WorldWideScience

Sample records for experiment facility project

  1. Project and feedback experience on nuclear facility decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L. [ENRESA (Spain); Benest, T.G. [United Kingdom Atomic Energy Authority, Windscale, Cumbria (United Kingdom); Tardy, F.; Lefevre, Ph. [Electricite de France (EDF/CIDEN), 69 - Villeurbanne (France); Willis, A. [VT Nuclear Services (United Kingdom); Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R. [Belgoprocess (Belgium); Jeanjacques, M. [CEA Saclay, 91 - Gif sur Yvette (France); Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C. [CEA Fontenay aux Roses, 92 (France); Fontana, Ph.; Fraize, G. [CEA Marcoule 30 (France); Seurat, Ph. [AREVA NC, 75 - Paris (France); Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2008-11-15

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  2. Project and feedback experience on nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Santiago, J.L.; Benest, T.G.; Tardy, F.; Lefevre, Ph.; Willis, A.; Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.; Jeanjacques, M.; Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C.; Fontana, Ph.; Fraize, G.; Seurat, Ph.; Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A.

    2008-01-01

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  3. Safety Research Experiment Facility Project. Conceptual design report. Volume II. Building and facilities

    International Nuclear Information System (INIS)

    1975-12-01

    The conceptual design of Safety Research Experiment Facility (SAREF) site system includes a review and evaluation of previous geotechnical reports for the area where SAREF will be constructed and the conceptual design of access and in-plant roads, parking, experiment-transport-vehicle maneuvering areas, security fencing, drainage, borrow area development and restoration, and landscaping

  4. PROJECT EXPERIENCE REPORT DEMOLITION OF HANFORDS 233-S PLUTONIUM CONCENTRATION FACILITY

    International Nuclear Information System (INIS)

    BERLIN, G.T.; ORGILL, T.K.

    2004-01-01

    This report provides a summary of the preparation, operations, innovative work practices, and lessons learned associated with demolition of the 2334 Plutonium Concentration Facility. This project represented the first open-air demolition of a highly-contaminated plutonium facility at the Hanford Site. This project may also represent the first plutonium facility in the US. Department of Energy (DOE) complex to have been demolished without first decontaminating surfaces to near ''free release'' standards. Demolition of plutonium contaminated structures, if not properly managed, can subject cleanup personnel and the environment to significant risk. However, with proper sequencing and innovative use of commercially available equipment, materials, and services, this project demonstrated that a plutonium processing facility can be demolished while avoiding the need to perform extensive decontamination or to construct large enclosures. This project utilized an excavator with concrete shears, diamond circular saws, water misting and fogging equipment, commercially available fixatives and dust suppressants, conventional mobile crane and rigging services, and near real-time modeling of meteorological and radiological conditions. Following a significant amount of preparation, actual demolition of the 233-S Facility began in October 2003 and was completed in late April 2004. The knowledge and experience gained on this project are important to the Hanford Site as additional plutonium processing facilities are scheduled for demolition in the near future. Other sites throughout the DOE Complex may also be faced with similar challenges. Numerous innovations and effective work practices were implemented on this project. Accordingly, a series of ''Lessons Learned and Innovative Practices Fact Sheets'' were developed and are included as an appendix to this report. This collection of fact sheets is not intended to capture every innovative work practice and lesson learned, but rather

  5. PROJECT EXPERIENCE REPORT DEMOLITION OF HANFORDS 233-S PLUTONIUM CONCENTRATION FACILITY

    International Nuclear Information System (INIS)

    BERLIN, G.T.

    2004-01-01

    This report provides a summary of the preparation, operations, innovative work practices, and lessons learned associated with demolition of the 2334 Plutonium Concentration Facility. This project represented the first open-air demolition of a highly-contaminated plutonium facility at the Hanford Site. This project may also represent the first plutonium facility in the US. Department of Energy (DOE) complex to have been demolished without first decontaminating surfaces to near ''free release'' standards. Demolition of plutonium contaminated structures, if not properly managed, can subject cleanup personnel and the environment to significant risk. However, with proper sequencing and innovative use of commercially available equipment, materials, and services, this project demonstrated that a plutonium processing facility can be demolished while avoiding the need to perform extensive decontamination or to construct large enclosures. This project utilized an excavator with concrete shears, diamond circular saws, water misting and fogging equipment, commercially available fixatives and dust suppressants, conventional mobile crane and rigging services, and near real-time modeling of meteorological and radiological conditions. Following a significant amount of preparation, actual demolition of the 2333 Facility began in October 2003 and was completed in late April 2004. The knowledge and experience gained on this project are important to the Hanford Site as additional plutonium processing facilities are scheduled for demolition in the near future. Other sites throughout the DOE Complex may also be faced with similar challenges. Numerous innovations and effective work practices were implemented on this project. Accordingly, a series of ''Lessons Learned and Innovative Practices Fact Sheets'' were developed and are included as an appendix to this report. This collection of fact sheets is not intended to capture every innovative work practice and lesson learned, but rather to

  6. Safety Research Experiment Facility project. Conceptual design report. Volume IX. Experiment handling

    International Nuclear Information System (INIS)

    1975-01-01

    Information on the SAREF Reactor experiment handling system is presented concerning functions and design requirements, design description, operation, casualty events and recovery procedures, and maintenance

  7. Safety Research Experiment Facility Project. Conceptual design report. Volume III. Utilities

    International Nuclear Information System (INIS)

    1975-12-01

    The SAREF Electric Power System supplies and distributes power from the EBR-II switchgear for operation of all normal facilities on the site, from an on-site Experiment Diesel Generator for operation of all experiment related loads, and from an emergency engine generator and/or an uninterruptible power supply for operation of all essential and critical loads during a failure of both of the other two systems

  8. Safety Research Experiment Facility Project. Conceptual design report. Volume VII. Reactor cooling

    International Nuclear Information System (INIS)

    1975-12-01

    The Reactor Cooling System (RCS) will provide the required cooling during test operations of the Safety Research Experiment Facility (SAREF) reactor. The RCS transfers the reactor energy generated in the core to a closed-loop water storage system located completely inside the reactor containment building. After the reactor core has cooled to a safe level, the stored heat is rejected through intermediate heat exchangers to a common forced-draft evaporative cooling tower. The RCS is comprised of three independent cooling loops of which any two can remove sufficient heat from the core to prevent structural damage to the system components

  9. Safety Research Experiment Facility Project. Conceptual design report. Volume V. Reactor vessel and closure

    International Nuclear Information System (INIS)

    1975-12-01

    The Prestressed Concrete Reactor Vessel (PCRV) will serve as the primary pressure retaining structure for the Safety Research Experiment Facility (SAREF) reactor. The reactor core, control rod drive room, primary heat exchangers, and gas circulators will be located in cavities within the PCRV. The orientation of these cavities, except for the control rod drive room, will be similar to the high-temperature gas-cooled reactor (HTGR) designs that are currently proposed or under design. Due to the nature of this type of structure, all biological and radiological shielding requirements are incorporated into the basic vessel design. At the midcore plane there are three radially oriented slots that will extend from the outside surface of the PCRV to the reactor core liner. These slots will accommodate each of the fuel motion monitoring systems which will be part of the observation apparatus used with the loop experiments

  10. Managing nuclear projects: a design agency experience in the design-build of waste management facilities in Canada

    International Nuclear Information System (INIS)

    Brewer, R.; Calzolari, L.

    2006-01-01

    Quality Assurance guarantees the quality of a product; it does not guarantee that it is a quality product. As procedures develop to satisfy QA programs and regulatory needs it is necessary to find ways to ensure that procedural management reinforces project management and does not detract from it. CANATOM NPM's experience in bidding for and executing the design or design and construction of nuclear waste management facilities demonstrates how design excellence and innovation can still be achieved while successfully managing the challenge of technical administration. The sourcing of expertise, the intricacies of design definition and the coordinating efforts required in the execution of the projects (one fully completed, the other into its engineering phase) will provide a valuable insight into the role and activities of an engineering company engaged in a 'Design Agency' (DA) role. (author)

  11. NTES laser facility for physics experiments

    International Nuclear Information System (INIS)

    Christie, D.J.; Foley, R.J.; Frank, D.N.

    1989-01-01

    This paper discusses the following topics on the NTES laser facility: Mission Statement and Project Description; Experiment Area; High-Energy, Double-Pass Laser; Facilities; Laser Control and Data Acquisition; and Auxiliary Lasers

  12. New pedestrian facilities : technique, observations and opinions : the Dutch experiment. DRIVE project V1061 : pussycats.

    NARCIS (Netherlands)

    Levelt, P.M.B.

    1993-01-01

    This report is the Dutch part of an international (French-British-Dutch) evaluation study of new pedestrian crossing facilities, summarized under the name 'PUSSYCATS' (See also IRRD 859331). 'PUSSYCATS' is a new system, characterized by technical improvements better adapted to the behaviour and

  13. Ukraine [Experiences from international projects on the decommissioning of both large and small facilities]. Annex III

    International Nuclear Information System (INIS)

    2016-01-01

    about 4.0 m vertically down, crushing the supporting construction and displacing lower water pipes. The south-east quadrant of the reactor base scheme was destroyed. The building construction of the main circulation pump blocks, the downcomer pipeline ducts and the monolithic reinforced concrete constructions below the level of +9.0 m survived. The destroyed constructions of unit 4 can, in general, be characterized by: — Spatial distributions and the presence of critical zones within the construction close to the limit state in terms of the bearing capacity and deformability; — Inaccessibility of most parts of the constructions; — Absence of the necessary design and as-built documentation; — Ongoing degradation processes of the materials (corrosion, foundation settlement, etc.) giving a short term durability (in comparison with the normal for these types of facilities). The existing shelter, formally referred to as the shelter and often called the sarcophagus, was constructed between May and November 1986 as an emergency measure to contain the radioactive materials within unit 4. The shelter was constructed under extreme conditions, with very high levels of radiation, under extreme time constraints. The shelter object was moderately successful in containing radioactive contamination and providing for post-accident monitoring of the destroyed nuclear reactor unit. However, the shelter cannot ensure full reliability, stability and durability of the facility due to the following reasons: — During installation of the facility, it was not possible to control the quality of the installation. It is essential that the supporting nodes of the constructions are made without welding and/or bolted connections. Taking into account the fact that the installation of constructions was performed remotely (as a rule), the quality of supporting construction fittings was not controlled. — The main supporting constructions of the facility are based on the pre

  14. Thermal-Hydraulic Experiment Facility (THEF)

    International Nuclear Information System (INIS)

    Martinell, J.S.

    1982-01-01

    This paper provides an overview of the Thermal-Hydraulic Experiment Facility (THEF) at the Idaho National Engineering Laboratory (INEL). The overview describes the major test systems, measurements, and data acquisition system, and presents objectives, facility configuration, and results for major experimental projects recently conducted at the THEF. Plans for future projects are also discussed. The THEF is located in the Water Reactor Research Test Facility (WRRTF) area at the INEL

  15. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  16. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project

  17. Japan Hadron Facility (JHF) project

    International Nuclear Information System (INIS)

    Nagamiya, S.

    1999-01-01

    The Japan Hadron Facility (JHF) is the next accelerator project proposed at KEK to promote exciting sciences by utilising high-intensity proton beams. The project is characterised by three unique features: hadronic beams of the world's highest intensity; a variety of beams from one accelerator complex; frontier sciences to cover a broad research area including nuclear physics, particle physics, material sciences and life sciences by utilising a common accelerator complex. (author)

  18. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    International Nuclear Information System (INIS)

    Adams, N

    2007-01-01

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully

  19. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  20. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects

    CERN Document Server

    Acciarri, R.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; Anderson, J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Anghel, I.; Anjos, J. d.; Ankowski, A.; Antonello, M.; Aranda Fernandez, A.; Ariga, A.; Ariga, T.; Aristizabal, D.; Arrieta-Diaz, E.; Aryal, K.; Asaadi, J.; Asner, D.; Athar, M.S.; Auger, M.; Aurisano, A.; Aushev, V.; Autiero, D.; Avila, M.; Back, J.J.; Bai, X.; Baibussinov, B.; Baird, M.; Balantekin, B.; Baller, B.; Ballett, P.; Bambah, B.; Bansal, M.; Bansal, S.; Barker, G.J.; Barletta, W.A.; Barr, G.; Barros, N.; Bartosz, B.; Bartoszek, L.; Bashyal, A.; Bass, M.; Bay, F.; Beacom, J.; Behera, B.R.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Benetti, P.A.; Bercellie, A.; Bergevin, M.; Berman, E.; Berns, H.; Bernstein, R.; Bertolucci, S.; Bhandari, B.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Biery, K.; Bishai, M.; Blackburn, T.; Blake, A.; Blaszczyk, F. d. M.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Bocean, V.; Boffelli, F.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bonesini, M.; Boone, T.; Booth, C.; Bordoni, S.; Borysova, M.; Bourguille, B.; Boyd, S.B.; Brailsford, D.; Brandt, A.; Bremer, J.; Brice, S.; Bromberg, C.; Brooijmans, G.; Brown, G.; Brown, R.; Brunetti, G.; Bu, X.; Buchanan, N.; Budd, H.; Bugg, B.; Calafiura, P.; Calligarich, E.; Calvo, E.; Camilleri, L.; Campanelli, M.; Cantini, C.; Carls, B.; Carr, R.; Cascella, M.; Castromonte, C.; Mur, E.Catano; Cavanna, F.; Centro, S.; Cervera Villanueva, A.; Chalifour, M.; Chandratre, V.B.; Chatterjee, A.; Chattopadhyay, S.; Chattopadhyay, S.; Chaussard, L.; Chembra, S.; Chen, H.; Chen, K.; Chen, M.; Cherdack, D.; Chi, C.; Childress, S.; Choubey, S.; Choudhary, B.C.; Christodoulou, G.; Christofferson, C.; Church, E.; Cianci, D.; Cline, D.; Coan, T.; Cocco, A.; Coelho, J.; Cole, P.; Collin, G.; Conrad, J.M.; Convery, M.; Corey, R.; Corwin, L.; Cranshaw, J.; Crivelli, P.; Cronin-Hennessy, D.; Curioni, A.; Cushing, J.; Adams, D.L.; Dale, D.; Das, S.R.; Davenne, T.; Davies, G.S.; Davies, J.; Dawson, J.; De, K.; de Gouvea, A.; de Jong, J.K.; de Jong, P.; De Lurgio, P.; Decowski, M.; Delbart, A.; Densham, C.; Dharmapalan, R.; Dhingra, N.; Di Luise, S.; Diamantopoulou, M.; Diaz, J.S.; Diaz Bautista, G.; Diwan, M.; Djurcic, Z.; Dolph, J.; Drake, G.; Duchesneau, D.; Duvernois, M.; Duyang, H.; Dwyer, D.A.; Dye, S.; Dytman, S.; Eberly, B.; Edgecock, R.; Edmunds, D.; Elliott, S.; Elnimr, M.; Emery, S.; Endress, E.; Eno, S.; Ereditato, A.; Escobar, C.O.; Evans, J.; Falcone, A.; Falk, L.; Farbin, A.; Farnese, C.; Farzan, Y.; Fava, A.; Favilli, L.; Felde, J.; Felix, J.; Fernandes, S.; Fields, L.; Finch, A.; Fitton, M.; Fleming, B.; Forest, T.; Fowler, J.; Fox, W.; Fried, J.; Friedland, A.; Fuess, S.; Fujikawa, B.; Gago, A.; Gallagher, H.; Galymov, S.; Gamble, T.; Gandhi, R.; Garcia-Gamez, D.; Gardiner, S.; Garvey, G.; Gehman, V.M.; Gendotti, A.; Geronimo, G. d.; Ghag, C.; Ghoshal, P.; Gibin, D.; Gil-Botella, I.; Gill, R.; Girardelli, D.; Giri, A.; Glavin, S.; Goeldi, D.; Golapinni, S.; Gold, M.; Gomes, R.A.; Gomez Cadenas, J.J.; Goodman, M.C.; Gorbunov, D.; Goswami, S.; Graf, N.; Graf, N.; Graham, M.; Gramelini, E.; Gran, R.; Grant, C.; Grant, N.; Greco, V.; Greenlee, H.; Greenler, L.; Greenley, C.; Groh, M.; Grullon, S.; Grundy, T.; Grzelak, K.; Guardincerri, E.; Guarino, V.; Guarnaccia, E.; Guedes, G.P.; Guenette, R.; Guglielmi, A.; Habig, A.T.; Hackenburg, R.W.; Hackenburg, A.; Hadavand, H.; Haenni, R.; Hahn, A.; Haigh, M.D.; Haines, T.; Hamernik, T.; Handler, T.; Hans, S.; Harris, D.; Hartnell, J.; Hasegawa, T.; Hatcher, R.; Hatzikoutelis, A.; Hays, S.; Hazen, E.; Headley, M.; Heavey, A.; Heeger, K.; Heise, J.; Hennessy, K.; Hewes, J.; Higuera, A.; Hill, T.; Himmel, A.; Hogan, M.; Holanda, P.; Holin, A.; Honey, W.; Horikawa, S.; Horton-Smith, G.; Howard, B.; Howell, J.; Hurh, P.; Huston, J.; Hylen, J.; Imlay, R.; Insler, J.; Introzzi, G.; Ioanisyan, D.; Ioannisian, A.; Iwamoto, K.; Izmaylov, A.; Jackson, C.; Jaffe, D.E.; James, C.; James, E.; Jediny, F.; Jen, C.; Jhingan, A.; Jimenez, S.; Jo, J.H.; Johnson, M.; Johnson, R.; Johnstone, J.; Jones, B.J.; Joshi, J.; Jostlein, H.; Jung, C.K.; Junk, T.; Kaboth, A.; Kadel, R.; Kafka, T.; Kalousis, L.; Kamyshkov, Y.; Karagiorgi, G.; Karasavvas, D.; Karyotakis, Y.; Kaur, A.; Kaur, P.; Kayser, B.; Kazaryan, N.; Kearns, E.; Keener, P.; Kemboi, S.; Kemp, E.; Kettell, S.H.; Khabibullin, M.; Khandaker, M.; Khotjantsev, A.; Kirby, B.; Kirby, M.; Klein, J.; Kobilarcik, T.; Kohn, S.; Koizumi, G.; Kopylov, A.; Kordosky, M.; Kormos, L.; Kose, U.; Kostelecky, A.; Kramer, M.; Kreslo, I.; Kriske, R.; Kropp, W.; Kudenko, Y.; Kudryavtsev, V.A.; Kulagin, S.; Kumar, A.; Kumar, G.; Kumar, J.; Kumar, L.; Kutter, T.; Laminack, A.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Learned, J.; Lebrun, P.; Lee, D.; Lee, H.; Lee, K.; Lee, W.M.; Leigui de Oliveira, M.A.; Li, Q.; Li, S.; Li, S.; Li, X.; Li, Y.; Li, Z.; Libo, J.; Lin, C.S.; Lin, S.; Ling, J.; Link, J.; Liptak, Z.; Lissauer, D.; Littenberg, L.; Littlejohn, B.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N.; Loew, T.; Lokajicek, M.; Long, K.; Lopes, M.D.L.; Lopez, J.P.; Losecco, J.; Louis, W.; Lowery, J.; Luethi, M.; Luk, K.; Lundberg, B.; Lundin, T.; Luo, X.; Lux, T.; Lykken, J.; Machado, A.A.; Macier, J.R.; Magill, S.; Mahler, G.; Mahn, K.; Malek, M.; Malhotra, S.; Malon, D.; Mammoliti, F.; Mancina, S.; Mandal, S.K.; Mandodi, S.; Manly, S.L.; Mann, A.; Marchionni, A.; Marciano, W.; Mariani, C.; Maricic, J.; Marino, A.; Marshak, M.; Marshall, C.; Marshall, J.; Marteau, J.; Martin-Albo, J.; Martinez, D.; Matsuno, S.; Matthews, J.; Mauger, C.; Mavrokoridis, K.; Mayilyan, D.; Mazzucato, E.; McCauley, N.; McCluskey, E.; McConkey, N.; McDonald, K.; McFarland, K.S.; McGowan, A.M.; McGrew, C.; McKeown, R.; McNulty, D.; McTaggart, R.; Mefodiev, A.; Mehrian, M.; Mehta, P.; Mei, D.; Mena, O.; Menary, S.; Mendez, H.; Menegolli, A.; Meng, G.; Meng, Y.; Mertins, D.; Merritt, H.; Messier, M.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Milincic, R.; Miller, W.; Mills, G.; Mineev, O.; Miranda, O.; Mishra, C.S.; Mishra, S.R.; Mitrica, B.; Mladenov, D.; Mocioiu, I.; Mohanta, R.; Mokhov, N.; Montanari, C.; Montanari, D.; Moon, J.; Mooney, M.; Moore, C.; Morfin, J.; Morgan, B.; Morris, C.; Morse, W.; Moss, Z.; Mossey, C.; Moura, C.A.; Mousseau, J.; Mualem, L.; Muether, M.; Mufson, S.; Murphy, S.; Musser, J.; Musser, R.; Nakajima, Y.; Naples, D.; Napolitano, J.; Navarro, J.; Navas, D.; Nelson, J.; Nessi, M.; Newcomer, M.; Ng, Y.; Nichol, R.; Nicholls, T.C.; Nikolics, K.; Niner, E.; Norris, B.; Noto, F.; Novakova, P.; Novella, P.; Nowak, J.; Nunes, M.S.; O'Keeffe, H.; Oldeman, R.; Oliveira, R.; Olson, T.; Onishchuk, Y.; Osta, J.; Ovsjannikova, T.; Page, B.; Pakvasa, S.; Pal, S.; Palamara, O.; Palazzo, A.; Paley, J.; Palomares, C.; Pantic, E.; Paolone, V.; Papadimitriou, V.; Park, J.; Parke, S.; Parsa, Z.; Pascoli, S.; Patterson, R.; Patton, S.; Patzak, T.; Paulos, B.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Peeters, S.; Pennacchio, E.; Perch, A.; Perdue, G.N.; Periale, L.; Perkin, J.D.; Pessard, H.; Petrillo, G.; Petti, R.; Petukhov, A.; Pietropaolo, F.; Plunkett, R.; Pordes, S.; Potekhin, M.; Potenza, R.; Potukuchi, B.; Poudyal, N.; Prokofiev, O.; Pruthi, N.; Przewlocki, P.; Pushka, D.; Qian, X.; Raaf, J.L.; Raboanary, R.; Radeka, V.; Radovic, A.; Raffelt, G.; Rakhno, I.; Rakotondramanana, H.T.; Rakotondravohitra, L.; Ramachers, Y.A.; Rameika, R.; Ramsey, J.; Rappoldi, A.; Raselli, G.; Ratoff, P.; Rebel, B.; Regenfus, C.; Reichenbacher, J.; Reitzner, D.; Remoto, A.; Renshaw, A.; Rescia, S.; Richardson, M.; Rielage, K.; Riesselmann, K.; Robinson, M.; Rochester, L.; Rodrigues, O.B.; Rodrigues, P.; Roe, B.; Rosen, M.; Roser, R.M.; Ross-Lonergan, M.; Rossella, M.; Rubbia, A.; Rubbia, C.; Rucinski, R.; von Rohr, C.Rudolph; Russell, B.; Ruterbories, D.; Saakyan, R.; Sahu, N.; Sala, P.; Samios, N.; Sanchez, F.; Sanchez, M.; Sands, B.; Santana, S.; Santorelli, R.; Santucci, G.; Saoulidou, N.; Scaramelli, A.; Schellman, H.; Schlabach, P.; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Schukraft, A.; Schwehr, J.; Segreto, E.; Seibert, S.; Sepulveda-Quiroz, J.A.; Sergiampietri, F.; Sexton-Kennedy, L.; Sgalaberna, D.; Shaevitz, M.; Shahi, J.; Shahsavarani, S.; Shanahan, P.; Shankar, S.U.; Sharma, R.; Sharma, R.K.; Shaw, T.; Shrock, R.; Shyrma, I.; Simos, N.; Sinev, G.; Singh, I.; Singh, J.; Singh, J.; Singh, V.; Sinnis, G.; Sippach, W.; Smargianaki, D.; Smy, M.; Snider, E.; Snopok, P.; Sobczyk, J.; Sobel, H.; Soderberg, M.; Solomey, N.; Sondheim, W.; Sorel, M.; Sousa, A.; Soustruznik, K.; Spitz, J.; Spooner, N.J.; Stancari, M.; Stancu, I.; Stefan, D.; Steiner, H.M.; Stewart, J.; Stock, J.; Stoica, S.; Stone, J.; Strait, J.; Strait, M.; Strauss, T.; Striganov, S.; Sulej, R.; Sullivan, G.; Sun, Y.; Suter, L.; Sutera, C.M.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Soldner-Rembold, S.; Talaga, R.; Tamsett, M.; Tariq, S.; Tatar, E.; Tayloe, R.; Taylor, C.; Taylor, D.; Terao, K.; Thiesse, M.; Thomas, J.; Thompson, L.F.; Thomson, M.; Thorn, C.; Thorpe, M.; Tian, X.; Tiedt, D.; Timm, S.C.; Tonazzo, A.; Tope, T.; Topkar, A.; Torres, F.R.; Torti, M.; Tortola, M.; Tortorici, F.; Toups, M.; Touramanis, C.; Tripathi, M.; Tropin, I.; Tsai, Y.; Tsang, K.V.; Tsenov, R.; Tufanli, S.; Tull, C.; Turner, J.; Tzanov, M.; Tziaferi, E.; Uchida, Y.; Urheim, J.; Usher, T.; Vagins, M.; Vahle, P.; Valdiviesso, G.A.; Valerio, L.; Vallari, Z.; Valle, J.; Van Berg, R.; Van de Water, R.; Van Gemmeren, P.; Varanini, F.; Varner, G.; Vasseur, G.; Vaziri, K.; Velev, G.; Ventura, S.; Verdugo, A.; Viant, T.; Vieira, T.V.; Vignoli, C.; Vilela, C.; Viren, B.; Vrba, T.; Wachala, T.; Wahl, D.; Wallbank, M.; Walsh, N.; Wang, B.; Wang, H.; Wang, L.; Wang, T.; Warburton, T.K.; Warner, D.; Wascko, M.; Waters, D.; Watson, T.B.; Weber, A.; Weber, M.; Wei, W.; Weinstein, A.; Wells, D.; Wenman, D.; Wetstein, M.; White, A.; Whitehead, L.; Whittington, D.; Wilking, M.; Willhite, J.; Wilson, P.; Wilson, R.J.; Winslow, L.; Wittich, P.; Wojcicki, S.; Wong, H.H.; Wood, K.; Worcester, E.; Worcester, M.; Wu, S.; Xin, T.; Yanagisawa, C.; Yang, S.; Yang, T.; Yarritu, K.; Ye, J.; Yeh, M.; Yershov, N.; Yonehara, K.; Yu, B.; Yu, J.; Zalesak, J.; Zalewska, A.; Zamorano, B.; Zang, L.; Zani, A.; Zani, A.; Zavala, G.; Zeller, G.; Zhang, C.; Zhang, C.; Zimmerman, E.D.; Zito, M.; Zwaska, R.

    2016-01-01

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  1. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    Science.gov (United States)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  2. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  3. Shielding experiments for accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-06-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  4. Shielding experiments for accelerator facilities

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Susumu; Sakamoto, Yukio

    2000-01-01

    A series of shielding experiments was carried out by using AVF cyclotron accelerator of TIARA at JAERI in order to validate shielding design methods for accelerator facilities in intermediate energy region. In this paper neutron transmission experiment through thick shields and radiation streaming experiment through a labyrinth are reported. (author)

  5. Campania Region's Educational Quality Facilities Project

    Science.gov (United States)

    Ponti, Giorgio

    2009-01-01

    This article describes the Educational Quality Facilities project undertaken by Italy's Campania Region to provide quality facilities to all of its communities basing new spaces on the "Flexible Learning Module". The objectives of the five-year project are to: build and equip new educational spaces; improve the quality of existing…

  6. The Burning Plasma Experiment conventional facilities

    International Nuclear Information System (INIS)

    Commander, J.C.

    1991-01-01

    The Burning Program Plasma Experiment (BPX) is phased to start construction of conventional facilities in July 1994, in conjunction with the conclusion of the Tokamak Fusion Test Reactor (TFTR) project. This paper deals with the conceptual design of the BPX Conventional Facilities, for which Functional and Operational Requirements (F ampersand ORs) were developed. Existing TFTR buildings and utilities will be adapted and used to satisfy the BPX Project F ampersand ORs to the maximum extent possible. However, new conventional facilities will be required to support the BPX project. These facilities include: The BPX building; Site improvements and utilities; the Field Coil Power Conversion (FCPC) building; the TFTR modifications; the Motor Generation (MG) building; Liquid Nitrogen (LN 2 ) building; and the associated Instrumentation and Control (I ampersand C) systems. The BPX building will provide for safe and efficient shielding, housing, operation, handling, maintenance and decontamination of the BPX and its support systems. Site improvements and utilities will feature a utility tunnel which will provide a space for utility services--including pulse power duct banks and liquid nitrogen coolant lines. The FCPC building will house eight additional power supplied for the Toroidal Field (TF) coils. The MG building will house the two MG sets larger than the existing TFTR MG sets. This paper also addresses the conventional facility cost estimating methodology and the rationale for the construction schedule developed. 6 figs., 1 tab

  7. Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-01-01

    The Critical Experiments Facility of the Los Alamos National Laboratory has been in existence for 45 years. In that period of time, thousands of measurements have been made on assemblies containing every fissionable material in various configurations that included bare metal and compounds of the nitrate, sulfate, fluoride, carbide, and oxide. Techniques developed or applied include Rossi-α, source-jerk, rod oscillator, and replacement measurements. Many of the original measurements of delay neutrons were performed at the site, and a replica of the Hiroshima weapon was operated at steady state to assist in evaluating the relative biological effectiveness (RBE) of neutrons. Solid, liquid, and gas fissioning systems were run at critical. Operation of this original critical facility has demonstrated the margin of safety that can be obtained through remote operation. Eight accidental excursions have occurred on the site, ranging from 1.5 x 10 16 to 1.2 x 10 17 fissions, with no significant exposure to personnel or damage to the facility beyond the machines themselves -- and in only one case was the machine damaged beyond further use. The present status of the facility, operating procedures, and complement of machines will be described in the context of programmatic activity. New programs will focus on training, validation of criticality alarm systems, experimental safety assessment of process applications, and dosimetry. Special emphasis will be placed on the incorporation of experience from 45 years of operation into present procedures and programs. 3 refs

  8. Facility Interface Capability Assessment (FICA) project report

    International Nuclear Information System (INIS)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified

  9. Facility Interface Capability Assessment (FICA) project report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States); MacDonald, R.R. [ed.] [Civilian Radioactive Waste Management System, Vienna, VA (United States); Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  10. Researches at hadron experiment facility

    International Nuclear Information System (INIS)

    Sawada, Shinya

    2006-01-01

    Some of the nuclear, hadron and elementary particle experiments proposed to hadron experiment facility to use the extracted slow proton beam at J-PARC are overviewed. Characteristic feature of the facility is the secondary beam obtained from the intense proton beam. Nuclear hadron physics experiments and kaon rare decay experiments are presented here as the typical ones. Hypernuclear spectroscopy with S=-2 state is expected to be started as soon as the beam becomes available. The kaon bound systems not only with three nucleons like K-pnn but also more numerous like Li and Be are to be studied systematically. Bound states of two kaons using (K - , K + ) reaction will be challenged. Pentaquark will be searched for and its properties will be studied if it really exists. Nuclear structure studies from the view point of large Bjorken x are planned to be studied by irradiating hydrogen, deuteron or heavier targets with primary proton beam and analyzing generated muon pairs. Properties of vector mesons in nuclear matter are to be studied with the primary beam. Neutral kaon rare decay will be investigated to study CP nonconservation. Large progress of elementary particle physics is anticipated by using the intense proton beam at J-PARC. (S. Funahashi)

  11. Project quality assurance plant: Sodium storage facility, project F-031

    International Nuclear Information System (INIS)

    Shultz, J.W.; Shank, D.R.

    1994-11-01

    The Sodium Storage Facility Project Quality Assurance Plan delineates the quality assurance requirements for construction of a new facility, modifications to the sodium storage tanks, and tie-ins to the FFTF Plant. This plan provides direction for the types of verifications necessary to satisfy the functional requirements within the project scope and applicable regulatory requirements determined in the Project Functional Design Criteria (FDC), WHC-SD-FF-FDC-009

  12. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  13. Facility for electron cooling experiments

    International Nuclear Information System (INIS)

    Budker, G.I.; Dikanskij, N.S.; Kudelajnen, V.I.

    1982-01-01

    The NAP-M proton storage ring intended for electron cooling experiments is described. The NAP-M magnetic system comprises four bending magnets and eight correction elements. located at the ends of rectilinear gaps. An electron beam facility is located in one of the rectilinear gaps. An 1.5 MeV electrostatic accelerator is used as a proton injector. The NAP-M accelerating system includes a driving generator, a power amplifier and a resonator. The proton beam lifetime (at the RF-system switched-off) up to 7 s has been obtained at the NAP-N at the injection energy, and up to 600 s at 65 MeV and the proton current of 120 μA

  14. National Biomedical Tracer Facility: Project definition study

    International Nuclear Information System (INIS)

    Heaton, R.; Peterson, E.; Smith, P.

    1995-01-01

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design

  15. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  16. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  17. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  18. The National Ignition Facility Project. Revision 1

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  19. YALINA-Thermal Facility Experiments

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.; Cintas, A.; Márquez Damián, J.I.; Lopasso, E.M.; Maiorino, J.R.; Carluccio, T.; Rossi, P.C.R.; Antunes, A.; Oliveira, F.L. de; Lee, S.M.; Xia, P.; Shi, Y.; Xia, H.; Zhu, Q.; Yu, T.; Wu, X.; Zhang, W.; Cao, J.; Luo, H.; Quan, Y.; Kulkarni, K.; Yadav, R.D.S.; Bajpai, A.; Degweker, S.B.; Modak, R.S.; Park, H.J.; Shim, H.J.; Kim, C.H.; Wojciechowski, A.; Zuta, M.; Pešić, M.; Avramović, I.; Beličev, P.; Gohar, Y.; Talamo, A.; Aliberti, G.

    2017-01-01

    This Section discussed the results obtained by the Member States participating in the IAEA coordinated research project on Analytical and Experimental Benchmark Analysis on Accelerator Driven Systems, and Low Enriched Uranium Fuel Utilization in Accelerator Driven Subcritical Assembly Systems for the YALINA Thermal facility. Member States used both Monte Carlo and deterministic computational tools to analyse the YALINA Thermal subcritical assembly, including: MCNP5, MCNPX, McCARD, PARTISN, and ERANOS computer programs. All calculations have been performed using the ENDF/B-VI (different modes) nuclear data libraries with the exception of Republic of Korea which used the ENDF/B-VII.0 nuclear data library. Generally, there is a good agreement between the results obtained by all the Member States. Deterministic codes perform space, energy, and angle discretization and materials homogenizations, which introduce approximations affecting the obtained results. In subcritical assemblies, the neutron multiplication and the detector counting rate depend strongly on the external neutron source. Cf and D-D sources provide similar results since they emit neutrons with similar average energy. D-T neutrons trigger (n,xn) reactions and have a longer mean free path, which increases the neutron leakage if the geometry dimensions of the assembly are small, as in the case of the YALINA-Thermal subcritical assembly. Close to criticality, the effect of the external neutron source diminishes since fission neutrons dominate the neutron population.

  20. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-04-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  1. The South African isotope facility project

    Science.gov (United States)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  2. LMFBR safety experiment facility planning and analysis

    International Nuclear Information System (INIS)

    Stevenson, M.G.; Scott, J.H.

    1976-01-01

    In the past two years considerable effort has been placed on the planning and design of new facilities for the resolution of LMFBR safety issues. The paper reviews the key issues, the experiments needed to resolve them, and the design aspects of proposed new facilities. In addition, it presents a decision theory approach to selecting an optimal combination of modified and new facilities

  3. Project No. 4 - Waste incineration facility

    International Nuclear Information System (INIS)

    2000-01-01

    There are currently 12000 m 3 of combustible waste stored at the Ignalina NPP site. It is estimated that by 2005 the volume will have increase to 15000 m 3 (filters, personnel protection, clothing and plastics). As a part of the preparation for the closure of the Ignalina NPP an incineration facility will be required to process combustible wastes to reduce the overall volume of short-lived radioactive wastes stored at the Ignalina NPP site, thus reducing the overall risk to the environment. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  4. National Ignition Facility project acquisition plan

    International Nuclear Information System (INIS)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF

  5. Material science experiments on the Atlas Facility

    International Nuclear Information System (INIS)

    Keinigs, Rhonald K.; Atchison, Walter L.; Faehl, Rickey J.; Lindemuth, Irvin R.; Anderson, Wallace E.; Bartsch, Robert Richard; Flower-Maudlin, Elane C.; Hammerberg, James E.; Holtkamp, David B.; Jones, Michael E.; Kyrala, George A.; Oro, David M.; Parker, Jerald V.; Preston, Dean L.; Reinovsky, Robert E.; Scudder, David W.; Sheehey, Peter T.; Shlacter, Jack S.; Stokes, John L.; Taylor, Antoinette J.; Tonks, Davis L.; Turchi, Peter J.

    2001-01-01

    Three material properties experiments that are to be performed on the Atlas pulsed power facility are described; friction at sliding metal interfaces, spallation and damage in convergent geomety, and plastic flow at high strain and high strain rate. Construction of this facility has been completed and experiments in high energy density hydrodynamics and material dynamics will begin in 2001.

  6. The rare isotope accelerator (RIA) facility project

    International Nuclear Information System (INIS)

    Christoph Leemann

    2000-01-01

    The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams

  7. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  8. Peak Experience Project

    Science.gov (United States)

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  9. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  10. Operating procedures: Fusion Experiments Analysis Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, R.A.; Carey, R.W.

    1984-03-20

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility.

  11. Operating procedures: Fusion Experiments Analysis Facility

    International Nuclear Information System (INIS)

    Lerche, R.A.; Carey, R.W.

    1984-01-01

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility

  12. Tritium monitoring equipments for animal experiment facilities

    International Nuclear Information System (INIS)

    Sato, Hiroo

    1980-01-01

    Animal experiment facilities using tritium are described with reference to laws and regulations concerning radiological safety. Usual breeding facilities and surrounding conditions at non-radioactive animal experiments are summarized on feasible and effective designs of tritium monitors. Characteristics and desirable arrangements of various kinds of tritium monitors such as ionization chambers, proportional counters and liquid scintillation detectors are discussed from the standpoint of monitoring for room, glove-box, stack, liquid waste and personnel. (J.P.N.)

