Facility: First experiments

    Directory of Open Access Journals (Sweden)

    Celliers P.M.

    2013-11-01

    Full Text Available An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a re-entrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  20. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, H.G.

    1980-02-01

    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 ..mu..m and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density.

  1. Shock timing on the National Ignition Facility: First Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Celliers, P M; Robey, H F; Boehly, T R; Alger, E; Azevedo, S; Berzins, L V; Bhandarkar, S D; Bowers, M W; Brereton, S J; Callahan, D; Castro, C; Chandrasekaran, H; Choate, C; Clark, D; Coffee, K R; Datte, P S; Dewald, E L; DiNicola, P; Dixit, S; Doeppner, T; Dzenitis, E; Edwards, M J; Eggert, J H; Fair, J; Farley, D R; Frieders, G; Gibson, C R; Giraldez, E; Haan, S; Haid, B; Hamza, A V; Haynam, C; Hicks, D G; Holunga, D M; Horner, J B; Jancaitis, K; Jones, O S; Kalantar, D; Kline, J L; Krauter, K G; Kroll, J J; LaFortune, K N; Pape, S L; Malsbury, T; Maypoles, E R; Milovich, J L; Moody, J D; Moreno, K; Munro, D H; Nikroo, A; Olson, R E; Parham, T; Pollaine, S; Radousky, H B; Ross, G F; Sater, J; Schneider, M B; Shaw, M; Smith, R F; Thomas, C A; Throop, A; Town, R J; Trummer, D; Van Wonterghem, B M; Walters, C F; Widmann, K; Widmayer, C; Young, B K; Atherton, L J; Collins, G W; Landen, O L; Lindl, J D; MacGowan, B J; Meyerhofer, D D; Moses, E I

    2011-10-24

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  2. New synchrotron powder diffraction facility for long-duration experiments.

    Science.gov (United States)

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  3. Information on the Advanced Plant Experiment (APEX) Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, "Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing," Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J. King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.

  4. Development of aquatic animal experiment facility, Aquatic Habitat (AQH)

    Science.gov (United States)

    Uchida, S.; Kono, Y.; Sakimura, T.; Nishikawa, W.; Fujimoto, N.; Murakami, K.; Nakamura, T.

    We have been performing technical studies to develop aquatic animal experiment facility, Aquatic Habitat (AQH), for both of short-term experiments in the Space Shuttle middeck and long-term experiments in the Space Station including the Centrifuge Accommodation Module (CAM). The AQH will have the capabilities to accommodate three-generations of small freshwater fish (medaka and zebrafish) and egg through metamorphosis of amphibian (African clawed frog). For these purposes, the AQH will have the following brand-new capabilities that the previous facilities have never had; 90days experiment duration, automatic feeding according to specimen types and their developmental stages, separation of generations for fish, specimen sample collection in various developmental stages, air/water interface control for amphibian, continuous monitoring of specimen behavior even in dark condition, and so on. We have already performed preliminary breeding tests for medaka and zebrafish with a breeding system prototype. Their mating behavior was performed successfully in the small closed chamber and the hatched larvae grew and started spawning on the 45-47th day after hatching. These results demonstrated that three generational breeding of medaka and zebrafish within 90days would be possible based on this breeding system prototype. Also, we have developed almost of the above new mechanisms, that is, an automatic feeding system, an egg separation mechanism for fish, an air stabilizer to control air/water interface, and a continuous specimen monitoring system through light/dark cycle. Based on these results, we have manufactured a BBM of AQH water circulation system and performed biological compatibility tests as a next step. For African clawed frog breeding, some problems have been revealed through the preliminary tests with the breeding system prototype. Currently, we are performing the investigations to resolve the problems and preparing to proceed to the next step.

  5. Undergraduate group projects: Challenges and learning experiences

    OpenAIRE

    Isaac, Siara Ruth; Tormey, Roland

    2015-01-01

    Working in groups and managing projects are important professional skills for engineers, and there is a growing demand to teach and assess such skills. But what should be taught and when? Tuckman’s famous “stages of development of performing groups” provides a framework for understanding the types of challenges which groups face. Yet, as with any abstract model, it will not be transferred into students’ practice if they do not see it as relevant to their lived experiences. In 2014, a new cou...

  6. RELAP5 Simulation of PKL Facility Experiments under Midloop Conditions

    Directory of Open Access Journals (Sweden)

    J. F. Villanueva

    2017-01-01

    Full Text Available Nuclear power plant risk has to be quantified in full power and in other modes of operation. This latter situation corresponds to low power and shutdown modes of operation in which the residual heat removal (RHR system is required to extract the heat generated in the core. These accidental sequences are great contributors to the total plant risk. Thus, it is important to analyze the plant behavior to establish the accident mitigation measures required. In this way, PKL facility experimental series were undertaken to analyze the plant behavior in other modes of operation when the RHR is lost. In these experiments, the plant configurations were changed to analyze the influence of steam generators secondary side configurations, the temperature inside the pressurizer, and the inventory level on the plant behavior. Moreover, different accident management measures were proposed in each experiment to reach the conditions to restart the RHR. To understand the physical phenomena that takes place inside the reactor, the experiments are simulated with thermal-hydraulic codes, and this makes it possible to analyze the code capabilities to predict the plant behavior. This work presents the simulation results of four experiments included in PKL experimental series obtained using RELAP5/Mod3.3.

  7. Experiences with systematic triangulation at the Global Environment Facility.

    Science.gov (United States)

    Carugi, Carlo

    2016-04-01

    Systematic triangulation may address common challenges in evaluation, such as the scarcity or unreliability of data, or the complexities of comparing and cross-checking evidence from diverse disciplines. Used to identify key evaluation findings, its application has proven to be effective in addressing the limitations encountered in country-level evaluation analysis conducted by the Independent Evaluation Office of the Global Environment Facility (GEF). These include the scarcity or unreliability of national statistics on environmental indicators and data series, especially in Least Developed Countries; challenges in evaluating the impacts of GEF projects; and inherent difficulties in defining the GEF portfolio of projects prior to the undertaking of the evaluation. In addition to responding to the need for further developing triangulation protocols, procedures and/or methodologies advocated by some authors, the approach offers a contribution to evaluation practice. This applies particularly to those evaluation units tasked with country-level evaluations in international organizations, facing similar constraints. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Spent nuclear fuel project cold vacuum drying facility operations manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-05-12

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  9. Cell/Tissue Culture Radiation Exposure Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  10. Project development of a modern wood-fired cogeneration facility

    Energy Technology Data Exchange (ETDEWEB)

    George, A.C.; Schueler, B.E.; Shield, J.J. [Polsky Energy Corp., Northbrook, IL (United States)

    1997-07-01

    The Brooklyn Energy Centre is a cogeneration facility located in Brooklyn, Nova Scotia which supplies electric energy to Nova Scotia Power Inc., and thermal energy to the adjacent Bowater Mersey Papermill. The wood-fired cogeneration facility began commercial operation in December 1995. In order to provide maximum flexibility and utilize the most economic fuels, the facility was designed to handle a wide range of fuels including bark, sawdust, whole tree chips, slash and other woodwastes, including the potential addition of coal. The fuel mix as well as seasonal fuel variations provided a challenge in designing the fuel handling system and also played a significant role in the design and selection of many other plant systems. This paper gives an overview of the importance of paying special attention to a nonhomogeneous fuel mix and to the need for an uninterruptible steam supply in the design and operation of a modern wood-fired cogeneration facility. (author)

  11. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  12. Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, P., E-mail: delahaye@ganil.fr; Jardin, P.; Maunoury, L. [GANIL, CEA/DSM-CNRS/IN2P3, Blvd. Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Galatà, A.; Patti, G. [INFN–Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (Padova) (Italy); Angot, J.; Lamy, T.; Thuillier, T. [LPSC–Université Grenoble Alpes–CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Cam, J. F.; Traykov, E.; Ban, G. [LPC Caen, 6 Blvd. Maréchal Juin, 14050 Caen Cedex (France); Celona, L. [INFN–Laboratori Nazionali del Sud, via S. Sofia 62, 95125 Catania (Italy); Choinski, J.; Gmaj, P. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5a, 02 093 Warsaw (Poland); Koivisto, H.; Kolhinen, V.; Tarvainen, O. [Department of Physics, University of Jyväskylä, PB 35 (YFL), 40351 Jyväskylä (Finland); Vondrasek, R. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Wenander, F. [ISOLDE, CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structure issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam contamination. In recent years, improvements have been made which significantly reduce the differences between the two techniques, making ECRIS charge breeding more attractive especially for CW machines producing intense beams. Upgraded versions of the Phoenix charge breeder, originally developed by LPSC, will be used at SPES and GANIL/SPIRAL. These two charge breeders have benefited from studies undertaken within EMILIE, which are also briefly summarized here.

  13. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  14. CHARM 2010: Experiment summary and future charm facilities

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A.; /Fermilab

    2010-12-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.

  15. Recent advance in Isentropic compression experiments on PTS facility

    Science.gov (United States)

    Wang, Guilin; Zhang, Zhaohui; Guo, Shuai; Sun, Qizhi; Wang, Meng; Magnetically Loading techiniques Team

    2017-06-01

    The Primary Test Stand (PTS) facility is a pulsed power machine capable of delivering currents to loads of 5 8 MA over times of 200-620 ns. As current flows in the opposite direction electrode plates, smoothly rising, time dependent magnetic pressures were generated on each electrode plates. With pulse shaping techniques, the ramped compression waves can propagate in electrodes and specimens without forming a shock. Photonic Doppler velocimetry (PDV) have application in shockless, free-surface or sample/window interface velocity measurements of different thickness samples, which were used for equation-of-state (EOS) studies of condensed matter. Analysis the velocity data with a backward integration techniques, the quasi-isentrope to 1 Mbar of OFHC were inferred. Based on the application performance, confirms that PTS is a good experiment equipment for EOS and dynamic properties of different materials.

  16. Polar-direct-drive experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Myatt, J. F. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; LePape, S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Marozas, J. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Marshall, F. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Michel, D. T. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Seka, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Bates, J. W. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Bonino, M. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Casey, D. T. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Collins, T. J. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Craxton, R. S. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Delettrez, J. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Edgell, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Epstein, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Fiksel, G. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Fitzsimmons, P. [General Atomics, San Diego, California 92121, USA; Frenje, J. A. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Harding, D. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Kalantar, D. H. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Karasik, M. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Kessler, T. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Kilkenny, J. D. [General Atomics, San Diego, California 92121, USA; Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Kurz, C. [General Atomics, San Diego, California 92121, USA; Lafon, M. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; LaFortune, K. N. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; MacGowan, B. J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Mackinnon, A. J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; MacPhee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Meeker, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Nagel, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Nikroo, A. [General Atomics, San Diego, California 92121, USA; Obenschain, S. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Ralph, J. E. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Rinderknecht, H. G. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Rosenberg, M. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Schmitt, A. J. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Wallace, R. J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Weaver, J. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Widmayer, C. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Solodov, A. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Yaakobi, B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Zuegel, J. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA

    2015-05-01

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D2 gas were imploded with total drive energies ranging from ~500-750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 x 1014 to 1.2 x 1015 W/cm2. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  17. Development of Facilities Master Plan and Laboratory Renovation Project

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Andrea D

    2011-10-03

    Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the School's overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

  18. Development of CFD Approaches for Modeling Advanced Concepts of Nuclear Thermal Propulsion Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will be developing a CFD approach that can handle the additional complexities needed in a NTP testing facility when modeling the combustion processes in...

  19. HT TCAP Loading Results for the Tritium Facility Modernization and Consolidation Project (S-7726)

    CERN Document Server

    Staack, G C

    2002-01-01

    Three production Thermal Cycling Absorption Process units were each loaded with approximately 18 kg Pd/K for the Tritium Facility Modernization and Consolidation project. This report details the results of the successful loading of the units.

  20. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-09-28

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  1. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-10-12

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  2. The Ohio School Facilities Commission. Revamping the State's School Construction Projects.

    Science.gov (United States)

    De Patta, Joe

    2001-01-01

    Presents an interview with the Ohio School Facilities Commission's (OSFC) Executive Director who discusses the OSFC's history and its work in managing K-12 school facilities throughout the state. Topics include its efforts to help school districts get bond measures on ballets, funding projects, and its "Partnering Program" for construction…

  3. 75 FR 877 - Cancellation of the South Valley Facilities Expansion Project-Clark County, NV

    Science.gov (United States)

    2010-01-06

    ... Bureau of Reclamation Cancellation of the South Valley Facilities Expansion Project-- Clark County, NV... (NOI) to prepare an Environmental Impact Statement (EIS) for the South Valley Facilities Expansion... Bureau of Reclamation, Lower Colorado Region, P.O. Box 61470, Boulder City, NV 89006-1470. SUPPLEMENTARY...

  4. Project definition study for the National Biomedical Tracer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Roozen, K.

    1995-02-15

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.

  5. Multiple blowdown pipe experiments with the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-03-15

    This report summarizes the results of the experiments with two steel blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the blowdown pipes to the condensation pool. The main purpose of the experiment series was to study chugging phenomena (rapid condensation) while steam is discharged through two parallel blowdown pipes into the condensation pool filled with sub-cooled water. Particularly, the aim was to study if the pipe material (polycarbonate) used in the earlier experiment series with two blowdown pipes has had an effect on the general chugging behaviour and measured loads. In the experiments the initial temperature of the pool water was 20 deg. C. The steam flow rate ranged from 220 g/s to 2 350 g/s and the temperature of incoming steam from 148 deg. C to 207 deg. C. The formation and collapse of steam bubbles and the movement of the steam/water interface inside the pipes was non-synchronous. There could be even a 70 ms time difference between the occurrences of steam bubble collapses at the outlets of the two pipes. There was no clear pattern in which pipe the steam bubble first starts to collapse. Several successive bubbles could collapse first in either pipe but then the order changed for a single or several cycles. High pressure loads were measured inside the blowdown pipes due to rapid condensation of the steam volumes in the pipes and resulting water hammer effects. The loads seemed to be higher in pipe 1 than in pipe 2. An explanation for this could be a possible unequal distribution of steam flow between the two pipes. The pipe material has an effect on the condensation phenomena inside the blowdown pipes. A huge difference in the measured pressure curves inside the pipes could be observed compared to the experiments with the polycarbonate pipes. With the same test conditions the amplitude of the

  6. Adaptation of existing facilities to isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory; Mielke, Charles H [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory; Rickel, Dwight G [Los Alamos National Laboratory

    2011-01-07

    We demonstrate that the established pulsed power infrastructure at the National High Magnetic Field Laboratory - Pulsed Field Facility (NHMFL-PFF) at the Los Alamos National Laboratory can be adapted to obtain high quality isentropic compression experiment (ICE) data on materials in extreme conditions of dynamic high pressure. Experiments utilized a single-turn magnet pulsed power system at the NHMFL-PFF that was originally designed to measure actinide samples in extremes of high magnetic field (to 300 Tesla). A simple modification to the single-turn magnet has converted it to a fast turnaround dynamic high pressure measurement system. This paper details the work done including important background details that indicate that much more can be accomplished with optimization of the load characteristics in terms of ultimate peak pressures. To match the rise time of the NHMFL capacitor bank ({approx}2 {mu}s versus {approx}0.5 {mu}s for the Sandia Z-machine) the sample dimensions can be relatively large, i.e., up to 5 mm thickness. The maximum stresses are {approx}50GPa (0.5 Mbar) at the maximum bank voltage (60 kV) and higher pressures may be possible if the sample is tamped. For the design and predictions of performance of the NHMFL-ICE experiment it is important to have good predictive models. A SPICE code simulation was chosen to model all aspects of the experiment, electrical and physical. To this end, accurate dynamic load models were developed to simulate the compression and expansion of the dynamic load at high pressures using shock physics principles. A series experiments have been performed which demonstrated the feasibility of the NHMFL-ICE technique. The results will be shown and discussed. The NHMFL-ICE technique is an excellent method for measuring equations of state (EOS) at megabar pressures. Because a complete EOS can be obtained in one experiment from zero to the peak pressure, and because many shots can be fired in one day, the technique promises to

  7. The projected background for the CUORE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alduino, C.; Avignone, F.T.; Chott, N.; Creswick, R.J.; Rosenfeld, C.; Wilson, J. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Alfonso, K.; Hickerson, K.P.; Huang, H.Z.; Sakai, M.; Schmidt, J.; Trentalange, S.; Zhu, B.X. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Artusa, D.R.; Rusconi, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Azzolini, O.; Camacho, A.; Keppel, G.; Palmieri, V.; Pira, C. [INFN-Laboratori Nazionali di Legnaro, Padua (Italy); Banks, T.I.; Drobizhev, A.; Freedman, S.J.; Hennings-Yeomans, R.; Kolomensky, Yu.G.; Wagaarachchi, S.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bari, G.; Deninno, M.M. [INFN-Sezione di Bologna, Bologna (Italy); Beeman, J.W. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); Bellini, F.; Cosmelli, C.; Ferroni, F.; Piperno, G. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Benato, G.; Singh, V. [University of California, Department of Physics, Berkeley, CA (United States); Bersani, A.; Caminata, A. [INFN-Sezione di Genova, Genoa (Italy); Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Fiorini, E.; Gironi, L.; Gotti, C.; Maino, M.; Nastasi, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sisti, M.; Terranova, F.; Zanotti, L. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN-Sezione di Milano Bicocca, Milan (Italy); Branca, A.; Taffarello, L. [INFN-Sezione di Padova, Padua (Italy); Bucci, C.; Cappelli, L.; D' Addabbo, A.; Gorla, P.; Pattavina, L.; Pirro, S.; Laubenstein, M. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Canonica, L. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Massachusetts Institute of Technology, Cambridge, MA (United States); Cao, X.G.; Fang, D.Q.; Ma, Y.G.; Wang, H.W.; Zhang, G.Q. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai (China); Carbone, L.; Cremonesi, O.; Ferri, E.; Giachero, A.; Pessina, G.; Previtali, E. [INFN-Sezione di Milano Bicocca, Milan (Italy); Cardani, L.; Casali, N.; Dafinei, I.; Morganti, S.; Mosteiro, P.J.; Pettinacci, V.; Tomei, C.; Vignati, M. [INFN-Sezione di Roma, Rome (Italy); Copello, S.; Di Domizio, S.; Fernandes, G.; Marini, L.; Pallavicini, M. [INFN-Sezione di Genova, Genoa (Italy); Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Cushman, J.S.; Davis, C.J.; Heeger, K.M.; Lim, K.E.; Maruyama, R.H. [Yale University, Department of Physics, New Haven, CT (United States); Dell' Oro, S. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); INFN-Gran Sasso Science Institute, L' Aquila (Italy); Di Vacri, M.L.; Santone, D. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, L' Aquila (Italy); Franceschi, M.A.; Ligi, C.; Napolitano, T. [INFN-Laboratori Nazionali di Frascati, Rome (Italy); Fujikawa, B.K.; Mei, Y.; Schmidt, B.; Smith, A.R.; Welliver, B. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Giuliani, A.; Novati, V.; Tenconi, M. [Universit Paris-Saclay, CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Orsay (France); Gladstone, L.; Leder, A.; Ouellet, J.L.; Winslow, L.A. [Massachusetts Institute of Technology, Cambridge, MA (United States); Gutierrez, T.D. [California Polytechnic State University, Physics Department, San Luis Obispo, CA (United States); Haller, E.E. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); University of California, Department of Materials Science and Engineering, Berkeley, CA (United States); Han, K. [Shanghai Jiao Tong University, Department of Physics and Astronomy, Shanghai (China); Hansen, E. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Kadel, R. [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Martinez, M. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Moggi, N. [INFN-Sezione di Bologna, Bologna (Italy); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Scienze per la Qualita della Vita, Bologna (Italy); Nones, C. [CEA/Saclay, Service de Physique des Particules, Gif-sur-Yvette (France); Norman, E.B.; Wang, B.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); O' Donnell, T. [Virginia Polytechnic Institute and State University, Center for Neutrino Physics, Blacksburg, VA (United States); Pagliarone, C.E. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Universita degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, Cassino (Italy); Sangiorgio, S.; Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Wise, T. [Yale University, Department of Physics, New Haven, CT (United States); University of Wisconsin, Department of Physics, Madison, WI (United States); Woodcraft, A. [University of Edinburgh, SUPA, Institute for Astronomy, Edinburgh (United Kingdom); Zimmermann, S. [Lawrence Berkeley National Laboratory, Engineering Division, Berkeley, CA (United States); Zucchelli, S. [INFN-Sezione di Bologna, Bologna (Italy); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy)

    2017-08-15

    The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of {sup 130}Te with an array of 988 TeO{sub 2} bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the {sup 130}Te decay half-life of 9 x 10{sup 25} years after 5 years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10{sup -2} counts/keV/kg/year. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of {sup 130}Te is expected. (orig.)

  8. The projected background for the CUORE experiment

    Science.gov (United States)

    Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Benato, G.; Bersani, A.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; Dafinei, I.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Ma, Y. G.; Maino, M.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Napolitano, T.; Nastasi, M.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; O'Donnell, T.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sakai, M.; Sangiorgio, S.; Santone, D.; Schmidt, B.; Schmidt, J.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Welliver, B.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.; Laubenstein, M.

    2017-08-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of ^{130}Te with an array of 988 TeO_2 bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the ^{130}Te decay half-life of 9 × 10^{25} years after 5 years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10^{-2} counts/keV/kg/year. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of ^{130}Te is expected.

  9. Project ABLE: (Atmospheric Balloonborne Lidar Experiment)

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.

    1985-03-01

    Project ABLE (Atmospheric Balloonborne Lidar Experiment) is part of the A.F. Geophysics Laboratory's continuing interest in developing techniques for making remote measurements of atmospheric quantities such as density, pressure, temperatures, and wind motions. The system consists of a balloonborne lidar payload designed to measure neutral molecular density as a function of altitude from ground level to 70 km. The lidar provides backscatter data at the doubled and tripled frequencies of a Nd:YAG laser, which will assist in the separation of the molecular and aerosol contributions and subsequent determination of molecular and aerosol contributions and subsequent determination of molecular density vs altitude. The object of this contract was to fabricate and operate in a field test a balloonborne lidar experiment capable of performing nighttime atmospheric density measurements up to 70 km altitude with a resolution of 150 meters. The payload included a frequency-doubled and -tripled Nd:YAG laser with outputs at 355 and 532 nm; a telescoped receiver with PMT detectors; a command-controlled optical pointing system; and support system, including thermal control, telmetry, command, and power. Successful backscatter measurements were made during field operations which included a balloon launch from Roswell, NM and a flight over the White Sands Missile Range.

  10. IPAD Paperless Work Control for Test Complex Facilities Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project created a pilot version of the software tool work control system to run on a tablet by modifying the existing template and beginning an initial...

  11. Plutonium Reclamation Facility incident response project progress report

    Energy Technology Data Exchange (ETDEWEB)

    Austin, B.A.

    1997-11-25

    This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies.

  12. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    OpenAIRE

    Simpson, Michael F.

    2013-01-01

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is pro...

  13. FEBEX II Project THG Laboratory Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.

    2004-07-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  14. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  15. Learning by Experience in the Project-Bases Organization

    NARCIS (Netherlands)

    J.R. Turner (Rodney); A. Keegan (Anne); L. Crawford

    2000-01-01

    textabstractThis paper describes how project-based organizations use structured experience to aid the learning and development of individuals, and how they capture their experience of projects to feed that back into the improved management of future projects and the experiential learning of

  16. The Shakespeare Project: Experiments in Multimedia.

    Science.gov (United States)

    Friedlander, Larry

    1991-01-01

    Describes the Shakespeare Project, a multimedia system on HyperCard with a two-screen workstation linking a Macintosh, videodisc player, and video monitor. States that this project brings theater to students as a serious object of study. (MG)

  17. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility

    Directory of Open Access Journals (Sweden)

    Wanguo Zheng

    2017-09-01

    Full Text Available The SG-Ⅲ laser facility (SG-Ⅲ is the largest laser driver for inertial confinement fusion (ICF researches in China, which has 48 beamlines and can deliver 180 kJ ultraviolet laser energy in 3 ns. In order to meet the requirements of precise physics experiments, some new functionalities need to be added to SG-Ⅲ and some intrinsic laser performances need upgrade. So at the end of SG-Ⅲ's engineering construction, the 2-year laser performance upgrade project started. This paper will introduce the newly added functionalities and the latest laser performance of SG-Ⅲ. With these function extensions and performance upgrade, SG-Ⅲ is now fully prepared for precise ICF experiments and solidly paves the way towards fusion ignition.

  18. Project Management Actions Demolition of a Research Facility Building 431

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W L

    2005-09-06

    The Demolition of B431 is required to achieve the mission of LLNL and the NNSA FIRP objectives by: (1) Supporting the NNSA Infrastructure Plan goal to ''demolish excess facilities as early as possible''; (2) Banking square footage that allows continued application of advanced science and nuclear technology to the Nation's defense; and (3) Helping maintain and enhance the safety, security, and reliability of the weapons stockpile. A significant effort has been put into the demolition concept in order to ensure that it is well thought out and represents best-value to the government for the money.

  19. Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments

    Directory of Open Access Journals (Sweden)

    Julie Hougaard Overgaard

    2016-11-01

    Full Text Available Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to

  20. Project Closeout Report Francium trapping facility at Triumf

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, Luis A [Univ. of Maryland, College Park, MD (United States)

    2014-09-30

    This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, the only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.

  1. CrossRef Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project

    CERN Document Server

    Delahaye, P; Angot, J; Cam, J F; Traykov, E; Ban, G; Celona, L; Choinski, J; Gmaj, P; Jardin, P; Koivisto, H; Kolhinen, V; Lamy, T; Maunoury, L; Patti, G; Thuillier, T; Tarvainen, O; Vondrasek, R; Wenander, F

    2016-01-01

    The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structure issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam c...

  2. Utilization of the BARC critical facility for ADS related experiments

    Indian Academy of Sciences (India)

    The paper discusses the basic design of the critical facility, whose main purpose is the physics validation of AHWR. Apart from moderator level control, the facility will have shutdown systems based on shutoff rods and multiple ranges of neutron detection systems. In addition, it will have a flux mapping system based on 25 ...

  3. Project governance: selected South African government experiments

    Directory of Open Access Journals (Sweden)

    G. van der Walt

    2008-07-01

    Full Text Available Some form of accountability and power structure binds all organisations. Such structures are typically referred to as the “governance” structure of the organisation. In organisations that have relatively mature project applications and methodologies in place, governance mechanisms are established on more permanent bases. With its focus on performance, results and outcomes, project governance establishes decision-making structures, as well as accountability and responsibility mechanisms in public institutions to oversee projects. As government institutions increasingly place emphasis on project applications for policy implementation and service delivery initiatives, mechanisms or structures should be established to facilitate clear interfaces between the permanent organisation and the temporary project organisation. Such mechanisms or structures should enhance the governance of projects, that is, the strategic alignment of projects, the decentralisation of decision- making powers, rapid resource allocation, and the participation of external stakeholders. The purpose of this article is to explore the concept “project governance”, and to highlight examples of project governance as applied in selected government departments in provincial and national spheres. This would enable the establishment of best practice examples and assist to develop benchmarks for effective project applications for service delivery improvement.

  4. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  5. Optical assembly and alignment for the National Ignition Facility project

    Science.gov (United States)

    Hurst, Patricia A.; Grasz, Erna L.; Wong, Henry; Schmitt, Ed H.; Simmons, Matt R.

    1998-06-01

    The National Ignition Facility (NIF) will use about 8,000 large optics to carry a high-power laser through a stadium- size building, and will do so on a very tight schedule and budget. The collocated Optics Assembly Building (OAB) will assemble and align, in a clean-room environment, the NIF's large optics, which are the biggest optics ever assembled in such an environment. In addition, the OAB must allow for just-in-time processing and clean transfer to the areas where the optics will be used. By using a mixture of off- the-shelf and newly designed equipment and by working with industry, we have developed innovative handling systems to perform the clean assembly and precise alignment required for the full variety of optics, as well as for postassembly inspection. We have also developed a set of loading mechanisms that safely get the clean optics to their places in the main NIF building.

  6. Human factors engineering for the TERF (Tritium Emissions Reduction Facility) project. [Tritium Emissions Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hedley, W.H.; Adams, F.S. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Wells, J.E. (Lawrence Livermore National Lab., CA (USA))

    1990-12-14

    The Tritium Emissions Reduction Facility (TERF) is being built by EG G Mound Applied Technologies to provide improved control of the tritium emissions from gas streams being processed. Mound handles tritium in connection with production, development, research, disassembly, recovery, and surveillance operations. During these operations, a small fraction of the tritium being processed escapes from its original containment. The objective of this report is to describe the human factors engineering as performed in connection with the design, construction, and testing of the TERF as required in DOE Order 6430.1A, section 1300-12. Human factors engineering has been involved at each step of the process and was considered during the preliminary research on tritium capture before selecting the specific process to be used. Human factors engineering was also considered in determining the requirements for the TERF and when the specific design work was initiated on the facility and the process equipment. Finally, human factors engineering was used to plan the specific acceptance tests that will be made during TERF installation and after its completion. These tests will verify the acceptability of the final system and its components. 16 refs., 8 figs.

  7. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  8. Linguistic analysis of project ownership for undergraduate research experiences.

    Science.gov (United States)

    Hanauer, D I; Frederick, J; Fotinakes, B; Strobel, S A

    2012-01-01

    We used computational linguistic and content analyses to explore the concept of project ownership for undergraduate research. We used linguistic analysis of student interview data to develop a quantitative methodology for assessing project ownership and applied this method to measure degrees of project ownership expressed by students in relation to different types of educational research experiences. The results of the study suggest that the design of a research experience significantly influences the degree of project ownership expressed by students when they describe those experiences. The analysis identified both positive and negative aspects of project ownership and provided a working definition for how a student experiences his or her research opportunity. These elements suggest several features that could be incorporated into an undergraduate research experience to foster a student's sense of project ownership.

  9. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Michael F. Simpson

    2013-01-01

    Full Text Available Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  10. Experiences from three community health promotion projects in Greenland

    DEFF Research Database (Denmark)

    Curtis, Tine; Olesen, Ingelise; Kjeldsen, Ann B

    2005-01-01

    OBJECTIVES AND METHODS: Three community health promotion projects have been implemented in Greenland in the municipalities of Upernavik, Ittoqqortoormiit and Qasigiannguit. Based on project reports and other written material, this paper describes experiences from the three projects and discusses...... with strong leadership and a central organisation, whereas the Qasigiannguit project was designed as a community project with population participation in all phases of the project. The two former projects have probably had a greater direct change impact on the community, whereas the latter has strengthened...

  11. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  12. Commercial scale demonstration enhanced oil recovery by miceller-polymer flooding. M-1 project: facilities report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, B.L. (ed.)

    1977-04-01

    ERDA and Marathon Oil Company contracted together for a commercial scale demonstration of enhanced oil recovery by the Maraflood (TM) oil recovery process. This M-1 Project is located within Sections 15, 16, 21 and 22, T6N, R13W, Crawford County, Illinois, encompassing approximately 407 acres of Robinson Sand reservoir developed in the first decade of the century. The area covers portions of several waterfloods developed on 10-acre spacing in the 1950's that were approaching their economic limit. This report describes all M-1 Project facilities, how they were prepared or constructed, their purpose and how they operate: (1) wells (drilling and completion); (2) production facility; (3) injection facility; and (4) various service systems required during project development and/or operation. (48 fig, 7 tables) (DLC).

  13. 75 FR 5626 - Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas County, WA INT-DES...

    Science.gov (United States)

    2010-02-03

    ... Bureau of Reclamation Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas... Fish Passage Facilities and Fish Reintroduction Project. The Washington State Department of Ecology is... project to reintroduce fish populations above the dam. The reintroduction plan would involve the...

  14. Competence and experience for commercial demolition of nuclear research facilities; Kompetenz und Erfahrung fuer den wirtschaftlich orientierten Rueckbau kerntechnischer Forschungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Starke, Holger [Babcock Noell GmbH, Wuerzburg (Germany)

    2010-10-15

    By international comparison, the demolition of nuclear facilities in Germany began early, i.e. in the early 1980s. Those projects constituted virgin territory in the field of nuclear technology. There was no experience in applying existing codes, rules and regulations to the dismantling of activated and contaminated structures so as to protect personnel, the environment, and the public. Based on experience accumulated in the demolition of commercially used plants, Babcock Noell GmbH (BNG) handled some first projects in German research installations. This experience then allowed the company to solicit other demolition projects in research installations in other European countries. One of the advantages which turned out to be useful was BNG's experience in the Russian VVER nuclear power plant line (water-water reactor, Russian research reactor line) plus the fact that several research reactors of that design were to be decommissioned and demolished in countries in Eastern Europe. The objectives, organization and implementation of demolition projects of nuclear research installations are outlined for these facilities: - Rossendorf research reactor (RFR), Dresden-Rossendorf, Germany; - Joint Research Centre (JRC), Ispra, Italy, with 3 research reactors, various laboratories and waste stores; - research reactor of the Salaspils, Latvia, Research Center; - the FMRB reactor of the Federal Institute of Physics and Metrology (PTB), Brunswick, Germany; - the FRF research reactor, Frankfurt, Germany and - demolition of the Magurele, Romania, research reactor. (orig.)

  15. Paraho Oil Shale Project. [Review of accomplishments of operation of Rifle, Colorado facility since 1973

    Energy Technology Data Exchange (ETDEWEB)

    Pforzheimer, H.

