WorldWideScience

Sample records for expenditure muscle mitochondrial

  1. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice.

    Science.gov (United States)

    Stephenson, Erin J; Ragauskas, Alyse; Jaligama, Sridhar; Redd, JeAnna R; Parvathareddy, Jyothi; Peloquin, Matthew J; Saravia, Jordy; Han, Joan C; Cormier, Stephania A; Bridges, Dave

    2016-06-01

    We have investigated the effects of in utero exposure to environmentally persistent free radicals (EPFRs) on growth, metabolism, energy utilization, and skeletal muscle mitochondria in a mouse model of diet-induced obesity. Pregnant mice were treated with laboratory-generated, combustion-derived particular matter (MCP230). The adult offspring were placed on a high-fat diet for 12 wk, after which we observed a 9.8% increase in their body weight. The increase in body size observed in the MCP230-exposed mice was not associated with increases in food intake but was associated with a reduction in physical activity and lower energy expenditure. The reduced energy expenditure in mice indirectly exposed to MCP230 was associated with reductions in skeletal muscle mitochondrial DNA copy number, lower mRNA levels of electron transport genes, and reduced citrate synthase activity. Upregulation of key genes involved in ameliorating oxidative stress was also observed in the muscle of MCP230-exposed mice. These findings suggest that gestational exposure to MCP230 leads to a reduction in energy expenditure at least in part through alterations to mitochondrial metabolism in the skeletal muscle. Copyright © 2016 the American Physiological Society.

  2. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... by a dystrophic morphology. The results add to the complexity of the pathogenesis underlying mitochondrial myopathies, and expand the knowledge about the impact of energy deficiency on another aspect of muscle structure and function....

  3. High levels of whole-body energy expenditure are associated with a lower coupling of skeletal muscle mitochondria in C57Bl/6 mice

    NARCIS (Netherlands)

    Berg, S.A.A. van den; Nabben, M.; Bijland, S.; Voshol, P.J.; Klinken, J.B. van; Havekes, L.M.; Romijn, J.A.; Hoeks, J.; Hesselink, M.K.; Schrauwen, P.; Dijk, K.W. van

    2010-01-01

    Considerable variation in energy expenditure is observed in C57Bl/6 mice on a high-fat diet. Because muscle tissue is a major determinant of whole-body energy expenditure, we set out to determine the variation in energy expenditure and its possible association with skeletal muscle mitochondrial

  4. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), pindex of mitochondrial density, also fell progressively from cardiac, skeletal, to smooth muscle (222±13; 115±2; 48±2 umol•g(-1)•min(-1), p... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  5. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle.

    Science.gov (United States)

    Porter, Craig; Reidy, Paul T; Bhattarai, Nisha; Sidossis, Labros S; Rasmussen, Blake B

    2015-09-01

    Loss of mitochondrial competency is associated with several chronic illnesses. Therefore, strategies that maintain or increase mitochondrial function will likely be of benefit in numerous clinical settings. Endurance exercise has long been known to increase mitochondrial function in the skeletal muscle. Comparatively little is known regarding the effect of resistance exercise training (RET) on skeletal muscle mitochondrial respiratory function. The purpose of the current study was to determine the effect of chronic resistance training on skeletal muscle mitochondrial respiratory capacity and function. Here, we studied the effect of a 12-wk RET program on skeletal muscle mitochondrial function in 11 young healthy men. Muscle biopsies were collected before and after the 12-wk training program, and mitochondrial respiratory capacity was determined in permeabilized myofibers by high-resolution respirometry. RET increased lean body mass and quadriceps muscle strength by 4% and 15%, respectively (P training (P function of skeletal muscle mitochondria.

  6. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

    Directory of Open Access Journals (Sweden)

    Anthony E Civitarese

    2007-03-01

    Full Text Available Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y, overweight (body mass index, 27.8 +/- 0.7 kg/m(2 individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX, 12.5% CR + 12.5% increased energy expenditure (EE. In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008. Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05. In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005 and 21% +/- 4% in the CREX group (p < 0.004, with no change in the control group (2% +/- 2%. However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid cycle (citrate synthase, beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase, and electron transport chain (cytochrome C oxidase II was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003 and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011, but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.The observed increase in

  7. The Mitochondrial Calcium Uniporter controls skeletal muscle trophism in vivo

    Science.gov (United States)

    Mammucari, Cristina; Gherardi, Gaia; Zamparo, Ilaria; Raffaello, Anna; Boncompagni, Simona; Chemello, Francesco; Cagnin, Stefano; Braga, Alessandra; Zanin, Sofia; Pallafacchina, Giorgia; Zentilin, Lorena; Sandri, Marco; De Stefani, Diego; Protasi, Feliciano; Lanfranchi, Gerolamo; Rizzuto, Rosario

    2015-01-01

    Summary Muscle atrophy contributes to the poor prognosis of many pathophysiological conditions, but pharmacological therapies are still limited. Muscle activity leads to major swings in mitochondrial [Ca2+] which control aerobic metabolism, cell death and survival pathways. We have investigated in vivo the effects of mitochondrial Ca2+ homeostasis in skeletal muscle function and trophism, by overexpressing or silencing the Mitochondrial Calcium Uniporter (MCU). The results demonstrate that both in developing and in adult muscles MCU-dependent mitochondrial Ca2+ uptake has a marked trophic effect that does not depend on aerobic control, but impinges on two major hypertrophic pathways of skeletal muscle, PGC-1α4 and IGF1-AKT/PKB. In addition, MCU overexpression protects from denervation-induced atrophy. These data reveal a novel Ca2+-dependent organelle-to-nucleus signaling route, which links mitochondrial function to the control of muscle mass and may represent a possible pharmacological target in conditions of muscle loss. PMID:25732818

  8. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults.

    Science.gov (United States)

    Distefano, Giovanna; Standley, Robert A; Zhang, Xiaolei; Carnero, Elvis A; Yi, Fanchao; Cornnell, Heather H; Coen, Paul M

    2018-01-24

    The concept of mitochondrial dysfunction in ageing muscle is highly controversial. In addition, emerging evidence suggests that reduced muscle oxidative capacity and efficiency underlie the aetiology of mobility loss in older adults. Here, we hypothesized that studying well-phenotyped older cohorts across a wide range of physical activity would unveil a range of mitochondrial function in skeletal muscle and in turn allow us to more clearly examine the impact of age per se on mitochondrial energetics. This also enabled us to more clearly define the relationships between mitochondrial energetics and muscle lipid content with clinically relevant assessments of muscle and physical function. Thirty-nine volunteers were recruited to the following study groups: young active (YA, n = 2 women/8 men, age = 31.2 ± 5.4 years), older active (OA, n = 2 women/8 men, age = 67.5 ± 2.7 years), and older sedentary (OS, n = 8 women/11 men, age = 70.7 ± 4.7 years). Participants completed a graded exercise test to determine fitness (VO 2 peak), a submaximal exercise test to determine exercise efficiency, and daily physical activity was recorded using a tri-axial armband accelerometer. Mitochondrial energetics were determined by (i) 31 P magnetic resonance spectroscopy and (ii) respirometry of fibre bundles from vastus lateralis biopsies. Quadriceps function was assessed by isokinetic dynamometry and physical function by the short physical performance battery and stair climb test. Daily physical activity energy expenditure was significantly lower in OS, compared with YA and OA groups. Despite fitness being higher in YA compared with OA and OS, mitochondrial respiration, maximum mitochondrial capacity, Maximal ATP production/Oxygen consumption (P/O) ratio, and exercise efficiency were similar in YA and OA groups and were significantly lower in OS. P/O ratio was correlated with exercise efficiency. Time to complete the stair climb and repeated chair stand tests were

  9. Muscle structural changes in mitochondrial myopathy relate to genotype

    DEFF Research Database (Denmark)

    Olsen, David B.; Langkilde, Annika Reynberg; Ørngreen, Mette C.

    2003-01-01

    typically not been associated with mitochondrial disease. We investigated gross and microscopic muscle morphology in thigh muscles by muscle biopsy and MRI in 16 patients with MM, and compared findings with those obtained in muscular dystrophy patients and healthy subjects. Changes of muscle architecture......It is well known that morphological changes at the cellular level occur in muscle of patients with mitochondrial myopathy (MM), but changes in muscle structure with fat infiltration and gross variation of muscle fiber size with giant fibers, normally encountered in the muscular dystrophies, have......, similar to those found in the group of muscular dystrophy patients occurred consistently in patients with a high mutation load for single, largescale deletions of mtDNA, but were absent in all patients with the 3243A-->G mtDNA point mutation. Dystrophic changes of muscle architecture were also present...

  10. Muscle structural changes in mitochondrial myopathy relate to genotype

    DEFF Research Database (Denmark)

    Olsen, David B.; Langkilde, Annika Reynberg; Ørngreen, Mette C.

    2003-01-01

    It is well known that morphological changes at the cellular level occur in muscle of patients with mitochondrial myopathy (MM), but changes in muscle structure with fat infiltration and gross variation of muscle fiber size with giant fibers, normally encountered in the muscular dystrophies, have...... typically not been associated with mitochondrial disease. We investigated gross and microscopic muscle morphology in thigh muscles by muscle biopsy and MRI in 16 patients with MM, and compared findings with those obtained in muscular dystrophy patients and healthy subjects. Changes of muscle architecture......, similar to those found in the group of muscular dystrophy patients occurred consistently in patients with a high mutation load for single, largescale deletions of mtDNA, but were absent in all patients with the 3243A-->G mtDNA point mutation. Dystrophic changes of muscle architecture were also present...

  11. Mitochondrial Ca2+ uptake in skeletal muscle health and disease

    CERN Document Server

    Zhou, Jingsong; Yi, Jianxun

    2016-01-01

    Muscle uses Ca2+ as a messenger to control contraction and relies on ATP to maintain the intracellular Ca2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca2+ from their surroundings, a process called mitochondrial Ca2+ uptake. Under physiological conditions, Ca2+ uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca2+ overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca2+ uptake could shape spatio-temporal patterns of intracellular Ca2+ signaling. Malfunction of mitochondrial Ca2+ uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca2+ levels. Besides the sudden elevation of Ca2+ level induced by action potentials, Ca2+ transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as min...

  12. Erythropoietin treatment enhances muscle mitochondrial capacity in humans

    DEFF Research Database (Denmark)

    Plenge, Ulla; Belhage, Bo; Guadalupe-Grau, Amelia

    2012-01-01

    Erythropoietin (Epo) treatment has been shown to induce mitochondrial biogenesis in cardiac muscle along with enhanced mitochondrial capacity in mice. We hypothesized that recombinant human Epo (rhEpo) treatment enhances skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity...... in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over 8 weeks with oral iron (100 mg) supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis....... rhEpo treatment increased OXPHOS (from 92 ± 5 to 113 ± 7 pmol·s(-1)·mg(-1)) and ETS (107 ± 4 to 143 ± 14 pmol·s(-1)·mg(-1), p muscle....

  13. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    Previous studies have investigated if cryopreservation is a viable approach for functional mitochondrial analysis. Different tissues have been studied, and conflicting results have been published. The aim of the present study was to investigate if mitochondria in human skeletal muscle maintain...... functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...... of oxidative phosphorylation was significantly (P cryopreserved human skeletal muscle samples. Cryopreservation impaired respiration with substrates linked to Complex I more than for Complex II (P

  14. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respira...

  15. Elevated mitochondrial biogenesis in skeletal muscle is associated with testosterone-induced body weight loss in male mice.

    Science.gov (United States)

    Usui, Taro; Kajita, Kazuo; Kajita, Toshiko; Mori, Ichiro; Hanamoto, Takayuki; Ikeda, Takahide; Okada, Hideyuki; Taguchi, Koichiro; Kitada, Yoshihiko; Morita, Hiroyuki; Sasaki, Tsutomu; Kitamura, Tadahiro; Sato, Takashi; Kojima, Itaru; Ishizuka, Tatsuo

    2014-05-21

    Androgen reduces fat mass, although the underlying mechanisms are unknown. Here, we examined the effect of testosterone on heat production and mitochondrial biogenesis. Testosterone-treated mice exhibited elevated heat production. Treatment with testosterone increased the expression level of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), ATP5B and Cox4 in skeletal muscle, but not that in brown adipose tissue and liver. mRNA levels of genes involved in mitochondrial biogenesis were elevated in skeletal muscle isolated from testosterone-treated male mice, but were down-regulated in androgen receptor deficient mice. These results demonstrated that the testosterone-induced increase in energy expenditure is derived from elevated mitochondrial biogenesis in skeletal muscle. Copyright © 2014. Published by Elsevier B.V.

  16. Orbicularis oculi muscle biopsies for mitochondrial DNA analysis in suspected mitochondrial myopathy

    NARCIS (Netherlands)

    A. Roefs (Anne); P.J. Waters (Paula); G.R.W. Moore (G. R. Wayne); P.J. Dolman (Peter)

    2012-01-01

    textabstractAims: We wished to demonstrate the feasibility of performing diagnostic mitochondrial DNA (mtDNA) analysis on biopsies of the orbicularis oculi muscle in patients with a chronic progressive external ophthalmoplegia (CPEO) phenotype and suspicion of an underlying mitochondrial disorder.

  17. Skeletal Muscle Mitochondrial Function in Polycystic Ovarian Syndrome

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Svendsen, Pernille Maj; Skovbro, Mette

    2011-01-01

    Objective Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance, which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. Methods...... Hyperinsulinemic euglycemic clamps (40 mU/min/m2) and muscle biopsies were performed on 23 women with PCOS (9 lean (body mass index (BMI) 25 kg/m2)) and 17 age- and weight-matched controls (6 lean and 11 obese). Western blotting and high-resolution respirometry was used to determine mitochondrial function. Results...... Insulin sensitivity decreased with PCOS and increasing body weight. Mitochondrial respiration with substrates for complex I and complex I+II were similar in all groups, and PCOS was not associated with a decrease in mitochondrial content as measured by mtDNA/genomicDNA. We found no correlation between...

  18. Mitochondrial DNA Defects and Selective Extraocular Muscle Involvement in CPEO

    OpenAIRE

    Greaves, Laura C; Yu-Wai-Man, Patrick; Blakely, Emma L.; Krishnan, Kim J.; Beadle, Nina E; Kerin, Jamie; Barron, Martin J.; Griffiths, Philip G.; Dickinson, Alison J.; Turnbull, Douglass M; Taylor, Robert W.

    2010-01-01

    Patients with chronic progressive external ophthalmoplegia (CPEO) have significantly higher levels of cytochrome c oxidase (COX)-deficient fibers in extraocular muscles (EOMs) compared with skeletal muscle. Our data suggest that this could be due to a lower mutational threshold for COX deficiency in EOMs—a key factor that most likely contributes to their selective involvement in mitochondrial genetic disorders.

  19. Muscle structural changes in mitochondrial myopathy relate to genotype

    DEFF Research Database (Denmark)

    Olsen, David B.; Langkilde, Annika Reynberg; Ørngreen, Mette C.

    2003-01-01

    typically not been associated with mitochondrial disease. We investigated gross and microscopic muscle morphology in thigh muscles by muscle biopsy and MRI in 16 patients with MM, and compared findings with those obtained in muscular dystrophy patients and healthy subjects. Changes of muscle architecture......, similar to those found in the group of muscular dystrophy patients occurred consistently in patients with a high mutation load for single, largescale deletions of mtDNA, but were absent in all patients with the 3243A-->G mtDNA point mutation. Dystrophic changes of muscle architecture were also present...

  20. Tissue-specific and substrate-specific mitochondrial bioenergetics in feline cardiac and skeletal muscles

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen

    2015-01-01

    fibers. Biopsies of left ventricular cardiac muscle and soleus muscle, a type I-rich oxidative skeletal muscle, were obtained from 15 healthy domestic cats. Enzymatic activity of citrate synthase (CS), a biomarker of mitochondrial content, was measured. Mitochondrial OXPHOS capacity with various kinds......-specific quantitative and qualitative differences in mitochondrial OXPHOS capacity between the different types of oxidative muscles from cats....

  1. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  2. Mitochondrial DNA defects and selective extraocular muscle involvement in CPEO.

    Science.gov (United States)

    Greaves, Laura C; Yu-Wai-Man, Patrick; Blakely, Emma L; Krishnan, Kim J; Beadle, Nina E; Kerin, Jamie; Barron, Martin J; Griffiths, Philip G; Dickinson, Alison J; Turnbull, Douglass M; Taylor, Robert W

    2010-07-01

    PURPOSE. Chronic progressive external ophthalmoplegia (CPEO) is a prominent, and often the only, presentation among patients with mitochondrial diseases. The mechanisms underlying the preferential involvement of extraocular muscles (EOMs) in CPEO were explored in a comprehensive histologic and molecular genetic study, to define the extent of mitochondrial dysfunction in EOMs compared with that in skeletal muscle from the same patient. METHODS. A well-characterized cohort of 13 CPEO patients harboring a variety of primary and secondary mitochondrial (mt)DNA defects was studied. Mitochondrial enzyme function was determined in EOM and quadriceps muscle sections with cytochrome c oxidase (COX)/succinate dehydrogenase (SDH) histochemistry, and the mutation load in single muscle fibers was quantified by real-time PCR and PCR-RFLP assays. RESULTS. CPEO patients with mtDNA deletions had more COX-deficient fibers in EOM (41.6%) than in skeletal muscle (13.7%, P > 0.0001), and single-fiber analysis revealed a lower mutational threshold for COX deficiency in EOM. Patients with mtDNA point mutations had a less severe ocular phenotype, and there was no significant difference in the absolute level of COX deficiency or mutational threshold between these two muscle groups. CONCLUSIONS. The more pronounced mitochondrial biochemical defect and lower mutational threshold in EOM compared with skeletal muscle fibers provide an explanation of the selective muscle involvement in CPEO. The data also suggest that tissue-specific mechanisms are involved in the clonal expansion and expression of secondary mtDNA deletions in CPEO patients with nuclear genetic defects.

  3. Mitochondrial redox signaling enables repair of injured skeletal muscle cells.

    Science.gov (United States)

    Horn, Adam; Van der Meulen, Jack H; Defour, Aurelia; Hogarth, Marshall; Sreetama, Sen Chandra; Reed, Aaron; Scheffer, Luana; Chandel, Navdeep S; Jaiswal, Jyoti K

    2017-09-05

    Strain and physical trauma to mechanically active cells, such as skeletal muscle myofibers, injures their plasma membranes, and mitochondrial function is required for their repair. We found that mitochondrial function was also needed for plasma membrane repair in myoblasts as well as nonmuscle cells, which depended on mitochondrial uptake of calcium through the mitochondrial calcium uniporter (MCU). Calcium uptake transiently increased the mitochondrial production of reactive oxygen species (ROS), which locally activated the guanosine triphosphatase (GTPase) RhoA, triggering F-actin accumulation at the site of injury and facilitating membrane repair. Blocking mitochondrial calcium uptake or ROS production prevented injury-triggered RhoA activation, actin polymerization, and plasma membrane repair. This repair mechanism was shared between myoblasts, nonmuscle cells, and mature skeletal myofibers. Quenching mitochondrial ROS in myofibers during eccentric exercise ex vivo caused increased damage to myofibers, resulting in a greater loss of muscle force. These results suggest a physiological role for mitochondria in plasma membrane repair in injured cells, a role that highlights a beneficial effect of ROS. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle

    National Research Council Canada - National Science Library

    Zhen Yan; Mitsuharu Okutsu; Yasir N. Akhtar; Vitor A. Lira

    2011-01-01

    .... Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial...

  5. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    expression analysis and proteomics have pointed to abnormalities in mitochondrial oxidative phosphorylation and cellular stress in muscle of type 2 diabetic subjects, and recent work suggests that impaired mitochondrial activity is another early defect in the pathogenesis of type 2 diabetes. This review......Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase...

  6. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity

    OpenAIRE

    Kang, Chounghun; Lim, Wonchung

    2016-01-01

    Endurance exercise is securely linked to muscle metabolic adaptations including enhanced mitochondrial function (?Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle? [1], ?Effects of exercise on mitochondrial content and function in aging human skeletal muscle? [2]). However, the link between exercise intensity and mitochondrial function in aging muscle has not been fully investigated. In order to understand how strenuous exercise affects mit...

  7. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  8. Skeletal muscle mitochondrial respiration in AMPKa2 kinase dead mice

    DEFF Research Database (Denmark)

    Larsen, Steen; Kristensen, Jonas Møller; Stride, Nis

    2012-01-01

    AIM: To study if the phenotypical characteristics (exercise intolerance; reduced spontaneous activity) of the AMPKa2 kinase-dead (KD) mice can be explained by a reduced mitochondrial respiratory flux rates (JO(2) ) in skeletal muscle. Secondly, the effect of the maturation process on JO(2...

  9. Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice.

    Directory of Open Access Journals (Sweden)

    Asimina Hiona

    2010-07-01

    Full Text Available Aging results in a progressive loss of skeletal muscle, a condition known as sarcopenia. Mitochondrial DNA (mtDNA mutations accumulate with aging in skeletal muscle and correlate with muscle loss, although no causal relationship has been established.We investigated the relationship between mtDNA mutations and sarcopenia at the gene expression and biochemical levels using a mouse model that expresses a proofreading-deficient version (D257A of the mitochondrial DNA Polymerase gamma, resulting in increased spontaneous mtDNA mutation rates. Gene expression profiling of D257A mice followed by Parametric Analysis of Gene Set Enrichment (PAGE indicates that the D257A mutation is associated with a profound downregulation of gene sets associated with mitochondrial function. At the biochemical level, sarcopenia in D257A mice is associated with a marked reduction (35-50% in the content of electron transport chain (ETC complexes I, III and IV, all of which are partly encoded by mtDNA. D257A mice display impaired mitochondrial bioenergetics associated with compromised state-3 respiration, lower ATP content and a resulting decrease in mitochondrial membrane potential (Deltapsim. Surprisingly, mitochondrial dysfunction was not accompanied by an increase in mitochondrial reactive oxygen species (ROS production or oxidative damage.These findings demonstrate that mutations in mtDNA can be causal in sarcopenia by affecting the assembly of functional ETC complexes, the lack of which provokes a decrease in oxidative phosphorylation, without an increase in oxidative stress, and ultimately, skeletal muscle apoptosis and sarcopenia.

  10. Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervated fibers: Role in muscle aging.

    Science.gov (United States)

    Pollock, Natalie; Staunton, Caroline A; Vasilaki, Aphrodite; McArdle, Anne; Jackson, Malcolm J

    2017-11-01

    Disruption of neuromuscular junctions and denervation of some muscle fibers occurs in ageing skeletal muscle and contribute to loss of muscle mass and function. Aging is associated with mitochondrial dysfunction and loss of redox homeostasis potentially occurs through increased mitochondrial generation of reactive oxygen species (ROS). No specific link between increased mitochondrial ROS generation and denervation has been defined in muscle ageing. To address this, we have examined the effect of experimental denervation of all fibers, or only a proportion of the fibers, in the mouse tibialis anterior (TA) muscle on muscle mitochondrial peroxide generation. Transection of the peroneal nerve of mice caused loss of pre-synaptic axons within 1-3 days with no significant morphological changes in post-synaptic structures up to 10 days post-surgery when decreased TA mass and fiber size were apparent. Mitochondria in the denervated muscle showed increased peroxide generation by 3 days post-transection. Use of electron transport chain (ETC) substrates and inhibitors of specific pathways indicated that the ETC was unlikely to contribute to increased ROS generation, but monoamine oxidase B, NADPH oxidase and phospholipase enzymes were implicated. Transection of one of the 3 branches of the peroneal nerve caused denervation of some TA muscle fibers while others retained innervation, but increased mitochondrial peroxide generation occurred in both denervated and innervated fibers. Thus the presence of recently denervated fibers leads to increased ROS generation by mitochondria in neighboring innervated fibers providing a novel explanation for the increased mitochondrial oxidative stress and damage seen with aging in skeletal muscles. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity.

    Science.gov (United States)

    Kang, Chounghun; Lim, Wonchung

    2016-06-01

    Endurance exercise is securely linked to muscle metabolic adaptations including enhanced mitochondrial function ("Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle" [1], "Effects of exercise on mitochondrial content and function in aging human skeletal muscle" [2]). However, the link between exercise intensity and mitochondrial function in aging muscle has not been fully investigated. In order to understand how strenuous exercise affects mitochondrial function in aged mice, male C57BL/6 mice at age 24 months were randomly assigned to 3 groups: non-exercise (NE), low-intensity (LE) and high-intensity treadmill exercise group (HE). Mitochondrial complex activity and respiration were measured to evaluate mitochondrial function in mouse skeletal muscle. The data described here are related to the research article entitled "Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice" [3].

  12. Altered mitochondrial regulation in quadriceps muscles of patients with COPD

    DEFF Research Database (Denmark)

    Naimi, Ashley I; Bourbeau, Jean; Perrault, Helene

    2011-01-01

    Evidence exists for locomotor muscle impairment in patients with chronic obstructive pulmonary disease (COPD), including fiber type alterations and reduced mitochondrial oxidative capacity. In this study high-resolution respirometry was used to quantify oxygen flux in permeabilized fibres from...... biopsies of the vastus lateralis muscle in patients with COPD and compared to healthy control subjects. The main findings of this study were that (i) routine state 2 respiration was higher in COPD; (ii) state 3 respiration in the presence of ADP was similar in both groups with substrate supply of electrons...

  13. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action

    Directory of Open Access Journals (Sweden)

    Mario Ost

    2016-02-01

    Conclusions: Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key metabolic mediator of the mitochondrial stress adaptation and powerful therapeutic target during muscle mitochondrial disease.

  14. Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis.

    Science.gov (United States)

    Gavini, Chaitanya K; Jones, William C; Novak, Colleen M

    2016-09-15

    The ventromedial hypothalamus (VMH) and the central melanocortin system both play vital roles in regulating energy balance by modulating energy intake and utilization. Recent evidence suggests that activation of the VMH alters skeletal muscle metabolism. We show that intra-VMH melanocortin receptor activation increases energy expenditure and physical activity, switches fuel utilization to fats, and lowers work efficiency such that excess calories are dissipated by skeletal muscle as heat. We also show that intra-VMH melanocortin receptor activation increases sympathetic nervous system outflow to skeletal muscle. Intra-VMH melanocortin receptor activation also induced significant changes in the expression of mediators of energy expenditure in muscle. These results support the role of melanocortin receptors in the VMH in the modulation of skeletal muscle metabolism. The ventromedial hypothalamus (VMH) and the brain melanocortin system both play vital roles in increasing energy expenditure (EE) and physical activity, decreasing appetite and modulating sympathetic nervous system (SNS) outflow. Because of recent evidence showing that VMH activation modulates skeletal muscle metabolism, we propose the existence of an axis between the VMH and skeletal muscle, modulated by brain melanocortins, modelled on the brain control of brown adipose tissue. Activation of melanocortin receptors in the VMH of rats using a non-specific agonist melanotan II (MTII), compared to vehicle, increased oxygen consumption and EE and decreased the respiratory exchange ratio. Intra-VMH MTII enhanced activity-related EE even when activity levels were held constant. MTII treatment increased gastrocnemius muscle heat dissipation during controlled activity, as well as in the home cage. Compared to vehicle-treated rats, rats with intra-VMH melanocortin receptor activation had higher skeletal muscle norepinephrine turnover, indicating an increased SNS drive to muscle. Lastly, intra-VMH MTII induced m

  15. Integrated analysis of the involvement of nitric oxide synthesis in mitochondrial proliferation, mitochondrial deficiency and apoptosis in skeletal muscle fibres

    Science.gov (United States)

    Rodrigues, Gabriela Silva; Godinho, Rosely Oliveira; Kiyomoto, Beatriz Hitomi; Gamba, Juliana; Oliveira, Acary Souza Bulle; Schmidt, Beny; Tengan, Célia Harumi

    2016-01-01

    Nitric oxide (NO) is an important signaling messenger involved in different mitochondrial processes but only few studies explored the participation of NO in mitochondrial abnormalities found in patients with genetic mitochondrial deficiencies. In this study we verified whether NO synthase (NOS) activity was altered in different types of mitochondrial abnormalities and whether changes in mitochondrial function and NOS activity could be associated with the induction of apoptosis. We performed a quantitative and integrated analysis of NOS activity in individual muscle fibres of patients with mitochondrial diseases, considering mitochondrial function (cytochrome-c-oxidase activity), mitochondrial content, mitochondrial DNA mutation and presence of apoptotic nuclei. Our results indicated that sarcolemmal NOS activity was increased in muscle fibres with mitochondrial proliferation, supporting the relevance of neuronal NOS in the mitochondrial biogenesis process. Sarcoplasmic NOS activity was reduced in cytochrome-c-oxidase deficient fibres, probably as a consequence of the involvement of NO in the regulation of the respiratory chain. Alterations in NOS activity or mitochondrial abnormalities were not predisposing factors to apoptotic nuclei. Taken together, our results show that NO can be considered a potential molecular target for strategies to increase mitochondrial content and indicate that this approach may not be associated with increased apoptotic events. PMID:26856437

  16. Validation of Mitochondrial Gene Delivery in Liver and Skeletal Muscle via Hydrodynamic Injection Using an Artificial Mitochondrial Reporter DNA Vector.

    Science.gov (United States)

    Yasuzaki, Yukari; Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2015-12-07

    For successful mitochondrial transgene expression, two independent processes, i.e., developing a mitochondrial gene delivery system and construction of DNA vector to achieve mitochondrial gene expression, are required. To date, very few studies dealing with mitochondrial gene delivery have been reported and, in most cases, transgene expression was not validated, because the construction of a reporter DNA vector for mitochondrial gene expression is the bottleneck. In this study, mitochondrial transgene expression by the in vivo mitochondrial gene delivery of an artificial mitochondrial reporter DNA vector via hydrodynamic injection is demonstrated. In the procedure, a large volume of naked plasmid DNA (pDNA) is rapidly injected. We designed and constructed pHSP-mtLuc (CGG) as a mitochondrial reporter DNA vector that possesses a mitochondrial heavy strand promoter (HSP) and an artificial mitochondrial genome with the reporter NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. We delivered the pDNA into mouse liver mitochondria by hydrodynamic injection, and detected exogenous mRNA in the liver using reverse transcription PCR analysis. The hydrodynamic injection of pHSP-mtLuc (CGG) resulted in the expression of the Nluc luciferase protein in liver and skeletal muscle. Our mitochondrial transgene expression reporter system would contribute to mitochondrial gene therapy and further studies directed at mitochondrial molecular biology.

  17. Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation.

    Science.gov (United States)

    Lee, Hui-Young; Lee, Jae Sung; Alves, Tiago; Ladiges, Warren; Rabinovitch, Peter S; Jurczak, Michael J; Choi, Cheol Soo; Shulman, Gerald I; Samuel, Varman T

    2017-08-01

    We explored the role of reactive oxygen species (ROS) in the pathogenesis of muscle insulin resistance. We assessed insulin action in vivo with a hyperinsulinemic-euglycemic clamp in mice expressing a mitochondrial-targeted catalase (MCAT) that were fed regular chow (RC) or a high-fat diet (HFD) or underwent an acute infusion of a lipid emulsion. RC-fed MCAT mice were similar to littermate wild-type (WT) mice. However, HFD-fed MCAT mice were protected from diet-induced insulin resistance. In contrast, an acute lipid infusion caused muscle insulin resistance in both MCAT and WT mice. ROS production was decreased in both HFD-fed and lipid-infused MCAT mice and cannot explain the divergent response in insulin action. MCAT mice had subtly increased energy expenditure and muscle fat oxidation with decreased intramuscular diacylglycerol (DAG) accumulation, protein kinase C-θ (PKCθ) activation, and impaired insulin signaling with HFD. In contrast, the insulin resistance with the acute lipid infusion was associated with increased muscle DAG content in both WT and MCAT mice. These studies suggest that altering muscle mitochondrial ROS production does not directly alter the development of lipid-induced insulin resistance. However, the altered energy balance in HFD-fed MCAT mice protected them from DAG accumulation, PKCθ activation, and impaired muscle insulin signaling. © 2017 by the American Diabetes Association.