  13. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  14. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  15. Latest development in project site radwaste treatment facility (SRTF) Sanmen

    International Nuclear Information System (INIS)

    Mennicken, K.; Lohmann, P.

    2015-01-01

    Westinghouse Electric Germany GmbH (WEG) was successful in being awarded a contract as to the planning, delivery, installation and commissioning of radwaste treatment systems for the AP1000 units at Sanmen site, PR China. Operational low and intermediate level radioactive waste will be processed in the Site Radwaste Treatment Facility (SRTF). This paper explains the latest developments of the project, especially the experience with customer-hired Chinese planning partners, installation companies and Customer operating personnel. (authors)

  16. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  17. On-orbit technology experiment facility definition

    Science.gov (United States)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  18. Construction of STACY (Static Experiment Critical Facility)

    International Nuclear Information System (INIS)

    Murakami, Kiyonobu; Onodera, Seiji; Hirose, Hideyuki

    1998-08-01

    Two critical assemblies, STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility), were constructed in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) to promote researches on the criticality safety at a reprocessing facility. STACY aims at providing critical data of uranium nitrate solution, plutonium nitrate solution and their mixture while varying concentration of solution fuel, core tank shape and size and neutron reflecting condition. STACY achieved first criticality in February 1995, and passed the licensing inspection by STA (Science and Technology Agency of Japan) in May. After that a series of critical experiments commenced with 10 w/o enriched uranium solution. This report describes the outline of STACY at the end of FY 1996. (author)

  19. Iraq nuclear facility dismantlement and disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J R; Danneels, J [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W D [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C J; Chesser, R K [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

    2007-07-01

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

  20. IAEA Nuclear Security Assessment Methodologies (NUSAM) Project for Regulated Facilities

    International Nuclear Information System (INIS)

    Jang, Sung Soon

    2016-01-01

    Nuclear Security Assessment Methodologies (NUSAM) is a coordinate research project. The objectives of the NUSAM project is to establish a risk informed, performance-based methodological framework in a systematic, structured, comprehensive and appropriately transparent manner; to provide an environment for the sharing and transfer of knowledge and experience; and to provide guidance on, and practical examples of good practices in assessing the security of nuclear and other radioactive materials, as well as associated facilities and activities. The author worked as an IAEA scientific secretary of the NUAM project from 2013 to 2015. IAEA launched this project in 2013 and performed many activities: meetings, document development, table-top exercises and computer simulations. Now the project is in the final stage and will be concluded in the late 2016. The project will produce documents on NUSAM assessment methods and case study documents on NPP, Irradiator Facility and Transport. South Korea as a main contributor to this project will get benefits from the NUSAM. In 2014, South Korea introduced force-on-force exercises, which could be used as the assessment of physical protection system by the methods of NUSAM

  1. IAEA Nuclear Security Assessment Methodologies (NUSAM) Project for Regulated Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Soon [Korea Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclear Security Assessment Methodologies (NUSAM) is a coordinate research project. The objectives of the NUSAM project is to establish a risk informed, performance-based methodological framework in a systematic, structured, comprehensive and appropriately transparent manner; to provide an environment for the sharing and transfer of knowledge and experience; and to provide guidance on, and practical examples of good practices in assessing the security of nuclear and other radioactive materials, as well as associated facilities and activities. The author worked as an IAEA scientific secretary of the NUAM project from 2013 to 2015. IAEA launched this project in 2013 and performed many activities: meetings, document development, table-top exercises and computer simulations. Now the project is in the final stage and will be concluded in the late 2016. The project will produce documents on NUSAM assessment methods and case study documents on NPP, Irradiator Facility and Transport. South Korea as a main contributor to this project will get benefits from the NUSAM. In 2014, South Korea introduced force-on-force exercises, which could be used as the assessment of physical protection system by the methods of NUSAM.

  2. Subseabed disposal project experiment

    International Nuclear Information System (INIS)

    Valent, P.J.; Burns, J.T.; Walter, D.J.; Li, H.; Bennett, R.H.

    1990-01-01

    Induced excess pore water pressures resulting from the insertion of piezometer probes of 8-mm (0.31-in.) diameter and a simulated waste canister of 102-mm (4.0-in.) diameter and the dissipation of these excess pressures were measured during deep-ocean component tests of the In Situ Heat Transfer Experiment (ISHTE). The sediment at the Pacific test site 1100 km north of Oahu, Hawaii, is an illitic clay. Insertion-induced excess pore pressures were found to agree well with those predicted by models. Several aspects of the induced excess pressure dissipation were evaluated including the effects of probe and heater diameter, distal excess pore pressure response, and the synergistic excess pore pressure response from multiple insertions. The dissipation of induced excess pressures measured at each piezometer is predicted well by theory. The same analytical models predict the excess pore pressure history measured at the piezometers in response to the waste canister insertion. Present models were evaluated that predict insertion excess pressures and their dissipation rate at the probe surface and distal, far field, points

  3. Nuclear astrophysics experiments with Pohang neutron facility

    International Nuclear Information System (INIS)

    Kim, Yeong Duk; Yoo, Gwang Ho

    1998-01-01

    Nuclear astrophysics experiments for fundamental understanding of Big Bang nucleosynthesis was performed at Pohang Neutron Facility. Laboratory experiments, inhomogeneous Big Bang nucleosynthesis and S-process were used for nucleosynthesis. For future study, more study on S-process for the desired data and nuclear network calculation are necessary

  4. Overview - Defense Waste Processing Facility Operating Experience

    International Nuclear Information System (INIS)

    Norton, M.R.

    2002-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the world's largest radioactive waste vitrification facility. Radioactive operations began in March 1996 and over 1,000 canisters have been produced. This paper presents an overview of the DWPF process and a summary of recent facility operations and process improvements. These process improvements include efforts to extend the life of the DWPF melter, projects to increase facility throughput, initiatives to reduce the quantity of wastewater generated, improved remote decontamination capabilities, and improvements to remote canyon equipment to extend equipment life span. This paper also includes a review of a melt rate improvement program conducted by Savannah River Technology Center personnel. This program involved identifying the factors that impacted melt rate, conducting small scale testing of proposed process changes and developing a cost effective implementation plan

  5. Material Processing Facility - Skylab Experiment M512

    Science.gov (United States)

    1972-01-01

    This chart details Skylab's Materials Processing Facility experiment (M512). This facility, located in the Multiple Docking Adapter, was developed for Skylab and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  6. Status of the low frequency facility experiment

    International Nuclear Information System (INIS)

    Bracci, L; Calamai, G; Cuoco, E; Dominici, P; Fabbroni, L; Guidi, G; Losurdo, G; Martelli, F; Mazzoni, M; Stanga, R; Vetrano, F; Porzio, A; Ricciardi, I; Solimeno, S; Ballardin, G; Braccini, S; Bradaschia, C; Casciano, C; Cavalieri, R; Cecchi, R; Cella, G; Dattilo, V; Virgilio, A Di; Fazzi, M; Ferrante, I; Fidecaro, F; Frasconi, F; Gennaro, G; Giazotto, A; Holloway, L; Penna, P La; Lomtadze, T; Nenci, F; Nicolosi, L; Lelli, F; Paoletti, F; Pasqualetti, A; Passaquieti, R; Passuello, D; Poggiani, R; Raffaelli, F; Taddei, R; Vicere, A; Zhang, Z; Frasca, S; Majorana, E; Palomba, C; Perciballi, M; Puppo, P; Rapagnani, P; Ricci, F

    2002-01-01

    The low frequency facility is a VIRGO R and D experiment having the goal of performing a direct measurement of the thermal noise of the VIRGO suspensions by means of a two-mirror Fabry-Perot cavity suspended to the last stage of the attenuating chain. The present status of advancement of this experiment is reported: the apparatus, including mechanical and optical parts, has been completely built and put into operation. Vacuum facilities and the first control loops are active. First measurements on the suspended cavity are in progress

  7. Status of the low frequency facility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bracci, L [Dipartimento di Fisica, Universita di Firenze, Florence (Italy); Calamai, G [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Cuoco, E [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Dominici, P [Dipartimento di Fisica, Universita di Firenze, Firenze (Italy); Fabbroni, L [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Guidi, G [Dipartimento di Fisica, Universita di Urbino, Urbino (Italy); Losurdo, G [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Martelli, F [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Mazzoni, M [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Stanga, R [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Vetrano, F [Dipartimento di Fisica, Universita di Urbino, Urbino (Italy); Porzio, A [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Ricciardi, I [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Solimeno, S [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Ballardin, G [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Braccini, S [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Bradaschia, C [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Casciano, C [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cavalieri, R [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cecchi, R [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cella, G [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Dattilo, V [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Virgilio, A Di [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Fazzi, M [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Ferrante, I [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Fidecaro, F [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy)] [and others

    2002-04-07

    The low frequency facility is a VIRGO R and D experiment having the goal of performing a direct measurement of the thermal noise of the VIRGO suspensions by means of a two-mirror Fabry-Perot cavity suspended to the last stage of the attenuating chain. The present status of advancement of this experiment is reported: the apparatus, including mechanical and optical parts, has been completely built and put into operation. Vacuum facilities and the first control loops are active. First measurements on the suspended cavity are in progress.

  8. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  9. Feedback experience from the decommissioning of Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Santiago, J.L.

    2008-01-01

    The Spain has accumulated significant experience in the field of decommissioning of nuclear and radioactive facilities. Relevant projects include the remediation of uranium mills and mines, the decommissioning of research reactors and nuclear research facilities and the decommissioning of gas-graphite nuclear power plants. The decommissioning of nuclear facilities in Spain is undertaken by ENRESA, who is also responsible for the management of radioactive wastes. The two most notable projects are the decommissioning of the Vandellos I nuclear power plant and the decommissioning of the CIEMAT nuclear research centre. The Vandellos I power plant was decommissioned in about five years to what is known as level 2. During this period, the reactor vessel was confined, most plant systems and components were dismantled, the facility was prepared for a period of latency and a large part of the site was restored for subsequent release. In 2005 the facility entered into the phase of dormancy, with minimum operating requirements. Only surveillance and maintenance activities are performed, among which special mention should be made to the five-year check of the leak tightness of the reactor vessel. After the dormancy period (25 - 30 years), level 3 of decommissioning will be initiated including the total dismantling of the remaining parts of the plant and the release of the whole site for subsequent uses. The decommissioning of the CIEMAT Research Centre includes the dismantling of obsolete facilities such as the research reactor JEN-1, a pilot reprocessing plant, a fuel fabrication facility, a conditioning plant for liquid and a liquid waste storage facility which were shutdown in the early eighties. Dismantling works have started in 2006 and will be completed by 2009. On the basis of the experience gained in the above mentioned sites, this paper describes the approaches adopted by ENRESA for large decommissioning projects. (author)

  10. Education & Collection Facility GSHP Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Joplin, Jeff [Denver Museum of Nature and Science, Denver, CO (United States)

    2015-03-28

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to a recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient

  11. National Ignition Facility project acquisition plan revision 1

    International Nuclear Information System (INIS)

    Clobes, A.R.

    1996-01-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager

  12. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  13. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  14. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  15. Critical experiment study on uranyl nitrate solution experiment facility

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Wang Jinrong

    2005-01-01

    The Uranyl Nitrate Solution Experiment Facility was constructed for the research on nuclear criticality safety. In this paper, the configuration of the facility is introduced; a series of critical experiments on uranyl nitrate solution is described later, which were performed for various uranium concentrations under different conditions, i.e. with or without neutron absorbers in the core and with or without water-reflector outside the core. Critical volume and the minimum 235U critical mass for different uranium concentrations are presented. Finally, theoretical analysis is made on the experimental results. (authors)

  16. 200 Area Deactivation Project Facilities Authorization Envelope Document

    International Nuclear Information System (INIS)

    DODD, E.N.

    2000-01-01

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation

  17. Project W-049H disposal facility test report

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria

  18. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  19. Operating experience of steam generator test facility

    International Nuclear Information System (INIS)

    Sureshkumar, V.A.; Madhusoodhanan, G.; Noushad, I.B.; Ellappan, T.R.; Nashine, B.K.; Sylvia, J.I.; Rajan, K.K.; Kalyanasundaram, P.; Vaidyanathan, G.

    2006-01-01

    Steam Generator (SG) is the vital component of a Fast Reactor. It houses both water at high pressure and sodium at low pressure separated by a tube wall. Any damage to this barrier initiates sodium water reaction that could badly affect the plant availability. Steam Generator Test Facility (SGTF) has been set up in Indira Gandhi Centre for Atomic Research (IGCAR) to test sodium heated once through steam generator of 19 tubes similar to the PFBR SG dimension and operating conditions. The facility is also planned as a test bed to assess improved designs of the auxiliary equipments used in Fast Breeder Reactors (FBR). The maximum power of the facility is 5.7 MWt. This rating is arrived at based on techno economic consideration. This paper covers the performance of various equipments in the system such as Electro magnetic pumps, Centrifugal sodium pump, in-sodium hydrogen meters, immersion heaters, and instrumentation and control systems. Experience in the system operation, minor modifications, overall safety performance, and highlights of the experiments carried out etc. are also brought out. (author)

  20. Fast flux test facility, transition project plan

    International Nuclear Information System (INIS)

    Guttenberg, S.

    1994-01-01

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  1. Fast flux test facility, transition project plan

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  2. National Biomedical Tracer Facility. Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  3. The Low Temperature Microgravity Physics Facility Project

    Science.gov (United States)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; hide

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  4. National Biomedical Tracer Facility. Project definition study

    International Nuclear Information System (INIS)

    Schafer, R.

    1995-01-01

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H - , H + , and D + ). The proposed NBTF facility includes an 80 MeV, 1 mA H - cyclotron that will produce proton-induced (neutron deficient) research isotopes

  5. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  6. Vitrification facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project's vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project's background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing

  7. Material science experiments at the ATLAS facility

    CERN Document Server

    Keinigs, R K; Atchison, W L; Bartsch, R R; Faehl, R J; Flower-Maudlin, E C; Hammerberg, J E; Holtkamp, D B; Kyrala, G A; Oro, D M; Parker, J V; Preston, D L; Removsky, R E; Scudder, D W; Sheehey, P T; Shlachter, J S; Taylor, A J; Tonks, D L; Turchi, P J; Chandler, E A

    2001-01-01

    Summary form only given, as follows. Three experimental campaigns designed for fielding on the Atlas Pulsed Power Facility are discussed. The foci of these experiments are directed toward a better understanding of three material science issues; (1) strength at high strain and high strain rate, (2) friction at material interfaces moving at high relative velocities, and (3) material failure in convergent geometry. Atlas provides an environment for investigating these problems in parameter regimes and geometries that are inaccessible with standard techniques. For example, flow stress measurements of material strength using conventional Hopkinson bar experiments are limited to strain rates ~10/sup 4/ sec/sup -1/. Atlas will be capable of imploding metal shells to combined strains of 200% and strain rates >10/sup 6/ sec/sup -1/. Data obtained regimes is used to test different constitutive strength models used in several Los Alamos hydrocodes. Dynamic friction has been investigated for nearly 300 years, but a first...

  8. Operating manual for the critical experiments facility

    International Nuclear Information System (INIS)

    1986-01-01

    The operation of the Critical Experiments Facility (CEF) requires careful attention to procedures in order that all safety precautions are observed. Since an accident could release large amounts of radioactivity, careful operation and strict enforcement of procedures are necessary. To provide for safe operation, detailed procedures have been written for all phases of the operation of this facility. The CEF operating procedures are not to be construed to constitute a part ofthe Technical Specifications. In the event of any discrepancy between the information given herein and the Technical Specifications, limits set forth in the Technical Specifications apply. All normal and most emergency operation conditions are covered by procedures presented in this manual. These procedures are designed to be followed by the operating personnel. Strict adherence to these procedures is expected for the following reasons. (1) To provide a standard, safe method of performing all operations, the procedures were written by reactor engineers experienced in supervising the operation of reactors and were reviewed by an organization with over 30 years of reactor operating experience. (2) To have an up-to-date description of operating techniques available at all times for reference and review, it is necessary that the procedures be written

  9. Test facility for rewetting experiments at CDTN

    International Nuclear Information System (INIS)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C.

    2015-01-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  10. Operating manual for the critical experiments facility

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The operation of the Critical Experiments Facility (CEF) requires careful attention to procedures in order that all safety precautions are observed. Since an accident could release large amounts of radioactivity, careful operation and strict enforcement of procedures are necessary. To provide for safe operation, detailed procedures have been written for all phases of the operation of this facility. The CEF operating procedures are not to be construed to constitute a part ofthe Technical Specifications. In the event of any discrepancy between the information given herein and the Technical Specifications, limits set forth in the Technical Specifications apply. All normal and most emergency operation conditions are covered by procedures presented in this manual. These procedures are designed to be followed by the operating personnel. Strict adherence to these procedures is expected for the following reasons. (1) To provide a standard, safe method of performing all operations, the procedures were written by reactor engineers experienced in supervising the operation of reactors and were reviewed by an organization with over 30 years of reactor operating experience. (2) To have an up-to-date description of operating techniques available at all times for reference and review, it is necessary that the procedures be written.

  11. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  12. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  13. Testing experience with fast flux test facility

    International Nuclear Information System (INIS)

    Noordhoff, B.H.; McGough, C.B.; Nolan, J.E.

    1975-01-01

    Early FFTF project planning emphasized partial and full-scale testing of major reactor and plant prototype components under expected environmental conditions, excluding radiation fields. Confirmation of component performance during FFTF service was considered essential before actual FFTF startup, to provide increased assurance against FFTF startup delays or operational difficulties and downtime. Several new sodium facilities were constructed, and confirmation tests on the prototype components are now in progress. Test conditions and results to date are reported for the primary pump, intermediate heat exchanger, sodium-to-air dump heat exchanger, large and small sodium valves, purification cold trap, in-vessel handling machine, instrument tree, core restraint, control rod system, low-level flux monitor, closed loop ex-vessel machine, refueling equipment, and selected maintenance equipment. The significance and contribution of these tests to the FFTF and Liquid Metal Fast Breeder Reactor (LMFBR) program are summarized. (U.S.)

  14. Improvements of present radioactive beam facilities and new projects

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1995-01-01

    A short overview is given over scheduled improvements of present radioactive beam facilities and of new projects. In order to put these into a coherent context the paper starts with a general section about the making of radioactive beams. (author)

  15. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  16. Project report - an overview of the project and experiences with project management

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Mikkelsen, Bent Egberg

    1996-01-01

    A collection of the project planning and the experiences with project management from the Catering 2000 project.As appendieces articles etc. from journals, newspapers etc. about the project.......A collection of the project planning and the experiences with project management from the Catering 2000 project.As appendieces articles etc. from journals, newspapers etc. about the project....

  17. The radioactive ion beams facility project for the legnaro laboratories

    Science.gov (United States)

    Tecchio, Luigi B.

    1999-04-01

    In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.

  18. Safety research experiment facilities, Idaho National Engineering Laboratory, Idaho. Final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-09-01

    This environmental statement was prepared for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evaluation of some design options and in the assessment of the long-term potential risk associated with wide-acale deployment of the FBR

  19. Project W-441 cold vacuum drying facility design requirements document

    International Nuclear Information System (INIS)

    O'Neill, C.T.

    1997-01-01

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage

  20. High temperature engineering research facilities and experiments in Russia

    International Nuclear Information System (INIS)

    Kodochigov, N.G.; Kuzavkov, N.G.; Sukharev, Y.P.; Chudin, A.G.

    1998-01-01

    An overview is given of the characteristics of the experimental facilities and experiments in the Russian Federation: the HTGR neutron-physical investigation facilities ASTRA and GROG; facilities for fuel, graphite and other elements irradiation; and thermal hydraulics experimental facilities. The overview is presented in the form of copies of overhead sheets

  1. Design considerations for the Yucca Mountain project exploratory shaft facility

    International Nuclear Information System (INIS)

    Bullock, R.L. Sr.

    1990-01-01

    This paper reports on the regulatory/requirements challenges of this project which exist because this is the first facility of its kind to ever be planned, characterized, designed, and built under the purview of a U.S. Nuclear Regulatory Agency. The regulations and requirements that flow down to the Architect/Engineer (A/E) for development of the Exploratory Shaft Facility (ESF) design are voluminous and unique to this project. The subsurface design and construction of the ESF underground facility may eventually become a part of the future repository facility and, if so, will require licensing by the Nuclear Regulatory Commission (NRC). The Fenix and Scisson of Nevada-Yucca Mountain Project (FSN-YMP) group believes that all of the UMP design and construction related activities, with good design/construct control, can be performed to meet all engineering requirements, while following a strict quality assurance program that will also meet regulatory requirements

  2. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  3. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year

  4. Pre-Project planning of Capital Facilities at NASA

    OpenAIRE

    Barrow, Benjamin John

    1999-01-01

    This thesis details the development of a NASA specific Project Definition Rating Index (PDRI) tool. This tool is to be used as a checklist for determining the necessary steps to follow in defining project scope and as a means to monitor progress and assess scope definition completeness at various stages during the NASA Pre-Project Planning process. This thesis also describes and identifies specific points in the NASA Capital Facility Programming Cycle for the performance of PDRI assessments ...

  5. Monitored Retrievable Storage (MRS) facility project status

    International Nuclear Information System (INIS)

    Milner, R.A.; Trebules, V.W.; Blandford, J.B.

    1994-01-01

    1993 has been yet another year of major change in the Monitored Retrievable Storage (MRS) project. The change in administration has brought a new Secretary of Energy to the Department. Secretary O'Leary has brought a strong leadership background and fresh ideas to address the Department's many complex challenges, including the Civilian Radioactive Waste Management System (CRWMS). Dr. Daniel Dreyfus was named Director of the Office of Civilian Radioactive Waste Management. Mr. Richard Stallings has been named, as the new, Nuclear Waste Negotiator under the Nuclear Waste Policy Act, Amendments of 1987. The overall mission of the Office of Civilian Radioactive Waste Management (OCRWM) has not changed. OCRWM is tasked with finding technically sound, environmentally responsible and economically viable solutions to spent nuclear fuel and high-level radioactive waste storage and disposal

  6. Yucca Mountain Project Subsurface Facilities Design

    International Nuclear Information System (INIS)

    Linden, A.; Saunders, R.S.; Boutin, R.J.; Harrington, P.G.; Lachman, K.D.; Trautner, L.J.

    2002-01-01

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lower lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report

  7. SUPERCONDUCTING RADIO-FREQUENCY MODULES TEST FACILITY OPERATING EXPERIENCE

    International Nuclear Information System (INIS)

    Soyars, W.; Bossert, R.; Darve, C.; Degraff, B.; Klebaner, A.; Martinez, A.; Pei, L.; Theilacker, J.

    2008-01-01

    Fermilab is heavily engaged and making strong technical contributions to the superconducting radio-frequency research and development program (SRF R and D). Four major SRF test areas are being constructed to enable vertical and horizontal cavity testing, as well as cryomodule testing. The existing Fermilab cryogenic infrastructure has been modified to service the SRF R and D needs. The project's first stage has been successfully completed, which allows for distribution of cryogens for a single-cavity cryomodule using the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at Meson Detector Building (MDB) results from the liquefaction capacity of the CTF cryogenic system. The cryogenic system for a single 9-cell cryomodule is currently operational. The paper describes the status, challenges and operational experience of the initial phase of the project

  8. Congressional hearing reviews NSF major research and facilities projects

    Science.gov (United States)

    Showstack, Randy

    2012-03-01

    An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

  9. Near-facility environmental monitoring quality assurance project plan

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1997-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site

  10. Noxious facility impact projection: Incorporating the effects of risk aversion

    International Nuclear Information System (INIS)

    Nieves, L.A.

    1993-01-01

    Developing new sites for noxious facilities has become a complex process with many potential pitfalls. In addition to the need to negotiate conditions acceptable to the host community, siting success may depend on the facility proposer's ability to identify a candidate site that not only meets technical requirements, but that is located in a community or region whose population is not highly averse to the risks associated with the type of facility being proposed. Success may also depend on the proposer accurately assessing potential impacts of the facility and offering an equitable compensation package to the people affected by it. Facility impact assessments, as typically performed, include only the effects of changes in population, employment and economic activity associated with facility construction and operation. Because of their scope, such assessments usually show a short-run, net economic benefit for the host region, making the intensely negative public reaction to some types and locations of facilities seem unreasonable. The impact component excluded from these assessments is the long-run economic effect of public perceptions of facility risk and nuisance characteristics. Recent developments in psychological and economic measurement techniques have opened the possibility of correcting this flaw by incorporating public perceptions in projections of economic impacts from noxious facilities

  11. Laser heated solenoid proof-of-concept experiment (PCX) facility

    International Nuclear Information System (INIS)

    DeHart, T.E.; Zumdieck, J.F.; Hoffman, A.L.; Lowenthal, D.D.; Crawford, E.A.; Parry, B.

    1977-01-01

    The total facility, including laser, magnet, focusing optics, instrumentation and control, its design problems, and its current performance are discussed. Preliminary results from plasma heating experiments are discussed

  12. Experiences of project developers around CDM projects in South Africa

    International Nuclear Information System (INIS)

    Thurner, Thomas W.; Varughese, Arun

    2013-01-01

    Project developers in South Africa are puzzled with the long process of evaluating and registering their CDM projects. In addition to other obstacles, we find that South African big businesses are rather reluctant to engage in any new business activities such as CDM projects and municipalities often lack the necessary flexibility. This offers opportunities for small-scale project developers who spot the opportunities and find creative solutions to overcome these difficulties. - Highlights: • First paper analysing the experience of small project developers in South Africa. • Project developers in South Africa are puzzled with the long process. • South African big businesses are reluctant to engage in CDM projects. • Small-scale project developers spot opportunities and find creative solutions to overcome difficulties. • Also, we saw learning processes of South African administration in support of CDM projects

  13. RADON-type disposal facility safety case for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Guskov, A.; Batanjieva, B.; Kozak, M.W.; Torres-Vidal, C.

    2002-01-01

    The ISAM safety assessment methodology was applied to RADON-type facilities. The assessments conducted through the ISAM project were among the first conducted for these kinds of facilities. These assessments are anticipated to lead to significantly improved levels of safety in countries with such facilities. Experience gained though this RADON-type Safety Case was already used in Russia while developing national regulatory documents. (author)

  14. FIPRED Project - Experiments and calculations

    International Nuclear Information System (INIS)

    Ohai, D.; Dumitrescu, I.; Doca, C.; Meleg, T.; Benga, D.

    2009-01-01

    Full text: The FIPRED (Fission Products Release from Debris Bed) Project was developed by INR in the framework of EC FP6 SARNET (2004-2008) and will be continued in EC FP6 SARNET2 (2009-2013). The project objective is the evaluation of fission product release from debris bed resulted after reactor severe accident by natural UO 2 sintered pellets self disintegration by oxidation. A large experimental program was performed covering the main parameters influencing granulometric distribution of powders (fragments) resulted from UO 2 sintered pellets self disintegration by air oxidation. The paper presents experimental results obtained and material equation obtained by mathematical calculations. (authors)

  15. Spent Nuclear Fuel Project Cold Vacuum Drying Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, (Cold Vacuum Drying Facility Design Requirements), Rev. 4. and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  16. Proposal of experimental facilities for studies of nuclear data and radiation engineering in the Intense Proton Accelerator Project

    CERN Document Server

    Baba, M; Nagai, Y; Ishibashi, K

    2003-01-01

    A proposal is given on the facilities and experiments in the Intense Proton Accelerator Project (J-PARC) relevant to the nuclear data and radiation engineering, nuclear astrophysics, nuclear transmutation, accelerator technology and space technology and so on. (3 refs).

  17. Recent experiences with independent power projects

    International Nuclear Information System (INIS)

    Kline, R.H.; Fitzowitch, J.R.; Dalla-Longa, L.

    1999-01-01

    New opportunities are making it possible to develop independent power projects involving partnerships with the electric power industry, and the petroleum and natural gas industry . This paper described those opportunities, the impediments and the risks involved. Mercury Electric Corp. has been involved in power projects at remote gas field and oil field sites where they use of a turbogenerator which runs on flare gas to generate electricity. TransCanada Power's involvement in independent power projects includes the supply and transport of gas and their ability to provide gas fired combined cycle technology. They are involved in a project at Hermiston, Oregon and also in a cogeneration project in Medicine Hat, Alberta. The CanCarb City of Medicine Hat project makes use of waste heat at an industrial facility. 11 figs

  18. Near-Facility Environmental Monitoring Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    MCKINNEY, S.M.

    2000-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards

  19. Experiments in the HAW project

    International Nuclear Information System (INIS)

    Vonka, V.; Middleton, D.W.; Ruiter, A. de.

    1993-12-01

    This data report is the eighth of a series intended to document the data obtained from the HAW in situ experiment (at Asse) and to make these data available to potential users. During this experiment a considerable number of thermocouples was damaged so that their signals are lost. In some cases it resulted in plots with no signal but empty frames. In the previous report we tried to change our procedure and remove these frames from the report. This action was not completely successful because, as it turned out, also some of the not empty plots were removed wrongly as well. (orig.)

  20. Defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.; Maher, R.; Mellen, J.B.; Shafranek, L.F.; Stevens, W.R. III.

    1984-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level waste at the Savannah River Plant near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes produced by defense activities at the site. At the present time engineering and design are 45% complete, the site has been cleared, and startup is expected in 1989. This paper will describe project status as well as features of the design. 9 figures

  1. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  2. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eversole, R.E.

    1997-05-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.

  3. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Eversole, R.E.

    1997-01-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation's Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program

  4. Experiments in the HAW project

    International Nuclear Information System (INIS)

    Vonka, V.; Middleton, D.W.; Ruiter, A. de.

    1993-04-01

    Data are presented from the High Active Waste (HAW) experiment, a large-scale, in situ test being performed underground at the Asse salt mine in Remlingen, FRG. These data include selected field information, the test configuration, instrumentation activities and comprehensive results from a large number of gauges. The results are measured data obtained from gap meters, thermocouples, linear displacement transducers, extensometers, inclinometers and pressure gauges. Data certification practices have been described together with the quality assurance of the data reduction and of the data base management system. The experiment began on November 8, 1988 and will continue for five years. Data in this report cover the ECN contribution in the period from January 1st, 1992 to June 30th, 1992. (orig.)

  5. Experiments in the HAW project

    International Nuclear Information System (INIS)

    Vonka, V.; Middleton, D.W.; Ruiter, A. de.

    1992-12-01

    Data are presented from the High Active Waste (HAW) experiment, a large-scale, in situ test being performed underground at the Asse salt mine in Remlingen, FRG. These data include selected field information, the test configuration, instrumentation activities and comprehensive results from a large number of gauges. The results are measured data obtained from gap meters, thermocouples, linear displacement transducers, extensometers, inclinometers and pressure gauges. Data certification practices have been described together with the quality assurance of the data reduction and of the data base management system. The experiment began on November 8, 1988 and will continue for five years. Data in this report cover the ECN contribution in the period from July 1st, 1991 to December 31th, 1991. (orig.)

  6. Experiences From NASA/Langley's DMSS Project

    Science.gov (United States)

    1996-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at the NASA Langley Research Center (LaRC) has placed such a system into production use. This paper will present the experiences, both good and bad, we have had with this system since putting it into production usage. The system is comprised of: 1) National Storage Laboratory (NSL)/UniTree 2.1, 2) IBM 9570 HIPPI attached disk arrays (both RAID 3 and RAID 5), 3) IBM RS6000 server, 4) HIPPI/IPI3 third party transfers between the disk array systems and the supercomputer clients, a CRAY Y-MP and a CRAY 2, 5) a "warm spare" file server, 6) transition software to convert from CRAY's Data Migration Facility (DMF) based system to DMSS, 7) an NSC PS32 HIPPI switch, and 8) a STK 4490 robotic library accessed from the IBM RS6000 block mux interface. This paper will cover: the performance of the DMSS in the following areas: file transfer rates, migration and recall, and file manipulation (listing, deleting, etc.); the appropriateness of a workstation class of file server for NSL/UniTree with LaRC's present storage requirements in mind the role of the third party transfers between the supercomputers and the DMSS disk array systems in DMSS; a detailed comparison (both in performance and functionality) between the DMF and DMSS systems LaRC's enhancements to the NSL/UniTree system administration environment the mechanism for DMSS to provide file server redundancy the statistics on the availability of DMSS the design and experiences with the locally developed transparent transition software which allowed us to make over 1.5 million DMF files available to NSL/UniTree with minimal system outage

  7. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  8. Research Project Evaluation-Learnings from the PATHWAYS Project Experience.

    Science.gov (United States)

    Galas, Aleksander; Pilat, Aleksandra; Leonardi, Matilde; Tobiasz-Adamczyk, Beata

    2018-05-25

    Every research project faces challenges regarding how to achieve its goals in a timely and effective manner. The purpose of this paper is to present a project evaluation methodology gathered during the implementation of the Participation to Healthy Workplaces and Inclusive Strategies in the Work Sector (the EU PATHWAYS Project). The PATHWAYS project involved multiple countries and multi-cultural aspects of re/integrating chronically ill patients into labor markets in different countries. This paper describes key project's evaluation issues including: (1) purposes, (2) advisability, (3) tools, (4) implementation, and (5) possible benefits and presents the advantages of a continuous monitoring. Project evaluation tool to assess structure and resources, process, management and communication, achievements, and outcomes. The project used a mixed evaluation approach and included Strengths (S), Weaknesses (W), Opportunities (O), and Threats (SWOT) analysis. A methodology for longitudinal EU projects' evaluation is described. The evaluation process allowed to highlight strengths and weaknesses and highlighted good coordination and communication between project partners as well as some key issues such as: the need for a shared glossary covering areas investigated by the project, problematic issues related to the involvement of stakeholders from outside the project, and issues with timing. Numerical SWOT analysis showed improvement in project performance over time. The proportion of participating project partners in the evaluation varied from 100% to 83.3%. There is a need for the implementation of a structured evaluation process in multidisciplinary projects involving different stakeholders in diverse socio-environmental and political conditions. Based on the PATHWAYS experience, a clear monitoring methodology is suggested as essential in every multidisciplinary research projects.

  9. FAIR - Facility, Research Program and Status of the Project

    International Nuclear Information System (INIS)

    Majka, Z.

    2011-01-01

    The international Facility for Antiproton and Ion Research (FAIR) in Europe will provide a worldwide science community with a unique and technically innovative accelerator system to perform forefront research in the sciences concerned with the basic structure of matter, and in intersections with other fields. The facility will deliver an extensive range of primary and secondary particle beams from protons and their antimatter partners, antiprotons, to ion beams of all chemical elements up to the heaviest, uranium, with in many respects unique properties and intensities. The paper will include overview of the new facility design and research programs to be carried out there. The current status of the FAIR project will be also presented. (author)

  10. Canadian decommissioning experience from policy to project

    International Nuclear Information System (INIS)

    Pare, F.E.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada Limited (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, this paper explains its foundations and describes how it has and soon will be applied to various facilities. It terminates by providing a brief summary of the experience gained up to date on the implementation of this strategy

  11. Recycling entire DOE facilities: The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Floyd, D.R.

    1996-01-01

    The Mission of the National Conversion Pilot Project - to demonstrate, at the Rocky Flats Site, the feasibility of economic conversion of DOE Sites - is succeeding. Contaminated facilities worth $92 million are being cleaned and readied for reuse by commercial industry to manufacture products needed in the DOE cleanup and elsewhere. Former Rocky Flats workers have been hired, recultured, are conducting the cleanup and are expected to perform the future manufacturing by recycling DOE RSM and other metals requiring special environmental controls. Stakeholder sway over project activities is welcome and strong

  12. Mixed and Low-Level Waste Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies

  13. Reactors Project Delivery: The Value of Experiance

    International Nuclear Information System (INIS)

    Stosic, V. Zoran

    2014-01-01

    State of Affairs: Energy Potential and Density versus Environmental Load of different Energy Sources, Development of Fuel into Energy/Electricity Generation, Production Costs of Electricity, Contributions of Nuclear Energy to Security of Energy Supply, Recent Nuclear Development, Public Support growing again. Projects Status: Reactors under Construction, Different Projects Industrial Schemes, Projects Overview. The Value of Experience: Licensing, Standardization on Early Engineering Activities, Supply Chain and Manufacturing of Heavy Components, Installation, Procurement. (author)

  14. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  15. Recent operational experiments at the LANSCE facility

    Energy Technology Data Exchange (ETDEWEB)

    Rybarcyk, Lawrence J [Los Alamos National Laboratory

    2010-09-15

    The Los Alamos Neutron Science Center (LANSCE) consists of a pulsed 800-MeV room-temperature linear accelerator and an 800-MeV accumulator ring. It simultaneously provides H{sup +} and H{sup -} beams to several user facilities that have their own distinctive requirements, e.g. intensity, chopping pattern, duty factor, etc.. This multibeam operation presents challenges both from the standpoint of meeting the individual requirements but also achieving good overall performance for the integrated operation. Various aspects of more recent operations including the some of these challenges will be discussed.

  16. Research Project Evaluation—Learnings from the PATHWAYS Project Experience

    Directory of Open Access Journals (Sweden)

    Aleksander Galas

    2018-05-01

    Full Text Available Background: Every research project faces challenges regarding how to achieve its goals in a timely and effective manner. The purpose of this paper is to present a project evaluation methodology gathered during the implementation of the Participation to Healthy Workplaces and Inclusive Strategies in the Work Sector (the EU PATHWAYS Project. The PATHWAYS project involved multiple countries and multi-cultural aspects of re/integrating chronically ill patients into labor markets in different countries. This paper describes key project’s evaluation issues including: (1 purposes, (2 advisability, (3 tools, (4 implementation, and (5 possible benefits and presents the advantages of a continuous monitoring. Methods: Project evaluation tool to assess structure and resources, process, management and communication, achievements, and outcomes. The project used a mixed evaluation approach and included Strengths (S, Weaknesses (W, Opportunities (O, and Threats (SWOT analysis. Results: A methodology for longitudinal EU projects’ evaluation is described. The evaluation process allowed to highlight strengths and weaknesses and highlighted good coordination and communication between project partners as well as some key issues such as: the need for a shared glossary covering areas investigated by the project, problematic issues related to the involvement of stakeholders from outside the project, and issues with timing. Numerical SWOT analysis showed improvement in project performance over time. The proportion of participating project partners in the evaluation varied from 100% to 83.3%. Conclusions: There is a need for the implementation of a structured evaluation process in multidisciplinary projects involving different stakeholders in diverse socio-environmental and political conditions. Based on the PATHWAYS experience, a clear monitoring methodology is suggested as essential in every multidisciplinary research projects.