    1976-01-01

    The Paraho Oil Shale Demonstration is a privately financed project sponsored by seventeen participants. The program to demonstrate the Paraho technology on oil shale is being conducted at the Anvil Points Experiment Station of the Energy Research and Development Administration (ERDA). The facility is located on the Naval Oil Shale Reserve near Rifle, Colorado. A $9 million, 34 month, mining, retorting and disposal program is scheduled for completion by mid 1976. A large pilot plant and a semi-works scale plant were erected and put into operation in 1974. Two modes of operation, direct and indirect heating, have been successfully demonstrated. Large scale refining of crude shale oil and retorted shale management experiments have been carried out. The extended retorting demonstration runs on Paraho's cylindrical, vertical shaft kilns have characterized this new technology as environmentally acceptable, with high liquid recovery, high thermal efficiency and low water consumption. The demonstration operations and the outlook for the commercial development of oil shale are discussed.

  16. Knowledge transfer from facilities management to building projects: A typology of transfer mechanisms

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2012-01-01

    The purpose of this article is to present a typology of mechanisms for knowledge transfer from Facilities Management (FM) to building projects. One of the problems in the building industry is a limited degree of learning. The development of professional FM can be the missing link to bridge the gap...... between building operation and building design. To fulfill this role facilities managers not only need the necessary competences but also appropriate methods and tools to be able to influence the building project. The research is based on literature reviews as well as various empirical studies...

  17. Visualization in Real-Time Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project will be to migrate some of the outputs from the WFF Mission Planning Lab (MPL) into a real-time visualization system.  The MPL is...

  18. Wood Gasification Facility : Quality Assurance Project Plan : Facility Located at North Powder, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Freeburn, Scott A.; Houck, James E.

    1989-05-05

    The US Department of Energy, Pacific Northwest and Alaska Regional Biomass Energy Program, managed by the Bonneville Power Administration (BPA), proposes to develop appropriate methodologies and conduct a testing program of a commercial-scale biomass gasifier to establish: (1) the validity of the test procedures; and (2) the performance of the gasification facility. It is proposed to conduct the testing at the wood gasification plant located at North Powder, Oregon, now operated by Idaho Timber Products of Boise, Idaho. The North Powder wood gasifier is an air-oxidized unit producing about 100 million Btu's per hour in the form of high temperature low-Btu gas (LBG). The gasifier utilizes a fluidized bed to partially combust and gasify mill wastes. Such units hold promise for making the energy of solid biomass available to a broader range of end uses, since the fuel gas created can be readily used by a wide variety of combustion devices or other process equipment. 5 refs., 28 figs., 7 tabs.

  19. Ectopic pregnancy experience in a tertiary health facility in South ...

    African Journals Online (AJOL)

    Background: Ectopic pregnancy is a life-threatening gynecological emergency, and a significant cause of maternal morbidity and mortality in Nigeria. Objective: To determine the incidence, clinical presentation, risk factors and management outcomes of ectopic pregnancies in a tertiary health facility. Methods: A retrospective ...

  20. Assessing users' experience of shared sanitation facilities: A case ...

    African Journals Online (AJOL)

    Despite significant financial investment, the effective implementation and sustained use of water and sanitation (WATSAN) technologies remains a chimera, with one billion people using unimproved water facilities and two and a half billion not benefitting from adequate sanitation. The poor success rate of WATSAN ...

  1. A Bubble Mixture Experiment Project for Use in an Advanced Design of Experiments Class

    Science.gov (United States)

    Steiner, Stefan H.; Hamada, Michael; White, Bethany J.Giddings; Kutsyy, Vadim; Mosesova, Sofia; Salloum, Geoffrey

    2007-01-01

    This article gives an example of how student-conducted experiments can enhance a course in the design of experiments. We focus on a project whose aim is to find a good mixture of water, soap and glycerin for making soap bubbles. This project is relatively straightforward to implement and understand. At its most basic level the project introduces…

  2. Integrated project management information systems: the French nuclear industry experience

    Energy Technology Data Exchange (ETDEWEB)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-03-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK).

  3. The integrated project as a learning experience

    Directory of Open Access Journals (Sweden)

    Maria Angeles Antequera

    2012-03-01

    Full Text Available Florida is a higher education centre specialising in technical and business training. Postgraduate programs, university qualifications, vocational training, secondary education, further education, occupational training and languages are taught at Florida. An educational model in accordance with the demands of the European Higher Education Area has been designed, focussing on teaching for professional competencies. We have chosen to use a methodology which promotes the development of skills and abilities, it promotes participation and it is student-centric as s/he must look for knowledge him/herself thus connecting the educational and the real world. In the different university degrees taught in our centre, each year the student carries out a project set in a real context which integrates specific competencies from the course subject and develops transversal competencies associated with the project which are the purpose of planning and progressive learning: team work, effective communication, conflict resolution, leadership skills, innovation and creativity. The IP counts for 25% of each course in terms of objectives, scheduling and final evaluation. The project grade is an individual grade for each student and is the same for all subjects which form part of the project.

  4. Facilities management innovation in public-private collaborations: Danish ESCO projects

    DEFF Research Database (Denmark)

    Nardelli, Giulia; Jensen, Jesper Ole; Nielsen, Susanne Balslev

    2015-01-01

    The purpose of the article is to investigate how Facilities Management (FM) units navigate Energy Service Company (ESCO) collaborations, here defined as examples of public collaborative innovation within the context of FM. The driving motivation is to inform and inspire internal FM units of local...... institutions on how to navigate and manage collaboration of different, intra- and inter-organisational actors throughout ESCO projects....

  5. Information Retrieval in an Office Filing Facility and Future Work in Project Minstrel.

    Science.gov (United States)

    Smeaton, A. F.; van Rijsbergen, C. J.

    1986-01-01

    Review of office filing facility filing and retrieval mechanisms for unstructured and mixed media information focuses on free text methods. Also discussed are the state of the art in handling voice and image data, problems with searching text surrogates to implement free text content retrieval, and work of Project Minstrel. (Author/MBR)

  6. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  7. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    Energy Technology Data Exchange (ETDEWEB)

    Kollar, Lenka; Mathews, Caroline E.

    2009-07-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  8. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  9. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  10. Experiences from new Swedish passive house projects

    Energy Technology Data Exchange (ETDEWEB)

    Janson, U. [Lund Univ., Lund (Sweden). Energy and Building Design

    2009-07-01

    Passive houses are common in Germany, Austria and Switzerland, and their use is being considered in Sweden as a means to decrease carbon dioxide emissions and address climate change issues. It is anticipated that the use of passive houses in Sweden may contribute to the country's plan to decrease energy use in buildings by 20 per cent per heated unit area before 2020 compared to 1995 energy use. The first Swedish passive house project was built in Lindas in 2001. The Lindas project includes 20 terrace houses and was built according to the German Passive house standard with a maximum use of space heating of 15 kWh per m{sup 2} per year. Although tenants expressed satisfaction in terms of indoor comfort and reduced energy consumption, not many passive houses have been built in Sweden since the project was launched. Therefore, in 2005, the the Department of Energy and Building Design at Lund University launched 4 new Passive house research projects involving 2 apartment buildings, 1 family house and 1 renovation project. The main purpose was to gain information on the entire building process and determine what knowledge, components and systems are required for widespread construction of passive houses in a cold climate. Only residential buildings were studied for this project. The passive houses were closely followed from the clients decision to build a passive house, through the planning process, the building process, measurements of actual energy use after the tenants moved in and the tenants' opinions on living in a passive house. The study showed that passive houses offer high indoor comfort with low energy requirement for heating. One of the passive houses consumed 44 kWh per m{sup 2} per year of district heating for heating and domestic hot water, which constitutes a 72 per cent reduction compared to the Swedish average of 160 kWh per m{sup 2} per year. There is no special architecture or building material needed to build a passive house, but moderate

  11. Conceptual design of initial opacity experiments on the national ignition facility

    Science.gov (United States)

    Heeter, R. F.; Bailey, J. E.; Craxton, R. S.; Devolder, B. G.; Dodd, E. S.; Garcia, E. M.; Huffman, E. J.; Iglesias, C. A.; King, J. A.; Kline, J. L.; Liedahl, D. A.; McKenty, P. W.; Opachich, Y. P.; Rochau, G. A.; Ross, P. W.; Schneider, M. B.; Sherrill, M. E.; Wilson, B. G.; Zhang, R.; Perry, T. S.

    2017-02-01

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures eV and electron densities 21~\\text{cm}-3$ . The iron will be probed using continuum X-rays emitted in a ps, diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, of the NIF beams deliver 500 kJ to the mm diameter hohlraum, and the remaining directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.

  12. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  13. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  14. Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, M.A.; Vinikour, W. [Argonne National Lab., IL (United States). Environmental Assessment Div.; Allison, T. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.] [and others

    1996-09-01

    This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

  15. Researchers' Experiences, Positive and Negative, in Integrative Landscape Projects

    Science.gov (United States)

    Tress, Bärbel; Tress, Gunther; Fry, Gary

    2005-12-01

    Integrative (interdisciplinary and transdisciplinary) landscape research projects are becoming increasingly common. As a result, researchers are spending a larger proportion of their professional careers doing integrative work, participating in shifting interdisciplinary teams, and cooperating directly with non-academic participants. Despite the growing importance of integrative research, few studies have investigated researchers’ experiences in these projects. How do researchers perceive the outcomes of integrative projects, or career effects? Do they view the projects generally as successes or failures? This study analyses researchers’ experiences in integrative landscape studies and investigates what factors shape these experiences. The data stems from 19 semi-structured qualitative interviews and a Web-based survey among 207 participants in integrative landscape research projects. It finds that researchers experience participation in integrative projects as positive, in particular discussions among participants, networking, teamwork, and gaining new insights and skills. Furthermore, most researchers perceive the projects as successful and as having a positive effect on their careers. Less positive aspects of integration relate to publications and merit points. Factors found to contribute to positive experiences include reaching a high degree of integration amongst the involved disciplines, common definitions of integrative research concepts, and projects that include a large share of fundamental research as well as projects with many project outcomes. Based on these findings, we advise future projects to plan for integration, facilitate discussions, and reach agreement on integrative concepts. We suggest that aspects of fundamental research be included in integrative projects. We also suggest that planning be done at an early stage for peer-reviewed publications, to ensure that participants gain merit points from their participation in integrative research

  16. Researchers' experiences, positive and negative, in integrative landscape projects.

    Science.gov (United States)

    Tress, Bärbel; Tress, Gunther; Fry, Gary

    2005-12-01

    Integrative (interdisciplinary and transdisciplinary) landscape research projects are becoming increasingly common. As a result, researchers are spending a larger proportion of their professional careers doing integrative work, participating in shifting interdisciplinary teams, and cooperating directly with non-academic participants. Despite the growing importance of integrative research, few studies have investigated researchers' experiences in these projects. How do researchers perceive the outcomes of integrative projects, or career effects? Do they view the projects generally as successes or failures? This study analyses researchers' experiences in integrative landscape studies and investigates what factors shape these experiences. The data stems from 19 semi-structured qualitative interviews and a Web-based survey among 207 participants in integrative landscape research projects. It finds that researchers experience participation in integrative projects as positive, in particular discussions among participants, networking, teamwork, and gaining new insights and skills. Furthermore, most researchers perceive the projects as successful and as having a positive effect on their careers. Less positive aspects of integration relate to publications and merit points. Factors found to contribute to positive experiences include reaching a high degree of integration amongst the involved disciplines, common definitions of integrative research concepts, and projects that include a large share of fundamental research as well as projects with many project outcomes. Based on these findings, we advise future projects to plan for integration, facilitate discussions, and reach agreement on integrative concepts. We suggest that aspects of fundamental research be included in integrative projects. We also suggest that planning be done at an early stage for peer-reviewed publications, to ensure that participants gain merit points from their participation in integrative research

  17. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  18. CSI technology validation on an LSS ground experiment facility

    Science.gov (United States)

    Wang, S. J.; Eldred, D. B.

    1989-01-01

    The test bed developed at JPL for experimental evaluation of new technologies for the control of large flexible space structures is described. The experiment consists of a flexible spacecraft dynamic simulator, sensors, actuators, a microcomputer, and an advanced programming environment. The test bed has been operational for over a year, and thus far nine experiments were completed or are currently in progress. Several of these experiments were reported at the 1987 CSI conference, and several recent ones are documented in this paper, including high order adaptive control, non-parametric system identification, and mu-synthesis robust control. An aggressive program of experiments is planned for the forseeable future.

  19. Project Marco Polo: Experiences Applying Geography.

    Science.gov (United States)

    Trygestad, JoAnn; Nelson, Jasmine

    1993-01-01

    Describes a summer 1992 study tour of Egypt and Greece by 15 teachers, 15 students, and 5 geography administrators. Focuses on the experiences and attitudes of one eighth-grade student. Asserts that her presentations to student and adult groups have encouraged other students to become more interested in travel and other cultures. (CFR)

  20. Simulation of photofission experiments at the ELI-NP facility

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, P., E-mail: paul.constantin@eli-np.ro [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Balabanski, D.L. [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Cuong, P.V. [Centre of Nuclear Physics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2016-04-01

    An extensive experimental program for the study of photofission will take place at the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility, where different actinide targets will be exposed to a brilliant gamma beam to produce fission fragments. We report on the implementation within the Geant4 simulation toolkit of the photofission process, of related background processes, and of extended ionic charge parameterization. These developments are used to evaluate the production rates of photofission fragments and their release efficiency from the actinide targets.

  1. Panama Canal Watershed Experiment- Agua Salud Project

    Science.gov (United States)

    Stallard, Robert F.; Ogden, Fred L.; Elsenbeer, Helmut; Hall, Jefferson S.

    2010-01-01

    The Agua Salud Project utilizes the Panama Canal’s (Canal) central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. The Canal was one of the great engineering projects in the world. Completed in 1914, after almost a decade of concerted effort, its 80 km length greatly shortened the voyage between the Atlantic and Pacific Oceans. An entire class of ships, the Panamax, has been constructed to maximize the amount of cargo that can be carried in a Canal passage. In today’s parlance, the Canal is a “green” operation, powered largely by water (Table 1). The locks, three pairs on each end with a net lift of 27 meters, are gravity fed. For each ton of cargo that is transferred from ocean to ocean, about 13 tons of water (m3) are used. Lake Gatún forms much of the waterway in the Canal transect. Hydroelectricity is generated at the Gatún dam, whenever there is surplus water, and at Madden Dam (completed in 1936) when water is transferred from Lake Alhajuela to Lake Gatún. The Canal watershed is the source of drinking water for Panama City and Colon City, at either end of the Canal, and numerous towns in between.

  2. Low-gravity impact experiments: Progress toward a facility definition

    Science.gov (United States)

    Cintala, Mark J.

    1987-01-01

    Innumerable efforts were made to understand the cratering process and its ramifications in terms of planetary observations, during which the experiments both were devoted in many cases to unraveling the contribution of gravitational acceleration to cratering mechanisms. Included among these are the explosion experiments in low-gravity aircraft, the drop-platform experiments, and the high-g centrifuge experiments. Considerable insight into the effects of gravity, among other factors, was gained. Even so, other avenues of investigation were out of reach to workers confined to the terrestrial laboratory. It is in this light that the Space Station is being examined as a vehicle with the potential to support otherwise impractical impact experiments. The results of studies performed by members of the planetary cratering community are summarized; their names and affiliations are listed.

  3. Photofission experiments at the ELI-NP facility

    Indian Academy of Sciences (India)

    2015-09-03

    Sep 3, 2015 ... The expected performance of the electron accelerator and production lasers of the GBS, and the targeted operational parameters of the beam are described. Possible laser-induced fission and beam ... Dimiter L Balabanski1 ELI-NP Science Team1. ELI-NP Project, IFIN-HH, 30 Reactorului Str, 077125 ...

  4. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  5. Resonance Project; Music from the ATLAS Experiment

    CERN Multimedia

    Claudia Marcelloni

    2010-01-01

    The ATLAS Collaboration comprises physicists, engineers, technicians and support staff from 38 countries who have come together at CERN to build and run one of the largest, most complex scientific experiments known to mankind. Drawn together by our common love of science, many of us are also passionate about music. In October 2008, we marked the completion of the ATLAS detector construction with a series of live performances, and thus was born the idea for Resonance. The recording experience was exciting and enjoyable for all of us, many of whom had never entered a studio before. Resonance is a double CD featuring a variety of musical styles from classical to heavy metal. It also includes a DVD with footage of the recording sessions and interviews with some of the musicians. For more information go to www.atlas-resonance.ch

  6. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  7. A numerical optimization of high altitude testing facility for wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Bruce Ralphin Rose J

    2015-06-01

    Full Text Available High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A∗, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.

  8. Correlational Study of Project Managers' Competence Experience, Education, and Technology Experience on Project

    Science.gov (United States)

    Hosford, Bryan

    2017-01-01

    Organizations continue to rely on information technology (IT) as a foundational element, yet poor IT project success continues to impact growth and innovation. Research into IT project success is widespread yet has focused on high-level project management attributes, not specific IT solutions. A review of the research literature revealed that the…

  9. Project Management Web Tools at the MICE experiment

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Project management tools like Trac are commonly used within the open-source community to coordinate projects. The Muon Ionization Cooling Experiment (MICE) uses the project management web application Redmine to host mice.rl.ac.uk. Many groups within the experiment have a Redmine project: analysis, computing and software (including offline, online, controls and monitoring, and database subgroups), executive board, and operations. All of these groups use the website to communicate, track effort, develop schedules, and maintain documentation. The issue tracker is a rich tool that is used to identify tasks and monitor progress within groups on timescales ranging from immediate and unexpected problems to milestones that cover the life of the experiment. It allows the prioritization of tasks according to time-sensitivity, while providing a searchable record of work that has been done. This record of work can be used to measure both individual and overall group activity, identify areas lacking sufficient personne...

  10. Developer's perspective: financing cogeneration projects at public facilities

    Energy Technology Data Exchange (ETDEWEB)

    Banhazl, G.

    1986-03-01

    Cogeneration projects for state, federal and local municipal facilities have tremendous potential, particularly on the smaller capacity end of the spectrum. Packaged cogeneration modules, which offer uniformity of design, pretesting prior to delivery and relatively uncomplicated installation should dominate the market. These units can be outfitted with an absorption cycle chiller to provide summer air conditioning. Through proper sizing, selection of compatible components and integration with existing building systems, initial costs should be reasonable. Legislative removal of barriers to multiyear contracts and acceptance of other than low bids will increase private sector funding to these projects. 5 tables.

  11. Use of experience data for seismic evaluations at Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.C. [Lawrence Livermore National Lab., CA (United States); Kimball, J.K.; Guzy, D.J.; Hill, J.R. [USDOE, Washington, DC (United States)

    1994-12-07

    Seismic evaluations of essential systems and components at Department of Energy (DOE) facilities will be conducted over the next several years. For many of these systems and components, few, if any, seismic requirements applied to the original design, procurement, installation, and maintenance process. Thus the verification of the seismic adequacy of existing systems and components presents a difficult challenge. DOE has undertaken development of the criteria and procedures for these seismic evaluations that will maximize safety benefits in a timely and cost effective manner. As demonstrated in previous applications at DOE facilities and by the experience from the commercial nuclear power industry, use of experience data for these evaluations is the only viable option for most existing systems and components. This paper describes seismic experience data, the needs at DOE facilities, the precedent of application of nuclear power plants and DOE facilities, and the program underway for the seismic verification task ahead for DOE.

  12. CRP: Collaborative Research Project (A Mathematical Research Experience for Undergraduates)

    Science.gov (United States)

    Parsley, Jason; Rusinko, Joseph

    2017-01-01

    The "Collaborative Research Project" ("CRP")--a mathematics research experience for undergraduates--offers a large-scale collaborative experience in research for undergraduate students. CRP seeks to widen the audience of students who participate in undergraduate research in mathematics. In 2015, the inaugural CRP had 100…

  13. The mixed waste management facility. Project baseline revision 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Streit, R.D.; Throop, A.L.

    1995-04-01

    Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

  14. High temperature engineering research facilities and experiments in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuanhui; Liu, Meisheng; Yao, Huizhong; Ju, Huaiming [Institute of Nuclear Technology, Tsinghua University, Beijing (China)

    1998-09-01

    June 14, 1995, the construction of a pebble bed type high temperature gas-cooled reactor (HTGR) started in China. It is a test reactor with 10 MW thermal power output (termed HTR- 10). The test reactor is located on the site of Institute of Nuclear Energy Technology (INET) of Tsinghua University in the northwest suburb of Beijing, about 40 km away from the city. Design of the HTR-10 test reactor represents the features of HTR-Modular design: `side-by-side` arrangement, spherical fuel elements with `multi-pass` loading scheme, completely passive decay heat removal, reactor shutdown systems in the side reflector, etc. However, in the HTR-10 design some modifications from the HTR-Module were made to satisfy Chinese conditions. For example, the steam generator is composed of a number of modular helical tubes with small diameter, pulse pneumatic discharging apparatus are used in the fuel handling system and step motor driving control rods are designed. These modifications would cause some uncertainty in our design. It is necessary to do engineering experiments to prove these new or modified ideas. Therefore, a program of engineering experiments for HTR-10 key technologies is being conducted at INET. The main aims of these engineering experiments are to verify the designed characteristics and performance of the components and systems, to feedback on design and to obtain operational experiences. Those engineering experiments are depressurization test of the hot gas duct at room temperature and operating pressure, performance test of the hot gas duct at operating helium temperature and pressure, performance test of the pulse pneumatic fuel handling system, test of the control rods driving apparatus, two phase flow stability test for the once through steam generator and cross mixture test at the bottom of the reactor core

  15. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  16. Final report of the HFIR (High Flux Isotope Reactor) irradiation facilities improvement project

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987.

  17. The ISOLDE facility and the HIE-HISOLDE project: Recent highlights

    Energy Technology Data Exchange (ETDEWEB)

    Borge, M. J. G. [ISOLDE-PH, CERN, 1211 Geneva-23, Switzerland and Instituto de Estructura de la Materia, CSIC, Serrano 113bis, 28006-Madrid (Spain)

    2014-07-23

    The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of the facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.

  18. Organic crystal growth experiment facility (13-IML-1)

    Science.gov (United States)

    Kanbayashi, Akio

    1992-01-01

    The interesting nature of metal-like organic compounds composed of charge transfer complexes has been recently realized. Crystals of these complexes can usually be grown by the solution crystallization method. It is difficult to grow such organic crystals on Earth, especially from the chemical reactions through diffusion controlled process in the solutions, because of gravitational disturbances, or sedimentation. The International Microgravity Lab. (IML-1) Organic Crystal Growth with G-Gitter Preventive Measure (OCGP) experiment is expected to grow a single crystal large enough to allow its intrinsic physical properties to be measured and its detailed crystal structure to be determined. This experiment also attempts to assess the experimental conditions including the microgravity environment for further study of the fundamental process of solution crystallization, nucleation, and growth from supersaturated phases including chemical reactions. Microgravity disturbances, G-jitter, may be an important environmental factor in the experimental method to assess. The vibration damping effects on organic crystal growth can be carefully studied.

  19. Design and Fabrication of the ISTAR Direct-Connect Combustor Experiment at the NASA Hypersonic Tunnel Facility

    Science.gov (United States)

    Lee, Jin-Ho; Krivanek, Thomas M.

    2005-01-01

    The Integrated Systems Test of an Airbreathing Rocket (ISTAR) project was a flight demonstration project initiated to advance the state of the art in Rocket Based Combined Cycle (RBCC) propulsion development. The primary objective of the ISTAR project was to develop a reusable air breathing vehicle and enabling technologies. This concept incorporated a RBCC propulsion system to enable the vehicle to be air dropped at Mach 0.7 and accelerated up to Mach 7 flight culminating in a demonstration of hydrocarbon scramjet operation. A series of component experiments was planned to reduce the level of risk and to advance the technology base. This paper summarizes the status of a full scale direct connect combustor experiment with heated endothermic hydrocarbon fuels. This is the first use of the NASA GRC Hypersonic Tunnel facility to support a direct-connect test. The technical and mechanical challenges involved with adapting this facility, previously used only in the free-jet configuration, for use in direct connect mode will be also described.

  20. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Strait, James [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); McCluskey, Elaine [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lundin, Tracy [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Willhite, Joshua [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Hamernik, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Marchionni, Alberto [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kim, Min Jeong [National Inst. of Nuclear Physics (INFN), Frascati (Italy). National Lab. of Frascati (INFN-LNF); Nessi, Marzio [Univ. of Geneva (Switzerland); Montanari, David [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Heavey, Anne [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  1. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015

    CERN Document Server

    Strait, James; Lundin, Tracy; Willhite, Joshua; Hamernik, Thomas; Papadimitriou, Vaia; Marchionni, Alberto; Kim, Min Jeong; Nessi, Marzio; Montanari, David; Heavey, Anne

    2016-01-01

    This volume of the LBNF/DUNE Conceptual Design Report cover the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  2. American Recovery and Reinvestment Act Projects - Facility Energy Improvements and Wind Turbine and Photovoltaic Panels at Fort Wainwright, Alaska

    Science.gov (United States)

    2011-03-07

    Investment Program (ECIP) projects, "Facility Energy Improvements" and " Wind Turbine and Photovoltaic Panels" at Fort Wainwright, Fairbanks, Alaska. We...reporting this project to the www.recovery.gov Web site. Army personnel did not ensure the " Wind Turbine and Photovoltaic Panels" project was properly

  3. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  4. The DE-PHARM Project: A Pharmacist-Driven Deprescribing Initiative in a Nursing Facility.

    Science.gov (United States)

    Pruskowski, Jennifer; Handler, Steven M

    2017-08-01

    Many residents with life-limiting illnesses are being prescribed and taking potentially inappropriate medications (PIMs) and questionably beneficial medications either near or at the end of life. These medications can contribute to adverse drug reactions, increase morbidity, and increase unnecessary burden and cost. It is crucial that the process of deprescribing be incorporated into the care of these residents. After developing a clinical pharmacist-driven deprescribing initiative in the nursing facility, the objective of this project was to reduce the number of PIMs via accepted recommendations from the clinical pharmacist to the primary team. The Discussion to Ensure the Patient-centered, Health-focused, prognosis-Appropriate, and Rational Medication regimen (DE-PHARM) quality improvement-approved project was conducted in an urban, academic nursing facility in Pittsburgh, Pennsylvania. The pilot phase occurred between October 2015 and April 2016. To be included in this study, participants had to be a custodial resident of the nursing facility with a previously documented comfort-focused treatment plan. All medications used for the management of chronic comorbid diseases were eligible for review. Forty-seven residents managed by eight different primary teams met inclusion criteria. Thirty-nine recommendations for 23 residents were made by the clinical pharmacist, with an average of 0.82 and range of 0-5 recommendations per resident, respectively. Of those, only 10 (26%) were accepted, 1 (3%) was modified, 3 (7%) were rejected, and 25 (64%) had no response within the 120-day response period. Additionally, two residents died during the project, and one resident was readmitted to the hospital for a prolonged period of time. The pilot phase of the DE-PHARM project, a clinical pharmacist-driven deprescribing initiative, was designed and assessed. This project demonstrated the feasibility of such an initiative. Because of the complexity of such a process, special

  5. [Interdisciplinary Cooperation as a Characteristic of Successful Rehabilitation Facilities--Results from the Project MeeR].

    Science.gov (United States)

    Kleineke, V; Stamer, M; Zeisberger, M; Brandes, I; Meyer, T

    2015-08-01

    To determine if there is a difference between successful and less successful rehabilitation facilities concerning their extent and quality of interdisciplinary cooperation? This analysis is part of the project MeeR, that aims to identify characteristics of rehabilitation facilities related to successful rehabilitation. 6 facilities were recruited based on a quantitative analysis; 3 facilities that ranked as above average and 3 as below average in terms of their success in rehabilitating patients. Comprehensive qualitative data were collected on these 6 facilities. In above average rehabilitation facilities, the extent of interdisciplinary cooperation was higher than in below average facilities; the position of the medical profession was less dominant and there was a wider access to team meetings. Promotion of interdisciplinary cooperation is an important component for the improvement of the success of rehabilitation facilities. © Georg Thieme Verlag KG Stuttgart · New York.

  6. The EEE experiment project: status and first physics results

    Science.gov (United States)

    Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicaló, C.; Cifarelli, L.; Coccia, E.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Romano, F.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Toselli, F.; Votano, L.; Williams, M. C. S.; Yánez, G.; Zichichi, A.; Zuyeuski, R.

    2013-06-01

    The Extreme Energy Events Project is an experiment for the detection of Extensive Air Showers which exploits the Multigap Resistive Plate Chamber technology. At the moment 40 EEE muon telescopes, distributed all over the Italian territory, are taking data, allowing the relative analysis to produce the first interesting results, which are reported here. Moreover, this Project has a strong added value thanks to its effectiveness in terms of scientific communication, which derives from the peculiar way it was planned and carried on.

  7. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  8. STAR - Research Experiences at National Laboratory Facilities for Pre-Service and Early Career Teachers

    Science.gov (United States)

    Keller, J. M.; Rebar, B.; Buxner, S.

    2012-12-01

    The STEM Teacher and Researcher (STAR) Program provides pre-service and beginning teachers the opportunity to develop identity as both teachers and researchers early in their careers. Founded and implemented by the Center for Excellence in Science and Mathematics Education (CESaME) at California Polytechnic State University on behalf of the California State University (CSU) system, STAR provides cutting edge research experiences and career development for students affiliated with the CSU system. Over the past three summers, STAR has also partnered with the NSF Robert Noyce Teacher Scholarship Program to include Noyce Scholars from across the country. Key experiences are one to three summers of paid research experience at federal research facilities associated with the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Association (NOAA), and the National Optical Astronomy Observatory (NOAO). Anchoring beginning teachers in the research community enhances participant understanding of what it means to be both researchers and effective teachers. Since its inception in 2007, the STAR Program has partnered with 15 national lab facilities to provide 290 research experiences to 230 participants. Several of the 68 STAR Fellows participating in the program during Summer 2012 have submitted abstracts to the Fall AGU Meeting. Through continued partnership with the Noyce Scholar Program and contributions from outside funding sources, the CSU is committed to sustaining the STAR Program in its efforts to significantly impact teacher preparation. Evaluation results from the program continue to indicate program effectiveness in recruiting high quality science and math majors into the teaching profession and impacting their attitudes and beliefs towards the nature of science and teaching through inquiry. Additionally, surveys and interviews are being conducted of participants who are now teaching in the classroom as

  9. Wabash River coal gasification repowering project -- first year operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Troxclair, E.J. [Destec Energy, Inc., Houston, TX (United States); Stultz, J. [PSI Energy, Inc., West Terre Haute, IN (United States)

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  10. Comparison of Staged Z-pinch Experiments at the NTF Zebra Facility with Mach2 simulations

    Science.gov (United States)

    Ruskov, E.; Wessel, F. J.; Rahman, H. U.; Ney, P.; Darling, T. W.; Johnson, Z.; McGee, E.; Covington, A.; Dutra, E.; Valenzuela, J. C.; Conti, F.; Narkis, J.; Beg, F.

    2016-10-01

    Staged Z-pinch experiments at the University of Nevada, Reno, 1MA Z-pinch Zebra facility were conducted. A hollow shell of argon gas liner is injected between 1 cm anode-cathode gap through a supersonic nozzle of 2.0 cm diameter with a throat gap of 240 microns. A deuterium plasma fill is injected inside the argon gas shell through a plasma gun as a fusible target plasma. An axial magnetic field is also applied throughout the pinch region. Experimental measurements such as pinch current, X-ray signal, neutron yield, and streak images are compared with MACH2 radiation hydrodynamic code simulations. The argon liner density profiles, obtained from the CFD (FLUENT), are used as an input to MACH2. The comparison suggests a fairly close agreement between the experimental measurements and the simulation results. This study not only helps to benchmark the code but also suggests the importance of the Z-pinch implosion time, optimizing both liner and target plasma density to obtain the maximum energy coupling between the circuit and the load. Advanced Research Projects Agency - Energy, DE-AR0000569.

  11. Land need assessment for the project of common facilities and its dependence

    Directory of Open Access Journals (Sweden)

    Richard Filip

    2010-01-01

    Full Text Available The project of common facilities is a very important part of the process of land arrangement. It helps to ensure a lot of public functions, for example permeability of landscape, to preserve fertility of soil, to decrease surface outflow and prevention from floods, the protection and production of environment etc. It is essential to ensure sufficient land area to be able to suggest and carry out such plans of common facilities. It will be more and more difficult to ensure this plan due to the fact that the state-owned land is still decreasing. In the areas where the state-owned land still exists, it could be possible to reserve the part of these areas for this objective. This study analyses projects of common facilities in 33 cadastral areas and series of another variable values with the aim to find or to exclude different dependences. It could also help to estimate the extent of reserve areas. The most of examined values did not show any dependence but some of the tested values show the certain dependence.