  18. Muscle 3243A -> G mutation load and capacity of the mitochondrial energy-generating system

    NARCIS (Netherlands)

    Janssen, Antoon J. M.; Schuelke, Markus; Smeitink, Jan A. M.; Trijbels, Frans J. M.; Sengers, Rob C. A.; Lucke, Barbara; Wintjes, Liesbeth T. M.; Morava, Eva; van Engelen, Baziel G. M.; Struts, Bart W.; Hol, Frans A.; Siers, Marloes H.; ter Laak, Henk; van der Knaap, Marjo S.; van Spronsen, Francjan J.; Rodenburg, Richard J. T.; van den Heuvel, Lambert P.

    Objective: The mitochondrial energy-generating system (MEGS) encompasses the mitochondrial enzymatic reactions from oxidation of pyruvate to the export of adenosine triphosphate. It is investigated in intact muscle mitochondria by measuring the pyruvate oxidation and adenosine triphosphate

  19. Data on mitochondrial function in skeletal muscle of old mice in response to different exercise intensity

    Directory of Open Access Journals (Sweden)

    Chounghun Kang

    2016-06-01

    Full Text Available Endurance exercise is securely linked to muscle metabolic adaptations including enhanced mitochondrial function (“Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle” [1], “Effects of exercise on mitochondrial content and function in aging human skeletal muscle” [2]. However, the link between exercise intensity and mitochondrial function in aging muscle has not been fully investigated. In order to understand how strenuous exercise affects mitochondrial function in aged mice, male C57BL/6 mice at age 24 months were randomly assigned to 3 groups: non-exercise (NE, low-intensity (LE and high-intensity treadmill exercise group (HE. Mitochondrial complex activity and respiration were measured to evaluate mitochondrial function in mouse skeletal muscle. The data described here are related to the research article entitled “Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice” [3].

  20. Polyunsaturated Fatty Acids Attenuate Diet Induced Obesity and Insulin Resistance, Modulating Mitochondrial Respiratory Uncoupling in Rat Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Gina Cavaliere

    Full Text Available Omega (ω-3 polyunsaturated fatty acids (PUFA are dietary compounds able to attenuate insulin resistance. Anyway, the precise actions of ω-3PUFAs in skeletal muscle are overlooked. We hypothesized that PUFAs, modulating mitochondrial function and efficiency, would ameliorate pro-inflammatory and pro-oxidant signs of nutritionally induced obesity.To this aim, rats were fed a control diet (CD or isocaloric high fat diets containing either ω-3 PUFA (FD or lard (LD for 6 weeks.FD rats showed lower weight, lipid gain and energy efficiency compared to LD-fed animals, showing higher energy expenditure and O2 consumption/CO2 production. Serum lipid profile and pro-inflammatory parameters in FD-fed animals were reduced compared to LD. Accordingly, FD rats exhibited a higher glucose tolerance revealed by an improved glucose and insulin tolerance tests compared to LD, accompanied by a restoration of insulin signalling in skeletal muscle. PUFAs increased lipid oxidation and reduced energy efficiency in subsarcolemmal mitochondria, and increase AMPK activation, reducing both endoplasmic reticulum and oxidative stress. Increased mitochondrial respiration was related to an increased mitochondriogenesis in FD skeletal muscle, as shown by the increase in PGC1-α and -β.our data strengthened the association of high dietary ω3-PUFA intake with reduced mitochondrial energy efficiency in the skeletal muscle.

  1. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  2. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Justin D Crane

    Full Text Available Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 (+/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 (+/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 (+/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.

  3. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle

    National Research Council Canada - National Science Library

    Talanian, Jason L; Holloway, Graham P; Snook, Laelie A; Heigenhauser, George J F; Bonen, Arend; Spriet, Lawrence L

    2010-01-01

    ... examined. Therefore, we determined whether high-intensity interval training (HIIT) increased total skeletal muscle, sarcolemmal, and mitochondrial membrane fatty acid transport protein contents...

  4. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects

    DEFF Research Database (Denmark)

    Larsen, Steen; Nielsen, Joachim; Neigaard Nielsen, Christina

    2012-01-01

    Skeletal muscle mitochondrial content varies extensively between human subjects. Biochemical measures of mitochondrial proteins, enzyme activities and lipids are often used as markers of mitochondrial content and muscle oxidative capacity (OXPHOS). The purpose of this study was to determine how...... closely associated these commonly used biochemical measures are to muscle mitochondrial content and muscle oxidative capacity (OXPHOS).Sixteen young healthy male subjects were recruited for this study. Subjects completed a graded exercise test to determine maximal oxygen uptake (VO(2peak)) and muscle......, mitochondrial DNA content, complex I-V protein content, and complex I-IV activity. Spearman correlation coefficient tests and Lin's concordance tests were applied to assess the absolute and relative association between the markers and mitochondrial content or OXPHOS.Subjects had a large range in VO(2peak...

  5. Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    DEFF Research Database (Denmark)

    Murgia, Marta; Nagaraj, Nagarjuna; Deshmukh, Atul S

    2015-01-01

    Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high-sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional...... and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions...... and illustrate the utility of single cell type analysis for dissecting proteomic heterogeneity....

  6. Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangho; Kim, Minjung [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Lim, Wonchung [Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 363-764 (Korea, Republic of); Kim, Taeyoung [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Kang, Chounghun, E-mail: kangx119@umn.edu [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, MN 55455 (United States)

    2015-05-29

    Strenuous exercise is known to cause excessive ROS generation and inflammation. However, the mechanisms responsible for the regulation of mitochondrial integrity in the senescent muscle during high-intensity exercise (HE) are not well studied. Here, we show that HE suppresses up-regulation of mitochondrial function despite increase in mitochondrial copy number, following excessive ROS production, proinflammatory cytokines and NFκB activation. Moreover, HE in the old group resulted in the decreasing of both fusion (Mfn2) and fission (Drp1) proteins that may contribute to alteration of mitochondrial morphology. This study suggests that strenuous exercise does not reverse age-related mitochondrial damage and dysfunction by the increased ROS and inflammation. - Highlights: • Effect of exercise on mitochondrial function of aged skeletal muscles was studied. • Strenuous exercise triggered excessive ROS production and inflammatory cytokines. • Strenuous exercise suppressed mitochondrial function in senescent muscle.

  7. Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis

    Science.gov (United States)

    Mukherjee, Sromona; Shukla, Charu; Britton, Steven L.; Koch, Lauren G.; Shi, Haifei; Novak, Colleen M.

    2014-01-01

    A high-calorie diet accompanied by low levels of physical activity (PA) accounts for the widespread prevalence of obesity today, and yet some people remain lean even in this obesogenic environment. Here, we investigate the cause for this exception. A key trait that predicts high PA in both humans and laboratory rodents is intrinsic aerobic capacity. Rats artificially selected as high-capacity runners (HCR) are lean and consistently more physically active than their low-capacity runner (LCR) counterparts; this applies to both males and females. Here, we demonstrate that HCR show heightened total energy expenditure (TEE) and hypothesize that this is due to higher nonresting energy expenditure (NREE; includes activity EE). After matching for body weight and lean mass, female HCR consistently had heightened nonresting EE, but not resting EE, compared with female LCR. Because of the dominant role of skeletal muscle in nonresting EE, we examined muscle energy use. We found that lean female HCR had higher muscle heat dissipation during activity, explaining their low economy of activity and high activity EE. This may be due to the amplified skeletal muscle expression levels of proteins involved in EE and reduced expression levels of proteins involved in energy conservation in HCR relative to LCR. This is also associated with an increased sympathetic drive to skeletal muscle in HCR compared with LCR. We find little support for the hypothesis that resting metabolic rate is correlated with maximal aerobic capacity if body size and composition are fully considered; rather, the critical factor appears to be activity thermogenesis. PMID:24398400

  8. Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis.

    Science.gov (United States)

    Gavini, Chaitanya K; Mukherjee, Sromona; Shukla, Charu; Britton, Steven L; Koch, Lauren G; Shi, Haifei; Novak, Colleen M

    2014-03-01

    A high-calorie diet accompanied by low levels of physical activity (PA) accounts for the widespread prevalence of obesity today, and yet some people remain lean even in this obesogenic environment. Here, we investigate the cause for this exception. A key trait that predicts high PA in both humans and laboratory rodents is intrinsic aerobic capacity. Rats artificially selected as high-capacity runners (HCR) are lean and consistently more physically active than their low-capacity runner (LCR) counterparts; this applies to both males and females. Here, we demonstrate that HCR show heightened total energy expenditure (TEE) and hypothesize that this is due to higher nonresting energy expenditure (NREE; includes activity EE). After matching for body weight and lean mass, female HCR consistently had heightened nonresting EE, but not resting EE, compared with female LCR. Because of the dominant role of skeletal muscle in nonresting EE, we examined muscle energy use. We found that lean female HCR had higher muscle heat dissipation during activity, explaining their low economy of activity and high activity EE. This may be due to the amplified skeletal muscle expression levels of proteins involved in EE and reduced expression levels of proteins involved in energy conservation in HCR relative to LCR. This is also associated with an increased sympathetic drive to skeletal muscle in HCR compared with LCR. We find little support for the hypothesis that resting metabolic rate is correlated with maximal aerobic capacity if body size and composition are fully considered; rather, the critical factor appears to be activity thermogenesis.

  9. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Gejl, Kasper D; Hey-Mogensen, Martin

    2017-01-01

    , in human skeletal muscle, contrary to the current view, the mitochondrial cristae density is not constant, but exhibits plasticity with long-term endurance training. Furthermore, we show that frequently recruited mitochondria-enriched fibres have significantly increased cristae density and that, at whole......Mitochondrial energy production involves the movement of protons down a large electrochemical gradient through ATP synthase located on the folded inner membrane, known as cristae. In mammalian skeletal muscle, the density of cristae in mitochondria is thought to be constant. However, recent......-body level, muscle mitochondrial cristae density is a better predictor of maximal oxygen uptake rate than muscle mitochondrial volume. Our findings establish elevating mitochondrial cristae density as a regulatory mechanism for increasing metabolic power in human skeletal muscle. We propose...

  10. 1-Sarcosine-angiotensin II infusion effects on food intake, weight loss, energy expenditure, and skeletal muscle UCP3 gene expression in a rat model.

    Science.gov (United States)

    Cichello, S A; Weisinger, R S; Schuijers, J; Jois, M

    2014-09-01

    There are a myriad of proteins responsible for modulation of expenditure of energy. Angiotensin II (Ang II) is a vital component of renin-angiotensin system that affects blood pressure and also linked to both cachexia and obesity via fat and muscle metabolism. Previous research suggests that the direct action of Ang II is on the brain, via angiotensin II type 1 receptor protein, affecting food intake and energy expenditure. The objective of the study is to investigate the effect of 1-sarcosine (SAR)-Ang II infusion on energy expenditure and metabolism in a rat model of congestive heart failure cachexia. Adult female rats of the Sprague Dawley strain (n = 33) were used (11 pair-fed control, 12 ad libitum and 10, 1-sarcosine-angiotensin II-infused rats). Body weight, faecal excretion, feed intake (in grams), water intake (in milliliters) and urine excreted were recorded daily. The measurements were recorded in three different periods (4 days prior to surgery, "pre-infusion"; day of surgery and 5 days postsurgery, "infusion period"; days 7 to 14, "recovery" period). Different analytical methods were used to measure energy expenditure per period, uncoupling protein 3 mRNA expression, crude protein and adipose tissue body composition. During the infusion period, the SAR-Ang II group experienced rapid weight loss (p fat content (in percent) than the controls. There was also increased (p weight by wasting predominantly adipose tissue, which may be due to elevated energy expenditure via mitochondrial uncoupling (UCP3 protein activity).

  11. Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function

    Directory of Open Access Journals (Sweden)

    Thomas Groennebaek

    2017-09-01

    Full Text Available Skeletal muscle metabolic and contractile properties are reliant on muscle mitochondrial and myofibrillar protein turnover. The turnover of these specific protein pools is compromised during disease, aging, and inactivity. Oppositely, exercise can accentuate muscle protein turnover, thereby counteracting decay in muscle function. According to a traditional consensus, endurance exercise is required to drive mitochondrial adaptations, while resistance exercise is required to drive myofibrillar adaptations. However, concurrent practice of traditional endurance exercise and resistance exercise regimens to achieve both types of muscle adaptations is time-consuming, motivationally demanding, and contended to entail practice at intensity levels, that may not comply with clinical settings. It is therefore of principle interest to identify effective, yet feasible, exercise strategies that may positively affect both mitochondrial and myofibrillar protein turnover. Recently, reports indicate that traditional high-load resistance exercise can stimulate muscle mitochondrial biogenesis and mitochondrial respiratory function. Moreover, fatiguing low-load resistance exercise has been shown capable of promoting muscle hypertrophy and expectedly entails greater metabolic stress to potentially enhance mitochondrial adaptations. Consequently, fatiguing low-load resistance exercise regimens may possess the ability to stimulate muscle mitochondrial adaptations without compromising muscle myofibrillar accretion. However, the exact ability of resistance exercise to drive mitochondrial adaptations is debatable, not least due to some methodological challenges. The current review therefore aims to address the evidence on the effects of resistance exercise on skeletal muscle mitochondrial biogenesis, content and function. In prolongation, a perspective is taken on the specific potential of low-load resistance exercise on promoting mitochondrial adaptations.

  12. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle

    Science.gov (United States)

    Cho, Yoshitake; Hazen, Bethany C.; Gandra, Paulo G.; Ward, Samuel R.; Schenk, Simon; Russell, Aaron P.; Kralli, Anastasia

    2016-01-01

    Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40–80%). Moreover, AAV1-Perm1–transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise.—Cho, Y., Hazen, B. C., Gandra, P. G., Ward, S. R., Schenk, S., Russell, A. P., Kralli, A. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. PMID:26481306

  13. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults.

    Directory of Open Access Journals (Sweden)

    Adeel Safdar

    Full Text Available The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; female symbol = male symbol. We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging.

  14. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain...... mitochondria and that the level of ROS production is higher in young compared to aged muscle. Accordingly, we could not find any increase in oxidative modification of proteins in muscle from elderly donors. However, the accumulation of lipofuscin was identified as a robust marker of human muscle aging....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...

  15. A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats.

    Science.gov (United States)

    Coudray, Charles; Fouret, Gilles; Lambert, Karen; Ferreri, Carla; Rieusset, Jennifer; Blachnio-Zabielska, Agnieszka; Lecomte, Jérôme; Ebabe Elle, Raymond; Badia, Eric; Murphy, Michael P; Feillet-Coudray, Christine

    2016-04-14

    The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention.

  16. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  17. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy.

    Science.gov (United States)

    Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F M; Smeets, Hubert; Praet, Stephan F; van Loon, Luc J; Prompers, Jeanine J

    2017-05-01

    Muscle weakness and exercise intolerance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min-1·kg body wt-1, maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt-1·day-1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using 31P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested. Copyright © 2017 the American Physiological Society.

  18. Supplemental oxygen and muscle metabolism in mitochondrial myopathy patients.

    Science.gov (United States)

    Trenell, Michael I; Sue, Carolyn M; Thompson, Campbell H; Kemp, Graham J

    2007-03-01

    Patients with mitochondrial myopathy (MM) have a reduced capacity to perform exercise due to a reduced oxidative capacity. We undertook this study to determine whether skeletal muscle metabolism could be improved with oxygen therapy in patients with MM. Six patients with MM and six controls, matched for age, gender and physical activity, underwent (31)P-magnetic resonance spectroscopy ((31)P-MRS) examination. (31)P-MR spectra were collected at rest and in series during exercise and recovery whilst breathing normoxic (0.21 O(2)) or hyperoxic (1.0 O(2)) air. At rest, MM showed an elevated [ADP] (18 +/- 3 micromol/l) and pH (7.03 +/- 0.01) in comparison to the control group (12 +/- 1 micromol/l, 7.01 +/- 0.01) (P Oxygen supplementation did not change resting metabolites in either MM or the control group (P > 0.05). Inferred maximal ATP synthesis rate improved by 33% with oxygen in MM (21 +/- 3 vs. 28 +/- 5 mmol/(l min), P 0.05). We conclude that oxygen therapy is associated with significant improvements in muscle metabolism in patients with MM. These data suggest that patients with MM could benefit from therapies which improve the provision of oxygen.

  19. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume

    DEFF Research Database (Denmark)

    Iaia, F. Marcello; Hellsten, Ylva; Nielsen, Jens Jung

    2009-01-01

    We studied the effect of an alteration from regular endurance to speed endurance training on muscle oxidative capacity, capillarization, as well as energy expenditure during submaximal exercise and its relationship to mitochondrial uncoupling protein 3 (UCP3) in humans. Seventeen endurance-trained...... runners were assigned to either a speed endurance training (SET; n = 9) or a control (Con; n = 8) group. For a 4-wk intervention (IT) period, SET replaced the ordinary training ( approximately 45 km/wk) with frequent high-intensity sessions each consisting of 8-12 30-s sprint runs separated by 3 min...... of rest (5.7 +/- 0.1 km/wk) with additional 9.9 +/- 0.3 km/wk at low running speed, whereas Con continued the endurance training. After the IT period, oxygen uptake was 6.6, 7.6, 5.7, and 6.4% lower (P

  20. Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging.

    Directory of Open Access Journals (Sweden)

    François Casas

    2009-05-01

    Full Text Available In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43 acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overexpression in skeletal muscle stimulates mitochondrial respiration and induces a shift in metabolic and contractile features of muscle fibers which became more oxidative.Here we have studied the influence of p43 overexpression in skeletal muscle of mice during aging. We report that p43 overexpression initially increased mitochondrial mass. However, after the early rise in mitochondrial DNA occurring at 2 months of age in transgenic mice, we observed a progressive decrease of mitochondrial DNA content which became 2-fold lower at 23 months of age relatively to control animals. Moreover, p43 overexpression induced an oxidative stress characterized by a strong increase of lipid peroxidation and protein oxidation in quadriceps muscle, although antioxidant enzyme activities (catalase and superoxide dismutase were stimulated. In addition, muscle atrophy became detectable at 6 months of age, probably through a stimulation of the ubiquitin proteasome pathway via two muscle-specific ubiquitin ligases E3, Atrogin-1/MAFbx and MuRF1.Taken together, these results demonstrate that a prolonged stimulation of mitochondrial activity induces muscle atrophy. In addition, these data underline the importance of a tight control of p43 expression and suggest that a deregulation of the direct T3 mitochondrial pathway could be one of the parameters involved in the occurrence of sarcopenia.

  1. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action.

    Science.gov (United States)

    Ost, Mario; Coleman, Verena; Voigt, Anja; van Schothorst, Evert M; Keipert, Susanne; van der Stelt, Inge; Ringel, Sebastian; Graja, Antonia; Ambrosi, Thomas; Kipp, Anna P; Jastroch, Martin; Schulz, Tim J; Keijer, Jaap; Klaus, Susanne

    2016-02-01

    Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood. We made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21-knockout (FGF21(-/-)) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions. Here we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPR(mt)) and amino acid biosynthetic pathways did not require the presence of FGF21. Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key metabolic mediator of the mitochondrial

  2. Low skeletal muscle mass is associated with increased hospital expenditure in patients undergoing cancer surgery of the alimentary tract

    NARCIS (Netherlands)

    J.L.A. van Vugt (Jeroen); S. Buttner (Stefan); S. Levolger (S.); R.R.J. Coebergh van den Braak (Robert); M. Suker (Mustafa); M.P. Gaspersz (Marcia); R.W.F. de Bruin (Ron); C. Verhoef (Kees); Van Eijck, C.H.C. (Casper H. C.); Bossche, N. (Niek); B. Groot Koerkamp (Bas); J.N.M. IJzermans (Jan)

    2017-01-01

    textabstractBackground: Low skeletal muscle mass is associated with poor postoperative outcomes in cancer patients. Furthermore, it is associated with increased healthcare costs in the United States. We investigated its effect on hospital expenditure in a Western-European healthcare system, with

  3. Family History of Diabetes Links Impaired Substrate Switching and Reduced Mitochondrial Content in Skeletal Muscle

    National Research Council Canada - National Science Library

    Barbara Ukropcova; Olga Sereda; Lilian de Jonge; Iwona Bogacka; Tuong Nguyen; Hui Xie; George A. Bray; Steven R. Smith

    2007-01-01

    Family History of Diabetes Links Impaired Substrate Switching and Reduced Mitochondrial Content in Skeletal Muscle Barbara Ukropcova , Olga Sereda , Lilian de Jonge , Iwona Bogacka , Tuong Nguyen , Hui Xie , George A. Bray and Steven R...

  4. High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance.

    Directory of Open Access Journals (Sweden)

    Joris Hoeks

    Full Text Available BACKGROUND: Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance. METHODOLOGY: C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD or HFD (45 kcal%. Skeletal muscle mitochondria were isolated and fatty acid (FA composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR. PRINCIPAL FINDINGS: At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9 were decreased (-4.0%, p<0.001, whereas saturated FA (16∶0 were increased (+3.2%, p<0.001 in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6 showed a pronounced increase (+4.0%, p<0.001. Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002 and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks. CONCLUSIONS/INTERPRETATION: Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in

  5. Mitochondrial dysfunction in calf muscles of patients with combined peripheral arterial disease and diabetes type 2

    DEFF Research Database (Denmark)

    Lindegaard Pedersen, Brian; Bækgaard, Niels; Quistorff, Bjørn

    2017-01-01

    BACKGROUND: This study elucidate the effects on muscle mitochondrial function in patients suffering from combined peripheral arterial disease (PAD) and type 2 diabetes (T2D) and the relation to patient symptoms and treatment. METHODS: Near Infra Red Spectroscopy (NIRS) calf muscle exercise tests...... tested applying high resolution oxygraphy on isolated muscle fibers. RESULTS: The NIRS exercise tests showed evidence of mitochondrial dysfunction in the PAD+T2D group by a longer recovery of the deoxygenation resulting from exercise in spite of a higher exercise oxygenation level compared to the PAD...... were conducted on Forty subjects, 15 (PAD), 15 (PAD+T2D) and 10 healthy age matched controls (CTRL) recruited from the vascular outpatient clinic at Gentofte County Hospital, Denmark. Calf muscle biopsies (~ 80 mg) (Gastrocnemius and Anterior tibial muscles) were sampled and mitochondrial function...

  6. Impaired exercise performance and skeletal muscle mitochondrial function in rats with secondary carnitine deficiency

    Directory of Open Access Journals (Sweden)

    Jamal BOUITBIR

    2016-08-01

    Full Text Available Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP, a carnitine analogue inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats.Methods: Male Sprague Dawley rats were treated daily with water (control rats; n=12 or with 20 mg/100 g body weight THP (n=12 via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion.Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (-24% and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected.Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.

  7. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  8. Regional anatomic differences in skeletal muscle mitochondrial respiration in type 2 diabetes and obesity

    DEFF Research Database (Denmark)

    Rabøl, R; Larsen, S; Højberg, P M V

    2010-01-01

    Context: Previous studies on leg skeletal musculature have demonstrated mitochondrial dysfunction associated with type 2 diabetes mellitus (T2DM), but it is not known whether mitochondrial dysfunction is present in the upper extremities. Objective: The aim of the study was to compare mitochondrial...... agents. Ten control subjects (age, 54.3 +/- 2.8 yr; body mass index, 30.4 +/- 1.2 kg/m(2)) with normal fasting and 2-h oral glucose tolerance test blood glucose levels were also included. Main Outcome Measure: We measured mitochondrial respiration in saponin-treated skinned muscle fibers from biopsies...... subjects compared to T2DM. Fiber type compositions in arm and leg muscles were not different between the T2DM and control group, and maximum rate of O(2) consumption did not differ between the groups. Conclusion: The results demonstrate that reduced mitochondrial function in T2DM is only present in the leg...

  9. Rapamycin doses sufficient to extend lifespan do not compromise muscle mitochondrial content or endurance

    DEFF Research Database (Denmark)

    Widlund, Anne Lykkegaard; Vang, Ole; Ye, Lan

    2013-01-01

    and compromise the function of mitochondria in cultured muscle cells, implying that defects in bioenergetics might be an unavoidable consequence of targeting mTORC1 in vivo. Therefore, we tested whether rapamycin, at the same doses used to extend lifespan, affects mitochondrial function in skeletal muscle. While...

  10. Mitochondrial dysfunction and therapeutic approaches in respiratory and limb muscles of cancer cachectic mice.

    Science.gov (United States)

    Fermoselle, Clara; García-Arumí, Elena; Puig-Vilanova, Ester; Andreu, Antoni L; Urtreger, Alejandro J; de Kier Joffé, Elisa D Bal; Tejedor, Alberto; Puente-Maestu, Luís; Barreiro, Esther

    2013-09-01

    What is the central question of this study? We explored whether experimental cancer-induced cachexia may alter mitochondrial respiratory chain (MRC) complexes and oxygen uptake in respiratory and peripheral muscles,and whether signalling pathways, proteasome and oxidative stress influence that process. What is the main finding and what is its importance? In cancer cachectic mice, MRC complexes and oxygen consumption were decreased in the diaphragm and gastrocnemius. Blockade of nuclear factor-κB and mitogen-activated protein kinase actions partly restored the muscle mass and force and corrected the MRC dysfunction,while concomitantly reducing tumour burden. Antioxidants improved mitochondrial oxygen consumption without eliciting effects on the loss of muscle mass and force or the tumour size,whereas bortezomib reduced tumour burden without influencing muscle mass and strength or MRC function. Abnormalities in mitochondrial content, morphology and function have been reported in several muscle-wasting conditions. We specifically explored whether experimental cancer-induced cachexia may alter mitochondrial respiratory chain (MRC) complexes and oxygen uptake in respiratory and peripheral muscles, and whether signalling pathways, proteasomes and oxidative stress may influence that process. We evaluated complex I, II and IV enzyme activities (specific activity assays) and MRC oxygen consumption (polarographic measurements) in diaphragm and gastrocnemius of cachectic mice bearing the LP07 lung tumour, with and without treatment with N-acetylcysteine, bortezomib and nuclear factor-κB (sulfasalazine) and mitogen-activated protein kinases (MAPK, U0126) inhibitors (n = 10 per group for all groups). Whole-body and muscle weights and limb muscle force were also assessed in all rodents at baseline and after 1 month. Compared with control animals, cancer cachectic mice showed a significant reduction in body weight gain, smaller sizes of the diaphragm and gastrocnemius, lower

  11. Drosophila Erect wing (Ewg) controls mitochondrial fusion during muscle growth and maintenance by regulation of the Opa1-like gene.

    Science.gov (United States)

    Rai, Mamta; Katti, Prasanna; Nongthomba, Upendra

    2014-01-01

    Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.

  12. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner

    DEFF Research Database (Denmark)

    Halling, Jens Frey; Jørgensen, Stine Ringholm; Olesen, Jesper

    2017-01-01

    Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effect...... evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner....

  13. Mitochondrial biogenesis drives a vicious cycle of metabolic insufficiency and mitochondrial DNA deletion mutation accumulation in aged rat skeletal muscle fibers.

    Directory of Open Access Journals (Sweden)

    Allen Herbst

    Full Text Available Aged muscles possess dysfunctional fibers that contain intracellular expansions of somatically derived mitochondrial DNA deletion mutations. At high abundance, these mutations disrupt the expression of mitochondrially-encoded protein subunits of the electron transport chain resulting in aerobic respiration deficient muscle fiber segments. These fiber segments atrophy and break contributing to the loss of muscle mass and function that occurs with age. By combining micro-dissection of individual muscle fibers with microarray analysis, we observed the response induced within these abnormal muscle fibers and detected an increase in many genes affecting metabolism and metabolic regulation. The transcriptional profile and subsequent protein validation suggested that a non-compensatory program of mitochondrial biogenesis was initiated. We hypothesized that this non-adaptive program of mitochondrial biogenesis was driving mtDNA deletion mutation accumulation. We tested this hypothesis by treating aged rats with β-Guanidinopropionic acid, a compound that stimulates mitochondrial biogenesis. β-Guanidinopropionic acid treatment increased muscle mitochondrial genome copy number and resulted in a 3.7 fold increase in the abundance of electron transport chain negative muscle fiber segments. We conclude that in electron transport system abnormal muscle fiber segments, a vicious cycle of metabolic insufficiency and non-compensatory mitochondrial biogenesis drive mtDNA deletion mutation accumulation.

  14. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model.

    Directory of Open Access Journals (Sweden)

    Guo Luo

    Full Text Available Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A harboring a superoxide dismutase mutation (SOD1(G93A. Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A model muscle. A specific mitochondrial fission inhibitor (Mdivi-1 reversed the SOD1(G93A action on mitochondrial dynamics, indicating SOD1(G93A likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and

  15. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse

    Science.gov (United States)

    Porter, Richard K.; Katz, Lisa M.; Hill, Emmeline W.

    2017-01-01

    Variation in the myostatin (MSTN) gene has been reported to be associated with race distance, body composition and skeletal muscle fibre composition in the horse. The aim of the present study was to test the hypothesis that MSTN variation influences mitochondrial phenotypes in equine skeletal muscle. Mitochondrial abundance and skeletal muscle fibre types were measured in whole muscle biopsies from the gluteus medius of n = 82 untrained (21 ± 3 months) Thoroughbred horses. Skeletal muscle fibre type proportions were significantly (p T (C) and the SINE insertion 227 bp polymorphism (I). Evaluation of mitochondrial complex activities indicated higher combined mitochondrial complex I+III and II+III activities in the presence of the C-allele / I allele (p ≤ 0.05). The restoration of complex I+III and complex II+III activities following addition of exogenous coenzyme Q1 (ubiquinone1) (CoQ1) in vitro in the TT/NN (homozygous T allele/homozygous no insertion) cohort indicated decreased coenzyme Q in these animals. In addition, decreased gene expression in two coenzyme Q (CoQ) biosynthesis pathway genes (COQ4, p ≤ 0.05; ADCK3, p ≤ 0.01) in the TT/NN horses was observed. This study has identified several mitochondrial phenotypes associated with MSTN genotype in untrained Thoroughbred horses and in addition, our findings suggest that nutritional supplementation with CoQ may aid to restore coenzyme Q activity in TT/NN horses. PMID:29190290

  16. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  17. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Mamta; Nongthomba, Upendra, E-mail: upendra@mrdg.iisc.ernet.in

    2013-10-15

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization.

  18. Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons

    Science.gov (United States)

    Dupuis, Luc; Gonzalez de Aguilar, Jose-Luis; Echaniz-Laguna, Andoni; Eschbach, Judith; Rene, Frédérique; Oudart, Hugues; Halter, Benoit; Huze, Caroline; Schaeffer, Laurent; Bouillaud, Frédéric; Loeffler, Jean-Philippe

    2009-01-01

    Background Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. Methodology/Principal Findings We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. Conclusions/Significance These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases. PMID:19404401

  19. A PGC-1α- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Skov, Vibe; Petersson, Stine Juhl

    2014-01-01

    Insulin resistance in obesity and type 2 diabetes is related to abnormalities in mitochondrial oxidative phosphorylation (OxPhos) in skeletal muscle. We tested the hypothesis that mitochondrial oxidative metabolism is impaired in muscle of patients with inherited insulin resistance and defective...... insulin signalling....

  20. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase

    Czech Academy of Sciences Publication Activity Database

    Klaus, S.; Keipert, S.; Rossmeisl, Martin; Kopecký, Jan

    2012-01-01

    Roč. 7, č. 3 (2012), s. 369-386 ISSN 1555-8932 R&D Projects: GA MZd(CZ) NS10528; GA MŠk(CZ) 7E10059; GA MŠk(CZ) OC08008 Institutional research plan: CEZ:AV0Z50110509 Keywords : adipose tissue * skeletal muscle * uncoupling protein * transgenic mice * insulin sensitivity Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.329, year: 2012

  1. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Mario eChiong

    2014-12-01

    Full Text Available Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs are essential processes of vascular development. VSMCs have biosynthetic, proliferative and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMCs play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e. mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER. Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial-ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.