  17. Operational experience at the Sludge Treatment Facility

    International Nuclear Information System (INIS)

    Sy, D.J.

    1987-01-01

    The Sludge Treatment Facility (STF) at the Oak Ridge Gaseous Diffusion Plant has been in operation since April 1987. The facility was designed to encapsulate hazardous sludge wastes in a cement matrix. Fixation will allow the waste to meet or exceed applicable compressive strength and leachability requirements. Thus, the grout mixture complies with the Resource Conservation and Recovery Act (RCRA) guidelines as a nonhazardous waste. The grout mixture is based upon a recipe formulation developed after several years of waste stream characterization and formulation studies. The wastes to be treated at the STF are wastes impounded in two ponds. The ponds have a combined capacity of 4.5 million gallons of sludge. The sludge is transferred from the ponds to a 15,000-gallon capacity storage tank by the use of a dredge. The grout mixture recipe dictates the amount of sludge, cement, fly ash, and admixture required for weighing per batch. All ingredients are weighed and then transferred to a tilt or high energy mixer for mixing. The grout mixture is then transferred to 89- or 96-gallon steel drums. The drums are placed in a storage yard designed for a point source discharge from the yard

  18. Construction of new critical experiment facilities in JAERI

    International Nuclear Information System (INIS)

    Takeshita, Isao; Itahashi, Takayuki; Ogawa, Kazuhiko; Tonoike, Kotaro; Matsumura, Tatsuro; Miyoshi, Yoshinori; Nakajima, Ken; Izawa, Naoki

    1995-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted the experiment research program on criticality safety since early in 1980s and two types of new critical facilities, Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) were completed on 1994 in Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) of JAERI Tokai Research Establishment. STACY was designed so as to obtain critical mass data of low enriched uranium and plutonium solution which is extensively handled in LWR fuel reprocessing plant. TRACY is the critical facility where critical accident phenomenon is demonstrated with low enriched uranium nitrate solution. For criticality safety experiments with both facilities, the Fuel Treatment System is attached to them, where composition and concentration of uranium and plutonium nitrate solutions are widely varied so as to obtain experiments data covering fuel solution conditions in reprocessing plant. Design performances of both critical facilities were confirmed through mock-up tests of important components and cold function tests. Hot function test has started since January of 1995 and some of the results on STACY are to be reported. (author)

  19. The ISOL exotic beam facility at LNS: the EXCYT project

    International Nuclear Information System (INIS)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Finocchiaro, P.; Gammino, S.; Gu, M.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Vinciguerra, D.; Qin, J.; Wollnik, H.

    1997-01-01

    The aim of the EXCYT project (exotics with cyclotron and tandem) is the development of a facility for producing and accelerating exotic beams from 0.2 up to 8 MeV/amu. EXCYT is based on the ''two accelerators'' method. A K=800 superconducting cyclotron, axially injected by the ECR ion source SERSE, will deliver the primary beam. Such a beam will produce the required nuclear species in a modified ISOLDE type target-source complex. When required, a 15 MV tandem Van der Graaff will accelerate the secondary beams. Both accelerators are existing and operational at Laboratorio Nazionale del Sud. Concerning the status of the project, progress has been made in most of the key issues of the project, like the construction of SERSE, cyclotron upgrading, modification of the existing building, high resolution mass separator, and diagnostic equipment for low energy, low intensity beams. (orig.)

  20. The ISOL exotic beam facility at LNS: the EXCYT project

    Energy Technology Data Exchange (ETDEWEB)

    Ciavola, G.; Calabretta, L.; Cuttone, G.; Di Bartolo, G.; Finocchiaro, P.; Gammino, S.; Gu, M.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Vinciguerra, D. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Qin, J. [Institute of Atomic Energy, Beijing (China); Wollnik, H. [Giessen Univ. (Germany)

    1997-04-01

    The aim of the EXCYT project (exotics with cyclotron and tandem) is the development of a facility for producing and accelerating exotic beams from 0.2 up to 8 MeV/amu. EXCYT is based on the ``two accelerators`` method. A K=800 superconducting cyclotron, axially injected by the ECR ion source SERSE, will deliver the primary beam. Such a beam will produce the required nuclear species in a modified ISOLDE type target-source complex. When required, a 15 MV tandem Van der Graaff will accelerate the secondary beams. Both accelerators are existing and operational at Laboratorio Nazionale del Sud. Concerning the status of the project, progress has been made in most of the key issues of the project, like the construction of SERSE, cyclotron upgrading, modification of the existing building, high resolution mass separator, and diagnostic equipment for low energy, low intensity beams. (orig.). 8 refs.

  1. PNC/DOE Remote Monitoring Project at Japan's Joyo Facility

    International Nuclear Information System (INIS)

    Ross, M.; Hashimoto, Yu; Sonnier, C.; Dupree, S.; Ystesund, K.; Hale, W.

    1996-01-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and the US Department of Energy (DOE) are cooperating on the development of a remote monitoring system for nuclear nonproliferation efforts. This cooperation is part of a broader safeguards agreement between PNC and DOE. A remote monitoring system is being installed in a spent fuel storage area at PNC's experimental reactor facility Joyo in Oarai. The system has been designed by Sandia National Laboratories (SNL) and is closely related to those used in other SNL remote monitoring projects. The Joyo project will particularly study the unique aspects of remote monitoring in contribution to nuclear nonproliferation. The project will also test and evaluate the fundamental design and implementation of the remote monitoring system in its application to regional and international safeguards efficiency. This paper will present a short history of the cooperation, the details of the monitoring system and a general schedule of activities

  2. An overview of experiments at the Indiana University Cyclotron Facility

    International Nuclear Information System (INIS)

    Foster, C.C.

    1981-01-01

    The research program of the Indiana University Cyclotron Facility (IUCF) is a product of many factors. Among these factors are the properties of the beams of charged particles available from the cyclotrons, the facilities and personnel available to support experiments, the guidance of the Program Advisory Committee, the decisions of the directors and the ideas and work of the users of the facility. It is the author's purpose, in this brief overview paper, to provide a summary of features and properties of accelerator operation, beams, experimental facilities and the user interaction of interest to a perspective experimental user and a discussion of recent results of measurements made at IUCF

  3. Operational experience of gamma radiation processing facility

    International Nuclear Information System (INIS)

    Patel, Nilesh

    2014-01-01

    Universal lSO-MED is now proud to announce an extension of its irradiation service for low-dose applications specifically in agriculture commodities, food and healthcare applications with the start of Gujarat Agro Radiation Processing Facility at Village: Bavla, Ahmedabad (A Government Enterprise) Operated, Maintained and Managed by Universal Medicap Ltd. Availability of hygienic, safe and nutritious food commodities is essential for any sustainable human development. Food stability is an important element of economic stability and self-reliance of a nation. Though the need to preserve food has been felt by the mankind since the time immemorial, it is even stronger in today's context. The rising population and increasing gap between demand and supply, agro-climatic conditions, in adequate post-harvest practices, seasonal nature of produce and long distances between production and consumption centers underscore the need to device improved conservation and preservation strategies

  4. Electron beam facility for divertor target experiments

    International Nuclear Information System (INIS)

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-01-01

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m 3 ), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts

  5. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  6. Technical requirement of experiments and facilities for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.; Tillak, M.; Gierszwski, P.; Grover, J.; Puigh, R.; Sze, D.K.; Berwald, D.

    1986-06-01

    The technical issues and requirements of experiments and facilities for fusion nuclear technology (FNT) have been investigated. The nuclear subsystems addressed are: a) blanket, b) radiation shield, c) tritium processing system, and d) plasma interactive components. Emphasis has been placed on the important and complex development problems of the blanket. A technical planning process for FNT has been developed and applied, including four major elements: 1) characterization of issues, 2) quantification of testing requirements, 3) evaluation of facilities, and 4) development of a test plan to identify the role, timing, characteristics and costs of major experiments and facilities

  7. Facilities as teaching tools: A transformative participatory professional development experience

    Science.gov (United States)

    Wilson, Eric A.

    Resource consumption continues to increase as the population grows. In order to secure a sustainable future, society must educate the next generation to become "sustainability natives." Schools play a pivotal role in educating a sustainability-literate society. However, a disconnect exists between the hidden curriculum of the built environment and the enacted curriculum. This study employs a transformative participatory professional development model to instruct teachers on how to use their school grounds as teaching tools for the purpose of helping students make explicit choices in energy consumption, materials use, and sustainable living. Incorporating a phenomenological perspective, this study considers the lived experience of two sustainability coordinators. Grounded theory provides an interpretational context for the participants' interactions with each other and the professional development process. Through a year long professional development experience - commencing with an intense, participatory two-day workshop -the participants discussed challenges they faced with integrating facilities into school curriculum and institutionalizing a culture of sustainability. Two major needs were identified in this study. For successful sustainability initiatives, a hybrid model that melds top-down and bottom-up approaches offers the requisite mix of administrative support, ground level buy-in, and excitement vis-a-vis sustainability. Second, related to this hybrid approach, K-12 sustainability coordinators ideally need administrative capabilities with access to decision making, while remaining connected to students in a meaningful way, either directly in the classroom, as a mentor, or through work with student groups and projects.

  8. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  9. GENIUS-TF: a test facility for the GENIUS project

    OpenAIRE

    Baudis, L.; Dietz, A.; Heusser, G.; Majorovits, B.; Strecker, H.; Klapdor--Kleingrothaus, H. V.

    2000-01-01

    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the GENIUS test facility, will be build up at the Laboratorio Nazionale del Gran Sasso (LNGS). With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation signature within about two years of measurement.

  10. Licensing of ''grandfather's'' facilities: Ukrainian experience

    International Nuclear Information System (INIS)

    Mikolaitchouk, H.; Bogdan, L.; Steinberg, N.

    1995-01-01

    In the former USSR, unlike most countries, radioactive waste management activities including waste disposal needed no license. But after the USSR breakdown the Ukrainian Parliament -- Verkhovna Rada -- invoked the revised Law on Business activities. According to Article 4 of the Law, in order to treat or to dispose radioactive waste every enterprise has to get a special permission or license. In compliance with the Law, the Cabinet of Ministers by its Ordinance of January 13, 1993, authorized the Ukrainian State Committee for Nuclear and Radiation Safety (UkrSCNRS) to issue special permissions or licenses for waste treatment and disposal. And that requirement was valid not only for future activities but also for existing facilities in operation. Taking into account the undergoing legislative process, SCNRS began to develop its licensing process without waiting for the special nuclear laws to be passed. On the basis of the legislation already in effect, first of all the Law on Enterprises (full responsibility of enterprises for their activities) and Law on Business activities (requirement to have a license for special types of activities), the newly formed national regulatory body had to identify all the enterprises that needed to be licensed, to establish relevant procedures, to develop related regulatory documents, to implement these procedures and documents at operating enterprises, and for each case to make a decision concerning feasibility of issuing a license, period of validity and license conditions

  11. Overhead remote handling systems for the process facility modifications project

    International Nuclear Information System (INIS)

    Wiesener, R.W.; Grover, D.L.

    1987-01-01

    Each of the cells in the process facility modifications (PFM) project complex is provided with a variety of general purpose remote handling equipment including bridge cranes, monorail hoist, bridge-mounted electromechanical manipulator (EMM) and an overhead robot used for high efficiency particulate air (HEPA) filter changeout. This equipment supplements master-slave manipulators (MSMs) located throughout the complex to provide an overall remote handling system capability. The overhead handling equipment is used for fuel and waste material handling operations throughout the process cells. The system also provides the capability for remote replacement of all in-cell process equipment which may fail or be replaced for upgrading during the lifetime of the facility

  12. Mine subsidence control projects associated with solid waste disposal facilities

    International Nuclear Information System (INIS)

    Wood, R.M.

    1994-01-01

    Pennsylvania environmental regulations require applicant's for solid waste disposal permits to provide information regarding the extent of deep mining under the proposed site, evaluations of the maximum subsidence potential, and designs of measures to mitigate potential subsidence impact on the facility. This paper presents three case histories of deep mine subsidence control projects at solid waste disposal facilities. Each case history presents site specific mine grouting project data summaries which include evaluations of the subsurface conditions from drilling, mine void volume calculations, grout mix designs, grouting procedures and techniques, as well as grout coverage and extent of mine void filling evaluations. The case studies described utilized basic gravity grouting techniques to fill the mine voids and fractured strata over the collapsed portions of the deep mines. Grout mixtures were designed to achieve compressive strengths suitable for preventing future mine subsidence while maintaining high flow characteristics to penetrate fractured strata. Verification drilling and coring was performed in the grouted areas to determine the extent of grout coverage and obtain samples of the in-place grout for compression testing. The case histories presented in this report demonstrate an efficient and cost effective technique for mine subsidence control projects

  13. GENIUS-TF: a test facility for the GENIUS project

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Baudis, L.; Dietz, A.; Heusser, G.; Krivosheina, I.; Majorovits, B.; Strecker, H.

    2002-01-01

    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the Genius Test-Facility will be built at the Laboratori Nazionali del Gran Sasso. With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation seasonal modulation signature within about 2 yr of measurement using both, signal and signature of the claimed WIMP Dark Matter. The construction of the experiment has already been started, and four 2.5 kg germanium detectors with an extreme low threshold of 500 eV have been produced

  14. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD. INTEGRATED DISPOSAL FACILITY (IDF)

    International Nuclear Information System (INIS)

    MCLELLAN, G.W.

    2007-01-01

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with

  15. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    Energy Technology Data Exchange (ETDEWEB)

    MCLELLAN, G.W.

    2007-02-07

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal

  16. Improvement in performance and operational experience of 14 UD Pelletron accelerator facility, BARC-TIFR

    International Nuclear Information System (INIS)

    Bhagwat, P.V.

    2002-01-01

    14 UD Pelletron accelerator facility at Mumbai has been operational since 1989. The project MEHIA (Medium Energy Heavy Ion Accelerator) started in 1982 and was formally inaugurated on 30th December 1988. Since then the accelerator has been working round the clock. Improvement in accelerator performance and operational experience are described. (author)

  17. Opportunities for parity violating electron scattering experiments at the planned MESA facility

    Science.gov (United States)

    Aulenbacher, Kurt

    2011-11-01

    We suggest to start an accelerator physics project called the Mainz Energy recovering Superconducting Accelerator (MESA) as an extension to our experimental facilities. MESA may allow to introduce an innovative internal target regime based on the ERL principle. A second mode of operation will be to use an external polarized electron beam for parity violating experiments.

  18. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  19. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  20. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  1. ALPHA experiment facility and Prof. Jeffrey Hangst.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    Picture 01-07: General views of the ALPHA experiment Picture 5: Andrea Gutierrez, a PhD student from UBC, transfers liquid helium from a storage dewar into the cryostat containing the superconducting magnetic trap used by the ALPHA experiment.Picture 08-11: Jeffery Hangst, spokesperson for ALPHA Picture 12: The ALPHA silicon detector, which surrounds the trapping resion and is used for imaging antiproton annihilations (Credit University of Liverpool) Picture 13: Untrapped antihydrogen atoms annihilating on the inner surface of the ALPHA trap. These are measured by the ALPHA annihilation detector. The events are concentrated at the electrode radius of about 22.3 mm. The coordinates are defined in the Nature article, Figure 1b. Picture 14: The electrodes (gold) for the ALPHA Penning trap being inserted into the vacuum chamber and cryostat assembly. This is the trap used to combine or "mix" positrons and antiprotons to make antihydrogen. (Credit: Niels Madsen ALPHA/Swansea.) Picture 15: Top, a diagram of the...

  2. SGN's Dismantling and Decommissioning engineering, projects experience and capabilities

    International Nuclear Information System (INIS)

    Destrait, L.

    1998-01-01

    Its experience in waste treatment, conditioning, storage and disposal, its cooperation with CEA and COGEMA Group in license agreements give SGN expertise in the decommissioning field. SGN's experience and background in all areas of nuclear facility decommissioning, such as chemical and mechanical cells, nuclear advanced reactors, reprocessing facilities result in fruitful references to the customers. The poster is presenting different achievements and projects with SGN's participation such as: - The decommissioning of Windscale Advanced Gas cooled Reactors (WAGR), in particular providing methodology and equipment to dismantle the Pressure and Insulation Vessel of the reactor. - The decommissioning plan of Ignalina (Lithuania) and Paldiski (Estonia), defining strategies, scenarios, necessary equipments and tools and choosing the best solutions to decommission the site under different influencing parameters such as cost, dose rate exposure, etc... - Th One Site Assistance Team (OSAT) at Chernobyl regarding the preparation works for the waste management and decommissioning of the plant. - The decommissioning of French nuclear facilities such as reprocessing (UP1) and reactor (EL4) plants. The important experience acquired during the facility management and during the first dismantling and decommissioning operations is an important factor for the smooth running of these techniques for the future. The challenge to come is to control all the operations, the choice of strategies, the waste management, the efficiency of tools and equipments, and to provide nuclear operators with a full range of proven techniques to optimise costs and minimize decommissioning personnel exposure. (Author)

  3. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  4. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    International Nuclear Information System (INIS)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site

  5. Nuclear project management experience in Korea

    International Nuclear Information System (INIS)

    Jae-Pung Jeon

    1987-01-01

    Korea Electric Power Corporation (KEPCO) has been dereloping nuclear power steadily over last 30 years to support effective economic growth of the nation with cheap electric power. In the course of development, KEPCO has experienced various project management patterns diverging from turn-key contracts with foreign vendors to non-turnkey with local affiliates. To culative own project management capabilities, one has to pay continuous efforts for better management systems development and manpower training. KEPCO is ready to share its priceless experiences gained over last three decades of nuclear project operation with any developing nation. (Liu)

  6. Mission Need Statement: Idaho Spent Fuel Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  7. Practical experience with a data collection project: the OREDA project

    International Nuclear Information System (INIS)

    Sandtorv, Helge A.; Hokstad, Per; Thompson, David W.

    1996-01-01

    Experience data on the reliability of equipment has become vital to many types of engineering and maintenance analyses. The consequences of incorrect design or poor maintenance may adversely affect: safety, the environment or cost in most categories of process industries, and, in particular, offshore exploration and production industries. The OREDA project is a data collection programme for the offshore industry which has been operating since the early 80's. A high level of knowledge has been gained from this programme on: specification of data, data collection methods and the utilization of data. Some of the results and the knowledge gained from this project are presented in this paper

  8. National Biomedical Tracer Facility (NBTF). Project definition study: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Lagunas-Solar, M.C.

    1995-02-15

    This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).

  9. The SPES project of INFN: Facility and detectors

    Directory of Open Access Journals (Sweden)

    de Angelis G.

    2015-01-01

    Full Text Available The SPES Radioactive Ion Beam facility at INFN-LNL is presently in the construction phase. The facility is based on the Isol (Isotope separation on-line method with an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced Uranium fission at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting Linac at energies of 10A MeV for masses in the region A = 130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES project is to provide a facility for high intensity radioactive ion beams for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam.

  10. Decommissioning of nuclear facilities in Europe and the experience of TUV SUD

    International Nuclear Information System (INIS)

    Hummel, Lothar; Kim, Duill; Ha, Taegun; Yang, Kyunghwa

    2012-01-01

    Many commercial nuclear facilities of the first generation will be taken out of operation in the near future. As of January 2012, total 19 prototype and commercial nuclear reactors have been decommissioned or are under dismantling in Germany. Most of decommissioning projects were successfully performed and a great deal of experience has been accumulated. Selecting a decommissioning strategy is a very important step at the beginning of the decision making process. According to IAEA requirements immediate dismantling is chosen as a preferred option in many countries today. It is associated with less uncertainty, positive political and social effect, and it can make use of existing operational experience and know-how. The availability of funds and final repository is of high importance for a decommissioning strategy selection. The time frame for the dismantling of nuclear facilities depends on the type, size and complexity of the individual project. TUV SUD, which is supervising most of nuclear power plants in Germany, has accumulated lots of experience by taking parts in decommissioning projects. It direct dismantling is chosen, actual light water reactor in Germany decommissioned to green field in approx. 10 years. The activities of TUV SUD cover from establishing the decommissioning concept to the clearance of the sites. This provides an overview of decommissioning projects of nuclear facilities in Europe, including a detail illustration of the German situation. Finally, some recommendations are suggested for the first decommissioning project based on the lessons and experiences derived from many decommissioning works in Europe

  11. Safety Research Experiment Facilities, Idaho National Engineering Laboratory, Idaho. Draft environmental statement

    International Nuclear Information System (INIS)

    1977-01-01

    This environmental statement was prepared in accordance with the National Environmental Policy Act of 1969 (NEPA) in support of the Energy Research and Development Administration's (ERDA) proposal for legislative authorization and appropriations for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evalution of some design options and in the assessment of the long-term potential risk associated with wide-scale deployment of the FBR

  12. Cutting techniques for facilities dismantling in decommissioning projects

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2011-01-01

    Fuel cycle related activities were accomplished in IPEN-CNEN/SP in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years. During the operational activities in the decommissioning of old nuclear fuel cycle facilities, the personnel involved in the task had to face several problems. In old facilities, the need of large components dismantling and material removal use to present some difficulties, such as lack of available and near electricity supply. Besides this, the spread out of the superficial contamination in the form of dust or aerosols and the exposure of workers should be as much as possible avoided. Then, the selection and availability of suitable tools for the task, mainly those employed for cutting and segmentation of different materials is of significant importance. Slight hand tools, mainly those powered by rechargeable batteries, facilitate the work, especially in areas where the access is difficult. Based on the experience in the dismantling of some old nuclear facilities of IPEN-CNEN/SP, some tools that would have facilitated the operations were identified and their availability could have improved the quality and efficiency of different individual tasks. In this paper different cutting problems and techniques, as well as some available commercial hand tools, are presented as suggestion for future activities. (author)

  13. Critical experiments facility and criticality safety programs at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Miyoshi, Yoshinori; Nomura, Yasushi

    1985-10-01

    The nuclear criticality safety is becoming a key point in Japan in the safety considerations for nuclear installations outside reactors such as spent fuel reprocessing facilities, plutonium fuel fabrication facilities, large scale hot alboratories, and so on. Especially a large scale spent fuel reprocessing facility is being designed and would be constructed in near future, therefore extensive experimental studies are needed for compilation of our own technical standards and also for verification of safety in a potential criticality accident to obtain public acceptance. Japan Atomic Energy Research Institute is proceeding a construction program of a new criticality safety experimental facility where criticality data can be obtained for such solution fuels as mainly handled in a reprocessing facility and also chemical process experiments can be performed to investigate abnormal phenomena, e.g. plutonium behavior in solvent extraction process by using pulsed colums. In FY 1985 detail design of the facility will be completed and licensing review by the government would start in FY 1986. Experiments would start in FY 1990. Research subjects and main specifications of the facility are described. (author)

  14. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  15. Management aspects of Gemini's base facility operations project

    Science.gov (United States)

    Arriagada, Gustavo; Nitta, Atsuko; Adamson, A. J.; Nunez, Arturo; Serio, Andrew; Cordova, Martin

    2016-08-01

    Gemini's Base Facilities Operations (BFO) Project provided the capabilities to perform routine nighttime operations without anyone on the summit. The expected benefits were to achieve money savings and to become an enabler of the future development of remote operations. The project was executed using a tailored version of Prince2 project management methodology. It was schedule driven and managing it demanded flexibility and creativity to produce what was needed, taking into consideration all the constraints present at the time: Time available to implement BFO at Gemini North (GN), two years. The project had to be done in a matrix resources environment. There were only three resources assigned exclusively to BFO. The implementation of new capabilities had to be done without disrupting operations. And we needed to succeed, introducing the new operational model that implied Telescope and instrumentation Operators (Science Operations Specialists - SOS) relying on technology to assess summit conditions. To meet schedule we created a large number of concurrent smaller projects called Work Packages (WP). To be reassured that we would successfully implement BFO, we initially spent a good portion of time and effort, collecting and learning about user's needs. This was done through close interaction with SOSs, Observers, Engineers and Technicians. Once we had a clear understanding of the requirements, we took the approach of implementing the "bare minimum" necessary technology that would meet them and that would be maintainable in the long term. Another key element was the introduction of the "gradual descent" concept. In this, we increasingly provided tools to the SOSs and Observers to prevent them from going outside the control room during nighttime operations, giving them the opportunity of familiarizing themselves with the new tools over a time span of several months. Also, by using these tools at an early stage, Engineers and Technicians had more time for debugging

  16. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities

  17. BWR radiation exposure--experience and projection

    International Nuclear Information System (INIS)

    Falk, C.F.; Wilkinson, C.D.; Hollander, W.R.

    1979-01-01

    The BWR/6 Mark III radiation exposures are projected to be about half of those of current average operating experience of 725 man-rem. These projections are said to be realistic and based on current achievements and not on promises of future development. The several BWRs operating with low primary system radiation levels are positive evidence that radiation sources can be reduced. Improvements have been made in reducing the maintenance times for the BWR/6, and further improvements can be made by further attention to cost-effective plant arrangement and layout during detail design to improve accessibility and maintainability of each system and component

  18. Experiences in managing the Prometheus Project

    Science.gov (United States)

    Lehman, David H.; Clark, Karla B.; Cook, Beverly A.; Gavit, Sarah A.; Kayali, Sammy A.; McKinney, John C.; Milkovich, David C.; Reh, Kim R.; Taylor, Randall L.; Casani, John R.

    2006-01-01

    Congress authorized NASA?s Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter. The Project had two major objectives: (1) to develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration, deep-space exploration and (2) to explore the three icy moons of Jupiter - Callisto, Ganymede, and Europa - and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences. Early in Project planning, it was determined that the development of the Prometheus nuclear powered Spaceship would be complex and require the intellectual knowledge residing at numerous organizations across the country. In addition, because of the complex nature of the Project and the multiple partners, approaches beyond those successfully used to manage a typical JPL project would be needed. This paper1 will describe the key experiences in managing Prometheus that should prove useful for future projects of similar scope and magnitude

  19. Functional description of the West Valley Demonstration Project Vitrification Facility

    International Nuclear Information System (INIS)

    Borisch, R.R.; McMahon, C.L.

    1990-07-01

    The primary objective of the West Valley Demonstration Project (WVDP) is the solidification of approximately 2.1 million liters (560,000 gallons) of high-level radioactive waste (HLW) which resulted from the operation of a nuclear fuel reprocessing plant. Since the original plant was not built to accommodate the processing of waste beyond storage in underground tanks, HLW solidification by vitrification presented numerous engineering challenges. Existing facilities required redesign and conversion to meet their new purpose. Vitrification technology and systems needed to be created and then tested. Equipment modifications, identified from cold test results, were incorporated into the final equipment configuration to be used for radioactive (hot) operations. Cold operations have defined the correct sequence and optimal functioning of the equipment to be used for vitrification and have verified the process by which waste will be solidified into borosilicate glass

  20. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  1. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    International Nuclear Information System (INIS)

    Hsu, R.H.; Oji, L.N.

    1997-01-01

    Under the Tritium Facility Modernization ampersand Consolidation (TFM ampersand C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM ampersand C Project also provides for a new replacement R ampersand D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H

  2. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  3. Calculations of the startup experiments at the Poolside Facility

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.L.; Maerker, R.E.

    1982-01-01

    Discrete ordinate calculations are made and the results compared with measurements performed in the startup experiment at the Poolside Facility. Because of the physical size of the simulated surveillance capsule used in this experiment, the analytic procedure is more complicated than one adopted in earlier calculations of the PCA-PVF and PSF. The comparisons indicate the pressure vessel fluences in the long-term irradiation experiments still presently going on at the PSF, and which are geometrically identical to the startup experiment, can only be predicted to within about 20%.

  4. Calculations of the startup experiments at the Poolside Facility

    International Nuclear Information System (INIS)

    Williams, M.L.; Maerker, R.E.

    1982-01-01

    Discrete ordinate calculations are made and the results compared with measurements performed in the startup experiment at the Poolside Facility. Because of the physical size of the simulated surveillance capsule used in this experiment, the analytic procedure is more complicated than one adopted in earlier calculations of the PCA-PVF and PSF. The comparisons indicate the pressure vessel fluences in the long-term irradiation experiments still presently going on at the PSF, and which are geometrically identical to the startup experiment, can only be predicted to within about 20%

  5. Project LITE - Light Inquiry Through Experiments

    Science.gov (United States)

    Brecher, K.

    2004-12-01

    Hands-on, inquiry-based, constructivist activity offers students a powerful way to explore, uncover and ultimately gain a feel for the nature of science. In order to make practicable a more genuine approach to learning astronomy, we have undertaken the development of hands-on (and eyes-on) materials that can be used in introductory undergraduate astronomy courses. These materials focus on light and optics. Over the past several years as part of Project LITE (Light Inquiry Through Experiments), we have developed a kit of optical materials that is integrated with a set of Java applets. The combined kit and software allows students to do actual experiments concerning geometrical optics, fluorescence, phosphorescence, polarization and other topics by making use of the photons that are emitted by their computer screens. We have also developed a suite of over 100 Flash applets that allow students to directly explore many aspects of visual perception. A major effort of the project concerns spectroscopy, since it is arguably the most important tool used by astronomers to disentangle the nature of the universe. It is also one of the most challenging subjects to teach in undergraduate astronomy courses. The spectroscopy component of Project LITE includes take-home laboratory materials and experiments that are integrated with web-based software. We have also developed a novel quantitative handheld binocular spectrometer (patent pending). Our major spectroscopic software is called the Spectrum Explorer (SPEX). It allows students to create, manipulate and explore all types of spectra including blackbody, power law, emission and absorption. We are now extending the SPEX capabilities to help students gain easy access to the astronomical spectra included in the NVO databases. All of the Project LITE software can be found http://lite.bu.edu. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  6. Technical specifications for the Pajarito Site Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.; Paxton, H.C.

    1980-12-01

    This document is to satisfy the requirement for technical specifications spelled out in DOE Manual Chapter 0540, Safety of DOE-Owned Reactors. Technical specifications are defined in Sec. 0540-048, and the requirement for them appears in Sec. 0540-015. The following technical specifications update the document, Technical Specifications for the Pajarito Site Critical Experiments Facility

  7. The LHC experiments' joint controls project (JCOP)

    International Nuclear Information System (INIS)

    Wayne Salter

    2001-01-01

    The development and maintenance of the control systems of the four Large Hadron Collider (LHC) experiments will require a non-negligible amount of resources and effort. In order to minimise the overall effort required the Joint Controls Project (JCOP) was set-up as a collaboration between CERN and the four LHC experiments to find and implement common solutions for the control of the LHC experiments. It is one of the few examples of such a wide collaboration and therefore the existence of the JCOP project is extremely significant. The author will give a brief overview of the project, its structure and its history. It will go on to summarise the various sub-projects that have been initiated under the auspices of JCOP together will their current status. It will highlight that the JCOP general principle is to promote the use of industrial solutions wherever possible. However, this does not rule out the provision of custom solutions when non-standard devices or very large numbers of devices have to be controlled. The author will also discuss the architecture foreseen by JCOP and where in this architecture the various types of solutions are expected to be used. Finally, although the selection of common industrial and custom solutions is a necessary condition for JCOP to succeed, the use of these solutions in themselves would not necessarily lead to the production of homogeneous control systems. Therefore, the author will finish with a description of the JCOP Framework, which is being developed to promote the use of these common solutions, to reduce the development effort required by the various experiment development teams and to help to build and integrate control systems which can be more easily maintained

  8. Past nuclear power project experiences of Turkey

    International Nuclear Information System (INIS)

    Kutukcuoglu, A.

    1994-01-01

    In this paper, developments in the world for utilization of nuclear energy and, in parallel to these developments, works undertaken in Turkey are summarized. Besides this, future prospects in the field of nuclear energy in the world and in Turkey, and our opinion about the action to be taken in our county, in the light of past experiences of nuclear power projects that could not be succeeded, are presented

  9. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  10. Gravity driven emergency core cooling experiments with the PACTEL facility

    International Nuclear Information System (INIS)

    Munther, R.; Kalli, H.; Kouhia, J.

    1996-01-01

    PACTEL (Parallel Channel Test Loop) is an experimental out-of-pile facility designed to simulated the major components and system behaviour of a commercial Pressurized Water Reactor (PWR) during different postulated LOCAs and transients. The reference reactor to the PACTEL facility is Loviisa type WWER-440. The recently made modifications enable experiments to be conducted also on the passive core cooling. In these experiments the passive core cooling system consisted of one core makeup tank (CMT) and pressure balancing lines from the pressurizer and from a cold leg connected to the top of the CMT in order to maintain the tank in pressure equilibrium with the primary system during ECC injection. The line from the pressurizer to the core makeup tank was normally open. The ECC flow was provided from the CMT located at a higher elevation than the main part of the primary system. A total number of nine experiments have been performed by now. 4 refs, 7 figs, 3 tabs

  11. Gravity driven emergency core cooling experiments with the PACTEL facility

    Energy Technology Data Exchange (ETDEWEB)

    Munther, R; Kalli, H [University of Technology, Lappeenranta (Finland); Kouhia, J [Technical Research Centre of Finland, Lappeenranta (Finland)

    1996-12-01

    PACTEL (Parallel Channel Test Loop) is an experimental out-of-pile facility designed to simulated the major components and system behaviour of a commercial Pressurized Water Reactor (PWR) during different postulated LOCAs and transients. The reference reactor to the PACTEL facility is Loviisa type WWER-440. The recently made modifications enable experiments to be conducted also on the passive core cooling. In these experiments the passive core cooling system consisted of one core makeup tank (CMT) and pressure balancing lines from the pressurizer and from a cold leg connected to the top of the CMT in order to maintain the tank in pressure equilibrium with the primary system during ECC injection. The line from the pressurizer to the core makeup tank was normally open. The ECC flow was provided from the CMT located at a higher elevation than the main part of the primary system. A total number of nine experiments have been performed by now. 4 refs, 7 figs, 3 tabs.

  12. Technical specifications for the Oak Ridge Critical Experiments Facility

    International Nuclear Information System (INIS)

    Stinnett, R.M.

    1986-01-01

    These Technical Specifications for the Oak Ridge Critical Experiments Facility (CEF) delineate limiting conditions of operation for the facility. The CEF is used primarily for testing the High Flux Isotope Reactor (HFIR) fuel assemblies. Specifically, the Criticality Testing Unit, Liquid (CTUL), located in the CEF, is used for the HFIR fuel assembly test. The test is performed to satisfy the surveillance requirements of the HFIR Technical Specifications. The test is used to determine the water-submerged shutdown margin for each fuel assembly. 11 refs

  13. UCN-VCN facility and experiments in Kyoto University Reactor

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Okumura, Kiyoshi; Utsuro, Masahiko

    1993-01-01

    An ultracold and very cold neutron facility was installed in Kyoto University Reactor (KUR). The facility consists of a very cold neutron (VCN) guide tube, a VCN bender, a supermirror neutron turbine and experimental equipments with ultracold neutrons (UCN). The properties of each equipments are presented. UCN is generated by a supermirror neutron turbine combined with the cold neutron source operated with liquid deuterium, and the UCN output spectrum was measured by the time-of-flight method. A gravity analyzer for high resolution spectroscopy and a neutron bottle for decay experiments are now developing as the UCN research in KUR. (author)

  14. Decommissioning project feedback experience in the Japan Atomic Energy Research Institut

    International Nuclear Information System (INIS)

    Yanagihara, S.; Tachibana, M.; Miyajima, K.

    2003-01-01

    Since starting the research and development program for peaceful use of nuclear energy in 1950's, various research and demonstration facilities have been constructed in research organizations, universities and commercial sectors in Japan. Some of the nuclear facilities constructed in the early stage of research and development have been retired to be decommissioned because of completion of the initial objectives in the Japan Atomic Energy Research Institute (JAERI). On the other hand, since the first commercial operation of nuclear power plant (1968), the number of nuclear power plants has increased up to 52 plants operating as of August 2003 in Japan. The shear of nuclear energy accounts approximately for 35% of electricity generation in total at present time. However, several nuclear power plants have been operated for more than 25 years and two nuclear power plants are expected to be finally shutdown by 2010 to be eventually decommissioned. The Tokai Power Station, the oldest Japanese nuclear power plant operated by the Japan Atomic Power Company, was permanently shutdown from March 1998 and it is in decommissioning stage at this time. The Fugen, which is advanced thermal reactor operated by the Japan Nuclear Cycle Development Institute (JNC), was finally shutdown on March, 2003 after 25 years operation to be decommissioned. In addition, relating to planned unification between JAERI and JNC in 2005, the studies have been in progress on decommissioning and radioactive waste treatment and disposal; the cost was estimated to be 10 to 30 billion Japanese yens per year during 80 years for decommissioning of nearly 200 nuclear facilities. Decommissioning of nuclear facilities is thus getting to be one of important issues in Japan. Decommissioning of nuclear facilities might be possible using conventional and/or partially improved technology. However, reviewing project feedback experience on decommissioning and decontamination might contribute to solve various issues

  15. Project management plan for the isotopes facilities deactivation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    Purpose of the deactivation project is to place former isotopes production facilities at ORNL in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance. This management plan was prepared to document project objectives, define organizational relationships and responsibilities, and outline the management control systems. The project has adopted the strategy of deactivating the simple facilities first. The plan provides a road map for the quality assurance program and identifies other documents supporting the Isotopes Facilities Deactivation Project

  16. Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments

    International Nuclear Information System (INIS)

    Tomberlin, T.A.

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to ''major modifications'' and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed

  17. Implementation of the model project: Ghanaian experience

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, E.O.; Yeboah, J.; Asiamah, S.D.

    2003-01-01

    Upgrading of the legal infrastructure has been the most time consuming and frustrating part of the implementation of the Model project due to the unstable system of governance and rule of law coupled with the low priority given to legislation on technical areas such as safe applications of Nuclear Science and Technology in medicine, industry, research and teaching. Dwindling Governmental financial support militated against physical and human resource infrastructure development and operational effectiveness. The trend over the last five years has been to strengthen the revenue generation base of the Radiation Protection Institute through good management practices to ensure a cost effective use of the limited available resources for a self-reliant and sustainable radiation and waste safety programme. The Ghanaian experience regarding the positive and negative aspects of the implementation of the Model Project is highlighted. (author)

  18. Operational Experience from Solar Thermal Energy Projects

    Science.gov (United States)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  19. Expedited technology demonstration project (Revised mixed waste management facility project) Project baseline revision 4.0 and FY98 plan

    International Nuclear Information System (INIS)

    Adamson, M. G.