  12. Design and construction of headwater pond tailings facility, Voisey's Bay nickel project, Labrador

    Energy Technology Data Exchange (ETDEWEB)

    Small, C.A. [AMEC Earth and Environmental Ltd., Fredericton, NB (Canada); Stefanuto, D. [Voisey' s Bay Nickel Company, St. John' s, NL (Canada)

    2007-07-01

    The Voisey's Bay mine is located in northern Labrador and operated by the Voisey's Bay Nickel Company. The Headwater Pond tailings facility, located 7 km east of the mine and mill complex, receives discharged tailings, potentially acid generating rock, and water from the mine site. Production at the mine started in the fall of 2005. This paper discussed the design and construction of the Headwater Pond tailings facility which was constructed in 2005 as part of the Voisey's Bay Nickel Project, as well as the method of tailings placement and disposal for potentially acid generating rock from the mine, and the plans for closure of the facility after mining operations cease. The paper discussed the physical environment of the site including: bedrock geology; surficial geology; hydrogeologic setting; permafrost; seismicity; precipitation and evaporation; and watershed. In addition, applicable regulatory requirements, guidelines and design criteria were identified. Next, the paper discussed dam design and configuration including: stability analysis; seepage analysis; flood routing and emergency spillway; and freeboard and rip-rap. It was concluded that the Headwater Pond tailings and waste rock management facility was generally built in accordance with the design and construction plan. The pond will provide safe storage of acid generating tailings and potentially acid generating waste rock for 14 years of mine operation and without limit after closure. 14 figs.

  13. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  14. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  15. Tethered elevator and platforms as space station facilities: Systems studies and demonstrative experiments

    Science.gov (United States)

    1986-01-01

    Several key concepts of the science and applications tethered platforms were studied. Some conclusions reached are herein listed. Tether elevator and platform could improve the space station scientific and applicative capabilities. The space elevator presents unique characteristics as microgravity facility and as a tethered platform servicing vehicle. Pointing platforms could represent a new kind of observation facility for large class of payloads. The dynamical, control and technological complexity of these concepts advised demonstrative experiments. The on-going tethered satellite system offers the opportunity to perform such experiments. And feasibility studies are in progress.

  16. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    Science.gov (United States)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  17. [Patient experiences and patient centeredness : The website project DIPEx Germany].

    Science.gov (United States)

    Breuning, Martina; Lucius-Hoene, Gabriele; Burbaum, Christina; Himmel, Wolfgang; Bengel, Jürgen

    2017-04-01

    Patient centeredness is a central concept in the treatment and rehabilitation of persons with chronic illness in Germany. There are various concepts of and approaches to patient centeredness, most of them developed from the perspective of health care research and the institutions. In terms of participation requirements, there has been a lack of understanding of the patient's perspective and experiences so far. In this article, the authors assume that the collection and analysis of patient experiences can improve patient participation and provide access to the experience of living and coping with an illness, including the patient's interactions with the health care system, their participation, and their preferences for participation. Potential uses for and the limits and risks of utilizing patient experiences are discussed, using the example of the website project Krankheitserfahrungen.de (DIPEx Germany). The project collects patient experiences in the form of narrative interviews. In the course of sharing their stories, the speakers become experts on their own lives and describe where and how they feel engaged in their health care and how they wish to become further engaged, thereby experiencing participation in terms of the International Classification of Functioning. The experience of rehabilitation is viewed in a comprehensive manner for those affected. It is not limited to experiences in specific institutions, but rather, the patient experience includes the context and processes, and describes how patients can find their way back to their lives after the interruption of an illness.

  18. Enhancing the Student Learning Experience in Software Engineering Project Courses

    Science.gov (United States)

    Marques, Maira; Ochoa, Sergio F.; Bastarrica, Maria Cecilia; Gutierrez, Francisco J.

    2018-01-01

    Carrying out real-world software projects in their academic studies helps students to understand what they will face in industry, and to experience first-hand the challenges involved when working collaboratively. Most of the instructional strategies used to help students take advantage of these activities focus on supporting agile programming,…

  19. The "Tesoros" Literacy Project: An Experiment in Democratic Communities.

    Science.gov (United States)

    DeStigter, Todd

    1998-01-01

    Narrates effects of a 10-week literacy project, a collaboration between Latino English-as-a-Second-Language students and at-risk Anglo counterparts in a rural high school in the upper midwest. Highlights "treasures" of their experience as they gather to read Spanish- and English-language literature, to write stories and poems, and to…

  20. Beginning the Program. Project DEEP (Diversified Educational Experiences Program).

    Science.gov (United States)

    Connett, Jane; And Others

    Project DEEP (Diversified Educational Experience Program) was developed to improve the behavior and attitudes of secondary students in schools where dropouts, absenteeism, and poor attitudes are existing problems. The open classroom with student involvement and participation in goal setting, presentation, and evaluation is the basic concept of…

  1. The Galileo project - A 3.5 M Italian telescope facility

    Science.gov (United States)

    Barbieri, Cesare

    1989-10-01

    The Galileo project comprises the design, building, and operation of a 3.5-m Italian telescope, the main elements (diameter, mechanical stucture, active optics, etc.) of which consist of a duplication of the ESO New Technology Telescope (NTT). Modifications have been introduced in order to allow, beyond the f/11 Nasmyth foci, a prime focus f/2.2 station, a trapped f/6 focus, and a small Cassegrain f/20 facility. Other changes with respect to the NTT have been made to the control and data acquisition system, and to the service building.

  2. Design Optimisation of a High Intensity Beam Facility and Feasibility Experiment of a Solid Fragmented Target

    CERN Document Server

    Charitonidis, Nikolaos; Rivkin, Leonid

    2014-06-13

    The present PhD thesis describes the design, execution and results of the HRMT-10 experiment performed at the HiRadMat facility of the CERN/SPS complex. The first part of the thesis covers the design optimization studies of the HiRadMat facility, focusing in particular on the radiation protection issues. A detailed Monte-Carlo model of the facility has been developed and validated through comparison with measurements. A very satisfactory agreement between the simulation and the experimental data is observed. In the second part of this thesis, a novel feasibility experiment of a fragmented solid target for a future Neutrino Factory or a Super Beam facility, able to support high beam powers ( 1 MW) is presented in detail. A solid granular target has been proposed as an interesting alternative to an open Hg jet target, presently considered as the baseline for such facilities, but posing considerable technical challenges. The HRMT-10 experiment seeks to address the lack of experimental data of the feasibility of...

  3. Planning and managing future space facility projects. [management by objectives and group dynamics

    Science.gov (United States)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  4. Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility

    Science.gov (United States)

    Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno

    2017-10-01

    We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.

  5. Material erosion and erosion products in disruption simulation experiments at the MK-200 UG facility

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, N.I.; Bakhtin, V.P.; Kurkin, S.M.; Safronov, V.M.; Toporkov, D.A.; Vasenin, S.G.; Zhitlukhin, A.M.; Wuerz, H. E-mail: hermann.wurz@ihm.fzk.de

    2000-11-01

    Plasma/material interaction was studied in disruption simulation experiments at the plasma gun facility MK-200 UG. Graphite, tungsten and aluminium targets (beryllium-like material) were irradiated by intense plasma streams under heat fluxes typical for international thermonuclear experimental reactor (ITER) hard disruption. Materials were also exposed to radiation emitted by target plasma shields. Surface damage and erosion products were analysed.

  6. Highlights of the ISOLDE Facility and the HIE-ISOLDE Project

    CERN Document Server

    Borge, M.J.G.

    2016-01-01

    The ISOLDE radioactive beam facility is the dedicated CERN installation for the production and acceleration of radioactive nuclei. Exotic nuclei of most chemical elements are available for the study of nuclear structure, nuclear astrophysics, fundamental symmetries and atomic physics, as well as for applications in condensed matter and life sciences. In order to broaden the scientific opportunities beyond the reach of the present facility, the on-going HIE-ISOLDE (High Intensity and Energy) project provides major improvements in energy range, beam intensity and beam quality. A major element of the project is the increase of the final energy of the post-accelerated beams to 10 MeV/u throughout the periodic table. Physics with post-accelerated beams at 4 MeV/u has started this autumn. The increase in energy up to 10 MeV/u is fully funded and it will be implemented at the rate of one cryo-module per year reaching 10 MeV/u for A∕q = 4.5 at the start of 2018. In this contribution, a description of the ISOLDE fac...

  7. Students’ Team Project Experiences and Their Attitudes Towards Teamwork

    Directory of Open Access Journals (Sweden)

    Aleksandra Rudawska

    2017-03-01

    Full Text Available Purpose: The aim of the study is to evaluate the influence of team project experiences of students (presence and role of a leader; fairness in team projects; conditions supporting teamwork created by a university on their attitudes towards teamwork, especially the perception of teamwork effectiveness and the preference of working in teams. Methodology: In the study the quantitative research was done among master degree Polish students of Management (105 questionnaires. The measures used for the study were developed specifcally for the study referring to the previous research in the feld. Findings: Results indicate that leaders in team projects and conditions supporting teamwork are connected with the students’ perception of teamwork effectiveness, while the fairness in team projects is connected with students’ preference of working collectively. Research implications: We conclude that in order to develop a positive attitude towards teamwork, the teamwork projects should be better supported by the instructors (especially supporting the emergence of leader(s and minimising the problem of free riders and the university should create a climate that facilitates teamworking, otherwise team projects might negatively influence students’ attitude towards collective work. Value: On the labour market the teamwork skills are one of the most important skills of employees, as the team-based organizational designs are becoming the norm in work organization. The study is contributing to the understanding of the relations between student experiences and their attitudes as well as the role played by high education in the development of these attitudes. Some previous research in Anglo-Saxon culture countries indicate that team project assignments realised by students during studies might even hinder their attitudes to teamwork and their willingness to work in teams in the future.

  8. Facilities Monitoring Project - AMISS. Annual report, March 14, 1997--March 13, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hruska, S.I.; Lacher, R.C.

    1998-06-01

    The objectives of this program are the design and development of knowledge based systems for increasing safety and security in nuclear facilities, to implement a graphic interface in G2, and to assess the performance of the system using validation data. Integration of the systems with sensors and sensor fusion systems is also a goal of this project. This project was designed as a team effort among LANL, FSU, and contractors within Allied Signal, and the collaboration has been a successful venture. Each part of the team has brought very valuable contributions to the project during the year, and the cooperation level among the sub-teams has been phenomenal. The subject of this report is to summarize the accomplishments of the FSU part of the team. Foundational work has been performed for all of the project goals during the past year at FSU. Susan Bassett (Hruska) spent the summer at LANL under this contract, picking up on much of the administrative oversight of the project while Paul Argo was on extended vacation. Chris Lacher, Chair of Computer Science, took on the responsibility of on site leadership and direction of FSU GRAs when Susan Hruska took a partial leave of absence from FSU beginning in January 1998. Kristin Adair spent one semester on site at LANL as a GRA, and all of the FSU team members have traveled at least once to LANL for team meetings during the year. The LANL and FSU teams also met at a technical conference in Orlando in the Fall to present a special session on knowledge-based systems at the conference, and for lengthy team meetings. A web page for the project has provided additional communication links and a forum for sharing information and reports of progress between the sub-teams.

  9. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    Energy Technology Data Exchange (ETDEWEB)

    Moss, R. H. [Pacific Northwest National Lab. (PNNL)/Univ. of Maryland, College Park, MD (United States). Joint Global Change Research Inst.; Blohm, A. J. [Univ. of Maryland, College Park, MD (United States); Delgado, A. [Pacific Northwest National Lab. (PNNL)/Univ. of Maryland, College Park, MD (United States). Joint Global Change Research Inst.; Henriques, J. J. [James Madison Univ., Harrisonburg, VA (United States); Malone, E L. [Pacific Northwest National Lab. (PNNL)/Univ. of Maryland, College Park, MD (United States). Joint Global Change Research Inst.

    2015-08-15

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before final conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and infrastructure

  10. Additional facilities to handle PUREX tank farm vapor wastes. Project CG-719

    Energy Technology Data Exchange (ETDEWEB)

    Wood, V.W.

    1957-01-07

    The liquid high-level radioactive wastes from the separations plant are stored in large underground tanks where radioactive decay of the fission products in storage gives off heat. In the case of the 241-A underground storage tank farm, for Purex wastes, advantage is taken of this heat to self-concentrate the wastes. The present practice is to permit boiling and concentration in the storage tanks. The vapors given off from the boiling wastes are collected in a vapor header and passed through a deentrainment vessel and on to two contact condensers where the vapors are condensed and intermixed with waste cooling water. Samples taken of the waste vapors have shown a considerable amount of cesium{sup 137} present as well as other types of radioactive material carry over from the waste tanks. For this reason the contact condenser effluent is discharged to an underground crib 216-A-8. Underground disposal of the increasing volume of condenser effluent as larger waste volumes are accumulated in the underground tanks presents a critical problem which is further complicated by the desirability to transfer the condensate waste to new disposal facilities near the 200 West area. The intent of this report is to present the scope of the facilities required to reduce the volume of potentially radioactive condensate waste from the 241-A tank farm and to dispose of this waste through supplemental cribbing. An analysis of the 216-A-8 crib capabilities in relation to the projected flows clearly indicates that if other facilities to reduce the contaminated waste stream volume are not provided, an extensive and costly crib system will be required. The economical solution to the problem is to provide surface condensers to permit segregation of the condensed waste vapors from the cooling water, condensate collection and transfer facilities, and a new condensate disposal crib near the 200 West Area. Data which support this solution are provided in this report.

  11. Norm - contaminated iodine production facilities decommissioning in Turkmenistan: experience and results

    Energy Technology Data Exchange (ETDEWEB)

    Gelbutovskiy, Alexander; Cheremisin, Peter; Egorov, Alexander; Troshev, Alexander; Boriskin, Mikhail [ECOMET-S, Saint Petersburg (Russian Federation)

    2013-07-01

    This report summarizes the data, including the cost parameters of the former iodine production facilities decommissioning project in Turkmenistan. Before the closure, these facilities were producing the iodine from the underground mineral water by the methods of charcoal adsorption. Balkanabat iodine and Khazar chemical plants' sites remediation, transportation and disposal campaigns main results could be seen. The rehabilitated area covers 47.5 thousand square meters. The remediation equipment main characteristics, technical solutions and rehabilitation operations performed are indicated also. The report shows the types of the waste shipping containers, the quantity and nature of the logistics operations. The project waste turnover is about 2 million ton-kilometers. The problems encountered during the remediation of the Khazar chemical plant site are discussed: undetected waste quantities that were discovered during the operational activities required the additional volume of the disposal facility. The additional repository wall superstructure was designed and erected to accommodate this additional waste. There are data on the volume and characteristics of the NORM waste disposed: 60.4 thousand cu.m. of NORM with total activity 1 439 x 10{sup 9} Bq (38.89 Ci) were disposed at all. This report summarizes the project implementation results, from 2009 to 15.02.2012 (the date of the repository closure and its placement under the controlled supervision), including monitoring results within a year after the repository closure. (authors)

  12. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    Directory of Open Access Journals (Sweden)

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  13. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    Science.gov (United States)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  14. HAZWOPER project documents for demolition of the Waste Evaporator Facility, Building 3506, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document, in support of the Waste Evaporator Facility (WEF) demolition project and contains the Project Work Plan and the Project Health and Safety Plan for demolition and partial remediation actions by ATG at the Waste Evaporator Facility, Building 3506. Various activities will be conducted during the course of demolition, and this plan provides details on the work steps involved, the identification of hazards, and the health and safety practices necessary to mitigate these hazards. The objective of this document is to develop an approach for implementing demolition activities at the WEF. This approach is based on prior site characterization information and takes into account all of the known hazards at this facility. The Project Work Plan provides instructions and requirements for identified work steps that will be utilized during the performance of demolition, while the Health and Safety Plan addresses the radiological, hazardous material exposure, and industrial safety concerns that will be encountered.

  15. Development and use of a master health facility list: Haiti's experience during the 2010 earthquake response

    Science.gov (United States)

    Rose-Wood, Alyson; Heard, Nathan; Thermidor, Roody; Chan, Jessica; Joseph, Fanor; Lerebours, Gerald; Zugaldia, Antonio; Konkel, Kimberly; Edwards, Michael; Lang, Bill; Torres, Carmen-Rosa

    2014-01-01

    ABSTRACT Master health facility lists (MHFLs) are gaining attention as a standards-based means to uniquely identify health facilities and to link facility-level data. The ability to reliably communicate information about specific health facilities can support an array of health system functions, such as routine reporting and emergency response operations. MHFLs support the alignment of donor-supported health information systems with county-owned systems. Recent World Health Organization draft guidance promotes the utility of MHFLs and outlines a process for list development and governance. Although the potential benefits of MHFLs are numerous and may seem obvious, there are few documented cases of MHFL construction and use. The international response to the 2010 Haiti earthquake provides an example of how governments, nongovernmental organizations, and others can collaborate within a framework of standards to build a more complete and accurate list of health facilities. Prior to the earthquake, the Haitian Ministry of Health (Ministère de la Santé Publique et de la Population [MSPP]) maintained a list of public-sector health facilities but lacked information on privately managed facilities. Following the earthquake, the MSPP worked with a multinational group to expand the completeness and accuracy of the list of health facilities, including information on post-quake operational status. This list later proved useful in the response to the cholera epidemic and is now incorporated into the MSPP's routine health information system. Haiti's experience demonstrates the utility of MHFL formation and use in crisis as well as in the routine function of the health information system. PMID:25276595

  16. Student experiences with an international public health exchange project.

    Science.gov (United States)

    Critchley, Kim A; Richardson, Eileen; Aarts, Clara; Campbell, Barbara; Hemmingway, Ann; Koskinen, Liisa; Mitchell, Maureen P; Nordstrom, Pam

    2009-01-01

    With growing interconnectivity of healthcare systems worldwide and increased immigration, inappropriate cultural and role assumptions are often seen when cultures clash within a country or when there is practice across country boundaries in times of disaster and during international travel. To increase students' multicultural awareness and work experiences abroad, the authors describe a 7-school, 5-country international student exchange project. The authors also share the students' evaluations of their experiences as they are challenged to erase boundaries and embrace nursing across countries. Participating faculty describe the process, challenges, and keys to success found in creating and living this international project. Students involved in the exchange process evaluate the learning opportunities and challenges and the joy of coming together as newfound colleagues and friends.

  17. Sustainable assessment of learning experiences based on projects

    Directory of Open Access Journals (Sweden)

    Ignacio TRAVERSO RIBÓN

    2016-05-01

    Full Text Available In a project-based learning experience, the detailed monitoring of the activities in which team members participate can be useful to evaluate their work. Using learning-oriented assessment procedures, supervisors can assess the teamwork abilities with a formative purpose. Evaluation strategies such as self-assessment, peer assessment and co-assessment are often used to make evaluation formative and sustainable. Conducting an assessment strategy is not easy for team members, since they need before to have a reasonable understanding of the evaluation process and criteria. This paper describes a learning-oriented evaluation methodology and an open data framework that can be applied to collaborative project settings. An evaluation rubric and a series of indicators that provide evidences about the developed skills have been elaborated and applied in a small-scale project-based course. Projects were managed and developed with the help of an open source software forge that contains a ticketing tool for planning and tracking of tasks, a version control repository to save the software outcomes, and using a wiki to host text deliverables. The experience provides evidences in favor of using the assessment method and open data framework to make teamwork evaluation more sustainable.

  18. Optimizations of transverse projected emittance at the photo-injector test facility at DESY, location Zeuthen

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: r.sakhorn@gmail.com [Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen (Germany); Stephan, F.; Krasilnikov, M. [Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen (Germany); Ackermann, W. [Technische Universtaet Darmstadt, Schossgartenstrasse 8, 64289 Darmstadt (Germany); Asova, G.; Baehr, J. [Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen (Germany); Gjonaj, E. [Technische Universtaet Darmstadt, Schossgartenstrasse 8, 64289 Darmstadt (Germany); Grabosch, H.J.; Hakobyan, L.; Haenel, M.; Ivanisenko, Y.; Khojoyan, M.; Klemz, G. [Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen (Germany); Lederer, S. [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Mahgoub, M. [Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen (Germany); Michelato, P.; Monaco, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano - LASA, Via F.lli Cervi 201, 20090 Segrate Milano (Italy); Nozdrin, M.; O' Shea, B.; Otevrel, M. [Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen (Germany); and others

    2012-04-11

    High brightness electron sources for linac based short-wavelength free-electron lasers are developed and optimized for small transverse projected emittance at the photo-injector test facility at DESY, location Zeuthen (PITZ). A major part of the measurement program at PITZ is dedicated to transverse phase space optimization in order to fulfill the requirements of the European X-ray free-electron laser (European XFEL). A laser-driven RF-gun, treated with a dry-ice sublimation-impulse cleaning technique, a new photocathode laser system allowing short rise and fall times of the flat-top temporal distribution as well as several new diagnostic components have been installed at PITZ in 2008. The electrons generated via the photo-effect at a cesium telluride (Cs{sub 2}Te) cathode are accelerated by a 1.6 cell L-band RF-gun cavity with a maximum accelerating gradient at the cathode of about 60 MV/m. The transverse projected emittance is measured using a single slit scan technique. In the 2008-2009 run period, a detailed characterization of the projected transverse emittance was performed at different operating conditions. Optimizations and measurement results as well as simulation predictions of the transverse projected emittance for bunch charges of 1, 0.5, 0.25 and 0.1 nC are presented and discussed in this paper. The geometric mean of the normalized projected rms emittance in both transverse directions for an electron bunch charge of 1 nC was measured to be 0.89{+-}0.01 mm mrad for a 100% rms phase-space distribution.

  19. Optimizations of transverse projected emittance at the photo-injector test facility at DESY, location Zeuthen

    Science.gov (United States)

    Rimjaem, S.; Stephan, F.; Krasilnikov, M.; Ackermann, W.; Asova, G.; Bähr, J.; Gjonaj, E.; Grabosch, H. J.; Hakobyan, L.; Hänel, M.; Ivanisenko, Y.; Khojoyan, M.; Klemz, G.; Lederer, S.; Mahgoub, M.; Michelato, P.; Monaco, L.; Nozdrin, M.; O'Shea, B.; Otevrel, M.; Petrosyan, B.; Richter, D.; Rönsch-Schulenburg, J.; Sertore, D.; Schreiber, S.; Schnepp, S.; Shapovalov, A.; Spesyvtsev, R.; Staykov, L.; Vashchenko, G.; Weiland, T.; Will, I.

    2012-04-01

    High brightness electron sources for linac based short-wavelength free-electron lasers are developed and optimized for small transverse projected emittance at the photo-injector test facility at DESY, location Zeuthen (PITZ). A major part of the measurement program at PITZ is dedicated to transverse phase space optimization in order to fulfill the requirements of the European X-ray free-electron laser (European XFEL). A laser-driven RF-gun, treated with a dry-ice sublimation-impulse cleaning technique, a new photocathode laser system allowing short rise and fall times of the flat-top temporal distribution as well as several new diagnostic components have been installed at PITZ in 2008. The electrons generated via the photo-effect at a cesium telluride (Cs2Te) cathode are accelerated by a 1.6 cell L-band RF-gun cavity with a maximum accelerating gradient at the cathode of about 60 MV/m. The transverse projected emittance is measured using a single slit scan technique. In the 2008-2009 run period, a detailed characterization of the projected transverse emittance was performed at different operating conditions. Optimizations and measurement results as well as simulation predictions of the transverse projected emittance for bunch charges of 1, 0.5, 0.25 and 0.1 nC are presented and discussed in this paper. The geometric mean of the normalized projected rms emittance in both transverse directions for an electron bunch charge of 1 nC was measured to be 0.89±0.01 mm mrad for a 100% rms phase-space distribution.

  20. Debriefing in Laboratory Experiences: A Quality Improvement Project.

    Science.gov (United States)

    Vihos, Jill; Pollard, Loreen; Bazin, Moira; Lozza, Denaine; MacDonald, Penny; Moniz, Nadine; Spies, Dorothy

    The purpose of this project was to explore (a) how nursing students regarded debriefing sessions at the end of a laboratory skills class and (b) the cognitive, affective, and social learning outcomes of debriefing sessions. Survey questionnaires were administered to 378 prelicensure nursing students after their nursing skills laboratory class that included a debriefing session. Most students either agreed or strongly agreed that debriefing facilitated the discussion about their experience and reflection on learning.

  1. TPC status for MPD experiment of NICA project

    Science.gov (United States)

    Averyanov, A.; Bazhazhin, A.; Chepurnov, V. F.; Chepurnov, V. V.; Cheremukhina, G.; Chernenko, S.; Fateev, O.; Kiriushin, Yu.; Kolesnikov, A.; Korotkova, A.; Levchanovsky, F.; Lukstins, J.; Movchan, S.; Pilyar, A.; Razin, S.; Ribakov, A.; Samsonov, V.; Vereschagin, S.; Zanevsky, Yu.; Zaporozhets, S.; Zruev, V.

    2017-06-01

    In a frame of the JINR scientific program on study of hot and dense baryonic matter a new accelerator complex Ion Collider fAcility (NICA) based on the Nuclotron-M is under realization. It will operate at luminosity up to 1027 cm-2s-1 for Au79+ ions. Two interaction points are foreseen at NICA for two detectors which will operate simultaneously. One of these detectors, the Multi-Purpose Detector (MPD), is optimized for investigations of heavy-ion collisions. The Time-Projection Chamber (TPC) is the main tracking detector of the MPD central barrel. It is a well-known detector for 3-dimensional tracking and particle identification for high multiplicity events. The conceptual layout of MPD and detailed description of the design and main working parameters of TPC, the readout system based on MWPC and readout electronics as well as the TPC subsystems and tooling for assembling and integration TPC into MPD are presented.

  2. Conceptual design of initial opacity experiments on the national ignition facility

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, R.  F.; Bailey, J.  E.; Craxton, R.  S.; DeVolder, B.  G.; Dodd, E.  S.; Garcia, E.  M.; Huffman, E.  J.; Iglesias, C.  A.; King, J.  A.; Kline, J.  L.; Liedahl, D.  A.; McKenty, P.  W.; Opachich, Y.  P.; Rochau, G.  A.; Ross, P.  W.; Schneider, M.  B.; Sherrill, M.  E.; Wilson, B.  G.; Zhang, R.; Perry, T.  S.

    2017-01-09

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures${\\geqslant}150$ eV and electron densities${\\geqslant}7\\times 10^{21}~\\text{cm}^{-3}$. The iron will be probed using continuum X-rays emitted in a${\\sim}200$ ps,${\\sim}200~\\unicode[STIX]{x03BC}\\text{m}$diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design

  3. Summary of 2016 Light Microscopy Module (LMM) Physical Science Experiments on ISS. Update of LMM Science Experiments and Facility Capabilities

    Science.gov (United States)

    Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo

    2016-01-01

    This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.

  4. Status of power generation experiments in the NASA Lewis closed cycle MHD facility

    Science.gov (United States)

    Sovie, R. J.; Nichols, L. D.

    1971-01-01

    The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  5. Data acquisition and experiment control system of the project Maus (materials science experiments under weightlessness)

    Science.gov (United States)

    Lensch, D.

    In the context of Spacelab and Shuttle utilization, it is possible to conduct experiments in 'Small Self Contained Packages' (SSCP). This possibility exists primarily for experiments related to materials research/industrial processing engineering. The program involved is called 'get away special' (GAS). The project Maus was established in West Germany with the aim to participate in the program GAS. The autonomous design of the considered experiments made it necessary to develop an electronic unit for the control and the automatic conduction of the experiment. In addition, the process of the acquisition and the recording of the experimental data is also controlled.

  6. Students’ Lived Experience of Project-Based Learning

    Directory of Open Access Journals (Sweden)

    Sandy Ferianda

    2017-07-01

    Full Text Available Inspired by personal experiences during the study time in the Graduate Program in English Language Studies (ELS Sanata Dharma University Yogyakarta, this research focused mainly on investigating the ELS students’ lived experience of project-based learning implemented by the ELS lecturers. This study employed hermeneutic phenomenology since it described and interpreted the meanings of ELS students lived experience. The participants of this study were the three ELS students considered to be illuminating from the three different streams batch of 2015. In this study we used one-on-one in depth interview to gain the data. The findings of this study consisted of four prefigured meanings and two emergent meanings namely a authentic learning, b learner autonomy, c cooperative learning, d multiple intelligences, e understanding others, and f personal development. The findings of this study gave implications not only to the ELS students and lecturers, but also to the audience. Lastly, recommendations were also addressed to the ELS students as their habit formation, to the ELS lecturers as their inputs to give more feedbacks to their students, and to the future researchers. Keywords: Lived experience, project-based learning.

  7. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    Energy Technology Data Exchange (ETDEWEB)

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The

  8. Commissioning experience and beam physics measurements at the SwissFEL Injector test Facility

    CERN Document Server

    Schietinger, T.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, Bernd; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-26

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including atransverse deflecting rf cavity. It delivered electron bunchesof up to200 pC chargeand up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of a FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measureme...

  9. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

    1997-11-30

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

  10. Spent nuclear fuel project, Cold Vacuum Drying Facility human factors engineering (HFE) analysis: Results and findings

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J.

    1998-07-17

    This report presents the background, methodology, and findings of a human factors engineering (HFE) analysis performed in May, 1998, of the Spent Nuclear Fuels (SNF) Project Cold Vacuum Drying Facility (CVDF), to support its Preliminary Safety Analysis Report (PSAR), in responding to the requirements of Department of Energy (DOE) Order 5480.23 (DOE 1992a) and drafted to DOE-STD-3009-94 format. This HFE analysis focused on general environment, physical and computer workstations, and handling devices involved in or directly supporting the technical operations of the facility. This report makes no attempt to interpret or evaluate the safety significance of the HFE analysis findings. The HFE findings presented in this report, along with the results of the CVDF PSAR Chapter 3, Hazards and Accident Analyses, provide the technical basis for preparing the CVDF PSAR Chapter 13, Human Factors Engineering, including interpretation and disposition of findings. The findings presented in this report allow the PSAR Chapter 13 to fully respond to HFE requirements established in DOE Order 5480.23. DOE 5480.23, Nuclear Safety Analysis Reports, Section 8b(3)(n) and Attachment 1, Section-M, require that HFE be analyzed in the PSAR for the adequacy of the current design and planned construction for internal and external communications, operational aids, instrumentation and controls, environmental factors such as heat, light, and noise and that an assessment of human performance under abnormal and emergency conditions be performed (DOE 1992a).

  11. The Fabric for Frontier Experiments Project at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Michael [Fermilab

    2014-01-01

    The FabrIc for Frontier Experiments (FIFE) project is a new, far-reaching initiative within the Fermilab Scientific Computing Division to drive the future of computing services for experiments at FNAL and elsewhere. It is a collaborative effort between computing professionals and experiment scientists to produce an end-to-end, fully integrated set of services for computing on the grid and clouds, managing data, accessing databases, and collaborating within experiments. FIFE includes 1) easy to use job submission services for processing physics tasks on the Open Science Grid and elsewhere, 2) an extensive data management system for managing local and remote caches, cataloging, querying, moving, and tracking the use of data, 3) custom and generic database applications for calibrations, beam information, and other purposes, 4) collaboration tools including an electronic log book, speakers bureau database, and experiment membership database. All of these aspects will be discussed in detail. FIFE sets the direction of computing at Fermilab experiments now and in the future, and therefore is a major driver in the design of computing services worldwide.

  12. Experiment Software and Projects on the Web with VISPA

    Science.gov (United States)

    Erdmann, M.; Fischer, B.; Fischer, R.; Geiser, E.; Glaser, C.; Müller, G.; Rieger, M.; Urban, M.; von Cube, R. F.; Welling, C.

    2017-10-01

    The Visual Physics Analysis (VISPA) project defines a toolbox for accessing software via the web. It is based on latest web technologies and provides a powerful extension mechanism that enables to interface a wide range of applications. Beyond basic applications such as a code editor, a file browser, or a terminal, it meets the demands of sophisticated experiment-specific use cases that focus on physics data analyses and typically require a high degree of interactivity. As an example, we developed a data inspector that is capable of browsing interactively through event content of several data formats, e.g., MiniAOD which is utilized by the CMS collaboration. The VISPA extension mechanism can also be used to embed external web-based applications that benefit from dynamic allocation of user-defined computing resources via SSH. For example, by wrapping the JSROOT project, ROOT files located on any remote machine can be inspected directly through a VISPA server instance. We introduced domains that combine groups of users and role-based permissions. Thereby, tailored projects are enabled, e.g. for teaching where access to student’s homework is restricted to a team of tutors, or for experiment-specific data that may only be accessible for members of the collaboration. We present the extension mechanism including corresponding applications and give an outlook onto the new permission system.

  13. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  14. Metrology for decommissioning nuclear facilities: Partial outcomes of joint research project within the European Metrology Research Program.

    Science.gov (United States)

    Suran, Jiri; Kovar, Petr; Smoldasova, Jana; Solc, Jaroslav; Van Ammel, Raf; Garcia Miranda, Maria; Russell, Ben; Arnold, Dirk; Zapata-García, Daniel; Boden, Sven; Rogiers, Bart; Sand, Johan; Peräjärvi, Kari; Holm, Philip; Hay, Bruno; Failleau, Guillaume; Plumeri, Stephane; Laurent Beck, Yves; Grisa, Tomas

    2017-09-01

    Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report.

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, E. C.

    1998-11-23

    The Building 594 D&D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 {micro}Ci (175 kBq). The radionuclides of concern were Co{sup 60}, Cs{sup 137}, and Am{sup 241}. The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  16. Calibration of the SphinX experiment at the XACT facility in Palermo

    Science.gov (United States)

    Collura, A.; Barbera, M.; Varisco, S.; Calderone, G.; Reale, F.; Gburek, S.; Kowalinski, M.; Sylwester, J.; Siarkowski, M.; Bakala, J.; Podgorski, P.; Trzebinski, W.; Plocieniak, S.; Kordylewski, Z.