  2. High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle

    DEFF Research Database (Denmark)

    Skovbro, Mette; Boushel, Robert Christopher; Hansen, Christina Neigaard

    2011-01-01

    ) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P ... and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance....

  3. Skeletal muscle mitochondrial function and exercise capacity in HIV-infected patients with lipodystrophy and elevated p-lactate levels

    DEFF Research Database (Denmark)

    Røge, Birgit Thorup; Calbet, José A L; Møller, Kirsten

    2002-01-01

    To investigate the skeletal muscle mitochondrial function in HIV-infected patients with lipodystrophy or elevated p-lactate levels.......To investigate the skeletal muscle mitochondrial function in HIV-infected patients with lipodystrophy or elevated p-lactate levels....

  4. Major growth reduction and minor decrease in mitochondrial enzyme activity in cultured human muscle cells after exposure to zidovudine.

    Science.gov (United States)

    Herzberg, N H; Zorn, I; Zwart, R; Portegies, P; Bolhuis, P A

    1992-06-01

    Zidovudine-induced mitochondrial myopathy in AIDS patients reported recently might be due to inhibition of mitochondrial DNA polymerase gamma. We investigated the effect of zidovudine on proliferation, differentiation, activity of mitochondrial- and nuclear-encoded enzymes, and mitochondrial DNA (mtDNA), in cultured human muscle cells. Marked inhibition of cell proliferation was found, even in the presence of low (10 mumol/L) zidovudine concentrations. Enzyme activity of the nuclear-encoded mitochondrial citrate synthase was not affected, and the partially mitochondrial-encoded cytochrome c oxidase was not decreased, except only after exposure to high concentrations (5 mmol/L) zidovudine. No decrease of mtDNA content and no mtDNA deletions were found in zidovudine-exposed muscle cells. We propose that the effect of zidovudine on muscle, seen in zidovudine-treated AIDS patients, results mainly from decrease in proliferation of muscle cells rather than inhibition of mtDNA replication.

  5. Effects of endurance training on skeletal muscle mitochondrial function in Huntington disease patients.

    Science.gov (United States)

    Mueller, Sandro Manuel; Gehrig, Saskia Maria; Petersen, Jens A; Frese, Sebastian; Mihaylova, Violeta; Ligon-Auer, Maria; Khmara, Natalia; Nuoffer, Jean-Marc; Schaller, André; Lundby, Carsten; Toigo, Marco; Jung, Hans H

    2017-12-19

    Mitochondrial dysfunction may represent a pathogenic factor in Huntington disease (HD). Physical exercise leads to enhanced mitochondrial function in healthy participants. However, data on effects of physical exercise on HD skeletal muscle remains scarce. We aimed at investigating adaptations of the skeletal muscle mitochondria to endurance training in HD patients. Thirteen HD patients and 11 healthy controls completed 26 weeks of endurance training. Before and after the training phase muscle biopsies were obtained from M. vastus lateralis. Mitochondrial respiratory chain complex activities, mitochondrial respiratory capacity, capillarization, and muscle fiber type distribution were determined from muscle samples. Citrate synthase activity increased during the training intervention in the whole cohort (P = 0.006). There was no group x time interaction for citrate synthase activity during the training intervention (P = 0.522). Complex III (P = 0.008), Complex V (P = 0.043), and succinate cytochrome c reductase (P = 0.008) activities increased in HD patients and controls by endurance training. An increase in mass-specific mitochondrial respiratory capacity was present in HD patients during the endurance training intervention. Overall capillary-to-fiber ratio increased in HD patients by 8.4% and in healthy controls by 6.4% during the endurance training intervention. Skeletal muscle mitochondria of HD patients are equally responsive to an endurance-training stimulus as in healthy controls. Endurance training is a safe and feasible option to enhance indices of energy metabolism in skeletal muscle of HD patients and may represent a potential therapeutic approach to delay the onset and/or progression of muscular dysfunction. ClinicalTrials.gov NCT01879267 . Registered May 24, 2012.

  6. Tuning of mitochondrial pathways by muscle work: from triggers to sensors and expression signatures.

    Science.gov (United States)

    Flueck, Martin

    2009-06-01

    Performance of striated muscle relies on the nerve-driven activation of the sarcomeric motor and coupled energy supply lines. This biological engine is unique; its mechanical and metabolic characteristics are not fixed, but are tailored by functional demand with exercise. This remodelling is specific for the imposed muscle stimulus. This is illustrated by the increase in local oxidative capacity with highly repetitive endurance training vs. the preferential initiation of sarcomerogenesis with strength training regimes, where high-loading increments are imposed. The application of molecular biology has provided unprecedented insight into the pathways that govern muscle plasticity. Time-course analysis indicates that the adjustments to muscle work involve a broad regulation of transcript expression during the recovery phase from a single bout of exercise. Highly resolving microarray analysis demonstrates that the specificity of an endurance-exercise stimulus is reflected by the signature of the transcriptome response after muscle work. A quantitative match in mitochondrial transcript adjustments and mitochondrial volume density after endurance training suggests that the gradual accumulation of expressional microadaptations underlies the promotion of fatigue resistance with training. This regulation is distinguished from control of muscle growth via the load-dependent activation of sarcomerogenesis. Discrete biochemical signalling systems have evolved that sense metabolic perturbations during exercise and trigger a specific expression program, which instructs the remodelling of muscle makeup. A drop in muscle oxygen tension and metabolite perturbations with exercise are recognized as important signals in the genome-mediated remodelling of the metabolic muscle phenotype in humans.

  7. Repeated static contractions increase mitochondrial vulnerability toward oxidative stress in human skeletal muscle

    DEFF Research Database (Denmark)

    Sahlin, Kent; Nielsen, Jens Steen; Mogensen, Martin

    2006-01-01

    +) kinetics in human muscle. Ten male subjects performed five bouts of static knee extension with 10-min rest in between. Each bout of RSC (target torque 66% of maximal voluntary contraction torque) was maintained to fatigue. Muscle biopsies were taken preexercise and 0.3 and 24 h postexercise from vastus......Repeated static contractions (RSC) induce large fluctuations in tissue oxygen tension and increase the generation of reactive oxygen species (ROS). This study investigated the effect of RSC on muscle contractility, mitochondrial respiratory function, and in vitro sarcoplasmic reticulum (SR) Ca(2......, decreased mitochondrial efficiency (phosphorylated ADP-to-oxygen consumed ratio), and increased noncoupled respiration (HPX/Con post- vs. preexercise). SR Ca(2+) uptake rate was lower 0.3 vs. 24 h postexercise, whereas SR Ca(2+) release rate was unchanged. RSC resulted in long-lasting changes in muscle...

  8. Rosmarinic Acid Mediates Mitochondrial Biogenesis in Insulin Resistant Skeletal Muscle Through Activation of AMPK.

    Science.gov (United States)

    Jayanthy, Govindaraj; Roshana Devi, Vellai; Ilango, Kaliappan; Subramanian, Sorimuthu Pillai

    2017-07-01

    Rosmarinic acid (RA), a polyphenol, is known to improve hepatic insulin sensitivity in experimental type 2 diabetes. However, its effect on skeletal muscle insulin resistance is meagerly understood. The present study was aimed to investigate the up- and downstream mediators of the molecular targets of RA in attenuating insulin resistance in the skeletal muscle both in vivo and in vitro. We found that supplementation of RA increased the expression of key genes involved in the mitochondrial biogenesis like PGC-1α, SIRT-1, and TFAM via activation of AMPK in the skeletal muscle of insulin resistant rats as well as in L6 myotubes. Further, RA treatment increased the glucose uptake and decreased the phosphorylation of serine IRS-1 while increasing the translocation of GLUT 4. Together, our findings evidenced that RA treatment significantly inhibit insulin resistance in skeletal muscle cells by enhancing mitochondrial biogenesis. J. Cell. Biochem. 118: 1839-1848, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Effect of Neuromuscular Electrical Muscle Stimulation on Energy Expenditure in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2011-02-01

    Full Text Available Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES at different intensities on energy expenditure (oxygen and calories in healthy adults. The secondary aim was to develop a generalized linear regression (GEE model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1, motor threshold (E2, and maximal intensity comfortably tolerated (E3. Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject’s demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  10. Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting.

    Science.gov (United States)

    Antunes, Diana; Padrão, Ana Isabel; Maciel, Elisabete; Santinha, Deolinda; Oliveira, Paula; Vitorino, Rui; Moreira-Gonçalves, Daniel; Colaço, Bruno; Pires, Maria João; Nunes, Cláudia; Santos, Lúcio L; Amado, Francisco; Duarte, José Alberto; Domingues, Maria Rosário; Ferreira, Rita

    2014-06-01

    Alterations in muscle mitochondrial bioenergetics during cancer cachexia were previously suggested; however, the underlying mechanisms are not known. So, the goal of this study was to evaluate mitochondrial phospholipid remodeling in cancer-related muscle wasting and its repercussions to respiratory chain activity and fiber susceptibility to apoptosis. An animal model of urothelial carcinoma induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) and characterized by significant body weight loss due to skeletal muscle mass decrease was used. Morphological evidences of muscle atrophy were associated to decreased respiratory chain activity and increased expression of mitochondrial UCP3, which altogether highlight the lower ability of wasted muscle to produce ATP. Lipidomic analysis of isolated mitochondria revealed a significant decrease of phosphatidic acid, phosphatidylglycerol and cardiolipin in BBN mitochondria, counteracted by increased phosphatidylcholine levels. Besides the impact on membrane fluidity, this phospholipid remodeling seems to justify, at least in part, the lower oxidative phosphorylation activity observed in mitochondria from wasted muscle and their increased susceptibility to apoptosis. Curiously, no evidences of lipid peroxidation were observed but proteins from BBN mitochondria, particularly the metabolic ones, seem more prone to carbonylation with the consequent implications in mitochondria functionality. Overall, data suggest that bladder cancer negatively impacts skeletal muscle activity specifically by affecting mitochondrial phospholipid dynamics and its interaction with proteins, ultimately leading to the dysfunction of this organelle. The regulation of phospholipid biosynthetic pathways might be seen as potential therapeutic targets for the management of cancer-related muscle wasting. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source

    Directory of Open Access Journals (Sweden)

    Rosalba ePutti

    2016-01-01

    Full Text Available It has been suggested that skeletal muscle mitochondria play a key role in high fat diet induced insulin resistance. Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle insulin resistance. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to insulin resistance. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of insulin resistance. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift towards mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and insulin resistance development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle insulin resistance and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle insulin resistance, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance.

  12. Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and Caucasians in the arctic winter

    DEFF Research Database (Denmark)

    Gnaiger, E; Boushel, R; Søndergaard, H

    2015-01-01

    During evolution, mitochondrial DNA haplogroups of arctic populations may have been selected for lower coupling of mitochondrial respiration to ATP production in favor of higher heat production. We show that mitochondrial coupling in skeletal muscle of traditional and westernized Inuit habituatin...... latitude and high altitude where economy of locomotion may be optimized by preservation of biochemical coupling efficiency at modest mitochondrial density, when submaximum performance is uncoupled from VO2max and maximum capacities of oxidative phosphorylation....

  13. Mitochondrial biogenesis and angiogenesis in skeletal muscle of the elderly

    DEFF Research Database (Denmark)

    Iversen, Ninna; Krustrup, Peter; Rasmussen, Hans N

    2011-01-01

    The aim of this study was to test the hypotheses that 1) skeletal muscles of elderly subjects can adapt to a single endurance exercise bout and 2) endurance trained elderly subjects have higher expression/activity of oxidative and angiogenic proteins in skeletal muscle than untrained elderly people...

  14. Muscle mitochondrial stress-induced metabolic adaptations do not require FGF21 action

    NARCIS (Netherlands)

    Schothorst, van Evert; Ost, Mario; Stelt, van der Inge; Klaus, Susanne; Keijer, Jaap

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a key metabolic regulator which was recently discovered as stress-induced myokine and common denominator of muscle mitochondrial disease. However, its precise function and pathophysiological relevance remains unknown. Here we demonstrate that white adipose

  15. Increased intrinsic mitochondrial respiratory capacity in skeletal muscle from rats with streptozotocin-induced hyperglycemia

    DEFF Research Database (Denmark)

    Larsen, Steen; Scheede-Bergdahl, Celena; Whitesell, Thomas

    2015-01-01

    the groups when evaluating the more physiol. complex I and II linked OXPHOS capacity. These findings indicate that chronic hyperglycemia results in an elevated intrinsic mitochondrial respiratory capacity in both soleus and, at varying degree, plantaris muscle, findings that are consistent with human T1DM...

  16. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study.

    NARCIS (Netherlands)

    Suomalainen, A.; Elo, J.M.; Pietilainen, K.H.; Hakonen, A.H.; Sevastianova, K.; Korpela, M.; Isohanni, P.; Marjavaara, S.K.; Tyni, T.; Kiuru-Enari, S.; Pihko, H.; Darin, N.; Ounap, K.; Kluijtmans, L.A.J.; Paetau, A.; Buzkova, J.; Bindoff, L.A.; Annunen-Rasila, J.; Uusimaa, J.; Rissanen, A.; Yki-Jarvinen, H.; Hirano, M.; Tulinius, M.; Smeitink, J.A.M.; Tyynismaa, H.

    2011-01-01

    BACKGROUND: Muscle biopsy is the gold standard for diagnosis of mitochondrial disorders because of the lack of sensitive biomarkers in serum. Fibroblast growth factor 21 (FGF-21) is a growth factor with regulatory roles in lipid metabolism and the starvation response, and concentrations are raised

  17. Lactate dehydrogenase is not a mitochondrial enzyme in human and mouse vastus lateralis muscle

    DEFF Research Database (Denmark)

    Rasmussen, Hans N; van Hall, Gerrit; Rasmussen, Ulla F

    2002-01-01

    The presence of lactate dehydrogenase in skeletal muscle mitochondria was investigated to clarify whether lactate is a possible substrate for mitochondrial respiration. Mitochondria were prepared from 100 mg samples of human and mouse vastus lateralis muscle. All fractions from the preparation...... procedure were assayed for marker enzymes and lactate dehydrogenase (LDH). The mitochondrial fraction contained no LDH activity (detection limit approximately 0.05 % of the tissue activity) and the distribution of LDH activity among the fractions paralleled that of pyruvate kinase, i.e. LDH was fractionated...... as a cytoplasmic enzyme. Respiratory experiments with the mitochondrial fraction also indicated the absence of LDH. Lactate did not cause respiration, nor did it affect the respiration of pyruvate + malate. The major part of the native cytochrome c was retained in the isolated mitochondria, which, furthermore...

  18. Low skeletal muscle mass is associated with increased hospital expenditure in patients undergoing cancer surgery of the alimentary tract.

    Directory of Open Access Journals (Sweden)

    Jeroen L A van Vugt

    Full Text Available Low skeletal muscle mass is associated with poor postoperative outcomes in cancer patients. Furthermore, it is associated with increased healthcare costs in the United States. We investigated its effect on hospital expenditure in a Western-European healthcare system, with universal access.Skeletal muscle mass (assessed on CT and costs were obtained for patients who underwent curative-intent abdominal cancer surgery. Low skeletal muscle mass was defined based on pre-established cut-offs. The relationship between low skeletal muscle mass and hospital costs was assessed using linear regression analysis and Mann-Whitney U-tests.452 patients were included (median age 65, 61.5% males. Patients underwent surgery for colorectal cancer (38.9%, colorectal liver metastases (27.4%, primary liver tumours (23.2%, and pancreatic/periampullary cancer (10.4%. In total, 45.6% had sarcopenia. Median costs were €2,183 higher in patients with low compared with patients with high skeletal muscle mass (€17,144 versus €14,961; P<0.001. Hospital costs incrementally increased with lower sex-specific skeletal muscle mass quartiles (P = 0.029. After adjustment for confounders, low skeletal muscle mass was associated with a cost increase of €4,061 (P = 0.015.Low skeletal muscle mass was independently associated with increased hospital costs of about €4,000 per patient. Strategies to reduce skeletal muscle wasting could reduce hospital costs in an era of incremental healthcare costs and an increasingly ageing population.

  19. Opposing effects of nitric oxide and prostaglandin inhibition on muscle mitochondrial VO2 during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert C; Fuentes, Teresa; Hellsten, Ylva

    2012-01-01

    -dependent manner, and thus inhibition of NO and PG may regulate both muscle oxygen delivery and utilization. The purpose of this study was to examine the independent and combined effects of NO and PG blockade (L-NMMA and indomethacin respectively) on mitochondrial respiration in human muscle following knee...... respiration primarily at complex I of the respiratory chain while blockade of NO by addition of L-NMMA counteracts the inhibition of Indo. This metabolic effect in concert with a reduction of blood flow likely accounts for in-vivo changes in muscle O(2) consumption during combined blockade of NO and PG....

  20. Hyperammonaemia‐induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress

    Science.gov (United States)

    Davuluri, Gangarao; Allawy, Allawy; Thapaliya, Samjhana; Rennison, Julie H.; Singh, Dharmvir; Kumar, Avinash; Sandlers, Yana; Van Wagoner, David R.; Flask, Chris A.; Hoppel, Charles; Kasumov, Takhar

    2016-01-01

    Key points Hyperammonaemia occurs in hepatic, cardiac and pulmonary diseases with increased muscle concentration of ammonia.We found that ammonia results in reduced skeletal muscle mitochondrial respiration, electron transport chain complex I dysfunction, as well as lower NAD+/NADH ratio and ATP content.During hyperammonaemia, leak of electrons from complex III results in oxidative modification of proteins and lipids.Tricarboxylic acid cycle intermediates are decreased during hyperammonaemia, and providing a cell‐permeable ester of αKG reversed the lower TCA cycle intermediate concentrations and increased ATP content.Our observations have high clinical relevance given the potential for novel approaches to reverse skeletal muscle ammonia toxicity by targeting the TCA cycle intermediates and mitochondrial ROS. Abstract Ammonia is a cytotoxic metabolite that is removed primarily by hepatic ureagenesis in humans. Hyperammonaemia occurs in advanced hepatic, cardiac and pulmonary disease, and in urea cycle enzyme deficiencies. Increased skeletal muscle ammonia uptake and metabolism are the major mechanism of non‐hepatic ammonia disposal. Non‐hepatic ammonia disposal occurs in the mitochondria via glutamate synthesis from α‐ketoglutarate resulting in cataplerosis. We show skeletal muscle mitochondrial dysfunction during hyperammonaemia in a comprehensive array of human, rodent and cellular models. ATP synthesis, oxygen consumption, generation of reactive oxygen species with oxidative stress, and tricarboxylic acid (TCA) cycle intermediates were quantified. ATP content was lower in the skeletal muscle from cirrhotic patients, hyperammonaemic portacaval anastomosis rat, and C2C12 myotubes compared to appropriate controls. Hyperammonaemia in C2C12 myotubes resulted in impaired intact cell respiration, reduced complex I/NADH oxidase activity and electron leak occurring at complex III of the electron transport chain. Consistently, lower NAD+/NADH ratio was observed

  1. Regulation of Skeletal Muscle Oxidative Capacity and Insulin Signaling by the Mitochondrial Rhomboid Protease PARL

    Science.gov (United States)

    Civitarese, Anthony E.; MacLean, Paul S.; Carling, Stacy; Kerr-Bayles, Lyndal; McMillan, Ryan P.; Pierce, Anson; Becker, Thomas C.; Moro, Cedric; Finlayson, Jean; Lefort, Natalie; Newgard, Christopher B.; Mandarino, Lawrence; Cefalu, William; Walder, Ken; Collier, Greg R.; Hulver, Matthew W.; Smith, Steven R.; Ravussin, Eric

    2010-01-01

    SUMMARY Type 2 diabetes Mellitus (T2DM) and aging are characterized by insulin resistance, lower mitochondrial density and function and increased production of reactive oxygen species (ROS). In lower organisms continuous remodeling critically maintains the function and life cycle of mitochondria, in part by the protease pcp1 (PARL ortholog). We therefore examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. Relative to healthy, young individuals (23±1y), PARL mRNA and mitochondrial mass were both reduced in elderly subjects (64.4±1.2 y; 51% and 44% respectively) and in subjects with T2DM (51.8±3 y; 31% and 41% respectively; all p<0.05). Muscle knock-down of PARL in mice resulted in lower mitochondrial content (−31±3%, p<0.05), lower OPA1 and PGC1α protein levels and impaired insulin signaling. Furthermore, mitochondrial cristae were malformed and resulted in elevated in vivo oxidative stress. Adenoviral suppression of PARL protein in healthy myotubes lowered mitochondrial mass (−33±8%), insulin stimulated glycogen synthesis (−33±9%) and increased ROS production (2-fold) (all p<0.05). We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM. PMID:20444421

  2. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    There is increasing evidence that multiple proteins involved in key regulatory processes in mitochondria are phosphorylated in mammalian tissues. Insulin regulates glucose metabolism by phosphorylation-dependent signaling and has been shown to stimulate ATP synthesis in human skeletal muscle. Here......, we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...

  3. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Ben Stocks

    2017-12-01

    Full Text Available Tumour protein 53 (p53 has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO and floxed littermate controls (WT under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1, fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL, carbohydrate metabolism (HKII, PDH, energy sensing (AMPKα2, AMPKβ2, and gene transcription (NRF1, PGC-1α, and TFAM were comparable in p53 mKO and WT mice (p > 0.05. Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05. Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

  4. Testosterone plus low-intensity physical training in late life improves functional performance, skeletal muscle mitochondrial biogenesis, and mitochondrial quality control in male mice.

    Directory of Open Access Journals (Sweden)

    Wen Guo

    Full Text Available Testosterone supplementation increases muscle mass in older men but has not been shown to consistently improve physical function and activity. It has been hypothesized that physical exercise is required to induce the adaptations necessary for translation of testosterone-induced muscle mass gain into functional improvements. However, the effects of testosterone plus low intensity physical exercise training (T/PT on functional performance and bioenergetics are unknown. In this pilot study, we tested the hypothesis that combined administration of T/PT would improve functional performance and bioenergetics in male mice late in life more than low-intensity physical training alone. 28-month old male mice were randomized to receive T/PT or vehicle plus physical training (V/PT for 2 months. Compare to V/PT control, administration of T/PT was associated with improvements in muscle mass, grip strength, spontaneous physical movements, and respiratory activity. These changes were correlated with increased mitochondrial DNA copy number and expression of markers for mitochondrial biogenesis. Mice receiving T/PT also displayed increased expression of key elements for mitochondrial quality control, including markers for mitochondrial fission-and-fusion and mitophagy. Concurrently, mice receiving T/PT also displayed increased expression of markers for reduced tissue oxidative damage and improved muscle quality.Testosterone administered with low-intensity physical training improves grip strength, spontaneous movements, and respiratory activity. These functional improvements were associated with increased muscle mitochondrial biogenesis and improved mitochondrial quality control.

  5. The Pleiotropic Effect of Physical Exercise on Mitochondrial Dynamics in Aging Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Elena Barbieri

    2015-01-01

    Full Text Available Decline in human muscle mass and strength (sarcopenia is one of the principal hallmarks of the aging process. Regular physical exercise and training programs are certain powerful stimuli to attenuate the physiological skeletal muscle alterations occurring during aging and contribute to promote health and well-being. Although the series of events that led to these muscle adaptations are poorly understood, the mechanisms that regulate these processes involve the “quality” of skeletal muscle mitochondria. Aerobic/endurance exercise helps to maintain and improve cardiovascular fitness and respiratory function, whereas strength/resistance-exercise programs increase muscle strength, power development, and function. Due to the different effect of both exercises in improving mitochondrial content and quality, in terms of biogenesis, dynamics, turnover, and genotype, combined physical activity programs should be individually prescribed to maximize the antiaging effects of exercise.

  6. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Saurabh [Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 (India); Shukla, Dhananjay [Department of Biotechnology, Gitam University, Gandhi Nagar, Rushikonda, Visakhapatnam-530 045 Andhra Pradesh (India); Bansal, Anju, E-mail: anjubansaldipas@gmail.com [Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 (India)

    2012-11-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl{sub 2}), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl{sub 2} supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl{sub 2} supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl{sub 2} supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning. -- Highlights: ► We supplemented rats with CoCl{sub 2} for 15 days along with training. ► Co

  7. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina D; Vissing, John; González-Alonso, José

    2012-01-01

    Oxygen (O(2)) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can incr...

  8. Preventive effects of Chlorella on skeletal muscle atrophy in muscle-specific mitochondrial aldehyde dehydrogenase 2 activity-deficient mice.

    Science.gov (United States)

    Nakashima, Yuya; Ohsawa, Ikuroh; Nishimaki, Kiyomi; Kumamoto, Shoichiro; Maruyama, Isao; Suzuki, Yoshihiko; Ohta, Shigeo

    2014-10-11

    Oxidative stress is involved in age-related muscle atrophy, such as sarcopenia. Since Chlorella, a unicellular green alga, contains various antioxidant substances, we used a mouse model of enhanced oxidative stress to investigate whether Chlorella could prevent muscle atrophy. Aldehyde dehydrogenase 2 (ALDH2) is an anti-oxidative enzyme that detoxifies reactive aldehydes derived from lipid peroxides such as 4-hydroxy-2-nonenal (4-HNE). We therefore used transgenic mice expressing a dominant-negative form of ALDH2 (ALDH2*2 Tg mice) to selectively decrease ALDH2 activity in the muscles. To evaluate the effect of Chlorella, the mice were fed a Chlorella-supplemented diet (CSD) for 6 months. ALDH2*2 Tg mice exhibited small body size, muscle atrophy, decreased fat content, osteopenia, and kyphosis, accompanied by increased muscular 4-HNE levels. The CSD helped in recovery of body weight, enhanced oxidative stress, and increased levels of a muscle impairment marker, creatine phosphokinase (CPK) induced by ALDH2*2. Furthermore, histological and histochemical analyses revealed that the consumption of the CSD improved skeletal muscle atrophy and the activity of the mitochondrial cytochrome c oxidase. This study suggests that long-term consumption of Chlorella has the potential to prevent age-related muscle atrophy.

  9. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults.

    Science.gov (United States)

    Coen, Paul M; Jubrias, Sharon A; Distefano, Giovanna; Amati, Francesca; Mackey, Dawn C; Glynn, Nancy W; Manini, Todd M; Wohlgemuth, Stephanie E; Leeuwenburgh, Christiaan; Cummings, Steven R; Newman, Anne B; Ferrucci, Luigi; Toledo, Frederico G S; Shankland, Eric; Conley, Kevin E; Goodpaster, Bret H

    2013-04-01

    Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by (31)P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). In vitro St3 respiration was significantly correlated with in vivo ATPmax (r (2) = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r (2) = .33, p = .006). ATPmax (r (2) = .158, p = .03) and VO2 peak (r (2) = .475, p efficiency is an important determinant for preferred walking speed. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.

  10. Treatment of human muscle cells with popular dietary supplements increase mitochondrial function and metabolic rate

    Directory of Open Access Journals (Sweden)

    Vaughan Roger A

    2012-11-01

    Full Text Available Abstract Background Obesity is a common pathology with increasing incidence, and is associated with increased mortality and healthcare costs. Several treatment options for obesity are currently available ranging from behavioral modifications to pharmaceutical agents. Many popular dietary supplements claim to enhance weight loss by acting as metabolic stimulators, however direct tests of their effect on metabolism have not been performed. Purpose This work identified the effects popular dietary supplements on metabolic rate and mitochondrial biosynthesis in human skeletal muscle cells. Methods Human rhabdomyosarcoma cells were treated with popular dietary supplements at varied doses for 24 hours. Peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α, an important stimulator of mitochondrial biosynthesis, was quantified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Mitochondrial content was measured using flow cytometry confirmed with confocal microscopy. Glycolytic metabolism was quantified by measuring extracellular acidification rate (ECAR and oxidative metabolism was quantified by measuring oxygen consumption rate (OCR. Total relative metabolism was quantified using WST-1 end point assay. Results Treatment of human rhabdomyosarcoma cells with dietary supplements OxyElite Pro (OEP or Cellucore HD (CHD induced PGC-1α leading to significantly increased mitochondrial content. Glycolytic and oxidative capacities were also significantly increased following treatment with OEP or CHD. Conclusion This is the first work to identify metabolic adaptations in muscle cells following treatment with popular dietary supplements including enhanced mitochondrial biosynthesis, and glycolytic, oxidative and total metabolism.

  11. Dose response of endotoxin on hepatocyte and muscle mitochondrial respiration in vitro.

    Science.gov (United States)

    Jeger, Victor; Brandt, Sebastian; Porta, Francesca; Jakob, Stephan M; Takala, Jukka; Djafarzadeh, Siamak

    2015-01-01

    Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1-100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.

  12. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    Science.gov (United States)

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.

    2003-06-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase

  13. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice.

    Directory of Open Access Journals (Sweden)

    Jonas M Kristensen

    Full Text Available Metformin is used as an anti-diabetic drug. Metformin ameliorates insulin resistance by improving insulin sensitivity in liver and skeletal muscle. Reduced mitochondrial content has been reported in type 2 diabetic muscles and it may contribute to decreased insulin sensitivity characteristic for diabetic muscles. The molecular mechanism behind the effect of metformin is not fully clarified but inhibition of complex I in the mitochondria and also activation of the 5'AMP activated protein kinase (AMPK has been reported in muscle. Furthermore, both AMPK activation and metformin treatment have been associated with stimulation of mitochondrial function and biogenesis. However, a causal relationship in skeletal muscle has not been investigated. We hypothesized that potential effects of in vivo metformin treatment on mitochondrial function and protein expressions in skeletal muscle are dependent upon AMPK signaling. We investigated this by two weeks of oral metformin treatment of muscle specific kinase dead α(2 (KD AMPK mice and wild type (WT littermates. We measured mitochondrial respiration and protein activity and expressions of key enzymes involved in mitochondrial carbohydrate and fat metabolism and oxidative phosphorylation. Mitochondrial respiration, HAD and CS activity, PDH and complex I-V and cytochrome c protein expression were all reduced in AMPK KD compared to WT tibialis anterior muscles. Surprisingly, metformin treatment only enhanced respiration in AMPK KD mice and thereby rescued the respiration defect compared to the WT mice. Metformin did not influence protein activities or expressions in either WT or AMPK KD mice.We conclude that two weeks of in vivo metformin treatment enhances mitochondrial respiration in the mitochondrial deficient AMPK KD but not WT mice. The improvement seems to be unrelated to AMPK, and does not involve changes in key mitochondrial proteins.

  14. Functional muscle impairment in facioscapulohumeral muscular dystrophy is correlated with oxidative stress and mitochondrial dysfunction.

    Science.gov (United States)

    Turki, Ahmed; Hayot, Maurice; Carnac, Gilles; Pillard, Fabien; Passerieux, Emilie; Bommart, Sébastien; Raynaud de Mauverger, Eric; Hugon, Gérald; Pincemail, Joel; Pietri, Sylvia; Lambert, Karen; Belayew, Alexandra; Vassetzky, Yegor; Juntas Morales, Raul; Mercier, Jacques; Laoudj-Chenivesse, Dalila

    2012-09-01

    Facioscapulohumeral muscular dystrophy (FSHD), the most frequent muscular dystrophy, is an autosomal dominant disease. In most individuals with FSHD, symptoms are restricted to muscles of the face, arms, legs, and trunk. FSHD is genetically linked to contractions of the D4Z4 repeat array causing activation of several genes. One of these maps in the repeat itself and expresses the DUX4 (the double homeobox 4) transcription factor causing a gene deregulation cascade. In addition, analyses of the RNA or protein expression profiles in muscle have indicated deregulations in the oxidative stress response. Since oxidative stress affects peripheral muscle function, we investigated mitochondrial function and oxidative stress in skeletal muscle biopsies and blood samples from patients with FSHD and age-matched healthy controls, and evaluated their association with physical performances. We show that specifically, oxidative stress (lipid peroxidation and protein carbonylation), oxidative damage (lipofuscin accumulation), and antioxidant enzymes (catalase, copper-zinc-dependent superoxide dismutase, and glutathione reductase) were higher in FSHD than in control muscles. FSHD muscles also presented abnormal mitochondrial function (decreased cytochrome c oxidase activity and reduced ATP synthesis). In addition, the ratio between reduced (GSH) and oxidized glutathione (GSSG) was strongly decreased in all FSHD blood samples as a consequence of GSSG accumulation. Patients with FSHD also had reduced systemic antioxidative response molecules, such as low levels of zinc (a SOD cofactor), selenium (a GPx cofactor involved in the elimination of lipid peroxides), and vitamin C. Half of them had a low ratio of gamma/alpha tocopherol and higher ferritin concentrations. Both systemic oxidative stress and mitochondrial dysfunction were correlated with functional muscle impairment. Mitochondrial ATP production was significantly correlated with both quadriceps endurance (T(LimQ)) and maximal

  15. Insulin resistance and mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Dela, Flemming; Helge, Jørn Wulff

    2013-01-01

    are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin...... resistance. Complementary to this also specific defects of components in the respiratory chain in the mitochondria have been suggested to play a role in insulin resistance. A key element in these mechanistic suggestions is inability to handle substrate fluxes and subsequently an accumulation of ectopic...... intramyocellular lipids, interfering with insulin signaling. In this review we will present the prevailing view-points and argue for the unlikelihood of this scenario being instrumental in human insulin resistance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction....