    1997-01-01

    The re-baseline of the Expedited Technology Demonstration Project (Revised Mixed Waste Facility Project) is designated as Project Baseline Revision 4.0. The last approved baseline was identified as Project Baseline Revision 3.0 and was issued in October 1996. Project Baseline Revision 4.0 does not depart from the formal DOE guidance followed by, and contained in, Revision 3.0. This revised baseline document describes the MSO and Final Forms testing activities that will occur during FY98, the final year of the ETD Project. The cost estimate for work during FY98 continues to be $2.OM as published in Revision 3.0. However, the funds will be all CENRTC rather than the OPEX/CENTRC split previously anticipated. LLNL has waived overhead charges on ETD Project CENRTC funds since the beginning of project activities. By requesting the $2.OM as all CENTRC a more aggressive approach to staffing and testing can be taken. Due to a cost under- run condition during FY97 procurements were made and work was accomplished, with the knowledge of DOE, in the Feed Preparation and Final Forms areas that were not in the scope of Revision 3.0. Feed preparation activities for FY98 have been expanded to include the drum opening station/enclosure previously deleted

  20. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    Science.gov (United States)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  1. West Valley facility spent fuel handling, storage, and shipping experience

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs

  2. International Reactor Physics Experiment Evaluation (IRPhE) Project

    International Nuclear Information System (INIS)

    2013-01-01

    The International Reactor Physics Experiment Evaluation (IRPhE) Project aims to provide the nuclear community with qualified benchmark data sets by collecting reactor physics experimental data from nuclear facilities, worldwide. More specifically the objectives of the expert group are as follows: - maintaining an inventory of the experiments that have been carried out and documented; - archiving the primary documents and data released in computer-readable form; - promoting the use of the format and methods developed and seek to have them adopted as a standard. For those experiments where interest and priority is expressed by member countries or working parties and executive groups within the NEA provide guidance or co-ordination in: - compiling experiments into a standard international agreed format; - verifying the data, to the extent possible, by reviewing original and subsequently revised documentation, and by consulting with the experimenters or individuals who are familiar with the experimenters or the experimental facility; - analysing and interpreting the experiments with current state-of-the-art methods; - publishing electronically the benchmark evaluations. The expert group will: - identify gaps in data and provide guidance on priorities for future experiments; - involve the young generation (Masters and PhD students and young researchers) to find an effective way of transferring know-how in experimental techniques and analysis methods; - provide a tool for improved exploitation of completed experiments for Generation IV reactors; - coordinate closely its work with other NSC experimental work groups in particular the International Criticality Safety Benchmark Evaluation Project (ICSBEP), the Shielding Integral Benchmark Experiment Data Base (SINBAD) and others, e.g. knowledge preservation in fast reactors of the IAEA, the ANS Joint Benchmark Activities; - keep a close link with the working parties on scientific issues of reactor systems (WPRS), the expert

  3. Lessons learned from international siting experiences of LLW Disposal facilities

    International Nuclear Information System (INIS)

    McCabe, G.H.

    1990-01-01

    This paper reports that the United States can gain insight into successfully siting low-level radioactive waste (LLW) disposal facilities by studying the process in other nations. Siting experiences in France and Sweden are compared to experiences in the United States. Three factors appear to making siting of LLW disposal facilities easier in France and Sweden than in the United States. First, the level of public trust in the government and the entities responsible for siting, developing, and operating a LLW disposal facility is much greater in France and Sweden than in the United States. Second, France and Sweden are much more dependent on nuclear power than is the United States. Third, French and Swedish citizens do not have the same access to the siting process (i.e., legal means to intervene) as do U.S. citizens. To compensate for these three factors, public officials responsible for siting a facility may need to better listen to the concerns of public interest groups and citizen advisory committees and amend their siting process accordingly and better share power and control with the public. If these two techniques are implemented earnestly by the states, siting efforts may be increasingly more successful in the United States

  4. The advanced containment experiments (ACE) Project

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Ritzman, R.; Merilo, M.; Rahn, F.; Machiels, A.

    1992-01-01

    The overall structure and content of the ACE Project, which has been obtaining experimental data in four key areas of LWR severe accident technology are described. The key areas consist of filtration systems for vented containment concepts, radioiodine behavior in containment, the interaction of molten core material with structural concrete, and the use of water to terminate the core-concrete interaction process. Experiment procedures used in each phase of the work are summarized and the principal results and conclusions developed to date are discussed

  5. Mixed and Low-Level Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided

  6. Project of new tandem-driven neutron facility in Slovakia

    International Nuclear Information System (INIS)

    Strisovska, Jana

    2014-01-01

    New neutron laboratory based on Pelletron R Accelerator with terminal voltage of 2 MV is under construction at the Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia. The accelerator will be employed as a tunable source of monoenergetic fast neutrons. Using of deuterium and in the future also tritium gas cells is foreseen. These cells will allow to produce fast neutrons with various energies via 2 H(d,n) 3 He and 3 H(p,n) 3 He nuclear reactions. Physics program of new laboratory will be focused on nuclear structure studied via inelastic neutron scattering with gamma ray detection, especially for light singly-closed shell nuclei. Fission cross section measurement and fission gamma rays studies will be performed. Development and testing of neutron detectors, as integral part of future project ALLEGRO, i.e., the demonstrator of fast nuclear reactor cooled with helium gas, is planned. Parallel to neutron program, beams of charged particles will be used for studies of resonant nuclear astrophysics reactions. Start of operation of the laboratory is foreseen in 2015. In the talk, current status, physics program and details of the facility will be presented. (authors)

  7. Mixed and Low-Level Treatment Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  8. Yucca Mountain Site Characterization Project exploratory studies facilities construction status

    International Nuclear Information System (INIS)

    Allan, J.N.; Leonard, T.M.

    1993-01-01

    This paper discusses the progress to date on the construction planning and development of the Yucca Mountain Site Characterization Project (YMP) Exploratory Studies Facilities (ESF). The purpose of the ESF is to determine early site suitability and to characterize the subsurface of the Yucca Mountain site to assess its suitability for a potential high level nuclear waste repository. The present ESF configuration concept is for two main ramps to be excavated by tunnel boring machines (TBM) from the surface to the Topopah Spring Member of the Paintbrush Tuff Formation. From the main ramps, slightly above Topopah Spring level, supplemental ramps will be penetrated to the Calico Hills formation below the potential repository. There will be exploratory development drifts driven on both levels with the Main Test Area being located on the Topopah Spring level, which is the level of the proposed repository. The Calico Hills formation lies below the Topopah Spring member and is expected to provide the main geo-hydrologic barrier between the potential repository and the underlying saturated zones in the Crater Flat Tuff

  9. Synchrotron light beam and a synchrotron light experiment facility

    International Nuclear Information System (INIS)

    Ando, Masami

    1980-01-01

    In the National Laboratory for High Energy Physics, about two years ago, the requirements of synchrotron light beam in respective measuring instruments were discussed. Then, also the arrangement (lattice) of a storage ring, the nature of synchrotron light beam, a synchrotron light experiment facility and the arrangement of the beam lines were studied. During the period of two years since then, due to the changes in the circumstances, the design of the lattice was altered. Accordingly, the arrangement of the beam lines and of measuring instruments were largely changed. At this point, the results of discussions in various meetings are described, though they may still be subject to future changes, with due consideration to beam, environment and beam lines required for the design of the measuring instruments: (1) storage ring and synchrotron light beam, (2) requirements on small beam size and beam stability, (3) a synchrotron light experiment facility. (J.P.N.)

  10. Commercial experience with facility deactivation to safe storage

    International Nuclear Information System (INIS)

    Sype, T.T.; Fischer, S.R.; Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J.

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex

  11. Commercial experience with facility deactivation to safe storage

    Energy Technology Data Exchange (ETDEWEB)

    Sype, T.T. [Sandia National Labs., Albuquerque, NM (United States); Fischer, S.R. [Los Alamos National Lab., NM (United States); Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

  12. Artificial climate experiment facility in Institute for Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Shunichi [Department of Radioecology, Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    1999-03-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). `Yamase` condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  13. Artificial climate experiment facility in Institute for Environmental Sciences

    International Nuclear Information System (INIS)

    Hisamatsu, Shunichi

    1999-01-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). 'Yamase' condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  14. Report on Beryllium Strength Experiments Conducted at the TA-55 40 mm Impact Test Facility, Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollowell, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Todd P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Owens, Charles Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Joseph Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-10

    A series of experiments is currently in progress at eth 40 mm Impact Test Facility (ITF), located at TA-55, to understand the strength behavior of Beryllium metal at elevated temperature and pressure. In FY 2017, three experiments were conducted as a part of this project.

  15. The First Experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Landen, O L; Glenzer, S; Froula, D; Dewald, E; Suter, L J; Schneider, M; Hinkel, D; Fernandez, J; Kline, J; Goldman, S; Braun, D; Celliers, P; Moon, S; Robey, H; Lanier, N; Glendinning, G; Blue, B; Wilde, B; Jones, O; Schein, J; Divol, L; Kalantar, D; Campbell, K; Holder, J; MacDonald, J; Niemann, C; Mackinnon, A; Collins, R; Bradley, D; Eggert, J; Hicks, D; Gregori, G; Kirkwood, R; Young, B; Foster, J; Hansen, F; Perry, T; Munro, D; Baldis, H; Grim, G; Heeter, R; Hegelich, B; Montgomery, D; Rochau, G; Olson, R; Turner, R; Workman, J; Berger, R; Cohen, B; Kruer, W; Langdon, B; Langer, S; Meezan, N; Rose, H; Still, B; Williams, E; Dodd, E; Edwards, J; Monteil, M; Stevenson, M; Thomas, B; Coker, R; Magelssen, G; Rosen, P; Stry, P; Woods, D; Weber, S; Alvarez, S; Armstrong, G; Bahr, R; Bourgade, J; Bower, D; Celeste, J; Chrisp, M; Compton, S; Cox, J; Constantin, C; Costa, R; Duncan, J; Ellis, A; Emig, J; Gautier, C; Greenwood, A; Griffith, R; Holdner, F; Holtmeier, G; Hargrove, D; James, T; Kamperschroer, J; Kimbrough, J; Landon, M; Lee, D; Malone, R; May, M; Montelongo, S; Moody, J; Ng, E; Nikitin, A; Pellinen, D; Piston, K; Poole, M; Rekow, V; Rhodes, M; Shepherd, R; Shiromizu, S; Voloshin, D; Warrick, A; Watts, P; Weber, F; Young, P; Arnold, P; Atherton, L J; Bardsley, G; Bonanno, R; Borger, T; Bowers, M; Bryant, R; Buckman, S; Burkhart, S; Cooper, F; Dixit, S; Erbert, G; Eder, D; Ehrlich, B; Felker, B; Fornes, J; Frieders, G; Gardner, S; Gates, C; Gonzalez, M; Grace, S; Hall, T; Haynam, C; Heestand, G; Henesian, M; Hermann, M; Hermes, G; Huber, S; Jancaitis, K; Johnson, S; Kauffman, B; Kelleher, T; Kohut, T; Koniges, A E; Labiak, T; Latray, D; Lee, A; Lund, D; Mahavandi, S; Manes, K R; Marshall, C; McBride, J; McCarville, T; McGrew, L; Menapace, J.

    2005-01-01

    A first set of laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and x-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options

  16. Hohlraum modeling for opacity experiments on the National Ignition Facility

    Science.gov (United States)

    Dodd, E. S.; DeVolder, B. G.; Martin, M. E.; Krasheninnikova, N. S.; Tregillis, I. L.; Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Moore, A. S.; Kline, J. L.; Johns, H. M.; Liedahl, D. A.; Cardenas, T.; Olson, R. E.; Wilde, B. H.; Urbatsch, T. J.

    2018-06-01

    This paper discusses the modeling of experiments that measure iron opacity in local thermodynamic equilibrium (LTE) using laser-driven hohlraums at the National Ignition Facility (NIF). A previous set of experiments fielded at Sandia's Z facility [Bailey et al., Nature 517, 56 (2015)] have shown up to factors of two discrepancies between the theory and experiment, casting doubt on the validity of the opacity models. The purpose of the new experiments is to make corroborating measurements at the same densities and temperatures, with the initial measurements made at a temperature of 160 eV and an electron density of 0.7 × 1022 cm-3. The X-ray hot spots of a laser-driven hohlraum are not in LTE, and the iron must be shielded from a direct line-of-sight to obtain the data [Perry et al., Phys. Rev. B 54, 5617 (1996)]. This shielding is provided either with the internal structure (e.g., baffles) or external wall shapes that divide the hohlraum into a laser-heated portion and an LTE portion. In contrast, most inertial confinement fusion hohlraums are simple cylinders lacking complex gold walls, and the design codes are not typically applied to targets like those for the opacity experiments. We will discuss the initial basis for the modeling using LASNEX, and the subsequent modeling of five different hohlraum geometries that have been fielded on the NIF to date. This includes a comparison of calculated and measured radiation temperatures.

  17. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    International Nuclear Information System (INIS)

    Kumthekar, U.A.; Chiou, J.D.

    2006-01-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  18. MagLev Cobra: Test Facilities and Operational Experiments

    International Nuclear Information System (INIS)

    Sotelo, G G; Dias, D H J N; De Oliveira, R A H; Ferreira, A C; De Andrade, R Jr; Stephan, R M

    2014-01-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa 2 Cu 3 O 7−δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  19. MagLev Cobra: Test Facilities and Operational Experiments

    Science.gov (United States)

    Sotelo, G. G.; Dias, D. H. J. N.; de Oliveira, R. A. H.; Ferreira, A. C.; De Andrade, R., Jr.; Stephan, R. M.

    2014-05-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa2Cu3O7-δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  20. West Valley Demonstration Project facilities utilization plan for the existing facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Skillern, C.G.

    1986-05-01

    In 1980, Congress passed Public Law 96-368, the West Valley Demonstration Project (WVDP) Act. As a primary objective, the Act authorized the US Department of Energy (DOE) to solidify the high-level waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC) into a form suitable for transportation and disposal in a federal repository. This report will describe how WVDP proposes to use the existing WNYNSC Facilities in an efficient and technically effective manner to comply with Public Law 96-368. In support of the above cited law, the DOE has entered into a ''Cooperative agreement between the United States Department of Energy and the New York State Energy Research and Development Authority on the Western New York Nuclear Service Center at West Valley, New York.'' The state-owned areas turned over to the DOE for use are as follows: Process Plant, Waste Storage, Low-Level Waste Treatment Facility, Service Facilities, Plant Security, and Additional Facilities. The Facilities Utilization Plan (FUP) describes how the state-owned facilities will be utilized to complete the Project; it is divided into five sections as follows: Executive Summary - an overview; Introduction - the WVDP approach to utilizing the WNYNSC Facilities; WVDP Systems - a brief functional description of the system, list of equipment and components to be used and decontamination and decommissioning (D and D) support; WVDP Support Facilities; and Caveats that could effect or change the potential usage of a particular area

  1. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    Shank, D.R.

    1995-01-01

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  2. The First Experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Glenzer, S. H.; Dewald, E. L.; Landen, O. L.; Suter, L. J.; Jones, O. S.; Schein, J.; Froula, L.; Divol, K.; Campbell, K.; Schneider, M. S.; McDonal, J. W.; Niemann, C.; Mackinnon, A. J.

    2005-01-01

    Recently the first hohlraum and laser propagation experiments have been performed at the National Ignition Facility (NIF) in support of indirect dd drive Inertial Confinement Fusion (ICR) and High Energy Density Physics. Vacuum hohlraums have been irradiated with laser powers up to 8 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several drive diagnostics, to study the hohlraum radiation temperature scaling with the lase power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. The experiments have validated analytical models and LASNEX calculations of hohlraum plasma filling and coronal hohlraum radiation production. furthermore, the effects of laser beam smooching by spectral dispersion (SSD) and polarization smoothing (PS) on the laser beam propagation has been studied in plasmas with sizes that reach for the first time the laser propagation length in indirect-drive gas-filled ignition hohlraum designs. the long scale gas-filled target experiments have shown propagation over 7 mm of low Z plasma without filamentation and beam break up when using full laser smoothing. The comparison of these results with modeling will be discussed. (Author)

  3. The First Experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S. H.; Dewald, E. L.; Landen, O. L.; Suter, L. J.; Jones, O. S.; Schein, J.; Froula, L.; Divol, K.; Campbell, K.; Schneider, M. S.; McDonal, J. W.; Niemann, C.; Mackinnon, A. J.

    2005-07-01

    Recently the first hohlraum and laser propagation experiments have been performed at the National Ignition Facility (NIF) in support of indirect dd drive Inertial Confinement Fusion (ICR) and High Energy Density Physics. Vacuum hohlraums have been irradiated with laser powers up to 8 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several drive diagnostics, to study the hohlraum radiation temperature scaling with the lase power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. The experiments have validated analytical models and LASNEX calculations of hohlraum plasma filling and coronal hohlraum radiation production. furthermore, the effects of laser beam smooching by spectral dispersion (SSD) and polarization smoothing (PS) on the laser beam propagation has been studied in plasmas with sizes that reach for the first time the laser propagation length in indirect-drive gas-filled ignition hohlraum designs. the long scale gas-filled target experiments have shown propagation over 7 mm of low Z plasma without filamentation and beam break up when using full laser smoothing. The comparison of these results with modeling will be discussed. (Author)

  4. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  5. Private hydropower projects: exporting the american experience

    International Nuclear Information System (INIS)

    Rogers, W.L.; Bourgeacq, J.P.

    1991-01-01

    This paper addresses different aspects of exporting the American knowledge and experience in the private development of small-scale hydropower projects. It details the 'export' and 'adaptation/translation' of American PURPA philosophy to other countries. The major stumbling blocks on the road to exportation are listed. The subject countries'market evaluation is explained, as well as methods for researching and gathering the necessary information on a specific country. Methods of choosing a target country are discussed, and the criteria necessary for making a choice are detailed. The subject of legal framework and privatization of power generation issues overseas and the ways and means to help the 'export of U.S. expertise' through U.S. Government programs are described. The subjects of financing and joint ventures with local entities are also included in this paper. Various scenarios for private development overseas are presented

  6. Operational experience of the fuel cleaning facility of Joyo

    International Nuclear Information System (INIS)

    Mukaibo, R.; Matsuno, Y.; Sato, I.; Yoneda, Y.; Ito, H.

    1978-01-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 ∼ 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  7. Operational experience of the fuel cleaning facility of Joyo

    Energy Technology Data Exchange (ETDEWEB)

    Mukaibo, R; Matsuno, Y; Sato, I; Yoneda, Y; Ito, H [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 {approx} 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  8. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    International Nuclear Information System (INIS)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility

  9. Danish experiences on EIA of livestock projects

    International Nuclear Information System (INIS)

    Christensen, Per

    2006-01-01

    Since its introduction into Danish planning in 1989, Environmental Impact Assessment (EIA) has been widely discussed. At the centre of the debate has been the question of whether EIA actually offered anything new and there has been a great deal of scepticism about the efficacy of the instrument, especially when it comes to livestock projects. In an evaluation of the Danish EIA experience, we have looked more closely at how the EIA instruments function regarding livestock projects. This article addresses both the EIA process as well as the EIA screening. It is demonstrated that the EIA screening in its own right is a kind of regulatory instrument. Examining the assessments made during screening more closely, we conclude that there is still some way to go in order to make the assessment broader and more holistic in accordance with the ambitions set out in the EIA directive to contribute to a more sustainable development. Although the provisions laid down are the same the praxis related to the field has developed at a considerable speed. In order to understand this development we have closely examined how the decisions made by the Nature Protection Board of Appeal (NPBA) have been changed and conclude that these changes definitely address some of the shortcomings found in the evaluation

  10. Radiation safety study for conventional facility and siting pre project phase of International Linear Collider

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Sasaki, Shin-ichi

    2015-01-01

    The International Linear Collider (ILC) is a proposed high-energy collider consisting of two linear accelerators, two dumping rings, electron and positron sources, and a single colliding hall with two detectors. The total length and CMS energy of the ILC will be 31 km and 500 GeV, respectively (and 50 km and 1 TeV after future upgrade). The design of the ILC has entered the pre-project phase, which includes site-dependent design. Radiation safety design for the ILC is on-going as a part of conventional facility and siting activities of the pre-project phase. The thickness of a central wall of normal concrete is designed to be 3.5 m under a pessimistic assumption of beam loss. The beam loss scenario is under discussion. Experience and knowledge relating to shielding design and radiation control operational work at other laboratories are required. (authors)

  11. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  12. A PMT mass testing facility for the JUNO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tietzsch, Alexander; Alsheimer, Isabell; Blum, David; Lachenmaier, Tobias; Sterr, Tobias [Physikalisches Institut, Universitaet Tuebingen (Germany); Bein, Bosse; Bick, Daniel; Ebert, Joachim; Hagner, Caren; Rebber, Henning; Steppat, Lisa; Wonsak, Bjoern [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany)

    2016-07-01

    The JUNO (Jiangmen Underground Neutrino Observatory) experiment will be one of the big neutrino oscillation experiments starting in the next years. The main goal of JUNO is the determination of the neutrino mass hierarchy. To detect the sub-dominant effects in the oscillation pattern which depend on the mass hierarchy, the JUNO detector is planned with almost 20 kt fiducial volume, high light yield and energy resolution of better than 3%. In order to reach this, roughly 17000 newly developed high QE PMTs for the central detector, and additionally 2000 for the veto will be used. Each PMT has to be tested and characterized before it will be mounted in the experiment. This talk gives an overview on our plans and strategy for the mass test of all PMTs, and on the current status of the experimental test setup and next steps. The testing facility is developed in a cooperation between the Physical Institutes in Tuebingen and Hamburg within the JUNO collaboration.

  13. Discussion on the post-project assessment of environmental impact for nuclear facilities

    International Nuclear Information System (INIS)

    Shang Zhaorong

    2013-01-01

    The paper introduces the background of post-project assessment of environmental impact in the world and focuses on the characteristic of environmental impact assessment for Chinese nuclear facilities construction projects, analyzes the necessity, principle and contents of post-project assessment of environmental impact on current Chinese nuclear facilities operation. It is considered that to start the post-project assessment of environmental impact, perfect the post-project assessment mechanism, introduce the post-project assessment into environmental impact assessment system are just at the night time. (author)

  14. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  15. The projected background for the CUORE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alduino, C.; Avignone, F.T.; Chott, N.; Creswick, R.J.; Rosenfeld, C.; Wilson, J. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Alfonso, K.; Hickerson, K.P.; Huang, H.Z.; Sakai, M.; Schmidt, J.; Trentalange, S.; Zhu, B.X. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Artusa, D.R.; Rusconi, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Azzolini, O.; Camacho, A.; Keppel, G.; Palmieri, V.; Pira, C. [INFN-Laboratori Nazionali di Legnaro, Padua (Italy); Banks, T.I.; Drobizhev, A.; Freedman, S.J.; Hennings-Yeomans, R.; Kolomensky, Yu.G.; Wagaarachchi, S.L. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Bari, G.; Deninno, M.M. [INFN-Sezione di Bologna, Bologna (Italy); Beeman, J.W. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); Bellini, F.; Cosmelli, C.; Ferroni, F.; Piperno, G. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Benato, G.; Singh, V. [University of California, Department of Physics, Berkeley, CA (United States); Bersani, A.; Caminata, A. [INFN-Sezione di Genova, Genoa (Italy); Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Fiorini, E.; Gironi, L.; Gotti, C.; Maino, M.; Nastasi, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sisti, M.; Terranova, F.; Zanotti, L. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN-Sezione di Milano Bicocca, Milan (Italy); Branca, A.; Taffarello, L. [INFN-Sezione di Padova, Padua (Italy); Bucci, C.; Cappelli, L.; D' Addabbo, A.; Gorla, P.; Pattavina, L.; Pirro, S.; Laubenstein, M. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Canonica, L. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Massachusetts Institute of Technology, Cambridge, MA (United States); Cao, X.G.; Fang, D.Q.; Ma, Y.G.; Wang, H.W.; Zhang, G.Q. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai (China); Carbone, L.; Cremonesi, O.; Ferri, E.; Giachero, A.; Pessina, G.; Previtali, E. [INFN-Sezione di Milano Bicocca, Milan (Italy); Cardani, L.; Casali, N.; Dafinei, I.; Morganti, S.; Mosteiro, P.J.; Pettinacci, V.; Tomei, C.; Vignati, M. [INFN-Sezione di Roma, Rome (Italy); Copello, S.; Di Domizio, S.; Fernandes, G.; Marini, L.; Pallavicini, M. [INFN-Sezione di Genova, Genoa (Italy); Universita di Genova, Dipartimento di Fisica, Genoa (Italy); Cushman, J.S.; Davis, C.J.; Heeger, K.M.; Lim, K.E.; Maruyama, R.H. [Yale University, Department of Physics, New Haven, CT (United States); Dell' Oro, S. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); INFN-Gran Sasso Science Institute, L' Aquila (Italy); Di Vacri, M.L.; Santone, D. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Universita dell' Aquila, Dipartimento di Scienze Fisiche e Chimiche, L' Aquila (Italy); Franceschi, M.A.; Ligi, C.; Napolitano, T. [INFN-Laboratori Nazionali di Frascati, Rome (Italy); Fujikawa, B.K.; Mei, Y.; Schmidt, B.; Smith, A.R.; Welliver, B. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Giuliani, A.; Novati, V.; Tenconi, M. [Universit Paris-Saclay, CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Orsay (France); Gladstone, L.; Leder, A.; Ouellet, J.L.; Winslow, L.A. [Massachusetts Institute of Technology, Cambridge, MA (United States); Gutierrez, T.D. [California Polytechnic State University, Physics Department, San Luis Obispo, CA (United States); Haller, E.E. [Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA (United States); University of California, Department of Materials Science and Engineering, Berkeley, CA (United States); Han, K. [Shanghai Jiao Tong University, Department of Physics and Astronomy, Shanghai (China); Hansen, E. [University of California, Department of Physics and Astronomy, Los Angeles, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Kadel, R. [Lawrence Berkeley National Laboratory, Physics Division, Berkeley, CA (United States); Martinez, M. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN-Sezione di Roma, Rome (Italy); Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Zaragoza (Spain); Moggi, N. [INFN-Sezione di Bologna, Bologna (Italy); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Scienze per la Qualita della Vita, Bologna (Italy); Nones, C. [CEA/Saclay, Service de Physique des Particules, Gif-sur-Yvette (France); Norman, E.B.; Wang, B.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); O' Donnell, T. [Virginia Polytechnic Institute and State University, Center for Neutrino Physics, Blacksburg, VA (United States); Pagliarone, C.E. [INFN-Laboratori Nazionali del Gran Sasso, L' Aquila (Italy); Universita degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, Cassino (Italy); Sangiorgio, S.; Scielzo, N.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Wise, T. [Yale University, Department of Physics, New Haven, CT (United States); University of Wisconsin, Department of Physics, Madison, WI (United States); Woodcraft, A. [University of Edinburgh, SUPA, Institute for Astronomy, Edinburgh (United Kingdom); Zimmermann, S. [Lawrence Berkeley National Laboratory, Engineering Division, Berkeley, CA (United States); Zucchelli, S. [INFN-Sezione di Bologna, Bologna (Italy); Alma Mater Studiorum-Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy)

    2017-08-15

    The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of {sup 130}Te with an array of 988 TeO{sub 2} bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the {sup 130}Te decay half-life of 9 x 10{sup 25} years after 5 years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10{sup -2} counts/keV/kg/year. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of {sup 130}Te is expected. (orig.)

  16. Project ABLE: (Atmospheric Balloonborne Lidar Experiment)

    Science.gov (United States)

    Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.

    1985-03-01

    Project ABLE (Atmospheric Balloonborne Lidar Experiment) is part of the A.F. Geophysics Laboratory's continuing interest in developing techniques for making remote measurements of atmospheric quantities such as density, pressure, temperatures, and wind motions. The system consists of a balloonborne lidar payload designed to measure neutral molecular density as a function of altitude from ground level to 70 km. The lidar provides backscatter data at the doubled and tripled frequencies of a Nd:YAG laser, which will assist in the separation of the molecular and aerosol contributions and subsequent determination of molecular and aerosol contributions and subsequent determination of molecular density vs altitude. The object of this contract was to fabricate and operate in a field test a balloonborne lidar experiment capable of performing nighttime atmospheric density measurements up to 70 km altitude with a resolution of 150 meters. The payload included a frequency-doubled and -tripled Nd:YAG laser with outputs at 355 and 532 nm; a telescoped receiver with PMT detectors; a command-controlled optical pointing system; and support system, including thermal control, telmetry, command, and power. Successful backscatter measurements were made during field operations which included a balloon launch from Roswell, NM and a flight over the White Sands Missile Range.

  17. The projected background for the CUORE experiment

    Science.gov (United States)

    Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Benato, G.; Bersani, A.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; Dafinei, I.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Ma, Y. G.; Maino, M.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Napolitano, T.; Nastasi, M.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; O'Donnell, T.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sakai, M.; Sangiorgio, S.; Santone, D.; Schmidt, B.; Schmidt, J.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Welliver, B.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.; Laubenstein, M.

    2017-08-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of ^{130}Te with an array of 988 TeO_2 bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90% C.L. exclusion sensitivity on the ^{130}Te decay half-life of 9 × 10^{25} years after 5 years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10^{-2} counts/keV/kg/year. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of ^{130}Te is expected.

  18. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  19. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2011-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS Trigger and DAQ(TDAQ) community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available ...

  20. Online remote monitoring facilities for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Feng, E; Hauser, R; Yakovlev, A; Zaytsev, A

    2010-01-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS TDAQ community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available to remote users t...

  1. The first target experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Landen, O.L.; Glenzer, S.H.; Froula, D.H.; Dewald, E.L.; Suter, L.J.; Schneider, M.B.; Hinkel, D.E.; Fernandez, J.C.; Kline, J.L.; Goldman, S.R.; Braun, D.G.; Celliers, P.M.; Moon, S.J.; Robey, H.S.; Lanier, N.E.; Glendinning, S.G.; Blue, B.E.; Wilde, B.H.; Jones, O.S.; Schein, J.; Divol, L.; Kalantar, D.H.; Campbell, K.M.; Holder, J.P.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Collins, G.W.; Bradley, D.K.; Eggert, J.H.; Hicks, D.G.; Gregori, G.; Kirkwood, R.K.; Young, B.K.; Foster, J.M.; Hansen, J.F.; Perry, T.S.; Munro, D.H.; Baldis, H.A.; Grim, G.P.; Heeter, R.F.; Hegelich, M.B.; Montgomery, D.S.; Rochau, G.A.; Olson, R.E.; Turner, R.E.; Workman, J.B.; Berger, R.L.; Cohen, B.I.; Kruer, W.L.; Langdon, A.B.; Langer, S.H.; Meezan, N.B.; Rose, H.A.; Still, C.H.; Williams, E.A.; Dodd, E.A.; Edwards, M.J.; Monteil, M.C.; Stevenson, R.M.; Thomas, B.R.; Coker, R.F.; Magelssen, G.R.; Rosen, P.A.; Stry, P.E.; Woods, D.; Weber, S.V.; Young, P.E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, G.L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F.D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.

    2007-01-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3-dimensional codes by extending the study of laser driven hydrodynamic jets to 3-dimensional geometries. (authors)

  2. The first target experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O.L.; Glenzer, S.H.; Froula, D.H.; Dewald, E.L.; Suter, L.J.; Schneider, M.B.; Hinkel, D.E.; Fernandez, J.C.; Kline, J.L.; Goldman, S.R.; Braun, D.G.; Celliers, P.M.; Moon, S.J.; Robey, H.S.; Lanier, N.E.; Glendinning, S.G.; Blue, B.E.; Wilde, B.H.; Jones, O.S.; Schein, J.; Divol, L.; Kalantar, D.H.; Campbell, K.M.; Holder, J.P.; McDonald, J.W.; Niemann, C.; Mackinnon, A.J.; Collins, G.W.; Bradley, D.K.; Eggert, J.H.; Hicks, D.G.; Gregori, G.; Kirkwood, R.K.; Young, B.K.; Foster, J.M.; Hansen, J.F.; Perry, T.S.; Munro, D.H.; Baldis, H.A.; Grim, G.P.; Heeter, R.F.; Hegelich, M.B.; Montgomery, D.S.; Rochau, G.A.; Olson, R.E.; Turner, R.E.; Workman, J.B.; Berger, R.L.; Cohen, B.I.; Kruer, W.L.; Langdon, A.B.; Langer, S.H.; Meezan, N.B.; Rose, H.A.; Still, C.H.; Williams, E.A.; Dodd, E.A.; Edwards, M.J.; Monteil, M.C.; Stevenson, R.M.; Thomas, B.R.; Coker, R.F.; Magelssen, G.R.; Rosen, P.A.; Stry, P.E.; Woods, D.; Weber, S.V.; Young, P.E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, G.L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F.D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P

    2007-08-15

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1-9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3-dimensional codes by extending the study of laser driven hydrodynamic jets to 3-dimensional geometries. (authors)

  3. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S; Lischke, W [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1998-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  4. Experiments with the HORUS-II test facility

    International Nuclear Information System (INIS)

    Alt, S.; Lischke, W.

    1997-01-01

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA's fourth phase at the original plant

  5. Antares facility for inertial-fusion experiments: status and plans

    International Nuclear Information System (INIS)

    Goldstone, P.D.; Allen, G.; Jansen, H.; Saxman, A.; Singer, S.; Thuot, M.

    1982-01-01

    Antares is a large, 30 to 40 kJ CO 2 laser system which will provide a base for experiments to determine the efficiency with which 10 μm light can be used to drive target implosions while maintaining an acceptable level of preheat. Construction of the facility is in the final stages and diagnostics for initial experiments are being designed and constructed with operations scheduled to begin early in FY-84. After an initial shakedown period, we expect to perform a series of measurements to determine the energy scaling of hot electron temperature and target coupling efficiency in selected set of targets including simple spheres. We also expect to continue experiments, now planned for Helios, to determine whether CO 2 -produced ions are appropriate for driving inertial fusion targets with acceptable efficiency (Helios experiments have demonstrated that as much as 40% of the incident light can be converted to fast ions). Details of these experiments, as well as plans for further experiments, are still being defined

  6. Financing of nuclear projects. Lessons from a recent experience

    International Nuclear Information System (INIS)

    Shubert, U.

    2004-01-01

    The advantages of mandating BNP Paribas as a lead bank and arranger for NPP Belene are presented. BNPP has an excellent record and credentials in Nuclear Power Plant Projects internationally and in the local energy sector and very recent experience as a lead bank for the fifth nuclear power plant in Finland. BNPP has a proven track record as Provider of rapid and efficient ECA financing in terms of: managing in parallel the number of ECA contractual relations, so as to provide 'matching opportunities' between the ECAs and leverage to improve their terms and conditions, and to harmonize them in one set of unified legal documentation. There is no cost to the Government of Bulgaria until the signing of the Facility Documentation

  7. Radiological operating experience at FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bunch, W.L.; Prevo, P.R.

    1986-11-01

    The Fast Flux Test Facility has been in operation for approximately five years, including about one thousand days of full power operation of the Fast Test Reactor. During that time the collective dose equivalents received by operating personnel have been about two orders of magnitude lower than those typically received at commercial light water reactors. No major contamination problems have been encountered in operating and maintaining the plant, and release of radioactive gas to the environment has been minimal and well below acceptable limits. All shields have performed satisfactorily. Experience to date indicates an apparent radiological superiority of liquid metal reactor systems over current light water plants

  8. Project assembling and commissioning of a rewetting test facility

    International Nuclear Information System (INIS)

    Rezende, H.C.

    1985-08-01

    A test facility (ITR - Instalacao de Testes de Remolhamento) has been erected at the Thermal-hydraulics Laboratory of CDTN, dedicated to the investigation of the basic phenomena that can occur during the reflood phase of a Loss of Coolant Accident (LOCA) in a Pressurized Water Reactor (PWR), utilizing tubular and annular test sections. The present work consists in a presentation of the facility design and a report of its commissioning. The mechanical aspects of the facility, its power supply system and its instrumentation are described. The results of the instruments calibration and two operational tests are presented and a comparison is done with calculations perfomed usign a computer code. (Author) [pt

  9. Los Alamos DP West Plutonium Facility decontamination project

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-01-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  10. Beam studies and experimental facility for the AWAKE experiment at CERN

    International Nuclear Information System (INIS)

    Bracco, Chiara; Gschwendtner, Edda; Petrenko, Alexey; Timko, Helga; Argyropoulos, Theodoros; Bartosik, Hannes; Bohl, Thomas; Esteban Müller, Juan; Goddard, Brennan; Meddahi, Malika; Pardons, Ans; Shaposhnikova, Elena; Velotti, Francesco M.; Vincke, Helmut

    2014-01-01

    A Proton Driven Plasma Wakefield Acceleration Experiment has been proposed as an approach to eventually accelerate an electron beam to the TeV energy range in a single plasma section. To verify this novel technique, a proof of principle R and D experiment, AWAKE, is planned at CERN using 400 GeV proton bunches from the SPS. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility profiting from existing infrastructure where only minor modifications need to be foreseen. The design of the experimental area and the proton and electron beam lines are shown. The achievable SPS proton bunch properties and their reproducibility have been measured and are presented. - Highlights: • A proton driven plasma wakefield experiment using the first time protons as drive beam is proposed. • The integration of AWAKE experiment, the proton, laser and electron beam line in an existing CERN facility is demonstrated. • The necessary modifications in the experimental facility are presented. • Proton beam optics and a new electron beam line are adapted to match with the required beam parameters. • Short high-intensity bunches were studied in the SPS to guide the design parameters of the AWAKE project

  11. Verification of the Korsar code on results of experiments executed on the PSB-VVER facility

    International Nuclear Information System (INIS)

    Roginskaya, V.L.; Pylev, S.S.; Elkin, I.V.