    2008-07-01

    Three of the four detectors of the SphinX experiment to be flown on the Russian mission Coronas-Photon have been measured at the XACT Facility of the Palermo Observatory at several wavelengths in the soft X-ray band. We describe the instrumental set-up and report some measurements. The analysis work to obtain the final calibration is still in progress.

  17. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    Science.gov (United States)

    Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.

    2017-05-01

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.

  18. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Charitonidis, Nikolaos [CERN; Efthymiopoulos, Ilias [CERN; Fabich, Adrian [CERN; Meddahi, Malika [CERN; Gianfelice-Wendt, Eliana [Fermilab

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.

  19. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    CERN Document Server

    Charitonidis, Nikolaos; Fabich, Adrian; Meddahi, Malika; Gianfelice-Wendt, Eliana

    2015-01-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/201...

  20. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the

  1. Explore the solar system! 25 great projects, activities, experiments

    CERN Document Server

    Yasuda, Anita

    2009-01-01

    Explore the Solar System! 25 Great Projects, Activities, Experiments introduces kids ages 6-9 to the planets, moons, and other celestial bodies that surround our star, the sun, as well as the universe beyond. Combining a hands-on element with history and science, kids investigate solar eclipses, phases of the moon, Jupiter's rings, and what astronauts wear. Who named the stars? What is the Milky Way? Why is there night? By combining a hands-on element with riddles, jokes, fun facts, and comic cartoons, kids Explore the Solar System!, and have a blast along the way.

  2. Status of the AFP project in the ATLAS experiment

    Science.gov (United States)

    Taševský, Marek

    2015-04-01

    Status of the AFP project in the ATLAS experiment is summarized. The AFP system is composed of a tracker to detect intact, diffractively scattered protons, and of a time-of-flight detector serving to suppress background from pile-up interactions. The whole system, located around 210 m from the main ATLAS detector, is placed in Roman Pots which move detectors from and to the incident proton beams. A typical distance of the closest approach of the tracker to these beams is 2-3 mm. The main physics motivation lies in measuring diffractive processes in runs with not a very high amount of pile-up.

  3. Status of the AFP project in the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taševský, Marek [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic)

    2015-04-10

    Status of the AFP project in the ATLAS experiment is summarized. The AFP system is composed of a tracker to detect intact, diffractively scattered protons, and of a time-of-flight detector serving to suppress background from pile-up interactions. The whole system, located around 210 m from the main ATLAS detector, is placed in Roman Pots which move detectors from and to the incident proton beams. A typical distance of the closest approach of the tracker to these beams is 2–3 mm. The main physics motivation lies in measuring diffractive processes in runs with not a very high amount of pile-up.

  4. Status of the AFP project in the ATLAS experiment

    CERN Document Server

    Tasevsky, Marek; The ATLAS collaboration

    2015-01-01

    Status of the AFP project in the ATLAS experiment is summarized. The AFP system is composed of a tracker to detect intact, diffractively scattered protons, and of a time-of-flight detector serving to suppress background from pile-up interactions. The whole system, located around 210~m from the main ATLAS detector, is placed in Roman Pots which move detectors from and to the incident proton beams. A typical distance of the closest approach of the tracker to these beams is 2--3~mm. The main physics motivation lies in measuring diffractive processes in runs with not a very high amount of pile-up.

  5. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (Project FALSIRE)

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Pugh, C.E.; Keeney-Walker, J. [Oak Ridge National Lab., TN (United States); Schulz, H.; Sievers, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Gemany)

    1993-06-01

    This report summarizes the recently completed Phase I of the Project for Fracture Analysis of Large-Scale International Reference Experiments (Project FALSIRE). Project FALSIRE was created by the Fracture Assessment Group (FAG) of Principal Working Group No. 3 (PWG/3) of the Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency`s (NEA`s) Committee on the Safety of Nuclear Installations (CSNI). Motivation for the project was derived from recognition by the CSNI-PWG/3 that inconsistencies were being revealed in predictive capabilities of a variety of fracture assessment methods, especially in ductile fracture applications. As a consequence, the CSNI/FAG was formed to evaluate fracture prediction capabilities currently used in safety assessments of nuclear components. Members are from laboratories and research organizations in Western Europe, Japan, and the United States of America (USA). On behalf of the CSNI/FAG, the US Nuclear Regulatory Commission`s (NRC`s) Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) and the Gesellschaft fuer Anlagen--und Reaktorsicherheit (GRS), Koeln, Federal Republic of Germany (FRG) had responsibility for organization arrangements related to Project FALSIRE. The group is chaired by H. Schulz from GRS, Koeln, FRG.

  6. SBLOCA AND LOFW EXPERIMENTS IN A SCALED-DOWN IET FACILITY OF REX-10 REACTOR

    Directory of Open Access Journals (Sweden)

    YEON-GUN LEE

    2013-06-01

    Full Text Available This paper presents an experimental investigation of the small-break loss-of-coolant accident (SBLOCA and the loss-of-feedwater accident (LOFW in a scaled integral test facility of REX-10. REX-10 is a small integral-type PWR in which the coolant flow is driven by natural circulation, and the RCS is pressurized by the steam-gas pressurizer. The postulated accidents of REX-10 include the system depressurization initiated by the break of a nitrogen injection line connected to the steam-gas pressurizer and the complete loss of normal feedwater flow by the malfunction of control systems. The integral effect tests on SBLOCA and LOFW are conducted at the REX-10 Test Facility (RTF, a full-height full-pressure facility with reduced power by 1/50. The SBLOCA experiment is initiated by opening a flow passage out of the pressurizer vessel, and the LOFW experiment begins with the termination of the feedwater supply into the helical-coil steam generator. The experimental results reveal that the RTF can assure sufficient cooldown capability with the simulated PRHRS flow during these DBAs. In particular, the RTF exhibits faster pressurization during the LOFW test when employing the steam-gas pressurizer than the steam pressurizer. This experimental study can provide unique data to validate the thermal-hydraulic analysis code for REX-10.

  7. A student-led demonstration project on fall prevention in a long-term care facility.

    Science.gov (United States)

    Bonner, Alice; MacCulloch, Patricia; Gardner, Terri; Chase, Chantel W

    2007-01-01

    .1%; 30-day posttraining fall rate was 12.3%, and 60-day postintervention fall rate was 9%. Based on the program results, the model was expanded from long-term care to the university hospital system and outpatient clinics in the same community. The collaboration between a school of nursing and 1 long-term care facility led to the adoption of a significant quality improvement program that was subsequently extended to a local hospital and clinic system. Student-led projects designed to teach community service learning can be meaningful and can lead to changes in patient safety and quality of care.

  8. "DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

    2009-05-28

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.

  9. Development of a 1-week cycle menu for an Advanced Life Support System (ALSS) utilizing practical biomass production data from the Closed Ecology Experiment Facilities (CEEF).

    Science.gov (United States)

    Masuda, Tsuyoshi; Arai, Ryuuji; Komatsubara, Osamu; Tako, Yasuhiro; Harashima, Emiko; Nitta, Keiji

    2005-01-01

    Productivities of 29 crops in the Closed Ecology Experiment Facilities (CEEF) were measured. Rice and soybean showed higher productivities than these given by the Advanced Life Support System Modeling and Analysis Project Baseline Values and Assumption Document (BVAD), but productivities of some other crops, such as potato and sweet potato, were lower. The cultivation data were utilized to develop a 1-week cycle menu for Closed Habitation Experiment. The menu met most of the nutritional requirements. Necessary cultivation area per crew was estimated to be 255 m2. Results from this study can be used to help design the future Advanced Life Support System (ALSS) including the CEEF.

  10. 77 FR 32621 - Developing Large-Scale Renewable Energy Projects at Federal Facilities Using Private Capital Draft

    Science.gov (United States)

    2012-06-01

    ... of Energy Efficiency and Renewable Energy Developing Large-Scale Renewable Energy Projects at Federal Facilities Using Private Capital Draft AGENCY: Office of Energy Efficiency and Renewable Energy, Department... draft guidebook entitled Federal Renewable Energy Guide: Developing Large-Scale Renewable Energy...

  11. A decade of experiments and recent upgrading at the AMS facility in Bucharest

    Energy Technology Data Exchange (ETDEWEB)

    Stan-Sion, C., E-mail: stansion@nipne.r [Department for Applied Physics, National Institute for Physics and Nuclear Engineering, Str. Atomistilor 407, Magurele, Bucharest 77125 (Romania); Enachescu, M.; Constantinescu, O.; Dogaru, M. [Department for Applied Physics, National Institute for Physics and Nuclear Engineering, Str. Atomistilor 407, Magurele, Bucharest 77125 (Romania)

    2010-04-15

    The Bucharest AMS facility has been in operation since 1998. We shortly present the performed experiments, the major upgrade of the AMS facility at NIPNE - Bucharest and the ongoing progress resulting since. We mounted a new ion source, of NEC 40 sample MC-SNCIS type and we reinforced the vacuum on the injector deck. Computer control on all parameters of the injector deck was implemented through a build-in-house electronic set-up. By converting the Tandem accelerator from a belt-driven charging system to a Pelletron and by introducing a modern GVM we have obtained a reduction of the fluctuations of the terminal voltage by at least two orders of magnitude.

  12. Facilities for Territorial Medicine: the experiences of Piedmont and Lombardy Regions

    Directory of Open Access Journals (Sweden)

    Stefano Capolongo

    2015-04-01

    Full Text Available In recent years, the demographic transition and epidemiological has made the health system hospital-centric obsolete and has highlighted the need for a new organization focused on territorial health community, taking charge of the patient, on team work and can ensure, through dedicated facilities, continuity of care and integration of social welfare.The main changes in the regulatory field have thus oriented investments both structural and economic towards poles to network with hospitals that represent new points of reference for the health of citizens, where primary care services are integrated with the territory and the specialized services of the Public Health departments.These facilities provide the organizational paradigm to which the regional realities must strive.The article reports recent experiments conducted within the regions of Piedmont and Lombardy in this sector and the ongoing research in the field of CNETO on behalf of the Lombardy Region.

  13. Research and test facilities for development of technologies and experiments with commercial applications

    Science.gov (United States)

    1989-01-01

    One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

  14. Data System Architectures: Recent Experiences from Data Intensive Projects

    Science.gov (United States)

    Palanisamy, G.; Frame, M. T.; Boden, T.; Devarakonda, R.; Zolly, L.; Hutchison, V.; Latysh, N.; Krassovski, M.; Killeffer, T.; Hook, L.

    2014-12-01

    U.S. Federal agencies are frequently trying to address new data intensive projects that require next generation of data system architectures. This presentation will focus on two new such architectures: USGS's Science Data Catalog (SDC) and DOE's Next Generation Ecological Experiments - Arctic Data System. The U.S. Geological Survey (USGS) developed a Science Data Catalog (data.usgs.gov) to include records describing datasets, data collections, and observational or remotely-sensed data. The system was built using service oriented architecture and allows USGS scientists and data providers to create and register their data using either a standards-based metadata creation form or simply to register their already-created metadata records with the USGS SDC Dashboard. This dashboard then compiles the harvested metadata records and sends them to the post processing and indexing service using the JSON format. The post processing service, with the help of various ontologies and other geo-spatial validation services, auto-enhances these harvested metadata records and creates a Lucene index using the Solr enterprise search platform. Ultimately, metadata is made available via the SDC search interface. DOE's Next Generation Ecological Experiments (NGEE) Arctic project deployed a data system that allows scientists to prepare, publish, archive, and distribute data from field collections, lab experiments, sensors, and simulated modal outputs. This architecture includes a metadata registration form, data uploading and sharing tool, a Digital Object Identifier (DOI) tool, a Drupal based content management tool (http://ngee-arctic.ornl.gov), and a data search and access tool based on ORNL's Mercury software (http://mercury.ornl.gov). The team also developed Web-metric tools and a data ingest service to visualize geo-spatial and temporal observations.

  15. ISS U. S. National Laboratory NanoRacks III Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I study will design a flight qualified NanoRacks III Facility that is similar to the conventional NanoRacks facilities currently on the ISS but with...

  16. Multi-Specimen Variable-G Facility for Life and Microgravity Sciences Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-specimen Variable-G Facility (MVF) is a single locker sized centrifuge facility for life and microgravity sciences research on the International Space...

  17. ENERGY PARTITIONING, ENERGY COUPLING (EPEC) EXPERIMENTS AT THE NATIONAL IGNITION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K B; Brown, C G; May, M J; Dunlop, W H; Compton, S M; Kane, J O; Mirkarimi, P B; Guyton, R L; Huffman, E

    2012-01-05

    The energy-partitioning, energy-coupling (EPEC) experiments at the National Ignition Facility (NIF) will simultaneously measure the coupling of energy into both ground shock and air-blast overpressure from a laser-driven target. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of seismic and air-blast phenomena caused by a nuclear weapon. In what follows, we discuss the motivation for our investigation and briefly describe NIF. Then, we introduce the EPEC experiments, including diagnostics, in more detail.

  18. Interim reclamation report, Basalt Waste Isolation Project Near Surface Test Facility 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.; Cadoret, N.A.

    1991-01-01

    This report describes the development of the reclamation project for the Hanford Site Near Surface Test Facility (NSTF), its implementation, and preliminary estimates of its success. The goal of the reclamation project is to return disturbed sites as nearly as practicable to their original conditions using native species. Gable Mountain is dominated by two plant communities: a big sagebrush (Artemisia tridentata) -- Sandberg's bluegrass (Poa sandbergii) community and a stiff sagebrush (Artemisia rigida) -- Sandberg's bluegrass community. Disassembly of the site installations began on March 15, 1988, and the site was returned to original contours by December 12, 1988. Two separate revegetation methods were employed at the NSTF to meet differing site constraints. Vegetative cover and density in the revegetation plots were assessed in April 1989 and again in June 1989 and 1990. It is extremely unlikely that the sand pit, borrow pit, box cuts, generator pad area, or ventilation fan area will reach the reclamation objectives set for these areas within the next 50 years without further intervention. These areas currently support few living plants. Vegetation on revegetated native soils appears to be growing as expected. Vegetation growth on the main waterline is well below the objective. To date, no shrubs have grown on the area, growth of native grasses is well below the objective, and much of the area has been covered with the pit run material, which may not support adequate growth. Without further treatments, the areas without the pit run material will likely revert to a nearly pure cheatgrass condition. 44 refs., 13 figs., 7 tabs.

  19. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  20. Solar Total Energy Test Facility Project. Semiannual report, October 1976--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Petterson, B. Jr. (ed.)

    1977-08-01

    The Solar Total Energy System will operate as follows: A heat transfer fluid (Therminol 66) is heated in the receiver tubes of the solar collectors by reflected and focused solar radiation. This fluid is pumped to the high-temperature storage subsystem. Fluid is extracted from this storage on a demand basis and pumped to the heat exchanger which produces superheated toluene vapor to power the turbine/generator. The boiler can also be operated from a fossil fuel-fired heater to insure continuity of operation during extended cloudy periods. Turbine condenser coolant is pumped to the low-temperature storage tank and becomes the energy source for heating and air-conditioning components of the system. Progress is reported on the design, fabrication, installation, and checkout of the first 200 m/sup 2/ collector field quadrant, a high-temperature stratified storage tank, a 32-kW turbine/generator and Therminol-to-toluene heat exchanger, an instrumentation and control subsystem, a cooling tower, the turbine and control building, and all necessary pumps and fluid loops to interconnect these subsystems. Also, experience with operating the facility in accordance with a detailed test plan to provide performance data on all subsystems and to accumulate operating and maintenance experience which can provide a basis for the design of large-scale experimental plants and future solar energy systems is described. (WHK)

  1. The message and the experience of the site project

    Science.gov (United States)

    Chitnis, E. V.; Karnik, K. S.

    The Satellite Instructional Television Experiment (SITE) was a unique effort aimed at studying the possibilities of satellite broadcasting for education and national development. This one-year joint India-USA project was carried out in 1975-1976 using the ATS-6 spacecraft. This paper briefly describes the experiment and its major findings. It goes on to distill the learning experiences derived from SITE and analyses the extent to which these have influenced the design and configuration of India's domestic satellite system, INSAT. INSAT-1B, which will serve as a replacement for the short-lived INSAT-1A, will be launched shortly and will be operational by the end of 1983. Its payload includes two S-band TV transponders capable of broadcasting directly to augmented TV sets. The paper examines which lessons of SITE are being applied in the planning and operationalisation of the TV system and discusses why others are not being taken account of. Major issues confronting TV system planners in developing countries like India are highlighted and the possible role of satellite broadcasting discussed in this context. The paper concludes by outlining an "ideal scenario" for a large, multilingual country like India, towards which TV planners could attempt to strive.

  2. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

    1995-02-01

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

  3. ATLAS Experience with HEP Software at the Argonne Leadership Computing Facility

    CERN Document Server

    LeCompte, T; The ATLAS collaboration; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  4. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    OpenAIRE

    Simos, N; Nocera, P.; Z. Zhong; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Z. Kotsina

    2017-01-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ∼6.1×10^{20}  p/cm^{2} and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Produce...

  5. An application of the IMC software to controller design for the JPL LSCL Experiment Facility

    Science.gov (United States)

    Zhu, Guoming; Skelton, Robert E.

    1993-01-01

    A software package which Integrates Model reduction and Controller design (The IMC software) is applied to design controllers for the JPL Large Spacecraft Control Laboratory Experiment Facility. Modal Cost Analysis is used for the model reduction, and various Output Covariance Constraints are guaranteed by the controller design. The main motivation is to find the controller with the 'best' performance with respect to output variances. Indeed it is shown that by iterating on the reduced order design model, the controller designed does have better performance than that obtained with the first model reduction.

  6. The MISSE-9 Polymers and Composites Experiment Being Flown on the MISSE-Flight Facility

    Science.gov (United States)

    De Groh, Kim K.; Banks, Bruce A.

    2017-01-01

    Materials on the exterior of spacecraft in low Earth orbit (LEO) are subject to extremely harsh environmental conditions, including various forms of radiation (cosmic rays, ultraviolet, x-ray, and charged particle radiation), micrometeoroids and orbital debris, temperature extremes, thermal cycling, and atomic oxygen (AO). These environmental exposures can result in erosion, embrittlement and optical property degradation of susceptible materials, threatening spacecraft performance and durability. To increase our understanding of space environmental effects such as AO erosion and radiation induced embrittlement of spacecraft materials, NASA Glenn has developed a series of experiments flown as part of the Materials International Space Station Experiment (MISSE) missions on the exterior of the International Space Station (ISS). These experiments have provided critical LEO space environment durability data such as AO erosion yield values for many materials and mechanical properties changes after long term space exposure. In continuing these studies, a new Glenn experiment has been proposed, and accepted, for flight on the new MISSE-Flight Facility (MISSE-FF). This experiment is called the Polymers and Composites Experiment and it will be flown as part of the MISSE-9 mission, the inaugural mission of MISSE-FF. Figure 1 provides an artist rendition of MISSE-FF ISS external platform. The MISSE-FF is manifested for launch on SpaceX-13.

  7. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  8. Managing Facilities for Cultural Democracy. Symposium on "Methods of Managing Socio-cultural Facilities to be Applied in Pilot Experiments." (San Remo, 26-29 April 1972).

    Science.gov (United States)

    Council for Cultural Cooperation, Strasbourg (France).

    The conference proceedings from a symposium held by the Council for Cultural Cooperation were concerned with identifying those European facilities and methods which give the greatest promise of overcoming the problems of sociocultural development and are worthy of further development and study as pilot experiments. Participant countries were asked…

  9. Status of power generation experiments in the NASA Lewis closed-cycle MHD facility.

    Science.gov (United States)

    Sovie, R. J.; Nichols, L. D.

    1972-01-01

    In this paper the design and operation of the closed-cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger (preheater), heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The heater can supply 1.1 MW of thermal power to a 2.27 kg/sec gas stream. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths (B = 0.2 T), the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. The Hall voltage and short circuit current decrease sharply with increasing magnetic field strength, however. Comparison of these data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  10. Health Facilities Safety in Natural Disasters: Experiences and Challenges from South East Europe

    Directory of Open Access Journals (Sweden)

    Vesela Radovic

    2012-05-01

    Full Text Available The United Nations named 2010 as a year of natural disasters, and launched a worldwide campaign to improve the safety of schools and hospitals from natural disasters. In the region of South East Europe, Croatia and Serbia have suffered the greatest impacts of natural disasters on their communities and health facilities. In this paper the disaster management approaches of the two countries are compared, with a special emphasis on the existing technological and legislative systems for safety and protection of health facilities and people. Strategic measures that should be taken in future to provide better safety for health facilities and populations, based on the best practices and positive experiences in other countries are recommended. Due to the expected consequences of global climate change in the region and the increased different environmental risks both countries need to refine their disaster preparedness strategies. Also, in the South East Europe, the effects of a natural disaster are amplified in the health sector due to its critical medical infrastructure. Therefore, the principles of environmental security should be implemented in public health policies in the described region, along with principles of disaster management through regional collaborations.

  11. Health facilities safety in natural disasters: experiences and challenges from South East Europe.

    Science.gov (United States)

    Radovic, Vesela; Vitale, Ksenija; Tchounwou, Paul B

    2012-05-01

    The United Nations named 2010 as a year of natural disasters, and launched a worldwide campaign to improve the safety of schools and hospitals from natural disasters. In the region of South East Europe, Croatia and Serbia have suffered the greatest impacts of natural disasters on their communities and health facilities. In this paper the disaster management approaches of the two countries are compared, with a special emphasis on the existing technological and legislative systems for safety and protection of health facilities and people. Strategic measures that should be taken in future to provide better safety for health facilities and populations, based on the best practices and positive experiences in other countries are recommended. Due to the expected consequences of global climate change in the region and the increased different environmental risks both countries need to refine their disaster preparedness strategies. Also, in the South East Europe, the effects of a natural disaster are amplified in the health sector due to its critical medical infrastructure. Therefore, the principles of environmental security should be implemented in public health policies in the described region, along with principles of disaster management through regional collaborations.

  12. Automatic Tools for Enhancing the Collaborative Experience in Large Projects

    Science.gov (United States)

    Bourilkov, D.; Rodriquez, J. L.

    2014-06-01

    With the explosion of big data in many fields, the efficient management of knowledge about all aspects of the data analysis gains in importance. A key feature of collaboration in large scale projects is keeping a log of what is being done and how - for private use, reuse, and for sharing selected parts with collaborators and peers, often distributed geographically on an increasingly global scale. Even better if the log is automatically created on the fly while the scientist or software developer is working in a habitual way, without the need for extra efforts. This saves time and enables a team to do more with the same resources. The CODESH - COllaborative DEvelopment SHell - and CAVES - Collaborative Analysis Versioning Environment System projects address this problem in a novel way. They build on the concepts of virtual states and transitions to enhance the collaborative experience by providing automatic persistent virtual logbooks. CAVES is designed for sessions of distributed data analysis using the popular ROOT framework, while CODESH generalizes the approach for any type of work on the command line in typical UNIX shells like bash or tcsh. Repositories of sessions can be configured dynamically to record and make available the knowledge accumulated in the course of a scientific or software endeavor. Access can be controlled to define logbooks of private sessions or sessions shared within or between collaborating groups. A typical use case is building working scalable systems for analysis of Petascale volumes of data as encountered in the LHC experiments. Our approach is general enough to find applications in many fields.

  13. Strengthening health facilities for maternal and newborn care: experiences from rural eastern Uganda

    Directory of Open Access Journals (Sweden)

    Gertrude Namazzi

    2015-03-01

    Full Text Available Background: In Uganda maternal and neonatal mortality remains high due to a number of factors, including poor quality of care at health facilities. Objective: This paper describes the experience of building capacity for maternal and newborn care at a district hospital and lower-level health facilities in eastern Uganda within the existing system parameters and a robust community outreach programme. Design: This health system strengthening study, part of the Uganda Newborn Study (UNEST, aimed to increase frontline health worker capacity through district-led training, support supervision, and mentoring at one district hospital and 19 lower-level facilities. A once-off supply of essential medicines and equipment was provided to address immediate critical gaps. Health workers were empowered to requisition subsequent supplies through use of district resources. Minimal infrastructure adjustments were provided. Quantitative data collection was done within routine process monitoring and qualitative data were collected during support supervision visits. We use the World Health Organization Health System Building Blocks to describe the process of district-led health facility strengthening. Results: Seventy two per cent of eligible health workers were trained. The mean post-training knowledge score was 68% compared to 32% in the pre-training test, and 80% 1 year later. Health worker skills and competencies in care of high-risk babies improved following support supervision and mentoring. Health facility deliveries increased from 3,151 to 4,115 (a 30% increase in 2 years. Of 547 preterm babies admitted to the newly introduced kangaroo mother care (KMC unit, 85% were discharged alive to continue KMC at home. There was a non-significant declining trend for in-hospital neonatal deaths across the 2-year study period. While equipment levels remained high after initial improvement efforts, maintaining supply of even the most basic medications was a challenge, with

  14. Present status of the radioactive nuclear beam facility at KEK-Tanashi and the E-arena in the KEK-JAERI joint project

    CERN Document Server

    Miyatake, H; Ishiyama, H; Ishida, Y; Kawakami, H; Yoshikawa, N; Katayama, I; Tanaka, M H; Tojyo, E; Oyaizu, M; Arai, S; Tomizawa, S; Niki, K; Arakaki, Y; Okada, M; Takeda, Y; Wada, M; Strasser, P; Kubono, S; Nomura, T

    2002-01-01

    The performance of the RNB facility at KEK-Tanashi, which is a pilot facility for the E-arena in the KEK-JAERI joint project, is presented. The muonic X-ray spectroscopy of unstable nuclei by combining the RNB with muon-beam from the M-arena in the joint project is introduced.

  15. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  16. Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments: Proposed Experiments at the Exposure Facility of ISS-JEM

    Science.gov (United States)

    Yamagishi, Akihiko; Yano, Hajime; Hashimoto, Hirofumi; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Tabata, Makoto; Yabuta, Hikaru; Higashide, Masumi; Imai, Eiichi

    Tanpopo, a dandelion in Japanese, is a plant species whose seeds with floss are spread by wind. We propose this mission to examine possible interplanetary migration of microbes, and organic compounds at the Exposure Facility of Japan Experimental Module (JEM: KIBO) of the International Space Station (ISS). The Tanpopo mission consists of six subthemes: Capture of microbes in space (Subtheme 1), exposure of microbes in space (Subtheme 2), analysis of organic compounds in interplanetary dust (Subtheme 3), exposure of organic compounds in space (Subtheme 4), measurement of space debris at the ISS orbit (Subtheme 5), and evaluation of ultra low-density aerogel developed for the Tanpopo mission (Subtheme 6). Exposure Panles for exposure of microbes and organic materials and Capture Panels for aerogel will be launched. The trays and panels will be placed on the Exposed Experiment Handrail Attachment Mechanism (ExHAM) in the ISS. The ExHAM with Panels will be placed on the Exposure Facility of KIBO (JEM) with the Japanese robotic arms through the airlock of KIBO. The trays and panels will be exposed for more than one year and will be retrieved and returned to the ground for the analyses.

  17. Time projection chambers for the T2K experiment

    Science.gov (United States)

    Karlen, Dean; T2K/TPC Collaboration

    2010-11-01

    The T2K experiment will study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target. A key element of the near detectors is the ND280 tracker consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The tracker will provide high statistics samples for studying charged current neutrino interaction rates and kinematics prior to oscillation, so as to better understand backgrounds in the far detector. The tracker is surrounded by the UA1/Nomad dipole magnet and the TPCs will measure the charge, momentum, particle type (through ionization energy loss in the gas) of particles passing through them. Novel features of these TPCs include the rectangular box design, constructed from composite panels, the use of bulk micromegas detectors for gas amplification, electronics readout based on a new ASIC, and a photoelectron calibration system. This paper describes the design and construction of the TPCs, the readout electronics, the gas handling system and shows the performance of a completed TPC as deduced from measurements with particle beams, cosmic rays, and the calibration system.

  18. First Results of an Experiment on Advanced Collimator Materials at CERN HiRadMat Facility

    CERN Document Server

    Bertarelli, A; Assmann, R; Berthome, E; Boccone, V; Carra, F; Cerutti, F; Charrondiere, C; Dallocchio, A; Donze, M; Francon, P; Garlasche, M; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Moyret, P; Redaelli, S; Rossi, A; Calderon Cueva, M; Charitonidis, N; Peroni, L; Scapin, M

    2013-01-01

    A comprehensive, first-of-its-kind experiment (HRMT-14) has been recently carried out at CERN HiRadMat facility on six different materials of interest for Beam Intercepting Devices (collimators, targets, dumps). Both traditional materials (Mo, W and Cu alloys) as well as advanced metal/diamond and metal/graphite composites were tested under extreme conditions as to pressure, density and temperature, leading to the development of highly dynamic phenomena as shock-waves, spallation, explosions. Experimental data were acquired, mostly in real time, relying on extensive integrated instrumentation (strain gauges, temperature and vacuum sensors) and on remote acquisition devices (laser Doppler vibrometer and high-speed camera). The experiment was a success under all points of view in spite of the technological challenges and harsh environment. First measurements are in good agreement with results of complex simulations, confirming the effectiveness of the acquisition system and the reliability of advanced numerical...

  19. Older peoples' experiences of living in a residential aged care facility in Australia.

    Science.gov (United States)

    Walker, Helen; Paliadelis, Penelope

    2016-09-01

    The objectives of the study were to investigate the lived experience of older people in residential aged care facilities (RACFs) in Australia, to explore their perceptions of their lives in RACFs and how care might be improved. This qualitative study used a phenomenological approach to explore the lived experience of older persons in RACFs across two Australian states. In-depth interviews regarding independence, dignity, autonomy, communication and relationships were conducted with 18 participants. The interviews were audiotaped, transcribed and thematically analysed. Three themes emerged reflecting the reality of RACF life for these participants: (i) loss of autonomy, dignity and control; (ii) valuing important relationships; and (iii) resigned acceptance. Older people were not included in decision-making and found it difficult to maintain their autonomy and dignity, and forge meaningful relationships. They traded their independence and dignity for the safety and assistance they needed; however, they accepted this trade-off with stoicism and remained positive. © 2016 AJA Inc.

  20. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    Science.gov (United States)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  1. The Charged Pion Polarizability Experiment at the Thomas Jefferson National Accelerator Facility: Developing Muon Chambers and Experiment Simulation

    Science.gov (United States)

    Johnston, Bobby; Miskimen, Rory; Downing, Matthew; Haughwout, Christian; Schick, Andrew; Jefferson Lab Hall D Collaboration

    2016-09-01

    The Thomas Jefferson National Accelerator Facility has proposed to make a precision measurement of the charged pion polarizability through measurements of γγ ->π+π- cross sections using the new GlueX detector. This experiment will have a large muon background which must be filtered out of the pion signal. For this issue we are developing an array of Multi-Wire Proportional Chambers (MWPCs) that will allow the pions to be identified from the muons, permitting a precise measurement of the polarizability. Small (1:8 scale) and medium (1:5 scale) sized prototypes have been constructed and tested, and a full scale prototype is currently being assembled. MWPC electronics were developed and tested to amplify the signal from the detection chamber, and were designed to interface with Jefferson Lab's existing data acquisition system. In order to construct the detectors, a class 10,000 clean room was assembled specifically for this purpose. Lastly, Geant4 software is being used to run Monte Carlo simulations of the experiment. This allows us to determine the optimal orientation and number of MWPCs needed for proper filtering which will indicate how many more MWPCs must be built before the experiment can be run. Department of Energy.

  2. The Training Project of Star Researchers, Outstanding Teaching Staff and Leaders with Facilities Available

    Directory of Open Access Journals (Sweden)

    Ömer KARAHAN

    2015-12-01

    Full Text Available There is a general consensus on the requirement of a serious regulation at our universities. It is argued that it is necessary to change Constitution and Institution of Higher Education Law for the serious regulation. However, it is impossible to say that all the facilities of the present legislation are used. Our aim is to create a project based on benefiting from continuing education centers to meet the need of star researchers, outstanding teaching staff and leaders in Turkey via the legislation in force. In this study, accessible studies from publications related to university, higher education and continuing education centers are studied. Th e current situation and solution off ers, applications and continuing education centers'activities have been determined. In accordance with these data, solution off ers have been proposed and discussed in line with the literature. According to the data obtained, our students who come with deficiencies from high schools to universities are not given the adequate undergraduate, graduate and postgraduate education. Th ere are studies such as ‘Double Major Program', ‘Medical-Science Physicians Integrated (MD-PhD Doctorate Program which upgrade the qualities. However, these programs are not suff icient and common. Th erefore, it is imposssible to train outstanding teaching staff , star researchesr and leaders who will meet the needs of our country and contribute to the World. Our academic potential needs a quality training except for branch training. On the other hand, the contribution of the Continuing Education Centers existing in university embodiments is limited. It is possible to provide basic skills, integration and research education to the outstanding teaching staff , star researcher and leader candidates. Th ese trainings should be given in a continuous instutionalization and in the formal education system. For this purpose, an academician school can be established within the body continuing

  3. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a comprehensive understanding of requirements for a facility that could safely conduct effluent treatment for a Nuclear Thermal Propulsion (NTP) rocket...