  16. Mitochondrial specialization revealed by single muscle fiber proteomics

    DEFF Research Database (Denmark)

    Schiaffino, S; Reggiani, C; Kostrominova, T Y

    2015-01-01

    that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical...... scavenging capacity to cope with the higher levels of reactive oxygen species production....

  17. Altered mitochondrial quality control signaling in muscle of old gastric cancer patients with cachexia.

    Science.gov (United States)

    Marzetti, Emanuele; Lorenzi, Maria; Landi, Francesco; Picca, Anna; Rosa, Fausto; Tanganelli, Fabiana; Galli, Marco; Doglietto, Giovanni Battista; Pacelli, Fabio; Cesari, Matteo; Bernabei, Roberto; Calvani, Riccardo; Bossola, Maurizio

    2017-01-01

    Mitochondrial dysfunction is involved in the loss of muscle featuring both aging and cancer cachexia (CC). Whether mitochondrial quality control (MQC) is altered in skeletal myocytes of old patients with CC is unclear. The present investigation therefore sought to preliminarily characterize MQC pathways in muscle of old gastric cancer patients with cachexia. The study followed a case-control cross-sectional design. Intraoperative biopsies of the rectus abdominis muscle were obtained from 18 patients with gastric adenocarcinoma (nine with CC and nine non-cachectic) and nine controls, and assayed for the expression of a set of MQC mediators. The mitofusin 2 expression was reduced in cancer patients compared with controls, independent of CC. Fission protein 1 was instead up-regulated in CC patients relative to the other groups. The mitophagy regulators PTEN-induced putative kinase 1 and Parkin were both down-regulated in cancer patients compared with controls. The ratio between the protein content of the lipidated and non-lipidated forms of microtubule-associated protein 1 light chain 3B was lower in CC patients relative to controls and non-cachectic cancer patients. Finally, the expression of autophagy-associated protein 7, lysosome-associated membrane protein 2, peroxisome proliferator-activated receptor-γ coactivator-1α, and mitochondrial transcription factor A was unvarying among groups. Collectively, our findings indicate that, in old patients with gastric cancer, cachexia is associated with derangements of the muscular MQC axis at several checkpoints: mitochondrial dynamics, mitochondrial tagging for disposal, and mitophagy signaling. Further investigations are needed to corroborate these preliminary findings and determine whether MQC pathways may become target for future interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Early changes in costameric and mitochondrial protein expression with unloading are muscle specific.

    Science.gov (United States)

    Flück, Martin; Li, Ruowei; Valdivieso, Paola; Linnehan, Richard M; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  19. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Directory of Open Access Journals (Sweden)

    Martin Flück

    2014-01-01

    Full Text Available We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL and soleus (SOL muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS and subjected to fibre typing and measures for costameric (FAK and FRNK, mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1, and MHCI protein and RNA content. Mean cross-sectional area (MCSA of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05≤P<0.10. FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P=0.029. SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012. Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  20. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Science.gov (United States)

    Li, Ruowei; Linnehan, Richard M.; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. PMID:25313365

  1. Ultrastructural findings for the mitochondrial subpopulation of mice skeletal muscle after adrenergic stimulation by clenbuterol.

    Science.gov (United States)

    Sundal, Santosh; Sharma, Sushma

    2007-02-01

    Clenbuterol, a beta-adrenoceptor agonist, has been reported to induce skeletal muscle hypertrophy. However, it has also been known to reduce aerobic exercise performance and to deleteriously affect endurance and sprint exercise performance in rats. In the present study, the chronic administration of clenbuterol (2 mg/kg body weight; 30 days) resulted in various ultrastructural changes in three different types of muscles, gastrocnemius, a mixed-fiber type; anterior latissimus dorsi (ALD), a predominantly fast-twitch type; and diaphragm, a largely oxidative-type. The most prominent changes included mitochondrial swelling, matricular vesiculation in mitochondria, mitochondrial hyperplasia, sarcoplasmic vesiculation, and intermyofibrillar dilations. An increase in the cross-sectional area of both the subsarcolemmal (170, 167, and 79%) and the intermyofibrillar (129, 134, and 84%) mitochondria is noticed in the gastrocnemius, ALD, and diaphragm, respectively. The ultramicroscopic and morphometric results suggest drug-induced defects in contractile and oxidative activities.

  2. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Boushel, R; Gnaiger, E; Schjerling, P

    2007-01-01

    AIMS/HYPOTHESIS: Insulin resistance and type 2 diabetes are associated with mitochondrial dysfunction. The aim of the present study was to test the hypothesis that oxidative phosphorylation and electron transport capacity are diminished in the skeletal muscle of type 2 diabetic subjects...... with type 2 diabetes (n = 11; age 62 +/- 2 years; BMI 32 +/- 2 kg/m(2); fasting plasma glucose 9.0 +/- 0.8 mmol/l) was measured by high-resolution respirometry. RESULTS: O(2) flux expressed per mg of muscle (fresh weight) during ADP-stimulated state 3 respiration was lower (p type 2...... to uncoupling by FCCP, but were again lower (p type 2 diabetic patients than in healthy control subjects (86 +/- 4 vs 109 +/- 8 pmol s(-1) mg(-1)). However, when O(2) flux was normalised for mitochondrial DNA content or citrate synthase activity, there were no differences in oxidative phosphorylation...

  3. Metformin impairs mitochondrial function in skeletal muscle of both lean and diabetic rats in a dose-dependent manner

    NARCIS (Netherlands)

    Wessels, Bart; Ciapaite, Jolita; van den Broek, Nicole M. A.; Nicolay, Klaas; Prompers, Jeanine J.

    2014-01-01

    Metformin is a widely prescribed drug for the treatment of type 2 diabetes. Previous studies have demonstrated in vitro that metformin specifically inhibits Complex I of the mitochondrial respiratory chain. This seems contraindicative since muscle mitochondrial dysfunction has been linked to the

  4. 31P-MRS of skeletal muscle is not a sensitive diagnostic test for mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina Dysgaard; Quistorff, Bjørn; Wibrand, Flemming

    2007-01-01

    investigated for the following: 1) (31)P-MRS of lower arm and leg muscles before and after exercise, 2) resting and peak-exercise induced increases of plasma lactate, 3) muscle morphology and -mitochondrial enzyme activity, 4) maximal oxygen uptake (VO(2max)), 5) venous oxygen desaturation during handgrip...... impaired citrate synthase-corrected complex I activity. Resting PCr/P(i) ratio and leg P(i) recovery were lower in MM patients vs. healthy subjects. PCr and ATP production after exercise were similar in patients and healthy subjects. Although the specificity for MM of some (31)P-MRS variables was as high...

  5. Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle

    DEFF Research Database (Denmark)

    Chursa, Urszula; Nuñez-Durán, Esther; Cansby, Emmelie

    2017-01-01

    increases intramyocellular lipid accumulation, impairs skeletal muscle mitochondrial function and sarcomeric ultrastructure, and induces perimysial and endomysial fibrosis, thereby reducing endurance exercise capacity and muscle insulin sensitivity. Furthermore, we observed enhanced lipid accumulation...... and impaired mitochondrial function in rodent myoblasts overexpressing STK25, demonstrating an autonomous action for STK25 within cells. Global phosphoproteomic analysis revealed alterations in the total abundance and phosphorylation status of different target proteins located predominantly to mitochondria...

  6. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

    DEFF Research Database (Denmark)

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D

    2011-01-01

    mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species......, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle....

  7. Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance

    Science.gov (United States)

    Coen, Paul M.; DiStefano, Giovanna; Chacon, Alexander C.; Helbling, Nicole L.; Desimone, Marisa E.; Stafanovic-Racic, Maja; Hames, Kazanna C.; Despines, Alex A.; Toledo, Frederico G. S.; Goodpaster, Bret H.

    2014-01-01

    We hypothesized that acute lipid-induced insulin resistance would be attenuated in high-oxidative muscle of lean trained (LT) endurance athletes due to their enhanced metabolic flexibility and mitochondrial capacity. Lean sedentary (LS), obese sedentary (OS), and LT participants completed two hyperinsulinemic euglycemic clamp studies with and without (glycerol control) the coinfusion of Intralipid. Metabolic flexibility was measured by indirect calorimetry as the oxidation of fatty acids and glucose during fasted and insulin-stimulated conditions, the latter with and without lipid oversupply. Muscle biopsies were obtained for mitochondrial and insulin-signaling studies. During hyperinsulinemia without lipid, glucose infusion rate (GIR) was lowest in OS due to lower rates of nonoxidative glucose disposal (NOGD), whereas state 4 respiration was increased in all groups. Lipid infusion reduced GIR similarly in all subjects and reduced state 4 respiration. However, in LT subjects, fat oxidation was higher with lipid oversupply, and although glucose oxidation was reduced, NOGD was better preserved compared with LS and OS subjects. Mitochondrial performance was positively associated with better NOGD and insulin sensitivity in both conditions. We conclude that enhanced mitochondrial performance with exercise is related to better metabolic flexibility and insulin sensitivity in response to lipid overload. PMID:25352435

  8. Mitochondrial myopathy: report of 12 cases with histochemical study of skeletal muscle

    OpenAIRE

    B.H. Kiyomoto; A. A. Gabbai; Oliveira,A. S. B.; Schmidt, B.; Lima,J. G. C.

    1991-01-01

    Twelve patients with histologically defined mitochondrial myopathy are described. There were 9 males and 3 females. The age of onset ranged from birth to 35 years with a median of 14 years. The most common clinical picture was that of ophthalmoplegia, ptosis and muscle weakness found in 10 patients. One presented with exercise intolerance due to muscular aches and pains, and the other besides his muscular weakness had mental retardation and an aggressive behavior. The clinical presentation an...

  9. IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse

    Directory of Open Access Journals (Sweden)

    White James P

    2012-07-01

    Full Text Available Abstract Background Muscle protein turnover regulation during cancer cachexia is being rapidly defined, and skeletal muscle mitochondria function appears coupled to processes regulating muscle wasting. Skeletal muscle oxidative capacity and the expression of proteins regulating mitochondrial biogenesis and dynamics are disrupted in severely cachectic ApcMin/+ mice. It has not been determined if these changes occur at the onset of cachexia and are necessary for the progression of muscle wasting. Exercise and anti-cytokine therapies have proven effective in preventing cachexia development in tumor bearing mice, while their effect on mitochondrial content, biogenesis and dynamics is not well understood. The purposes of this study were to 1 determine IL-6 regulation on mitochondrial remodeling/dysfunction during the progression of cancer cachexia and 2 to determine if exercise training can attenuate mitochondrial dysfunction and the induction of proteolytic pathways during IL-6 induced cancer cachexia. Methods ApcMin/+ mice were examined during the progression of cachexia, after systemic interleukin (IL-6r antibody treatment, or after IL-6 over-expression with or without exercise. Direct effects of IL-6 on mitochondrial remodeling were examined in cultured C2C12 myoblasts. Results Mitochondrial content was not reduced during the initial development of cachexia, while muscle PGC-1α and fusion (Mfn1, Mfn2 protein expression was repressed. With progressive weight loss mitochondrial content decreased, PGC-1α and fusion proteins were further suppressed, and fission protein (FIS1 was induced. IL-6 receptor antibody administration after the onset of cachexia improved mitochondrial content, PGC-1α, Mfn1/Mfn2 and FIS1 protein expression. IL-6 over-expression in pre-cachectic mice accelerated body weight loss and muscle wasting, without reducing mitochondrial content, while PGC-1α and Mfn1/Mfn2 protein expression was suppressed and FIS1 protein expression

  10. Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle.

    Science.gov (United States)

    Schiaffino, S; Reggiani, C; Kostrominova, T Y; Mann, M; Murgia, M

    2015-12-01

    We have developed a highly sensitive mass spectrometry-based proteomic workflow to examine the proteome of single muscle fibers. This study revealed significant differences in the mitochondrial proteome of the four major fiber types present in mouse skeletal muscle. Here, we focus on Krebs cycle enzymes and in particular on the differential distribution of the two mitochondrial isocitrate dehydrogenases, IDH2 and IDH3. Type 1/slow fibers contain high levels of IDH2 and relatively low levels of IDH3, whereas fast 2X and 2B fibers show an opposite expression pattern. The findings suggest that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical to buffering the H2O2 produced by the respiratory chain. Nicotinamide nucleotide transhydrogenase (NNT), the other major mitochondrial enzyme involved in NADPH generation, is also more abundant in type 1 fibers. We suggest that the continuously active type 1 fibers are endowed with a more efficient H2O2 scavenging capacity to cope with the higher levels of reactive oxygen species production. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Lactate dehydrogenase is not a mitochondrial enzyme in human and mouse vastus lateralis muscle

    Science.gov (United States)

    Rasmussen, Hans N; van Hall, Gerrit; Rasmussen, Ulla F

    2002-01-01

    The presence of lactate dehydrogenase in skeletal muscle mitochondria was investigated to clarify whether lactate is a possible substrate for mitochondrial respiration. Mitochondria were prepared from 100 mg samples of human and mouse vastus lateralis muscle. All fractions from the preparation procedure were assayed for marker enzymes and lactate dehydrogenase (LDH). The mitochondrial fraction contained no LDH activity (detection limit ∼0.05 % of the tissue activity) and the distribution of LDH activity among the fractions paralleled that of pyruvate kinase, i.e. LDH was fractionated as a cytoplasmic enzyme. Respiratory experiments with the mitochondrial fraction also indicated the absence of LDH. Lactate did not cause respiration, nor did it affect the respiration of pyruvate + malate. The major part of the native cytochrome c was retained in the isolated mitochondria, which, furthermore, showed high specific rates of state 3 respiration. This excluded artificial loss from the mitochondria of all activity of a possible LDH. It was concluded that skeletal muscle mitochondria are devoid of LDH and unable to metabolize lactate. PMID:12042361

  12. Extra-ocular muscle MRI in genetically-defined mitochondrial disease.

    Science.gov (United States)

    Pitceathly, Robert D S; Morrow, Jasper M; Sinclair, Christopher D J; Woodward, Cathy; Sweeney, Mary G; Rahman, Shamima; Plant, Gordon T; Ali, Nadeem; Bremner, Fion; Davagnanam, Indran; Yousry, Tarek A; Hanna, Michael G; Thornton, John S

    2016-01-01

    Conventional and quantitative MRI was performed in patients with chronic progressive external ophthalmoplegia (CPEO), a common manifestation of mitochondrial disease, to characterise MRI findings in the extra-ocular muscles (EOMs) and investigate whether quantitative MRI provides clinically relevant measures of disease. Patients with CPEO due to single mitochondrial DNA deletions were compared with controls. Range of eye movement (ROEM) measurements, peri-orbital 3 T MRI T1-weighted (T1w) and short-tau-inversion-recovery (STIR) images, and T2 relaxation time maps were obtained. Blinded observers graded muscle atrophy and T1w/STIR hyperintensity. Cross-sectional areas and EOM mean T2s were recorded and correlated with clinical parameters. Nine patients and nine healthy controls were examined. Patients had reduced ROEM (patients 13.3°, controls 49.3°, p CPEO. Correlation between elevated EOM T2 and ROEM impairment represents a potential measure of disease severity that warrants further evaluation. Chronic progressive external ophthalmoplegia is a common clinical manifestation of mitochondrial disease. • Existing extra-ocular muscle MRI data in CPEO reports variable radiological findings. MRI confirmed EOM atrophy and characteristic signal changes in CPEO. EOM T2 was significantly elevated in CPEO and correlated negatively with ocular movements. EOM T2 represents a potential quantitative measure of disease severity in CPEO.

  13. PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Glenn C Rowe

    Full Text Available Exercise confers numerous health benefits, many of which are thought to stem from exercise-induced mitochondrial biogenesis (EIMB in skeletal muscle. The transcriptional coactivator PGC-1α, a potent regulator of metabolism in numerous tissues, is widely believed to be required for EIMB. We show here that this is not the case. Mice engineered to lack PGC-1α specifically in skeletal muscle (Myo-PGC-1αKO mice retained intact EIMB. The exercise capacity of these mice was comparable to littermate controls. Induction of metabolic genes after 2 weeks of in-cage voluntary wheel running was intact. Electron microscopy revealed no gross abnormalities in mitochondria, and the mitochondrial biogenic response to endurance exercise was as robust in Myo-PGC-1αKO mice as in wildtype mice. The induction of enzymatic activity of the electron transport chain by exercise was likewise unperturbed in Myo-PGC-1αKO mice. These data demonstrate that PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle, in sharp contrast to the prevalent assumption in the field.

  14. MOTS-c: A novel mitochondrial-derived peptide regulating muscle and fat metabolism.

    Science.gov (United States)

    Lee, Changhan; Kim, Kyung Hwa; Cohen, Pinchas

    2016-11-01

    Mitochondria are ancient organelles that are thought to have emerged from once free-living α-proto-bacteria. As such, they still possess several bacterial-like qualities, including a semi-autonomous genetic system, complete with an independent genome and a unique genetic code. The bacterial-like circular mitochondrial DNA (mtDNA) has been described to encode 37 genes, including 22 tRNAs, 2 rRNAs, and 13 mRNAs. Two additional peptides reported to originate from the mtDNA, namely humanin (Hashimoto et al., 2001; Ikone et al., 2003; Guo et al., 2003) [1-3] and MOTS-c (mitochondrial ORF of the twelve S c) (Lee et al., 2015) [4], indicate a larger mitochondrial genetic repertoire (Shokolenko and Alexeyev, 2015) [5]. These mitochondrial-derived peptides (MDPs) have profound and distinct biological activities and provide a paradigm-shifting concept of active mitochondrial-encoded signals that act at the cellular and organismal level (i.e. mitochondrial hormone) (da Cunha et al., 2015; Quiros et al., 2016) [6,7]. Considering that mitochondria are the single most important metabolic organelle, it is not surprising that these MDPs have metabolic actions. MOTS-c has been shown to target the skeletal muscle and enhance glucose metabolism. As such, MOTS-c has implications in the regulation of obesity, diabetes, exercise, and longevity, representing an entirely novel mitochondrial signaling mechanism to regulate metabolism within and between cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Intrauterine Growth Retardation Increases the Susceptibility of Pigs to High-Fat Diet-Induced Mitochondrial Dysfunction in Skeletal Muscle

    Science.gov (United States)

    Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping

    2012-01-01

    It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560

  16. Specific skeletal muscle sphingolipid compounds in energy expenditure regulation and weight gain in Native Americans of Southwestern heritage.

    Science.gov (United States)

    Heinitz, S; Piaggi, P; Vinales, K L; Basolo, A; Spranger, J; Piomelli, D; Krakoff, J; Jumpertz von Schwartzenberg, R

    2017-10-01

    In animal models, a role in the regulation of energy expenditure (EE) has been ascribed to sphingolipids, active components of cell membranes participating in cellular signaling. In humans, it is unknown whether sphingolipids have a role in the modulation of EE and, consequently, influence weight gain. The present study investigated the putative association of EE and weight gain with sphingolipid levels in the human skeletal muscle, a component of fat-free mass (the strongest determinant of EE), in adipose tissue and plasma. Twenty-four-hour EE, sleeping metabolic rate (SMR) and resting metabolic rate (RMR) were assessed in 35 healthy Native Americans of Southwestern heritage (24 male; 30.2±7.73 years). Sphingolipid (ceramide, C; sphingomyelin, SM) concentrations were measured in skeletal muscle tissue, subcutaneous adipose tissue and plasma samples. After 6.68 years (0.26-12.4 years), follow-up weights were determined in 16 participants (4 females). Concentrations of C24:0, SM18:1/26:1 and SM18:0/24:1 in muscle were associated with 24-h EE (r=-0.47, P=0.01), SMR (r=-0.59, P=0.0008) and RMR (r=-0.44, P=0.01), respectively. Certain muscle sphingomyelins also predicted weight gain (for example, SM18:1/23:1, r=0.74, P=0.004). For specific muscle sphingomyelins that correlated with weight gain and EE (SM18:1/23:0, SM18:1/23:1 and SMR, r=-0.51, r=-0.41, respectively, all Pmuscle and adipose tissue sphingolipid compounds are associated with EE and weight gain in Native Americans of Southwestern heritage. Further studies are warranted to investigate whether sphingolipids of different body compartments act in concert to modulate energy balance in humans.

  17. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Science.gov (United States)

    Mendizabal-Zubiaga, Juan; Melser, Su; Bénard, Giovanni; Ramos, Almudena; Reguero, Leire; Arrabal, Sergio; Elezgarai, Izaskun; Gerrikagoitia, Inmaculada; Suarez, Juan; Rodríguez De Fonseca, Fernando; Puente, Nagore; Marsicano, Giovanni; Grandes, Pedro

    2016-01-01

    The cannabinoid type 1 (CB1) receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1), where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis) and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahydrocannabinol (Δ9-THC) concentrations (100 nM or 200 nM) was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12 and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA) cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant difference was

  18. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Directory of Open Access Journals (Sweden)

    Juan Mendizabal-Zubiaga

    2016-10-01

    Full Text Available The cannabinoid type 1 (CB1 receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1, where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahidrocannabinol (Δ9-THC concentrations (100 nM or 200 nM was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12% and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant

  19. Immune Response and Mitochondrial Metabolism Are Commonly Deregulated in DMD and Aging Skeletal Muscle

    Science.gov (United States)

    Ramstein, Gérard; Steenman, Marja; Fayet, Guillemette; Chevalier, Catherine; Jourdon, Philippe; Houlgatte, Rémi; Savagner, Frédérique; Pereon, Yann

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a complex process involving multiple pathways downstream of the primary genetic insult leading to fatal muscle degeneration. Aging muscle is a multifactorial neuromuscular process characterized by impaired muscle regeneration leading to progressive atrophy. We hypothesized that these chronic atrophying situations may share specific myogenic adaptative responses at transcriptional level according to tissue remodeling. Muscle biopsies from four young DMD and four AGED subjects were referred to a group of seven muscle biopsies from young subjects without any neuromuscular disorder and explored through a dedicated expression microarray. We identified 528 differentially expressed genes (out of 2,745 analyzed), of which 328 could be validated by an exhaustive meta-analysis of public microarray datasets referring to DMD and Aging in skeletal muscle. Among the 328 validated co-expressed genes, 50% had the same expression profile in both groups and corresponded to immune/fibrosis responses and mitochondrial metabolism. Generalizing these observed meta-signatures with large compendia of public datasets reinforced our results as they could be also identified in other pathological processes and in diverse physiological conditions. Focusing on the common gene signatures in these two atrophying conditions, we observed enrichment in motifs for candidate transcription factors that may coordinate either the immune/fibrosis responses (ETS1, IRF1, NF1) or the mitochondrial metabolism (ESRRA). Deregulation in their expression could be responsible, at least in part, for the same transcriptome changes initiating the chronic muscle atrophy. This study suggests that distinct pathophysiological processes may share common gene responses and pathways related to specific transcription factors. PMID:22096509

  20. Immune response and mitochondrial metabolism are commonly deregulated in DMD and aging skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Daniel Baron

    Full Text Available Duchenne Muscular Dystrophy (DMD is a complex process involving multiple pathways downstream of the primary genetic insult leading to fatal muscle degeneration. Aging muscle is a multifactorial neuromuscular process characterized by impaired muscle regeneration leading to progressive atrophy. We hypothesized that these chronic atrophying situations may share specific myogenic adaptative responses at transcriptional level according to tissue remodeling. Muscle biopsies from four young DMD and four AGED subjects were referred to a group of seven muscle biopsies from young subjects without any neuromuscular disorder and explored through a dedicated expression microarray. We identified 528 differentially expressed genes (out of 2,745 analyzed, of which 328 could be validated by an exhaustive meta-analysis of public microarray datasets referring to DMD and Aging in skeletal muscle. Among the 328 validated co-expressed genes, 50% had the same expression profile in both groups and corresponded to immune/fibrosis responses and mitochondrial metabolism. Generalizing these observed meta-signatures with large compendia of public datasets reinforced our results as they could be also identified in other pathological processes and in diverse physiological conditions. Focusing on the common gene signatures in these two atrophying conditions, we observed enrichment in motifs for candidate transcription factors that may coordinate either the immune/fibrosis responses (ETS1, IRF1, NF1 or the mitochondrial metabolism (ESRRA. Deregulation in their expression could be responsible, at least in part, for the same transcriptome changes initiating the chronic muscle atrophy. This study suggests that distinct pathophysiological processes may share common gene responses and pathways related to specific transcription factors.

  1. Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity

    NARCIS (Netherlands)

    Meex, R.C.R.; Schrauwen-Hinderling, V.B.; Moonen-Kornips, E.; Schaart, G.; Mensink, M.R.; Phielix, E.; Weijer, van de T.; Sels, J.P.; Schrauwen, P.; Hesselink, M.K.C.

    2010-01-01

    OBJECTIVE-Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2

  2. Human extraocular muscles in mitochondrial diseases: comparing chronic progressive external ophthalmoplegia with Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Carta, A; Carelli, V; D'Adda, T; Ross-Cisneros, F N; Sadun, A A

    2005-07-01

    To compare the ultrastructural aspects of human extraocular muscles in two types of mitochondrial disease: chronic progressive external ophthalmoplegia (CPEO) and Leber's hereditary optic neuropathy (LHON). Muscle samples of the medial rectus obtained from surgery in a sporadic case of CPEO associated with deleted mitochondrial DNA, and post mortem in a case of 3460/ND1 LHON were processed for electron microscopy (EM). The medial rectus from an autoptic time to fixation matched control was used to exclude postmortem artefacts. The CPEO specimen revealed focal areas of disruption and abnormalities of mitochondria in some muscle fibres, creating a "mosaic-like" pattern. In the LHON specimen a diffuse increase in both number and size of mitochondria (mean diameter 0.85 mum v 0.65 mum of control, pCPEO and LHON reveals marked differences. A "mosaic-like" pattern caused by a selective damage of muscle fibres was evident in CPEO, whereas a diffuse increase in mitochondria with preservation of myofibrils characterised the LHON case. These ultrastructural changes may relate to the different expression of the two diseases, resulting in ophthalmoplegia in CPEO and normal eye movements in LHON.

  3. Defective mitochondrial function in vivo in skeletal muscle in adults with Down's syndrome: a 31P-MRS study.

    Directory of Open Access Journals (Sweden)

    Alexander C Phillips

    Full Text Available Down's syndrome (DS is a developmental disorder associated with intellectual disability (ID. We have previously shown that people with DS engage in very low levels of exercise compared to people with ID not due to DS. Many aspects of the DS phenotype, such as dementia, low activity levels and poor muscle tone, are shared with disorders of mitochondrial origin, and mitochondrial dysfunction has been demonstrated in cultured DS tissue. We undertook a phosphorus magnetic resonance spectroscopy ((31P-MRS study in the quadriceps muscle of 14 people with DS and 11 non-DS ID controls to investigate the post-exercise resynthesis kinetics of phosphocreatine (PCr, which relies on mitochondrial respiratory function and yields a measure of muscle mitochondrial function in vivo. We found that the PCr recovery rate constant was significantly decreased in adults with DS compared to non-DS ID controls (1.7 ± 0.1 min(-1 vs 2.1 ± 0.1 min(-1 respectively who were matched for physical activity levels, indicating that muscle mitochondrial function in vivo is impaired in DS. This is the first study to investigate mitochondrial function in vivo in DS using (31P-MRS. Our study is consistent with previous in vitro studies, supporting a theory of a global mitochondrial defect in DS.

  4. Mitochondrial dynamics, quality control and miRNA regulation in skeletal muscle: implications for obesity and related metabolic disease.

    Science.gov (United States)

    Dahlmans, Dennis; Houzelle, Alexandre; Schrauwen, Patrick; Hoeks, Joris

    2016-06-01

    The western dietary habits and sedentary lifestyle largely contributes to the growing epidemic of obesity. Mitochondria are at the front line of cellular energy homoeostasis and are implicated in the pathophysiology of obesity and obesity-related metabolic disease. In recent years, novel aspects in the regulation of mitochondrial metabolism, such as mitochondrial dynamics, mitochondrial protein quality control and post-transcriptional regulation of genes coding for mitochondrial proteins, have emerged. In this review, we discuss the recent findings concerning the dysregulation of these processes in skeletal muscle in obesogenic conditions. © 2016 Authors; published by Portland Press Limited.

  5. Intact initiation of autophagy and mitochondrial fission by acute exercise in skeletal muscle of patientswith type 2 diabetes

    DEFF Research Database (Denmark)

    Kruse Sørensen, Rikke; Pedersen, Andreas James Thestrup; Kristensen, Jonas Møller

    2017-01-01

    AIMS: Type 2 diabetes (T2D) is characterized by insulin resistance, mitochondrial dysregulation, and, in some studies, exercise resistance in skeletal muscle. Regulation of autophagy and mitochondrial dynamics during exercise and recovery is important for skeletal muscle homeostasis......, and these responses may be altered in T2D. MATERIALS AND METHODS: We examined the effect of acute exercise on markers of autophagy and mitochondrial fusion and fission in skeletal muscle biopsies from patients with T2D (n=13) and weight-matched controls (n=14) before, immediately after and 3h after an acute bout...... of exercise. RESULTS: While mRNA levels of most markers of autophagy ( PIK3C, MAP1LC3B, SQSTM1, BNIP3, BNIP3L ) and mitochondrial dynamics ( OPA1, FIS1 ) remained unchanged, some either increased during and after exercise (GABARAPL1 ), decreased in the recovery period ( BECN1, ATG7, DNM1L ), or both ( MFN2...

  6. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans

    DEFF Research Database (Denmark)

    Ara, I; Larsen, S; Stallknecht, Bente Merete

    2011-01-01

    Aim/hypothesis:The aim of this study was to investigate mitochondrial function, fibre-type distribution and substrate oxidation during exercise in arm and leg muscles in male postobese (PO), obese (O) and age- and body mass index (BMI)-matched control (C) subjects. The hypothesis of the study...... deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O(2) flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.Results:During the graded exercise tests, peak fat oxidation during leg cycling......, and plasma leptin was higher in O than in PO and C.Conclusions:In O subjects, maximal fat oxidation during exercise and the eliciting relative exercise intensity are increased. This is associated with higher intramuscular triglyceride levels and higher resting non esterified fatty acid (NEFA) concentrations...

  7. Role of Oxidative Stress and Mitochondrial Dysfunction in Skeletal Muscle in Type 2 Diabetic Patients.

    Science.gov (United States)

    Diaz-Morales, Noelia; Rovira-Llopis, Susana; Escribano-Lopez, Irene; Bañuls, Celia; Lopez-Domenech, Sandra; Falcón, Rosa; de Maranon, Arantxa Martinez; Sola, Eva; Jover, Ana; Roldan, Ildefonso; Diez, Jose L; Rocha, Milagros; Hernández-Mijares, Antonio; Víctor, Victor M

    2016-01-01

    Type 2 diabetes can increase the risk of skeletal muscle dysfunction and, consequently, that of cardiovascular diseases, including coronary artery disease and stroke. It is also related to a reduced capacity for exercise, but the underlying mechanism is only partially understood. There are several factors that contribute to the development of skeletal muscle dysfunction, of which oxidative stress and mitochondrial dysfunction are among the most important. This review discusses the role of oxidative stress in the development and progression of skeletal and cardiac dysfunction associated with diabetes. It also provides an overview of the potential actions of antioxidants in general and mitochondria-targeted antioxidants in particular in the treatment of muscle dysfunction in type 2 diabetes.