    2005-01-01

    Full text of publication follows: Paper represents some results of computational research executed within the framework of verification of the KORSAR thermal hydraulic code. This code was designed in the NITI by A.P. Aleksandrov (Russia). The general purpose of the work was development of a nodding scheme of the PSB-VVER integral facility, scheme testing and computational modelling of the experiment 'The PSB-VVER Natural Circulation Test With Stepwise Reduction of the Primary Inventory'. The NC test has been performed within the framework of the OECD PSB-VVER Project (task no. 3). This Project is focused upon the provision of experimental data for codes assessment with regard to VVER analysis. Paper presents a nodding scheme of the PSB-VVER facility and results of pre- and post-test calculations of the specified experiment, obtained with the KORSAR code. The experiment data and the KORSAR pre-test calculation results are in good agreement. A post-test calculation of the experiment with KORSAR code has been performed in order to assess the code capability to simulate the phenomena relevant to the test. The code showed a reasonable prediction of the phenomena measured in the experiment. (authors)

  12. Verification of the Korsar code on results of experiments executed on the PSB-VVER facility

    Energy Technology Data Exchange (ETDEWEB)

    Roginskaya, V.L.; Pylev, S.S.; Elkin, I.V. [NSI RRC ' Kurchatov Institute' , Kurchatov Sq., 1, Moscow, 123182 (Russian Federation)

    2005-07-01

    Full text of publication follows: Paper represents some results of computational research executed within the framework of verification of the KORSAR thermal hydraulic code. This code was designed in the NITI by A.P. Aleksandrov (Russia). The general purpose of the work was development of a nodding scheme of the PSB-VVER integral facility, scheme testing and computational modelling of the experiment 'The PSB-VVER Natural Circulation Test With Stepwise Reduction of the Primary Inventory'. The NC test has been performed within the framework of the OECD PSB-VVER Project (task no. 3). This Project is focused upon the provision of experimental data for codes assessment with regard to VVER analysis. Paper presents a nodding scheme of the PSB-VVER facility and results of pre- and post-test calculations of the specified experiment, obtained with the KORSAR code. The experiment data and the KORSAR pre-test calculation results are in good agreement. A post-test calculation of the experiment with KORSAR code has been performed in order to assess the code capability to simulate the phenomena relevant to the test. The code showed a reasonable prediction of the phenomena measured in the experiment. (authors)

  13. Spent nuclear fuel project cold vacuum drying facility operations manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  14. FEBEX II Project THG Laboratory Experiments

    International Nuclear Information System (INIS)

    Missana, T.

    2004-01-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  15. FEBEX II Project THG Laboratory Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.

    2004-07-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  16. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  17. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  18. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    Science.gov (United States)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  19. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1980-02-01

    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 μm and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density

  20. New synchrotron powder diffraction facility for long-duration experiments.

    Science.gov (United States)

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  1. Advances in shock timing experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Robey, H F; Celliers, P M; Moody, J D; Sater, J; Parham, T; Kozioziemski, B; Dylla- Spears, R; Ross, J S; LePape, S; Ralph, J E; Hohenberger, M; Dewald, E L; Berzak Hopkins, L; Kroll, J J; Yoxall, B E; Hamza, A V; Landen, O L; Edwards, M J; Boehly, T R; Nikroo, A

    2016-01-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. (paper)

  2. Advances in shock timing experiments on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  3. Shock timing on the National Ignition Facility: First experiments

    Directory of Open Access Journals (Sweden)

    Celliers P.M.

    2013-11-01

    Full Text Available An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a re-entrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  4. Shock timing on the National Ignition Facility: First Experiments

    International Nuclear Information System (INIS)

    Celliers, P.M.; Robey, H.F.; Boehly, T.R.; Alger, E.; Azevedo, S.; Berzins, L.V.; Bhandarkar, S.D.; Bowers, M.W.; Brereton, S.J.; Callahan, D.; Castro, C.; Chandrasekaran, H.; Choate, C.; Clark, D.; Coffee, K.R.; Datte, P.S.; Dewald, E.L.; DiNicola, P.; Dixit, S.; Doeppner, T.; Dzenitis, E.; Edwards, M.J.; Eggert, J.H.; Fair, J.; Farley, D.R.; Frieders, G.; Gibson, C.R.; Giraldez, E.; Haan, S.; Haid, B.; Hamza, A.V.; Haynam, C.; Hicks, D.G.; Holunga, D.M.; Horner, J.B.; Jancaitis, K.; Jones, O.S.; Kalantar, D.; Kline, J.L.; Krauter, K.G.; Kroll, J.J.; LaFortune, K.N.; Pape, S.L.; Malsbury, T.; Maypoles, E.R.; Milovich, J.L.; Moody, J.D.; Moreno, K.; Munro, D.H.; Nikroo, A.; Olson, R.E.; Parham, T.; Pollaine, S.; Radousky, H.B.; Ross, G.F.; Sater, J.; Schneider, M.B.; Shaw, M.; Smith, R.F.; Thomas, C.A.; Throop, A.; Town, R.J.; Trummer, D.; Van Wonterghem, B.M.; Walters, C.F.; Widmann, K.; Widmayer, C.; Young, B.K.; Atherton, L.J.; Collins, G.W.; Landen, O.L.; Lindl, J.D.; MacGowan, B.J.; Meyerhofer, D.D.; Moses, E.I.

    2011-01-01

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  5. A review of experiments and results from the TREAT facility

    International Nuclear Information System (INIS)

    Deitrich, L.W.; Dickerman, C.E.; Klickman, A.E.; Wright, A.E.

    1998-01-01

    The Transient Reactor Test (TREAT) facility was designed and built in the late 1950s at Argonne National Laboratory (ANL) to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off-normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light water reactor (LWR) elements in a steam environment to obtain fission product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  6. Information on the Advanced Plant Experiment (APEX) Test Facility

    International Nuclear Information System (INIS)

    Smith, Curtis Lee

    2015-01-01

    The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, 'Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing,' Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J. King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.

  7. First experiment on LMJ facility: pointing and synchronisation qualification

    Science.gov (United States)

    Henry, Olivier; Raffestin, Didier; Bretheau, Dominique; Luttmann, Michel; Graillot, Herve; Ferri, Michel; Seguineau, Frederic; Bar, Emmanuel; Patissou, Loic; Canal, Philippe; Sautarel, Franöise; Tranquille-Marques, Yves

    2017-10-01

    The LMJ (Laser mega Joule) facility at the CESTA site (Aquitaine, France) is a tool designed to deliver up to 1.2 MJ at 351 nm for plasma experiments. The experiment system will include 11 diagnostics: UV and X energy balances, imagers (Streak and stripe camera, CCD), spectrometers, and a Visar/pyrometer. The facility must be able to deliver, within the hour following the shot, all the results of the plasma diagnostics, alignment images and laser diagnostic measurements. These results have to be guaranteed in terms of conformity to the request and quality of measurement. The end of 2016 was devoted to the qualification of system pointing on target and synchronization within and between beams. The shots made with two chains (divided in 4 quads - 8 laser beams) have achieved 50 µm of misalignment accuracy (chain and quad channel) and a synchronization accuracy in the order of 50 ps . The performances achieved for plasma diagnostic (in the order of less 100 µm of alignment and timing accuracy less than 150 ps) comply with expectations. At the same time the first automatic sequences were tested. They allowed a shot on target every 6h:30 and in some case twice a day by reducing preparation actions, leading to a sequence of 4h:00.

  8. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  9. Role of the laboratory for laser energetics in the National Ignition Facility Project

    International Nuclear Information System (INIS)

    Soures, J.M.; Loucks, S.J.; McCrory, R.L.

    1996-01-01

    The National Ignition Facility (NIF) is a 192-beam, 1.8-MJ (ultraviolet) laser facility that is currently planned to start operating in 2002. The NIF mission is to provide data critical to this Nation's science-based stockpile stewardship (SBSS) program and to advance the understanding of inertial confinement fusion and assess its potential as an energy source. The NIF project involves a collaboration among the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester's Laboratory for Laser Energetics (UR/LLE). In this paper, the role of the University of Rochester in the research, development, and planning required to assure the success of the NIF will be presented. The principal roles of the UR/LLE in the NIF are (1) validation of the direct-drive approach to NIF using the OMEGA 60-beam, 40-kJ UV laser facility; (2) support of indirect-drive physics experiments using OMEGA in collaboration with LLNL and LANL; (3) development of plasma diagnostics for NIF; (4) development of beam-smoothing techniques; and (5) development of thin-film coatings for NIF and cryogenic-fuel-layer targets for eventual application to NIF. 3 refs., 6 figs

  10. Experience database of Romanian facilities subjected to the last three Vrancea earthquakes

    International Nuclear Information System (INIS)

    1999-01-01

    The scope of this research project is to use the past seismic experience of similar components from power and industrial facilities to establish the generic seismic resistance of nuclear power plant safe shutdown equipment. The first part of the project provide information about the Vrancea. earthquakes which affect the Romanian territory and also the Kozloduy NPP site as a background of the investigations of the seismic performance of mechanical and electrical equipment in the industrial facilities. This project has the following, objectives: collect and process all available seismic information about Vrancea earthquakes; perform probabilistic hazard analysis of the Vrancea earthquakes; determine attenuation low, correlation between the focal depth, earthquake power, soil conditions and frequency characteristics of the seismic ground motion; investigate and collect information regarding seismic behavior during the 1977, 1986 and 1990 earthquakes of mechanical and electrical components from industrial facilities. The seismic database used for the analysis of the Vrancea earthquakes includes digitized triaxial records as follows: March 4, 1977 - I station, Aug, 30 1986 - 42 stations, May 1990 - 54 stations. A catalogue of the Vrancea earthquakes occurred during the period 1901-1994, is presented as well

  11. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  12. Project assessment for construction of new nuclear facility

    International Nuclear Information System (INIS)

    2013-01-01

    Project risk management is an important and integral part of project and quality management. It is also a key part of the due diligence process in making informed project decisions where in addition to the qualitative assessments quantitative ones shall be used to the extend practical. As part of the risk management process, risk identification, evaluation and mitigation must be an on-going activity at senior management levels throughout the planning, design, construction and commissioning phases of a new NPP

  13. Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, P., E-mail: delahaye@ganil.fr; Jardin, P.; Maunoury, L. [GANIL, CEA/DSM-CNRS/IN2P3, Blvd. Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Galatà, A.; Patti, G. [INFN–Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (Padova) (Italy); Angot, J.; Lamy, T.; Thuillier, T. [LPSC–Université Grenoble Alpes–CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Cam, J. F.; Traykov, E.; Ban, G. [LPC Caen, 6 Blvd. Maréchal Juin, 14050 Caen Cedex (France); Celona, L. [INFN–Laboratori Nazionali del Sud, via S. Sofia 62, 95125 Catania (Italy); Choinski, J.; Gmaj, P. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5a, 02 093 Warsaw (Poland); Koivisto, H.; Kolhinen, V.; Tarvainen, O. [Department of Physics, University of Jyväskylä, PB 35 (YFL), 40351 Jyväskylä (Finland); Vondrasek, R. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Wenander, F. [ISOLDE, CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structure issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam contamination. In recent years, improvements have been made which significantly reduce the differences between the two techniques, making ECRIS charge breeding more attractive especially for CW machines producing intense beams. Upgraded versions of the Phoenix charge breeder, originally developed by LPSC, will be used at SPES and GANIL/SPIRAL. These two charge breeders have benefited from studies undertaken within EMILIE, which are also briefly summarized here.

  14. Development of Facilities Master Plan and Laboratory Renovation Project

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Andrea D

    2011-10-03

    Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the School's overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

  15. The application of integrated safety management principles to the Tritium Extraction Facility project

    International Nuclear Information System (INIS)

    Hickman, M.O.; Viviano, R.R.

    2000-01-01

    The DOE has developed a program that is accomplishing a heightened safety posture across the complex. The Integrated Safety Management (ISM) System (ISMS) program utilizes five core functions and seven guiding principles as the basis for implementation. The core functions define the work scope, analyze the hazards, develop and implement hazard controls, perform the work, and provide feedback for improvement. The guiding principles include line management responsibility, clear roles and responsibilities, competence per responsibilities, identification of safety standards/requirements, tailored hazard control, balanced priorities, and operations authorization. There exists an unspecified eighth principle, that is, worker involvement. A program requiring the direct involvement of the employees who are actually performing the work has been shown to be quite an effective method of communicating safety requirements, controlling work in a safe manner, and reducing safety violations and injuries. The Tritium Extraction Facility (TEF) projects, a component of the DOE's Commercial Light Water Reactor Tritium Production program, has taken the ISM principles and core functions and applied them to the project's design. The task of the design team is to design a facility and systems that will meet the production requirements of the DOE tritium mission as well as a design that minimizes the workers' exposure to adverse safety situations and hazards/hazardous materials. During the development of the preliminary design for the TEF, design teams consisted of not only designers but also personnel who had operational experience in the existing tritium and personnel who had operational experience in the existing tritium and personnel who had specialized experience from across the DOE complex. This design team reviewed multiple documents associated with the TEF operation in order to identify and document the hazards associated with the tritium process. These documents include hazards

  16. Suggestions and comments about preliminary plans of ABNT 20:04.002-001 standard 'Seismic actions for nuclear facilities project'

    International Nuclear Information System (INIS)

    Soares, W.A.

    1984-01-01

    This paper presents an analysis of preliminary plans of standard 'seismic actions for nuclear facilities project'. This document presents since seismic event characterization up to details of structural project of nuclear facilities construction. (C.M.)

  17. Polar-Drive Experiments at the National Ignition Facility

    Science.gov (United States)

    Hohenberger, M.

    2014-10-01

    To support direct-drive inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) in its indirect-drive beam configuration, the polar-drive (PD) concept has been proposed. It requires direct-drive-specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments testing the performance of ignition-relevant PD implosions at the NIF have been performed. The goal of these early experiments was to develop a stable, warm implosion platform to investigate laser deposition and laser-plasma instabilities at ignition-relevant plasma conditions, and to develop and validate ignition-relevant models of laser deposition and heat conduction. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Warm, 2.2-mm-diam plastic shells were imploded with total drive energies ranging from ~ 350 to 750 kJ with peak powers of 60 to 180 TW and peak on-target intensities from 4 ×1014 to 1 . 2 ×1015 W/cm2. Results from these initial experiments are presented, including the level of hot-electron preheat, and implosion symmetry and shell trajectory inferred via self-emission imaging and backlighting. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray trace to model oblique beams, and a model for cross-beam energy transfer (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Project governance: selected South African government experiments

    Directory of Open Access Journals (Sweden)

    G. van der Walt

    2008-07-01

    Full Text Available Some form of accountability and power structure binds all organisations. Such structures are typically referred to as the “governance” structure of the organisation. In organisations that have relatively mature project applications and methodologies in place, governance mechanisms are established on more permanent bases. With its focus on performance, results and outcomes, project governance establishes decision-making structures, as well as accountability and responsibility mechanisms in public institutions to oversee projects. As government institutions increasingly place emphasis on project applications for policy implementation and service delivery initiatives, mechanisms or structures should be established to facilitate clear interfaces between the permanent organisation and the temporary project organisation. Such mechanisms or structures should enhance the governance of projects, that is, the strategic alignment of projects, the decentralisation of decision- making powers, rapid resource allocation, and the participation of external stakeholders. The purpose of this article is to explore the concept “project governance”, and to highlight examples of project governance as applied in selected government departments in provincial and national spheres. This would enable the establishment of best practice examples and assist to develop benchmarks for effective project applications for service delivery improvement.

  19. Project definition study for the National Biomedical Tracer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Roozen, K.

    1995-02-15

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.

  20. Acceptance test procedure: RMW Land Disposal Facility Project W-025

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting

  1. Project definition study for the National Biomedical Tracer Facility

    International Nuclear Information System (INIS)

    Roozen, K.

    1995-01-01

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel's Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization

  2. Using Executive Information Systems to Manage Capital Projects and Facilities.

    Science.gov (United States)

    Kaynor, Robert

    1993-01-01

    In higher education, facilities data are essential for long-term capital and financial planning and for testing assumptions underlying anticipated policy change. Executive information systems should incorporate life-cycle considerations (planning, construction, renovation, and management) and resource linkages (describing interrelationships of…

  3. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  4. Steam line rupture experiments with the PPOOLEX test facility

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.

    2008-07-01

    The results of the steam line rupture experiment series in 2007 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology are reported. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. Air was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the initial phase of a postulated steam line break accident inside a BWR containment. Specifically, thermal stratification in the dry well compartment and ejection of water plug from the blowdown pipe were of interest. In addition, the effect of counterpressure on bubble dynamics was studied. A temperature difference of approximately 15 deg. C between the upper and lower part of the dry well was measured. In the wet well gas space, a temperature difference of more than 30 deg. C was registered. These were measured during the compression period of the tests. Towards the end of the tests the temperature differences tended to disappear. To get a more detailed picture of temperature distribution in the wet well, especially close to the water level, a dense net of measurements is required in future experiments. In longer experiments, heat conduction to structures and heat losses to surroundings should also be taken into account. Ejection of water plugs from the blowdown pipe did not cause notable loads to the structures due to the suppressing effect of the dry well compartment. The maximum measured pressure pulse at the pool bottom was only 10 kPa and the maximum strain amplitude at the pool bottom rounding was negligible both in axial and circumferential direction. As the counterpressure of the system increased, but the flow rate remained the same, the maximum size of the air bubbles at the blowdown pipe outlet got smaller and

  5. Steam line rupture experiments with the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    The results of the steam line rupture experiment series in 2007 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology are reported. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. Air was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the initial phase of a postulated steam line break accident inside a BWR containment. Specifically, thermal stratification in the dry well compartment and ejection of water plug from the blowdown pipe were of interest. In addition, the effect of counterpressure on bubble dynamics was studied. A temperature difference of approximately 15 deg. C between the upper and lower part of the dry well was measured. In the wet well gas space, a temperature difference of more than 30 deg. C was registered. These were measured during the compression period of the tests. Towards the end of the tests the temperature differences tended to disappear. To get a more detailed picture of temperature distribution in the wet well, especially close to the water level, a dense net of measurements is required in future experiments. In longer experiments, heat conduction to structures and heat losses to surroundings should also be taken into account. Ejection of water plugs from the blowdown pipe did not cause notable loads to the structures due to the suppressing effect of the dry well compartment. The maximum measured pressure pulse at the pool bottom was only 10 kPa and the maximum strain amplitude at the pool bottom rounding was negligible both in axial and circumferential direction. As the counterpressure of the system increased, but the flow rate remained the same, the maximum size of the air bubbles at the blowdown pipe outlet got smaller and

  6. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    International Nuclear Information System (INIS)

    Quint, W.; Dilling, J.; Djekic, S.; Haeffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schoenfelder, J.; Sikler, G.; Valenzuela, T.; Verdu, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy

  7. Report of preliminary investigations on the next-generation large-scale synchrotron radiation facility projects

    International Nuclear Information System (INIS)

    1990-01-01

    The Special Committee for Future Project of the Japanese Society for Synchrotron Radiation Research investigated the construction-projects of the large-scaled synchrotron radiation facilities which are presently in progress in Japan. As a result, the following both projects are considered the very valuable research-project which will carry the development of Japan's next-generation synchrotron radiation science: 1. the 8 GeV synchrotron radiation facilities (SPring-8) projected to be constructed by Japan Atomic Energy Research Institute and the Institute of Physical and Chemical Research under the sponsorship of Science Technology Agency at Harima Science Park City, Hyogo Pref., Japan. 2. The project to utilize the Tristan Main Ring (MR) of the National Laboratory for High Energy Physics as the radiation source. Both projects are unique in research theme and technological approach, and complemental each other. Therefore it has been concluded that both projects should be aided and ratified by the Society. (M.T.)

  8. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    International Nuclear Information System (INIS)

    MITCHELL, R.M.

    2000-01-01

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey

  9. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-10-12

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  10. Emerging Trends of the Owner-Contractor Relationship for Capital Facility Projects: From the Contractor Perspective

    National Research Council Canada - National Science Library

    Geertsema, Cameron

    2003-01-01

    .... Specifically, this document will focus on how the outcome of capital facility projects are affected by human resources practices, and the management principles and practices of the contractor-owner...

  11. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-09-28

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  12. Polar-direct-drive experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); and others

    2015-05-15

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D{sub 2} gas were imploded with total drive energies ranging from ∼500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 × 10{sup 14} to 1.2 × 10{sup 15 }W/cm{sup 2}. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  13. CHARM 2010: Experiment summary and future charm facilities

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A.; /Fermilab

    2010-12-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.

  14. Experience in startup and operation of fast flux facility

    International Nuclear Information System (INIS)

    Moffitt, W.C.

    1980-01-01

    The testing program was structured to perform all testing under formal testing procedures with a test engineer as the test director and the plant operators operating the systems and equipment. This provided excellent training and experience for the operators in preparation for eventual reactor operation. Operations preparations for the testing and operation activities has consisted of academic training, formal on-the-job training including systems operation and examinations by persons with an expert knowledge on that portion of the plant, training at EBR-II and the High Temperature Sodium Facility for selected senior operators, operating procedure preparation, training on an FFTF Control Room operator training simulator, and formal written, oral and operating examinations

  15. Gas-filled hohlraum experiments at the National Ignition Facility

    International Nuclear Information System (INIS)

    Fernandez, Juan C.; Goldman, S.R.; Kline, J.L.; Dodd, E.S.; Gautier, C.; Grim, G.P.; Hegelich, B.M.; Montgomery, D.S.; Lanier, N.E.; Rose, H.; Schmidt, D.W.; Workman, J.B.; Braun, D.G.; Dewald, E.L.; Landen, O.L.; Campbell, K.M.; Holder, J.P.; MacKinnon, A.J.; Niemann, C.; Schein, J.

    2006-01-01

    Experiments done at the National Ignition Facility laser [J. A. Paisner, E. M. Campbell, and W. Hogan, Fusion Technol. 26, 755 (1994)] using gas-filled hohlraums demonstrate a key ignition design feature, i.e., using plasma pressure from a gas fill to tamp the hohlraum-wall expansion for the duration of the laser pulse. Moreover, our understanding of hohlraum energetics and the ability to predict the hohlraum soft-x-ray drive has been validated in ignition-relevant conditions. Finally, the laser reflectivity from stimulated Raman scattering in the fill plasma, a key threat to hohlraum performance, is shown to be suppressed by choosing a design with a sufficiently high ratio of electron temperature to density

  16. Operating experience with superconducting cavities at the TESLA test facility

    International Nuclear Information System (INIS)

    Moeller, Wolf-Dietrich

    2003-01-01

    A description of the TESLA Test Facility, which has been set up at DESY by the TeV Energy Superconducting Accelerator (TESLA) collaboration, will be given as it is now after five years of installation and operation. The experience with the first three modules, each containing 8 superconducting 9-cell cavities, installed and operated in the TTF-linac will be described. The measurements in the vertical and horizontal cryostats as well as in the modules will be compared. Recent results of the operation at the TESLA design current, macropulses of 800 μsec with bunches of 3.2 nC at a rate of 2.25 MHz are given. New measurement results of the higher order modes (HOM) will be presented. The operation and optimisation of the TTF Free Electron Laser (TTF-FEL) will also be covered in this paper. (author)

  17. Equipment experience in a radioactive LFCM [liquid-fed ceramic melter] vitrification facility

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Dierks, R.D.; Sevigny, G.J.; Goles, R.W.; Surma, J.E.; Thomas, N.M.

    1986-11-01

    Since October 1984, the Pacific Northwest Laboratory (PNL) has operated a pilot-scale radioactive liquid-fed ceramic melter (RLFCM) vitrification process in shielded manipulator hot cells. This vitrification facility is being operated for the Department of Energy (DOE) to remotely test vitrification equipment components in a radioactive environment and to develop design and operation data that can be applied to production-scale projects. This paper summarizes equipment and process experience obtained from the operations of equipment systems for waste feeding, waste vitrification, canister filling, canister handling, and vitrification off-gas treatment

  18. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    International Nuclear Information System (INIS)

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-01-01

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-micros risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001

  19. Management Of Experiments And Data At The National Ignition Facility

    International Nuclear Information System (INIS)

    Azevedo, S.; Casey, A.; Beeler, R.; Bettenhausen, R.; Bond, E.; Chandrasekaran, H.; Foxworthy, C.; Hutton, M.; Krammen, J.; Liebman, J.; Marsh, A.; Pannell, T.; Rhodes, J.; Tappero, J.; Warrick, A.

    2011-01-01

    Experiments, or 'shots', conducted at the National Ignition Facility (NIF) are discrete events that occur over a very short time frame (tens of nanoseconds) separated by many hours. Each shot is part of a larger campaign of shots to advance scientific understanding in high-energy-density physics. In one campaign, scientists use energy from the 192-beam, 1.8-Megajoule pulsed laser in the NIF system to symmetrically implode a hydrogen-filled target, thereby creating conditions similar to the interior of stars in a demonstration of controlled fusion. Each NIF shot generates gigabytes of data from over 30 diagnostics that measure optical, x-ray, and nuclear phenomena from the imploding target. We have developed systems to manage all aspects of the shot cycle. Other papers will discuss the control of the lasers and targets, while this paper focuses on the setup and management of campaigns and diagnostics. Because of the low duty cycle of shots, and the thousands of adjustments for each shot (target type, composition, shape; laser beams used, their power profiles, pointing; diagnostic systems used, their configuration, calibration, settings) it is imperative that we accurately define all equipment prior to the shot. Following the shot, and capture of the data by the automatic control system, it is equally imperative that we archive, analyze and visualize the results within the required 30 minutes post-shot. Results must be securely archived, approved, web-visible and downloadable in order to facilitate subsequent publication. To-date NIF has successfully fired over 2,500 system shots, as well as thousands of test firings and dry-runs. We will present an overview of the highly-flexible and scalable campaign management systems and tools employed at NIF that control experiment configuration of the facility all the way through presentation of analyzed results.

  20. Plutonium Reclamation Facility incident response project progress report

    International Nuclear Information System (INIS)

    Austin, B.A.

    1997-01-01

    This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies

  1. Plutonium Reclamation Facility incident response project progress report

    Energy Technology Data Exchange (ETDEWEB)

    Austin, B.A.

    1997-11-25

    This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies.

  2. The SARAF Project - Soreq Applied Research Accelerator Facility

    International Nuclear Information System (INIS)

    Nagler, A.; Mardor, I.; Berkovits, D.; Piel, C.

    2004-01-01

    The relevance of particle accelerators to society, in the use of their primary and secondary beams for the analysis of physical, chemical and biological samples and for modification of properties of materials, is well recognized and documented. Nevertheless, apart of the construction of small accelerators for nuclear research in the 1960's and 70's, Israel has so far neglected this important and growing field. Furthermore, there is an urgent need in Israel for a state of the art research facility to attract and introduce students to current advanced physics techniques and technologies and to train the next generation of experimental scientists in various branches and disciplines. Therefore, Soreq NRC recently initiated the establishment of a new accelerator facility, named SARAF Soreq Applied Research Accelerator Facility. SARAF will be a continuous wave (CW), proton and deuteron RF superconducting linear accelerator with variable energy (5 - 40 MeV) and current (0.04 -2 mA). SARAF is designed to enable hands-on maintenance, which means that its beam loss will be below 10 -5 for the entire accelerator. These specifications will place SARAF in line with the next generation of accelerators world wide. Soreq expects that this fact will attract the Israeli and international research communities to use this facility extensively. Soreq NRC intends to use SARAF for basic, medical and biological research, and non-destructive testing (NDT). Another major activity will be the research and development of radio-isotopes production techniques. Given the availability of high current (up to 2 mA) protons and deuterons, a major activity will be research and development of high power density (up to 80 kW on a few cm 2 ) irradiation targets

  3. Simulation of hydrogen deflagration experiments in the ENACCEF facility using ASTEC code

    International Nuclear Information System (INIS)

    Povilaitis, Mantas; Urbonavicius, Egidijus; Rimkevicius, Sigitas

    2011-01-01

    During a hypothetic severe accident in the NPP involving degradation of the core of a light water reactor, hydrogen could be generated and released into the containment atmosphere posing a deflagration or even a detonation risk. In the case of deflagration, the integrity of the containment would be threatened by the increase of the containment atmosphere pressure and temperature. Other risks of containment damage due to turbulent flames exist, caused by high pressure pulses, shock waves and etc. For the simulation of such processes a reliable numerical codes are needed. Despite flame acceleration being largely studied for homogeneous hydrogen - air mixtures, there are still unresolved issues in this research area, e.g., the effect of turbulence level on flame acceleration and quenching. This paper presents simulations of hydrogen deflagration experiments in the ENACCEF facility using ASTEC code, performed in the frames of International Standard Program No. 49 and SARNET2 project. Experiments and simulations were performed with the aim of evaluating the codes' (a number of participants with various codes participated in the project) capabilities to simulate hydrogen combustion. ASTEC code is an integral lumped-parameter approach based nuclear safety analysis code. For the presented simulations, ASTEC modules CPA (containment thermohydromechanics) and FRONT (hydrogen deflagration) were used. Paper present ENACCEF test facility, its nodalisation schemes developed for the calculations, simulated experiments and simulations' results. Brief description of FRONT module is also presented. Calculations' results are compared with experimental results and analyzed. (author)

  4. Large scale FCI experiments in subassembly geometry. Test facility and model experiments

    International Nuclear Information System (INIS)

    Beutel, H.; Gast, K.

    A program is outlined for the study of fuel/coolant interaction under SNR conditions. The program consists of a) under water explosion experiments with full size models of the SNR-core, in which the fuel/coolant system is simulated by a pyrotechnic mixture. b) large scale fuel/coolant interaction experiments with up to 5kg of molten UO 2 interacting with liquid sodium at 300 deg C to 600 deg C in a highly instrumented test facility simulating an SNR subassembly. The experimental results will be compared to theoretical models under development at Karlsruhe. Commencement of the experiments is expected for the beginning of 1975

  5. Decontamination and decommissioning of the Organic Moderated Reactor Experiment facility (OMRE)

    International Nuclear Information System (INIS)

    Hine, R.E.

    1980-09-01

    This report describes the decontamination and decommissioning (D and D) of the Organic Moderated Reactor Experiment (OMRE) facility performed from October 1977 through September 1979. This D and D project included removal of all the facilities and as much contaminated soil and rock as practical. Removal of the reactor pressure vessel was an unusually difficult problem, and an extraordinary, unexpected amount of activated rock and soil was removed. After removal of all significantly contaminated material, the site consisted of a 20-ft deep excavation surrounded by backfill material. Before this excavation was backfilled, it and the backfill material were radiologically surveyed and detailed records made of these surveys. After the excavation was backfilled and graded, the site surface was surveyed again and found to be essentially uncontaminated

  6. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  7. Linguistic analysis of project ownership for undergraduate research experiences.

    Science.gov (United States)

    Hanauer, D I; Frederick, J; Fotinakes, B; Strobel, S A

    2012-01-01

    We used computational linguistic and content analyses to explore the concept of project ownership for undergraduate research. We used linguistic analysis of student interview data to develop a quantitative methodology for assessing project ownership and applied this method to measure degrees of project ownership expressed by students in relation to different types of educational research experiences. The results of the study suggest that the design of a research experience significantly influences the degree of project ownership expressed by students when they describe those experiences. The analysis identified both positive and negative aspects of project ownership and provided a working definition for how a student experiences his or her research opportunity. These elements suggest several features that could be incorporated into an undergraduate research experience to foster a student's sense of project ownership.

  8. Target designs for energetics experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Meezan, N B; Glenzer, S H; Suter, L J

    2008-01-01

    The goal of the first hohlraum energetics experiments on the National Ignition Facility (NIF) [G. H. Miller et al, Optical Eng. 43, 2841 (2004)] is to select the hohlraum design for the first ignition experiments. Sub-scale hohlraums heated by 96 of the 192 laser beams on the NIF are used to emulate the laser-plasma interaction behavior of ignition hohlraums. These 'plasma emulator' targets are 70% scale versions of the 1.05 MJ, 300 eV ignition hohlraum and have the same energy-density as the full-scale ignition designs. Radiation-hydrodynamics simulations show that the sub-scale target is a good emulator of plasma conditions inside the ignition hohlraum, reproducing density n e within 10% and temperature T e within 15% along a laser beam path. Linear backscatter gain analysis shows the backscatter risk to be comparable to that of the ignition target. A successful energetics campaign will allow the National Ignition Campaign to focus its efforts on optimizing ignition hohlraums with efficient laser coupling

  9. Projects at the component development and integration facility. Quarterly technical progress report, April 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY94. The CDIF is a major Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; and Spray Casting Project

  10. Experiences from three community health promotion projects in Greenland

    DEFF Research Database (Denmark)

    Curtis, Tine; Olesen, Ingelise; Kjeldsen, Ann B

    2005-01-01

    OBJECTIVES AND METHODS: Three community health promotion projects have been implemented in Greenland in the municipalities of Upernavik, Ittoqqortoormiit and Qasigiannguit. Based on project reports and other written material, this paper describes experiences from the three projects and discusses...... with strong leadership and a central organisation, whereas the Qasigiannguit project was designed as a community project with population participation in all phases of the project. The two former projects have probably had a greater direct change impact on the community, whereas the latter has strengthened...

  11. Multiple blowdown pipe experiments with the PPOOLEX facility

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2011-03-01

    This report summarizes the results of the experiments with two steel blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the blowdown pipes to the condensation pool. The main purpose of the experiment series was to study chugging phenomena (rapid condensation) while steam is discharged through two parallel blowdown pipes into the condensation pool filled with sub-cooled water. Particularly, the aim was to study if the pipe material (polycarbonate) used in the earlier experiment series with two blowdown pipes has had an effect on the general chugging behaviour and measured loads. In the experiments the initial temperature of the pool water was 20 deg. C. The steam flow rate ranged from 220 g/s to 2 350 g/s and the temperature of incoming steam from 148 deg. C to 207 deg. C. The formation and collapse of steam bubbles and the movement of the steam/water interface inside the pipes was non-synchronous. There could be even a 70 ms time difference between the occurrences of steam bubble collapses at the outlets of the two pipes. There was no clear pattern in which pipe the steam bubble first starts to collapse. Several successive bubbles could collapse first in either pipe but then the order changed for a single or several cycles. High pressure loads were measured inside the blowdown pipes due to rapid condensation of the steam volumes in the pipes and resulting water hammer effects. The loads seemed to be higher in pipe 1 than in pipe 2. An explanation for this could be a possible unequal distribution of steam flow between the two pipes. The pipe material has an effect on the condensation phenomena inside the blowdown pipes. A huge difference in the measured pressure curves inside the pipes could be observed compared to the experiments with the polycarbonate pipes. With the same test conditions the amplitude of the

  12. Multiple blowdown pipe experiments with the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-03-15

    This report summarizes the results of the experiments with two steel blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the blowdown pipes to the condensation pool. The main purpose of the experiment series was to study chugging phenomena (rapid condensation) while steam is discharged through two parallel blowdown pipes into the condensation pool filled with sub-cooled water. Particularly, the aim was to study if the pipe material (polycarbonate) used in the earlier experiment series with two blowdown pipes has had an effect on the general chugging behaviour and measured loads. In the experiments the initial temperature of the pool water was 20 deg. C. The steam flow rate ranged from 220 g/s to 2 350 g/s and the temperature of incoming steam from 148 deg. C to 207 deg. C. The formation and collapse of steam bubbles and the movement of the steam/water interface inside the pipes was non-synchronous. There could be even a 70 ms time difference between the occurrences of steam bubble collapses at the outlets of the two pipes. There was no clear pattern in which pipe the steam bubble first starts to collapse. Several successive bubbles could collapse first in either pipe but then the order changed for a single or several cycles. High pressure loads were measured inside the blowdown pipes due to rapid condensation of the steam volumes in the pipes and resulting water hammer effects. The loads seemed to be higher in pipe 1 than in pipe 2. An explanation for this could be a possible unequal distribution of steam flow between the two pipes. The pipe material has an effect on the condensation phenomena inside the blowdown pipes. A huge difference in the measured pressure curves inside the pipes could be observed compared to the experiments with the polycarbonate pipes. With the same test conditions the amplitude of the

  13. Summary review of Mound Facility's experience in decontamination of concrete

    International Nuclear Information System (INIS)

    Combs, A.B.; Davis, W.P.; Garner, J.M.; Geichman, J.R.

    1980-01-01

    Most of the current concrete decontamination work at Mound Facility involves surfaces that are contaminated with plutonium-238. Approximately 60,000 sq. ft. of concrete floors will have to be decontaminated in Mound's current Decontamination and Decommissioning (D and D) Project. Although most of these surfaces are partially protected by a barrier (tile or paint), contaminated water and acid have penetrated these barriers. The technique for decontaminating these floors is desribed. The initial cleaning of the floor involes standard water and detergent. Acids are not used in cleaning as they tend to drive the contamination deeper into the concrete surface. Next, the floor tile is manually removed inside a temporary enclosure under negative and filtered ventilation. Finally, layers of contaminated concrete are mechanically removed inside the ventilated enclosure. The suspected depth and surface area of contamination determines the type of mechanical tool used. In summary, several generic methods of concrete decontamination can be utilized: chemical, such as water, detergent, acids, paint remover, strippable paints, etc.; rotary using sanders, grinders, scarifiers, etc.; impact such as pressure washers (hydrolasers), particle blasters, scabblers, needlers, spallers, paving and rock breakers, ram hoes, etc. The particular method used depends on several factors: surface and area involved; depth of contamination; cost and availability of equipment; usage safety and radiological control; and waste generated

  14. Project Closeout Report Francium trapping facility at Triumf

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, Luis A [Univ. of Maryland, College Park, MD (United States)

    2014-09-30

    This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, the only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.

  15. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  16. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  17. EPR trademark project delivery. The value of experience

    International Nuclear Information System (INIS)

    Leverenz, Ruediger

    2013-01-01

    We are building the EPR trademark reactor fleet. Together. With four EPR trademark projects under construction in the world, AREVA has unrivalled experience in the delivery of large-scale nuclear projects, including more than a thousand lessons learned captured from Olkiluoto 3 and Flamanville 3 projects. This book of knowledge as well as the return of experience of AREVA's and EDF's teams are now being fully leveraged on ongoing projects, especially on Flamanville 3 and Taishan, and will be incorporated in all future EPR TM projects.

  18. Experience in independent power production: Two projects that closed

    Energy Technology Data Exchange (ETDEWEB)

    Kappaz, M.H.

    1994-12-31

    K and M Engineering and Consulting Corporation`s experience in independent power production is outlined. The following topics are discussed: the KMR Power Corporation, K and M strengths and strategy, key success factors, project experience, selected projects, and capital structure.