  4. Flash for Biological Dosimetry Experiments- A BEXUS 16 Project

    Science.gov (United States)

    Bigge, K.; Cermak, D.; Schuberg, V.; Guerin, E. A.; Blessenohl, M. A.; Passenberg, F.; Bach, M.; Hausmann, M.; Hildenbrand, G.

    2015-09-01

    The effects of low dose radiation on living organisms are still topic of current research and radiation protection. Complex compound radiation, such as of cosmic origin, is of special interest, since it is of pivotal significance for human space flight and, in the long run, cancer research. Fluid LAb in the StratospHere (FLASH) is a Heidelberg University student project that transported specimens of living cells of human origin into the stratosphere to investigate the effects of cosmic radiation on the 3D chromatin nanostructure of their genome. Since, owing to its complexity, cosmic radiation is extremely difficult to replicate on the ground, the FLASH project took part in the BEXUS (Balloon Experiments for University Students) program of the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB) to use a balloon to get better access to cosmic radiation over several hours. To keep the cells alive and allow for in-flight fixation after given radiation exposure times in order to prevent restorative processes, a compact and fully automated fluid lab suited for low-pressure environments was designed and built. Challenges included fluid exchange of specimen buffers and temperature control, as well as low-budget insulating mounting. After the flight, the specimens fixed during the flight were subjected to further analysis. After antibody labeling specific against heterochromatin, Spectral Precision Distance Microscopy (SPDM) (an embodiment of super-resolution localization microscopy) was used, which is a new approach for the sensitive detection and analysis of structure modifying irradiation effects on organisms. This technique allows light resolution on the order of tens of nanometers. Preliminary evaluation of the data indicated reasonable differences in chromatin conformation compared to control specimen data.

  5. Facility stabilization project, fiscal year 1998 -- Multi-year workplan (MYWP) for WBS 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Floberg, W.C.

    1997-09-30

    The primary Facility Stabilization mission is to provide minimum safe surveillance and maintenance of facilities and deactivate facilities on the Hanford Site, to reduce risks to workers, the public and environment, transition the facilities to a low cost, long term surveillance and maintenance state, and to provide safe and secure storage of special nuclear materials, nuclear materials, and nuclear fuel. Facility Stabilization will protect the health and safety of the public and workers, protect the environment and provide beneficial use of the facilities and other resources. Work will be in accordance with the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), local, national, international and other agreements, and in compliance with all applicable Federal, state, and local laws. The stakeholders will be active participants in the decision processes including establishing priorities, and in developing a consistent set of rules, regulations, and laws. The work will be leveraged with a view of providing positive, lasting economic impact in the region. Effectiveness, efficiency, and discipline in all mission activities will enable Hanford Site to achieve its mission in a continuous and substantive manner. As the mission for Facility Stabilization has shifted from production to support of environmental restoration, each facility is making a transition to support the Site mission. The mission goals include the following: (1) Achieve deactivation of facilities for transfer to EM-40, using Plutonium Uranium Extraction (PUREX) plant deactivation as a model for future facility deactivation; (2) Manage nuclear materials in a safe and secure condition and where appropriate, in accordance with International Atomic Energy Agency (IAEA) safeguards rules; (3) Treat nuclear materials as necessary, and store onsite in long-term interim safe storage awaiting a final disposition decision by US Department of Energy; (4) Implement nuclear materials

  6. Characterization of materials for a reactive transport model validation experiment: Interim report on the caisson experiment. Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, M.D.; Cheng, W.C. [Sandia National Labs., Albuquerque, NM (United States); Ward, D.B.; Bryan, C.R. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences

    1995-08-01

    Models used in performance assessment and site characterization activities related to nuclear waste disposal rely on simplified representations of solute/rock interactions, hydrologic flow field and the material properties of the rock layers surrounding the repository. A crucial element in the design of these models is the validity of these simplifying assumptions. An intermediate-scale experiment is being carried out at the Experimental Engineered Test Facility at Los Alamos Laboratory by the Los Alamos and Sandia National Laboratories to develop a strategy to validate key geochemical and hydrological assumptions in performance assessment models used by the Yucca Mountain Site Characterization Project.

  7. LMFBR source term experiments in the Fuel Aerosol Simulant Test (FAST) facility

    Energy Technology Data Exchange (ETDEWEB)

    Petrykowski, J.C.; Longest, A.W.

    1985-01-01

    The transport of uranium dioxide (UO/sub 2/) aerosol through liquid sodium was studied in a series of ten experiments in the Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory (ORNL). The experiments were designed to provide a mechanistic basis for evaluating the radiological source term associated with a postulated, energetic core disruptive accident (CDA) in a liquid metal fast breeder reactor (LMFBR). Aerosol was generated by capacitor discharge vaporization of UO/sub 2/ pellets which were submerged in a sodium pool under an argon cover gas. Measurements of the pool and cover gas pressures were used to study the transport of aerosol contained by vapor bubbles within the pool. Samples of cover gas were filtered to determine the quantity of aerosol released from the pool. The depth at which the aerosol was generated was found to be the most critical parameter affecting release. The largest release was observed in the baseline experiment where the sample was vaporized above the sodium pool. In the nine ''undersodium'' experiments aerosol was generated beneath the surface of the pool at depths varying from 30 to 1060 mm. The mass of aerosol released from the pool was found to be a very small fraction of the original specimen. It appears that the bulk of aerosol was contained by bubbles which collapsed within the pool. 18 refs., 11 figs., 4 tabs.

  8. Integrating supervision, control and data acquisition—The ITER Neutral Beam Test Facility experience

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A., E-mail: adriano.luchetta@igi.cnr.it; Manduchi, G.; Taliercio, C.; Breda, M.; Capobianco, R.; Molon, F.; Moressa, M.; Simionato, P.; Zampiva, E.

    2016-11-15

    Highlights: • The paper describes the experience gained in the integration of different systems for the control and data acquisition system of the ITER Neutral Beam Test Facility. • It describes the way the different frameworks have been integrated. • It reports some lessons learnt during system integration. • It reports some authors’ considerations about the development the ITER CODAC. - Abstract: The ITER Neutral Beam (NBI) Test Facility, under construction in Padova, Italy consists in the ITER full scale ion source for the heating neutral beam injector, referred to as SPIDER, and the full size prototype injector, referred to as MITICA. The Control and Data Acquisition System (CODAS) for SPIDER has been developed and is going to be in operation in 2016. The system is composed of four main components: Supervision, Slow Control, Fast Control and Data Acquisition. These components interact with each other to carry out the system operation and, since they represent a common pattern in fusion experiments, software frameworks have been used for each (set of) component. In order to reuse as far as possible the architecture developed for SPIDER, it is important to clearly define the boundaries and the interfaces among the system components so that the implementation of any component can be replaced without affecting the overall architecture. This work reports the experience gained in the development of SPIDER components, highlighting the importance in the definition of generic interfaces among component, showing how the specific solutions have been adapted to such interfaces and suggesting possible approaches for the development of other ITER subsystems.

  9. CASE STUDY PROJECT: THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    Science.gov (United States)

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  10. Quality Assurance Project Plan for Closure of the Central Facilities Area Sewage Treatment Plant Lagoon 3 and Land Application Area

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    This quality assurance project plan describes the technical requirements and quality assurance activities of the environmental data collection/analyses operations to close Central Facilities Area Sewage treatment Plant Lagoon 3 and the land application area. It describes the organization and persons involved, the data quality objectives, the analytical procedures, and the specific quality control measures to be employed. All quality assurance project plan activities are implemented to determine whether the results of the sampling and monitoring performed are of the right type, quantity, and quality to satisfy the requirements for closing Lagoon 3 and the land application area.

  11. Integrating Project Management, Product Design with Industry Sponsored Projects provides Stimulating Senior Capstone Experiences

    Directory of Open Access Journals (Sweden)

    Phillip A. Sanger

    2011-07-01

    Full Text Available

    Abstract ¾ Many students are uncomfortable with real world engineering problems where needs and requirements must be concretely defined and the selection of design solutions is not black and white. This paper describes a two semester, multi-disciplinary senior capstone project for students from three Engineering and Technology Department programs (electrical engineering, electrical and computer engineering technology, and engineering technology that brings together the tools of project management and the creative product development process into industry sponsored projects.  The projects are fully integrated with the Center for Rapid Product Realization with its dual goals of economic development and enhanced learning.  The stage/gate development process is used with six formal reviews covering the development of the proposal through to the fabrication and testing of the project’s output.  Over the past four years thirty five (35 projects have been undertaken with students getting an exciting

  12. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    Energy Technology Data Exchange (ETDEWEB)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle

    2012-01-31

    Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan

  13. Learning from project experiences using a legacy-based approach

    Science.gov (United States)

    Cooper, Lynne P.; Majchrzak, Ann; Faraj, Samer

    2005-01-01

    As project teams become used more widely, the question of how to capitalize on the knowledge learned in project teams remains an open issue. Using previous research on shared cognition in groups, an approach to promoting post-project learning was developed. This Legacy Review concept was tested on four in tact project teams. The results from those test sessions were used to develop a model of team learning via group cognitive processes. The model and supporting propositions are presented.

  14. Student Views of Class Projects as Learning Experiences

    Science.gov (United States)

    Easter, Beth A.; Evans, Beverly

    2014-01-01

    Group projects have long been an important element of higher education classes. Class projects involve additional cooperation and coordination among students. Student perceptions are an important factor in evaluating the effectiveness of projects. This exploratory study used a 39-item questionnaire to examine undergraduate student perceptions of…

  15. The Time Projection Chamber of the HARP Experiment

    CERN Document Server

    Lundborg, A

    2002-01-01

    The hadron production experiment HARP aims to measure hadron collision cross sections with a 2-15 GeV particle beam and several targets. This energy regime is in a borderline zone between the low energy region dominated by resonance formation and the high energy domain where perturbative Quantum Chromo Dynamics is applicable. The emphasis of this master thesis is put on the HARP central tracker, the Time Projection Chamber (TPC). In the thesis work, Finite Element Method computations of the electric field in critical regions of the TPC have been performed to provide design input concerning the electrostatic configuration of the field cages and of the wire chamber. A first step in the chain of reconstruction of the information produced by the detector is the equalisation and monitoring of about 4000 analogue signals. An algorithm that processes the raw digitised signals, filters out electronics noise and extracts the pad gain from signal distributions has been produced and analysed for this purpose. The algori...

  16. [Application of empowering education in long-term care facilities: the experience with foreign nurse aides].

    Science.gov (United States)

    Li, I-Chuan; Wu, Li-Yu; Chang, Li-Chun; Chen, Yu-Chi

    2005-12-01

    The concept of empowerment, widely accepted and utilized in many health-related disciplines, connotes a process of gaining control over one's life and influencing the organizational and social structures in which one lives. This article demonstrates an example of how empowering education can be applied on foreign nursing aides working in long-term care facilities and how differing empowering strategies, processes and effects can be adopted to address differing situations and ethnic backgrounds. How high priority issues of concern for foreign nurses are handled impacts upon their ability to perform their jobs well. Empowering strategies can help deal with such issues more effectively and, as a result, reduce work stress and improve on-the-job performance. During the preparation stage, the empowerment process focuses on building a trusting partner relationship. During the work stage, the process focuses on inspiring foreign nurses' self-awareness, encouraging their perceiving the barriers and needs at work, and, most importantly, encouraging nurses to think critically and positively and to provide feedback. The effects of empowering education include enhanced problem solving abilities, rising nurse self-confidence in his/her caretaking abilities, enhanced self-esteem, and improved adaptation to the work environment. This paper provides empirical experiences with regard to the application of empowering education in clinical settings as well as process and management strategies related to foreign nursing aides employed in long-term care facilities.

  17. A ``dog gone`` restoration project: Remediation of an AEC research facility

    Energy Technology Data Exchange (ETDEWEB)

    Huff, P.E.; Brooks, B.T. [Bechtel Environmental, Inc., Oak Ridge, TN (United States)

    1994-12-31

    This facility was established in 1958 by the Atomic Energy Commission. Research at the facility originally focused on the health effects from chronic exposures to radionuclides, primarily strontium 90 ({sup 90}Sr) and radium 226 ({sup 226}Ra), using beagles to simulate radiation effects on humans. In 1988 the Department of Energy (DOE) decided to close out the research program, shut down the facility and turn it over to the tenant after remediation. This paper examines the remediation activities relative to Animal Hospitals 1 and 2 (AH-1 and AH-2), the cobalt 60 ({sup 60}Co) source and the Specimen Storage Room. Remediation of this facility took place over one year period beginning in August 1992. Portions of the facility not requiring remediation are now a part of an ongoing research facility. While excluded from areas where remediation took place, facility personnel and others were in close proximity to the remediation, sometimes separated only by a common building wall. This close proximity required remediation techniques that stressed contamination control.

  18. Numerical design of a magnetized turbulence experiment at the National Ignition Facility

    Science.gov (United States)

    Feister, Scott; Tzeferacos, Petros; Meinecke, Jena; Bott, Archie; Caprioli, Damiano; Laune, Jt; Bell, Tony; Casner, Alexis; Koenig, Michel; Li, Chikang; Miniati, Francesco; Petrasso, Richard; Remington, Bruce; Reville, Brian; Ross, J. Steven; Ryu, Dongsu; Ryutov, Dmitri; Sio, Hong; Turnbull, David; Zylstra, Alex; Schekochihin, Alexander; Froula, Dustin; Park, Hye-Sook; Lamb, Don; Gregori, Gianluca

    2017-10-01

    The origin and amplification of magnetic fields remains an active astrophysical research topic. We discuss design (using three-dimensional FLASH simulations) of a magnetized turbulence experiment at the National Ignition Facility (NIF). NIF lasers drive together two counter-propagating plasma flows to form a hot, turbulent plasma at the center. In the simulations, plasma temperatures are high enough to reach super-critical values of magnetic Reynolds number (Rm). Biermann battery seed magnetic fields (generated during laser-target interaction) are advected into the turbulent region and amplified by fluctuation dynamo in the above-unity Prandtl number regime. Plasma diagnostics are modeled with FLASH for planning and direct comparison with NIF experimental data. This work was supported in part at the University of Chicago by the DOE NNSA, the DOE Office of Science, and the NSF. The numerical simulations were conducted at ALCF's Mira under the auspices of the DOE Office of Science ALCC program.

  19. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  20. Results of a beam dump experiment at the CERN SPS neutrino facility

    Directory of Open Access Journals (Sweden)

    T. Hansl

    1978-03-01

    Full Text Available We report results from a beam dump experiment that has been performed at the CERN SPS neutrino facility using the CDHS neutrino counter detector. Limits on dimuon and trimuon production by new penetrating neutral particles are given. A new source of prompt electron and muon neutrinos has been observed giving (1.2±0.4× 10−7 νe or νμ per incident proton with neutrino angle smaller than 1.85 mrad and Eν > 20 GeV. If these prompt neutrinos are attributed to charmed meson pair production, the inclusive DD production cross section could be of the order of 30 ωb. If axions are existing their production rate relative to π0 mesons is found to be less than 0.5 × 10−8.

  1. Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility

    Science.gov (United States)

    Manuel, M. J.-E.; Kuranz, C. C.; Rasmus, A. M.; Klein, S. R.; MacDonald, M. J.; Trantham, M. R.; Fein, J. R.; Belancourt, P. X.; Young, R. P.; Keiter, P. A.; Drake, R. P.; Pollock, B. B.; Park, J.; Hazi, A. U.; Williams, G. J.; Chen, H.

    2015-12-01

    Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysical systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. This result is a topic of ongoing investigation.

  2. HITRAP - a facility for experiments on heavy highly charged ions and on antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Andjelkovic, Z; Barth, W; Brantjes, N P M; Braeuning-Demian, A; Dahl, L; Herfurth, F; Kester, O; Kluge, H J; Koszudowski, S; Kozhuharov, C; Maero, G; Noertershaeuser, W [GSI, Darmstadt (Germany); Birkl, G [Technische Universitaet Darmstadt (Germany); Blank, I; Goetz, S [Universitaet Freiburg (Germany); Blaum, K [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Bodewits, E; Hoekstra, R [KVI Groningen (Netherlands); Church, D [Texas AM University, Texas (United States); Pfister, J, E-mail: w.quint@gsi.d [Universitaet Frankfurt (Germany)

    2009-11-01

    HITRAP is a facility for very slow highly-charged heavy ions at GSI. HITRAP uses the GSI relativistic ion beams, the Experimental Storage Ring ESR for electron cooling and deceleration to 4 MeV/u, and consists of a combination of an interdigital H-mode (IH) structure with a radiofrequency quadrupole structure for further deceleration to 6 keV/u, and a Penning trap for accumulation and cooling to low temperatures. Finally, ion beams with low emittance will be delivered to a large variety of atomic and nuclear physics experiments. Presently, HITRAP is in the commissioning phase. The deceleration of heavy-ion beam from the ESR storage ring to an energy of 500 keV/u with the IH structure has been demonstrated and studied in detail. The commissioning of the RFQ structure and the cooler trap is ongoing.

  3. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    Science.gov (United States)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  4. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.; Salmonson, J. D.; Weber, C. R.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Marinak, M. M.; Patel, M. V.; Sepke, S. M.

    2017-05-01

    This paper summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run to assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.

  5. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Directory of Open Access Journals (Sweden)

    T. Holzer-Popp

    2013-08-01

    Full Text Available Within the ESA Climate Change Initiative (CCI project Aerosol_cci (2010–2013, algorithms for the production of long-term total column aerosol optical depth (AOD datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1 a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2 a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome applied to four months of global data to identify mature algorithms, and (3 a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008 of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun

  6. Model for deployment of a Quality Assurance System in the nuclear fuel cycle facilities using Project Management techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Ricardo F.; Ribeiro, Saulo F.Q., E-mail: rflage@gmail.com, E-mail: quintao.saulo@gmail.com [Industrias Nucleares do Brasil (INB), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The Nuclear Safety is the main goal in any nuclear facility. In this sense the Norm CNEN-NN-1.16 classifies the quality assurance issue as a management system to be deployed and implemented by the organization to achieving security goals. Quality Assurance is a set of systematic and planned actions necessary to provide adequate confidence ensuring that a structure, system, component or installation will work satisfactorily in s. Hence, the Quality Assurance System (QAS) is a complete and comprehensive methodology, going far beyond a management plan quality from the perspective of project management. The fundamental of QAS requirements is all activities that influence the quality, involving organizational, human resources, procurement, nuclear safety, projects, procedures and communication. Coordination of all these elements requires a great effort by the team responsible because it usually involves different areas and different levels of hierarchy within the organization. The objectives and desired benefits should be well set for everyone to understand what it means to be achieved and how to achieve. The support of senior management is critical at this stage, providing guidelines and resources necessary to get the job elapse clearly and efficiently, on time, cost and certain scope. The methodology of project management processes can be applied to facilitate and expedite the implementation of this system. Many of the principles of the QAS are correlated with knowledge areas of project management. The proposed model for implementation of a QAS in the nuclear fuel cycle facilities considered the best project management practices according to the Project Management Book of Knowledge (PMBOK - 5th edition) of the Project Management Institute (PMI). This knowledge is considered very good practices around the world. Since the model was defined, the deployment process becomes more practical and efficient, providing reduction in deployment time, better management of human

  7. Respectful maternity care in three health facilities in Burkina Faso: the experience of the Society of Gynaecologists and Obstetricians of Burkina Faso.

    Science.gov (United States)

    Ouédraogo, Ali; Kiemtoré, Sibraogo; Zamané, Hyacinthe; Bonané, Blandine T; Akotionga, Michel; Lankoande, Jean

    2014-10-01

    The Society of Gynaecologists and Obstetricians of Burkina Faso (SOGOB) conducted a project to reinforce skills in respectful maternity care among its members and health workers at three facilities. The participatory process allowed health workers to self-diagnose quality of care, recognize their own responsibility, propose solutions, and pledge respectful care commitments that were specific for each unit. Key commitments included good reception; humanistic clinical examination; attentive listening and responsiveness to patient needs; privacy, discretion, and confidentiality; availability; and comfort. These commitments can potentially be modified after each evaluation by SOGOB. Poor working conditions were found to negatively impact on quality of care. High staff turnover, frequent technical malfunctions, and inadequate infrastructure were identified as issues that require future focus to ensure improvements in quality of care are sustainable. Programs that aim to improve the maternity experience by linking good practice with humanistic care merit rollout to all healthcare facilities in Burkina Faso. Copyright © 2014. Published by Elsevier Ireland Ltd.

  8. A nuclear simulation experiment for the International Fusion Materials Irradiation Facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Moellendorff, U. von; Giese, H.; Feuerstein, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit]|[Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Hochleistungsimpuls- und Mikrowellentechnik]|[Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Hauptabteilung Ingenieurtechnik; Maekawa, F. [Japan Atomic Energy Research Inst. (Japan)

    2002-07-01

    For studying neutronic and nuclear characteristics of the projected International Fusion Materials Irradiation Facility (IFMIF), a saturation thick target of natural lithium was irradiated with 40 MeV deuterons from the Karlsruhe Isochronous Cyclotron. The resulting neutron spectrum and yield were measured by multi-foil activation. The production rates of the radionuclides tritium and beryllium-7 in the lithium were also measured. They are (6.85 g {+-} 7%) tritium and (1.85 g {+-} 12%) Be-7 per IFMIF full power year at 40 MeV and 250 mA; these values supersede preliminary results given earlier. Further, samples of two different steels, pure vanadium, and a vanadium alloy were activated in the neutron field, and specific activities of many radionuclides in becquerel per kg of material subsequently determined by gamma spectrometry. The report gives all experimental results together with sufficient experimental details to enable calculations for testing nuclear data. (orig.) [German] Zur Untersuchung von neutronischen und nuklearen Charakteristika der projektierten international fusion materials irradiation facility (IFMIF) wurde ein saettigungsdickes natuerliches Lithiumtarget mit 40-MeV-Deuteronen aus dem Karlsruher Isochronzyklotron bestrahlt. Spektrum und Ausbeute der entsiehenden Neutronen wurden mittels Multifolien-Aktivierung gemessen. Auch die Erzeugungsraten der Radionuklide Tritium und Beryllium-7 im Lithium wurden gemessen. Sie betragen (6.85 g {+-} 12%) Tritium and (1.85 g {+-} 12%) Be-7 pro IFMIF-Volleistungsjahr bei 40 MeV and 250 mA; diese Werte ersetzen frueher angegebene vorlaeufige Ergebnisse. Ausserdem wurden Proben von zwei verschiedenen Staehlen, reinem Vanadium und einer Vanadiumlegierung in dem Neutronenfeld aktiviert und anschliessend durch Gammaspektrometrie spezifische Aktivitaeten vieler Radionuklide in Becquerel pro kg Material bestimmt. Der Bericht enthaelt alle Messergebnisse zusammen mit genuegend experimentellen Einzelheiten, um

  9. Multi-Specimen Variable-G Facility for Life and Microgravity Sciences Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot, Inc. proposes to develop a Multi-specimen Variable-G Facility (MVF) for life and microgravity sciences research. The MVF incorporates a generic...

  10. ISS Additive Manufacturing Facility for On-Demand Fabrication in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Made in Space has completed a preliminary design review of the Additive Manufacturing Facility. During the first half of Phase 1, the design went through conceptual...

  11. Development of the Plant Growth Facility for Use in the Shuttle Middeck and Test Units for Ground-Based Experiments

    Science.gov (United States)

    Chapman, David K.; Wells, H. William

    1996-01-01

    The plant growth facility (PGF), currently under development as a Space Shuttle middeck facility for the support of research on higher plants in microgravity, is presented. The PGF provides controlled fluorescent lighting and the active control of temperature, relative humidity and CO2 concentration. These parameters are designed to be centrally controlled by a dedicated microprocessor. The status of the experiment can be displayed for onboard analysis, and will be automatically archived for post-flight analysis. The facility is designed to operate for 15 days and will provide air filtration to remove ethylene and trace organics with replaceable potassium permanganate filters. Similar ground units will be available for pre-flight experimentation.

  12. The Pedotopia Project: A Transdisciplinary Experiment in Soil Education

    Science.gov (United States)

    Toland, A.; Wessolek, G.

    2012-04-01

    In the absence of every-day interactions with the land, a hands-on, comprehensive soil education across disciplines and ages is necessary. Soil education is usually integrated into earth science and geography curricula and only rarely into social science, arts and humanities programs. Furthermore, an emphasis on measurement and modeling in conventional classroom science often neglects aesthetic, moral and other non-quantifiable values, precluding a broader cultural context in which soil education could take place. The arts play a vital role in communicating environmental issues to the greater public and represent a dynamic approach to help students discover soil complexity in new and unexpected ways. Artistic methods have recently been introduced as pedagogical tools in soil awareness-raising programs for children and youth. Painting with soil has become an interesting new approach to soil education from Kindergarten to University levels (SZLEZAK 2008). And a growing amount of literature describes artists who have undertaken different soil issues, suggesting that such artistic focus may improve wider understanding and appreciation of soil conservation issues (FELLER et al 2010, TOLAND & WESSOLEK 2010, WAGNER 2002). How can art contribute to soil science, policy and education - both with the aim of generating greater public understanding, but also by honing creative methods to confront problems such as contamination, erosion, and urban sprawl? What artistic approaches exist to protect and restore soils as well as our relationship to the land? And how can these approaches support current soil education goals? These questions were addressed in the transdisciplinary soil seminar, "Pedotopia - Re-sourcing Urban Soils" from September 2010 to September 2011 in Berlin. A cooperation between the Technical University of Berlin's Department of Soil Protection and the Berlin University of Arts' Institute for Art in Context, the project served as a teaching experiment as well

  13. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  14. Using scenarios for dissemination - Experiences from the IMS GLOBEMEN project

    DEFF Research Database (Denmark)

    Ollus, Martin; Hartel, Ingo; Tølle, Martin

    2002-01-01

    in the field and contributions from the project. Based upon a generic Virtual Enterprise Reference Architecture (called VERA) the partners in the project have developed a set of protypes to be implemeted in their own business processes. The results will be illutrated in one integrated scenario....

  15. An Applied Project-Driven Approach to Undergraduate Research Experiences

    Science.gov (United States)

    Karls, Michael A.

    2017-01-01

    In this paper I will outline the process I have developed for conducting applied mathematics research with undergraduates and give some examples of the projects we have worked on. Several of these projects have led to refereed publications that could be used to illustrate topics taught in the undergraduate curriculum.

  16. New Zealand Teachers Respond to the "National Writing Project" Experience

    Science.gov (United States)

    Locke, Terry; Whitehead, David; Dix, Stephanie; Cawkwell, Gail

    2011-01-01

    This article draws on early data from a two-year project (2009-11) being undertaken in the New Zealand context by the authors entitled: "Teachers as Writers: Transforming Professional Identity and Classroom Practice". Based on the National Writing Project in the USA (and in New Zealand in the 1980s) its hypothesis is that when teachers…

  17. A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.K.

    1993-09-28

    Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow ({approximately} 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos` concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable.

  18. Results from colliding magnetized plasma jet experiments executed at the Trident laser facility

    Science.gov (United States)

    Manuel, M. J.-E.; Rasmus, A. M.; Kurnaz, C. C.; Klein, S. R.; Davis, J. S.; Drake, R. P.; Montgomery, D. S.; Hsu, S. C.; Adams, C. S.; Pollock, B. B.

    2015-11-01

    The interaction of high-velocity plasma flows in a background magnetic field has applications in pulsed-power and fusion schemes, as well as astrophysical environments, such as accretion systems and stellar mass ejections into the magnetosphere. Experiments recently executed at the Trident Laser Facility at the Los Alamos National Laboratory investigated the effects of an expanding aluminum plasma flow into a uniform 4.5-Tesla magnetic field created using a solenoid designed and manufactured at the University of Michigan. Opposing-target experiments demonstrate interesting collisional behavior between the two magnetized flows. Preliminary interferometry and Faraday rotation measurements will be presented and discussed. This work is funded by the U.S Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Astrophysical Observatory for NASA under contract NAS8-03060.

  19. X-ray conversion efficiency in vacuum hohlraum experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R. E. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Suter, L. J.; Callahan, D. A.; Rosen, M. D.; Dixit, S. N.; Landen, O. L.; Meezan, N. B.; Moody, J. D.; Thomas, C. A.; Warrick, A.; Widmann, K.; Williams, E. A.; Glenzer, S. H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kline, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-05-15

    X-ray fluxes measured in the first 96 and 192 beam vacuum hohlraum experiments at the National Ignition Facility (NIF) were significantly higher than predicted by computational simulations employing XSN average atom atomic physics and highly flux-limited electron heat conduction. For agreement with experimental data, it was found that the coronal plasma emissivity must be simulated with a detailed configuration accounting model that accounts for x-ray emission involving all of the significant ionization states. It was also found that an electron heat conduction flux limit of f= 0.05 is too restrictive, and that a flux limit of f= 0.15 results in a much better match with the NIF vacuum hohlraum experimental data. The combination of increased plasma emissivity and increased electron heat conduction in this new high flux hohlraum model results in a reduction in coronal plasma energy and, hence, an explanation for the high ({approx}85%-90%) x-ray conversion efficiencies observed in the 235 < T{sub r} < 345 eV NIF vacuum hohlraum experiments.

  20. Savannah River Plant, Project 8980: Engineering and design history of power and electrical facilities. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    This section of the Engineering-and Design History presents a comprehensive account of the planning and extensive evaluation of the problems involved in reaching basic decisions for the design and installation of power facilities at the Savannah River Plant. The problems were complicated by the urgency of Pro. viding early start-up of facilities at a time when critical material shortages were acute, combined with basic requirements for reliable operation and unusual degrees of flexibility to meet a variety of production demands. Part I describes in detail the steam and water facilities, alternative schemes, and other considerations which were evaluated as a prelude to the final design of equipment and facilities. Included are discussions relating to steam boiler installations, electric power generation, diesel engine plants, mater supply for cooling, process and domestic use, and the numerous water treatment procedures employed for specific application. A comprehensive description of the development and design of electric power facilities is presented in Part II of this volume.

  1. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  2. Decommissioning and dismantling of nuclear facilities. Experiences and perspectives. 3. new rev. ed.; Stilllegung und Rueckbau kerntechnischer Anlagen. Erfahrungen und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Thierfeldt, S.; Schartmann, F.

    2009-11-15

    The report on decommissioning and dismantling of German nuclear facilities includes nuclear power plants (Niederaichbach, Lingen, Greifswald, Rheinsberg, Gundremmingen-A, Kahl, Wuergassen, Stade, Obrigheim, Muehlheim-Kaerlich), test reactors, research reactors, and fuel cycle facilities. The following issues are discussed with respect to experiences and perspectives: waste management, legal frame work for the decommissioning of nuclear facilities, research funding and exchange of experiences, technologies for the dismantling of nuclear facilities, decommissioning challenges in an international context.

  3. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  4. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to

  5. Los Alamos plutonium facility applied systems integration project status report for period ending August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Shirk, D.G.; Bearse, R.C.; Marshall, R.S.; Baker, A.L.; Thomas, C.C. Jr.

    1982-02-01

    The conceptual design of an on-line, near-real-time nondestructive assay instrumentation network for the Los Alamos Plutonium Facility is complete. Analysis of instrument history data indicates that the instrument certification procedures need improvement. Analysis of exhaust filter data has led to the derivation of a buildup prediction equation that is a function of throughput. This suggests that development of a generalized model is possible. A number of routine reports are now available from the Plutonium Facility/Los Alamos Safeguards System including inventories and active reports.

  6. European collider's success provides a blueprint for mega-science projects 35 countries contribute labor and money to build a physics facility too costly for any one nation

    CERN Multimedia

    MacDonald, K

    1999-01-01

    Many scientists believe the construction of the LHC could become the blueprint for future international collaborations on large-scale scientific facilities and projects too large and costly for individual countries to fund alone (2 pages).

  7. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

  8. A Microsoft Project-Based Planning, Tracking, and Management Tool for the National Transonic Facility's Model Changeover Process

    Science.gov (United States)

    Vairo, Daniel M.

    1998-01-01

    The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.

  9. Conditions, factors and criteria for successful project implementation: generalization of experience of project management

    Directory of Open Access Journals (Sweden)

    Feraru Galina Sergeevna

    2014-11-01

    Full Text Available The article addresses issues characterizing features of project management contributing to their competitive advantage; shows the factors and criteria of success of projects and the main reasons for their failures, making the failed efforts of developers to create projects.

  10. Health Education Field Experience Stories: A Reflective, Digital, Performance-Based Project

    Science.gov (United States)

    Lyde, Adrian R.

    2012-01-01

    This article describes a reflective, systematic, performance-based project resulting in the development of a digital story about a community health education field experience. The project is designed for preservice health education students at the college/university level. The primary benefit of the project is that it challenges students to engage…

  11. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This guide is intended to provide a general resource that will begin to develop the Federal employee's awareness and understanding of the project developer's operating environment and the private sector's awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this guide has been organized to match Federal processes with typical phases of commercial project development. The main purpose of this guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project.

  12. Small-scale, homelike facilities in dementia care: a process evaluation into the experiences of family caregivers and nursing staff.