  8. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity

    DEFF Research Database (Denmark)

    Boushel, Robert; Gnaiger, E.; Larsen, F. J.

    2015-01-01

    We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy...

  9. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Larsen, Steen; Helge, Jørn Wulff

    2013-01-01

    Metformin is used as an anti-diabetic drug. Metformin ameliorates insulin resistance by improving insulin sensitivity in liver and skeletal muscle. Reduced mitochondrial content has been reported in type 2 diabetic muscles and it may contribute to decreased insulin sensitivity characteristic for ...

  10. Activation of AMPKα2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity.

    Directory of Open Access Journals (Sweden)

    Mario Ost

    Full Text Available Transgenic (UCP1-TG mice with ectopic expression of UCP1 in skeletal muscle (SM show a phenotype of increased energy expenditure, improved glucose tolerance and increase substrate metabolism in SM. To investigate the potential role of skeletal muscle AMPKα2 activation in the metabolic phenotype of UCP1-TG mice we generated double transgenic (DTG mice, by crossing of UCP1-TG mice with DN-AMPKα2 mice overexpressing a dominant negative α2 subunit of AMPK in SM which resulted in an impaired AMPKα2 activity by 90±9% in SM of DTG mice. Biometric analysis of young male mice showed decreased body weight, lean and fat mass for both UCP1-TG and DTG compared to WT and DN-AMPKα2 mice. Energy intake and weight-specific total energy expenditure were increased, both in UCP1-TG and DTG mice. Moreover, glucose tolerance, insulin sensitivity and fatty acid oxidation were not altered in DTG compared to UCP1-TG. Also uncoupling induced induction and secretion of fibroblast growth factor 21 (FGF21 from SM was preserved in DTG mice. However, voluntary physical cage activity as well as ad libitum running wheel access during night uncovered a severe activity intolerance of DTG mice. Histological analysis showed a progressive degenerative morphology in SM of DTG mice which was not observed in SM of UCP1-TG mice. Moreover, ATP-depletion related cellular stress response via heat shock protein 70 was highly induced, whereas capillarization regulator VEGF was suppressed in DTG muscle. In addition, AMPKα2-mediated induction of mitophagy regulator ULK1 was suppressed in DTG mice, as well as mitochondrial respiratory capacity and content. In conclusion, we demonstrate that AMPKα2 is dispensable for SM mitochondrial uncoupling induced metabolic effects on whole body energy balance, glucose homeostasis and insulin sensitivity. But strikingly, activation of AMPKα2 seems crucial for maintaining SM function, integrity and the ability to compensate chronic metabolic stress

  11. Microbiopsies versus Bergström needle for skeletal muscle sampling: impact on maximal mitochondrial respiration rate.

    Science.gov (United States)

    Isner-Horobeti, M E; Charton, A; Daussin, F; Geny, B; Dufour, S P; Richard, R

    2014-05-01

    Microbiopsies are increasingly used as an alternative to the standard Bergström technique for skeletal muscle sampling. The potential impact of these two different procedures on mitochondrial respiration rate is unknown. The objective of this work was to compare microbiopsies versus Bergström procedure on mitochondrial respiration in skeletal muscle. 52 vastus lateralis muscle samples were obtained from 13 anesthetized pigs, either with a Bergström [6 gauges (G)] needle or with microbiopsy needles (12, 14, 18G). Maximal mitochondrial respiration (V GM-ADP) was assessed using an oxygraphic method on permeabilized fibers. The weight of the muscle samples and V GM-ADP decreased with the increasing gauge of the needles. A positive nonlinear relationship was observed between the weight of the muscle sample and the level of maximal mitochondrial respiration (r = 0.99, p respiration (r = 0.99, p respiration compared to the standard Bergström needle.Therefore, the higher the gauge (i.e. the smaller the size) of the microbiopsy needle, the lower is the maximal rate of respiration. Microbiopsies of skeletal muscle underestimate the maximal mitochondrial respiration rate, and this finding needs to be highlighted for adequate interpretation and comparison with literature data.

  12. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanli [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhao, Chaoxian; Sun, Xuewen [Medical College of Hebei Engineering University, Handan, 056002, Hebei (China); Liu, Zhijun, E-mail: liuzhij1207@163.com [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhang, Jianzhong, E-mail: zhangjianzhong@icdc.cn [National Institute for Communicable Disease Control and Prevention (ICDC), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206 (China)

    2015-11-06

    MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C{sub 2}C{sub 12} myocytes by targeting the 3′-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise. - Highlights: • Endurance exercise decreases miR-761 expression in skeletal muscle. • MiR-761 suppresses mitochondrial biogenesis in C{sub 2}C{sub 12} myocytes. • MiR-761 directly targeted PGC-1α expression. • MiR-761 suppresses p38 MAPK signaling pathways in C{sub 2}C{sub 12} myocytes. • A novel mechanism for miR-761 in skeletal myocytes is demonstrated.

  13. Exercise-Induced Changes in Caveolin-1, Depletion of Mitochondrial Cholesterol, and the Inhibition of Mitochondrial Swelling in Rat Skeletal Muscle but Not in the Liver

    Directory of Open Access Journals (Sweden)

    Damian Jozef Flis

    2016-01-01

    Full Text Available The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1 plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise.

  14. Digital PCR Quantitation of Muscle Mitochondrial DNA: Age, Fiber Type, and Mutation-Induced Changes.

    Science.gov (United States)

    Herbst, Allen; Widjaja, Kevin; Nguy, Beatrice; Lushaj, Entela B; Moore, Timothy M; Hevener, Andrea L; McKenzie, Debbie; Aiken, Judd M; Wanagat, Jonathan

    2017-10-01

    Definitive quantitation of mitochondrial DNA (mtDNA) and mtDNA deletion mutation abundances would help clarify the role of mtDNA instability in aging. To more accurately quantify mtDNA, we applied the emerging technique of digital polymerase chain reaction to individual muscle fibers and muscle homogenates from aged rodents. Individual fiber mtDNA content correlated with fiber type and decreased with age. We adapted a digital polymerase chain reaction deletion assay that was accurate in mixing experiments to a mutation frequency of 0.03% and quantitated an age-induced increase in deletion frequency from rat muscle homogenates. Importantly, the deletion frequency measured in muscle homogenates strongly correlated with electron transport chain-deficient fiber abundance determined by histochemical analyses. These data clarify the temporal accumulation of mtDNA deletions that lead to electron chain-deficient fibers, a process culminating in muscle fiber loss. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour‐bearing mice

    Science.gov (United States)

    Brown, Jacob L.; Rosa‐Caldwell, Megan E.; Lee, David E.; Blackwell, Thomas A.; Brown, Lemuel A.; Perry, Richard A.; Haynie, Wesley S.; Hardee, Justin P.; Carson, James A.; Wiggs, Michael P.; Washington, Tyrone A.

    2017-01-01

    Abstract Background Cancer cachexia is largely irreversible, at least via nutritional means, and responsible for 20–40% of cancer‐related deaths. Therefore, preventive measures are of primary importance; however, little is known about muscle perturbations prior to onset of cachexia. Cancer cachexia is associated with mitochondrial degeneration; yet, it remains to be determined if mitochondrial degeneration precedes muscle wasting in cancer cachexia. Therefore, our purpose was to determine if mitochondrial degeneration precedes cancer‐induced muscle wasting in tumour‐bearing mice. Methods First, weight‐stable (MinStable) and cachectic (MinCC) Apc Min/+ mice were compared with C57Bl6/J controls for mRNA contents of mitochondrial quality regulators in quadriceps muscle. Next, Lewis lung carcinoma (LLC) cells or PBS (control) were injected into the hind flank of C57Bl6/J mice at 8 week age, and tumour allowed to develop for 1, 2, 3, or 4 weeks to examine time course of cachectic development. Succinate dehydrogenase stain was used to measure oxidative phenotype in tibialis anterior muscle. Mitochondrial quality and function were assessed using the reporter MitoTimer by transfection to flexor digitorum brevis and mitochondrial function/ROS emission in permeabilized adult myofibres from plantaris. RT‐qPCR and immunoblot measured the expression of mitochondrial quality control and antioxidant proteins. Data were analysed by one‐way ANOVA with Student–Newman–Kuels post hoc test. Results MinStable mice displayed ~50% lower Pgc‐1α, Pparα, and Mfn2 compared with C57Bl6/J controls, whereas MinCC exhibited 10‐fold greater Bnip3 content compared with C57Bl6/J controls. In LLC, cachectic muscle loss was evident only at 4 weeks post‐tumour implantation. Oxidative capacity and mitochondrial content decreased by ~40% 4 weeks post‐tumour implantation. Mitochondrial function decreased by ~25% by 3 weeks after tumour implantation. Mitochondrial

  16. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients.

    Science.gov (United States)

    Puente-Maestu, L; Pérez-Parra, J; Godoy, R; Moreno, N; Tejedor, A; González-Aragoneses, F; Bravo, J-L; Alvarez, F Villar; Camaño, S; Agustí, A

    2009-05-01

    Several cellular and molecular alterations have been described in skeletal and respiratory muscles of patients with chronic obstructive pulmonary disease (COPD), but information on potential abnormalities of mitochondrial function is scarce. The aim of the present study was to investigate mitochondrial function in the vastus lateralis (VL) and external intercostalis (EI) of COPD patients. Biopsies from VL and EI were obtained during surgery for lung cancer in 13 patients with mild to moderate COPD (age 68+/-6 yrs, forced expiratory volume in one second (FEV(1)) 66+/-15% predicted) and 19 control subjects (age 67+/-9 yrs, FEV(1) 95+/-18% pred). State 3 and 4 mitochondrial oxygen consumption (V'(O(2),m)), ATP synthesis, citrate synthase, cytochrome oxidase (COX) and complex I-III activities, as well as reactive oxygen species (ROS) production, were determined. In COPD patients, in both muscles, COX activity (VL: COPD 3.0+/-0.8 versus control 2.0+/-0.8; EI: 3.7+/-1.6 versus 2.4+/-0.9 micromol min(-1) mg(-1)) and ROS production (VL: 1,643+/-290 versus 1,285+/-468; EI: 1,033+/-210 versus 848+/-288 arbitrary units) were increased, whereas state 3 V'(O(2),m) was reduced (VL: 2.9+/-0.3 versus 3.6+/-0.4; EI: 3.6+/-0.3 versus 4.1+/-0.4 mmol min(-1) kg(-1)). Skeletal muscle mitochondria of patients with chronic obstructive pulmonary disease show electron transport chain blockade and excessive production of reactive oxygen species. The concurrent involvement of both vastus lateralis and external intercostalis suggests a systemic (rather than a local) mechanism(s) already occurring in relatively early stages (Global Initiative for Chronic Obstructive Lung Disease stage II) of the disease.

  17. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Andersen, Nynne Bjerre; Dela, Flemming

    2014-01-01

    Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity and chan......Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity.......4). Training induced changes in whole body oxidative capacity is matched by changes in muscle CS activity in a nearly 1:1 relationship. Absolute values of CS across different studies cannot be compared unless a standardized analytical method is used by all laboratories...

  18. The effect of high-fat--high-fructose diet on skeletal muscle mitochondrial energetics in adult rats.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Coppola, Paola; Mazzoli, Arianna; Cigliano, Luisa; Liverini, Giovanna; Iossa, Susanna

    2015-03-01

    To study the effect of isoenergetic administration to adult rats of high-fat or high-fat--high-fructose diet for 2 weeks on skeletal muscle mitochondrial energetic. Body and skeletal muscle composition, energy balance, plasma lipid profile and glucose tolerance were measured, together with mitochondrial functionality, oxidative stress and antioxidant defense. Rats fed high-fat--high-fructose diet exhibited significantly higher plasma triglycerides and non-esterified fatty acids, together with significantly higher plasma glucose and insulin response to glucose load. Skeletal muscle triglycerides and ceramide were significantly higher in rats fed high-fat--high-fructose diet. Skeletal muscle mitochondrial energetic efficiency and uncoupling protein 3 content were significantly higher, while adenine nucleotide translocase content was significantly lower, in rats fed high-fat or high-fat--high-fructose diet. The results suggest that a high-fat--high-fructose diet even without hyperphagia is able to increase lipid flow to skeletal muscle and mitochondrial energetic efficiency, with two detrimental effects: (a) energy sparing that contributes to the early onset of obesity and (b) reduced oxidation of fatty acids and lipid accumulation in skeletal muscle, which could generate insulin resistance.

  19. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    -specific phosphorylation sites were identified in tissue-specific enzymes such as those encoded by HMGCS2, BDH1, PCK2, CPS1, and OTC in liver mitochondria, and CKMT2 and CPT1B in heart and skeletal muscle. Kinase prediction showed an important role for PKA and PKC in all tissues but also for proline-directed kinases...

  20. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hey-Mogensen, Martin; Sahlin, Kent; Fernström, Maria

    2007-01-01

    We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy......-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress measured as 4-hydroxy-2-nonenal (HNE), fiber type distribution, and respiration in isolated mitochondria. Respiration was normalized to citrate synthase activity (mitochondrial content) in isolated mitochondria....... Maximal ADP-stimulated respiration (state 3) with pyruvate plus malate and respiration through the electron transport chain (ETC) were reduced in type 2 diabetic patients, and the proportion of type 2X fibers were higher in type 2 diabetic patients compared with obese subjects (all P

  1. Failed upregulation of TFAM protein and mitochondrial DNA in oxidatively deficient fibers of chronic obstructive pulmonary disease locomotor muscle

    OpenAIRE

    Konokhova, Yana; Spendiff, Sally; Jagoe, R Thomas; Aare, Sudhakar; Kapchinsky, Sophia; MacMillan, Norah J.; Rozakis, Paul; Picard, Martin; Aubertin-Leheudre, Myl?ne; Pion, Charlotte H; Bourbeau, Jean; Hepple, Russell T.; Taivassalo, Tanja

    2016-01-01

    Background Low mitochondrial content and oxidative capacity are well-established features of locomotor muscle dysfunction, a prevalent and debilitating systemic occurrence in patients with chronic obstructive pulmonary disease (COPD). Although the exact cause is not firmly established, physical inactivity and oxidative stress are among the proposed underlying mechanisms. Here, we assess the impact of COPD pathophysiology on mitochondrial DNA (mtDNA) integrity, biogenesis, and cellular oxidati...

  2. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies......Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... obtained during a euglycemic-hyperinsulinemic clamp in heterozygote carriers (n=6) of a mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene (INSR) and matched healthy controls (n=11) were used for transcriptional profiling. Biological pathways analysis was performed using Gene...

  3. Idiopathic chronic fatigue in older adults is linked to impaired mitochondrial content and biogenesis signaling in skeletal muscle.

    Science.gov (United States)

    Wawrzyniak, Nicholas R; Joseph, Anna-Maria; Levin, David G; Gundermann, David M; Leeuwenburgh, Christiaan; Sandesara, Bhanuprasad; Manini, Todd M; Adhihetty, Peter J

    2016-08-16

    Fatigue is a symptom of many diseases, but it can also manifest as a unique medical condition, such as idiopathic chronic fatigue (ICF). While the prevalence of ICF increases with age, mitochondrial content and function decline with age, which may contribute to ICF. The purpose of this study was to determine whether skeletal muscle mitochondrial dysregulation and oxidative stress is linked to ICF in older adults. Sedentary, old adults (n = 48, age 72.4 ± 5.3 years) were categorized into ICF and non-fatigued (NF) groups based on the FACIT-Fatigue questionnaire. ICF individuals had a FACIT score one standard deviation below the mean for non-anemic adults > 65 years and were excluded according to CDC diagnostic criteria for ICF. Vastus lateralis muscle biopsies were analyzed, showing reductions in mitochondrial content and suppression of mitochondrial regulatory proteins Sirt3, PGC-1α, NRF-1, and cytochrome c in ICF compared to NF. Additionally, mitochondrial morphology proteins, antioxidant enzymes, and lipid peroxidation were unchanged in ICF individuals. Our data suggests older adults with ICF have reduced skeletal muscle mitochondrial content and biogenesis signaling that cannot be accounted for by increased oxidative damage.

  4. Metformin increases mitochondrial energy formation in L6 muscle cell cultures.

    Science.gov (United States)

    Vytla, Veeravenkata S; Ochs, Raymond S

    2013-07-12

    A popular hypothesis for the action of metformin, the widely used anti-diabetes drug, is the inhibition of mitochondrial respiration, specifically at complex I. This is consistent with metformin stimulation of glucose uptake by muscle and inhibition of gluconeogenesis by liver. Yet, mitochondrial inhibition is inconsistent with metformin stimulation of fatty acid oxidation in both tissues. In this study, we measured mitochondrial energy production in intact cells adapting an in vivo technique of phosphocreatine (PCr) formation following energy interruption ("PCr recovery") to cell cultures. Metformin increased PCr recovery from either dinitrophenol (DNP) or azide in L6 cells. We found that metformin alone had no effect on cell viability as measured by total ATP concentration, trypan blue exclusion, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction. However, treatments with low concentrations of DNP or azide reversibly decreased ATP concentration. Metformin increased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction during recovery from either agent. Viability measured by trypan blue exclusion indicated that cells were intact under these conditions. We also found that metformin increased free AMP and, to a smaller extent, free ADP concentrations in cells, an action that was duplicated by a structurally unrelated AMP deaminase inhibitor. We conclude that, in intact cells, metformin can lead to a stimulation of energy formation, rather than an inhibition.

  5. Extra-ocular muscle MRI in genetically-defined mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Pitceathly, Robert D.S.; Morrow, Jasper M.; Hanna, Michael G. [UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, MRC Centre for Neuromuscular Diseases, London (United Kingdom); Sinclair, Christopher D.J.; Yousry, Tarek A.; Thornton, John S. [UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, MRC Centre for Neuromuscular Diseases, London (United Kingdom); UCL Institute of Neurology, Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, London (United Kingdom); Woodward, Cathy; Sweeney, Mary G. [National Hospital for Neurology and Neurosurgery, Neurogenetics Unit, London (United Kingdom); Rahman, Shamima [UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, MRC Centre for Neuromuscular Diseases, London (United Kingdom); UCL Institute of Child Health, Mitochondrial Research Group, Clinical and Molecular Genetics Unit, London (United Kingdom); Plant, Gordon T.; Ali, Nadeem [National Hospital for Neurology and Neurosurgery, Department of Neuro-ophthalmology, London (United Kingdom); Moorfields Eye Hospital, Department of Neuro-ophthalmology, London (United Kingdom); Bremner, Fion [National Hospital for Neurology and Neurosurgery, Department of Neuro-ophthalmology, London (United Kingdom); Davagnanam, Indran [National Hospital for Neurology and Neurosurgery, The Lysholm Department of Neuroradiology, London (United Kingdom)

    2016-01-15

    Conventional and quantitative MRI was performed in patients with chronic progressive external ophthalmoplegia (CPEO), a common manifestation of mitochondrial disease, to characterise MRI findings in the extra-ocular muscles (EOMs) and investigate whether quantitative MRI provides clinically relevant measures of disease. Patients with CPEO due to single mitochondrial DNA deletions were compared with controls. Range of eye movement (ROEM) measurements, peri-orbital 3 T MRI T1-weighted (T1w) and short-tau-inversion-recovery (STIR) images, and T2 relaxation time maps were obtained. Blinded observers graded muscle atrophy and T1w/STIR hyperintensity. Cross-sectional areas and EOM mean T2s were recorded and correlated with clinical parameters. Nine patients and nine healthy controls were examined. Patients had reduced ROEM (patients 13.3 , controls 49.3 , p < 0.001), greater mean atrophy score and increased T1w hyperintensities. EOM mean cross-sectional area was 43 % of controls and mean T2s were prolonged (patients 75.6 ± 7.0 ms, controls 55.2 ± 4.1 ms, p < 0.001). ROEM correlated negatively with EOM T2 (rho = -0.89, p < 0.01), whilst cross-sectional area failed to correlate with any clinical measures. MRI demonstrates EOM atrophy, characteristic signal changes and prolonged T2 in CPEO. Correlation between elevated EOM T2 and ROEM impairment represents a potential measure of disease severity that warrants further evaluation. (orig.)

  6. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Jingbo Liu

    Full Text Available It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR increases the susceptibility of offspring to high-fat (HF diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW, and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA, and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH and glucose-6-phosphate dehydrogenase (G6PD. These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.

  7. Zebrafish: a model animal for analyzing the impact of environmental pollutants on muscle and brain mitochondrial bioenergetics.

    Science.gov (United States)

    Bourdineaud, Jean-Paul; Rossignol, R; Brèthes, D

    2013-01-01

    Mercury, anthropogenic release of uranium (U), and nanoparticles constitute hazardous environmental pollutants able to accumulate along the aquatic food chain with severe risk for animal and human health. The impact of such pollutants on living organisms has been up to now approached by classical toxicology in which huge doses of toxic compounds, environmentally irrelevant, are displayed through routes that never occur in the lifespan of organisms (for instance injecting a bolus of mercury to an animal although the main route is through prey and fish eating). We wanted to address the effect of such pollutants on the muscle and brain mitochondrial bioenergetics under realistic conditions, at unprecedented low doses, using an aquatic model animal, the zebrafish Danio rerio. We developed an original method to measure brain mitochondrial respiration: a single brain was put in 1.5 mL conical tube containing a respiratory buffer. Brains were gently homogenized by 13 strokes with a conical plastic pestle, and the homogenates were immediately used for respiration measurements. Skinned muscle fibers were prepared by saponin permeabilization. Zebrafish were contaminated with food containing 13 μg of methylmercury (MeHg)/g, an environmentally relevant dose. In permeabilized muscle fibers, we observed a strong inhibition of both state 3 mitochondrial respiration and cytochrome c oxidase activity after 49 days of MeHg exposure. We measured a dramatic decrease in the rate of ATP release by skinned muscle fibers. Contrarily to muscles, brain mitochondrial respiration was not modified by MeHg exposure although brain accumulated twice as much MeHg than muscles. When zebrafish were exposed to 30 μg/L of waterborne U, the basal mitochondrial respiratory control ratio was decreased in muscles after 28 days of exposure. This was due to an increase of the inner mitochondrial membrane permeability. The impact of a daily ration of food containing gold nanoparticles of two sizes (12 and

  8. Fast digestive, leucine-rich, soluble milk proteins improve muscle protein anabolism, and mitochondrial function in undernourished old rats.

    Science.gov (United States)

    Salles, Jérôme; Chanet, Audrey; Berry, Alexandre; Giraudet, Christophe; Patrac, Véronique; Domingues-Faria, Carla; Rocher, Christophe; Guillet, Christelle; Denis, Philippe; Pouyet, Corinne; Bonhomme, Cécile; Le Ruyet, Pascale; Rolland, Yves; Boirie, Yves; Walrand, Stéphane

    2017-11-01

    One strategy to manage malnutrition in older patients is to increase protein and energy intake. Here, we evaluate the influence of protein quality during refeeding on improvement in muscle protein and energy metabolism. Twenty-month-old male rats (n = 40) were fed 50% of their spontaneous intake for 12 weeks to induce malnutrition, then refed ad libitum with a standard diet enriched with casein or soluble milk proteins (22%) for 4 weeks. A 13C-valine was infused to measure muscle protein synthesis and expression of MuRF1, and MAFbx was measured to evaluate muscle proteolysis. mTOR pathway activation and mitochondrial function were assessed in muscle. Malnutrition was associated with a decrease in body weight, fat mass, and lean mass, particularly muscle mass. Malnutrition decreased muscle mTOR pathway activation and protein FSR associated with increased MuRF1 mRNA levels, and decreased mitochondrial function. The refeeding period partially restored fat mass and lean mass. Unlike the casein diet, the soluble milk protein diet improved muscle protein metabolism and mitochondrial function in old malnourished rats. These results suggest that providing better-quality proteins during refeeding may improve efficacy of renutrition in malnourished older patients. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females

    DEFF Research Database (Denmark)

    Ribas, Vicent; Drew, Brian G; Zhou, Zhenqi

    2016-01-01

    Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established...... that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism...... and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin...

  10. Effect of colon cancer and surgical resection on skeletal muscle mitochondrial enzyme activity in colon cancer patients: a pilot study

    OpenAIRE

    Phillips, Bethan E.; Smith, Kenneth; Liptrot, Sarah; Atherton, Philip J.; Varadhan, Krishna; Rennie, Michael J.; Larvin, Mike; Lund, Jonathan N.; Williams, John P

    2012-01-01

    Background Colon cancer (CC) patients commonly suffer declines in muscle mass and aerobic function. We hypothesised that CC would be associated with reduced muscle mass and mitochondrial enzyme activity and that curative resection would exacerbate these changes. Methods We followed age-matched healthy controls and CC patients without distant metastasis on radiological imaging before and 6?weeks after hemi-colectomy surgery. Body composition was analysed using dual energy X-ray absorptiometry....

  11. Three dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization

    DEFF Research Database (Denmark)

    Dahl, Rannvá; Larsen, Steen; Dohlmann, Tine L

    2015-01-01

    Mitochondria undergo continuous changes in shape as result of complex fusion and fission processes. The physiological relevance of mitochondrial dynamics is still unclear. In the field of mitochondria bioenergetics, there is a need of tools to assess cell mitochondrial content. Aim: Develop...... mitochondrial dynamics in response to life-style interventions and/or in certain pathologies. Our results question the classification of mitochondria into subsarcolemmal and intermyofibrillar pools, since they are physically interconnected. This article is protected by copyright. All rights reserved....

  12. Ex vivo measures of muscle mitochondrial capacity reveal quantitative limits of oxygen delivery by the circulation during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert; Saltin, Bengt

    2013-01-01

    Muscle mitochondrial respiratory capacity measured ex vivo provides a physiological reference to assess cellular oxidative capacity as a component in the oxygen cascade in vivo. In this article, the magnitude of muscle blood flow and oxygen uptake during exercise involving a small-to-large fracti...... capacity measured ex vivo underestimates the maximal in vivo oxygen uptake of muscle by up to ∼2-fold. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.......Muscle mitochondrial respiratory capacity measured ex vivo provides a physiological reference to assess cellular oxidative capacity as a component in the oxygen cascade in vivo. In this article, the magnitude of muscle blood flow and oxygen uptake during exercise involving a small-to-large fraction...... of the body mass will be discussed in relation to mitochondrial capacity measured ex vivo. These analyses reveal that as the mass of muscle engaged in exercise increases from one-leg knee extension, to 2-arm cranking, to 2-leg cycling and x-country skiing, the magnitude of blood flow and oxygen delivery...

  13. The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Philip A.; Duan, Jicheng; Qian, Wei-Jun; Marcinek, David J.

    2015-11-25

    Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar and excitation-contraction (EC) coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.

  14. Ex vivo measures of muscle mitochondrial capacity reveal quantitative limits of oxygen delivery by the circulation during exercise.

    Science.gov (United States)

    Boushel, Robert; Saltin, Bengt

    2013-01-01

    Muscle mitochondrial respiratory capacity measured ex vivo provides a physiological reference to assess cellular oxidative capacity as a component in the oxygen cascade in vivo. In this article, the magnitude of muscle blood flow and oxygen uptake during exercise involving a small-to-large fraction of the body mass will be discussed in relation to mitochondrial capacity measured ex vivo. These analyses reveal that as the mass of muscle engaged in exercise increases from one-leg knee extension, to 2-arm cranking, to 2-leg cycling and x-country skiing, the magnitude of blood flow and oxygen delivery decrease. Accordingly, a 2-fold higher oxygen delivery and oxygen uptake per unit muscle mass are seen in vivo during 1-leg exercise compared to 2-leg cycling indicating a significant limitation of the circulation during exercise with a large muscle mass. This analysis also reveals that mitochondrial capacity measured ex vivo underestimates the maximal in vivo oxygen uptake of muscle by up to ∼2-fold. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging.

    Science.gov (United States)

    Zhou, Jin; Chong, Shu Yun; Lim, Andrea; Singh, Brijesh K; Sinha, Rohit A; Salmon, Adam B; Yen, Paul M

    2017-02-26

    Aging causes a general decline in cellular metabolic activity, and function in different tissues and whole body homeostasis. However, the understanding about the metabolomic and autophagy changes in skeletal muscle and heart during aging is still limited. We thus examined markers for macroautophagy, chaperone-mediated autophagy (CMA), mitochondrial quality control, as well as cellular metabolites in skeletal and cardiac muscle from young (5 months old) and aged (27 months old) mice. We found decreased autophagic degradation of p62 and increased ubiquitinated proteins in both tissues from aged mice, suggesting a decline in macroautophagy during aging. In skeletal muscle from aged mice, there also was a decline in LC3B-I conjugation to phosphatidylethanolamine (PE) possibly due to decreased protein levels of ATG3 and ATG12-ATG5. The CMA markers, LAMP-2A and Hsc70, and mitochondrial turnover markers, Drp1, PINK1 and PGC1α also were decreased. Metabolomics analysis showed impaired β-oxidation in heart of aged mice, whereas increased branched-chain amino acids (BCAAs) and ceramide levels were found in skeletal muscle of aged mice that in turn, may contribute to insulin resistance in muscle. Taken together, our studies showed similar declines in macroautophagy but distinct effects on CMA, mitochondrial turnover, and metabolic dysfunction in muscle vs. heart during aging.

  16. Effect of colon cancer and surgical resection on skeletal muscle mitochondrial enzyme activity in colon cancer patients: a pilot study.

    Science.gov (United States)

    Phillips, Bethan E; Smith, Kenneth; Liptrot, Sarah; Atherton, Philip J; Varadhan, Krishna; Rennie, Michael J; Larvin, Mike; Lund, Jonathan N; Williams, John P

    2013-03-01

    Colon cancer (CC) patients commonly suffer declines in muscle mass and aerobic function. We hypothesised that CC would be associated with reduced muscle mass and mitochondrial enzyme activity and that curative resection would exacerbate these changes. We followed age-matched healthy controls and CC patients without distant metastasis on radiological imaging before and 6 weeks after hemi-colectomy surgery. Body composition was analysed using dual energy X-ray absorptiometry. Mitochondrial enzyme activity and protein concentrations were analysed in vastus lateralis muscle biopsies. In pre-surgery, there were no differences in lean mass between CC patients and age-matched controls (46.1 + 32.5 vs. 46.1 + 37.3 kg). Post-resection lean mass was reduced in CC patients (43.8 + 30.3 kg, P affected by surgery rather than cancer per se. PDH activity was however lower in cancer patients, suggesting that muscle mass and mitochondrial enzyme activity are not inextricably linked. This reduction in mitochondrial enzyme activity may well contribute to the significant risks of major surgery to which CC patients are exposed.

  17. Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations.

    Science.gov (United States)

    Mangum, Joshua E; Hardee, Justin P; Fix, Dennis K; Puppa, Melissa J; Elkes, Johnathon; Altomare, Diego; Bykhovskaya, Yelena; Campagna, Dean R; Schmidt, Paul J; Sendamarai, Anoop K; Lidov, Hart G W; Barlow, Shayne C; Fischel-Ghodsian, Nathan; Fleming, Mark D; Carson, James A; Patton, Jeffrey R

    2016-05-20

    Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1(-/-) animals. Pus1(-/-) mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1(-/-) mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1(-/-) mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1(-/-) mice.

  18. Mitochondrial Myopathy

    Science.gov (United States)

    ... symptoms of mitochondrial myopathies include muscle weakness or exercise intolerance, heart failure or rhythm disturbances, dementia, movement disorders, stroke-like episodes, deafness, blindness, droopy ...