  19. HLM fuel pin bundle experiments in the CIRCE pool facility

    Energy Technology Data Exchange (ETDEWEB)

    Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)

    2015-10-15

    Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and

  20. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  1. Mixed and low-level waste treatment facility project

    International Nuclear Information System (INIS)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies

  2. Results of 15 years experiments in the PMK-2 integral-type facility for VVERs

    Energy Technology Data Exchange (ETDEWEB)

    Szabados, L.; Ezsoel, G.; Perneczky, L. [KFKI Atomic Energy Research Institute, Budapest (Hungary)

    2001-07-01

    Due to the specific features of the VVER-440/213-type reactors the transient behaviour of such a reactor system is different from the usual PWR system behaviour. To provide an experimental database for the transient behaviour of VVER systems the PMK integral-type facility, the scaled down model of the Paks NPP was designed and constructed in the early 1980's. Since the start-up of the facility 48 experiments have been performed. It was confirmed through the experiments that the facility is a suitable tool for the computer code validation experiments and to the identification of basic thermal-hydraulic phenomena occurring during plant accidents. High international interest was shown by the four Standard Problem Exercises of the IAEA and by the projects financed by the EU-PHARE. A wide range of small- and medium-size LOCA sequences have been studied to know the performance and effectiveness of ECC systems and to evaluate the thermal-hydraulic safety of the core. Extensive studies have been performed to investigate the one- and two-phase natural circulation, the effect of disturbances coming from the secondary circuit and to validate the effectiveness of accident management measures like bleed and feed. The VVER-specific case, the opening of the SG collector cover was also extensively investigated. Examples given in the report show a few results of experiments and the results of calculation analyses performed for validation purposes of codes like RELAP5, ATHLET and CATHARE. There are some other white spots in Cross Reference Matrices for VVER reactors and, therefore, further experiments are planned to perform tests primarily in further support of accident management measures at low power states of plants to facilitate the improved safety management of VVER-440-type reactors. (authors)

  3. Results of 15 years experiments in the PMK-2 integral-type facility for VVERs

    International Nuclear Information System (INIS)

    Szabados, L.; Ezsoel, G.; Perneczky, L.

    2001-01-01

    Due to the specific features of the VVER-440/213-type reactors the transient behaviour of such a reactor system is different from the usual PWR system behaviour. To provide an experimental database for the transient behaviour of VVER systems the PMK integral-type facility, the scaled down model of the Paks NPP was designed and constructed in the early 1980's. Since the start-up of the facility 48 experiments have been performed. It was confirmed through the experiments that the facility is a suitable tool for the computer code validation experiments and to the identification of basic thermal-hydraulic phenomena occurring during plant accidents. High international interest was shown by the four Standard Problem Exercises of the IAEA and by the projects financed by the EU-PHARE. A wide range of small- and medium-size LOCA sequences have been studied to know the performance and effectiveness of ECC systems and to evaluate the thermal-hydraulic safety of the core. Extensive studies have been performed to investigate the one- and two-phase natural circulation, the effect of disturbances coming from the secondary circuit and to validate the effectiveness of accident management measures like bleed and feed. The VVER-specific case, the opening of the SG collector cover was also extensively investigated. Examples given in the report show a few results of experiments and the results of calculation analyses performed for validation purposes of codes like RELAP5, ATHLET and CATHARE. There are some other white spots in Cross Reference Matrices for VVER reactors and, therefore, further experiments are planned to perform tests primarily in further support of accident management measures at low power states of plants to facilitate the improved safety management of VVER-440-type reactors. (authors)

  4. The integrated project as a learning experience

    Directory of Open Access Journals (Sweden)

    Maria Angeles Antequera

    2012-03-01

    Full Text Available Florida is a higher education centre specialising in technical and business training. Postgraduate programs, university qualifications, vocational training, secondary education, further education, occupational training and languages are taught at Florida. An educational model in accordance with the demands of the European Higher Education Area has been designed, focussing on teaching for professional competencies. We have chosen to use a methodology which promotes the development of skills and abilities, it promotes participation and it is student-centric as s/he must look for knowledge him/herself thus connecting the educational and the real world. In the different university degrees taught in our centre, each year the student carries out a project set in a real context which integrates specific competencies from the course subject and develops transversal competencies associated with the project which are the purpose of planning and progressive learning: team work, effective communication, conflict resolution, leadership skills, innovation and creativity. The IP counts for 25% of each course in terms of objectives, scheduling and final evaluation. The project grade is an individual grade for each student and is the same for all subjects which form part of the project.

  5. Use of the project management methodology to establish physical protection system at nuclear facility

    International Nuclear Information System (INIS)

    Gramotkin, F.; Kuzmyak, I.; Kravtsov, V.

    2015-01-01

    The paper considers the possibility of using the project management methodology developed by the Project Management Institute (USA) in nuclear security in terms of modernization or development of physical protection system at nuclear facility. It was demonstrated that this methodology allows competent and flexible management of the projects on physical protection, ensuring effective control of their timely implementation in compliance with the planned budget and quality

  6. OPG Western waste management facility resin overpacking project

    International Nuclear Information System (INIS)

    Rae, G.A.; Van de Bospoort, P.; Pearson, S.D.

    2007-01-01

    Liners containing radioactive resins are stored in in-ground containers. Over time, degradation of the liners has occurred and there is potential for eventual leakage. The liners require overpacking in more robust packages to allow for extended storage and final placement in the Deep Geologic Repository. This paper will discuss the equipment design for safe venting, weather protection, radiation shielding, and remote handling of the liners. Alternative considerations and reasoning for final equipment design will be addressed. It will present issues encountered and how they were overcome as well as the logistical overview of the project, including milestones and time tables. (author)

  7. Experiment archive, analysis, and visualization at the National Ignition Facility

    International Nuclear Information System (INIS)

    Hutton, Matthew S.; Azevedo, Stephen; Beeler, Richard; Bettenhausen, Rita; Bond, Essex; Casey, Allan; Liebman, Judith; Marsh, Amber; Pannell, Thomas; Warrick, Abbie

    2012-01-01

    Highlights: ► We show the computing architecture to manage scientific data from NIF experiments. ► NIF laser “shots” generate GBs of data for sub-microsec events separated by hours. ► Results are archived, analyzed and displayed with parallel and scalable code. ► Data quality and pedigree, based on calibration of each part, are tracked. ► Web-based visualization tools present data across shots and diagnostics. - Abstract: The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is the world's most energetic laser, providing a scientific research center to study inertial confinement fusion and matter at extreme energy densities and pressures. A target shot involves over 30 specialized diagnostics measuring critical x-ray, optical and nuclear phenomena to quantify ignition results for comparison with computational models. The Shot Analysis and Visualization System (SAVI) acquires and analyzes target diagnostic data for display within a time-budget of 30 min. Laser and target diagnostic data are automatically loaded into the NIF archive database through clustered software data collection agents. The SAVI Analysis Engine distributes signal and image processing tasks to a Linux cluster where computation is performed. Intermediate results are archived at each step of the analysis pipeline. Data is archived with metadata and pedigree. Experiment results are visualized through a web-based user interface in interactive dashboards tailored to single or multiple shot perspectives. The SAVI system integrates open-source software, commercial workflow tools, relational database and messaging technologies into a service-oriented and distributed software architecture that is highly parallel, scalable, and flexible. The architecture and functionality of the SAVI system will be presented along with examples.

  8. Risk management for operations of the LANL Critical Experiments Facility

    International Nuclear Information System (INIS)

    Paternoster, R.; Butterfield, K.

    1998-01-01

    The Los Alamos Critical Experiments Facility (LACEF) currently operates two burst reactors (Godiva-IV and Skua), one solution assembly [the Solution High-Energy Burst Assembly (SHEBA)], two fast-spectrum benchmark assemblies (Flattop and Big Ten), and five general-purpose remote assembly machines that may be configured with nuclear materials and assembled by remote control. Special nuclear materials storage vaults support these and other operations at the site. With this diverse set of operations, several approaches are possible in the analysis and management of risk. The most conservative approach would be to write a safety analysis report (SAR) for each assembly and experiment. A more cost-effective approach is to analyze the probability and consequences of several classes of operations representative of operations on each critical assembly machine and envelope the bounding case accidents. Although the neutron physics of these machines varies widely, the operations performed at LACEF fall into four operational modes: steady-state mode, approach-to-critical mode, prompt burst mode, and nuclear material operations, which can include critical assembly fuel loading. The operational sequences of each mode are very nearly identical, whether operated on one assembly machine or another. The use of an envelope approach to accident analysis is facilitated by the use of classes of operations and the use of bounding case consequence analysis. A simple fault tree analysis of operational modes helps resolve which operations are sensitive to human error and which are initiated by hardware of software failures. Where possible, these errors and failures are blocked by TSR LCOs. Future work will determine the probability of accidents with various initiators

  9. Virtual neutron scattering experiments - Training and preparing students for large-scale facility experiments

    Directory of Open Access Journals (Sweden)

    Julie Hougaard Overgaard

    2016-11-01

    Full Text Available Dansk Vi beskriver, hvordan virtuelle eksperimenter kan udnyttes i et læringsdesign ved at forberede de studerende til hands-on-eksperimenter ved storskalafaciliteter. Vi illustrerer designet ved at vise, hvordan virtuelle eksperimenter bruges på Niels Bohr Institutets kandidatkursus om neutronspredning. I den sidste uge af kurset, rejser studerende til et storskala neutronspredningsfacilitet for at udføre neutronspredningseksperimenter. Vi bruger studerendes udsagn om deres oplevelser til at argumentere for, at arbejdet med virtuelle experimenter forbereder de studerende til at engagere sig mere frugtbart med eksperimenter ved at lade dem fokusere på fysikken og relevante data i stedet for instrumenternes funktion. Vi hævder, at det er, fordi de kan overføre deres erfaringer med virtuelle eksperimenter til rigtige eksperimenter. Vi finder dog, at læring stadig er situeret i den forstand, at kun kendskab til bestemte eksperimenter overføres. Vi afslutter med at diskutere de muligheder, som virtuelle eksperimenter giver. English We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred. We proceed to

  10. CrossRef Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project

    CERN Document Server

    Delahaye, P; Angot, J; Cam, J F; Traykov, E; Ban, G; Celona, L; Choinski, J; Gmaj, P; Jardin, P; Koivisto, H; Kolhinen, V; Lamy, T; Maunoury, L; Patti, G; Thuillier, T; Tarvainen, O; Vondrasek, R; Wenander, F

    2016-01-01

    The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structure issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam c...

  11. The Pajarito Site operating procedures for the Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-12-01

    Operating procedures consistent with DOE Order 5480.6, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Los Alamos Critical Experiments Facility (LACEF) of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1983 and apply to any criticality experiment performed at the facility. 11 refs

  12. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Michael F. Simpson

    2013-01-01

    Full Text Available Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separating fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.

  13. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility

    Directory of Open Access Journals (Sweden)

    Wanguo Zheng

    2017-09-01

    Full Text Available The SG-Ⅲ laser facility (SG-Ⅲ is the largest laser driver for inertial confinement fusion (ICF researches in China, which has 48 beamlines and can deliver 180 kJ ultraviolet laser energy in 3 ns. In order to meet the requirements of precise physics experiments, some new functionalities need to be added to SG-Ⅲ and some intrinsic laser performances need upgrade. So at the end of SG-Ⅲ's engineering construction, the 2-year laser performance upgrade project started. This paper will introduce the newly added functionalities and the latest laser performance of SG-Ⅲ. With these function extensions and performance upgrade, SG-Ⅲ is now fully prepared for precise ICF experiments and solidly paves the way towards fusion ignition.

  14. Integrated project management information systems: the French nuclear industry experience

    International Nuclear Information System (INIS)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-01-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK)

  15. Integrated project management information systems: the French nuclear industry experience

    Energy Technology Data Exchange (ETDEWEB)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-03-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK).

  16. Multi-site risk-based project planning, optimization, sequencing, & budgeting process and tool for the integrated facility disposition project

    International Nuclear Information System (INIS)

    Nelson, J.G.; Castillo, C.; Huntsman, J.; Killoy, S.; Lucek, H.; Marks, T.C.

    2011-01-01

    Faced with the Department of Energy (DOE) Complex Transformation, National Nuclear Security Administration (NNSA) was tasked with developing an integrated plan for the decommissioning of over 400 facilities and 300 environmental remediation units, as well as the many reconfiguration and modernization projects at the Oak Ridge National Laboratory (ORNL) and Y-12 Complex. Manual scheduling of remediation activities is time-consuming and inherently introduces bias of the scheduler or organization into the process. Clearly a well-defined process, quantitative risk-based tool was needed to develop an objective, unbiased baseline sequence and schedule with a sound technical foundation for the Integrated Facility Disposition Project (IFDP). Faced with limited available data, innovation was needed to extrapolate intelligent relative data for key risk parameters based on known data elements. The IFDP Supermodel was customized and expanded to provide this capability for conceptual planning of diverse project portfolios and multiple sites. (author)

  17. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  18. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    International Nuclear Information System (INIS)

    Hall, L.R.

    1995-01-01

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1

  19. An experiment with the fourth Futamura projection

    DEFF Research Database (Denmark)

    Glück, Robert

    2010-01-01

    We have experimentally validated the theoretical insight, that a compiler generator is an Ershov generating extension of a program specializer, by showing that an existing offline partial evaluator can perform the fourth Futamura projection. Specifically, an online and an offline partial evaluator...... for an imperative flowchart language were transformed into two new compiler generators by Romanenko’s classical partial evaluator Unmix. The two partial evaluators are described, as is a novel recursive method for polyvariant specialization. The new compiler generators are demonstrated by converting a universal...

  20. EPRtm project experience: selection of partners and supply chain

    International Nuclear Information System (INIS)

    Lorenzo, D. de

    2012-01-01

    With 4 EPR T M units under construction, the new plants to be built in the following years will benefit from the return on experience of the work already performed. The knowledge about licensing processes, detail engineering, supply chain, logistics and on-site work gathered from the Olkiluoto 3 and Flamanville 3 projects has already been used in the Taishan 1 and 2 project, resulting in a project that is on schedule and on budget. This article will show how the advantage of such broad experience gained will be used to benefit future projects to ensure certainty of completion, leaving few and limited unresolved issues even before the beginning of the project. Several areas that are not usually tackled when speaking of a New Build project will be covered by this text from the point of view of a nuclear vendor: Project Partnership Selection and the Gate Review Process applied by AREVA in the supply chain of the main components. (Author)

  1. Project Marco Polo: Experiences Applying Geography.

    Science.gov (United States)

    Trygestad, JoAnn; Nelson, Jasmine

    1993-01-01

    Describes a summer 1992 study tour of Egypt and Greece by 15 teachers, 15 students, and 5 geography administrators. Focuses on the experiences and attitudes of one eighth-grade student. Asserts that her presentations to student and adult groups have encouraged other students to become more interested in travel and other cultures. (CFR)

  2. Safety requirements and safety experience of nuclear facilities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schnurer, H.L.

    1977-01-01

    Peaceful use of nuclear energy within the F.R.G. is rapidly growing. The Energy Programme of the Federal Government forecasts a capacity of up to 50.000 MW in 1985. Whereas most of this capacity will be of the LWR-Type, other activities are related to LMFBR - and HTGR - development, nuclear ships, and facilities of the nuclear fuel cycle. Safety of nuclear energy is the pacemaker for the realization of nuclear programmes and projects. Due to a very high population - and industrialisation density, safety has the priority before economical aspects. Safety requirements are therefore extremely stringent, which will be shown for the legal, the technical as well as for the organizational area. They apply for each nuclear facility, its site and the nuclear energy system as a whole. Regulatory procedures differ from many other countries, assigning executive power to state authorities, which are supervised by the Federal Government. Another particularity of the regulatory process is the large scope of involvement of independent experts within the licensing procedures. The developement of national safety requirements in different countries generates a necessity to collaborate and harmonize safety and radiation protection measures, at least for facilities in border areas, to adopt international standards and to assist nuclear developing countries. However, different nationally, regional or local situations might raise problems. Safety experience with nuclear facilities can be concluded from the positive construction and operation experience, including also a few accidents and incidents and the conclusions, which have been drawn for the respective factilities and others of similar design. Another tool for safety assessments will be risk analyses, which are under development by German experts. Final, a scope of future problems and developments shows, that safety of nuclear installations - which has reached a high performance - nevertheless imposes further tasks to be solved

  3. Experience in implementing projects in Eastern Europe

    International Nuclear Information System (INIS)

    Weichard, A.; Bauer, I.; Rieck, R.; Ziehm, R.

    2007-01-01

    The article covers the present projects and activities in Eastern Europe of Nukem Technologies GmbH. The company's East European business began in 1973 in the field of uranium trading. After difficult negotiations in the period of the ''cold war'' it became possible to enter into an agreement with the Soviet foreign trade organization, Techsnabexport, about purchases of uranium for Western nuclear power plants. In the course of Nukem's realignment in the late 1980s, the focus was shifted more and more to the possibility of exporting into other countries the technologies developed and proven in Germany. This included countries in Eastern Europe. The situation changed abruptly with the political opening of Eastern Europe. A large potential market opened to Nukem as a supplier of technologies and plants for waste treatment and, later, the wider area of decommissioning. The partners in Eastern Europe were interested in proven, modern solutions. The ensuing success was also due to the fact that Nukem, in the early nineties, hired specialists from the new German federal states who had studied in the Soviet Union and were familiar with Russian technology, language, and culture. Soliciting analogous projects in the countries of Eastern Europe other than the former Soviet Union was begun in a parallel process. Very soon it turned out that also the interim storage of spent fuel elements constituted a potential market. (orig.)

  4. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  5. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures

  6. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  7. The muon science facility at the JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Miyake, Y.; Nishiyama, K.; Makimura, S.; Kawamura, N.; Shimomura, K.; Kadono, R.; Higemoto, W.; Fukuchi, K.; Beveridge, J.L.; Ishida, K.; Matsuzaki, T.; Watanabe, I.; Matsuda, Y.; Sakamoto, S.; Nakamura, S.N.; Nagamine, K.

    2003-01-01

    The Muon Science Facility is one of the experimental arenas of the JAERI/KEK Joint Project, which also includes neutron science, particle and nuclear physics, neutrino physics and nuclear transmutation science. Following the recommendations by the review committees, the Joint Project was finally approved for construction at the end of December, 2000. The approval is for Phase 1 of 1335 Oku Yen out of the total project cost of 1890 Oku Yen. It is planned to locate the muon science experimental area together with the neutron facility in an integrated building, as a facility for materials and life science studies. Because its construction will be started in April 2003, we are now working to complete the detailed design of the building structure, shielding, electrical services, cooling water, primary proton beam line, one muon target and secondary beam lines

  8. Resonance Project; Music from the ATLAS Experiment

    CERN Multimedia

    Claudia Marcelloni

    2010-01-01

    The ATLAS Collaboration comprises physicists, engineers, technicians and support staff from 38 countries who have come together at CERN to build and run one of the largest, most complex scientific experiments known to mankind. Drawn together by our common love of science, many of us are also passionate about music. In October 2008, we marked the completion of the ATLAS detector construction with a series of live performances, and thus was born the idea for Resonance. The recording experience was exciting and enjoyable for all of us, many of whom had never entered a studio before. Resonance is a double CD featuring a variety of musical styles from classical to heavy metal. It also includes a DVD with footage of the recording sessions and interviews with some of the musicians. For more information go to www.atlas-resonance.ch

  9. The nuclear criticality information system's project to archive unpublished critical experiment data

    International Nuclear Information System (INIS)

    Koponen, B.L.; Doherty, A.L.; Clayton, E.D.

    1991-01-01

    Critical experiment facilities produced a large amount of important data during the past forty-five years. However, much useful data remains unpublished. The unpublished material exists in the form of experimenters' logbooks, notes, photographs, material descriptions, etc. These data could be important for computer code validation, understanding the physics of criticality, facility design, or for setting process limits. In the past, criticality specialists have been able to obtain unpublished details by direct contact with the experimenters. The closure of facilities and the loss of personnel is likely to lead to the loss of the facility records unless an effort is made to ensure that the records are preserved. It has been recognized for some time that the unpublished records of critical experiment facilities comprise a valuable resource, thus the Nuclear Criticality Information System (NCIS) is working to ensure that the records are preserved and made available via NCIS. As a first step in the archiving project, we identified criteria to help judge which series of experiments should be considered for archiving. Data that are used for validating calculations or the basis for subcritical limits in standards, handbooks, and guides are of particular importance. In this paper we will discuss the criteria for archiving, the priority list of experiments for archiving, and progress in developing an NCIS image database using current CD-ROM technology. (Author)

  10. Mt. Apo geothermal project : a learning experience in sustainable development

    International Nuclear Information System (INIS)

    Ote, Leonardo M.; De Jesus, Agnes C.

    1997-01-01

    The Mt. Apo geothermal project, a critical component of the Philippine energy program met stiff opposition from 1988-1991. Seemingly unresolvable legal, environmental and cultural issues between the government developer, the Philippine National Oil Company-Energy Development Corporation (PNOC-EDC) and various affected sectors delayed the project for two years. The paper discusses the efforts undertaken by the developer to resolve these conflicts through a series of initiatives that transformed the project into a legally, environmentally and socially acceptable project. Lastly, the PNOC-EDC experience has evolved a new set of procedures for the environmental evaluation of development project in the Philippines. (author)

  11. The AGP-Project conceptual design for a Spanish HLW final disposal facility

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.-J.; Huertas, F.; Ulibarri, A.

    1992-01-01

    Within the framework of the AGP Project a Conceptual Design for a HLW Final Disposal Facility to be eventually built in an underground salt formation in Spain has been developed. The AGP Project has the character of a system analysis. In the current project phase I several alternatives has been considered for different subsystems and/or components of the repository. The system variants, developed to such extent as to allow a comparison of their advantages and disadvantages, will allow the selection of a reference concept, which will be further developed to technical maturity in subsequent project phases. (author)

  12. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  13. The restoration project : decontamination of facilities from chemical, biological and radiological contamination after terrorist action

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Duncan, L.; Best, M.; Krishnan; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2005-07-01

    Bioterrorism poses a real threat to the public health and national security, and the restoration of affected facilities after a chemical, biological or radiological attack is a major concern. This paper reviewed aspects of a project conducted to collect information, test and validate procedures for site restoration after a terrorist attack. The project began with a review of existing technology and then examined new technologies. Restoration included pickup, neutralization, decontamination, removal and final destruction and deposition of contaminants as well as cleaning and neutralization of material and contaminated waste from decontamination. The project was also intended to test existing concepts and develop new ideas. Laboratory scale experiments consisted of testing, using standard laboratory techniques. Radiation decontamination consisted of removal and concentration of the radioisotopes from removal fluid. General restoration guidelines were provided, as well as details of factors considered important in specific applications, including growth conditions and phases of microorganisms in biological decontamination, or the presence of inhibitors or scavengers in chemical decontamination. Various agents were proposed that were considered to have broad spectrum capability. Test surrogates for anthrax were discussed. The feasibility of enhanced oxidation processes was examined in relation to the destruction of organophosphorus, organochlorine and carbamate pesticides. The goal was to identify a process for the treatment of surfaces contaminated with pesticides. Tests included removal from carpet, porous ceiling tile, steel plates, and floor tiles. General radiation contamination procedures and techniques were reviewed, as well as radiological decontamination waste treatment. It was concluded that there is no single decontamination technique applicable for all contaminants, and decontamination methods depend on economic, social and health factors. The amount of

  14. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    International Nuclear Information System (INIS)

    1993-07-01

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review

  15. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  16. Utilization of the BARC critical facility for ADS related experiments

    Indian Academy of Sciences (India)

    The paper discusses the basic design of the critical facility, whose main pur- ... systems. In addition, it will have a flux mapping system based on 25 fission ... neutron source leads to peaked flux distribution exciting other higher harmonic.

  17. Radiolysis of Fricke solution: initial experiments with the pelletron facility

    International Nuclear Information System (INIS)

    Sharma, S.B.; Rao, B.S.M.

    1994-01-01

    Experimental details of heavy ion irradiation of aqueous solutions using the Nuclear Science Centre (NSC) pelletron facility and the initial results from the radiolysis of Fricke solution using oxygen-16 ions are reported. (author). 4 refs., 1 fig

  18. Nuclear facility projects in Finland: quality of environmental impact assessment (EIA) processes

    International Nuclear Information System (INIS)

    Vaatainen, A.

    2001-01-01

    In Finland, three public EIA hearings arranged by the contact authority concerning nuclear facilities were organised in 1999: the EIAs of two reactors planned to be constructed in Eurajoki (Olkiluoto) and in Loviisa, and the EIA of a final disposal facility of spent nuclear fuel, to be situated either in Olkiluoto, Loviisa, Romuvaara or Kivetty. Additionally, an application for a decision-in-principle concerning a final disposal facility to be constructed in Olkiluoto was submitted. The Ministry of Trade and Industry is the contact authority in all nuclear projects in Finland. Probably due to the simultaneity of the processes and the great importance of nuclear facility projects to the whole of society, the public opinions did not include only views about environmental impacts of each project, but also opposing and overall views about the use of nuclear energy and its safety. As for the final disposal project, alternative methods were introduced and opposition to the project itself was expressed instead of or in addition to the environmental impacts. (author)

  19. Safety analysis of the Los Alamos critical experiments facility

    International Nuclear Information System (INIS)

    Paxton, H.C.

    1975-10-01

    The safety of Pajarito Site critical assembly operations depends upon protection built into the facility, upon knowledgeable personnel, and upon good practice as defined by operating procedures and experimental plans. Distance, supplemented by shielding in some cases, would protect personnel against an extreme accident generating 10 19 fissions. During the facility's 28-year history, the direct cost of criticality accidents has translated to a risk of less than $200 per year

  20. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  1. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building

  2. Successes and Experiences of the WIPP Project

    International Nuclear Information System (INIS)

    Chu, Margaret S.Y.; Weart, Wendell D.

    2000-01-01

    In May 1998, the US Environmental Agency (EPA) certified the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) as being in compliance with all of the applicable regulations governing the permanent disposal of spent nuclear fuel, high-level waste, and transuranic radioactive waste. The WIPP, a transuranic waste repository, is the first deep geologic repository in the US to have successfully demonstrated regulatory compliance with long-term radioactive waste disposal regulations and be certified to receive wastes. Many lessons were learned throughout the 25-year history of the WIPP--from site selection to the ultimate successful certification. The experiences and lessons learned from the WIPP may be of general interest to other repository programs in the world. The lessons learned include all facets of a repository program: programmatic, managerial, regulatory, technical, and social. This paper addresses critical issues that arose during the 25 years of WIPP history and how they influenced the program

  3. Project-Based Laboratory Experiences in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Narendra Sharma

    2011-12-01

    Full Text Available In this paper we describe project-based laboratories in Mechanical Engineering designed to provide semester-long team experiences which mimic the real life industrial processes of design, development, testing and optimization. The labs are focused on courses at the sophomore level and thus require special attention to constraints of student backgrounds and experience. This paper describes laboratory projects in Dynamics and Fluid Mechanics.

  4. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  5. Correlational Study of Project Managers' Competence Experience, Education, and Technology Experience on Project

    Science.gov (United States)

    Hosford, Bryan

    2017-01-01

    Organizations continue to rely on information technology (IT) as a foundational element, yet poor IT project success continues to impact growth and innovation. Research into IT project success is widespread yet has focused on high-level project management attributes, not specific IT solutions. A review of the research literature revealed that the…

  6. Material Control and Accountability Experience at the Fuel Conditioning Facility

    International Nuclear Information System (INIS)

    Vaden, D.; Fredrickson, G.L.

    2007-01-01

    The Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) treats spent nuclear fuel using an electrometallurgical process that separates the uranium from the fission products, sodium thermal bond, and cladding materials. Material accountancy is necessary at FCF for two reasons: 1) it provides a mechanism for detecting a potential loss of nuclear material for safeguards and security, and 2) it provides a periodic check of inventories to ensure that processes and materials are within control limits. Material Control and Accountability is also a Department of Energy (DOE) requirement (DOE Order 474.1). The FCF employs a computer based Mass Tracking (MTG) System to collect, store, retrieve, and process data on all operations that directly affect the flow of materials through the FCF. The MTG System is important for the operations of the FCF because it supports activities such as material control and accountability, criticality safety, and process modeling. To conduct material control and accountability checks and to monitor process performance, mass balances are routinely performed around the process equipment. The equipment used in FCF for pyro-processing consists of two mechanical choppers and two electro-refiners (the Mark-IV with the accompanying element chopper and Mark-V with the accompanying blanket chopper for processing driver fuel and blanket, respectively), and a cathode processor (used for processing both driver fuel and blanket) and casting furnace (mostly used for processing driver fuel). Performing mass balances requires the measurement of the masses and compositions of several process streams and equipment inventories. The masses of process streams are obtained via in-cell balances (i.e., load cells) that weigh containers entering and leaving the process equipment. Samples taken at key locations are analyzed to determine the composition of process streams and equipment inventories. In cases where equipment or containers cannot be

  7. Design of the plutonium facility for animal experiments and its management experience

    International Nuclear Information System (INIS)

    Koizumi, Akira; Fukuda, Satoshi

    1998-01-01

    Design and radiation control of authors' facility which was made as a nuclear fuel laboratory for animal experiments were described. Before construction, the animals thought to be used were rats, mice, beagle dogs and monkeys. 239 Pu and certain other radioisotopes were to be used. At present, 200 dogs and 1800 small animals can be maintained. The points for design were tolerability against quake, reduced-pressure management and permanent storage of waste containing Pu. The facility building composed from 2nd, 4th, and 6th laboratory floors and between them, from the so-called mechanical floors which are spaces for ducts. The latter floors are quite useful. The system for reduced pressure is of 3 patterns of rooms without hood, with ordinary hood and with air-curtain hood. For animal maintenance, there are 3 types of maintenance means: Glove box, hood and ordinary animal room. There are drainage equipment where Pu can be removed by precipitation and charcoal adsorption and incineration equipment which is necessary for reducing the waste volume. In the latter, HEPA filters are finally used for releasing the gas. There is no particular problem in the radiation control. For the personnel control, lung-monitoring is performed before and at the end of personnel registration. Environmental monitoring of Pu is optionally performed. Removal of Pu particles generated in the inhalation experiments could be attained by the use of ULPA and HEPA filters to the level less than 1/10 17 times the reference level. Keeping the technology level enough high for facility maintenance and management was considered to be important at present and in future. (K.H.)

  8. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  9. Nuclear engineering experiments at experimental facilities of JNC in graduate course of Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Hayashizaki, Noriyosu; Takahashi, Minoru; Aoyama, Takafumi; Onose, Shoji

    2005-01-01

    Nuclear engineering experiments using outside facilities of the campus have been offered for graduate students in the nuclear engineering course in Tokyo Institute of Technology (Tokyo Tech.). The experiments are managed with the collaboration of Japan Nuclear Cycle Development Institute (JNC), Japan Atomic Energy Research Institute (JAERI) and Research Reactor Institute, Kyoto University (KUR). This report presents the new curriculum of the nuclear engineering experiments at JNC since 2002. The change is due to the shutdown of Deuterium Criticality Assembly Facility (DCA) that was used as an experimental facility until 2001. Reactor physics experiment using the training simulator of the experimental fast reactor JOYO is continued from the previous curriculum with the addition of the criticality approach experiment and control rods calibration. A new experimental subject is an irradiated material experiment at the Material Monitoring Facility (MMF). As a result, both are acceptable as the student experiments on the fast reactor. (author)

  10. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS: Executive summary

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level

  11. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    International Nuclear Information System (INIS)

    Renfro, G.G.

    1994-01-01

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices

  12. Defense waste processing facility radioactive operations. Part 1 - operating experience

    International Nuclear Information System (INIS)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and the world's largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge trademark level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs

  13. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    International Nuclear Information System (INIS)

    Martinez, B.; Montoya, A.; Klein, W.

    1999-01-01

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date

  14. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  15. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1997-01-01

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  16. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    International Nuclear Information System (INIS)

    Kollar, Lenka; Mathews, Caroline E.

    2009-01-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  17. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    Energy Technology Data Exchange (ETDEWEB)

    Kollar, Lenka; Mathews, Caroline E.

    2009-07-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  18. The LPCTrap facility for in-trap decay experiments

    International Nuclear Information System (INIS)

    Rodriguez, D.; Ban, G.; Durand, D.; Duval, F.; Flechard, X.; Herbane, M.; Lienard, E.; Mauger, F.; Mery, A.; Naviliat-Cuncic, O.; Thomas, J.-C.

    2007-01-01

    The LPCTrap facility is coupled to the low-energy beam line LIRAT of the SPIRAL source at GANIL (France). The facility comprises an RFQ trap for beam preparation and a transparent Paul trap for in-trap decay studies. The system has been tested for several ion species. The Paul trap has been fully characterized for 6 Li + and 23 Na + ions. This characterization together with GEANT4 simulations of the in-trap decay setup (Paul trap and detection system) has permitted to predict the effect of the size of the ion cloud on the decay study of 6 He + .

  19. Project Management Web Tools at the MICE experiment

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Project management tools like Trac are commonly used within the open-source community to coordinate projects. The Muon Ionization Cooling Experiment (MICE) uses the project management web application Redmine to host mice.rl.ac.uk. Many groups within the experiment have a Redmine project: analysis, computing and software (including offline, online, controls and monitoring, and database subgroups), executive board, and operations. All of these groups use the website to communicate, track effort, develop schedules, and maintain documentation. The issue tracker is a rich tool that is used to identify tasks and monitor progress within groups on timescales ranging from immediate and unexpected problems to milestones that cover the life of the experiment. It allows the prioritization of tasks according to time-sensitivity, while providing a searchable record of work that has been done. This record of work can be used to measure both individual and overall group activity, identify areas lacking sufficient personne...

  20. Discriminative facility and its role in the perceived quality of interactional experiences.

    Science.gov (United States)

    Cheng, C; Chiu, C Y; Hong, Y Y; Cheung, J S

    2001-10-01

    Discriminative facility refers to an individual's sensitivity to subtle cues about the psychological meaning of a situation. This research aimed at examining (a) the conceptual distinctiveness of discriminative facility, (b) the situation-appropriate aspect of this construct, and (c) the relationship between discriminative facility and interpersonal experiences. Discriminative facility was assessed by a new measure of situation-appropriate behaviors across a variety of novel stressful situations. Results from study 1 showed that discriminative facility had weak positive relationships with cognitive complexity and nonsignificant relationships with self-monitoring and social desirability, indicating that discriminative facility is a unique construct. Results from Study 2 revealed that higher levels of discriminative facility were associated with higher levels of perceived social support and a greater number of pleasant interpersonal events experienced, thus providing support for the theoretical proposition that discriminative facility is an aspect of social intelligence.

  1. Evaluation of nuclear facility decommissioning projects. Status report. Humboldt Bay Power Plant Unit 3, SAFSTOR decommissioning

    International Nuclear Information System (INIS)

    Baumann, B.L.; Haffner, D.R.; Miller, R.L.; Scotti, K.S.

    1986-06-01

    This document explains the purpose of the US Nuclear Regulatory Commission's (NRC) Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program and summarizes information concerning the decommissioning of the Humboldt Bay Power Plant (HBPP) Unit 3 facility. Preparations to put this facility into a custodial safe storage (SAFSTOR) mode are currently scheduled for completion by June 30, 1986. This report gives the status of activities as of June 1985. A final summary report will be issued after completion of this SAFSTOR decommissioning activity. Information included in this status report has been collected from the facility decommissioning plan, environmental report, and other sources made available by the licensee. This data has been placed in a computerized data base system which permits data manipulation and summarization. A description of the computer reports that can be generated by the decommissioning data system (DDS) for Humboldt Bay and samples of those reports are included in this document

  2. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  3. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  4. Economies of using seismic experience data qualification methods at Department of Energy facilities

    International Nuclear Information System (INIS)

    Loceff, F.; Antaki, G.; Goen, L.

    1995-01-01

    This paper summarizes the implementation of the seismic qualification of existing equipment using experience data techniques. The emphasis is on the economies of this approach compared with standard qualification methods of analysis and testing or replacement with qualified equipment. Seismic qualification of existing equipment using experience data is a technical necessity and is the most economically attractive of the options. Representative costs for seismic qualification at two facilities show costs are substantially lower than the costs for qualification using conventional methods. Because of the experience to date, the authors recommend that the Department of Energy continue to sponsor the Existing Facilities Program for applying qualification using experience data techniques at DOE facilities

  5. Helium turbomachinery operating experience from gas turbine power plants and test facilities

    International Nuclear Information System (INIS)

    McDonald, Colin F.

    2012-01-01

    The closed-cycle gas turbine, pioneered and deployed in Europe, is not well known in the USA. Since nuclear power plant studies currently being conducted in several countries involve the coupling of a high temperature gas-cooled nuclear reactor with a helium closed-cycle gas turbine power conversion system, the experience gained from operated helium turbomachinery is the focus of this paper. A study done as early as 1945 foresaw the use of a helium closed-cycle gas turbine coupled with a high temperature gas-cooled nuclear reactor, and some two decades later this was investigated but not implemented because of lack of technology readiness. However, the first practical use of helium as a gas turbine working fluid was recognized for cryogenic processes, and the first two small fossil-fired helium gas turbines to operate were in the USA for air liquefaction and nitrogen production facilities. In the 1970's a larger helium gas turbine plant and helium test facilities were built and operated in Germany to establish technology bases for a projected future high efficiency large nuclear gas turbine power plant concept. This review paper covers the experience gained, and the lessons learned from the operation of helium gas turbine plants and related test facilities, and puts these into perspective since over three decades have passed since they were deployed. An understanding of the many unexpected events encountered, and how the problems, some of them serious, were resolved is important to avoid them being replicated in future helium turbomachines. The valuable lessons learned in the past, in many cases the hard way, particularly from the operation in Germany of the Oberhausen II 50 MWe helium gas turbine plant, and the technical know-how gained from the formidable HHV helium turbine test facility, are viewed as being germane in the context of current helium turbomachine design work being done for future high efficiency nuclear gas turbine plant concepts. - Highlights:

  6. Ectopic pregnancy experience in a tertiary health facility in South ...

    African Journals Online (AJOL)

    Background: Ectopic pregnancy is a life-threatening gynecological emergency, and a significant cause of maternal morbidity and mortality in Nigeria. Objective: To determine the incidence, clinical presentation, risk factors and management outcomes of ectopic pregnancies in a tertiary health facility. Methods: A retrospective ...

  7. Development of BNL Heat Transfer Facility 1: flashing experiments

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Klein, J.H.; Zimmer, G.A.; Abuaf, N.; Jones, O.C. Jr.

    1979-01-01

    A major area of interest to reactor safety technology is the prediction of actual vapor generation rates under conditions of thermal nonequilibrium as would be encountered during a loss-of-coolant accident (LOCA) in a light water reactor. In support of the development of advanced codes dealing with LOCA induced flashing, analytical models of the nonequilibrium vapor generation processes of interest have been formulated, and an experimental facility has been constructed to provide data to verify these models. This facility is known as BNL Heat Transfer Facility. The experimental facility consists of a flow loop, test section and the data acquisition and analysis system. The main portion of the flow loop is constructed from three inch nominal (7.6 cm) stainless steel pipe. High purity water is circulated through the loop using a centrifugal pump rated 1500 l/min at 600 kPa. Very close and stable control of all loop parameters is required since flashing is sensitive to very small changes in such parameters as flow rate, subcooling, and pressure

  8. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  9. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Mendiratta, O.P.; Ploetz, D.K.