    Science.gov (United States)

    Verbeek, Hilde; Zwakhalen, Sandra M G; van Rossum, Erik; Kempen, Gertrudis I J M; Hamers, Jan P H

    2012-01-01

    Current developments in institutional dementia care aim at the downsizing of facilities and increasing their homelike appearance. Small-scale living facilities are an example of this movement, in which a small group of residents (usually six to eight) live together in a homelike environment. Residents are encouraged to participate in normal daily activities and nursing staff is part of the household with integrated tasks. Despite the increase of these facilities, little is known about experiences of family caregivers of residents and nursing staff. To gain an in-depth insight into the experiences of family caregivers and nursing staff with small-scale living facilities. A process evaluation was conducted alongside the final measurement of an effectiveness study, using a cross-sectional, descriptive design. Two types of institutional dementia care in the Netherlands: small-scale living facilities and regular wards in nursing homes. In total, 130 family caregivers and 309 nursing staff workers in both care settings participated in a survey questionnaire. Additional in-depth interviews were conducted with a random selection of 24 participants in small-scale living facilities: 13 family caregivers and 11 nursing staff workers. Survey questions for family caregivers focused on care service delivery; questions for nursing staff were related to skills. The interviews especially related to positive and negative aspects of small-scale living facilities and skills for nursing staff. Both family caregivers and staff mainly reported positive experiences with small-scale living facilities, especially the personal attention that nursing staff provides to residents, their involvement with residents and the emphasis on autonomy in daily life. Barriers mainly related to nursing staff working alone during a large part of the day. Family caregivers in small-scale living facilities were more satisfied with the care facility and nursing staff than those in regular wards. The findings

  13. Researchers' experiences, positive and negative, in integrative landscape projects

    NARCIS (Netherlands)

    Tress, B.; Tress, G.; Fry, G.

    2005-01-01

    Integrative (interdisciplinary and transdisciplinary) landscape research projects are becoming increasingly common. As a result, researchers are spending a larger proportion of their professional careers doing integrative work, participating in shifting interdisciplinary teams, and cooperating

  14. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs.

  15. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  16. MANAGING CONFLICT IN ENGINEERING PROJECTS: NEW ZEALAND EXPERIENCES

    Directory of Open Access Journals (Sweden)

    Nicola Naismith

    2016-07-01

    Full Text Available There is a wealth of knowledge concerning conflict management and its resolution in the workplace, however there is a dearth of information relating to conflict management and its resolution in engineering project management. This paper set out to examine the reality of conflict management in engineering project management in New Zealand. This was achieved through a review of credible literature sources and the completion of a pilot study to gain subject matter expert perspectives. The research suggests that conflicts can be destructive, resulting in anxiety and strong emotional responses leading to reflexive reactions including avoidance, aggression, fight, hostility and a breakdown in communications and relationships. Findings indicate that managing a project structure is synonymous with handling conflict and these disagreements can be detrimental to the success of a project. The initial results suggest that a number of factors act as drivers of conflict in engineering projects in New Zealand. These drivers are: power, personality, group dynamics and organisation culture. The conflict resolution tools cited as being widely used for engineering projects are collaboration and negotiation. The paper also offers recommendations for future research.

  17. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  18. Teaching as Improvisational Experience: Student Music Teachers' Reflections on Learning during an Intercultural Project

    Science.gov (United States)

    Westerlund, Heidi; Partti, Heidi; Karlsen, Sidsel

    2015-01-01

    This qualitative instrumental case study explores Finnish student music teachers' experiences of teaching and learning as participants in an intercultural project in Cambodia. The Multicultural Music University project aimed at increasing master's level music education students' intercultural competencies by providing experiences of teaching and…

  19. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  20. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  1. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  2. Computational Experiment Study on Selection Mechanism of Project Delivery Method Based on Complex Factors

    Directory of Open Access Journals (Sweden)

    Xiang Ding

    2014-01-01

    Full Text Available Project delivery planning is a key stage used by the project owner (or project investor for organizing design, construction, and other operations in a construction project. The main task in this stage is to select an appropriate project delivery method. In order to analyze different factors affecting the PDM selection, this paper establishes a multiagent model mainly to show how project complexity, governance strength, and market environment affect the project owner’s decision on PDM. Experiment results show that project owner usually choose Design-Build method when the project is very complex within a certain range. Besides, this paper points out that Design-Build method will be the prior choice when the potential contractors develop quickly. This paper provides the owners with methods and suggestions in terms of showing how the factors affect PDM selection, and it may improve the project performance.

  3. Experiments on domain adaptation for patent machine translation in the PLuTO project

    OpenAIRE

    Ceausu, Alexandru; Tinsley, John; Zhang, Jian; Way, Andy

    2011-01-01

    The PLUTO1 project (Patent Language Translations Online) aims to provide a rapid solution for the online retrieval and translation of patent documents through the integration of a number of existing state-of-the-art components provided by the project partners. The paper presents some of the experiments on patent domain adaptation of the Machine Translation (MT) systems used in the PLuTO project. The experiments use the International Patent Classification for domain adaptation and are foc...

  4. Experiences of registered nurses as managers and leaders in residential aged care facilities: a systematic review.

    Science.gov (United States)

    Dwyer, Drew

    2011-12-01

    The phenomenon of an ageing population is being experienced globally, as countries struggle to change and improve residential models of care and provide services to the elderly. The role of the registered nurse (RN) is considered crucial to the clinical governance and management of care given. To date, however, no systematic review has examined the RN's experience in leadership and management. The objective of this review is to critically appraise, synthesise and present best available evidence on the experiences of RNs as clinical leaders and managers in residential aged care facilities. This review considered qualitative research papers that addressed the experiences of RNs as clinical leaders and managers in residential aged care facilities. Participants of interest were RNs, nurse leaders, nurses holding registration and or regulation under a board of nursing, nurses working in residential aged care and long-term care facilities. The diversity and use of language to describe nurses' roles and models of care for the elderly care environment were considered in the review. The search strategy sought to find both published studies and papers, limited to the English language and published between January 1997 and February 2011. An initial limited search was done in Medical Literature Analysis and Retrieval System Online (MEDLINE) and Cumulative Index to Nursing and Allied Health Literature databases to identify the key words contained in the title or abstract and index terms used to describe the relevant terms in the article. A second extensive search was undertaken and extended to other relevant databases using all identified keywords and index terms. The third step involved searching reference lists and bibliographies of chosen articles for additional studies. Each paper was assessed by two independent reviewers for methodological quality prior to inclusion in the review using an appropriate critical appraisal instrument from the System for the Unified Management

  5. 38 CFR 21.299 - Use of Government facilities for on-job training or work experience at no or nominal pay.

    Science.gov (United States)

    2010-07-01

    ... facilities for on-job training or work experience at no or nominal pay. 21.299 Section 21.299 Pensions... Selection § 21.299 Use of Government facilities for on-job training or work experience at no or nominal pay.... L. 100-689) (b) Employment status of veterans. (1) While pursuing on-job training or work experience...

  6. The Optimizing Patient Transfers, Impacting Medical Quality, andImproving Symptoms:Transforming Institutional Care approach: preliminary data from the implementation of a Centers for Medicare and Medicaid Services nursing facility demonstration project.

    Science.gov (United States)

    Unroe, Kathleen T; Nazir, Arif; Holtz, Laura R; Maurer, Helen; Miller, Ellen; Hickman, Susan E; La Mantia, Michael A; Bennett, Merih; Arling, Greg; Sachs, Greg A

    2015-01-01

    The Optimizing Patient Transfers, Impacting Medical Quality, and Improving Symptoms: Transforming Institutional Care (OPTIMISTIC) project aims to reduce avoidable hospitalizations of long-stay residents enrolled in 19 central Indiana nursing facilities. This clinical demonstration project, funded by the Centers for Medicare and Medicaid Services Innovations Center, places a registered nurse in each nursing facility to implement an evidence-based quality improvement program with clinical support from nurse practitioners. A description of the model is presented, and early implementation experiences during the first year of the project are reported. Important elements include better medical care through implementation of Interventions to Reduce Acute Care Transfers tools and chronic care management, enhanced transitional care, and better palliative care with a focus on systematic advance care planning. There were 4,035 long-stay residents in 19 facilities enrolled in OPTIMISTIC between February 2013 and January 2014. Root-cause analyses were performed for all 910 acute transfers of these long stay residents. Of these transfers, the project RN evaluated 29% as avoidable (57% were not avoidable and 15% were missing), and opportunities for quality improvement were identified in 54% of transfers. Lessons learned in early implementation included defining new clinical roles, integrating into nursing facility culture, managing competing facility priorities, communicating with multiple stakeholders, and developing a system for collecting and managing data. The success of the overall initiative will be measured primarily according to reduction in avoidable hospitalizations of long-stay nursing facility residents. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  7. Long Duration Exposure Facility experiment M0003 deintegration observation data base

    Science.gov (United States)

    Gyetvay, S. R.; Coggi, J. M.; Meshishnek, M. J.

    1993-01-01

    The four trays (2 leading edge and 2 trailing edge) of the M0003 materials experiment on the Long Duration Exposure Facility (LDEF) contained 1274 samples from 20 subexperiments. The complete sample complement represented a broad range of materials, including thin film optical coatings, paints, polymer sheets and tapes, adhesives, and composites, for use in various spacecraft applications, including thermal control, structures, optics, and solar power. Most subexperiments contained sets of samples exposed on both the leading and trailing edge trays of LDEF. Each individual sample was examined by high resolution optical microscope during the deintegration of the subexperiments from the M0003 trays. Observations of the post-flight condition of the samples made during this examination were recorded in a computer data base. The deintegration observation data base is available to requesters on floppy disk in 4th Dimension for the Macintosh format. Over 3,000 color macrographs and photomicrographs were shot to complement the observation records and to document the condition of the individual samples and of the M0003 trays. The photographs provide a visual comparison of the response of materials in leading and trailing edge LDEF environments. The Aerospace Corporate Archives is distributing photographs of the samples and hard copies of the database records to the general public upon request. Information on obtaining copies of the data base disks and for ordering photographs and records of specific samples or materials are given.

  8. An Experiment to Analyze Performance of Virtual Private Network Approach to Information Exchange between Health Facilities

    Directory of Open Access Journals (Sweden)

    Siphael BETUEL

    2017-06-01

    Full Text Available In developing countries, Tanzania in particular, studies and reports have depicted that there is a strong desire and need for seamless information exchange across health care providing facilities. A limited study conducted in few public and private hospitals has also revealed the same. On the other hand, the eHealth community has failed to effectively take advantage of the advances in technologies to make that desire come true. One potential technology is Virtual Private Network (VPN for which it has been noticed that there is a misconception and lack of innovative initiatives that slow down its uptake in eHealth. This article presents a technical assessment of the VPN technology in Tanzanian context. Primarily, the assessment focused on practicability of the best VPN practices and the perceived user experience performance when VPN is in use. It was observed that the response time dropped significantly as expected. The increase in response time and computer memory utilization is due to security mechanisms that are involved in VPN, the stronger security is used the more performance decreases. However, the increase in response time and computer memory utilization is very small in such a way that users will not be able to notice.

  9. The Atlas pulsed power facility for high energy density physics experiments

    CERN Document Server

    Miller, R B; Barr, G W; Bowman, D W; Cochrane, J C; Davis, H A; Elizondo, J M; Gribble, R F; Griego, J R; Hicks, R D; Hinckley, W B; Hosack, K W; Nielsen, K E; Parker, J V; Parsons, M O; Rickets, R L; Salazar, H R; Sánchez, P G; Scudder, D W; Shapiro, C; Thompson, M C; Trainor, R J; Valdez, G A; Vigil, B N; Watt, R G; Wysocki, F J; Kirbie, H C

    1999-01-01

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. Here, the authors describe how the primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently- removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the Marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-ys risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line compo...

  10. A Factorial Data Rate and Dwell Time Experiment in the National Transonic Facility

    Science.gov (United States)

    DeLoach, R.

    2000-01-01

    This report is an introductory tutorial on the application of formal experiment design methods to wind tunnel testing, for the benefit of aeronautical engineers with little formal experiment design training. It also describes the results of a Study to determine whether increases in the sample rate and dwell time of the National Transonic Facility data system Would result in significant changes in force and moment data. Increases in sample rate from 10 samples per second to 50 samples per second were examined, as were changes in dwell time from one second per data point to two seconds. These changes were examined for a representative aircraft model in a range of tunnel operating conditions defined by angles of attack from 0 deg to 3.8 degrees, total pressure from 15.0 psi to 24.1 psi, and Mach numbers from 0.52 to 0.82. No statistically significant effect was associated with the change in sample rate. The change in dwell time from one second to two seconds affected axial force measurements, and to a lesser degree normal force measurements. This dwell effect comprises a "rectification error" caused by incomplete cancellation of the positive and negative elements of certain low frequency dynamic components that are not rejected by the one-Hz low-pass filters of the data system. These low frequency effects may be due to tunnel circuit phenomena and other sources. The magnitude of the dwell effect depends on dynamic pressure, with angle of attack and Mach number influencing the strength of this dependence. An analysis is presented which suggests that the magnitude of the rectification error depends on the ratio of measurement dwell time to the period of the low-frequency dynamics, as well as the amplitude of the dynamics The essential conclusion of this analysis is that extending the dwell time (or, equivalently, replicating short-dwell data points) reduces the rectification error.

  11. Bioregenerative Life Support Experiment for 90-days in a Closed Integrative Experimental Facility LUNAR PALACE 1

    Science.gov (United States)

    Liu, Hong

    A 90-day bioregenerative life support experiment with three-member crew was carried out in the closed integrative experimental facility, LUNAR PALACE 1 regenerating basic living necessities and disposing wastes to provide life support for crew. It was composed of higher plant module, animal module, and waste treatment module. The higher plant module included wheat, chufa, pea, carrot and green leafy vegetables, with aim to satisfy requirement of 60% plant food and 100% O2 and water for crew. The yellow mealworm was selected as animal module to provide partial animal protein for crew, and reared on plant inedible biomass. The higher plant and yellow mealworm were both cultivated and harvested in the conveyor-type manner. The partial plant inedible biomass and human feces were mixed and co- fermented in the waste treatment module for preparation of soil-like substrate by bioconversion, maintaining gas balance and increasing closure degree. Meanwhile, in the waste treatment module, the water and partial nitrogen from human urine were recovered by physical-chemical means. Circulation of O2 and water as well as food supply from crops cultivated in the LUNAR PALACE 1 were investigated and calculated, and simultaneously gas exchange, mass flow among different components and system closure degree were also analyzed, respectively. Furthermore, the system robustness with respect to internal variation was tested and evaluated by sensitivity analysis of the aggregative index consisting of key performance indicators like crop yield, gaseous equilibrium concentration, microbial community composition, biogenic elements dynamics, etc., and comprehensively evaluating the operating state, to number change of crew from 2 to 4 during the 90-day closed experiment period.

  12. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  13. Transitioning from caregiver to visitor in a long-term care facility: the experience of caregivers of people with dementia.

    Science.gov (United States)

    Crawford, K; Digby, R; Bloomer, M; Tan, H; Williams, A

    2015-01-01

    Transitioning from the primary caregiver to the visitor in a long-term care facility may be challenging for the caregiver; they are required to surrender their caring duties to the medical and nursing staff. The aim of this study was to explore the experiences of caregivers during their transition from day-to-day caregiver of a person with dementia to a visitor in a long-term care facility. This study utilised a qualitative descriptive design. Twenty caregivers of people with dementia were recruited from the one Aged Rehabilitation and Geriatric Evaluation and Management facility, located in Victoria, Australia. Semi-structured interviews were used to explore the caregiver's experiences. Interviews were analysed using thematic analysis. The interview data revealed that the participants were undergoing similar experiences. The findings revealed that it was difficult for the caregiver to transition to their new role of visitor; negative reactions of grief, loss of motivation and loneliness were also coupled with positive feelings of relief and the reassurance that their relative or friend would be well cared for and safe within the long-term care facility. The findings offer insight into the experiences felt by caregivers when their relative or friend with dementia is admitted to hospital. Implications of this study include the need to improve the transition process for the caregiver by allowing them to be involved in the decision-making process, keeping them informed of care decisions, and importantly, providing emotional support to help the caregiver positively adapt to this transition.

  14. Radioactive waste storage facilities: 4 years experience; Almacen central de residuos radiactivos: una experiencia de cuatro anos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Manzano, P.; Rivas Ballarin, M. A.; Canellas Anoz, M.; Garcia Romero, A.; Pizarro Trigo, F.; Fernandez Cerezo, S. [Hospital Clinico Universitario Lozano Blesa. Zaragoza (Spain)

    2003-07-01

    The aim of this study is to asses the management of the radioactive waste originated in HCU Lozano Blesa, after a four-year experience with a new radioactive waste store facility. The followed method for its disposal is shown , and the amount and characteristics of the radioactive waste are discussed. (Author)

  15. Enabling the publication of practice based experiences and projects

    Directory of Open Access Journals (Sweden)

    Jan Dewing

    2017-05-01

    Full Text Available Welcome to a new issue of the IPDJ. Although the journal team is already working on our next issue – a special issue with an in-depth analysis of the caring system in Norway led by colleagues in Bergen at the Western Norway University of Applied Sciences – we are taking a pause to reflect on this issue and to acknowledge its rich vein of contents. The variety of the articles we publish in each issue never ceases to amaze me. Some submissions come in from previously unknown sources, as is the way with most academic journals. Others originate from emails sent by authors asking whether the IPDJ might be interested in a particular topic or project. Then, there are those that come via the members of the International Practice Development Collaborative (IPDC and the IPDJ editorial board. In addition, our editorial board members are expected to submit an article every two years – not too arduous, you might think, but time passes quickly and the board members, like other authors, have other publishing obligations to meet. As the journal’s academic editor and a practice developer, focused on person-centred processes and outcomes, it is a highlight of my role to see someone who has sent their first tentative email enquiring about the possibility of publication then going on to be published. I like to imagine the joy this brings to the novice authors, their family and colleagues. In this issue, for example, I am especially delighted that one of Queen Margaret University’s final year BSc nursing students is being published. A great time in one’s career to achieve a first publication, and something I would never have considered when I was a student nurse. Indeed, I can recall being seriously deterred from publishing by receiving quite unfriendly and hostile reviews as I began my own journey of writing for publication. One review is etched in my memory for all the wrong reasons; this reviewer told me I could not write and should not bother trying

  16. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Master Equipment List

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-09-21

    This document provides the master equipment list (MEL) for the Cold Vacuum Drying Facility (CVDF). The MEL was prepared to comply with DOE Standard 3024-98, Content of System Design Descriptions. The MEL was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems and the CVDF System Design Descriptions (SDD). The MEL identifies the SSCs and their safety functions, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. The MEL also includes operating parameters, manufacturer information, and references the procurement specifications for the SSCs. This MEL shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR, the SDD's, and CVDF operations.

  17. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  18. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    Science.gov (United States)

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Enhancing resiliency for elderly populations : Shelter-in-place planning and training at facilities serving elderly populations through the Rhode Island Senior Resiliency Project.

    Science.gov (United States)

    Smith, Richard; Mozzer, Michael; Albanese, Joseph; Paturas, James; Gold, Julia

    2017-06-01

    Elderly populations are disproportionately affected by disasters. In part, this is true because for many older adults, special assistance is needed to mitigate the consequences of disasters on their health and wellbeing. In addition, many older adults may reside in diverse living complexes such as long-term care facilities, assisted living facilities and independent-living senior housing complexes. Planning for each type of facility is different and the unique features of these facilities must be considered to develop readiness to deal with disasters. Based on this, the Rhode Island Department of Health established the Senior Resiliency Project to bolster the level of resiliency for the types of living facilities housing older adults. The project involves performing onsite assessments of energy resources, developing site-specific sheltering-inplace and energy resiliency plans, and educating and training facility employees and residents on these plans and steps they can take to be better prepared. Based on the feasibility of conducting these activities within a variety of facilities housing older adults, the project is segmented into three phases. This paper describes survey findings, outcomes of interventions, challenges and recommendations for bridging gaps observed in phases 1 and 2 of the project.

  20. Experience Report: Introducing Kanban Into Automotive Software Project

    Directory of Open Access Journals (Sweden)

    Marek Majchrzak

    2017-03-01

    Full Text Available The boundaries between traditional and agile approach methods are disappearing. A significant number of software projects require a continuous implementation of tasks without dividing them into sprints or strict project phases. Customers expect more flexibility and responsiveness from software vendors in response to the ever-changing business environment. To achieve better results in this field, Capgemini has begun using the Lean philosophy and Kanban techniques. \\\\The following article illustrates examples of different uses of Kanban and the main stakeholder of the process. The article presents the main advantages of transparency and ways to improve the customer co-operation as well as stakeholder relationships. The Authors try to visualise all of the elements in the context of the project. \\\\There is also a discussion of different approaches in two software projects. The article fokuses on the main challenges and the evolutionary approach used. An attempt is made to answer the question how to convince both the team as well as the customer, and how to optimise ways to achieve great results.

  1. Re-Envisioning the Honors Senior Project: Experience as Research

    Science.gov (United States)

    Gustafson, Kevin; Cureton, Zachary

    2014-01-01

    One of the National Collegiate Honors Council (NCHC) Basic Characteristics of a Fully Developed Honors Program is that it creates opportunities for undergraduate research, opportunities that frequently culminate in a senior thesis or capstone project. This article describes how the University of Texas at Arlington Honors College integrated…

  2. Influencing citizen behavior: experiences from multichannel marketing pilot projects

    NARCIS (Netherlands)

    van de Wijngaert, Lidwien; Pieterson, Willem Jan; Teerling, Marije L.

    2011-01-01

    Information technology allows national and local governments to satisfy the needs of citizens in a cost effective way. Unfortunately, citizens still tend to prefer traditional, more costly channels, such as the front desk, phone and mail. Through pilot projects government agencies attempt to

  3. The photomultiplier tube testing facility for the Borexino experiment at LNGS

    Energy Technology Data Exchange (ETDEWEB)

    Brigatti, A. [INFN sez. di Milano, Via Celoria, 16, I-20133 Milan (Italy); Ianni, A. [INFN - Laboratori Nazionali del Gran Sasso, S.S. 17bis Km 18-910, I-67010 Assergi, Aquila (Italy); Lombardi, P. [Dipartimento di Fisica Universita and INFN. sez. di Milano, Via Celoria, 16, I-20133 Milan (Italy); Ranucci, G. [Dipartimento di Fisica Universita and INFN. sez. di Milano, Via Celoria, 16, I-20133 Milan (Italy); Smirnov, O.Ju. [Joint Institute for Nuclear Research, Joliot-Curie, 6, 141980 Dubna (Russian Federation)]. E-mail: smirnov@lngs.infn.it

    2005-02-01

    A facility to test the photomultiplier tubes (PMTs) for the solar neutrino detector Borexino was built at the Gran Sasso laboratory. Using the facility 2200 PMTs with optimal characteristics were selected from the 2350 delivered from the manufacturer. The details of the hardware used are presented.

  4. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa

    Science.gov (United States)

    Daire, Judith; Gilson, Lucy

    2014-01-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager’s job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  5. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil

  6. Soil and crop management experiments in the Laboratory Biosphere: an analogue system for the Mars on Earth(R) facility.

    Science.gov (United States)

    Silverstone, S; Nelson, M; Alling, A; Allen, J P

    2005-01-01

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth(R) facility (Silverstone et al., Development and research program for a soil

  7. Experience and Methodology gained from 4 years of Student Satellite Projects

    DEFF Research Database (Denmark)

    Alminde, Lars; Bisgaard, Morten; Bhanderi, Dan

    2005-01-01

    The AAU Cubesat student satellite project at Aalborg University was initiated in September 2001 and led to the launch of the satellite on the 30th of June 2003 with a “Rockot” rocket from Plesetsk in Russia. The satellite survived three months in orbit and based on the experiences gained the next...... student satellite project was commenced called AAUSAT II which is due for launch early 2006. This paper presents the experiences gained and lessons learned from the work with student satellite projects at Aalborg University as well as the methodology used to manage these projects. First an introduction...... to the concept of student satellite projects is given and the two student satellite projects are introduced. Then an introduction and description of the Problem Based Learning concept used at Aalborg University is given and advantages of applying it to these projects are discussed. The benets of student...

  8. Determination of the Microbial Diversity of Spacecraft Assembly Facilities: First Results of the Project MiDiv

    Science.gov (United States)

    Rettberg, P.; Horneck, G.; Fritze, D.; Stackebrandt, E.; Kminek, G.

    The first step in the implementation of planetary protection guidelines encompasses a qualitative and quantitative inventory of the bioburden of spacecraft assembly facilities. In such an artificial environment mainly microorganisms are to be expected that are brought in by the humans themselves and that are able to withstand the controlled air circulation, the low relative humidity, the moderately high temperature and the low-nutrient conditions in the clean rooms of the assembly facilities. With informations about the composition of these microbial communities the development and/or optimization of adequate cleaning and sterilization procedures for spacecraft preparation before launch will be possible. The bioburden assessment in spacecraft assembly facilities requires a standardized procedure for sampling the air and surfaces in the facilities as well as of the spacecraft, a transfer of the biological samples under controlled conditions to the analyzing laboratory and a scientifically approved set of methods for analysis. In the ESA project MiDiv we started to investigate the bioburden of spacecrafts using the satellites SMART-1 and ROSETTA as test objects. The analysis of the samples included so far cultivation on different media at different pH and temperatures with and without oxygen with and without pasteurization, establishment of a culture collection of bacteria and partial 16S rRNA gene analysis. The results of these preliminary measurements, the total number of microorganisms, the numbers of colony forming units, differentiated according to the subgroups of aerobes, facultative anaerobes and anaerobes, and the phylogenetic classification, will be assessed with respect to the physiological potential of the identified microorganisms to withstand the different cleaning and sterilizing procedures used up to now for planetary protection measures. In the next step the ability of selected microorganisms to survive has to tested under environmental conditions as

  9. Fostering good governance at peripheral public health facilities: an experience from Nepal.

    Science.gov (United States)

    Gurung, G; Tuladhar, S

    2013-01-01

    The Nepalese primary healthcare system at sub-district level consists of three different levels of health facility to serve the mostly rural population. The Ministry of Health and Population decentralised health services by handing over 1433 health facilities in 28 districts to Health Facility Operation and Management Committees (HFOMCs), which were formed following a public meeting, and consist of 9 to 13 members, representing the health facility in-charge, elected members of the village development committee, dalit (disadvantaged caste) and women members. The purpose was to make this local committee responsible for managing all affairs of the health facility. However, the handing over of the health facilities to HFOMCs was not matched by an equivalent increase in the managerial capacity of the members, which potentially makes this initiative ineffective. The Health Facility Management Strengthening Program was implemented in 13 districts to foster good governance in the health facilities by increasing the capacity of HFOMCs. This effort focuses on capacity building of HFOMCs as a continuous process rather than a one-off event. Training, follow-up and promotional activities were conducted. This article focuses on how good governance at the peripheral public health facilities in Nepal can be fostered through the active engagement and capacity building of HFOMCs. This article used baseline and monitoring data collected during technical support visits to HFOMCs and their members between July 2008 and October 2011. The results show that the Health Facility Management Strengthening Program was quite successful in strengthening local health governance in the health facilities. The level of community engagement in governance improved, that is, the number of effective HFOMC meetings increased, the inclusion of dalit/women members in the decision-making process expanded, resource mobilization was facilitated, and community accountability, as measured by health facility

  10. Status of the SHIPTRAP Project: A Capture and Storage Facility for Heavy Radionuclides fromSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Marx, G., E-mail: g.marx@gsi.de; Ackermann, D.; Dilling, J.; Hessberger, F.P.; Hoffmann, S.; Kluge, H.-J.; Mann, R.; Muenzenberg, G.; Qamhieh, Z.; Quint, W.; Rodriguez, D.; Schaedel, M.; Schoenfelder, J.; Sikler, G.; Toader, C.; Weber, C. [GSI Darmstadt (Germany); Engels, O.; Habs, D.; Thirolf, P. [Ludwig-Maximilians-Universitaet Muenchen, Sekt. Physik (Germany); Backe, H. [Universitaet Mainz, J.-J, Institut fuer Kernphysik (Germany)] (and others)

    2001-01-15

    The ion trap facility SHIPTRAP is being set up to deliver very clean and cool beams of singly-charged recoil ions produced at the SHIP velocity filter at GSI Darmstadt. SHIPTRAP consists of a gas cell for stopping and thermalizing high-energy recoil ions from SHIP, an rf ion guide for extraction of the ions from the gas cell, a linear rf trap for accumulation and bunching of the ions, and a Penning trap for isobaric purification. The progress in testing the rf ion guide is reported. A transmission of about 93(5)% was achieved.

  11. The New Small Wheel Upgrade Project of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(CDS)2070368; The ATLAS collaboration

    2016-01-01

    The instantaneous luminosity of the Large Hadron Collider at CERN will be increased up to a factor of five with respect to the design value by undergoing an extensive upgrade program over the coming decade. The largest phase 1 upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward regions with the so-called New Small Wheels (NSWs), to be installed during the LHC long shutdown in 2018/19. The NSWs consist of eight layers each of Micromegas and small-strip Thin Gap Chambers (sTGC), both providing trigger and tracking capabilities, for a total active surface of more than 2500 m2. It represents the first system with such a large size based on Micro Pattern (Micromegas) and wire detectors (sTGC). The technological novelties and the expected performance of the NSW system is discussed. The status of the project and the plan for the completion is summarized.

  12. Sandia photovoltaic systems definition and application experiment projects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.

    1983-04-01

    A compilation is given of the abstracts and visual material used in presentation at the Fourth Photovoltaic Systems Definition and Applications Projects Integration Meeting held at the Marriott Hotel, April 12-14, 1983, in Albuquerque, New Mexico. The meeting provided a forum for detailed analyses on recently completed and current activities. These activities include systems research, balance-of-system technology development, residential experimentation, and evaluation of intermediate-sized applications.

  13. Overview and first results of experiments on magnetic reconnection between colliding magnetized plasmas at the National Ignition Facility

    Science.gov (United States)

    Fox, W.; Rosenberg, M.; Schaeffer, D.; Fiksel, G.; Park, H. S.; Kalantar, D.; Bhattacharjee, A.; Huang, Y.-M.; Ji, H.; Matteucci, J.; Gao, L.; Uzdensky, D.; Birkel, A.; Li, C. K.; Hu, S. X.; Shvydky, A.

    2017-10-01

    Expanding laser-produced plasmas naturally self-generate magnetic fields by the Biermann battery effect, and the collision of two plumes can drive magnetic reconnection. The National Ignition Facility at LLNL occupies a unique position for laser-driven magnetic reconnection experiments by simultaneously allowing very large plasma temperature, low plasma resistivity, and large system size, which allows observation of secondary instabilities driven during magnetic reconnection and particle acceleration relevant to astrophysical plasmas. Magnetic reconnection experiments have been conducted on the NIF through the NIF Discovery Science program with the first experimental shots conducted in May 2017. We will present the design of the experimental platform and results from the first experimental day. Magnetic reconnection data is obtained from proton radiography based on a DHe3 backlighter, x-ray self-emission, and a new low-energy particle spectrometer (NIF EPPS-300G) developed by the NIF Facility and Engineering and fielded for the first time on these experiments.

  14. Applications and results of X-ray spectroscopy in implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.

    2017-03-01

    Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the

  15. Adverse events associated with ultrasonic scalers: A manufacturer and user facility device experience database analysis.

    Science.gov (United States)

    Thennukonda, Rajagopal Athmarao; Natarajan, Bhavani Rekha

    2015-01-01

    The present study was conducted to determine the frequency and type of adverse events (AEs) associated with ultrasonic scaler reported to the Food and Drug Administration manufacturer and user facility device experience (MAUDE) database. The authors reviewed the ultrasonic scaler units (USU) related AEs reported to MAUDE from October 1, 1995, to September 31, 2015. Analyses of details collected are presented. MAUDE received a total of 667 unique USU-related AE reports. Of 667 cases, MAUDE classified 628 instances (94.2%) as malfunction 27 (4%) as injurious, 10 (1.5%) as others, and 2 (0.3%) claiming the use of USU as cause of death. Of the 667 cases, 511 (76.6%) were used for endodontic application, and 147 (22%) as scaler applications. In 512 (76.8%) instances, there was separation of the tips, posing danger to patients or users, and 112 (16.8%) instances of overheating, 12 (1.8%) instances of breakage, and electrical issues in 8 (1.2%) instances. These AE resulted in 19 instances of thermal injury, 2 suspicious deaths, and hearing loss in 3 cases. In 4 cases, patient swallowed broken parts requiring additional medical care. Use of USU, a Class 2 device without exemption, carries a degree of risk to patient's safety, if not properly used. As of today, MAUDE data is the only reliable source of AE until another database or such study is carried out. Certain AE that has been largely anecdotal, such as hearing loss has been reported in this study. The findings from study reiterate that more in-depth analysis of AE of USU is needed. Until then operator needs to take all precautions to avoid AE when using USU.