  19. Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Larsen, S; Stride, N; Hey-Mogensen, Martin

    2011-01-01

    AIMS/HYPOTHESIS: Mitochondrial respiration has been linked to insulin resistance. We studied mitochondrial respiratory capacity and substrate sensitivity in patients with type 2 diabetes (patients), and obese and lean control participants. METHODS: Mitochondrial respiration was measured...

  20. Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Hey-Mogensen, Martin; Højlund, K; Vind, B F

    2010-01-01

    of obese participants with and without type 2 diabetes. METHODS: Type 2 diabetic men (n = 13) and control (n = 14) participants matched for age, BMI and physical activity completed 10 weeks of aerobic training. Pre- and post-training muscle biopsies were obtained before a euglycaemic......AIM/HYPOTHESIS: Studies have suggested a link between insulin resistance and mitochondrial dysfunction in skeletal muscles. Our primary aim was to investigate the effect of aerobic training on mitochondrial respiration and mitochondrial reactive oxygen species (ROS) release in skeletal muscle...... in type 2 diabetic participants. Mitochondrial ROS release tended to be higher in participants with type 2 diabetes. CONCLUSIONS/INTERPRETATION: Aerobic training improves muscle respiration and intrinsic mitochondrial respiration in untrained obese participants with and without type 2 diabetes...

  1. Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Rabøl, R; Boushel, R; Almdal, T

    2010-01-01

    AIM: Skeletal muscle insulin resistance has been linked to mitochondrial dysfunction. We examined how improvements in muscular insulin sensitivity following rosiglitazone (ROSI) or pioglitazone (PIO) treatment would affect muscle mitochondrial function in patients with type 2 diabetes mellitus (T2......DM). METHODS: Muscle biopsies were obtained from 21 patients with T2DM before and after 12 weeks on either ROSI (4 mg once daily) [n = 12; age, 59.2 +/- 2.2 years; body mass index (BMI), 29.6 +/- 0.7 kg/m(2)] or PIO (30 mg once daily) (n = 9; age, 56.3 +/- 2.4 years; BMI, 29.5 +/- 1.5 kg/m(2...

  2. Contribution of muscle biopsy and genetics to the diagnosis of chronic progressive external opthalmoplegia of mitochondrial origin.

    Science.gov (United States)

    Sundaram, Challa; Meena, A K; Uppin, Megha S; Govindaraj, P; Vanniarajan, A; Thangaraj, K; Kaul, Subhash; Kekunnaya, Ramesh; Murthy, J M K

    2011-04-01

    Chronic progressive external opthalmoplegia (CPEO) is the most common phenotypic syndrome of the mitochondrial myopathies. Muscle biopsy, which provides important morphological clues for the diagnosis of mitochondrial disorders, is normal in approximately 25% of patients with CPEO, thus necessitating molecular genetic analysis for more accurate diagnosis. We aimed to study the utility of various histochemical stains in the diagnosis of CPEO on muscle biopsy and to correlate these results with genetic studies. Between May 2005 and November 2007 all 45 patients diagnosed with CPEO were included in the study (23 males; mean age at presentation, 35 years). Thirty-nine patients had CPEO only and six had CPEO plus; two had a positive family history but the remaining 39 patients had sporadic CPEO. Muscle biopsy samples were stained with hematoxylin and eosin, modified Gomori's trichrome stain, succinic dehydrogenase (SDH), cytochrome C oxidase (COX) and combined COX-SDH. Ragged red fibers were seen in 27 biopsies; seven showed characteristics of neurogenic atrophy only, and 11 were normal. The abnormal fibers were best identified on COX-SDH stain. A complete mitochondrial genome was amplified in muscle and blood samples of all patients. Mutations were found in transfer RNA, ribosomal RNA, ND, CYTB, COX I, II and III genes. Mitochondrial gene mutations were found in ten of the 11 patients with a normal muscle biopsy. The genetic mutations were classified according to their significance. The observed muscle biopsy findings were correlated with genetic mutations noted. Histological studies should be combined with genetic studies for the definitive diagnosis of CPEO syndrome. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles.

    Science.gov (United States)

    Layec, Gwenael; Bringard, Aurélien; Le Fur, Yann; Micallef, Jean-Paul; Vilmen, Christophe; Perrey, Stéphane; Cozzone, Patrick J; Bendahan, David

    2015-04-15

    Exercise efficiency is an important determinant of exercise capacity. However, little is known about the physiological factors that can modulate muscle efficiency during exercise. We examined whether improved O2 availability would 1) impair mitochondrial efficiency and shift the energy production toward aerobic ATP synthesis and 2) reduce the ATP cost of dynamic contraction owing to an improved neuromuscular efficiency, such that 3) whole body O2 cost would remain unchanged. We used (31)P-magnetic resonance spectroscopy, surface electromyography, and pulmonary O2 consumption (V̇o2p) measurements in eight active subjects during 6 min of dynamic knee-extension exercise under different fractions of inspired O2 (FiO2 , 0.21 in normoxia and 1.0 in hyperoxia). V̇o2p (755 ± 111 ml/min in normoxia and 799 ± 188 ml/min in hyperoxia, P > 0.05) and O2 cost (P > 0.05) were not significantly different between normoxia and hyperoxia. In contrast, the total ATP synthesis rate and the ATP cost of dynamic contraction were significantly lower in hyperoxia than normoxia (P efficiency as a consequence of O2 availability in young active individuals. Furthermore, muscle efficiency appears to be already optimized in normoxia and is unlikely to contribute to the well-established improvement in exercise capacity induced by hyperoxia. Copyright © 2015 the American Physiological Society.

  4. Alteration of mitochondrial function and insulin sensitivity in primary mouse skeletal muscle cells isolated from transgenic and knockout mice: role of ogg1.

    Science.gov (United States)

    Yuzefovych, Larysa V; Schuler, A Michele; Chen, Jemimah; Alvarez, Diego F; Eide, Lars; Ledoux, Susan P; Wilson, Glenn L; Rachek, Lyudmila I

    2013-08-01

    Recent evidence has linked mitochondrial dysfunction and DNA damage, increased oxidative stress in skeletal muscle, and insulin resistance (IR). The purpose of this study was to determine the role of the DNA repair enzyme, human 8-oxoguanine DNA glycosylase/apurinic/apyrimidinic lyase (hOGG1), on palmitate-induced mitochondrial dysfunction and IR in primary cultures of skeletal muscle derived from hind limb of ogg1(-/-) knockout mice and transgenic mice, which overexpress human (hOGG1) in mitochondria (transgenic [Tg]/MTS-hOGG1). Following exposure to palmitate, we evaluated mitochondrial DNA (mtDNA) damage, mitochondrial function, production of mitochondrial reactive oxygen species (mtROS), mitochondrial mass, JNK activation, insulin signaling pathways, and glucose uptake. Palmitate-induced mtDNA damage, mtROS, mitochondrial dysfunction, and activation of JNK were all diminished, whereas ATP levels, mitochondrial mass, insulin-stimulated phosphorylation of Akt (Ser 473), and insulin sensitivity were increased in primary myotubes isolated from Tg/MTS-hOGG1 mice compared to myotubes isolated from either knockout or wild-type mice. In addition, both basal and maximal respiratory rates during mitochondrial oxidation on pyruvate showed a variable response, with some animals displaying an increased respiration in muscle fibers isolated from the transgenic mice. Our results support the model that DNA repair enzyme OGG1 plays a pivotal role in repairing mtDNA damage, and consequently, in mtROS production and regulating downstream events leading to IR in skeletal muscle.

  5. 8-oxoguanine DNA glycosylase (OGG1 deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle.

    Directory of Open Access Journals (Sweden)

    Vladimir Vartanian

    Full Text Available Oxidative stress resulting from endogenous and exogenous sources causes damage to cellular components, including genomic and mitochondrial DNA. Oxidative DNA damage is primarily repaired via the base excision repair pathway that is initiated by DNA glycosylases. 8-oxoguanine DNA glycosylase (OGG1 recognizes and cleaves oxidized and ring-fragmented purines, including 8-oxoguanine, the most commonly formed oxidative DNA lesion. Mice lacking the OGG1 gene product are prone to multiple features of the metabolic syndrome, including high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Here, we report that OGG1-deficient mice also display skeletal muscle pathologies, including increased muscle lipid deposition and alterations in genes regulating lipid uptake and mitochondrial fission in skeletal muscle. In addition, expression of genes of the TCA cycle and of carbohydrate and lipid metabolism are also significantly altered in muscle of OGG1-deficient mice. These tissue changes are accompanied by marked reductions in markers of muscle function in OGG1-deficient animals, including decreased grip strength and treadmill endurance. Collectively, these data indicate a role for skeletal muscle OGG1 in the maintenance of optimal tissue function.

  6. Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lerebours, Adelaide; Adam-Guillermin, Christelle [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Bat 186, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Brethes, Daniel [CNRS, UMR 5095, Institut de Biochimie et Genetique Cellulaires, Universite Victor Segalen-Bordeaux 2 (France); Frelon, Sandrine; Floriani, Magali; Camilleri, Virginie; Garnier-Laplace, Jacqueline [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Bat 186, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Bourdineaud, Jean-Paul, E-mail: jp.bourdineaud@epoc.u-bordeaux1.fr [CNRS, UMR 5095, Institut de Biochimie et Genetique Cellulaires, Universite Victor Segalen-Bordeaux 2 (France)

    2010-10-01

    Anthropogenic release of uranium (U), originating from the nuclear fuel cycle or military activities, may considerably increase U concentrations in terrestrial and aquatic ecosystems above the naturally occurring background levels found throughout the environment. With a projected increase in the world-wide use of nuclear power, it is important to improve our understanding of the possible effects of this metal on the aquatic fauna at concentrations commensurate with the provisional drinking water guideline value of the World Health Organization (15 {mu}g U/L). The present study has examined the mitochondrial function in brain and skeletal muscles of the zebrafish, Danio rerio, exposed to 30 and 100 {mu}g/L of waterborne U for 10 and 28 days. At the lower concentration, the basal mitochondrial respiration rate was increased in brain at day 10 and in muscles at day 28. This is due to an increase of the inner mitochondrial membrane permeability, resulting in a decrease of the respiratory control ratio. In addition, levels of cytochrome c oxidase subunit IV (COX-IV) increased in brain at day 10, and those of COX-I increased in muscles at day 28. Histological analyses performed by transmission electron microscopy revealed an alteration of myofibrils and a dilatation of endomysium in muscle cells. These effects were largest at the lowest concentration, following 28 days of exposure.

  7. Gender-dependent differences of mitochondrial function and oxidative stress in rat skeletal muscle at rest and after exercise training.

    Science.gov (United States)

    Farhat, Firas; Amérand, Aline; Simon, Bernard; Guegueniat, Nathalie; Moisan, Christine

    2017-11-01

    This study investigated gender-dependent differences of mitochondrial function and sensitivity to in vitro ROS exposure in rat skeletal muscle at rest and after exercise training. Wistar rats underwent running training for 6 weeks. In vitro measurements of hydroxyl radical production, oxygen consumption (under basal and maximal respiration conditions) and ATP production were made on permeabilized fibers. Mitochondrial function was examined after exposure and non-exposure to an in vitro generator system of reactive oxygen species (ROS). Antioxidant enzyme activities and malondialdehyde (MDA) content were also determined. Compared with sedentary males, females showed a greater resistance of mitochondrial function (oxygen consumption and ATP production) to ROS exposure, and lower MDA content and antioxidant enzyme activities. The training protocol had more beneficial effects in males than females with regard to ROS production and oxidative stress. In contrast to male rats, the susceptibility of mitochondrial function to ROS exposure in trained females was unchanged. Exercise training improves mitochondrial function oxidative capacities in both male and female rats, but is more pronounced in males as a result of different mechanisms. The resistance of mitochondrial function to in vitro oxidative stress exposure and the antioxidant responses are gender- and training-dependent, and may be related to the protective effects of estrogen.

  8. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Galtier, F., E-mail: f-galtier@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); CPID, Faculté de Pharmacie, 15 Av. Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, Montpellier (France); Mura, T., E-mail: t-mura@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Raynaud de Mauverger, E., E-mail: eric.raynaud-de-mauverger@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); Université Montpellier 1, 5 bd Henri IV CS 19044, 34967 Montpellier Cedex 2 (France); Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); INSERM, U1046, 371 Avenue du Doyen G. Giraud, CHU Arnaud de Villeneuve, Bâtiment INSERM Crastes de Paulet, 34295 Montpellier Cedex 5 (France); Chevassus, H., E-mail: h-chevassus@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Farret, A., E-mail: a-farret@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Gagnol, J.-P., E-mail: jp-gagnol@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Costa, F., E-mail: francoisecosta@sfr.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Dupuy, A., E-mail: am-dupuy@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); and others

    2012-09-15

    Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca{sup 2+} homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca{sup 2+} spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to their median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38 ± 5.68 vs − 1.15 ± 4.32 UI/L, P < 0.001) and CK (− 24.3 ± 99.1 ± 189.3vs 48.3 UI/L, P = 0.01) and a trend to an elevation of isoprostanes (193 ± 408 vs12 ± 53 pmol/mmol creatinine, P = 0.09) with no global change in mitochondrial respiration, lactate/pyruvate ratio or Ca{sup 2+} sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca{sup 2+} spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca{sup 2+} spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r = 0.71, P = 0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication. -- Highlights: ► Statin use may be limited by side effects, particularly myopathy. ► Statins might impair mitochondrial function and muscle Ca2+ signaling in muscle. ► This was tested among healthy volunteers receiving simvastatin 80 mg daily for 8 weeks. ► CK

  9. Ginsenoside-Rd potentiates apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells through the mitochondrial pathway.

    Science.gov (United States)

    Li, Shi-Yang; Wang, Xiao-Guang; Ma, Ming-Ming; Liu, Yun; Du, Yan-Hua; Lv, Xiao-Fei; Zhou, Jia-Guo; Tang, Yong-Bo; Guan, Yong-Yuan

    2012-02-01

    Our previous studies showed that ginsenoside-Rd, a purified component from Panax notoginseng, inhibited cell proliferation and reversed basilar artery remodeling. The aim of this study was to investigate whether ginsenoside- Rd influences H(2)O(2)-induced apoptosis in basilar artery smooth muscle cells (BASMCs). The results showed that ginsenoside-Rd significantly potentiated H(2)O(2)-induced cell death and cell apoptosis. This resulted in a concentration-dependent reduction of the cell viability. Ginsenoside-Rd further increased cytochrome C release and caspase-9/caspase-3 activations, and reduced the stability of mitochondrial membrane potential (MMP) and the ratio of Bcl-2/Bax. Cyclosporine A, an inhibitor of mitochondrial-permeability transition, inhibited alteration of mitochondrial permeability induced by H(2)O(2) and reversed the effect of ginsenoside-Rd on MMP. Our data strongly suggest that ginsenoside-Rd potentiated H(2)O(2)-induced apoptosis of BASMCs through the mitochondria-dependent pathway.

  10. Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle

    DEFF Research Database (Denmark)

    Chursa, Urszula; Nuñez-Durán, Esther; Cansby, Emmelie

    2017-01-01

    AIMS/HYPOTHESIS: Understanding the molecular networks controlling ectopic lipid deposition and insulin responsiveness in skeletal muscle is essential for developing new strategies to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator...... of liver steatosis, hepatic lipid metabolism and whole body glucose and insulin homeostasis. Here, we assessed the role of STK25 in control of ectopic fat storage and insulin responsiveness in skeletal muscle. METHODS: Skeletal muscle morphology was studied by histological examination, exercise performance...... and insulin sensitivity were assessed by treadmill running and euglycaemic-hyperinsulinaemic clamp, respectively, and muscle lipid metabolism was analysed by ex vivo assays in Stk25 transgenic and wild-type mice fed a high-fat diet. Lipid accumulation and mitochondrial function were also studied in rodent...

  11. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Vigelsø, Andreas; Andersen, Nynne B; Dela, Flemming

    2014-01-01

    , synthase, human, skeletal, muscle, training, not electrical stimulation, not in-vitro, not rats. Studies that reported changes in CS activity and V.O2max were included. Different training types and subject populations were analyzed independently to assess correlation between relative changes in V.O2max......Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity.......4). Training induced changes in whole body oxidative capacity is matched by changes in muscle CS activity in a nearly 1:1 relationship. Absolute values of CS across different studies cannot be compared unless a standardized analytical method is used by all laboratories....

  12. Hypothesis on skeletal muscle aging : mitochondrial adenine nucleotide translocator decreases reactive oxygen species production while preserving coupling efficiency

    Directory of Open Access Journals (Sweden)

    Philippe eDIOLEZ

    2015-12-01

    Full Text Available Mitochondrial membrane potential is the major regulator of mitochondrial functions, including coupling efficiency and production of reactive oxygen species (ROS. Both functions are crucial for cell bioenergetics. We previously presented evidences for a specific modulation of adenine nucleotide translocase (ANT appearing during aging that results in a decrease in membrane potential - and therefore ROS production – but surprisingly increases coupling efficiency under conditions of low ATP turnover. Careful study of the bioenergetic parameters (oxidation and phosphorylation rates, membrane potential of isolated mitochondria from skeletal muscles (gastrocnemius of aged and young rats revealed a remodeling at the level of the phosphorylation system, in the absence of alteration of the inner mitochondrial membrane (uncoupling or respiratory chain complexes regulation. We further observed a decrease in mitochondrial affinity for ADP in aged isolated mitochondria, and higher sensitivity of ANT to its specific inhibitor atractyloside. This age-induced modification of ANT results in an increase in the ADP concentration required to sustain the same ATP turnover as compared to young muscle, and therefore in a lower membrane potential under phosphorylating - in vivo - conditions. Thus, for equivalent ATP turnover (cellular ATP demand, coupling efficiency is even higher in aged muscle mitochondria, due to the down-regulation of inner membrane proton leak caused by the decrease in membrane potential. In the framework of the radical theory of aging, these modifications in ANT function may be the result of oxidative damage caused by intra mitochondrial ROS and may appear like a virtuous circle where ROS induce a mechanism that reduces their production, without causing uncoupling, and even leading in improved efficiency. Because of the importance of ROS as therapeutic targets, this new mechanism deserves further studies.

  13. A role for mitochondrial oxidants in stress-induced premature senescence of human vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Yogita Mistry

    2013-01-01

    Full Text Available Mitochondria are a major source of cellular oxidants and have been implicated in aging and associated pathologies, notably cardiovascular diseases. Vascular cell senescence is observed in experimental and human cardiovascular pathologies. Our previous data highlighted a role for angiotensin II in the induction of telomere-dependent and -independent premature senescence of human vascular smooth muscle cells and suggested this was due to production of superoxide by NADPH oxidase. However, since a role for mitochondrial oxidants was not ruled out we hypothesise that angiotensin II mediates senescence by mitochondrial superoxide generation and suggest that inhibition of superoxide may prevent vascular smooth muscle cell aging in vitro. Cellular senescence was induced using a stress-induced premature senescence protocol consisting of three successive once-daily exposure of cells to 1×10−8 mol/L angiotensin II and was dependent upon the type-1 angiotensin II receptor. Angiotensin stimulated NADPH-dependent superoxide production as estimated using lucigenin chemiluminescence in cell lysates and this was attenuated by the mitochondrial electron transport chain inhibitor, rotenone. Angiotensin also resulted in an increase in mitoSOX fluorescence indicating stimulation of mitochondrial superoxide. Significantly, the induction of senescence by angiotensin II was abrogated by rotenone and by the mitochondria-targeted superoxide dismutase mimetic, mitoTEMPO. These data suggest that mitochondrial superoxide is necessary for the induction of stress-induced premature senescence by angiotensin II and taken together with other data suggest that mitochondrial cross-talk with NADPH oxidases, via as yet unidentified signalling pathways, is likely to play a key role.

  14. Acute and perinatal-programming effects of a fat-rich diet on rat muscle mitochondrial function and hepatic lipid accumulation

    DEFF Research Database (Denmark)

    Hellgren, Lars; Jensen, Runa I.; Waterstradt, Michelle S. G.

    2014-01-01

    . Skeletal muscle mitochondria and liver lipids. Methods. Mitochondrial respiration and hepatic lipid content were determined during and after weaning, on days 20 and 70 postpartum. Main outcome measures. Mitochondrial function and hepatic lipids. Results. At 20 days, maternal high-fat diet caused increased...

  15. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults

    OpenAIRE

    Lalia, Antigoni Z.; Dasari, Surendra; Robinson, Matthew M.; Abid, Hinnah; Morse, Dawn M.; Klaus, Katherine A.; Lanza, Ian R.

    2017-01-01

    Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capac...

  16. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Larsen, Steen; Danielsen, J H; Søndergård, Stine Dam

    2015-01-01

    High-intensity interval training (HIT) is known to increase mitochondrial content in a similar way as endurance training [60-90% of maximal oxygen uptake (VO2peak )]. Whether HIT increases the mitochondria's ability to oxidize lipids is currently debated. We investigated the effect of HIT...... of HIT (three times per week at 298 ± 21 W). HIT significantly increased VO2peak from 2.9 ± 0.2 to 3.1 ± 0.2 L/min. No differences were seen in maximal fat oxidation in either skeletal muscle or adipose tissue. Km (app) for octanoyl carnitine or palmitoyl carnitine were similar after training in skeletal...... muscle and adipose tissue. Maximal OXPHOS capacity with complex I- and II-linked substrates was increased after training in skeletal muscle but not in adipose tissue. In conclusion, 6 weeks of HIT increased VO2peak . Mitochondrial content and mitochondrial OXPHOS capacity were increased in skeletal...

  17. Polyphenols decreased liver NADPH oxidase activity, increased muscle mitochondrial biogenesis and decreased gastrocnemius age-dependent autophagy in aged rats.

    Science.gov (United States)

    Laurent, Caroline; Chabi, Beatrice; Fouret, Gilles; Py, Guillaume; Sairafi, Badie; Elong, Cecile; Gaillet, Sylvie; Cristol, Jean Paul; Coudray, Charles; Feillet-Coudray, Christine

    2012-09-01

    This study explored major systems of reactive oxygen species (ROS) production and their consequences on oxidative stress, mitochondriogenesis and muscle metabolism in aged rats, and evaluated the efficiency of 30-day oral supplementation with a moderate dose of a red grape polyphenol extract (RGPE) on these parameters. In the liver of aged rats, NADPH oxidase activity was increased and mitochondrial respiratory chain complex activities were altered, while xanthine oxidase activity remained unchanged. In muscles, only mitochondrial activity was modified with aging. The oral intake of RGPE decreased liver NADPH oxidase activity in the aged rats without affecting global oxidative stress, suggesting that NADPH oxidase was probably not the dominant detrimental source of production of O(2)·(-) in the liver. Interestingly, RGPE supplementation increased mitochondrial biogenesis and improved antioxidant status in the gastrocnemius of aged rats, while it had no significant effect in soleus. RGPE supplementation also decreased age-dependent autophagy in gastrocnemius of aged rats. These results extended existing findings on the beneficial effects of RGPE on mitochondriogenesis and muscle metabolism in aged rats.

  18. (−)-EPICATECHIN IMPROVES MITOCHONDRIAL RELATED PROTEIN LEVELS AND AMELIORATES OXIDATIVE STRESS IN DYSTROPHIC DELTA SARCOGLYCAN NULL MOUSE STRIATED MUSCLE

    Science.gov (United States)

    Ramirez-Sanchez, Israel; De los Santos, Sergio; Gonzalez-Basurto, Silvia; Canto, Patricia; Mendoza-Lorenzo, Patricia; Palma-Flores, Carlos; Ceballos-Reyes, Guillermo; Villarreal, Francisco; Zentella-Dehesa, Alejandro; Coral-Vazquez, Ramon

    2014-01-01

    Muscular dystrophies (MD) are a group of heterogeneous genetic disorders characterized by progressive striated muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for disease pathogenesis remains unclear. The presence of oxidative stress (OS) is known to contribute to the pathophysiology and severity of the MD. Mitochondrial dysfunction is observed in MD and likely represents an important determinant of increased OS. Experimental antioxidant therapies have been implemented with the aim of protecting against disease progression, but results from clinical trials have been disappointing. In this study, we explored the capacity of the cacao flavonoid (−)-epicatechin (Epi) to mitigate OS by acting as a positive regulator of mitochondrial structure/function endpoints and redox balance control systems in skeletal and cardiac muscles of dystrophic, δ-sarcoglycan (δ-SG) null mice. Wild type or δ-SG null 2.5 month old male mice were treated via oral gavage with either water (control animals) or Epi (1 mg/kg, twice/day) for 2 weeks. Results evidence a significant normalization of total protein carbonylation, recovery of reduced/oxidized glutathione (GSH/GSSG ratio) and enhanced superoxide dismutase 2, catalase and citrate synthase activities with Epi treatment. These effects were accompanied by increases in protein levels for thiolredoxin, glutathione peroxidase, superoxide dismutase 2, catalase and mitochondrial endpoints. Furthermore, we evidence decreases in heart and skeletal muscle fibrosis, accompanied with an improvement in skeletal muscle function with treatment. These results warrant the further investigation of Epi as a potential therapeutic agent to mitigate MD associated muscle degeneration. PMID:25284161

  19. Coumestrol induces mitochondrial biogenesis by activating Sirt1 in cultured skeletal muscle cells.

    Science.gov (United States)

    Seo, Dae-Bang; Jeong, Hyun Woo; Lee, Sang-Jun; Lee, Sung-Joon

    2014-05-14

    The mitochondrion is a central organelle in cellular energy homeostasis; thus, reduced mitochondrial activity has been associated with aging and metabolic disorders. This paper provides biological evidence that coumestrol, which is a natural isoflavone, activates mitochondrial biogenesis. In cultured myocytes, coumestrol activated the silent information regulator two ortholog 1 (Sirt1) through the elevation of the intracellular NAD(+)/NADH ratio. Coumestrol also increased the mitochondrial contents and induced the expression of key proteins in the mitochondrial electron transfer chain in cultured myocytes. A Sirt1 inhibitor and Sirt1-targeting siRNAs abolished the effect of coumestrol on mitochondrial biogenesis. Similar to an increase in mitochondrial content, coumestrol improved myocyte function with increased ATP concentration. Taken together, the data suggest that coumestrol is a novel inducer of mitochondrial biogenesis through the activation of Sirt1.

  20. Human extraocular muscles in mitochondrial diseases: comparing chronic progressive external ophthalmoplegia with Leber’s hereditary optic neuropathy

    Science.gov (United States)

    Carta, A; Carelli, V; D’Adda, T; Ross-Cisneros, F N; Sadun, A A

    2005-01-01

    Aims: To compare the ultrastructural aspects of human extraocular muscles in two types of mitochondrial disease: chronic progressive external ophthalmoplegia (CPEO) and Leber’s hereditary optic neuropathy (LHON). Methods: Muscle samples of the medial rectus obtained from surgery in a sporadic case of CPEO associated with deleted mitochondrial DNA, and post mortem in a case of 3460/ND1 LHON were processed for electron microscopy (EM). The medial rectus from an autoptic time to fixation matched control was used to exclude postmortem artefacts. Results: The CPEO specimen revealed focal areas of disruption and abnormalities of mitochondria in some muscle fibres, creating a “mosaic-like” pattern. In the LHON specimen a diffuse increase in both number and size of mitochondria (mean diameter 0.85 μm v 0.65 μm of control, pCPEO and LHON reveals marked differences. A “mosaic-like” pattern caused by a selective damage of muscle fibres was evident in CPEO, whereas a diffuse increase in mitochondria with preservation of myofibrils characterised the LHON case. These ultrastructural changes may relate to the different expression of the two diseases, resulting in ophthalmoplegia in CPEO and normal eye movements in LHON. PMID:15965159

  1. Reduced skeletal muscle mitochondrial respiration and improved glucose metabolism in nondiabetic obese women during a very low calorie dietary intervention leading to rapid weight loss

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Svendsen, Pernille F; Skovbro, Mette

    2009-01-01

    % weight loss; and measurements of mitochondrial respiration, IMTG, respiratory exchange ratio, citrate synthase activity, mitochondrial DNA copy number, plasma insulin, 2-hour oral glucose tolerance test, and free fatty acids were performed before and after weight loss. Mitochondrial respiration...... was measured in permeabilized muscle fibers using high-resolution respirometry. Average weight loss was 11.5% (P plasma glucose, plasma insulin homeostasis model assessment of insulin resistance, and insulin sensitivity index (composite) obtained...... during 2-hour oral glucose tolerance test improved significantly. Mitochondrial respiration per milligram tissue decreased by approximately 25% (P

  2. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  3. Carnitine supplementation in high-fat diet-fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo.

    Science.gov (United States)

    Wessels, Bart; van den Broek, Nicole M A; Ciapaite, Jolita; Houten, Sander M; Wanders, Ronald J A; Nicolay, Klaas; Prompers, Jeanine J

    2015-10-01

    Muscle lipid overload and the associated accumulation of lipid intermediates play an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid intermediates out of the mitochondria. The aim of the present study was to test the hypothesis that carnitine supplementation reduces high-fat diet-induced lipotoxicity, improves muscle mitochondrial function, and ameliorates insulin resistance. Wistar rats were fed either normal chow or a high-fat diet for 15 wk. One group of high-fat diet-fed rats was supplemented with 300 mg·kg(-1)·day(-1) L-carnitine during the last 8 wk. Muscle mitochondrial function was measured in vivo by (31)P magnetic resonance spectroscopy (MRS) and ex vivo by high-resolution respirometry. Muscle lipid status was determined by (1)H MRS (intramyocellular lipids) and tandem mass spectrometry (acylcarnitines). High-fat diet feeding induced insulin resistance and was associated with decreases in muscle and blood free carnitine, elevated levels of muscle lipids and acylcarnitines, and an increased number of muscle mitochondria that showed an improved capacity to oxidize fat-derived substrates when tested ex vivo. This was, however, not accompanied by an increase in muscle oxidative capacity in vivo, indicating that in vivo mitochondrial function was compromised. Despite partial normalization of muscle and blood free carnitine content, carnitine supplementation did not induce improvements in muscle lipid status, in vivo mitochondrial function, or insulin sensitivity. Carnitine insufficiency, therefore, does not play a major role in high-fat diet-induced muscle mitochondrial dysfunction in vivo. Copyright © 2015 the American Physiological Society.

  4. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes?

    DEFF Research Database (Denmark)

    Larsen, Steen; Ara, I; Rabøl, R

    2009-01-01

    AIM/HYPOTHESIS: The aim of the study was to investigate mitochondrial function, fibre type distribution and substrate oxidation in arm and leg muscle during exercise in patients with type 2 diabetes and in obese and lean controls. METHODS: Indirect calorimetry was used to calculate fat...... and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsies from arm and leg were obtained. Fibre type, as well as O(2) flux capacity of saponin-permeabilised muscle fibres were measured, the latter by high resolution respirometry, in patients with type 2 diabetes......, age- and BMI-matched obese controls, and age-matched lean controls. RESULTS: Fat oxidation was similar in the groups during either arm or leg exercise. During leg exercise at higher intensities, but not during arm exercise, carbohydrate oxidation was lower in patients with type 2 diabetes compared...

  5. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles - Possible role in rescuing cellular energy homeostasis

    NARCIS (Netherlands)

    ter Veld, F; Jeneson, JAL; Nicolay, K

    Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single-

  6. Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1α pathway.