    2000-01-01

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste processing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999

  10. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    Science.gov (United States)

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry. © The Author(s) 2016.

  11. The JAERI-KEK joint project on high intensity proton accelerator and overview of nuclear transmutation experimental facilities

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2001-01-01

    A status of the JAERI/KEK joint project on High Intensity Proton Accelerator is overviewed. It is highlighted that Experimental facilities for development of the accelerator driven system (ADS) for nuclear transmutation technology is proposed under the project. (author)

  12. Royal Military College of Canada SLOWPOKE-2 facility. Integrated regulating and instrumentation system (SIRCIS) upgrade project

    International Nuclear Information System (INIS)

    Corcoran, W.P.; Nielsen, K.S.; Kelly, D.G.; Weir, R.D.

    2013-01-01

    The SLOWPOKE-2 Facility at the Royal Military College of Canada has operated the only digitally controlled SLOWPOKE reactor since 2001 (Version 1.0). The present work describes ongoing project development to provide a robust digital reactor control system that is consistent with Aging Management as summarized in the Facility's Life Cycle Management and Maintenance Plan. The project has transitioned from a post-graduate research activity to a comprehensively managed project supported by a team of RMCC professional and technical staff who have delivered an update of the V1.1 system software and hardware implementation that is consistent with best Canadian nuclear industry practice. The challenges associated with the implementation of Version 2.0 in February 2012, the lessons learned from this implementation, and the applications of these lessons to a redesign and rewrite of the RMCC SLOWPOKE-2 digital instrumentation and regulating system (Version 3) are discussed. (author)

  13. Horonobe Underground Research Laboratory project. Plans of investigations during shaft and drift excavation (Construction of underground facilities: Phase II)

    International Nuclear Information System (INIS)

    2005-06-01

    Horonobe Underground Research Laboratory Project is planned for over 20 years to establish the scientific and technical basis for the underground disposal of high-level radioactive wastes in Japan. The investigations are conducted by JNC in three phases, from the surface (Phase I), during the construction of the underground facilities (Phase II), and using the facilities (Phase III). This report concerns the investigation plans for Phase II. During excavation of shafts and drifts, detailed geological and borehole investigation will be conducted and the geological model constructed in Phase I is evaluated and revised by newly acquired data of geophysical and geological environment. Detailed in-situ experiments, as well as the effects of shaft excavation, are also done to study long-term changes, rock properties, groundwater flow and chemistry to ensure the reliability of repository technology and establish safety assessment methodology. (S. Ohno)

  14. Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, M.A.; Vinikour, W. [Argonne National Lab., IL (United States). Environmental Assessment Div.; Allison, T. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.] [and others

    1996-09-01

    This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

  15. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  16. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    International Nuclear Information System (INIS)

    1992-01-01

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs

  17. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system

  18. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  19. As Built Verification Plan for Cask Transportation Facility Modifications (CTFM) - Project A.5 and A.6

    International Nuclear Information System (INIS)

    LANE, K.I.

    2000-01-01

    This document establishes an As-built Verification Plan (AVP) for implementing requirements in PHMC Engineering Requirements HNF-PRO-1819, Rev. 4, Sections 2.8.3.d and 2.10.8 and Spent Nuclear Fuels (SNF) Project Administrative Procedure EN-6-012-01. This AVP defines and implements approved processes to document the physical configuration of the project scope installed within the facility and identify discrepancies between the associated project engineering drawings and the field configuration, and the component index (CI) database as defined in AP EN 6-005-02. This AVP defines requirements for project activities verifying conformance of structures, systems, and components (SSCs) to project specified requirements

  20. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Connor, M.D.

    1994-01-01

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover

  1. Overview of progress on the improvement projects for the LANSCE accelerator and target facilities

    International Nuclear Information System (INIS)

    Macek, R.J.; Browne, J.; Brun, T.; Donahue, J.B.; Fitzgerald, D.H.; Hoffman, E.; Pynn, R.; Schriber, S.; Weinacht, D.

    1997-01-01

    Three projects have been initiated since 1994 to improve the performance of the accelerator and target facilities for the Los Alamos Neutron Science Center (LANSCE). The LANSCE Reliability Improvement Project (LRIP) was separated into two phases. Phase 1, completed in 1995, targeted near-term improvements to beam reliability and availability that could be completed in one-year's time. Phase 2, now underway and scheduled for completion in May 1998, consists of two projects: (a) implementation of direct H-injection for the Proton Storage Ring (PSR) and (b) an upgrade of the target/moderator system for the short pulse spallation neutron (SPSS) source. The latter will reduce the target change-out time from about 10 months to about three weeks. The third project, the SPSS Enhancement Project, is aimed at increasing the PSR output beam current to 200 microA at 30 Hz and providing up to seven new neutron scattering instruments

  2. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  3. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  4. Experiments on injection performance of SMART ECC facility using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Il; Cho, Seok; Ko, Yung Joo; Min, Kyoung Ho; Shin, Yong Cheol; Kwon, Tae Soon; Yi, Sung Jae; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SMART (System-integrated Modular Advanced ReacTor), an advanced integrated PWR is now in the under developing stages by KAERI. Such integral PWR excludes large-size piping of the primary system of conventional PWR and incorporates the SGs into RPV, which means no LBLOCA could occur in SMART. Therefore, the SBLOCA is considered as a major DBA (Design Basis Accident) in SMART and it is mainly analyzed by using TASS/SMR computer code. The TASS/SMR code should be validated using experimental data from both Integral Effect Test and Separate Effect Test facilities. To investigate injection performance of the ECC system, on SET facility, named as SWAT (SMART ECC Water Asymmetric Two-phase choking test facility), has been constructed at KAERI. The SWAT simulates the geometric configurations of the SG-side upper downcomer annulus and ECCSs of those of SMART. It is designed based on the modified linear scaling method with a scaling ratio of 1/5, to preserve the geometrical similarity and minimize gravitational distortion. The purpose of the SWAT tests is to investigate the safety injection performance, such as the ECC bypass in the downcomer and the penetration rate in the core during the SBLOCA, and hence to produce experimental data to validate and the prediction capability of safety analysis codes, TASS/SMR

  5. Conceptual design of initial opacity experiments on the national ignition facility

    Science.gov (United States)

    Heeter, R. F.; Bailey, J. E.; Craxton, R. S.; Devolder, B. G.; Dodd, E. S.; Garcia, E. M.; Huffman, E. J.; Iglesias, C. A.; King, J. A.; Kline, J. L.; Liedahl, D. A.; McKenty, P. W.; Opachich, Y. P.; Rochau, G. A.; Ross, P. W.; Schneider, M. B.; Sherrill, M. E.; Wilson, B. G.; Zhang, R.; Perry, T. S.

    2017-02-01

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures eV and electron densities 21~\\text{cm}-3$ . The iron will be probed using continuum X-rays emitted in a ps, diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, of the NIF beams deliver 500 kJ to the mm diameter hohlraum, and the remaining directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.

  6. An Experience of Thermowell Design in RCP Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, B. D.; Youn, Y. J.; Jeon, W. J.; Kim, S.; Bae, B. U.; Cho, Y. J.; Choi, H. S.; Park, J. K; Cho, S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Flow rates for the test should vary in the range of 90% to 130% of rated flowrate under prototypic operational conditions, as shown in Table 1. Generally for the flow control, a combination of a control valve and an orifice was used in previous RCP test facilities. From the commissioning startup of the RCP test facility, it was found the combination of valve and orifice induced quite a large vibration for the RCP. As a solution to minimize the vibration and to facilitate the flowrate control, one of KAERI's staff suggested a variable restriction orifice (VRO), which controls most of the required flowrates except highest flowrates, as shown in Fig. 2. For the highest flowrates, e.g., around run-out flowrate (130%), control valves in bypass lines were also used to achieve required flowrates. From a performance test, it was found the VRO is very effective measures to control flowrates in the RCP test facility. During the commissioning startup operation, one of thermowells located at the upstream of the RCP was cracked due to high speed coolant velocity, which was - fortunately - found under a leakage test before running the RCP test loop. The cracked thermowell, whose tapered-shank was detached from the weld collar after uninstalling, is shown in Fig. 3. As can be seen the figure, most of the cross-section at the root of the thermowell shank was cracked. In this paper, an investigation of the integrity of thermowells in the RCP test facility was performed according to the current code and overall aspects on the thermowell designs were also discussed. An RCP test facility has been constructed in KAERI. During the commissioning startup operation, one of thermowells was cracked due to high speed coolant velocity. To complete the startup operation, a modified design of thermowells was proposed and all the original thermowells were replaced by the modified ones. From evaluation of the original and modified designs of thermowells according to the recent PTC code, the

  7. Evaluating experience with electricity generating GHG mitigation projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    2003-07-01

    theoretical and practical level. The paper examines the experience to date with how baselines and additionality have been calculated or assessed for selected electricity-generating GHG mitigation projects. It will focus on CDM and CDM-type projects, including for projects that have been accepted or rejected by particular programmes (e.g. CERUPT) and projects where the associated baseline and monitoring methodologies have been submitted to the CDM's Executive Board. Thus, it will focus on larger-scale (>15MW) and grid-connected projects. The paper will also assess how the baseline methods for projects currently under development 'fit' with the three baseline 'approaches outlined in the Marrakech Accords.

  8. Experience of international projects implementation at Leningrad Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Zavialov, L.A. [Leningrad Nuclear Power Plant ' Rosenergoatom' , Leningrad Region, 188540, Sosnovy Bor (Russian Federation)

    2008-07-01

    During the period of 1992-2007 more than 60 different projects of different specificity and budget have been successfully implemented in frames of Technical Assistance for the Commonwealth of Independent States (TACIS) Program, Project financed by European Bank for Reconstruction and Development (EBRD), as well as in frames of Agreements on Cooperation between Leningrad NPP and Radiation and Nuclear safety Authority of Finland (STUK) and Swedish Nuclear Power Inspectorate, International Co-operation Program SKI-ICP(SIP). All these projects were directed to the safety increasing of the Leningrad NPP reactor, type RBMK-1000. Implementation of the technical aid projects has been performed by different foreign companies such as Aarsleff Oy, (Finland), SGN (France), Nukem (Germany), Jergo AB (Sweden), SABAROS (Switzerland), Westinghouse (USA), Nordion (Canada), Bruel and Kjer (Denmark), Data System and Solutions (UK), SVT Braundshuz (Germany) WICOTEC (Sweden), Studsvik (Sweden) and etc. which has enough technical and organizational experience in implementation of such projects, as well as all necessary certificates and licenses for works performance. Selection of a Contractor/Supplier for a joined work performance has been carried out in accordance with the tender procedure, technical specification and a planned budget. Project financing was covered by foreign Consolidated Funds and Authorities interested in increasing of Leningrad NPP safety, which have valid intergovernmental agreements with Russian Federation on the technical assistance to be provided to the NPPs. At present time all joined international projects implemented at Leningrad NPP are financed jointly with LNPP. All projects can be divided into technical aid projects connected with development and turnkey implementation of systems and complexes and projects for supply of equipment which has no analogues in Russia but successfully used all over the world. Positive experience of the joined projects

  9. Experience of international projects implementation at Leningrad Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zavialov, L.A.

    2008-01-01

    During the period of 1992-2007 more than 60 different projects of different specificity and budget have been successfully implemented in frames of Technical Assistance for the Commonwealth of Independent States (TACIS) Program, Project financed by European Bank for Reconstruction and Development (EBRD), as well as in frames of Agreements on Cooperation between Leningrad NPP and Radiation and Nuclear safety Authority of Finland (STUK) and Swedish Nuclear Power Inspectorate, International Co-operation Program SKI-ICP(SIP). All these projects were directed to the safety increasing of the Leningrad NPP reactor, type RBMK-1000. Implementation of the technical aid projects has been performed by different foreign companies such as Aarsleff Oy, (Finland), SGN (France), Nukem (Germany), Jergo AB (Sweden), SABAROS (Switzerland), Westinghouse (USA), Nordion (Canada), Bruel and Kjer (Denmark), Data System and Solutions (UK), SVT Braundshuz (Germany) WICOTEC (Sweden), Studsvik (Sweden) and etc. which has enough technical and organizational experience in implementation of such projects, as well as all necessary certificates and licenses for works performance. Selection of a Contractor/Supplier for a joined work performance has been carried out in accordance with the tender procedure, technical specification and a planned budget. Project financing was covered by foreign Consolidated Funds and Authorities interested in increasing of Leningrad NPP safety, which have valid intergovernmental agreements with Russian Federation on the technical assistance to be provided to the NPPs. At present time all joined international projects implemented at Leningrad NPP are financed jointly with LNPP. All projects can be divided into technical aid projects connected with development and turnkey implementation of systems and complexes and projects for supply of equipment which has no analogues in Russia but successfully used all over the world. Positive experience of the joined projects

  10. Waste Receiving and Processing Facility, Module 1: Volume 7, Project design criteria

    International Nuclear Information System (INIS)

    1992-03-01

    This Project Design Criteria document for the WRAP facility at the Hanford Site is presented within a systems format. The WRAP Module 1 facility has been categorized into eight (8) engineering systems for design purposes. These systems include: receiving, shipping and storage, nondestructive assay/nondestructive examination (NDA/NDE), waste process, internal transportation, building, heating ventilation and air conditioning (HVAC), process control, and utilities. Within each system section of this document, the system-specific requirements are identified. The scope of the system is defined, the design goals are identified and the functional requirements are detailed

  11. Design, construction, and operation of the contact size reduction facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Frank, D.E.; Reeves, S.R.; Valenti, P.J.

    1988-05-01

    This paper describes the design, construction and initial operation of the Contact-Handled Size Reduction Facility (CSRF) at the West Valley Demonstration Project. The facility was constructed to size reduce contaminated tanks, piping, and other metallic scrap and package the scrap for disposal. In addition, the CSRF has the capability to decontaminate scrap prior to disposal. The anticipated result of decontaminating the scrap is to reduce waste classified as transuranic or low-level Class B and C to Class A or release for unrestricted use as nonradioactive equipment. 10 figs., 1 tab

  12. Facilities management innovation in public-private collaborations: Danish ESCO projects

    DEFF Research Database (Denmark)

    Nardelli, Giulia; Jensen, Jesper Ole; Nielsen, Susanne Balslev

    2015-01-01

    The purpose of the article is to investigate how Facilities Management (FM) units navigate Energy Service Company (ESCO) collaborations, here defined as examples of public collaborative innovation within the context of FM. The driving motivation is to inform and inspire internal FM units of local...... institutions on how to navigate and manage collaboration of different, intra- and inter-organisational actors throughout ESCO projects.......The purpose of the article is to investigate how Facilities Management (FM) units navigate Energy Service Company (ESCO) collaborations, here defined as examples of public collaborative innovation within the context of FM. The driving motivation is to inform and inspire internal FM units of local...

  13. Project No.3 - Cement solidification facility for spent ion exchange resins

    International Nuclear Information System (INIS)

    2000-01-01

    The existing storage capacity remaining for radioactive liquid wastes at the Ignalina NPP site is approximately 800 m 3 . The condition of the tanks is not fully known; however, recent engineering assessments have indicated that the tanks are unsuitable for interim storage of the liquid waste. The liquid waste currently stored in the tanks will need to be immobilised and the storage tanks emptied before they begin to deteriorate. The potential environment impact of these facilities must be reduced significantly. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  14. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance

  15. Innovative and adaptive technologies in decommissioning of nuclear facilities. Final report of a coordinated research project 2004-2008

    International Nuclear Information System (INIS)

    2008-10-01

    There are dozens of old reactors and other nuclear facilities worldwide that are either being actively dismantled or are candidates for decommissioning in the near term. A significant proportion of these facilities are situated in Member States or institutions that do not have adequate expertise and technologies for planning and implementing state of the art decommissioning projects. The technology selection process is critical in that regard. The main objective of the IAEA technical activities on decommissioning is to promote the exchange of lessons learned in order to improve the technologies, thereby contributing to successful planning and implementation of decommissioning. This should be achieved through a better understanding of the decision making process in technology comparison and selection and relevant issues affecting the entire decommissioning process. The specific objectives of the Coordinated Research Project (CRP) on Innovative and Adaptive Technologies in Decommissioning of Nuclear Facilities include the following general aspects: (a) To establish methodologies and data needs for developing concepts and approaches relevant to technology comparison and selection in decommissioning; (b) To improve and expand the database on applications and performance of various types of decommissioning technologies; (c) To address specific issues for individual decommissioning technologies and generate data relevant to their comparison and selection. It is also expected that this project, and in particular the papers collected in this TECDOC, will draw Member States' attention to the practicality and achievability of timely planning and implementation of decommissioning, especially for many smaller projects. Concluding reports that summarized the work undertaken under the aegis of the CRP were presented at the third and final research coordination meeting held in Rez, Czech Republic, 3-7 December 2007, and collected in this technical publication. Operating

  16. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  17. Application of demography to energy facility development projects. Working Paper No. 39

    International Nuclear Information System (INIS)

    Krannich, R.S.; Stanfield, G.G.

    1977-01-01

    The emergence of concern regarding socioeconomic consequences of large-scale development projects has resulted in a growing literature directed as estimating the types and levels of various impact dimensions which can be expected to result in human communities experiencing such development. Among these dimensions, a focus on population change has been prevalent. Accurate demographic predictions may be viewed as critical for the adequate comprehension of and preparation for impacts deriving from projects such as energy facility developments. Unfortunately, the state of the art in projecting demographic consequences of energy projects has been generally inadequate. Several of the more influential prior methods for estimating local demographic effects of developing energy facilities are critiqued, although their specific prediction figures are not summarized. The studies reviewed were found to be of dubious practical utility, probably due in part to the failure of basic demography to provide a base of support for applied demographic research. This report sets forth recommendations for the development of a theoretical perspective which would more adequately serve the needs of practitioners attempting to predict local demographic effects of energy facility development

  18. Purchasing management experience of Haiyang nuclear power project construction period

    International Nuclear Information System (INIS)

    Ma Yuqin

    2013-01-01

    Purchasing is one of the important aspects to ensure the safety and quality of the nuclear power plant. This paper, combining the purchasing peculiarity and purchasing process of Haiyang nuclear power project, summarizes experiences of Haiyang nuclear power project in promoting its purchasing management level in aspects of purchasing method choosing, purchasing plan management, purchasing process optimization, purchasing contract implementation and purchasing surveillance, etc. (author)

  19. Students’ Team Project Experiences and Their Attitudes Towards Teamwork

    OpenAIRE

    Aleksandra Rudawska

    2017-01-01

    Purpose: The aim of the study is to evaluate the influence of team project experiences of students (presence and role of a leader; fairness in team projects; conditions supporting teamwork created by a university) on their attitudes towards teamwork, especially the perception of teamwork effectiveness and the preference of working in teams. Methodology: In the study the quantitative research was done among master degree Polish students of Management (105 questionnaires). The measures used f...

  20. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  1. The choice of Park & Ride Facilities: an analysis using a context-dependent hierarchical choice experiment

    OpenAIRE

    Heijden, R.E.C.M. van der; Molin, E.J.E.; Timmermans, H.J.P.

    2004-01-01

    Park and Ride facilities have been proposed in several countries to alleviate the accessibility problems in cities. Despite growing accessibility problems, these facilities do not seem to attract the expected number of car drivers and are under-used. In an attempt to measure consumer evaluations of the attributes of Park and Ride facilities, a stated choice experiment, based on the method of hierarchical information integration, was conducted in the city of Nijmegen, The Netherlands. This pap...

  2. Towards experiments at the new ELI-NP facility

    Directory of Open Access Journals (Sweden)

    Balabanski D. L.

    2014-01-01

    Full Text Available The Extreme Light Infrastructure (ELI Pan-European initiative represents a major step forward in quest for extreme electromagnetic fields. The Extreme Light Infrastructure – Nuclear Physics (ELI-NP laboratory is one of the three pillars of the ELI project, that aims to use such extreme electromagnetic fields for nuclear physics and quantum electrodynamics research. At ELI-NP two ten petawatt high-power laser systems together with a very brilliant narrow-width γ beam are the main research tools. Here the current status of the project and the experimental program related to nuclear research, which is under preparation at ELI-NP, are presented.

  3. Wabash River coal gasification repowering project -- first year operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Troxclair, E.J. [Destec Energy, Inc., Houston, TX (United States); Stultz, J. [PSI Energy, Inc., West Terre Haute, IN (United States)

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  4. Project management web tools at the MICE experiment

    International Nuclear Information System (INIS)

    Coney, L R; Tunnell, C D

    2012-01-01

    Project management tools like Trac are commonly used within the open-source community to coordinate projects. The Muon Ionization Cooling Experiment (MICE) uses the project management web application Redmine to host mice.rl.ac.uk. Many groups within the experiment have a Redmine project: analysis, computing and software (including offline, online, controls and monitoring, and database subgroups), executive board, and operations. All of these groups use the website to communicate, track effort, develop schedules, and maintain documentation. The issue tracker is a rich tool that is used to identify tasks and monitor progress within groups on timescales ranging from immediate and unexpected problems to milestones that cover the life of the experiment. It allows the prioritization of tasks according to time-sensitivity, while providing a searchable record of work that has been done. This record of work can be used to measure both individual and overall group activity, identify areas lacking sufficient personnel or effort, and as a measure of progress against the schedule. Given that MICE, like many particle physics experiments, is an international community, such a system is required to allow easy communication within a global collaboration. Unlike systems that are purely wiki-based, the structure of a project management tool like Redmine allows information to be maintained in a more structured and logical fashion.

  5. Assessing users' experience of shared sanitation facilities: A case ...

    African Journals Online (AJOL)

    In the academic literature, users' feedback and experiences of technologies in the post-implementation phase have received scarce attention. The purpose of this study is to investigate users' experience of sanitation technologies in the early post-implementation phase, when opportunities for remedial intervention are still ...

  6. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    International Nuclear Information System (INIS)

    Sullivan, N.

    1995-01-01

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD)

  7. Experiences with project-oriented research in graduate engineering education

    International Nuclear Information System (INIS)

    Miley, G.H.

    1976-01-01

    Two examples of project-oriented research that involve the conceptual design of fusion systems are described. One of these projects involved close collaboration with workers in a national laboratory while the second was formally organized as a cooperative effort with two other laboratories. An important educational aspect of such research is that the students are involved in a design team composed of both students and professionals facing a realistic problem. In retrospect, it appears that both students and faculty profited from the experience. Several students have taken jobs in related areas, and additional research has resulted at the University from new insight gained during the projects

  8. Experience with the instrumentation tests in large sodium test facilities

    International Nuclear Information System (INIS)

    Lauhoff, Th.; Ruppert, E.; Stehle, H.; Vinzens, K.

    1976-01-01

    A facility is described for fast breeder core components (AKB) to test specially instrumented fuel dummies and blanket elements, and also absorber elements under simulated normal and extreme reactor conditions. In addition to endurance testing of a special sodium and high temperature sub-assembly, instrumentation is provided to investigate thermohydraulic and vibrational behaviour of core elements. During tests of > 3000 h at temperatures above 820 K the main sub-assembly characteristics, e.g. pressure drop, leakage flow, vibration and noise spectra can be reproduced. The use of eddy current flow meters, strain gauges, magnetostrictive noise sensors, pressure transducers, thermocouples, and acoustic surveillance devices, are described. (U.K.)

  9. Simulation of photofission experiments at the ELI-NP facility

    International Nuclear Information System (INIS)

    Constantin, P.; Balabanski, D.L.; Cuong, P.V.

    2016-01-01

    An extensive experimental program for the study of photofission will take place at the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility, where different actinide targets will be exposed to a brilliant gamma beam to produce fission fragments. We report on the implementation within the Geant4 simulation toolkit of the photofission process, of related background processes, and of extended ionic charge parameterization. These developments are used to evaluate the production rates of photofission fragments and their release efficiency from the actinide targets.

  10. Fast Flux Test Facility sodium pump operating experience - mechanical

    International Nuclear Information System (INIS)

    Buonamici, R.

    1987-11-01

    The Heat Transport System (HTS) pumps were designed, fabricated, tested, and installed in the Fast Flux Test Facility (FFTF) Plant during the period from September 1970 through July 1977. Since completion of the installation and sodium fill in December 1978, the FFTF Plant pumps have undergone extensive testing and operation with HTS testing and reactor operation. Steady-state hydraulic and mechanical performances have been and are excellent. In all, FFTF primary and secondary pumps have operated in sodium for approximately 75,000 hours and 79,000 hours, respectively, to August 24, 1987

  11. Simulation of photofission experiments at the ELI-NP facility

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, P., E-mail: paul.constantin@eli-np.ro [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Balabanski, D.L. [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Cuong, P.V. [Centre of Nuclear Physics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2016-04-01

    An extensive experimental program for the study of photofission will take place at the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility, where different actinide targets will be exposed to a brilliant gamma beam to produce fission fragments. We report on the implementation within the Geant4 simulation toolkit of the photofission process, of related background processes, and of extended ionic charge parameterization. These developments are used to evaluate the production rates of photofission fragments and their release efficiency from the actinide targets.

  12. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    International Nuclear Information System (INIS)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z.

    2004-01-01

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10 -14 m/√Hz, decreasing with frequency approximately as 1/ν. Seismic noise contamination is not observed above a few Hz

  13. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z

    2004-02-23

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10{sup -14} m/{radical}Hz, decreasing with frequency approximately as 1/{nu}. Seismic noise contamination is not observed above a few Hz.

  14. Project on effects of gas in underground storage facilities for radioactive waste (Pegasus project)

    International Nuclear Information System (INIS)

    Haijtink, B.; McMenamin, T.

    1993-01-01

    Whereas the subject of gas generation and gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular, in the fourth five-year R and D programme on management and storage of radioactive waste (1990-94), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called Pegasus, about 20 organizations and research institutes are involved. The project covers theoretical and experimental studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations such as clay, salt and granite. In this report the present status of the various research activities are described and 13 papers have been selected

  15. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently

  16. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    International Nuclear Information System (INIS)

    Abdou, M.

    1984-10-01

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios

  17. Evaluation of nuclear facility decommissioning projects. Project summary report, Elk River Reactor

    International Nuclear Information System (INIS)

    Miller, R.L.; Adams, J.A.

    1982-12-01

    This report summarizes information concerning the decommissioning of the Elk River Reactor. Decommissioning data from available documents were input into a computerized data-handling system in a manner that permits specific information to be readily retrieved. The information is in a form that assists the Nuclear Regulatory Commission in its assessment of decommissioning alternatives and ALARA methods for future decommissionings projects. Samples of computer reports are included in the report. Decommissioning of other reactors, including NRC reference decommissioning studies, will be described in similar reports

  18. Waste receiving and processing facility module 1 data management system software project management plan

    International Nuclear Information System (INIS)

    Clark, R.E.

    1994-01-01

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  19. Design of remote handled process assemblies for the process facility modifications project

    International Nuclear Information System (INIS)

    Smets, J.L.; Ajifu, D.A.

    1987-01-01

    The modular design philosophy for the process facility modification project utilizes an integrated design of components to facilitate operations and maintenance of nuclear fuel reprocessing equipment in a hot cell environment. The utilization of a matrix of remoteable base frames combines with process equipment designed as remote assemblies and sub-assemblies has simplified the overall design. Modularity will allow future flexibility while providing advantages for construction and maintenance in the initial installation

  20. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Final EIR/EIS

    International Nuclear Information System (INIS)

    1994-01-01

    On May 26, 1994, the Lake County Sanitation District and the US Bureau of Land Management released for public review a Draft Environmental Impact Report/Environmental Impact Statement (EIR/EIS) on the proposed Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. A minimum 45-day review and comment period began on that date and notices were published in the Federal Register. The public review and comment period closed on July 26, 1994. Public hearings on the Draft EIMIS were held in Lakeport, CA, on June 30 and July 14, 1994. The first part of this document contains copies of the written comments submitted on the Draft EIR/EIS. It also contains summary paraphrased comments of the public hearings. The second part of this document contains responses to the comments

  1. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  2. Diamond Ordinance Radiation Facility (DORF) reactor operating experiences

    International Nuclear Information System (INIS)

    Gieseler, Walter

    1970-01-01

    The Diamond Ordnance Radiation Facility Mark F Reactor is described and some of the problems encountered with its operation are discussed. In a period from reactor startup in September 1961 to June 1964, when the aluminum-clad core was changed to a stainless-steel clad core, a total of 30 fuel elements were removed from reactor service because of excessive growth. One leaking fuel element was detected during the lifetime of the aluminum- clad core. In June 1964, the core was changed to the stainless-steel-clad high hydride fuel elements. Since the installation of the stainless-steel-clad fuel element core, there has been a gradual decline of excess reactivity. Various theories were discussed as the cause but the investigations have resulted in no definitive conclusion that could account for the total reactivity loss

  3. Diagnosing and controlling mix in National Ignition Facility implosion experiments

    International Nuclear Information System (INIS)

    Hammel, B. A.; Scott, H. A.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Landen, O. L.; Langer, S. H.; Smalyuk, V. A.; Suter, L. J.; Regan, S. P.; Epstein, R.; Kyrala, G. A.; Wilson, D. C.; Peterson, K.

    2011-01-01

    High mode number instability growth of ''isolated defects'' on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce ''isolated defects.'' An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.

  4. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  5. First experiments at the QSPA-Be plasma gun facility

    International Nuclear Information System (INIS)

    Kovalenko, D V; Klimov, N S; Podkovyrov, V L; Muzichenko, A D; Zhitlukhin, A M; Khimchenko, L N; Kupriyanov, I B; Giniyatulin, R N

    2011-01-01

    This paper presents preliminary results on the erosion of beryllium under hydrogen plasma flow. Two samples made of two types of beryllium, TGP-56PS and S-65C, were exposed to plasma heat loads up to 1 MJ m - 2 and a pulse duration of 0.5 ms at the QSPA-Be facility in Bochvar Institute, Russia. The melting threshold for both beryllium types was experimentally determined to be 0.5 MJ m - 2. The dependence of the specific mass loss and erosion rate on pulse number for both beryllium types was measured. The possibility of generating radiation fluxes with parameters corresponding to mitigated ITER disruptions by means of plasma flow shock braking on a solid bar is shown.

  6. First experiments at the QSPA-Be plasma gun facility

    Science.gov (United States)

    Kovalenko, D. V.; Klimov, N. S.; Podkovyrov, V. L.; Muzichenko, A. D.; Zhitlukhin, A. M.; Khimchenko, L. N.; Kupriyanov, I. B.; Giniyatulin, R. N.

    2011-12-01

    This paper presents preliminary results on the erosion of beryllium under hydrogen plasma flow. Two samples made of two types of beryllium, TGP-56PS and S-65C, were exposed to plasma heat loads up to 1 MJ m-2 and a pulse duration of 0.5 ms at the QSPA-Be facility in Bochvar Institute, Russia. The melting threshold for both beryllium types was experimentally determined to be 0.5 MJ m-2. The dependence of the specific mass loss and erosion rate on pulse number for both beryllium types was measured. The possibility of generating radiation fluxes with parameters corresponding to mitigated ITER disruptions by means of plasma flow shock braking on a solid bar is shown.

  7. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    Science.gov (United States)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  8. 340 Facility Secondary Containment and Leak Detection Project W-302 Functional Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Stordeur, R.T.

    1995-03-01

    This functional design criteria for the upgrade to the 340 radioactive liquid waste storage facility (Project W-302) specifically addresses the secondary containment issues at the current vault facility of the 340 Complex. This vault serves as the terminus for the Radioactive Liquid Waste System (RLWS). Project W-302 is necessary in order to bring this portion of the Complex into full regulatory compliance. The project title, ``340 Facility Secondary Containment and Leak Detection``, illustrates preliminary thoughts of taking corrective action directly upon the existing vault (such as removing the tanks, lining the vault, and replacing tanks). However, based on the conclusion of the engineering study, ``Engineering Study of the 300 Area Process Wastewater Handling System``, WHC-SD-WM-ER-277 (as well as numerous follow-up meetings with cognizant staff), this FDC prescribes a complete replacement of the current tank/vault system. This offers a greater array of tanks, and provides greater operating flexibility and ease of maintenance. This approach also minimizes disruption to RLWS services during ``tie-in``, as compared to the alternative of trying to renovate the old vault. The proposed site is within the current Complex area, and maintains the receipt of RLWS solutions through gravity flow.

  9. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  10. Enhancing the Student Learning Experience in Software Engineering Project Courses

    Science.gov (United States)

    Marques, Maira; Ochoa, Sergio F.; Bastarrica, Maria Cecilia; Gutierrez, Francisco J.

    2018-01-01

    Carrying out real-world software projects in their academic studies helps students to understand what they will face in industry, and to experience first-hand the challenges involved when working collaboratively. Most of the instructional strategies used to help students take advantage of these activities focus on supporting agile programming,…

  11. Interdisciplinary Project Experiences: Collaboration between Majors and Non-Majors

    Science.gov (United States)

    Smarkusky, Debra L.; Toman, Sharon A.

    2014-01-01

    Students in computer science and information technology should be engaged in solving real-world problems received from government and industry as well as those that expose them to various areas of application. In this paper, we discuss interdisciplinary project experiences between majors and non-majors that offered a creative and innovative…

  12. An Overview of the International Reactor Physics Experiment Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Gulliford, Jim

    2014-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  13. Confinement projections for the Burning Plasma Experiment (BPX)

    International Nuclear Information System (INIS)

    Goldston, R.J.; Bateman, G.; Kaye, S.M.; Perkins, F.W.; Pomphrey, N.; Stotler, D.P.; Zarnstorff, M.C.; Porkolab, M.; Reidel, K.S.; Stambaugh, R.D.; Waltz, R.E.

    1991-01-01

    The mission of the Burning Plasma Experiment (BPX, formerly CIT) is to study the physics of self-heated fusion plasmas (Q = 5 to ignition), and to demonstrate the production of substantial amounts of fusion power (P fus = 100 to 500 MW). Confinement projections for BPX have been made on the basis of (1) dimensional extrapolation (2) theory-based modeling calibrated to experiment, and (3) statistical scaling from the available empirical data base. The results of all three approaches, discussed in this paper, roughly coincide. We presently view the third approach, statistical scaling, as the most reliable means for projecting the confinement performance of BPX, and especially for assessing the uncertainty in the projection. 11 refs., 2 figs., 1 tab

  14. Project management of the build of the shore test facility for the prototype of PWR II

    International Nuclear Information System (INIS)

    Clarkson, D.T.

    1987-01-01

    The PWR II is a new design of nuclear steam raising plant for the Royal Navy's submarines. It features improved engineering for safety, increased power, increased shock resistance, reduced noise transmission to sea and reduced manning requirement. It is to be tested in a new prototype testing facility, the Shore Test Facility, which is a section of submarine hull containing a prototype of the nuclear steam raising plant and its support system. It is installed at the Vulcan Naval Reactor Test establishment at Dounreay in Scotland. The function of the establishment is to test new designs of core and reactor plant, validate the mathematical models used in their design, develop improved methods of operation and maintenance of the plant and test new items of equipment. The Shore Test Facility was built in large sections at Barrow-in-Furness and transported to Scotland. The project management for the construction of the Shore Test Facility is explained. It involves personnel from the Royal Navy, and a large number of people working for the contractors involved in the buildings, transportation, operation and maintenance of the Facility. (U.K.)

  15. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  16. 15 years of The Hungarian integral type test facility: horizontal SG related PMK-2 experiments

    International Nuclear Information System (INIS)

    Perneczky, L.; Ezsoel, G.; Guba, A.; Szabados, L.

    2001-01-01

    support of accident management (AM) procedures. During the 15 operational years - from May 1986 onwards with the first of four IAEA Standard Problem Exercise tests - 48 different experiments, including cold and hot leg break LOCA, primary-to-secondary leakage (PRISE), loss of flow, loss of feedwater, disturbances of natural circulation, etc. tests were performed on this integral type test facility. An overview on 11 experiments related to the operational behaviour of horizontal steam generators performed in framework of national research projects IAEA Technical Co-operation Project RER/9/004 (Standard Problem Exercises) and three EU PHARE projects (in co-operation with AEAT, FRAMATOM, SIEMENS, IPSN, GRS, FZR and VVER owner countries) is given in the first part of paper. In the second part results of two types of tests in shutdown condition with RELAP5 post-test analysis may be of interest to the computer simulation of the horizontal SG too - are summarised. (orig.)

  17. Criticality experiments with fast flux test facility fuel pins

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1990-11-01

    A United States Department of Energy program was initiated during the early seventies at the Hanford Critical Mass Laboratory to obtain experimental criticality data in support of the Liquid Metal Fast Breeder Reactor Program. The criticality experiments program was to provide basic physics data for clean well defined conditions expected to be encountered in the handling of plutonium-uranium fuel mixtures outside reactors. One task of this criticality experiments program was concerned with obtaining data on PuO 2 -UO 2 fuel rods containing 20--30 wt % plutonium. To obtain this data a series of experiments were performed over a period of about twelve years. The experimental data obtained during this time are summarized and the associated experimental assemblies are described. 8 refs., 7 figs

  18. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training

  19. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  20. Multisensory experiments and data acquisition systems on the meson facilities

    International Nuclear Information System (INIS)

    Bystritskij, V.M.

    2000-01-01

    The paper describes some of the multisensory experiments performed or being performed at the meson factories PSI (Switzerland), TRIUMF (Canada), LAMPF (USA), KEK (Japan), RAL (England) in order to investigate the fundamental processes in elementary particle physics. Designs of various detectors are briefly reviewed, the organizational ideology and the structure of the recording electronics and data acquisition systems for these experiments are considered. The ideology underlying the off-line analysis software is touched upon and the most important results of the investigations at meson factories are given

  1. Virtual reality in decommissioning projects: experiences, lessons learned and future plans

    International Nuclear Information System (INIS)

    Rindahl, G.; Mark, N.K.F.; Meyer, G.