  16. Spent nuclear fuel project cold vacuum drying facility safety equipment list

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-02-24

    This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

  17. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Science.gov (United States)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  18. Experiences with Codes and Standards for the Arnhem SOFC Project

    Energy Technology Data Exchange (ETDEWEB)

    Gerwen, Rob J.F. van; Veer, Jan H.C. van der [KEMA Power Generation and Sustainables PO-Box 9035. NL-6800 ET Arnhem (Netherlands); Kuipers, Joop [Antiloopstraat 79, NL-6531 TL Nijmegen (Netherlands)

    2000-07-01

    By the end of 1994, a group of Danish and Dutch utilities agreed with Westinghouse (now Siemens-Westinghouse) upon the delivery of a 100 kWe Solid Oxide Fuel Cell unit. Identifying applicable codes and standards for the SOFC system was considered part of the learning process and was done after the contract was signed. This has proven to be a viable procedure, despite the fact that it took a lot of discussion (and time) to come to an agreement. This demonstration project has taught which codes and standards for this new and promising technology are applicable and which should be established. (author)

  19. When doctors come to prison – a pilot project for better HIV care in correctional facilities

    Directory of Open Access Journals (Sweden)

    I Vaz Pinto

    2012-11-01

    Full Text Available Recent rearrangements in national policies regarding follow-up of HIV-infected inmates have determined that hospitals closest to the prison facility be responsible for their care. Our HIV Unit and the two prison facilities in the area have established a clinical protocol whereby a clinical team goes to the prisons for blood collecting and visits instead of having the inmates transported to the hospital. The purpose of the protocol, from a clinical point of view, was to: (i promote adherence to blood tests and clinical visits; (ii promote adherence to antiretroviral (ARV therapy; (iii facilitate ARV administration by promoting once-daily-dosing. This retrospective review looks back at the first year of protocol implementation between the HIV Unit of HPP Cascais Hospital and the prisons of Tires and Linhó. The purpose of this study is to characterize the demographics of our inmate population; assess the number of inmates on ARV and describe the regimens as PI- or NNRTI-based and as once- or twice-daily dosed; evaluate ARV efficacy by HIV viral load undetectability; and assess opportunity for ARV switch from twice- to once-daily dosing. From April 2011 until June 2012 a total of 53 inmates were included in this protocol. The majority of patients were female (55% as one of the prisons is mainly for female inmates. The median age is 36 years (from 23–59. The average time of follow-up was 11 months (15 months maximum. From the total of 53 patients under study, 40 are currently under care, the other 13 having been released or transferred to other prison facilities. The majority of these patients are on ARV therapy (83%. By the end of follow-up time 88% of patients were on a once-daily dosed regimen; these are PI-based in 69% and NNRTI-based in 31%. At their last evaluation, 32/33 patients on therapy had undetectable HIV viremia (97%. As a conclusion, we assess that this protocol implementation has benefitted all parts: patients assure regular

  20. UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.

    Science.gov (United States)

    Dhabanandana, Salag

    This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…

  1. Modeling Tool to Quantify Metal Sources in Stormwater Discharges at Naval Facilities (NESDI Project 455)

    Science.gov (United States)

    2014-06-01

    demonstration/validation project to assess the use of the urban stormwater model Windows Source Loading and Management Model (WinSLAMM) to characterize...the urban stormwater model Windows Source Loading and Management Model (WinSlamm) to characterize sources of copper and zinc in storm runoff at Navy...are ubiquitous contaminants found in stormwater discharges in urban and industrialized areas. These contaminants originate from a variety of sources

  2. Environmental Assessment: Construct Munitions Maintenance Facility Building 543, Project ZQEL 05 - 0007, Youngstown Air Reserve Station

    Science.gov (United States)

    2006-06-01

    planned land use from natural feature open space to industrial use. This would represent a change of less than I 0% of that land usc category at Y...ARS and, therefore, represent a long-term, but minor impact. The open space at the Alternative B location has been slated for future industria l... Cultural /Historic Resource: No cultural resources have been identified in or near the Project Study Area and the Ohio State Historic Preservation

  3. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  4. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    CERN Document Server

    Elzhov, A V; Kaminsky, A K; Kuzikov, S V; Perelshtejn, E A; Peskov, N Yu; Petelin, M I; Sedykh, S N; Sergeev, A P; Sergeev, A S; Syratchev, I V; Zaitsev, N I

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30GHz, is used in the investigation. The experimental setup consists of a wavebeam injector - FEM oscillator (power of similar to 25MW, pulse duration up to 200ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed.

  5. RH-LLW Disposal Facility Project CD-2/3 to Design/Build Proposal Reconciliation Report

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer

    2012-06-01

    A reconciliation plan was developed and implemented to address potential gaps and responses to gaps between the design/build vendor proposals and the Critical Decision-2/3 approval request package for the Remote-Handled Low Level Waste Disposal Facility Project. The plan and results of the plan implementation included development of a reconciliation team comprised of subject matter experts from Battelle Energy Alliance and the Department of Energy Idaho Operations Office, identification of reconciliation questions, reconciliation by the team, identification of unresolved/remaining issues, and identification of follow-up actions and subsequent approvals of responses. The plan addressed the potential for gaps to exist in the following areas: • Department of Energy Order 435.1, “Radioactive Waste Management,” requirements, including the performance assessment, composite analysis, monitoring plan, performance assessment/composite analysis maintenance plan, and closure plan • Environmental assessment supporting the National Environmental Policy Act • Nuclear safety • Safeguards and security • Emplacement operations • Requirements for commissioning • General project implementation. The reconciliation plan and results of the plan implementation are provided in a business-sensitive project file. This report provides the reconciliation plan and non-business sensitive summary responses to identified gaps.

  6. Power-Efficient Computing: Experiences from the COSA Project

    Directory of Open Access Journals (Sweden)

    Daniele Cesini

    2017-01-01

    Full Text Available Energy consumption is today one of the most relevant issues in operating HPC systems for scientific applications. The use of unconventional computing systems is therefore of great interest for several scientific communities looking for a better tradeoff between time-to-solution and energy-to-solution. In this context, the performance assessment of processors with a high ratio of performance per watt is necessary to understand how to realize energy-efficient computing systems for scientific applications, using this class of processors. Computing On SOC Architecture (COSA is a three-year project (2015–2017 funded by the Scientific Commission V of the Italian Institute for Nuclear Physics (INFN, which aims to investigate the performance and the total cost of ownership offered by computing systems based on commodity low-power Systems on Chip (SoCs and high energy-efficient systems based on GP-GPUs. In this work, we present the results of the project analyzing the performance of several scientific applications on several GPU- and SoC-based systems. We also describe the methodology we have used to measure energy performance and the tools we have implemented to monitor the power drained by applications while running.

  7. A project to develop restoration methods for buildings and facilities after a terrorist attack

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.F. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). River Road Environmental Technology Centre; Volchek, K.; Hornof, M.; Boudreau, L.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Best, M. [Health Canada, Ottawa, ON (Canada); Garbutt, M.; Krishnan, J.; Wagener, S.; Bernard, K. [Health Canada, Winnipeg, MB (Canada); Cousins, T.; Haslip, D. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2004-07-01

    A multi-agent project was initiated to review site restoration after a terrorist attack. The objective was to acquire and compile information on all known restoration procedures for buildings, exteriors of buildings, their interior contents, and adjacent areas such as parking lots, lawns and vehicles. All procedures were then tested and validated. Restoration procedures included pickup, neutralization, decontamination, removal and final destruction/deposition of the contaminant, cleaning material and contaminated debris resulting from the terrorist act. This research and development project considered chemical, biological and nuclear contamination with the intent to develop methods to decontaminate and restore buildings after a chemical, biological and radiological (CBR) attack. Ideas were collected from work conducted around the world. The efficacy of best candidates was tested along with all selected chemical target items. The project also involved the preparation of procedures for decontamination and restoration. Ultimately, a tradeoff decision basis will be developed to provide information on abandonment and quarantine versus cleanup. The study revealed that there are several technologies that can be used for the decontamination of structures and equipment after acts of terrorism, however, no one technique will work for all contaminants on all surfaces. The selection of a decontamination method depends on the contaminant, the surface being decontaminated and economic, social and health factors. The amount of waste generated by decontamination is a major feasibility factor. 25 refs., 6 tabs.

  8. Projected sensitivity of the SuperCDMS SNOLAB experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Arnquist, I.; Baker, W.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cartaro, C.; Cerdeño, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Fritts, M.; Gerbier, G.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hong, Z.; Hoppe, E.; Hsu, L.; Huber, M. E.; Iyer, V.; Jardin, D.; Jastram, A.; Kelsey, M. H.; Kennedy, A.; Kubik, A.; Kurinsky, N. A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Orrell, J. L.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Poudel, S.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Roberts, A.; Robinson, A. E.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Serfass, B.; Speller, D.; Stein, M.; Street, J.; Tanaka, H. A.; Toback, D.; Underwood, R.; Villano, A. N.; von Krosigk, B.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, X.; Zhao, X.

    2017-04-07

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$^{-43}$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $^{3}$H and naturally occurring $^{32}$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.

  9. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive

  10. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  11. Assessment of the MARS Code Using the Two-Phase Natural Circulation Experiments at a Core Catcher Test Facility

    Directory of Open Access Journals (Sweden)

    Dong Hun Lee

    2017-01-01

    Full Text Available A core catcher has been developed to maintain the integrity of nuclear reactor containment from molten corium during a severe accident. It uses a two-phase natural circulation for cooling molten corium. Flow in a typical core catcher is unique because (i it has an inclined cooling channel with downwards-facing heating surface, of which flow processes are not fully exploited, (ii it is usually exposed to a low-pressure condition, where phase change causes dramatic changes in the flow, and (iii the effects of a multidimensional flow are very large in the upper part of the core catcher. These features make computational analysis more difficult. In this study, the MARS code is assessed using the two-phase natural circulation experiments that had been conducted at the CE-PECS facility to verify the cooling performance of a core catcher. The code is a system-scale thermal-hydraulic (TH code and has a multidimensional TH component. The facility was modeled by using both one- and three-dimensional components. Six experiments at the facility were selected to investigate the parametric effects of heat flux, pressure, and form loss. The results show that MARS can predict the two-phase flow at the facility reasonably well. However, some limitations are obviously revealed.

  12. LINKING UNIVERSITY IN THE INTERCULTURAL MODEL OF HIGHER EDUCATION IN MEXICO. THE EXPERIENCE OF A PROJECT

    Directory of Open Access Journals (Sweden)

    Felipe González Ortiz

    2011-09-01

    Full Text Available It describes an experience of linking with the indigenous community. From that Project we are building the blocks of the substantive activity of university: the university extension

  13. Liquid Argon Time Projection Chambers for Dark Matter and Neutrino Experiments

    OpenAIRE

    Manenti, L

    2016-01-01

    This thesis illustrates the contribution of the author to experiments using liquid argon Time Projection Chambers (LAr TPCs), a technology already widely used, that is becoming the dominating detection technique in dark matter (DM) and neutrino searches.

  14. [The construction of a Project in adolescent maternity: an experience report].

    Science.gov (United States)

    Beretta, Maria Isabel Ruiz; de Freitas, Marildy Aparecida; Dupas, Giselle; Fabbro, Márcia Regina Cangiani; Ruggiero, Eliete Maria Scarfon

    2011-04-01

    This article reports on the experience of a group of nursing faculty on the development of a project aimed at adolescent maternity with a view to prevent unwanted pregnancies. An additional proposal of the referred project is guiding adolescent mothers in terms of self-care, care with their babies, and encouraging exclusive breastfeeding. This would reduce the difficulties that those young mothers experience and, therefore, contribute with the maternal-child area.

  15. Projected sensitivity of the SuperCDMS SNOLAB experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Arnquist, I.; Baker, W.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cartaro, C.; Cerdeño, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Fritts, M.; Gerbier, G.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hong, Z.; Hoppe, E.; Hsu, L.; Huber, M. E.; Iyer, V.; Jardin, D.; Jastram, A.; Kelsey, M. H.; Kennedy, A.; Kubik, A.; Kurinsky, N. A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Orrell, J. L.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Poudel, S.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Roberts, A.; Robinson, A. E.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Serfass, B.; Speller, D.; Stein, M.; Street, J.; Tanaka, H. A.; Toback, D.; Underwood, R.; Villano, A. N.; von Krosigk, B.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, X.; Zhao, X.

    2017-04-01

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤ 10 GeV/c^2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10^-43 cm^2 for a dark matter particle mass of 1 GeV/c^2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced H-3 and naturally occurring Si-32 will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c^2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c^2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.

  16. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)

    2013-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  17. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    Energy Technology Data Exchange (ETDEWEB)

    Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  18. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-06

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values that have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.

  19. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information.

  20. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, E.; Sobolik, S.R.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

  1. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  2. Contingency plan for the Old Hydrofracture Facility Tanks Sluicing Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This revised contingency plan addresses potential scenarios involving the release of radioactively contaminated waste from the Old Hydrofracture Facility Tanks Contents Removal project to the environment. The tanks are located at the Oak Ridge National Laboratory. The project involves sluicing the contents of the five underground tanks to mix the sludge and supernatant layers, and pumping the mixture to the Melton Valley Storage Tanks (MVST) for future processing. The sluicing system to be used for the project consists of a spray nozzle designated the {open_quotes}Borehole Miner,{close_quotes} with an associated pump; in-tank submersible pumps to transfer tank contents from the sluice tanks to the recycle tank; high-pressure pumps providing slurry circulation and slurry transport to the MVST; piping; a ventilation system; a process water system; an instrumentation and control system centered around a programmable logic controller; a video monitoring system; and auxiliary equipment. The earlier version of this plan, which was developed during the preliminary design phase of the project, identified eight scenarios in which waste from the tanks might be released to the environment as a result of unanticipated equipment failure or an accident (e.g., vehicular accident). One of those scenarios, nuclear criticality, is no longer addressed by this plan because the tank waste will be isotopically diluted before sluicing begins. The other seven scenarios have been combined into three, and a fourth, Borehole Miner Failure, has been added as follows: (1) underground release from the tanks; (2) aboveground release or spill from the sluicing system, a tank riser, or the transfer pipeline; (3) release of unfiltered air through the ventilation system; and (4) Borehole Miner arm retraction failure. Methods for preventing, detecting, and responding to each release scenario are set out in the plan.

  3. Facility for preparation of gas mixture in muon catalyzed fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yukhimchuk, A.A.; Apasov, V.A.; Vinogradov, Yu.I.; Golubkov, A.N.; Gornostaev, E.V.; Grishechkin, S.K.; Drakin, L.V.; Zagoruiko, N.A.; Istratov, V.N.; Ishkov, P.D.; Kononenko, A.A.; Karyakin, G.I.; Klevtsov, V.G.; Klisch, V.A.; Lobanov, V.N.; Maksimenko, A.P.; Matveev, S.S.; Nikitin, A.E.; Pustovoy, V.I.; Sukhoi, I.I. [Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics, Sarov (Russian Federation)] (and others)

    1999-06-15

    A facility is described that allows safe handling of high tritium gas activity as dozens kilocuries in a regular laboratory environment. It is used to make and deliver into the target a mixture of specific isotopic composition with the contamination requirement of 10{sup -7} v.f. for Z>1 elements, and recover it upon completion of operation. With this facility, efforts have been accomplished to investigate into the muon catalyzed fusion on two targets - liquid tritium and high-pressure tritium types. Also, the operation range was 0.1-120 MPa for pressure and 20-800 K for temperature and the amount of tritium used was about 100 kCi. The facility showed reliability in operation without indications of radiation beyond the safety level.

  4. [Neurophenomenology: Project for a Science of Past Experiences].

    Science.gov (United States)

    Segovia-Cuellar, Andrés

    2012-09-01

    Since the middle of 20(th) Century, cognitive science has been recognized as the genuine convergence field for all scientific advances in human mind studies with the mechanisms enabling knowledge. Since then, it has become a multidisciplinary area where several research disciplines and actors have acquired citizenship, allowing new expectations on the scientific study of human uniqueness. Critical assessment of the discussion that the discourse of theoretical biology has been assuming regarding the study of the cognitive phenomenon with special attention to the enactive project and, extensively, to the neuro-phenomenology of Francisco J. Varela. Starting with a brief and synthesized history of cognitive science, we will establish the key principles for understanding the emergence of the enactive paradigm and the "embodied" turn influenced by continental phenomenology in the cognitive science, as well as the general guidelines of Neurophenomenology. The "hard problem" of consciousness still faces several types of reductionism relegating the cognitive issue to a kind of merely rational, individual, abstract and disembodied mechanism, thus strengthening the functionalist paradigm in mind philosophy. A solution to classic dichotomies in mind sciences must start rejecting such assumptions. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  5. Experiences of technology-rich innovation in European schools within the Open Discovery Space project

    Directory of Open Access Journals (Sweden)

    Sonia PEINADO

    2015-11-01

    Full Text Available The Open Discovery Space (ODS project was conceived to introduce innovative resource-based teaching and learning practices in European schools, to promote the creation of communities between European school members and to boost the demand for open educational resources among teachers. After 3 years of applying the ODS innovation model, more than 2,000 European schools have carried out diverse experiences of technology-rich innovation to achieve the project aims. This paper describes the experiences and results of ODS in 7 different European countries, along with the international activities that aim at expanding the scope of the project beyond the European limits.

  6. The Web Based Monitoring Project at the CMS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Perez, Juan Antonio [Fermilab; Badgett, William [Fermilab; Behrens, Ulf [DESY; Chakaberia, Irakli [Kansas State U.; Jo, Youngkwon [Korea U.; Maeshima, Kaori; Maruyama, Sho [Fermilab; Patrick, James [Fermilab; Rapsevicius, Valdas [Fermilab; Soha, Aron [Fermilab; Stankevicius, Mantas [Fermilab; Sulmanas, Balys [Fermilab; Toda, Sachiko [Kansas State U.; Wan, Zongru [Kansas State U.

    2016-01-01

    The Compact Muon Solenoid is a large a complex general purpose experiment at the CERN Large Hadron Collider (LHC), built and maintained by many collaborators from around the world. Efficient operation of the detector requires widespread and timely access to a broad range of monitoring and status information. To the end the Web Based Monitoring (WBM) system was developed to present data to users located anywhere from many underlying heterogeneous sources, from real time messaging systems to relational databases. This system provides the power to combine and correlate data in both graphical and tabular formats of interest to the experimenters, including data such as beam conditions, luminosity, trigger rates, detector conditions, and many others, allowing for flexibility on the user’s side. This paper describes the WBM system architecture and describes how the system has been used from the beginning of data taking until now (Run1 and Run 2).

  7. The Web Based Monitoring project at the CMS experiment

    CERN Document Server

    Lopez-Perez, Juan Antonio; Badgett, William; Behrens, Ulf; Chakaberia, Irakli; Jo, Youngkwon; Maruyama, Sho; Patrick, James; Rapsevicius, Valdas; Soha, Aron; Stankevicius, Mantas; Sulmanas, Balys; Toda, Sachiko; Wan, Zongru

    2017-01-01

    The Compact Muon Solenoid is a large a complex general purpose experiment at the CERN Large Hadron Collider (LHC), built and maintained by many collaborators from around the world. Efficient operation of the detector requires widespread and timely access to a broad range of monitoring and status information. To the end the Web Based Monitoring (WBM) system was developed to present data to users located anywhere from many underlying heterogeneous sources, from real time messaging systems to relational databases. This system provides the power to combine and correlate data in both graphical and tabular formats of interest to the experimenters, including data such as beam conditions, luminosity, trigger rates, detector conditions, and many others, allowing for flexibility on the user’s side. This paper describes the WBM system architecture and describes how the system has been used from the beginning of data taking until now (Run1 and Run 2).

  8. Lidars for Wind Tunnels - an IRPWind Joint Experiment Project

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Vignaroli, Andrea; Angelou, Nikolas

    2017-01-01

    Measurement campaigns with continuous-wave Doppler Lidars (Light detection and ranging) developed at DTU Wind Energy in Denmark were performed in two very different wind tunnels. Firstly, a measurement campaign in a small icing wind tunnel chamber at VTT in Finland was performed with high frequency...... measurements for increasing the understanding of the effect of in-cloud icing conditions on Lidar signal dynamics. Secondly, a measurement campaign in the relatively large boundary-layer wind tunnel at NTNU in Norway was performed in the wake of a scaled test turbine in the same configuration as previously...... used in blind test comparisons for wind turbine wake modelers. These Lidar measurement activities constitute the Joint Experiment Project” L4WT - Lidars for Wind Tunnels, with applications to wakes and atmospheric icing in a prospective Nordic Network” with the aim of gaining and sharing knowledge...

  9. Innovative Startup-Projects: Experience, Evaluation, Implementation Contradictions

    Directory of Open Access Journals (Sweden)

    Inshakov Maksim Olegovich

    2015-09-01

    Full Text Available Innovative companies in the conditions of global post-crisis economic recovery and increased economic activity become again a promising area for investments of large investment and venture capital funds, venture divisions of large transnational corporations, business angels and other private investors. This is confirmed by the data on the increase in the volume of venture capital market in the US and Europe and on a significant increase in the cost of the leading foreign and Russian start-up companies which are rated as of 2014 in the present article. The comparative analysis of the leading Russian and foreign start-ups showed the prevalence of companies engaged in the field of IT-Internet-Mobile and focused on the provision of various kinds of innovative services to consumers among the foreign participants of the rating. Among Russian startups-winners the companies of technological orientation (biological, medical, and “clean” technologies dominate. They reflect the increasing importance of start-ups in the innovative development of the Russian economy. Participation in such competitions and ratings is a favorable factor of promoting start-ups, increasing awareness of potential investors and consumers of start-up products. The importance of start-ups formation and the development of effective regional and national innovation systems update the studies related to the identification of the fundamental contradictions in the activities of Russian start-ups and to the development of recommendations for their resolution. The article identifies the key issues of economic, organizational, informational and marketing character causing the collapse of start-up projects in the Russian economy in modern conditions.

  10. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 1, The report and Appendix A, Progress report for the period October 1 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This report documents recent progress on ground-water monitoring projects for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste (NRDW) Landfill. The existing ground-water monitoring projects for the first two facilities named in the paragraph above are currently being expanded by adding new wells to the networks. During the reporting period, sampling of the existing wells continued on a monthly basis, and the analytical results for samples collected from September through November 1986 are included and discussed in this document. 8 refs., 41 figs., 7 tabs.

  11. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  12. Overview of recent AWE fusion-related studies, experiments and facilities

    Directory of Open Access Journals (Sweden)

    Roberts P.D.

    2013-11-01

    Full Text Available The presentation will describe the current status of modelling short and long pulse laser irradiation and its application to inertial fusion designs. Recent results will be described which give confidence in the modelling in specific regimes. An update will be given of the AWE ORION laser facility and the availability planned for academic access.

  13. Operational Experience of an Open-Access, Subscription-Based Mass Spectrometry and Proteomics Facility

    Science.gov (United States)

    Williamson, Nicholas A.

    2018-01-01

    This paper discusses the successful adoption of a subscription-based, open-access model of service delivery for a mass spectrometry and proteomics facility. In 2009, the Mass Spectrometry and Proteomics Facility at the University of Melbourne (Australia) moved away from the standard fee for service model of service provision. Instead, the facility adopted a subscription- or membership-based, open-access model of service delivery. For a low fixed yearly cost, users could directly operate the instrumentation but, more importantly, there were no limits on usage other than the necessity to share available instrument time with all other users. All necessary training from platform staff and many of the base reagents were also provided as part of the membership cost. These changes proved to be very successful in terms of financial outcomes for the facility, instrument access and usage, and overall research output. This article describes the systems put in place as well as the overall successes and challenges associated with the operation of a mass spectrometry/proteomics core in this manner.

  14. Advances in Grid Computing for the FabrIc for Frontier Experiments Project at Fermialb

    Energy Technology Data Exchange (ETDEWEB)

    Herner, K. [Fermilab; Alba Hernandex, A. F. [Fermilab; Bhat, S. [Fermilab; Box, D. [Fermilab; Boyd, J. [Fermilab; Di Benedetto, V. [Fermilab; Ding, P. [Fermilab; Dykstra, D. [Fermilab; Fattoruso, M. [Fermilab; Garzoglio, G. [Fermilab; Kirby, M. [Fermilab; Kreymer, A. [Fermilab; Levshina, T. [Fermilab; Mazzacane, A. [Fermilab; Mengel, M. [Fermilab; Mhashilkar, P. [Fermilab; Podstavkov, V. [Fermilab; Retzke, K. [Fermilab; Sharma, N. [Fermilab; Teheran, J. [Fermilab

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientic Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of diering size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certicate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have signicantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the eorts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production work ows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular work ows, and support troubleshooting and triage in case of problems. Recently a new certicate management infrastructure called Distributed

  15. Advances in Grid Computing for the Fabric for Frontier Experiments Project at Fermilab

    Science.gov (United States)

    Herner, K.; Alba Hernandez, A. F.; Bhat, S.; Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Kirby, M.; Kreymer, A.; Levshina, T.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.; Teheran, J.

    2017-10-01

    The Fabric for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientific Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of differing size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certificate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have significantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the efforts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production workflows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular workflows, and support troubleshooting and triage in case of problems. Recently a new certificate management infrastructure called

  16. Large-scale Demonstration and Deployment Project for D&D of Fuel Storage Canals and Associated Facilities at INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Whitmill, Larry Joseph

    2001-12-01

    The Department of Energy (DOE) Office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA), sponsored a Large Scale Demonstration and Deployment Project (LSDDP) at the Idaho National Engineering and Environmental Laboratory (INEEL) under management of the DOE National Energy Technology Laboratory (NETL). The INEEL LSDDP is one of several LSDDPs sponsored by DOE. The LSDDP process integrates field demonstrations into actual decontamination and decommissioning (D&D) operations by comparing new or improved technologies against existing baseline technologies using a side-by-side comparison. The goals are (a) to identify technologies that are cheaper, safer, faster, and cleaner (produce less waste), and (b) to incorporate those technologies into D&D baseline operations. The INEEL LSDDP reviewed more than 300 technologies, screened 141, and demonstrated 17. These 17 technologies have been deployed a total of 70 times at facilities other than those where the technology was demonstrated, and 10 have become baseline at the INEEL. Fifteen INEEL D&D needs have been modified or removed from the Needs Management System as a direct result of using these new technologies. Conservatively, the ten-year projected cost savings at the INEEL resulting from use of the technologies demonstrated in this INEEL LSDDP exceeds $39 million dollars.

  17. Pre-Service Teachers' Experiences and Views on Project-Based Learning Processes

    Science.gov (United States)

    Dag, Funda; Durdu, Levent

    2017-01-01

    Project-based learning (PjBL) has been promoted as an effective and frequently used student-centered learning approach for various learning environments. To have various learning experiences with PjBL is an important requirement for pre-service teachers (PSTs). The purpose of the study was to investigate the experiences PSTs had with group work…

  18. The Corporeal Marker Project (CMP): Teaching about Bodily Difference, Identity and Place through Experience

    Science.gov (United States)

    Fluri, Jennifer L.; Trauger, Amy

    2011-01-01

    In response to recent articles and ideas for experiential learning activities in human geography, this paper outlines a particular approach to learning about the body, difference, mobility and geographic space through experience. The Corporeal Marker Project designed and implemented by the authors provides a spatial experience of difference for…

  19. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa.

    Science.gov (United States)

    Daire, Judith; Gilson, Lucy

    2014-09-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager's job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  20. The impact of CFD on development test facilities - A National Research Council projection. [computational fluid dynamics

    Science.gov (United States)

    Korkegi, R. H.

    1983-01-01

    The results of a National Research Council study on the effect that advances in computational fluid dynamics (CFD) will have on conventional aeronautical ground testing are reported. Current CFD capabilities include the depiction of linearized inviscid flows and a boundary layer, initial use of Euler coordinates using supercomputers to automatically generate a grid, research and development on Reynolds-averaged Navier-Stokes (N-S) equations, and preliminary research on solutions to the full N-S equations. Improvements in the range of CFD usage is dependent on the development of more powerful supercomputers, exceeding even the projected abilities of the NASA Numerical Aerodynamic Simulator (1 BFLOP/sec). Full representation of the Re-averaged N-S equations will require over one million grid points, a computing level predicted to be available in 15 yr. Present capabilities allow identification of data anomalies, confirmation of data accuracy, and adequateness of model design in wind tunnel trials. Account can be taken of the wall effects and the Re in any flight regime during simulation. CFD can actually be more accurate than instrumented tests, since all points in a flow can be modeled with CFD, while they cannot all be monitored with instrumentation in a wind tunnel.

  1. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    Directory of Open Access Journals (Sweden)

    N. Simos

    2017-07-01

    Full Text Available In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF of the Deep Underground Neutrino Experiment (DUNE four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ∼6.1×10^{20}  p/cm^{2} and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ∼10^{20}  cm^{−2} where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite

  2. Thermocapillary Convection Experiment Facility of an open Cylindrical Annuli for SJ-10 Satellite

    Science.gov (United States)

    Kang, Qi; Duan, Li; Zhang, Li; Yin, Yongli; Yang, Jingsong; Hu, Wenrui

    2016-05-01

    Thermocapillary convection has always been a hot topic of great importance in either crystal growth or thin films science. A space experiment about thermocapillary convection in an open cylindrical annuli pool will be done on SJ-10 satellite. A payload for space experiment has been established, which includes a cylindrical annuli thermocapillary convection system, a thermocouple temperature controlling system and measurement system, a thermal infrared imager, a high-precision displacement sensor, and an experiment controlling system. Some experiments have been done on the ground in order to compare with the results of space experiment. Some results from the ground experiment are shown, such as temperature oscillation, surface oscillation, and flow pattern transfer.

  3. Future Facilities Summary

    CERN Document Server

    De Roeck, Albert

    2009-01-01

    For the session on future facilities at DIS09 discussions were organized on DIS related measurements that can be expected in the near and medium - or perhaps far - future, including plans from JLab, CERN and FNAL fixed target experiments, possible measurements and detector upgrades at RHIC, as well as the plans for possible future electron proton/ion colliders such as the EIC and the LHeC project.

  4. Future Facilities Summary

    Energy Technology Data Exchange (ETDEWEB)

    Albert De Roeck, Rolf Ent

    2009-10-01

    For the session on future facilities at DIS09 discussions were organized on DIS related measurements that can be expected in the near and medium –or perhaps far– future, including plans from JLab, CERN and FNAL fixed target experiments, possible measurements and detector upgrades at RHIC, as well as the plans for possible future electron proton/ion colliders such as the EIC and the LHeC project.

  5. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  6. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  7. Evaluation of community-based health projects: the healthy tomorrows experience.

    Science.gov (United States)

    Ruch-Ross, Holly; Keller, David; Miller, Nicole; Bassewitz, Jane; Melinkovich, Paul

    2008-09-01

    To address the "millennial morbidities," pediatricians must partner with community-based organizations to develop interventions. Little is known about the capacity of the resulting programs for program evaluation or the importance of evaluation in project success and sustainability. The objective of this study was to examine the capacity of community-based health programs to conduct project evaluations and determine the impact of project evaluation on project outcome. Project directors from 149 community-based programs funded from 1989 to 2003 through the Healthy Tomorrows Partnership for Children Program were surveyed regarding their project experience with evaluation and documentation of project outcomes and the current status of their project. Program directors from 123 (83%) programs completed the survey. Despite barriers to the evaluation process, 83% of the respondents indicated that their evaluations produced useful information. Programs that were described by respondents as "well evaluated" were more likely to report that the evaluation was implemented as planned and that the evaluation included outcome measures. Projects were more likely to be sustained in their original form when at least 1 outcome was reported on the survey. Evaluation of community-based programs, although challenging, is beneficial to project success and sustainability. Policy makers and funding agencies should consider ways to encourage community partnerships to incorporate evaluation into their planning process.

  8. National Ignition Facility Project Input for Assessment of Environmental Impacts of NIF for the Sitewide Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Brereton, S

    2003-10-01

    This report provides the baseline data from which the environmental impacts of bounding NIF operations can be assessed. Included are operations in the NE Laser and Target Area Building (LTAB) and the Optics Assembly Building (OAB), (Buildings 581 and 681), and the Building 582 equipment building. The NIF is an experimental laser fusion facility undergoing construction and commissioning at Lawrence Livermore National Laboratory. The LTAB, the main experimental building of the NIF, is where laser-driven experiments will be conducted. The LTAB consists of two laser bays, two optical switchyards, a target bay, target diagnostics areas, capacitor bays, mechanical equipment areas, control rooms, and operational support areas. The LTAB provides an optically stable and clean environment and provides sufficient shielding against prompt radiation and residual radioactivity to meet the as low as reasonably achievable (ALARA) principle.

  9. Closed cycle MHD power generation experiments in the NASA Lewis facility

    Science.gov (United States)

    Sovie, R. J.; Nichols, L. D.

    1974-01-01

    Discussion of the performance improvements achieved through some modifications made in the closed cycle MHD facility. These modifications include a redesign of the MHD duct interior, addition of mixing bars, increased electrical isolation, and experimentation with various cesium seed vaporization and injection techniques. Uniform Faraday and Hall voltage profiles were obtained, and the Faraday open circuit voltage varied from 90 to 100% of the ideal uBh.

  10. Test Plan for the Wake Steering Experiment at the Scaled Wind Farm Technology (SWiFT) Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This document is a test plan describing the objectives, configuration, procedures, reporting, roles, and responsibilities for conducting the joint Sandia National Laboratories and National Renewable Energy Laboratory Wake Steering Experiment at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in 2016 and 2017 . The purpose of this document is to ensure the test objectives and procedures are sufficiently detailed such that al l involved personnel are able to contribute to the technical success of the test. This document is not intended to address safety explicitly which is addressed in a separate document listed in the references titled Sandia SWiFT Facility Site Operations Manual . Both documents should be reviewed by all test personnel.