    Science.gov (United States)

    Ji, Kunqian; Zheng, Jinfan; Lv, Jingwei; Xu, Jingwen; Ji, Xinbo; Luo, Yue-Bei; Li, Wei; Zhao, Yuying; Yan, Chuanzhu

    2015-07-01

    Fibroblast growth factor 21 (FGF21) is a growth factor with pleiotropic effects on regulating lipid and glucose metabolism. Its expression is increased in skeletal muscle of mice and humans with mitochondrial disorders. However, the effects of FGF21 on skeletal muscle in response to mitochondrial respiratory chain deficiency are largely unknown. Here we demonstrate that the increased expression of FGF21 is a compensatory response to respiratory chain deficiency. The mRNA and protein levels of FGF21 were robustly raised in skeletal muscle from patients with mitochondrial myopathy or MELAS. The mammalian target of rapamycin (mTOR) phosphorylation levels and its downstream targets, Yin Yang 1 (YY1) and peroxisome proliferator-activated receptor γ, coactivator 1α (PGC-1α), were increased by FGF21 treatment in C2C12 myoblasts. Activation of the mTOR-YY1-PGC1α pathway by FGF21 in myoblasts regulated energy homeostasis as demonstrated by significant increases in intracellular ATP synthesis, oxygen consumption rate, activity of citrate synthase, glycolysis, mitochondrial DNA copy number, and induction of the expression of key energy metabolic genes. The effects of FGF21 on mitochondrial function required phosphoinositide 3-kinase (PI3K), which activates mTOR. Inhibition of PI3K, mTOR, YY1, and PGC-1α activities attenuated the stimulating effects of FGF21 on intracellular ATP levels and mitochondrial gene expression. Our findings revealed that mitochondrial respiratory chain deficiency elicited a compensatory response in skeletal muscle by increasing the FGF21 expression levels in muscle, which resulted in enhanced mitochondrial function through an mTOR-YY1-PGC1α-dependent pathway in skeletal muscle. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation

    Science.gov (United States)

    2016-01-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and “basic” OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H+. The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. PMID:27283913

  8. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment.

    Science.gov (United States)

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M

    2017-11-01

    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H2O2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017 the

  9. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Vaughan Roger A

    2012-10-01

    Full Text Available Abstract Background Polyunsaturated fatty acids are popular dietary supplements advertised to contribute to weight loss by increasing fat metabolism in liver, but the effects on overall muscle metabolism are less established. We evaluated the effects of conjugated linoleic acid (CLA or combination omega 3 on metabolic characteristics in muscle cells. Methods Human rhabdomyosarcoma cells were treated with either DMSO control, or CLA or combination omega 3 for 24 or 48 hours. RNA was determined using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Mitochondrial content was determined using flow cytometry and immunohistochemistry. Metabolism was quantified by measuring extracellular acidification and oxygen consumption rates. Results Omega 3 significantly induced metabolic genes as well as oxidative metabolism (oxygen consumption, glycolytic capacity (extracellular acidification, and metabolic rate compared with control. Both treatments significantly increased mitochondrial content. Conclusion Omega 3 fatty acids appear to enhance glycolytic, oxidative, and total metabolism. Moreover, both omega 3 and CLA treatment significantly increase mitochondrial content compared with control.

  10. Evidence for caspase-dependent programmed cell death along with repair processes in affected skeletal muscle fibres in patients with mitochondrial disorders.

    Science.gov (United States)

    Guglielmi, Valeria; Vattemi, Gaetano; Chignola, Roberto; Chiarini, Anna; Marini, Matteo; Dal Prà, Ilaria; Di Chio, Marzia; Chiamulera, Cristiano; Armato, Ubaldo; Tomelleri, Giuliano

    2016-02-01

    Mitochondrial disorders are heterogeneous multisystemic disorders due to impaired oxidative phosphorylation causing defective mitochondrial energy production. Common histological hallmarks of mitochondrial disorders are RRFs (ragged red fibres), muscle fibres with abnormal focal accumulations of mitochondria. In contrast with the growing understanding of the genetic basis of mitochondrial disorders, the fate of phenotypically affected muscle fibres remains largely unknown. We investigated PCD (programmed cell death) in muscle of 17 patients with mitochondrial respiratory chain dysfunction. We documented that in affected muscle fibres, nuclear chromatin is condensed in lumpy irregular masses and cytochrome c is released into the cytosol to activate, along with Apaf-1 (apoptotic protease-activating factor 1), caspase 9 that, in turn, activates effector caspase 3, caspase 6, and caspase 7, suggesting the execution of the intrinsic apoptotic pathway. Whereas active caspase 3 underwent nuclear translocation, AIF (apoptosis-inducing factor) mainly stayed within mitochondria, into which an up-regulated Bax is relocated. The significant increase in caspase 2, caspase 3 and caspase 6 activity strongly suggest that the cell death programme is caspase-dependent and the activation of caspase 2 together with PUMA (p53 up-regulated modulator of apoptosis) up-regulation point to a role for oxidative stress in triggering the intrinsic pathway. Concurrently, in muscle of patients, the number of satellite cells was significantly increased and myonuclei were detected at different stages of myogenic differentiation, indicating that a reparative programme is ongoing in muscle of patients with mitochondrial disorders. Together, these data suggest that, in patients with mitochondrial disorders, affected muscle fibres are trapped in a mitochondria-regulated caspase-dependent PCD while repairing events take place. © 2016 Authors; published by Portland Press Limited.

  11. Mitochondrial Ca2+-handling in fast skeletal muscle fibers from wild type and calsequestrin-null mice.

    Directory of Open Access Journals (Sweden)

    Michele Scorzeto

    Full Text Available Mitochondrial calcium handling and its relation with calcium released from sarcoplasmic reticulum (SR in muscle tissue are subject of lively debate. In this study we aimed to clarify how the SR determines mitochondrial calcium handling using dCASQ-null mice which lack both isoforms of the major Ca(2+-binding protein inside SR, calsequestrin. Mitochondrial free Ca(2+-concentration ([Ca(2+]mito was determined by means of a genetically targeted ratiometric FRET-based probe. Electron microscopy revealed a highly significant increase in intermyofibrillar mitochondria (+55% and augmented coupling (+12% between Ca(2+ release units of the SR and mitochondria in dCASQ-null vs. WT fibers. Significant differences in the baseline [Ca(2+]mito were observed between quiescent WT and dCASQ-null fibers, but not in the resting cytosolic Ca(2+ concentration. The rise in [Ca(2+]mito during electrical stimulation occurred in 20-30 ms, while the decline during and after stimulation was governed by 4 rate constants of approximately 40, 1.6, 0.2 and 0.03 s(-1. Accordingly, frequency-dependent increase in [Ca(2+]mito occurred during sustained contractions. In dCASQ-null fibers the increases in [Ca(2+]mito were less pronounced than in WT fibers and even lower when extracellular calcium was removed. The amplitude and duration of [Ca(2+]mito transients were increased by inhibition of mitochondrial Na(+/Ca(2+ exchanger (mNCX. These results provide direct evidence for fast Ca(2+ accumulation inside the mitochondria, involvement of the mNCX in mitochondrial Ca(2+-handling and a dependence of mitochondrial Ca(2+-handling on intracellular (SR and external Ca(2+ stores in fast skeletal muscle fibers. dCASQ-null mice represent a model for malignant hyperthermia. The differences in structure and in mitochondrial function observed relative to WT may represent compensatory mechanisms for the disease-related reduction of calcium storage capacity of the SR and/or SR Ca(2+-leakage.

  12. Doubling diet fat on sugar ratio in children with mitochondrial OXPHOS disorders: Effects of a randomized trial on resting energy expenditure, diet induced thermogenesis and body composition.

    Science.gov (United States)

    Béghin, Laurent; Coopman, Stéphanie; Schiff, Manuel; Vamecq, Joseph; Mention-Mulliez, Karine; Hankard, Régis; Cuisset, Jean-Marie; Ogier, Hélène; Gottrand, Frédéric; Dobbelaere, Dries

    2016-12-01

    Mitochondrial OXPHOS disorders (MODs) affect one or several complexes of respiratory chain oxidative phosphorylation. An increased fat/low-carbohydrate ratio of the diet was recommended for treating MODs without, however, evaluating its potential benefits through changes in the respective contributions of cell pathways (glycolysis, fatty acid oxidation) initiating energy production. Therefore, the objective of the present work was to compare Resting Energy Expenditure (REE) under basal diet (BD) and challenging diet (CD) in which fat on sugar content ratio was doubled. Diet-induced thermogenesis (DIT) and body compositions were also compared. Energetic vs regulatory aspects of increasing fat contribution to total nutritional energy input were essentially addressed through measures primarily aiming at modifying total fat amounts and not the types of fats in designed diets. In this randomized cross-over study, BD contained 10% proteins/30% lipids/60% carbohydrates (fat on sugar ratio = 0.5) and was the imposed diet at baseline. CD contained 10% proteins/45% lipids/45% carbohydrates (fat on sugar ratio = 1). Main and second evaluation criteria measured by indirect calorimetry (QUARK RMR(®), Cosmed, Pavona; Italy) were REE and DIT, respectively. Thirty four MOD patients were included; 22 (mean age 13.2 ± 4.7 years, 50% female; BMI 16.9 ± 4.2 kg/m(2)) were evaluated for REE, and 12 (mean age 13.8 ± 4.8 years, 60% female; BMI 17.4 ± 4.6 kg/m(2)) also for DIT. OXPHOS complex deficiency repartition in 22 analysed patients was 55% for complex I, 9% for complex III, 27% for complex IV and 9% for other proteins. Neither carry-over nor period effects were detected (p = 0.878; ANOVA for repeated measures). REE was similar between BD vs CD (1148.8 ± 301.7 vs 1156.1 ± 278.8 kcal/day; p = 0.942) as well as DIT (peak DIT 260 vs 265 kcal/day; p = 0.842) and body composition (21.9 ± 13.0 vs 21.6 ± 13.3% of fat mass; p = 0.810). Doubling diet

  13. Adult-onset Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke (MELAS)-like Encephalopathy Diagnosed Based on the Complete Sequencing of Mitochondrial DNA Extracted from Biopsied Muscle without any Myopathic Changes.

    Science.gov (United States)

    Mukai, Masako; Nagata, Eiichiro; Mizuma, Atsushi; Yamano, Mitsuhiko; Sugaya, Keizo; Nishino, Ichizo; Goto, Yu-Ichi; Takizawa, Shunya

    The clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) are not uniform. We herein report a male patient with unusual MELAS-like encephalopathy who had been experiencing isolated recurrent stroke-like episodes since he was 33 years old without any particular family history. Despite an extensive investigation, he had no other signs suggestive of MELAS. Although the muscle pathology showed a normal appearance, a mitochondrial genome sequence analysis of the biopsied muscle revealed a heteroplasmic m.10158T>C mutation in the mitochondrial complex I subunit gene, MT-ND3. To prevented further deterioration of the higher brain function, the early diagnosis and treatment of mitochondrial stroke-like episodes is important.

  14. Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight

    DEFF Research Database (Denmark)

    Brøns, Charlotte; Jensen, Christine B; Storgaard, Heidi

    2008-01-01

    . RESULTS: The LBW subjects displayed a variety of metabolic and prediabetic abnormalities, including elevated fasting blood glucose and plasma insulin levels, reduced insulin-stimulated glycolytic flux, and hepatic insulin resistance. Nevertheless, in vivo mitochondrial function was normal in LBW subjects......OBJECTIVE: Low birth weight (LBW) is an independent risk factor of insulin resistance and type 2 diabetes. Recent studies suggest that mitochondrial dysfunction and impaired expression of genes involved in oxidative phosphorylation (OXPHOS) may play a key role in the pathogenesis of insulin......, as was the expression of OXPHOS genes. CONCLUSIONS: These data support and expand previous findings of abnormal glucose metabolism in young men with LBW. In addition, we found that the young, healthy men with LBW exhibited hepatic insulin resistance. However, the study does not support the hypothesis that muscle...

  15. A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Jacobs, Robert A; Bonne, Thomas Christian

    2016-01-01

    The aim of the present study was to examine whether improvements in pulmonary V̇O2 kinetics following a short period of high-intensity training (HIT) would be associated with improved skeletal muscle mitochondrial function. Ten untrained male volunteers (age: 26 ± 2; mean ± SD) performed six HIT...... sessions (8-12 x 60 s at incremental test peak power; 271 ± 52 W) over a 2-week period. Before and after the HIT-period, V̇O2 kinetics was modelled during moderate intensity cycling (110 ± 19 W). Mitochondrial function was assessed with high-resolution respirometry (HRR) and maximal activities of oxidative...... not increase in response to training. Both before and after the HIT-period fast V̇O2 kinetics (low τ values) was associated with large values for ETFP, electron transport system capacity (ETS) and electron flow specific to complex II (CIIP) (P

  16. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    NARCIS (Netherlands)

    Hoeks, J.; Herpen, N.A.; Mensink, M.R.; Moonen-Kornips, E.; Beurden, van D.; Hesselink, M.K.C.; Schrauwen, P.

    2010-01-01

    OBJECTIVE-Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we

  17. Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress.

    Science.gov (United States)

    Banh, Sheena; Wiens, Lilian; Sotiri, Emianka; Treberg, Jason R

    2016-01-01

    Acute heat challenge is known to induce cell-level oxidative stress in fishes. Mitochondria are well known for the capacity to make reactive oxygen species (ROS) and as such are often implicated as a source of the oxidants associated with this thermally-induced oxidative stress. This implication is often asserted, despite little direct data for mitochondrial ROS metabolism in fishes. Here we characterize mitochondrial ROS metabolism in three Actinopterygian fish species at two levels, the capacity for superoxide/H2O2 production and the antioxidant thiol-reductase enzyme activities. We find that red muscle mitochondria from all three species have measurable ROS production and respond to different assay conditions consistent with what might be anticipated; assuming similar relative contributions from difference ROS producing sites as found in rat skeletal muscle mitochondria. Although there are species and assay specific exceptions, fish mitochondria may have a greater capacity to produce ROS than that found in the rat when either normalized to respiratory capacity or determined at a common assay temperature. The interspecific differences in ROS production are not correlated with thiol-based antioxidant reductase activities. Moreover, mimicking an acute in vivo heat stress by comparing the impact of increasing assay temperature on these processes in vitro, we find evidence supporting a preferential activation of mitochondrial H2O2 production relative to the increase in the capacity of reductase enzymes to supply electrons to the mitochondrial matrix peroxidases. This supports the contention that mitochondria may be, at least in part, responsible for the ROS that lead to oxidative stress in fish tissues exposed to acute heat challenge. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson's disease.

    Science.gov (United States)

    Kelly, Neil A; Ford, Matthew P; Standaert, David G; Watts, Ray L; Bickel, C Scott; Moellering, Douglas R; Tuggle, S Craig; Williams, Jeri Y; Lieb, Laura; Windham, Samuel T; Bamman, Marcas M

    2014-03-01

    We conducted, in persons with Parkinson's disease (PD), a thorough assessment of neuromotor function and performance in conjunction with phenotypic analyses of skeletal muscle tissue, and further tested the adaptability of PD muscle to high-intensity exercise training. Fifteen participants with PD (Hoehn and Yahr stage 2-3) completed 16 wk of high-intensity exercise training designed to simultaneously challenge strength, power, endurance, balance, and mobility function. Skeletal muscle adaptations (P exercise training in PD included myofiber hypertrophy (type I: +14%, type II: +36%), shift to less fatigable myofiber type profile, and increased mitochondrial complex activity in both subsarcolemmal and intermyofibrillar fractions (I: +45-56%, IV: +39-54%). These adaptations were accompanied by a host of functional and clinical improvements (P Parkinson's Disease Quality of Life Scale (PDQ-39, -7.8pts); Unified Parkinson's Disease Rating Scale (UPDRS) total (-5.7 pts) and motor (-2.7 pts); and fatigue severity (-17%). Additionally, PD subjects in the pretraining state were compared with a group of matched, non-PD controls (CON; did not exercise). A combined assessment of muscle tissue phenotype and neuromuscular function revealed a higher distribution and larger cross-sectional area of type I myofibers and greater type II myofiber size heterogeneity in PD vs. CON (P exercise training with favorable changes in skeletal muscle at the cellular and subcellular levels that are associated with improvements in motor function, physical capacity, and fatigue perception.

  19. Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance.

    Science.gov (United States)

    Kenny, Helena C; Rudwill, Floriane; Breen, Laura; Salanova, Michele; Blottner, Dieter; Heise, Tim; Heer, Martina; Blanc, Stephane; O'Gorman, Donal J

    2017-08-01

    Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young men, and (2) resistive vibration exercise (RVE) would mitigate the negative metabolic effects of bed rest. Participants (n = 9) were maintained in energy balance during 21 days of bed rest with RVE and without (CON) in a crossover study. Mitochondrial respiration was determined by high-resolution respirometry in permeabilised fibre bundles from biopsies of the vastus lateralis. A hyperinsulinaemic-euglycaemic clamp was used to determine insulin sensitivity, and body composition was assessed by dual-energy x-ray absorptiometry (DEXA). Body mass (-3.2 ± 0.5 kg vs -2.8 ± 0.4 kg for CON and RVE, respectively, p < 0.05), fat-free mass (-2.9 ± 0.5 kg vs -2.7 ± 0.5 kg, p < 0.05) and peak oxygen consumption ([Formula: see text]) (10-15%, p < 0.05) were all reduced following bed rest. Bed rest decreased insulin sensitivity in the CON group (0.04 ± 0.002 mg kgFFM-1 [pmol l-1] min-1 vs 0.03 ± 0.002 mg kgFFM-1 [pmol l-1] min-1 for baseline vs post-CON), while RVE mitigated this response (0.04 ± 0.003 mg kgFFM-1 [pmol l-1] min-1). Mitochondrial respiration (oxidative phosphorylation and electron transport system capacity) decreased in the CON group but not in the RVE group when expressed relative to tissue weight but not when normalised for citrate synthase activity. LEAK respiration, indicating a decrease in mitochondrial uncoupling, was the only component to remain significantly lower in the CON group after normalisation for citrate synthase. This was accompanied by a significant decrease in adenine nucleotide translocase protein content. Reductions in muscle mitochondrial respiration occur concomitantly with insulin resistance and loss of muscle mass

  20. Growth hormone secretagogues hexarelin and JMV2894 protect skeletal muscle from mitochondrial damages in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Sirago, Giuseppe; Conte, Elena; Fracasso, Flavio; Cormio, Antonella; Fehrentz, Jean-Alain; Martinez, Jean; Musicco, Clara; Camerino, Giulia Maria; Fonzino, Adriano; Rizzi, Laura; Torsello, Antonio; Lezza, Angela Maria Serena; Liantonio, Antonella; Cantatore, Palmiro; Pesce, Vito

    2017-10-12

    Chemotherapy can cause cachexia, which consists of weight loss associated with muscle atrophy. The exact mechanisms underlying this skeletal muscle toxicity are largely unknown and co-therapies to attenuate chemotherapy-induced side effects are lacking. By using a rat model of cisplatin-induced cachexia, we here characterized the mitochondrial homeostasis in tibialis anterior cachectic muscle and evaluated the potential beneficial effects of the growth hormone secretagogues (GHS) hexarelin and JMV2894 in this setting. We found that cisplatin treatment caused a decrease in mitochondrial biogenesis (PGC-1α, NRF-1, TFAM, mtDNA, ND1), mitochondrial mass (Porin and Citrate synthase activity) and fusion index (MFN2, Drp1), together with changes in the expression of autophagy-related genes (AKT/FoxO pathway, Atg1, Beclin1, LC3AII, p62) and enhanced ROS production (PRX III, MnSOD). Importantly, JMV2894 and hexarelin are capable to antagonize this chemotherapy-induced mitochondrial dysfunction. Thus, our findings reveal a key-role played by mitochondria in the mechanism responsible for GHS beneficial effects in skeletal muscle, strongly indicating that targeting mitochondrial dysfunction might be a promising area of research in developing therapeutic strategies to prevent or limit muscle wasting in cachexia.

  1. Prior Exercise Training Prevent Hyperglycemia in STZ Mice by Increasing Hepatic Glycogen and Mitochondrial Function on Skeletal Muscle.

    Science.gov (United States)

    de Carvalho, Afonso Kopczynski; da Silva, Sabrina; Serafini, Edenir; de Souza, Daniela Roxo; Farias, Hemelin Resende; de Bem Silveira, Gustavo; Silveira, Paulo Cesar Lock; de Souza, Claudio Teodoro; Portela, Luis Valmor; Muller, Alexandre Pastoris

    2017-04-01

    Diabetes mellitus is a metabolic disorder characterized by hyperglycemia. We investigated the effect of a prior 30 days voluntary exercise protocol on STZ-diabetic CF1 mice. Glycemia, and the liver and skeletal muscle glycogen, mitochondrial function, and redox status were analyzed up to 5 days after STZ injection. Animals were engaged in the following groups: Sedentary vehicle (Sed Veh), Sedentary STZ (Sed STZ), Exercise Vehicle (Ex Veh), and Exercise STZ (Ex STZ). Exercise prevented fasting hyperglycemia in the Ex STZ group. In the liver, there was decreased on glycogen level in Sed STZ group but not in EX STZ group. STZ groups showed decreased mitochondrial oxygen consumption compared to vehicle groups, whereas mitochondrial H2 O2 production was not different between groups. Addition of ADP to the medium did not decrease H2 O2 production in Sed STZ mice. Exercise increased GSH level. Sed STZ group increased nitrite levels compared to other groups. In quadriceps muscle, glycogen level was similar between groups. The Sed STZ group displayed decreased O2 consumption, and exercise prevented this reduction. The H2 O2 production was higher in Ex STZ when compared to other groups. Also, GSH level decreased whereas nitrite levels increased in the Sed STZ compared to other groups. The PGC1 α levels increased in Sed STZ, Ex Veh, and Ex STZ groups. In summary, prior exercise training prevents hyperglycemia in STZ-mice diabetic associated with increased liver glycogen storage, and oxygen consumption by the mitochondria of skeletal muscle implying in increased oxidative/biogenesis capacity, and improved redox status of both tissues. J. Cell. Biochem. 118: 678-685, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Perturbations of NAD salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle

    DEFF Research Database (Denmark)

    Agerholm, Marianne; Dall, Morten; Jensen, Benjamin A H

    2017-01-01

    was reduced by 25%. Moreover, anaerobic glycolytic flux increased by 55% and 2-deoxyglucose uptake increased by 25% in shNampt KD cells. Treatment with the NAD+ precursor nicotinamide riboside restored NAD+ levels in shNampt cells and increased maximal respiratory capacity by 18% and 32% in control and sh......Nicotinamide adenine dinucleotide (NAD+) can be synthesized by nicotinamide phosphoribosyltransferase (NAMPT). We aimed to determine the role of NAMPT for maintaining NAD+ levels, mitochondrial function, and metabolic homeostasis in skeletal muscle cells. We generated stable Nampt knockdown (sh...

  3. High expression of nuclear factor 90 (NF90 leads to mitochondrial degradation in skeletal and cardiac muscles.

    Directory of Open Access Journals (Sweden)

    Takuma Higuchi

    Full Text Available While NF90 has been known to participate in transcription, translation and microRNA biogenesis, physiological functions of this protein still remain unclear. To uncover this, we generated transgenic (Tg mice using NF90 cDNA under the control of β-actin promoter. The NF90 Tg mice exhibited a reduction in body weight compared with wild-type mice, and a robust expression of NF90 was detected in skeletal muscle, heart and eye of the Tg mice. To evaluate the NF90 overexpression-induced physiological changes in the tissues, we performed a number of analyses including CT-analysis and hemodynamic test, revealing that the NF90 Tg mice developed skeletal muscular atrophy and heart failure. To explore causes of the abnormalities in the NF90 Tg mice, we performed histological and biochemical analyses for the skeletal and cardiac muscles of the Tg mice. Surprisingly, these analyses demonstrated that mitochondria in those muscular tissues of the Tg mice were degenerated by autophagy. To gain further insight into the cause for the mitochondrial degeneration, we identified NF90-associated factors by peptide mass fingerprinting. Of note, approximately half of the NF90-associated complexes were ribosome-related proteins. Interestingly, protein synthesis rate was significantly suppressed by high-expression of NF90. These observations suggest that NF90 would negatively regulate the function of ribosome via its interaction with the factors involved in the ribosome function. Furthermore, we found that the translations or protein stabilities of PGC-1 and NRF-1, which are critical transcription factors for expression of mitochondrial genes, were significantly depressed in the skeletal muscles of the NF90 Tg mice. Taken together, these findings suggest that the mitochondrial degeneration engaged in the skeletal muscle atrophy and the heart failure in the NF90 Tg mice may be caused by NF90-induced posttranscriptional repression of transcription factors such as PGC-1 and

  4. High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function.

    Directory of Open Access Journals (Sweden)

    Eva Buck

    Full Text Available Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD, one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111 as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.

  5. Insulin accelerates global and mitochondrial protein synthesis rates in neonatal muscle during sepsis

    Science.gov (United States)

    In neonatal pigs, sepsis decreases protein synthesis in skeletal muscle by decreasing translation initiation. However, insulin stimulates muscle protein synthesis despite persistent repression of translation initiation signaling. To determine whether the insulin-induced increase in global rates of m...

  6. Major growth reduction and minor decrease in mitochondrial enzyme activity in cultured human muscle cells after exposure to zidovudine

    NARCIS (Netherlands)

    Herzberg, N. H.; Zorn, I.; Zwart, R.; Portegies, P.; Bolhuis, P. A.

    1992-01-01

    Zidovudine-induced mitochondrial myopathy in AIDS patients reported recently might be due to inhibition of mitochondrial DNA polymerase gamma. We investigated the effect of zidovudine on proliferation, differentiation, activity of mitochondrial- and nuclear-encoded enzymes, and mitochondrial DNA

  7. Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone

    DEFF Research Database (Denmark)

    Petersson, Stine J; Christensen, Louise L; Kristensen, Jonas M

    2014-01-01

    therapy on regulators of mitochondrial biogenesis and markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable testosterone levels. METHODS: Skeletal muscle biopsies were obtained before and after treatment with either testosterone gel (n=12) or placebo (n=13...... metabolism (ACADVL, CD36, CPT1B, HADH, and PDK4). Consistently, protein abundance of OxPhos subunits encoded by both nuclear (SDHA and UQCRC1) and mitochondrial DNA (ND6) and protein abundance and phosphorylation of AMP-activated protein kinase and p38 MAPK were unaffected by testosterone therapy. CONCLUSION......: The beneficial effect of testosterone treatment on lipid oxidation is not explained by increased abundance or phosphorylation-dependent activity of enzymes known to regulate mitochondrial biogenesis or markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable...

  8. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity

    DEFF Research Database (Denmark)

    Lantier, Louise; Fentz, Joachim; Mounier, Rémi

    2014-01-01

    AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle ...

  9. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action

    NARCIS (Netherlands)

    Ost, Mario; Coleman, Verena; Voigt, Anja; Schothorst, van E.M.; Keipert, Susanne; Stelt, van der Inge; Ringel, Sebastian; Graja, Antonia; Ambrosi, Thomas; Kipp, A.P.; Jastroch, Martin; Schulz, T.J.; Keijer, Jaap; Klaus, Susanne

    2016-01-01

    Objective: Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise

  10. Lower Mitochondrial Energy Production of the Thigh Muscles in Patients With Low-Normal Ankle-Brachial Index.

    Science.gov (United States)

    AlGhatrif, Majd; Zane, Ariel; Oberdier, Matt; Canepa, Marco; Studenski, Stephanie; Simonsick, Eleanor; Spencer, Richard G; Fishbein, Kenneth; Reiter, David; Lakatta, Edward G; McDermott, Mary M; Ferrucci, Luigi

    2017-08-30

    Lower muscle mitochondrial energy production may contribute to impaired walking endurance in patients with peripheral arterial disease. A borderline ankle-brachial index (ABI) of 0.91 to 1.10 is associated with poorer walking endurance compared with higher ABI. We hypothesized that in the absence of peripheral arterial disease, lower ABI is associated with lower mitochondrial energy production. We examined 363 men and women participating in the Baltimore Longitudinal Study of Aging with an ABI between 0.90 and 1.40. Muscle mitochondrial energy production was assessed by post-exercise phosphocreatine recovery rate constant (kPCr) measured by phosphorus magnetic resonance spectroscopy of the left thigh. A lower post-exercise phosphocreatine recovery rate constant reflects decreased mitochondria energy production.The mean age of the participants was 71±12 years. A total of 18.4% had diabetes mellitus and 4% were current and 40% were former smokers. Compared with participants with an ABI of 1.11 to 1.40, those with an ABI of 0.90 to 1.10 had significantly lower post-exercise phosphocreatine recovery rate constant (19.3 versus 20.8 ms-1, P=0.015). This difference remained significant after adjusting for age, sex, race, smoking status, diabetes mellitus, body mass index, and cholesterol levels (P=0.028). Similarly, post-exercise phosphocreatine recovery rate constant was linearly associated with ABI as a continuous variable, both in the ABI ranges of 0.90 to 1.40 (standardized coefficient=0.15, P=0.003) and 1.1 to 1.4 (standardized coefficient=0.12, P=0.0405). An ABI of 0.90 to 1.10 is associated with lower mitochondrial energy production compared with an ABI of 1.11 to 1.40. These data demonstrate adverse associations of lower ABI values with impaired mitochondrial activity even within the range of a clinically accepted definition of a normal ABI. Further study is needed to determine whether interventions in persons with ABIs of 0.90 to 1.10 can prevent subsequent

  11. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle.

    Science.gov (United States)

    Granata, Cesare; Oliveira, Rodrigo S F; Little, Jonathan P; Renner, Kathrin; Bishop, David J

    2016-10-01

    Increased mitochondrial content and respiration have both been reported after exercise training. However, no study has directly compared how different training volumes influence mitochondrial respiration and markers of mitochondrial biogenesis. Ten healthy men performed high-intensity interval cycling during 3 consecutive training phases; 4 wk of normal-volume training (NVT; 3/wk), followed by 20 d of high-volume training (HVT; 2/d) and 2 wk of reduced-volume training (RVT; 5 sessions). Resting biopsy samples (vastus lateralis) were obtained at baseline and after each phase. No mitochondrial parameter changed after NVT. After HVT, mitochondrial respiration and citrate synthase activity (∼40-50%), as well as the protein content of electron transport system (ETS) subunits (∼10-40%), and that of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), NRF1, mitochondrial transcription factor A (TFAM), PHF20, and p53 (∼65-170%) all increased compared to baseline; mitochondrial specific respiration remained unchanged. After RVT, all the mitochondrial parameters measured except citrate synthase activity (∼36% above initial) were not significantly different compared to baseline (all P > 0.05). Our findings demonstrate that training volume is an important determinant of training-induced mitochondrial adaptations and highlight the rapid reversibility of human skeletal muscle to a reduction in training volume.-Granata, C., Oliveira, R. S. F., Little, J. P., Renner, K., Bishop, D. J. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. © FASEB.

  12. The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men.

    Science.gov (United States)

    St-Jean-Pelletier, Félix; Pion, Charlotte H; Leduc-Gaudet, Jean-Philippe; Sgarioto, Nicolas; Zovilé, Igor; Barbat-Artigas, Sébastien; Reynaud, Olivier; Alkaterji, Feras; Lemieux, François C; Grenon, Alexis; Gaudreau, Pierrette; Hepple, Russell T; Chevalier, Stéphanie; Belanger, Marc; Morais, José A; Aubertin-Leheudre, Mylène; Gouspillou, Gilles

    2017-04-01

    The exact impact of ageing on skeletal muscle phenotype and mitochondrial and lipid content remains controversial, probably because physical activity, which greatly influences muscle physiology, is rarely accounted for. The present study was therefore designed to investigate the effects of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, and mitochondrial and intramyocellular lipid content in men. Recreationally active young adult (20-30 yo; YA); active (ACT) and sedentary (SED) middle-age (50-65 yo; MA-ACT and MA-SED); and older (65 + yo; 65 + ACT and 65 + SED) and pre-frail older (65 + PF) men were recruited. Muscle biopsies from the vastus lateralis were collected to assess, on muscle cross sections, muscle phenotype (using myosin heavy chain isoforms immunolabelling), the fibre type-specific content of mitochondria (by quantifying the succinate dehydrogenase stain intensity), and the fibre type-specific lipid content (by quantifying the Oil Red O stain intensity). Only 65 + SED and 65 + PF displayed significantly lower overall and type IIa fibre sizes vs. YA. 65 + SED displayed a lower type IIa fibre proportion vs. YA. MA-SED and 65 + SED displayed a higher hybrid type IIa/IIx fibre proportion vs. YA. Sedentary and pre-frail, but not active, men displayed lower mitochondrial content irrespective of fibre type vs. YA. 65 + SED, but not 65 + ACT, displayed a higher lipid content in type I fibres vs. YA. Finally, mitochondrial content, but not lipid content, was positively correlated with indices of muscle function, functional capacity, and insulin sensitivity across all subjects. Taken altogether, our results indicate that ageing in sedentary men is associated with (i) complex changes in muscle phenotype preferentially affecting type IIa fibres; (ii) a decline in mitochondrial content affecting all fibre types; and (iii) an increase in lipid content in type I fibres. They also indicate that

  13. GSNOR Deficiency Enhances In Situ Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity

    Science.gov (United States)

    Moon, Younghye; Cao, Yenong; Zhu, Jingjing; Xu, Yuanyuan; Balkan, Wayne; Buys, Emmanuel S.; Diaz, Francisca; Kerrick, W. Glenn; Hare, Joshua M.