    2006-01-01

    The work on Virtual Reality (VR) tools for decommissioning planning, dose estimation and work management started at the Norwegian Institute for Energy Technology (IFE) in 1999 in the VR dose project with Japan Nuclear Cycle development institute (JNC), now JAEA. The main aim of this effort has been to help minimize workers' radiation exposure, as well as help to achieve more efficient use of human resources. VR dose is now used in the decommissioning of one of JNC's reactors, the Fugen Nuclear Power Station. This VR decommissioning project has later resulted in a series of projects and applications. In addition to decommissioning, IFE also put great focus on two other branches of VR tools, namely tools for knowledge management, training and education in operating facilities and tools for control room design. During the last years, this work, beginning at different ends, has been converging more and more towards VR technology for use through out the life cycle of a facility. A VR training simulator for a refuelling machine of the Leningrad NPP (LNPP) developed in cooperation with the Russian Research Centre Kurchatov Institute (RRC KI) is now planned to be used in connection with the decommissioning of the three intact reactors at Chernobyl in Ukraine. In this paper we describe experiences from use of VR in decommissioning processes, as well as results from bringing the VR technology initially developed for planned or productive facilities into the decommissioning toolbox. (author)

  2. First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility

    Science.gov (United States)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Clark, K.; Coffey, T.; Currie, A.; Curioni, A.; Dazeley, S.; de Viveiros, L.; Dobi, A.; Dobson, J.; Dragowsky, E. M.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hanhardt, M.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kastens, L.; Kazkaz, K.; Knoche, R.; Kyre, S.; Lander, R.; Larsen, N. A.; Lee, C.; Leonard, D. S.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Lyashenko, A.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Morii, M.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Nikkel, J. A.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Skulski, W.; Sofka, C. J.; Solovov, V. N.; Sorensen, P.; Stiegler, T.; O'Sullivan, K.; Sumner, T. J.; Svoboda, R.; Sweany, M.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; White, D.; Witherell, M. S.; Wlasenko, M.; Wolfs, F. L. H.; Woods, M.; Zhang, C.; LUX Collaboration

    2014-03-01

    The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6×10-46 cm2 at a WIMP mass of 33 GeV/c2. We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

  3. First results from the LUX dark matter experiment at the Sanford underground research facility.

    Science.gov (United States)

    Akerib, D S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Bedikian, S; Bernard, E; Bernstein, A; Bolozdynya, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Clark, K; Coffey, T; Currie, A; Curioni, A; Dazeley, S; de Viveiros, L; Dobi, A; Dobson, J; Dragowsky, E M; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Flores, C; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C; Hanhardt, M; Hertel, S A; Horn, M; Huang, D Q; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Kyre, S; Lander, R; Larsen, N A; Lee, C; Leonard, D S; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J; Morii, M; Murphy, A St J; Nehrkorn, C; Nelson, H; Neves, F; Nikkel, J A; Ott, R A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Reichhart, L; Shutt, T; Silva, C; Skulski, W; Sofka, C J; Solovov, V N; Sorensen, P; Stiegler, T; O'Sullivan, K; Sumner, T J; Svoboda, R; Sweany, M; Szydagis, M; Taylor, D; Tennyson, B; Tiedt, D R; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, J T; White, D; Witherell, M S; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2014-03-07

    The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

  4. High temperature engineering research facilities and experiments in China

    International Nuclear Information System (INIS)

    Xu, Yuanhui; Liu, Meisheng; Yao, Huizhong; Ju, Huaiming

    1998-01-01

    June 14, 1995, the construction of a pebble bed type high temperature gas-cooled reactor (HTGR) started in China. It is a test reactor with 10 MW thermal power output (termed HTR- 10). The test reactor is located on the site of Institute of Nuclear Energy Technology (INET) of Tsinghua University in the northwest suburb of Beijing, about 40 km away from the city. Design of the HTR-10 test reactor represents the features of HTR-Modular design: 'side-by-side' arrangement, spherical fuel elements with 'multi-pass' loading scheme, completely passive decay heat removal, reactor shutdown systems in the side reflector, etc. However, in the HTR-10 design some modifications from the HTR-Module were made to satisfy Chinese conditions. For example, the steam generator is composed of a number of modular helical tubes with small diameter, pulse pneumatic discharging apparatus are used in the fuel handling system and step motor driving control rods are designed. These modifications would cause some uncertainty in our design. It is necessary to do engineering experiments to prove these new or modified ideas. Therefore, a program of engineering experiments for HTR-10 key technologies is being conducted at INET. The main aims of these engineering experiments are to verify the designed characteristics and performance of the components and systems, to feedback on design and to obtain operational experiences. Those engineering experiments are depressurization test of the hot gas duct at room temperature and operating pressure, performance test of the hot gas duct at operating helium temperature and pressure, performance test of the pulse pneumatic fuel handling system, test of the control rods driving apparatus, two phase flow stability test for the once through steam generator and cross mixture test at the bottom of the reactor core

  5. Analysis facility infrastructure (Tier-3) for ATLAS experiment

    CERN Document Server

    González de la Hoza, S; Ros, E; Sánchez, J; Amorós, G; Fassi, F; Fernández, A; Kaci, M; Lamas, A; Salt, J

    2008-01-01

    In the ATLAS computing model the tiered hierarchy ranged from the Tier-0 (CERN) down to desktops or workstations (Tier-3). The focus on defining the roles of each tiered component has evolved with the initial emphasis on the Tier-0 and Tier-1 definition and roles. The various LHC (Large Hadron Collider) projects, including ATLAS, then evolved the tiered hierarchy to include Tier-2’s (Regional centers) as part of their projects. Tier-3 centres, on the other hand, have been defined as whatever an institution could construct to support their Physics goals using institutional and otherwise leveraged resources and therefore have not been considered to be part of the official ATLAS computing resources. However, Tier-3 centres are going to exist and will have implications on how the computing model should support ATLAS physicists. Tier-3 users will want to access LHC data and simulations and will want to enable their resources to support their analysis and simulation work. This document will define how IFIC (Insti...

  6. Analysis facility infrastructure (Tier-3) for ATLAS experiment

    International Nuclear Information System (INIS)

    Gonzalez de la Hoz, S.; March, L.; Ros, E.; Sanchez, J.; Amoros, G.; Fassi, F.; Fernandez, A.; Kaci, M.; Lamas, A.; Salt, J.

    2008-01-01

    In the ATLAS computing model the tiered hierarchy ranged from the Tier-0 (CERN) down to desktops or workstations (Tier-3). The focus on defining the roles of each tiered component has evolved with the initial emphasis on the Tier-0 and Tier-1 definition and roles. The various LHC (Large Hadron Collider) projects, including ATLAS, then evolved the tiered hierarchy to include Tier-2's (Regional centers) as part of their projects. Tier-3 centres, on the other hand, have been defined as whatever an institution could construct to support their Physics goals using institutional and otherwise leveraged resources and therefore have not been considered to be part of the official ATLAS computing resources. However, Tier-3 centres are going to exist and will have implications on how the computing model should support ATLAS physicists. Tier-3 users will want to access LHC data and simulations and will want to enable their resources to support their analysis and simulation work. This document will define how IFIC (Instituto de Fisica Corpuscular de Valencia), after discussing with the ATLAS Tier-3 task force, should interact with the ATLAS computing model, detail the conditions under which Tier-3 centres can expect some level of support and set reasonable expectations for the scope and support of ATLAS Tier-3 sites. (orig.)

  7. Considerations on collected data with the Low Frequency Facility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Cella, G [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Dattilo, V [EGO, European, Gravitational Observatory, Cascina (Italy); Frasconi, F [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Gennai, A [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Penna, P La [EGO, European, Gravitational Observatory, Cascina (Italy); Losurdo, G [INFN Sezione di Firenze, Sesto Fiorentino (Italy); Pasqualetti, A [EGO, European, Gravitational Observatory, Cascina (Italy); Passuello, D [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Piergiovanni, F [Universita di Urbino, Urbino (Italy); Porzio, A [Coherentia, CNR-INFM Napoli (Italy); Raffaelli, F [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Rapagnani, P [Universita di Roma, Roma1, Rome (Italy); Ricci, F [Universita di Roma, Roma1, Rome (Italy); Solimeno, S [Coherentia, CNR-INFM Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sez. Napoli, and Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' (Italy); Zhang, Z [EGO, European, Gravitational Observatory, Cascina (Italy)

    2006-03-02

    The Low Frequency Facility consists of a 1 cm Fabry-Perot cavity suspended to a single SuperAttenuator, which is the mechanical system adopted to isolate the test masses of the Virgo interferometer. In this paper we present the preliminary results of measurements performed with a cavity of finesse 4000 and lasting 1-2 hours in different working conditions. The analysis presented here is focused mainly on the region below 100 Hz, and uses data collected with longitudinal control bandwidth below 150 Hz. A calibration test confirmed that the collected data are in good agreement with the model of the longitudinal control loop based on the open loop measurements. In addition to this, above 2 Hz the power spectrum of the two mirrors relative displacement shows a stationary noise floor and few peaks with high mechanical quality factor. Studying these peaks in the time domain, it has been observed that the energy associated with a single peak is Boltzman distributed, whether the oscillations are not excited. The measured upper limit of the seismic noise contamination at 10 Hz is around 2 x 10{sup -14} m/{radical}Hz.

  8. In situ water and gas injection experiments performed in the Hades Underground Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Volckaert, G.; Ortiz, L.; Put, M. [SCK-CEN, Mol (Belgium). Geological Waste Disposal Unit

    1995-12-31

    The movement of water and gas through plastic clay is an important subject in the research at SCK-CEN on the possible disposal of high level radioactive waste in the Boom clay layer at Mol. Since the construction of the Hades underground research facility in 1983, SCK-CEN has developed and installed numerous piezometers for the geohydrologic characterization and for in situ radionuclide migration experiments. In situ gas and water injection experiments have been performed at two different locations in the underground laboratory. The first location is a multi filter piezometer installed vertically at the bottom of the shaft in 1986. The second location is a three dimensional configuration of four horizontal multi piezometers installed from the gallery. This piezometer configuration was designed for the MEGAS (Modelling and Experiments on GAS migration through argillaceous rocks) project and installed in 1992. It contains 29 filters at distances between 10 m and 15 m from the gallery in the clay. Gas injection experiments show that gas breakthrough occurs at a gas overpressure of about 0.6 MPa. The breakthrough occurs by the creation of gas pathways along the direction of lowest resistance i.e. the zone of low effective stress resulting from the drilling of the borehole. The water injections performed in a filter -- not used for gas injection -- show that the flow of water is also influenced by the mechanical stress conditions. Low effective stress leads to higher hydraulic conductivity. However, water overpressures up to 1.3 MPa did not cause hydrofracturing. Water injections performed in a filter previously used for gas injections, show that the occluded gas hinders the water flow and reduces the hydraulic conductivity by a factor two.

  9. Experience in the decontamination and dismantling of alpha facilities

    International Nuclear Information System (INIS)

    Charamathieu, A.

    1988-01-01

    Experience in dismantling alpha-containing radiochemical installations in France is described. The dismantling programme undertaken by the Societe des Techniques en Milieu Ionisant since 1977 is tabulated. This includes the dismantling of CALCIO and FLUO (plutonium metal), the dismantling of a slag processing plant, the dismantling of part of a medium activity plutonium mine and the dismantling of rooms 82-100 at Marcoule, France. (author)

  10. The DE-PHARM Project: A Pharmacist-Driven Deprescribing Initiative in a Nursing Facility.

    Science.gov (United States)

    Pruskowski, Jennifer; Handler, Steven M

    2017-08-01

    Many residents with life-limiting illnesses are being prescribed and taking potentially inappropriate medications (PIMs) and questionably beneficial medications either near or at the end of life. These medications can contribute to adverse drug reactions, increase morbidity, and increase unnecessary burden and cost. It is crucial that the process of deprescribing be incorporated into the care of these residents. After developing a clinical pharmacist-driven deprescribing initiative in the nursing facility, the objective of this project was to reduce the number of PIMs via accepted recommendations from the clinical pharmacist to the primary team. The Discussion to Ensure the Patient-centered, Health-focused, prognosis-Appropriate, and Rational Medication regimen (DE-PHARM) quality improvement-approved project was conducted in an urban, academic nursing facility in Pittsburgh, Pennsylvania. The pilot phase occurred between October 2015 and April 2016. To be included in this study, participants had to be a custodial resident of the nursing facility with a previously documented comfort-focused treatment plan. All medications used for the management of chronic comorbid diseases were eligible for review. Forty-seven residents managed by eight different primary teams met inclusion criteria. Thirty-nine recommendations for 23 residents were made by the clinical pharmacist, with an average of 0.82 and range of 0-5 recommendations per resident, respectively. Of those, only 10 (26%) were accepted, 1 (3%) was modified, 3 (7%) were rejected, and 25 (64%) had no response within the 120-day response period. Additionally, two residents died during the project, and one resident was readmitted to the hospital for a prolonged period of time. The pilot phase of the DE-PHARM project, a clinical pharmacist-driven deprescribing initiative, was designed and assessed. This project demonstrated the feasibility of such an initiative. Because of the complexity of such a process, special

  11. TA-55 facility control system upgrade project - human-system interface functional requirements

    International Nuclear Information System (INIS)

    Atkins, W.H.; Pope, N.G.; Turner, W.J.; Brown, R.E.

    1995-11-01

    The functional requirements for that part of the Technical Area (TA)-55 Operations Center Upgrade Project that involves the human-system interface (HSI) are described in this document. The upgrade project seeks to replace completely the center's existing computerized data acquisition and display system, which consists of the field multiplexer units, Data General computer systems, and associated peripherals and software. The upgrade project has two parts-the Facility Data Acquisition Interface System (FDAIS) and the HSI. The HSI comprises software and hardware to provide a high-level graphical operator interface to the data acquisition system, as well as data archiving, alarm annunciation, and logging. The new system will be built with modern, commercially available components; it will improve reliability and maintainability, and it can be expanded for future needs

  12. What makes or mars the facility-based childbirth experience: thematic analysis of women's childbirth experiences in western Kenya.

    Science.gov (United States)

    Afulani, Patience A; Kirumbi, Leah; Lyndon, Audrey

    2017-12-29

    Sub-Saharan Africa accounts for approximately 66% of global maternal deaths. Poor person-centered maternity care, which emphasizes the quality of patient experience, contributes both directly and indirectly to these poor outcomes. Yet, few studies in low resource settings have examined what is important to women during childbirth from their perspective. The aim of this study is to examine women's facility-based childbirth experiences in a rural county in Kenya, to identify aspects of care that contribute to a positive or negative birth experience. Data are from eight focus group discussions conducted in a rural county in western Kenya in October and November 2016, with 58 mothers aged 15 to 49 years who gave birth in the preceding nine weeks. We recorded and transcribed the discussions and used a thematic approach for data analysis. The findings suggest four factors influence women's perceptions of quality of care: responsiveness, supportive care, dignified care, and effective communication. Women had a positive experience when they were received well at the health facility, treated with kindness and respect, and given sufficient information about their care. The reverse led to a negative experience. These experiences were influenced by the behavior of both clinical and support staff and the facility environment. This study extends the literature on person-centered maternity care in low resource settings. To improve person-centered maternity care, interventions need to address the responsiveness of health facilities, ensure women receive supportive and dignified care, and promote effective patient-provider communication.

  13. CSNI collective statement on support facilities for existing and advanced reactors. The function of OECD/Nea joint projects Nea committee on the safety of nuclear installations (CSNI)

    International Nuclear Information System (INIS)

    2008-01-01

    The NEA Committee on the Safety of Nuclear Installations (CSNI) has recently completed a study on the availability and utilisation of facilities supporting safety studies for current and advanced nuclear power reactors. The study showed that significant steps had been undertaken in the past several years in support of safety test facilities, mainly by conducting multinational joint projects centered on the capability of unique test facilities worldwide. Given the positive experience of the safety research projects, it has been recommended that efforts be made to prioritize technical issues associated with advanced (Generation IV) reactor designs and to develop options on how to efficiently obtain the necessary data through internationally co-ordinated research, preparing a gradual extension of safety research beyond the needs set by currently operating reactors. This statement constitutes a reference for future CSNI activities and for safety authorities, R and D centres and industry for internationally co-ordinated research initiatives in the nuclear safety research area. (author)

  14. Students’ Team Project Experiences and Their Attitudes Towards Teamwork

    Directory of Open Access Journals (Sweden)

    Aleksandra Rudawska

    2017-03-01

    Full Text Available Purpose: The aim of the study is to evaluate the influence of team project experiences of students (presence and role of a leader; fairness in team projects; conditions supporting teamwork created by a university on their attitudes towards teamwork, especially the perception of teamwork effectiveness and the preference of working in teams. Methodology: In the study the quantitative research was done among master degree Polish students of Management (105 questionnaires. The measures used for the study were developed specifcally for the study referring to the previous research in the feld. Findings: Results indicate that leaders in team projects and conditions supporting teamwork are connected with the students’ perception of teamwork effectiveness, while the fairness in team projects is connected with students’ preference of working collectively. Research implications: We conclude that in order to develop a positive attitude towards teamwork, the teamwork projects should be better supported by the instructors (especially supporting the emergence of leader(s and minimising the problem of free riders and the university should create a climate that facilitates teamworking, otherwise team projects might negatively influence students’ attitude towards collective work. Value: On the labour market the teamwork skills are one of the most important skills of employees, as the team-based organizational designs are becoming the norm in work organization. The study is contributing to the understanding of the relations between student experiences and their attitudes as well as the role played by high education in the development of these attitudes. Some previous research in Anglo-Saxon culture countries indicate that team project assignments realised by students during studies might even hinder their attitudes to teamwork and their willingness to work in teams in the future.

  15. Fuel-Coolant Interaction Experiments in the TROI Facility

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. T.; Hong, S. W.; Hong, S. H.; Park, I. K.; Kim, H. Y.; Song, J. H.; Kim, H. D

    2006-03-15

    A steam explosion has long been a concern in case of severe accidents in a nuclear reactor, since it might threaten the integrity of the containment. Although many studies have been performed on a steam explosion, there are still some remaining unsolved issues such as the explosivity of the real core material (corium) and the estimation of the energy conversion ratio. At the Korea Atomic Energy Research Institute (KAERI), the TROI steam explosion experiments were performed, in order to investigate the explosivity of corium. The TROI experiments were carried out to provide the experimental data for a proper estimation of a structural loading resulting from a steam explosion. These experiments were performed with prototypic materials such as ZrO{sub 2} melt and a mixture of ZrO{sub 2} and UO{sub 2} melt (corium). Total 46 tests were conducted in the TROI test series from year 2000 to the end of year 2004. The main test parameters were the variations on the composition of the melt, geometry of the interaction vessel, sub-cooling, ambient pressure, and amount of melt. Additionally the effects of an external trigger and argon environment were investigated. The main findings are that the composition, geometry, and inert gas had dominant effects on energetic steam explosions. In addition, the strength of the steam explosion was not that much strong compared to that of alumina, such as KROTOS-44. Even though efforts were made to maximize the strength of a steam explosion by increasing the amount of melt mass in water (increasing water depth), and fuel fraction (using a narrow test section), it did not work. The test results suggest that the melt of pure zirconia or eutectic corium in a wide test section leads to energetic spontaneous or triggered steam explosions, while the melt of other compositions does not.

  16. Gas-filled hohlraum experiments at the national ignition facility.

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, J. C. (Juan C.); Gautier, D. C. (Donald Cort); Goldman, S. R. (Sanford R.); Grimm, B. M.; Hegelich, B. M. (Bjorn M.); Kline, J. L. (John L.); Montgomery, D. S. (David S.); Lanier, N. E. (Nicholas E.); Rose, H. A. (Harvey A.); Schmidt, D. M. (David M.); Swift, D. C.; Workman, J. B. (Jonathan B.); Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K. (Katherine); DeWald, E.; Glenzer, S. (Siegfried); Holder, J. (Joe P.); Kamperschroer, J. H. (James H.); Kimbrough, Joe (Joseph R.); Kirkwood, Robert (Bob); Landen, O. L. (Otto L.); Mccarville, Tom (Tomas J.); Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li [number : znumber] 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  17. Soft x-ray laser experiments at Novette Laser Facility

    International Nuclear Information System (INIS)

    Matthews, D.; Hagelstein, P.; Rosen, M.

    1984-01-01

    We discuss the results of and future plans for experiments to study the possibility of producing an x-ray laser. The schemes we have investigated are all pumped by the Novette Laser, operated at short pulse (tau/sub L/ approx. 100 psec) and an incident wavelength of lambda /sub L/ approx. 0.53 μm. We have studied the possibility of lasing at 53.6, 68.0 to 72.0, 119.0, and 153.0 eV, using the inversion methods of resonant photo-excitation, collisional excitation, and three-body recombination

  18. Gas-filled hohlraum experiments at the national ignition facility

    International Nuclear Information System (INIS)

    Fernandez, J.C.; Gautier, D.C.; Goldman, S.R.; Grimm, B.M.; Hegelich, B.M.; Kline, J.L.; Montgomery, D.S.; Lanier, N.E.; Rose, H.A.; Schmidt, D.M.; Swift, D.C.; Workman, J.B.; Alvarez, Sharon; Bower, Dan; Braun, Dave; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J.H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O.L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M.; Watts, Phil; Young, Ben-li; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  19. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael R. Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D and D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D and D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D and D strategy is now being employed on the larger ''sister'' facility, Test Cell C

  20. Annual evaluation of routine radiological survey/monitoring frequencies for the High Ranking Facilities Deactivating Project at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-12-01

    The Bethel Valley Watershed at the Oak Ridge National Laboratory (ORNL) has several Environmental Management (EM) facilities that are designated for deactivation and subsequent decontamination and decommissioning (D and D). The Surplus Facilities Program at ORNL provides surveillance and maintenance support for these facilities as deactivation objectives are completed to reduce the risks associated with radioactive material inventories, etc. The Bechtel Jacobs Company LLC Radiological Control (RADCON) Program has established requirements for radiological monitoring and surveying radiological conditions in these facilities. These requirements include an annual evaluation of routine radiation survey and monitoring frequencies. Radiological survey/monitoring frequencies were evaluated for two High Ranking Facilities Deactivation Project facilities, the Bulk Shielding Facility and Tower Shielding Facility. Considerable progress has been made toward accomplishing deactivation objectives, thus the routine radiological survey/monitoring frequencies are being reduced for 1999. This report identifies the survey/monitoring frequency adjustments and provides justification that the applicable RADCON Program requirements are also satisfied

  1. Operating experience review - Ventilation systems at Department of Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Office of Special Projects (DP-35), formerly Office of Self-Assessment (DP-9), analyzed occurrences caused by problems with equipment and material and recommended the following systems for an in-depth study: (1) Selective Alpha Air Monitor (SAAM), (2) Emergency Diesel Generator, (3) Ventilation System, (4) Fire Alarm System. Further, DP-35 conducted an in-depth review of the problems associated with SAAM and with diesel generators, and made several recommendations. This study focusses on ventilation system. The intent was to determine the causes for the events related to these system that were reported in the Occurrence Reporting and Processing System (ORPS), to identify components that failed, and to provide technical information from the commercial and nuclear industries on the design, operation, maintenance, and surveillance related to the system and its components. From these data, sites can develop a comprehensive program of maintenance management, including surveillance, to avoid similar occurrences, and to be in compliance with the following DOE orders.

  2. Diesel emissions and ventilation exhaust sampling in the North Ramp of the Yucca Mountain Project Exploratory Studies Facility

    International Nuclear Information System (INIS)

    George, J.T.

    1995-11-01

    A series of ventilation experiments have been performed to assess the potential retention of diesel exhaust constituents in the North Ramp of the Yucca Mountain Site Characterization Project's Exploratory Studies Facility (ESF). Measurements were taken to help evaluate the potential impact of retained diesel exhaust constituents on future in-situ experiments and long-term waste isolation. Assessment of the diesel exhaust retention in the ESF North Ramp required the measurement of air velocities, meteorological measurements, quantification of exhaust constituents within the ventilation air stream, multiple gas sample collections, and on-line diesel exhaust measurements. In order to assess variability within specific measurements, the experiment was divided into three separate sampling events. Although somewhat variable from event to event, collected data appear to support pre-test assumptions of high retention rates for exhaust constituents within the tunnel. The results also show that complete air exchange in the ESF does not occur within the estimated 16 to 20 minutes derived from the ventilation flowrate measurements. Because the scope of work for these activities covered only measurement and acquisition of data, no judgment is offered by the author as to the implications of this work. Final analyses and decisions based upon the entire compendium of data associated with this investigation is being undertaken by the Repository and ESF Ventilation Design Groups of the Yucca Mountain Site Characterization Project

  3. Radon Reduction Experience at a Former Uranium Processing Facility

    International Nuclear Information System (INIS)

    Eger, K. J.; Rutherford, L.; Rickett, K.; Fellman, R.; Hungate, S.

    2004-01-01

    Approximately 6,200 cubic meters of waste containing about 2.0E8 MBq of radium-226 are stored in two large silos at the Fernald Site in southwest Ohio. The material is scheduled for retrieval, packaging, off site shipment and disposal by burial. Air in the silos above the stored material contained radon-222 at a concentration of 7.4 E5 Bq/L. Short-lived daughters formed by decay in these headspaces generated dose rates at contact with the top of the silos up to 1.05 mSv/hr and there complicate the process of retrieval. A Radon Control System (RCS) employing carbon adsorption beds has been designed under contract with the Fluor Fernald to remove most of the radon in the headspaces and maintain lower concentrations during periods when work on or above the domes is needed. Removing the radon also removes the short-lived daughters and reduces the dose rate near the domes to 20 to 30 μSv/hr. Failing to remove the radon would be costly, in the exposure of personnel needed to work extended periods at these moderate dose rates, or in dollars for the application of remote retrieval techniques. In addition, the RCS minimizes the potential for environmental releases. This paper describes the RCS, its mode of operation, and early experiences. The results of the test described herein and the experience gained from operation of the RCS during its first phase of continuous operation, will be used to determine the best air flow, and air flow distribution, the most desirable number and sequence number and sequence of adsorption beds to be used and the optimum application of air recycle within the RCS

  4. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    International Nuclear Information System (INIS)

    Burns, M.L.; Durrer, R.E.; Kennicott, M.A.

    1996-07-01

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D ampersand D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project's open-quotes Waste Minimization/Pollution Prevention Strategic Plan.close quotes

  5. Improved projects execution and contract strategies. The Hyde experience

    International Nuclear Information System (INIS)

    Murphy, D.L.

    1993-01-01

    The conference paper deals with the obtained experience from the Hyde development project on the UK continental shelf. The industry is searching for more effective ways to develop North Sea oil and gas assets. Hyde, like many other projects, was uneconomic using current industry development and operation norms. BP, as a results, challenged its management to change the norms and achieve new levels of performance. The Hyde field was discovered in 1967. At that time, and until late 1991, it was assessed non-commercial. Between discovery and late 1991, gas prices increased in real terms but not as much as capital and operating costs. The initial BP challenge for Hyde was to make it commercial. The paper discusses the sanction phase, the mould breaking, and the project development breakthrough. 2 figs

  6. One year's experience of the WA medical cyclotron and radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    DeRoach, J.; Tuchyna, T.; Jones, C.; Price, R.

    2004-01-01

    Full text: The WA PET Centre Medical Cyclotron, a facility novel in Western Australia, produced its first bolus of FDG for patient injection for PET scanning in August 2003. This paper describes the methodology and practices employed during the past 12 months for ensuring that reliable routine provision of FDG is maintained, in parallel with facilitating the development and production of achievable new radiopharmaceuticals. An FDG production team of six staff and, a maintenance and development team of 4 staff were created from the 3.4 staff specifically recruited for this service and from incumbent staff. Teams were also set up to carry out development projects related to the service. Training procedures were created under the department's ISO9001:2000 accreditation system for the certification of production and maintenance staff. Practices and documentation systems were put in place in anticipation of a pending cGMP audit. Several unplanned major changes to equipment and infrastructure were necessary post commissioning. These changes included purchase of a different FDG synthesis module from that originally supplied, and modifications to engineering services, including changes to air conditioning, changes to supply of vacuum and upgrading of drainage in the laboratory area. A device for the measurement of end of bombardment yield was built, so that the efficiencies of the various synthesis modules could be accurately determined. Strict radiation protection procedures were put in place. All staff were provided with luxels and finger TLDs for monthly reporting of their radiation levels, as well as electronic monitors for real-time monitoring. From August 2003 to June 2004 (11 months) 2229 FDG patient doses were produced and dispensed by this facility. An average of 8.0 patient doses per available working day were dispensed during the 2003 period, rising to 11.1 patient doses per day in 2004. Several 11 NH3 doses were also delivered. The cyclotron was unavailable for

  7. Student experiences with an international public health exchange project.

    Science.gov (United States)

    Critchley, Kim A; Richardson, Eileen; Aarts, Clara; Campbell, Barbara; Hemmingway, Ann; Koskinen, Liisa; Mitchell, Maureen P; Nordstrom, Pam

    2009-01-01

    With growing interconnectivity of healthcare systems worldwide and increased immigration, inappropriate cultural and role assumptions are often seen when cultures clash within a country or when there is practice across country boundaries in times of disaster and during international travel. To increase students' multicultural awareness and work experiences abroad, the authors describe a 7-school, 5-country international student exchange project. The authors also share the students' evaluations of their experiences as they are challenged to erase boundaries and embrace nursing across countries. Participating faculty describe the process, challenges, and keys to success found in creating and living this international project. Students involved in the exchange process evaluate the learning opportunities and challenges and the joy of coming together as newfound colleagues and friends.

  8. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  9. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  10. Benchmark experiments at ASTRA facility on definition of space distribution of 235U fission reaction rate

    International Nuclear Information System (INIS)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.; Glushkov, E. S.; Kompaniets, G. V.; Moroz, N. P.; Nevinitsa, V. A.; Nosov, V. I.; Smirnov, O. N.; Fomichenko, P. A.; Zimin, A. A.

    2012-01-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of 235 U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of 235 U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  11. Sustainable assessment of learning experiences based on projects

    Directory of Open Access Journals (Sweden)

    Ignacio TRAVERSO RIBÓN

    2016-05-01

    Full Text Available In a project-based learning experience, the detailed monitoring of the activities in which team members participate can be useful to evaluate their work. Using learning-oriented assessment procedures, supervisors can assess the teamwork abilities with a formative purpose. Evaluation strategies such as self-assessment, peer assessment and co-assessment are often used to make evaluation formative and sustainable. Conducting an assessment strategy is not easy for team members, since they need before to have a reasonable understanding of the evaluation process and criteria. This paper describes a learning-oriented evaluation methodology and an open data framework that can be applied to collaborative project settings. An evaluation rubric and a series of indicators that provide evidences about the developed skills have been elaborated and applied in a small-scale project-based course. Projects were managed and developed with the help of an open source software forge that contains a ticketing tool for planning and tracking of tasks, a version control repository to save the software outcomes, and using a wiki to host text deliverables. The experience provides evidences in favor of using the assessment method and open data framework to make teamwork evaluation more sustainable.

  12. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Strait, James [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); McCluskey, Elaine [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lundin, Tracy [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Willhite, Joshua [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Hamernik, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Marchionni, Alberto [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kim, Min Jeong [National Inst. of Nuclear Physics (INFN), Frascati (Italy). National Lab. of Frascati (INFN-LNF); Nessi, Marzio [Univ. of Geneva (Switzerland); Montanari, David [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Heavey, Anne [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  13. Data management for interdisciplinary field experiments: OTTER project support

    Science.gov (United States)

    Angelici, Gary; Popovici, Lidia; Skiles, J. W.

    1993-01-01

    The ability of investigators of an interdisciplinary science project to properly manage the data that are collected during the experiment is critical to the effective conduct of science. When the project becomes large, possibly including several scenes of large-format remotely sensed imagery shared by many investigators requiring several services, the data management effort can involve extensive staff and computerized data inventories. The OTTER (Oregon Transect Ecosystem Research) project was supported by the PLDS (Pilot Land Data System) with several data management services, such as data inventory, certification, and publication. After a brief description of these services, experiences in providing them are compared with earlier data management efforts and some conclusions regarding data management in support of interdisciplinary science are discussed. In addition to providing these services, a major goal of this data management capability was to adopt characteristics of a pro-active attitude, such as flexibility and responsiveness, believed to be crucial for the effective conduct of active, interdisciplinary science. These are also itemized and compared with previous data management support activities. Identifying and improving these services and characteristics can lead to the design and implementation of optimal data management support capabilities, which can result in higher quality science and data products from future interdisciplinary field experiments.

  14. STAR - Research Experiences at National Laboratory Facilities for Pre-Service and Early Career Teachers

    Science.gov (United States)

    Keller, J. M.; Rebar, B.; Buxner, S.

    2012-12-01

    The STEM Teacher and Researcher (STAR) Program provides pre-service and beginning teachers the opportunity to develop identity as both teachers and researchers early in their careers. Founded and implemented by the Center for Excellence in Science and Mathematics Education (CESaME) at California Polytechnic State University on behalf of the California State University (CSU) system, STAR provides cutting edge research experiences and career development for students affiliated with the CSU system. Over the past three summers, STAR has also partnered with the NSF Robert Noyce Teacher Scholarship Program to include Noyce Scholars from across the country. Key experiences are one to three summers of paid research experience at federal research facilities associated with the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Association (NOAA), and the National Optical Astronomy Observatory (NOAO). Anchoring beginning teachers in the research community enhances participant understanding of what it means to be both researchers and effective teachers. Since its inception in 2007, the STAR Program has partnered with 15 national lab facilities to provide 290 research experiences to 230 participants. Several of the 68 STAR Fellows participating in the program during Summer 2012 have submitted abstracts to the Fall AGU Meeting. Through continued partnership with the Noyce Scholar Program and contributions from outside funding sources, the CSU is committed to sustaining the STAR Program in its efforts to significantly impact teacher preparation. Evaluation results from the program continue to indicate program effectiveness in recruiting high quality science and math majors into the teaching profession and impacting their attitudes and beliefs towards the nature of science and teaching through inquiry. Additionally, surveys and interviews are being conducted of participants who are now teaching in the classroom as

  15. Radioprotection considerations on the expansion project of an interim storage facility for radioactive waste

    International Nuclear Information System (INIS)

    Boni-Mitake, Malvina; Suzuki, Fabio F.; Dellamano, Jose C.

    2009-01-01

    The Radioactive Waste Management (GRR) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) receives, treats, packs, characterizes and stores institutional radioactive wastes generated at IPEN-CNEN/SP and also those received from several radiological facilities in the country. The current storage areas have been used to store the treated radioactive waste since the early 1980's and their occupation is close to their full capacity, so a storage area expansion is needed. The expansion project includes the rebuilding of two sheds and the enlargement of the third one in the area currently occupied by the GRR and in a small adjacent area. The civil works will be in controlled area, where the waste management operations will be maintained, so all the steps of this project should be planned and optimized, from the radioprotection point of view. The civil construction will be made in steps. During the project implementation there will be transfer operations of radioactive waste packages to the rebuilt area. After these transfer operations, the civil works will proceed in the vacant areas. This project implies on radiological monitoring, dose control of the involved workers, decontamination and clearance of areas and it is also envisaged the need for repacking of some radioactive waste. The objective this paper is to describe the radioprotection study developed to this expansion project, taking into account the national radioprotection and civil construction regulations. (author)

  16. Reasons for decision in the matter of Enbridge Pipelines Inc. Line 4 Extension Project : facilities

    International Nuclear Information System (INIS)

    2008-01-01

    In June 2007, Enbridge Pipelines Inc. applied for approval to extend Line 4 of its Mainline pipeline upstream from Hardisty to Edmonton, Alberta. The project would relieve a potential bottleneck and would also add an additional line across this segment to increase system security and flexibility. The average annual capacity of Line 4 would be 140,000 cubic metres per day. The Enbridge Mainline from Edmonton to Hardisty currently includes 3 oil pipelines, while the Enbridge Mainline downstream of Hardisty includes 4 oil pipelines. This document presented the views of the Board regarding the construction and operation of the project facilities; public and Aboriginal consultation; environmental and socio-economic matters; land matters; tolls and tariffs; and, supply, markets, financing and economics. The Board noted that the benefits of this project outweigh the burdens associated with it. The project required an environmental assessment under the Canadian Environmental Assessment Act which found that it is not likely to cause significant adverse environmental effects. In its approval of the project, the Board attached 15 conditions, including a requirement for Enbridge to file an updated Environmental Protection Plan for the Board's approval. The Board also approved Enbridge's application for its tolling method and to reactivate 3 sections of pre-existing pipeline. 3 tabs., 3 figs., 3 appendices

  17. Future facilities for light quark spectroscopy: A perspective based on the LASS experience

    International Nuclear Information System (INIS)

    Ratcliff, B.N.

    1991-10-01

    Some desirable design features of a future facility for the study of light meson spectroscopy in hadroproduction are described and compared with what has been achieved by the LASS spectrometer. A few aspects of next-generation experiments using such a facility are also discussed, including final state sample sizes and performance requirements. The need for complementary production modes and decay channels, and the importance of a broad programmatic approach to the physics are stressed

  18. Ohmically heated toroidal experiment (OHTE) mobile ignition test reactor facility concept study

    International Nuclear Information System (INIS)

    Masson, L.S.; Watts, K.D.; Piscitella, R.R.; Sekot, J.P.; Drexler, R.L.

    1983-02-01

    This report presents the results of a study to evaluate the use of an existing nuclear test complex at the Idaho National Engineering Laboratory (INEL) for the assembly, testing, and remote maintenance of the ohmically heated toroidal experiment (OHTE) compact reactor. The portable reactor concept is described and its application to OHTE testing and maintenance requirements is developed. Pertinent INEL facilities are described and several test system configurations that apply to these facilities are developed and evaluated

  19. Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals

    International Nuclear Information System (INIS)

    Ishimori, Y.; Mitsunobu, F.; Yamaoka, K.; Tanaka, H.; Kataoka, T.; Sakoda, A.

    2011-01-01

    A radon test facility for small animals was developed in order to increase the statistical validity of differences of the biological response in various radon environments. This paper illustrates the performances of that facility, the first large-scale facility of its kind in Japan. The facility has a capability to conduct approximately 150 mouse-scale tests at the same time. The apparatus for exposing small animals to radon has six animal chamber groups with five independent cages each. Different radon concentrations in each animal chamber group are available. Because the first target of this study is to examine the in vivo behaviour of radon and its effects, the major functions to control radon and to eliminate thoron were examined experimentally. Additionally, radon progeny concentrations and their particle size distributions in the cages were also examined experimentally to be considered in future projects. (authors)

  20. Health physics experience with nondestructive X-radiation facilities in the US Air Force

    International Nuclear Information System (INIS)

    Stencel, J.R.; Piltingsrud, H.V.

    1976-01-01

    Radiation safety experience in the construction and use of enclosed nondestructive inspection (NDI) facilities in the US Air Force, has reaffirmed the constant need for the health physicist to continually monitor and assit in upgrading these facilities. Health physics contributions include evaluation of initial shielding requirements, proper selection of construction material, insuring that adequate safety devices are installed and adequate personnel dosimetry devices are available, surveying the facility, and assisting in the safety education program. There is a need to better define NDI warning/safety devices, using the National Bureau of Standards, (NBS) Handbook 107 as the most applicable guide