  11. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  12. Experience with on-demand physics simulations on the Sun Microsystems computing facility (SunGrid) at network.com

    Energy Technology Data Exchange (ETDEWEB)

    Lauret, J; Potekhin, M; Carcassi, G; Shamash, A; Valia, R [Brookhaven National Laboratory, Upton, NY11973 (United States); Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA95054 (United States)], E-mail: jeromel@bnl.gov

    2008-07-15

    The simulation program of the STAR experiment at the Relativistic Heavy Ion Collider (Brookhaven National Laboratory) is growing in scope and its responsiveness to the needs of the research community. In addition, there is a significant ongoing R and D activity focused on future upgrades of the STAR detector, which also requires extensive simulations support. In addition to the local computing facility, the Open Science Grid (OSG) resources have been successfully used in STAR. However, the explosive growth of both computational needs and the available computing power, combined with distributed nature of the latter, dictate that all available options are considered - from open source to commercial grids. The computing facility of Sun Microsystems (the SunGrid) aims to deliver enterprise computing power and resources over the Internet, enabling developers, researchers, scientists and businesses to optimize performance and speed time to results without investment in IT infrastructure.

  13. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  14. Public preferences for establishing nephrology facilities in Greenland: estimating willingness-to-pay using a discrete choice experiment.

    Science.gov (United States)

    Kjær, Trine; Bech, Mickael; Kronborg, Christian; Mørkbak, Morten Raun

    2013-10-01

    At present there are no nephrology facilities in Greenland. Greenlandic patients with renal failure needing dialysis thus have to travel to Denmark to obtain treatment. For patients in haemodialysis this necessitates a permanent residence in Denmark. Our study was aimed at examining Greenlanders' preferences for establishing nephrology facilities in Greenland at Queen Ingrid's Hospital in Nuuk, and to estimate the associated change in welfare. Preferences were elicited using a discrete choice experiment (DCE). A random sample of 500 individuals of the general population was sent a postal questionnaire in which they were asked to consider the trade-offs of establishing nephrology facilities in Greenland as opposed to the current situation. This involved trading off the benefits of having such facilities in their home country against the costs of the intervention. Besides including a payment attribute described in terms of incremental tax payment, the DCE included two interventions attributes related to (1) the organisation of labour, and (2) the physical settings of the patients. Respondents succeeded in answering the DCE despite cultural and linguistic disparity. We found that all the included attributes had a significant effect on respondents' choices, and that respondents' answers to the DCE were in keeping with their values as stated in the questionnaire. DCE data was analyzed using a random parameter logit model reparametrized in willingness-to-pay space. The results showed that establishing facilities in Greenland were preferred to the current treatment in Denmark. The welfare estimate from the DCE, at DKK 18.74 million, exceeds the estimated annual costs of establishing treatment facilities for patients with chronic renal failure. Given the estimated confidence interval this result seems robust. Establishing facilities in Greenland therefore would appear to be welfare-improving, deriving positive net benefits. Despite the relatively narrow policy focus, we

  15. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  16. Design of Electric Racing Vehicles: An experience of interdisciplinary project-based education in engineering

    OpenAIRE

    Fernández-Ramos, José; Fernández-Lozano, Juan Jesús; Gago-Calderón, Alfonso

    2013-01-01

    This paper describes a project based learning program carried out in the E.T.S.I.I. of the University of Malaga, Spain, whose main objective is the organization of a team for the development of experimental electric racing vehicles and their evaluation in competitive races. It is shown the work done during the first two years of the project, highlighting the most important aspects of the experience: the training focused on senior students (capstone courses), the training focused on freshmen (...

  17. Boosting critical thinking in a Project Management course: An active learning experience

    OpenAIRE

    Berbegal-Mirabent, Jasmina; Gil-Domènech, Dolors; Gieure, Clara

    2016-01-01

    [EN] The present study reports the experience of a project-based activity in which students are asked to plan an event. It is part of a Project Management course taught at Universitat Internacional de Catalunya, in a Masters’ Degree in Business Administration and Production Systems. The activity has been designed in such a way that it is expected to help students develop the acquired technical skills while it requires the use of different quantitative methods and tools to in...

  18. STUDIES OF MEDICAL AND BIOLOGICAL PHYSICS BY FACILITIES OF IСT: ANALYSIS OF EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Nataliia V. Stuchynska

    2012-12-01

    Full Text Available The article devoted to the problem of implementation of methodical system of medical and biological physics education by facilities of information and communication technologies. Methodical system includes all types of training sessions, and regulates students self-study. Main attention in the article is concentrated on research of multimedia lecture system implementations peculiarities and interactive system of laboratory classes of course "Medical and Biological Physics" for future doctors. The classification of computer models used in the laboratory workshop. Made conclusions regarding changes in motivational, factual and procedural components of educational activity in systemic use of information and communication technologies

  19. Neutronic studies in support of accelerator-driven systems: The MUSE experiments in the MASURCA facility

    OpenAIRE

    Soule, R.; Assal, W.; Chaussonnet, P.; Destouches, C.; Domergue, C.; Jammes, C.; Laurens, J.-M.; Lebrat, J.-F.; Mellier, F.; Perret, G.; Rimpault, G.; Servière, H.; Imel, G.; M. Thomas, G.; Villamarin, D.

    2004-01-01

    The MUSE program (multiplication with an external source) is in progress at the MASURCA critical facility at the Cadarache Research Center of the Commissariat à l'Energie Atomique in France. The program is dedicated to the physics studies of accelerator-driven systems in support of transmutation studies of minor actinides and long-lived fission products. It began in 1995 with the coupling of a Cf source in MASURCA and was followed by a commercial (d,T) source. In 2001, a specially constructed...

  20. TRACE code validation for BWR spray cooling injection based on GOTA facility experiments

    Energy Technology Data Exchange (ETDEWEB)

    Racca, S. [San Piero a Grado Nuclear Research Group (GRNSPG), Pisa (Italy); Kozlowski, T. [Royal Inst. of Tech., Stockholm (Sweden)

    2011-07-01

    Best estimate codes have been used in the past thirty years for the design, licensing and safety of NPP. Nevertheless, large efforts are necessary for the qualification and the assessment of such codes. The aim of this work is to study the main phenomena involved in the emergency spray cooling injection in a Swedish designed BWR. For this purpose, data from the Swedish separate effect test facility GOTA have been simulated using TRACE version 5.0 Patch 2. Furthermore, uncertainty calculations have been performed with the propagation of input errors method and the identification of the input parameters that mostly influence the peak cladding temperature has been performed. (author)

  1. The Interdisciplinary Generalist Curriculum (IGC) project: an overview of its experience and outcomes.

    Science.gov (United States)

    Kahn, N; Davis, A; Wilson, M; Wartman, S; Sherwood, R; Nowalk, A; Kahn, R; Bazell, C

    2001-04-01

    The Interdisciplinary Generalist Curriculum (IGC) Project was a competitive, seven-year demonstration project funded by the Health Resources and Services Administration (HRSA). It was established to determine whether specific interdisciplinary innovations in preclinical medical school curricula could affect students' selection of careers in family medicine, general internal medicine, or general pediatrics. Through collaboration among the three generalist disciplines, the IGC innovation exposed all preclinical students in ten demonstration schools to a new or significantly enhanced preclinical curriculum that included a direct supervised clinical experience with a generalist physician preceptor. The project was managed by an interdisciplinary executive committee that was codirected by one representative each from family medicine, general internal medicine, and general pediatrics. A national advisory committee with representation from the academic and professional organizations of family medicine, internal medicine, pediatrics, and osteopathy provided input to the executive committee in guiding the project. The project was externally evaluated. Major outcomes of the IGC Project include sustained curricular changes in ten institutions, prompted by relatively few dollars and demonstration of models for collaboration at institutional and national levels. This supplement describes the IGC Project's experience and outcomes so that others may draw pertinent information to apply to their own efforts in medical education.

  2. A hardened gated x-ray imaging diagnostic for inertial confinement fusion experiments at the National Ignition Facility.

    Science.gov (United States)

    Glenn, S; Koch, J; Bradley, D K; Izumi, N; Bell, P; Holder, J; Stone, G; Prasad, R; MacKinnon, A; Springer, P; Landen, O L; Kyrala, G

    2010-10-01

    A gated x-ray detector is under development for use at the National Ignition Facility that is intended to provide plasma emission images in the presence of neutron yields up to 10(15) expected during inertial confinement fusion experiments with layered cryogenic targets. These images are expected to provide valuable time-resolved measurements of core and fuel symmetries. Additional capabilities of this instrument will include the ability to make spatially resolved electron temperature measurements. A description of this instrument and its operation is given with emphasis on features that differentiate it from previous designs.

  3. Assessment of the MHD capability in the ATHENA code using data from the ALEX (Argonne Liquid Metal Experiment) facility

    Energy Technology Data Exchange (ETDEWEB)

    Roth, P.A.

    1988-10-28

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility. 13 refs., 4 figs., 2 tabs.

  4. Drive development for an 10 Mbar Rayleigh-Taylor strength experiment on the National Ignition Facility

    Science.gov (United States)

    Prisbrey, Shon; Park, Hye-Sook; Huntington, Channing; McNaney, James; Smith, Raym; Wehrenberg, Christopher; Swift, Damian; Panas, Cynthia; Lord, Dawn; Arsenlis, Athanasios

    2017-10-01

    Strength can be inferred by the amount a Rayleigh-Taylor surface deviates from classical growth when subjected to acceleration. If the acceleration is great enough, even materials highly resistant to deformation will flow. We use the National Ignition Facility (NIF) to create an acceleration profile that will cause sample metals, such as Mo or Cu, to reach peak pressures of 10 Mbar without inducing shock melt. To create such a profile we shock release a stepped density reservoir across a large gap with the stagnation of the reservoir on the far side of the gap resulting in the desired pressure drive history. Low density steps (foams) are a necessary part of this design and have been studied in the last several years on the Omega and NIF facilities. We will present computational and experimental progress that has been made on the 10 Mbar drive designs - including recent drive shots carried out at the NIF. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734781.

  5. Damaged Spent Nuclear Fuel at U.S. DOE Facilities Experience and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Eric Woolstenhulme; Roger McCormack

    2005-11-01

    From a handling perspective, any spent nuclear fuel (SNF) that has lost its original technical and functional design capabilities with regard to handling and confinement can be considered as damaged. Some SNF was damaged as a result of experimental activities and destructive examinations; incidents during packaging, handling, and transportation; or degradation that has occurred during storage. Some SNF was mechanically destroyed to protect proprietary SNF designs. Examples of damage to the SNF include failed cladding, failed fuel meat, sectioned test specimens, partially reprocessed SNFs, over-heated elements, dismantled assemblies, and assemblies with lifting fixtures removed. In spite of the challenges involved with handling and storage of damaged SNF, the SNF has been safely handled and stored for many years at DOE storage facilities. This report summarizes a variety of challenges encountered at DOE facilities during interim storage and handling operations along with strategies and solutions that are planned or were implemented to ameliorate those challenges. A discussion of proposed paths forward for moving damaged and nondamaged SNF from interim storage to final disposition in the geologic repository is also presented.

  6. Experimenting the hospital survey on patient safety culture in prevention facilities in Italy: psychometric properties.

    Science.gov (United States)

    Tereanu, Carmen; Smith, Scott A; Sampietro, Giuseppe; Sarnataro, Francesco; Mazzoleni, Giuliana; Pesenti, Bruno; Sala, Luca C; Cecchetti, Roberto; Arvati, Massimo; Brioschi, Dania; Viscardi, Michela; Prati, Chiara; Barbaglio, Giorgio G

    2017-04-01

    The Agency for Healthcare Research and Quality Hospital Survey on Patient Safety Culture (HSOPS) was designed to assess staff views on patient safety culture in hospital. This study examines psychometrics of the Italian translation of the HSOPS for use in territorial prevention facilities. After minimal adjustments and pre-test of the Italian version, a qualitative cross-sectional study was carried out. Departments of Prevention (DPs) of four Local Health Authorities in Northern Italy. Census of medical and non-medical staff (n. 479). Web-based self-administered questionnaire. Descriptive statistics, internal reliability, Confirmatory Factor Analysis (CFA) and intercorrelations among survey composites. Initial CFA of the 12 patient safety culture composites and 42 items included in the original version of the questionnaire revealed that two dimensions (Staffing and Overall Perception of Patient Safety) and nine individual items did not perform well among Italian territorial Prevention staff. After dropping those composites and items, psychometric properties were acceptable (comparative fit index = 0.94; root mean square error of approximation = 0.04; standardized root mean square residual = 0.04). Internal consistency for each remaining composite met or exceeded the criterion 0.70. Intercorrelations were all statistically significant. Psychometric analyses provided overall support for 10 of the 12 initial patient safety culture composites and 33 of the 42 initial composite items. Although the original instrument was intended for US Hospitals, the Italian translation of the HSOPS adapted for use in territorial prevention facilities performed adequately in Italian DPs.

  7. A Review on Radiation Damage in Concrete for Nuclear Facilities: From Experiments to Modeling

    Directory of Open Access Journals (Sweden)

    Beatrice Pomaro

    2016-01-01

    Full Text Available Concrete is a relatively cheap material and easy to be cast into variously shaped structures. Its good shielding properties against neutrons and gamma-rays, due to its intrinsic water content and relatively high-density, respectively, make it the most widely used material for radiation shielding also. Concrete is so chosen as biological barrier in nuclear reactors and other nuclear facilities where neutron sources are hosted. Theoretical formulas are available in nuclear engineering manuals for the optimum thickness of shielding for radioprotection purposes; however they are restricted to one-dimensional problems; besides the basic empirical constants do not consider radiation damage effects, while its long-term performance is crucial for the safe operation of such facilities. To understand the behaviour of concrete properties, it is necessary to examine concrete strength and stiffness, water behavior, volume change of cement paste, and aggregate under irradiated conditions. Radiation damage process is not well understood yet and there is not a unified approach to the practical and predictive assessment of irradiated concrete, which combines both physics and structural mechanics issues. This paper provides a collection of the most distinguished contributions on this topic in the past 50 years. At present a remarkable renewed interest in the subject is shown.

  8. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Science.gov (United States)

    Bertarelli, A.; Berthome, E.; Boccone, V.; Carra, F.; Cerutti, F.; Charitonidis, N.; Charrondiere, C.; Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N.; Masi, A.; Marques dos Santos, S. D.; Moyret, P.; Peroni, L.; Redaelli, S.; Scapin, M.

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.).

  9. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  10. The lived experiences of resilience in Iranian adolescents living in residential care facilities: A hermeneutic phenomenological study

    Directory of Open Access Journals (Sweden)

    Manijeh Nourian

    2016-03-01

    Full Text Available Background: Resilience is one of the main factors affecting human health, and perceiving its meaning for high-risk adolescents is of particular importance in initiating preventive measures and providing resilience care. Objectives: This qualitative study was conducted to explain the meaning of resilience in the lived experiences of Iranian adolescents living in governmental residential care facilities. Materials and methods: This study was conducted using the hermeneutic phenomenological method. Semi-structured interviews were conducted with eight adolescents aged 13–17 living in governmental residential care facilities of Tehran province affiliated to the Welfare Organization of Iran who articulated their experiences of resilience. Sampling lasted from May 2014 to July 2015 and continued until new themes were no longer emerging. The researchers analyzed the verbatim transcripts using Van Manen's six-step method of phenomenology. Results: The themes obtained in this study included “going through life's hardships,” “aspiring for achievement,” “self-protection,” “self-reliance,” and “spirituality.” Conclusion: Our study indicates that the meaning of resilience coexists with self-reliance in adolescents’ lived experiences. Adolescents look forward to a better future. They always trust God in the face of difficulties and experience resilience by keeping themselves physically and mentally away from difficulties. Adverse and bitter experiences of the past positively affected their positive view on life and its difficulties and also their resilience. The five themes that emerged from the findings describe the results in detail. The findings of this study enable nurses, health administrators, and healthcare providers working with adolescents to help this vulnerable group cope better with their stressful life conditions and improve their health through increasing their capacity for resilience.

  11. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  12. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  13. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  14. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  15. Science Experiments on File. Experiments, Demonstrations and Projects for School and Home.

    Science.gov (United States)

    Tyler, Vicki, Ed.

    This book, addressed to students for their independent use as well as to teachers as a supplement to the standard texts, contains nearly 100 practical science experiments that cover a wide range of subjects at different grade and ability levels. It is designed to involve students in active scientific experimentation, demonstrations, and projects…

  16. Learning through projects in the training of biomedical engineers: an application experience

    Science.gov (United States)

    Gambi, José Antonio Li; Peme, Carmen

    2011-09-01

    Learning through Projects in the curriculum consists of both the identification and analysis of a problem, and the design of solution, execution and evaluation strategies, with teams of students. The project is conceived as the creation of a set of strategies articulated and developed during a certain amount of time to solve a problem contextualized in situations continually changing, where the constant evaluation provides feedback to make adjustments. In 2009, Learning through Projects was applied on the subject Hospital Facilities and three intervention projects were developed in health centers. This first stage is restricted to the analysis of the aspects that are considered to be basic to the professional training: a) Context knowledge: The future biomedical engineers must be familiarized with the complex health system where they will develop their profession; b) Team work: This is one of the essential skills in the training of students, since Biomedical Engineering connects the knowledge of sciences of life with the knowledge of exact sciences and technology; c) Regulations: The activities related to the profession require the implementation of regulations; therefore, to be aware of and to apply these regulations is a fundamental aspect to be analyzed in this stage; d) Project evaluation: It refers to the elaboration and studying of co-evaluation reports, which helps to find out if Learning through Projects contributes to the training. This new line of investigation has the purpose of discovering if the application of this learning strategy makes changes in the training of students in relation to their future professional career. The findings of this ongoing investigation will allow for the analysis of the possibility of extending its application. Key words: engineering, biomedical, learning, projects, strategies.

  17. Experiences of Fast Queue health care users in primary health care facilities in eThekwini district, South AfricaExperiences of Fast Queue health care users in primary health care facilities in eThekwini district, South Africa

    Directory of Open Access Journals (Sweden)

    Dudu G. Sokhela

    2013-07-01

    Full Text Available Background: Comprehensive Primary Health Care (PHC, based on the principles of accessibility, availability, affordability, equity and acceptability, was introduced in South Africa to address inequalities in health service provision. Whilst the Fast Queue was instrumental in the promotion of access to health care, a major goal of the PHC approach, facilities were not prepared for the sudden influx of clients. Increased access resulted in long waiting times and queues contributing to dissatisfaction with the service which could lead to missed appointments and non-compliance with established treatment plans.Objectives: Firstly to describe the experiences of clients using the Fast Queue strategy to access routine healthcare services and secondly, to determine how the clients’ experiences led to satisfaction or dissatisfaction with the Fast Queue service.Method: A descriptive qualitative survey using content analysis explored the experiences of the Fast Queue users in a PHC setting. Setting was first identified based on greatest number using the Fast Queue and geographic diversity and then a convenience sample of health care users of the Fast Queue were sampled individually along with one focus group of users who accessed the Queue monthly for medication refills. The same interview guide questions were used for both individual interviews and the one focus group discussion. Five clinics with the highest number of attendees during a three month period and a total of 83 health care users of the Fast Queue were interviewed. The average participant was female, 31 years old, single and unemployed.Results: Two themes with sub-themes emerged: health care user flow and communication, which highlights both satisfaction and dissatisfaction with the fast queue and queue marshals, could assist in directing users to the respective queues, reduce waiting time and keep users satisfied with the use of sign posts where there is a lack of human resources

  18. Phase I of the PIAFE project

    Science.gov (United States)

    Pinston, J. A.

    In the PIAFE project it is foreseen to combine the ILL high flux reactor and an accelerator to produce RNBs of fission products. Phase I of the project concerns the ILL part of the facility, where 30 keV beams will be used for ISOL type experiments. A description of the facility and the expected beam intensities are given.

  19. [The social responsibility report drafting in healthcare facilities. Experiences in Fatebenefratelli's Hospitals].

    Science.gov (United States)

    Roberti, Giovanni; Franco, Claudia; Pimpinella, Giovanni; Piscioneri, Patrizia; Primavera, Angela; Bonannini, Barbara; Calvo, Manlio; Pavese, Ida; Di Palma, Mario; Fiore, Rosalia

    2013-01-01

    Medical facilities have the duty to report, in a transparent, comprehensive and integrated manner, their performance, not only in relation to the services provided directly but also in relation to the interest of the various stakeholders and the economic and social benefits for the community. The Social Report is not only a communication tool related to corporate social responsibility but also the initial basis for acquiring social legitimacy, and serves the role of "social accounting" of the activities of an organization, with respect to its mission and institutional role. In healthcare, it can contribute to achieving the fundamental objectives of the healthcare system, in the financial area (fair financing), and also in the medical (outcomes) and ethical-social areas.

  20. Feasibility of low energy radiative capture experiments at the LUNA underground accelerator facility

    CERN Document Server

    Bemmerer, D; Lemut, A; Bonetti, R; Broggini, C; Corvisiero, P; Costantini, H; Cruz, J; Formicola, A; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, G; Imbriani, G; Jesus, A P; Junker, M; Limata, B; Menegazzo, R; Prati, P; Roca, V; Rogalla, D; Rolfs, C; Romano, M; Alvarez, C R; Schumann, F; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A; Fulop, Zs.; Gyurky, Gy.

    2005-01-01

    The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been designed to study nuclear reactions of astrophysical interest. It is located deep underground in the Gran Sasso National Laboratory, Italy. Two electrostatic accelerators, with 50 and 400 kV maximum voltage, in combination with solid and gas target setups allowed to measure the total cross sections of the radiative capture reactions $^2$H(p,$\\gamma$)3He and $^{14}$N(p,$\\gamma$)$^{15}$O within their relevant Gamow peaks. We report on the gamma background in the Gran Sasso laboratory measured by germanium and bismuth germanate detectors, with and without an incident proton beam. A method to localize the sources of beam induced background using the Doppler shift of emitted gamma rays is presented. The feasibility of radiative capture studies at energies of astrophysical interest is discussed for several experimental scenarios.

  1. Tritium Recovery at Fusion Facility 4.Tritium Experience in JT-60 Operation

    Science.gov (United States)

    Oikawa, Akira; Miya, Naoyuki

    The tritium effluent of JT-60 vacuum exhaust through the stack and into the environment always remains below the detectable level. Tritium concentration in the drain water is below a limit of regulation by the local agreement and the law, though small tritium contamination in facility drains and in rain drains of the stack has occasionally been detected. Following an annual deuterium plasma discharge campaign, a 4-week hydrogen or helium plasma discharge campaign and subsequent ventilation of room air reduced the tritium concentration on the surface of in-vessel components back to ground level and then the in-vessel was ready for the maintenance. A cooperative endeavor is underway to complete an analysis of tritium behaviors in JT-60.

  2. Laboratory Facilities and Measurement Techniques for Beamed-Energy-Propulsion Experiments in Brazil

    Science.gov (United States)

    de Oliveira, Antonio Carlos; Chanes Júnior, José Brosler; Cordeiro Marcos, Thiago Victor; Pinto, David Romanelli; Santos Vilela, Renan Guilherme; Barros Galvão, Victor Alves; Mantovani, Arthur Freire; da Costa, Felipe Jean; dos Santos Assenção, José Adeildo; dos Santos, Alberto Monteiro; de Paula Toro, Paulo Gilberto; Sala Minucci, Marco Antonio; da Silveira Rêgo, Israel; Salvador, Israel Irone; Myrabo, Leik N.

    2011-11-01

    Laser propulsion is an innovative concept of accessing the space easier and cheaper where the propulsive energy is beamed to the aerospace vehicle in flight from ground—or even satellite-based high-power laser sources. In order to be realistic about laser propulsion, the Institute for Advanced Studies of the Brazilian Air Force in cooperation with the United States Air Force and the Rensselaer Polytechnic Institute are seriously investigating its basic physics mechanisms and engineering aspects at the Henry T. Hamamatsu Laboratory of Hypersonic and Aerothermodynamics in São José dos Campos, Brazil. This paper describes in details the existing facilities and measuring systems such as high-power laser devices, pulsed-hypersonic wind tunnels and high-speed flow visualization system currently utilized in the laboratory for experimentation on laser propulsion.

  3. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  4. Ten Years Experience In Geo-Databases For Linear Facilities Risk Assessment (Lfra)

    Science.gov (United States)

    Oboni, F.

    2003-04-01

    Keywords: geo-environmental, database, ISO14000, management, decision-making, risk, pipelines, roads, railroads, loss control, SAR, hazard identification ABSTRACT: During the past decades, characterized by the development of the Risk Management (RM) culture, a variety of different RM models have been proposed by governmental agencies in various parts of the world. The most structured models appear to have originated in the field of environmental RM. These models are briefly reviewed in the first section of the paper focusing the attention on the difference between Hazard Management and Risk Management and the need to use databases in order to allow retrieval of specific information and effective updating. The core of the paper reviews a number of different RM approaches, based on extensions of geo-databases, specifically developed for linear facilities (LF) in transportation corridors since the early 90s in Switzerland, Italy, Canada, the US and South America. The applications are compared in terms of methodology, capabilities and resources necessary to their implementation. The paper then focuses the attention on the level of detail that applications and related data have to attain. Common pitfalls related to decision making based on hazards rather than on risks are discussed. The paper focuses the last sections on the description of the next generation of linear facility RA application, including examples of results and discussion of future methodological research. It is shown that geo-databases should be linked to loss control and accident reports in order to maximize their benefits. The links between RA and ISO 14000 (environmental management code) are explicitly considered.

  5. Giving cell phones to pregnant women and improving services may increase primary health facility utilization: a case-control study of a Nigerian project.

    Science.gov (United States)

    Oyeyemi, Sunday Oluwafemi; Wynn, Rolf

    2014-01-20

    Worldwide, about 287 000 women die each year from mostly preventable complications related to pregnancy and childbirth. A disproportionately high number of these deaths occur in sub-Saharan Africa. The Abiye ('Safe Motherhood') project in the Ifedore Local Government Area (LGA) of Ondo-State of Nigeria aimed at improving facility utilization and maternal health through the use of cell phones and generally improved health care services for pregnant women, including Health Rangers, renovated Health Centres, and improved means of transportation. A one-year sample of retrospective data was collected from hospital records and patients' case files from Ifedore (the project area) and Idanre (control area) and was analyzed to determine healthcare facility utilization rates in each location. Semi-structured questionnaires were used to generate supplemental data. The total facility utilization rate of pregnant women was significantly higher in Ifedore than in Idanre. The facility utilization rate of the primary health care centres was significantly higher in Ifedore than in Idanre. The number of recorded cases of the five major causes of maternal death in the two LGAs was not significantly different, possibly because the project was new. Giving cell phones to pregnant women and generally improving services could increase their utilization of the primary healthcare system.

  6. Women's empowerment and experiences of mistreatment during childbirth in facilities in Lucknow, India: results from a cross-sectional study.

    Science.gov (United States)

    Diamond-Smith, Nadia; Treleaven, Emily; Murthy, Nirmala; Sudhinaraset, May

    2017-11-08

    Recent evidence has found widespread reports of women experiencing abuse, neglect, discrimination, and poor interpersonal care during childbirth around the globe. Empowerment may be a protective mechanism for women against facility mistreatment during childbirth. The majority of previous research on mistreatment during childbirth has been qualitative in nature. In this analysis, we use quantitative data from 392 women who recently gave birth in a facility in the slums of Lucknow, India, to explore whether measures of women's empowerment are associated with their experiences of mistreatment at their last childbirth. We use the Gender Equitable Men (GEM) scale to measure women's views of gender equality. We find that women who had more equitable views about the role of women were less likely to report experiencing mistreatment during childbirth. These findings suggest that dimensions of women's empowerment related to social norms about women's value and role are associated with experiences of mistreatment during childbirth. This expands our understanding of empowerment and women's health, and also suggests that the GEM scale can be used to measure certain domains of empowerment from a women's perspective in this setting.

  7. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  8. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities.

    Science.gov (United States)

    Abrudan, R; Brüssing, F; Salikhov, R; Meermann, J; Radu, I; Ryll, H; Radu, F; Zabel, H

    2015-06-01

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses to excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.

  9. ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Abrudan, R. [Institute for Condensed Matter Physics, Ruhr-Universität Bochum, 44780 Bochum (Germany); Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin (Germany); Brüssing, F.; Salikhov, R.; Meermann, J.; Zabel, H. [Institute for Condensed Matter Physics, Ruhr-Universität Bochum, 44780 Bochum (Germany); Radu, I.; Ryll, H.; Radu, F. [Helmholtz-Zentrum-Berlin for Materials and Energy, 12489 Berlin (Germany)

    2015-06-15

    We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses to excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.

  10. PLEs in Primary School: The Learners' Experience in The PIPLEP Project

    Science.gov (United States)

    Nieto Moreno de Diezmas, Esther; Dondarza Manzano, Pablo

    2016-01-01

    In this paper the experience of learners during the first phase of the PIPLEP project is explored. PIPLEP is aimed at promoting digital literacy and independent learning with the creation of personal learning environments (PLEs) as the final product. The participants were a group of 17 students enrolled in year 5 of primary school, and the main…

  11. Experiences from Swedish demonstration projects with phosphoric acid fuel cells; Erfarenheter fraan svenska demonstrationsprojekt med fosforsyrabraensleceller

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Per [Sycon Energikonsult AB, Stockholm (Sweden); Sarkoezi, Laszlo [Vattenfall Utveckling AB, Stockholm (Sweden)

    1999-10-01

    In Sweden, there are today two phosphoric acid fuel cells installed, one PC25A which have been in operation in more than 4 years, and one PC25C which have been in operation for two years. The aim with this project has been two compare operation characteristics, performance, and operation experiences for these two models.

  12. Rocket to Creativity: A Field Experience in Problem-Based and Project-Based Learning

    Science.gov (United States)

    Dole, Sharon F.; Bloom, Lisa A.; Doss, Kristy Kowalske

    2016-01-01

    This article reports the impact of a field experience in problem-based (PBL) and project-based learning (PjBL) on in-service teachers' conceptions of experiential learning. Participants had been enrolled in a hybrid class that included an online component in which they learned about PBL and PjBL, and an experiential component in which they…

  13. Innovative Experiential Learning Activities in Aging: The Experiences of Four BEL Projects

    Science.gov (United States)

    Hash, Kristina M.; Poole, Jay; Floyd, Melissa; Moore, Crystal Dea; Rogers, Anissa T.; Tower, Leslie E.

    2017-01-01

    The BSW Experiential Learning (BEL) Program aims to infuse intergenerational content into the curriculum and recruit students to the field of social work by implementing face-to-face learning opportunities with older adults. This article discusses and compares the experiences of 4 diverse BEL projects that implemented gero-experiential learning…

  14. The "Real-World" Experience: Students' Perspectives on Service-Learning Projects

    Science.gov (United States)

    McLaughlin, Erin

    2010-01-01

    The purpose of this paper is to identify how students gain "real-world" experience via service-learning projects. This article describes the results of a pilot study conducted with over 75 business graduate students to investigate the effects of service-learning curriculum at the collegiate level. The following qualitative data was…

  15. An Undergraduate Mechatronics Project Class at Philadelphia University, Jordan: Methodology and Experience

    Science.gov (United States)

    Tutunji, T. A.; Saleem, A.; Rabbo, S. A.

    2009-01-01

    Mechatronics is a branch of engineering whose final product should involve mechanical movements controlled by smart electronics. The design and implementation of functional prototypes are an essential learning experience for the students in this field. In this paper, the guidelines for a successful mechatronics project class are presented,…

  16. A Guide for Implementing Project DEEP (Diversified Educational Experiences Program). Administrator's Guide.

    Science.gov (United States)

    Connett, Jane; Swanson, Monty

    The guide is designed to provide the building level administrator a step by step model for implementing Project DEEP's (Diversified Educational Experiences Program) alternative classroom management system for secondary academic classrooms with disaffected (attendance problems, discipline problems, potential dropouts), average, and gifted and…

  17. Assessing landscape experiences as a cultural ecosystem service in public infrastructure projects

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Lindhjem, Henrik; Magnussen, Kristin

    Undesirable landscape changes, especially from large infrastructure projects, may give rise to large welfare losses due to degraded landscape experiences. These losses are largely unaccounted for in Nordic countries’ planning processes. There is a need to develop practical methods of including pe...

  18. Preschool Work against Bullying and Degrading Treatment: Experiences from an Action Learning Project

    Science.gov (United States)

    Söderström, Åsa; Löfdahl Hultman, Annica

    2017-01-01

    This article deals with experiences from an action learning project against bullying and degrading treatment among nine Swedish preschools. Even though definitions of bullying and degrading treatment tend to lead to thoughts of school-age children rather than preschoolers, previous research shows that bullying occurs in preschool as well. Our data…

  19. Culminating Experience Action Research Projects, Volume 18, Part 1, Spring 2016

    Science.gov (United States)

    McAllister, Deborah A., Ed.

    2017-01-01

    As a part of the teacher licensure program at the graduate level at The University of Tennessee at Chattanooga (UTC), the M.Ed. licensure candidate is required to complete an action research project during a 3-semester-hour course that coincides with the 9-semester-hour student teaching experience or with school employment. This course, Education…

  20. Creating International Community Service Learning Experiences in a Capstone Marketing-Projects Course

    Science.gov (United States)

    Metcalf, Lynn E.

    2010-01-01

    This article outlines the development of a project-based capstone marketing course, specifically designed to provide marketing students with an international community service learning experience. It differs significantly from previous studies, which focus on integrating service learning into existing marketing courses and on helping local…