    2017-01-01

    Abstract Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. Results: GSNOR null (GSNOR−/−) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR−/− lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR−/− TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR−/− TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR−/− muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. Innovation: GSNOR may act as a “brake” on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. Conclusions: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165–181. PMID:27412893

  14. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging

    Science.gov (United States)

    Lustgarten, Michael S.; Jang, Youngmok C.; Liu, Yuhong; Qi, Wenbo; Qin, Yuejuan; Dahia, Patricia L.; Shi, Yun; Bhattacharya, Arunabh; Muller, Florian L.; Shimizu, Takahiko; Shirasawa, Takuji; Richardson, Arlan; Van Remmen, Holly

    2011-01-01

    Summary In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2fl/fl mice). In the present study, we used TnIFastCreSod2fl/fl mice to examine the effect of elevated oxidative stress on mitochondrial function and to test the hypothesis that elevated oxidative stress and decreased mitochondrial function over the lifespan of the TnIFastCreSod2fl/fl mice would be sufficient to accelerate muscle atrophy associated with aging. We found that mitochondrial function is reduced in both young and old TnIFastCreSod2fl/fl mice, when compared with control mice. Complex II activity is reduced by 47% in young and by ~90% in old TnIFastCreSod2fl/fl mice, associated with reduced levels of the catalytic subunits for complex II, SDHA and SDHB. Complex II-linked mitochondrial respiration is reduced by approximately 70% in young TnIFastCreSod2fl/fl mice. Complex II-linked mitochondrial ATP production is reduced by 39% in young and was found to be almost completely absent in old TnIFastCreSod2fl/fl mice. Furthermore, in old TnIFastCreSod2fl/fl mice, aconitase activity is almost completely abolished; mitochondrial superoxide release remains greater than 2-fold elevated; and oxidative damage (measured as F2 isoprostanes) is increased by 30% relative to age-matched controls. These data show that despite elevated skeletal muscle-specific mitochondrial oxidative stress, oxidative damage and complex II-linked mitochondrial dysfunction, age-related muscle atrophy was not accelerated in old TnIFastCreSod2fl/fl mice, suggesting mitochondrial oxidative stress may not be causal for age-related muscle atrophy. PMID:21385310

  15. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging.

    Science.gov (United States)

    Lustgarten, Michael S; Jang, Youngmok C; Liu, Yuhong; Qi, Wenbo; Qin, Yuejuan; Dahia, Patricia L; Shi, Yun; Bhattacharya, Arunabh; Muller, Florian L; Shimizu, Takahiko; Shirasawa, Takuji; Richardson, Arlan; Van Remmen, Holly

    2011-06-01

    In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2(fl/fl) mice). In this study, we used TnIFastCreSod2(fl/fl) mice to examine the effect of elevated oxidative stress on mitochondrial function and to test the hypothesis that elevated oxidative stress and decreased mitochondrial function over the lifespan of the TnIFastCreSod2(fl/fl) mice would be sufficient to accelerate muscle atrophy associated with aging. We found that mitochondrial function is reduced in both young and old TnIFastCreSod2(fl/fl) mice, when compared with control mice. Complex II activity is reduced by 47% in young and by approximately 90% in old TnIFastCreSod2(fl/fl) mice, and was found to be associated with reduced levels of the catalytic subunits for complex II, SDHA and SDHB. Complex II-linked mitochondrial respiration is reduced by approximately 70% in young TnIFastCreSod2(fl/fl) mice. Complex II-linked mitochondrial Adenosine-Tri-Phosphate (ATP) production is reduced by 39% in young and was found to be almost completely absent in old TnIFastCreSod2(fl/fl) mice. Furthermore, in old TnIFastCreSod2(fl/fl) mice, aconitase activity is almost completely abolished; mitochondrial superoxide release remains > 2-fold elevated; and oxidative damage (measured as F(2) - isoprostanes) is increased by 30% relative to age-matched controls. These data show that despite elevated skeletal muscle-specific mitochondrial oxidative stress, oxidative damage, and complex II-linked mitochondrial dysfunction, age-related muscle atrophy was not accelerated in old TnIFastCreSod2(fl/fl) mice, suggesting mitochondrial oxidative stress may not be causal for age-related muscle atrophy. No claim to original US government works. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  16. The high aerobic capacity of a small, marsupial rat-kangaroo (Bettongia penicillata) is matched by the mitochondrial and capillary morphology of its skeletal muscles.

    Science.gov (United States)

    Webster, Koa N; Dawson, Terence J

    2012-09-15

    We examined the structure-function relationships that underlie the aerobic capacities of marsupial mammals that hop. Marsupials have relatively low basal metabolic rates (BMR) and historically were seen as 'low energy' mammals. However, the red kangaroo, Macropus rufus (family Macropodidae), has aerobic capacities equivalent to athletic placentals. It has an extreme aerobic scope (fAS) and its large locomotor muscles feature high mitochondrial and capillary volumes. M. rufus belongs to a modern group of kangaroos and its high fAS is not general for marsupials. However, other hopping marsupials may have elevated aerobic capacities. Bettongia penicillata, a rat-kangaroo (family Potoroidae), is a small (1 kg), active hopper whose fAS is somewhat elevated. We examined the oxygen delivery system in its muscles to ascertain links with hopping. An elevated fAS of 23 provided a relatively high maximal aerobic oxygen consumption ( ) in B. penicillata; associated with this is a skeletal muscle mass of 44% of body mass. Ten muscles were sampled to estimate the total mitochondrial and capillary volume of the locomotor muscles. Values in B. penicillata were similar to those in M. rufus and in athletic placentals. This small hopper had high muscle mitochondrial volume densities (7.1-11.9%) and both a large total capillary volume (6 ml kg(-1) body mass) and total capillary erythrocyte volume (3.2 ml kg(-1)). Apparently, a considerable aerobic capacity is required to achieve the benefits of the extended stride in fast hopping. Of note, the ratio of to total muscle mitochondrial volume in B. penicillata was 4.9 ml O(2) min(-1) ml(-1). Similar values occur in M. rufus and also placental mammals generally, not only athletic species. If such relationships occur in other marsupials, a fundamental structure-function relationship for oxygen delivery to muscles likely originated with or before the earliest mammals.

  17. Improvement of Physical Decline Through Combined Effects of Muscle Enhancement and Mitochondrial Activation by a Gastric Hormone Ghrelin in Male 5/6Nx CKD Model Mice.

    Science.gov (United States)

    Tamaki, Masanori; Hagiwara, Aika; Miyashita, Kazutoshi; Wakino, Shu; Inoue, Hiroyuki; Fujii, Kentaro; Fujii, Chikako; Sato, Masaaki; Mitsuishi, Masanori; Muraki, Ayako; Hayashi, Koichi; Doi, Toshio; Itoh, Hiroshi

    2015-10-01

    Because a physical decline correlates with an increased risk of a wide range of disease and morbidity, an improvement of physical performance is expected to bring significant clinical benefits. The primary cause of physical decline in 5/6 nephrectomized (5/6Nx) chronic kidney disease model mice has been regarded as a decrease in muscle mass; however, our recent study showed that a decrease in muscle mitochondria plays a critical role. In the present study, we examined the effects of a gastric hormone ghrelin, which has been reported to promote muscle mitochondrial oxidation, on the physical decline in the chronic kidney disease model mice, focusing on the epigenetic modulations of a mitochondrial activator gene, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Ghrelin treatment improved a decline in exercise endurance of 5/6Nx mice, associated with an increase in both of the muscle mass and mitochondrial amount. The expression level of PGC-1α was decreased in the skeletal muscle of 5/6Nx mice, which was associated with an increase in the methylation ratio of the cytosine residue at 260 base pairs upstream of the initiation point. Conversely, ghrelin treatment de-methylated the cytosine residue and increased the expression of PGC-1α. A representative muscle anabolic factor, IGF-1, did not affect the expression of PGC-1α and muscle mitochondrial amount, although it increased muscle mass. As a result, IGF-1 treatment in 5/6Nx mice did not increase the decreased exercise endurance as effectively as ghrelin treatment did. These findings indicate an advantage of ghrelin treatment for a recovery of physical decline.

  18. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen

    2007-01-01

    Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). In patients with type 2 diabetes, insulin resistance in skeletal muscle is associated with abnormalities in insulin signaling, fatty acid metabolism...... mitochondrial oxidative metabolism, which is, in part, mediated by reduced PGC-1alpha levels. These abnormalities may contribute to the increased risk of type 2 diabetes observed in women with PCOS....

  19. Mitochondrial physiology in the skeletal and cardiac muscles is altered in torrent ducks, Merganetta armata, from high altitudes in the Andes.

    Science.gov (United States)

    Dawson, Neal J; Ivy, Catherine M; Alza, Luis; Cheek, Rebecca; York, Julia M; Chua, Beverly; Milsom, William K; McCracken, Kevin G; Scott, Graham R

    2016-12-01

    Torrent ducks inhabit fast-flowing rivers in the Andes from sea level to altitudes up to 4500 m. We examined the mitochondrial physiology that facilitates performance over this altitudinal cline by comparing the respiratory capacities of permeabilized fibers, the activities of 16 key metabolic enzymes and the myoglobin content in muscles between high- and low-altitude populations of this species. Mitochondrial respiratory capacities (assessed using substrates of mitochondrial complexes I, II and/or IV) were higher in highland ducks in the gastrocnemius muscle - the primary muscle used to support swimming and diving - but were similar between populations in the pectoralis muscle and the left ventricle. The heightened respiratory capacity in the gastrocnemius of highland ducks was associated with elevated activities of cytochrome oxidase, phosphofructokinase, pyruvate kinase and malate dehydrogenase (MDH). Although respiratory capacities were similar between populations in the other muscles, highland ducks had elevated activities of ATP synthase, lactate dehydrogenase, MDH, hydroxyacyl CoA dehydrogenase and creatine kinase in the left ventricle, and elevated MDH activity and myoglobin content in the pectoralis. Thus, although there was a significant increase in the oxidative capacity of the gastrocnemius in highland ducks, which correlates with improved performance at high altitudes, the variation in metabolic enzyme activities in other muscles not correlated to respiratory capacity, such as the consistent upregulation of MDH activity, may serve other functions that contribute to success at high altitudes. © 2016. Published by The Company of Biologists Ltd.

  20. Proteomic analysis indicates that mitochondrial energy metabolism in skeletal muscle tissue is negatively correlated with feed efficiency in pigs

    Science.gov (United States)

    Fu, Liangliang; Xu, Yueyuan; Hou, Ye; Qi, Xiaolong; Zhou, Lian; Liu, Huiying; Luan, Yu; Jing, Lu; Miao, Yuanxin; Zhao, Shuhong; Liu, Huazhen; Li, Xinyun

    2017-03-01

    Feed efficiency (FE) is a highly important economic trait in pig production. Investigating the molecular mechanisms of FE is essential for trait improvement. In this study, the skeletal muscle proteome of high-FE and low-FE pigs were investigated by the iTRAQ approach. A total of 1780 proteins were identified, among which 124 proteins were differentially expressed between the high- and low-FE pigs, with 74 up-regulated and 50 down-regulated in the high-FE pigs. Ten randomly selected differentially expressed proteins (DEPs) were validated by Western blotting and quantitative PCR (qPCR). Gene ontology (GO) analysis showed that all the 25 DEPs located in mitochondria were down-regulated in the high-FE pigs. Furthermore, the glucose-pyruvate-tricarboxylic acid (TCA)-oxidative phosphorylation energy metabolism signaling pathway was found to differ between high- and low-FE pigs. The key enzymes involved in the conversion of glucose to pyruvate were up-regulated in the high-FE pigs. Thus, our results suggested mitochondrial energy metabolism in the skeletal muscle tissue was negatively correlated with FE in pigs, and glucose utilization to generate ATP was more efficient in the skeletal muscle tissue of high-FE pigs. This study offered new targets and pathways for improvement of FE in pigs.

  1. Mitochondrial dysfunction in muscle tissue of complex regional pain syndrome type I patients

    NARCIS (Netherlands)

    Tan, E.C.T.H.; Janssen, A.J.W.M.; Roestenberg, P.M.H.; Heuvel, L.P.W.J. van den; Goris, R.J.A.; Rodenburg, R.J.T.

    2011-01-01

    Reactive oxygen species (ROS) are known to be involved in the pathophysiology of complex regional pain syndrome type I (CRPS I). Since the mitochondrial respiratory chain is a major source of ROS, we hypothesized that mitochondria play a role in the pathophysiology of CRPS I. The hypothesis was

  2. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    DEFF Research Database (Denmark)

    Sirvent, P; Fabre, Odile Martine Julie; Bordenave, S

    2012-01-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dys...

  3. Enzyme release and mitochondrial activity in reoxygenated cardiac muscle: relationship with oxygen-induced lipid peroxidation.

    Science.gov (United States)

    Gauduel, Y; Menasche, P; Duvelleroy, M

    1989-08-01

    The aim of this work was to precisely determine the sites of the peroxidative action on unsatured lipids by oxygen-derived free radicals and the lytic cell damage on reoxygenated perfused hearts. The cellular load of lipid peroxidation products (malondialdehyde) during the reoxygenation was dependent on PO2. This unfavorable biochemical response was linked to creatine kinase leakage, alteration of coronary flow and mitochondrial injury. When an enzymatic (superoxide dismutase, 290 IU/minute) or tripeptide scavenger of oxygen radicals (reduced glutathione, 0.5 mmol/l) was administered at the end of hypoxia and during reoxygenation, the abnormal intolerance of hypoxic heart to molecular oxygen was significantly weakened; the load of lipid peroxides load, enzyme release, and vascular alteration were all reduced. Moreover, mitochondrial activity was enhanced and the oxygen-induced uncoupling of mitochondrial remained limited: both the respiratory control ratio (RCR) and the ADP/O ratio were higher than in control reoxygenated hearts. The inhibition by rotenone (100 mumol/l) of reoxidation of electron chain transfer during oxygen readmission also reduced the unfavorable cardiac accumulation of lipid peroxidation products and the release of creatine kinase. These data demonstrate that in the oxygen paradox, the peroxidative attack on lipids plays an important role in inducing alterations of sarcolemmal permeability and mitochondrial activity. An uncontrolled reactivation of oxidative function of mitochondria during reoxygenation enhances the synthesis of oxygen-derived free radicals and triggers the peroxidation of cardiac lipids resulting in irreversible injury to cellular and intracellular membranes.

  4. Immunohistochemical analysis of the oxidative phosphorylation complexes in skeletal muscle from patients with mitochondrial DNA encoded tRNA gene defects.

    NARCIS (Netherlands)

    Paepe, B. De; Smet, J.; Lammens, M.M.Y.; Seneca, S.; Martin, J.J.; Bleecker, J. De; Meirleir, L. de; Lissens, W.; Coster, R. van

    2009-01-01

    BACKGROUND: Mitochondrial diseases display a heterogeneous spectrum of clinical phenotypes and therefore the identification of the underlying gene defect is often a difficult task. AIMS: To develop an immunohistochemical approach to stain skeletal muscle for the five multi-protein complexes that

  5. A novel mitochondrial tRNAGlu (MTTE) gene mutation causing chronic progressive external ophthalmoplegia at low levels of heteroplasmy in muscle.

    Science.gov (United States)

    Alston, Charlotte L; Lowe, James; Turnbull, Douglass M; Maddison, Paul; Taylor, Robert W

    2010-11-15

    Mitochondrial respiratory chain defects are associated with diverse clinical phenotypes in both adults and children, and may be caused by mutations in either nuclear or mitochondrial DNA (mtDNA). We report the molecular genetic investigations of a patient with chronic progressive external ophthalmoplegia (CPEO) and myopathy where muscle biopsies taken 11 years apart revealed a progressive increase in the proportion of cytochrome c oxidase (COX)-deficient fibres. Mitochondrial genetic analysis of the early biopsy had seemingly excluded both mtDNA rearrangements and mtDNA point mutations. Sequencing mtDNA from individual COX-deficient muscle fibres in the second biopsy, however, identified an unreported m.14723T>C substitution within the mitochondrial tRNAGlu (MTTE) gene, which fulfilled all canonical criteria for pathogenicity. The m.14723T>C mutation was absent from several tissues, including muscle, from maternal relatives suggesting a de novo event, whilst quantitative analysis of the first muscle biopsy confirmed a very low level of the mutation (7% mutated mtDNA), highlighting a potential problem whereby pathogenic mtDNA mutations may remain undetected using established screening methodologies. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Evaluation by blue native polyacrylamide electrophoresis colorimetric staining of the effects of physical exercise on the activities of mitochondrial complexes in rat muscle

    Directory of Open Access Journals (Sweden)

    Molnar A.M.

    2004-01-01

    Full Text Available Blue native polyacrylamide electrophoresis (BN-PAGE is a technique developed for the analysis of membrane complexes. Combined with histochemical staining, it permits the analysis and quantification of the activities of mitochondrial oxidative phosphorylation enzymes using whole muscle homogenates, without the need to isolate muscle mitochondria. Mitochondrial complex activities were measured by emerging gels in a solution containing all specific substrates for NADH dehydrogenase and cytochrome c oxidase enzymes (complexes I and IV, respectively and the colored bands obtained were measured by optique densitometry. The objective of the present study was the application of BN-PAGE colorimetric staining for enzymatic characterization of mitochondrial complexes I and IV in rat muscles with different morphological and biochemical properties. We also investigated these activities at different times after acute exercise of rat soleus muscle. Although having fewer mitochondria than oxidative muscles, white gastrocnemius muscle presented a significantly higher activity (26.7 ± 9.5 in terms of complex I/V ratio compared to the red gastrocnemius (3.8 ± 0.65, P < 0.05 and soleus (9.8 ± 0.9, P < 0.001 muscles. Furthermore, the complex IV/V ratio of white gastrocnemius muscle was always significantly higher when compared to the other muscles. Ninety-five minutes of exhaustive physical exercise induced a decrease in complex I/V and complex IV/V ratios after all resting times (0, 3 and 6 h compared to control (P < 0.05, probably reflecting the oxidative damage due to increasing free radical production in mitochondria. These results demonstrate the possible and useful application of BN-PAGE-histochemical staining to physical exercise studies.

  7. Relationship between PPARα mRNA expression and mitochondrial respiratory function and ultrastructure of the skeletal muscle of patients with COPD.

    Science.gov (United States)

    Zhang, Jian-Qing; Long, Xiang-Yu; Xie, Yu; Zhao, Zhi-Huan; Fang, Li-Zhou; Liu, Ling; Fu, Wei-Ping; Shu, Jing-Kui; Wu, Jiang-Hai; Dai, Lu-Ming

    2017-11-02

    Peripheral muscle dysfunction is an important complication in patients with chronic obstructive pulmonary disease (COPD). The objective of this study was to explore the relationship between the levels of peroxisome proliferator-activated receptor α (PPARα) mRNA expression and the respiratory function and ultrastructure of mitochondria in the vastus lateralis of patients with COPD. Vastus lateralis biopsies were performed on 14 patients with COPD and 6 control subjects with normal lung function. PPARα mRNA levels in the muscle tissue were detected by real-time PCR. A Clark oxygen electrode was used to assess mitochondrial respiratory function. Mitochondrial number, fractional area in skeletal muscle cross-sections, and Z-line width were observed via transmission electron microscopy. The PPARα mRNA expression was significantly lower in COPD patients with low body mass index (BMIL) than in both COPD patients with normal body mass index (BMIN) and controls. Mitochondrial respiratory function (assessed by respiratory control ratio) was impaired in COPD patients, particularly in BMIL. Compared with that in the control group, mitochondrial number and fractional area were lower in the BMIL group, but were maintained in the BMIN group. Further, the Z-line became narrow in the BMIL group. PPARα mRNA expression was positively related to mitochondrial respiratory function and volume density. In COPD patients with BMIN, mitochondria volume density was maintained, while respiratory function decreased, whereas both volume density and respiratory function decreased in COPD patients with BMIL. PPARα mRNA expression levels are associated with decreased mitochondrial respiratory function and volume density, which may contribute to muscle dysfunction in COPD patients.

  8. Capillary ultrastructure and mitochondrial volume density in skeletal muscle in relation to reduced exercise capacity of patients with intermittent claudication

    DEFF Research Database (Denmark)

    Baum, Oliver; Torchetti, Eleonora; Malik, Corinna

    2016-01-01

    Intermittent claudication (IC) is the most commonly reported symptom of peripheral arterial disease (PAD). Impaired limb blood flow is a major casual factor of lower exercise tolerance in PAD, but cannot entirely explain it. We hypothesized that IC is associated with structural changes...... of the capillary-mitochondria interface that could contribute to the reduction of exercise tolerance in IC-patients. Capillary and mitochondrial morphometry were performed after light and transmission electron microscopy using vastus lateralis muscle biopsies of 14 IC-patients and 10 age-matched controls and peak...... power output (PPO) was determined for all participants using an incremental single-leg knee-extension protocol. Capillary density was lower (411±90 mm(-2)versus 506±95 mm(-2); P≤0.05) in the biopsies of the IC patients than in those of the controls. The basement membrane (BM) around capillaries...

  9. Regulation of mitochondrial morphology by positive feedback interaction between PKCδ and Drp1 in vascular smooth muscle cell.

    Science.gov (United States)

    Lim, Soyeon; Lee, Se-Yeon; Seo, Hyang-Hee; Ham, Onju; Lee, Changyeon; Park, Jun-Hee; Lee, Jiyun; Seung, Minji; Yun, Ina; Han, Sun M; Lee, Seahyoung; Choi, Eunhyun; Hwang, Ki-Chul

    2015-04-01

    Dynamin-related protein-1 (Drp1) plays a critical role in mitochondrial fission which allows cell proliferation and Mdivi-1, a specific small molecule Drp1 inhibitor, is revealed to attenuate proliferation. However, few molecular mechanisms-related to Drp1 under stimulus for restenosis or atherosclerosis have been investigated in vascular smooth muscle cells (vSMCs). Therefore, we hypothesized that Drp1 inhibition can prevent vascular restenosis and investigated its regulatory mechanism. Angiotensin II (Ang II) or hydrogen peroxide (H2 O2 )-induced proliferation and migration in SMCs were attenuated by down-regulation of Drp1 Ser 616 phosphorylation, which was demonstrated by in vitro assays for migration and proliferation. Excessive amounts of ROS production and changes in mitochondrial membrane potential were prevented by Drp1 inhibition under Ang II and H2 O2 . Under the Ang II stimulation, activated Drp1 interacted with PKCδ and then activated MEK1/2-ERK1/2 signaling cascade and MMP2, but not MMP9. Furthermore, in ex vivo aortic ring assay, inhibition of the Drp1 had significant anti-proliferative and -migration effects for vSMCs. A formation of vascular neointima in response to a rat carotid artery balloon injury was prevented by Drp1 inhibition, which shows a beneficial effect of Drp1 regulation in the pathologic vascular condition. Drp1-mediated SMC proliferation and migration can be prevented by mitochondrial division inhibitor (Mdivi-1) in in vitro, ex vivo and in vivo, and these results suggest the possibility that Drp1 can be a new therapeutic target for restenosis or atherosclerosis. © 2014 Wiley Periodicals, Inc.

  10. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Matthew B Hudson

    Full Text Available Mechanical ventilation (MV is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1 determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2 establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  11. Adjustments of muscle capillarity but not mitochondrial protein with skiing in the elderly

    DEFF Research Database (Denmark)

    van Ginkel, S; Amami, M; Dela, F

    2015-01-01

    Downhill skiing in the elderly increases maximal oxygen uptake (VO2max) and carbohydrate handling, and produces muscle hypertrophy. We hypothesized that adjustments of the cellular components of aerobic glucose combustion in knee extensor muscle, and cardiovascular adjustments, would increase...... lateralis muscle were analyzed for capillary density and expression of respiratory chain markers (NDUFA9, SDHA, UQCRC1, ATP5A1) and the glucose transporter GLUT4. Statistical significance was assessed with a repeated analysis of variance and Fisher's post-hoc test at a P value of 5%. VO2max increased...... correlated and were under genetic control by polymorphisms of the regulator of vascular tone, angiotensin converting enzyme. The observations indicate that increased VO2max after recreational downhill ski training is associated with improved capillarity in a mainly recruited muscle group....

  12. A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells.

    Science.gov (United States)

    Shaham, Oded; Slate, Nancy G; Goldberger, Olga; Xu, Qiuwei; Ramanathan, Arvind; Souza, Amanda L; Clish, Clary B; Sims, Katherine B; Mootha, Vamsi K

    2010-01-26

    Mutations in either the mitochondrial or nuclear genomes can give rise to respiratory chain disease (RCD), a large class of devastating metabolic disorders. Their clinical management is challenging, in part because we lack facile and accurate biomarkers to aid in diagnosis and in the monitoring of disease progression. Here we introduce a sequential strategy that combines biochemical analysis of spent media from cell culture with analysis of patient plasma to identify disease biomarkers. First, we applied global metabolic profiling to spotlight 32 metabolites whose uptake or secretion kinetics were altered by chemical inhibition of the respiratory chain in cultured muscle . These metabolites span a wide range of pathways and include lactate and alanine, which are used clinically as biomarkers of RCD. We next measured the cell culture-defined metabolites in human plasma to discover that creatine is reproducibly elevated in two independent cohorts of RCD patients, exceeding lactate and alanine in magnitude of elevation and statistical significance. In cell culture extracellular creatine was inversely related to the intracellular phosphocreatine:creatine ratio suggesting that the elevation of plasma creatine in RCD patients signals a low energetic state of tissues using the phosphocreatine shuttle. Our study identifies plasma creatine as a potential biomarker of human mitochondrial dysfunction that could be clinically useful. More generally, we illustrate how spent media from cellular models of disease may provide a window into the biochemical derangements in human plasma, an approach that could, in principle, be extended to a range of complex diseases.

  13. Cytoplasmic and mitochondrial creatine kinases from the skeletal muscle of sperm whale (Physeter macrocephalus). Molecular cloning and enzyme characterization.

    Science.gov (United States)

    Iwanami, Kentaro; Uda, Kouji; Tada, Hiroshi; Suzuki, Tomohiko

    2008-01-01

    We have amplified two cDNAs, coding for creatine kinases (CKs), from the skeletal muscle of sperm whale Physeter macrocephalus by PCR, and cloned these cDNAs into pMAL plasmid. These are the first CK cDNA and deduced amino acid sequences from cetaceans to be reported. One of the two amino acid sequences is a cytoplasmic, muscle-type isoform (MCK), while the other was identified as a sarcomeric, mitochondrial isoform (sMiCK) that included a mitochondrial targeting peptide. The amino acid sequences of sperm whale MCK and sMiCK showed 94-96% sequence identity with corresponding isoforms of mammalian CKs, and all of the key residues necessary for CK function were conserved. The phylogenetic analyses of vertebrate CKs with three independent methods (neighbor-joining, maximum-likelihood and Bayes) supported the clustering of sperm whale MCK with Bos and Sus MCKs, in agreement with the contemporary view that these groups are closely related. Sperm whale MCK and sMiCK were expressed in Escherichia coli as a fusion protein with maltose-binding protein, and the kinetic constants (K (m), K (d) and k (cat)) were determined for the forward reaction. Comparison of kinetic constants with those of human and mouse CKs indicated that sperm whale MCK has a comparable affinity for creatine (K (m) (Cr) = 9.38 mM) to that of human MCK, and the sMiCK has two times higher affinity for creatine than the human enzyme. Both the MCK and sMiCK of sperm whale display a synergistic substrate binding (K (d) /K (m) = 3.1-7.8) like those of other mammalian CKs.

  14. Mitochondrial vasculopathy.

    Science.gov (United States)

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-05-26

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications.

  15. Markers of skeletal muscle mitochondrial function and lipid accumulation are moderately associated with the homeostasis model assessment index of insulin resistance in obese men.

    Directory of Open Access Journals (Sweden)

    Imtiaz A Samjoo

    Full Text Available Lower skeletal muscle mitochondrial oxidative phosphorylation capacity (OXPHOS and intramyocellular lipid (IMCL accumulation have been implicated in the etiology of insulin resistance (IR in obesity. The purpose of this study was to examine the impact of endurance exercise on biochemical and morphological measures of IMCL and mitochondrial content, and their relationship to IR in obese individuals. We examined mitochondrial content (subunit protein abundance and maximal activity of electron transport chain enzymes, IMCL/mitochondrial morphology in both subsarcolemmal (SS and intermyofibrillar (IMF regions by transmission electron microscopy, and intracellular lipid metabolites (diacylglycerol and ceramide in vastus lateralis biopsies, as well as, the homeostasis model assessment index of IR (HOMA-IR prior to and following twelve weeks of an endurance exercise regimen in healthy age- and physical activity-matched lean and obese men. Obese men did not show evidence of mitochondrial OXPHOS dysfunction, disproportionate IMCL content in sub-cellular regions, or diacylglycerol/ceramide accretion despite marked IR vs. lean controls. Endurance exercise increased OXPHOS and mitochondrial size and density, but not number of individual mitochondrial fragments, with moderate improvements in HOMA-IR. Exercise reduced SS IMCL content (size, number and density, increased IMF IMCL content, while increasing IMCL/mitochondrial juxtaposition in both regions. HOMA-IR was inversely associated with SS (r = -0.34; P = 0.051 and IMF mitochondrial density (r = -0.29; P = 0.096, IMF IMCL/mitochondrial juxtaposition (r = -0.30; P = 0.086, and COXII (r = -0.32; P = 0.095 and COXIV protein abundance (r = -0.35; P = 0.052; while positively associated with SS IMCL size (r = 0.28; P = 0.119 and SS IMCL density (r = 0.25; P = 0.152. Our findings suggest that once physical activity and cardiorespiratory fitness have been

  16. Effect of regional muscle location but not adiposity on mitochondrial biogenesis-regulating proteins

    DEFF Research Database (Denmark)

    Ponce-González, Jesús Gustavo; Ara, Ignacio; Larsen, Steen

    2016-01-01

    ) and post-obese (n = 9). Intentionally, groups were matched by age, aerobic capacity and in addition the control and post-obese groups also by BMI. Muscle biopsies were obtained from the m. deltoid and vastus lateralis. PGC-1alpha, SIRT1 and SIRT3 protein expression was analyzed by Western blot. RESULT: PGC......-1alpha, SIRT1 and SIRT3 protein expression was similar regardless of the level of adiposity. Only a main effect of group on SIRT1 protein showed a trend toward higher expression in post-obese than control and obese (P = 0.09). Despite similar muscle fiber-type composition (previously reported), PGC...

  17. The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus.

    Science.gov (United States)

    Trzcionka, M; Withers, K W; Klingenspor, M; Jastroch, M

    2008-06-01

    Futile cycling of protons across the mitochondrial inner membrane contributes significantly to standard metabolic rate in a variety of ectothermic and endothermic animals, but adaptations of the mitochondrial bioenergetics to different environmental conditions have rarely been studied in ectotherms. Changes in ambient temperature and nutritional status have a great effect on the physiological demands of ectothermic amphibians and may require the adjustment of mitochondrial efficiency. In order to investigate the effect of temperature and nutritional status on the mitochondrial level, we exposed male cane toads to either 10 degrees C or 30 degrees C and fasted half of the animals in each group. Cold exposure resulted in a fourfold reduction of the resting metabolic rate whereas nutritional status had only minor effects. The mitochondrial adjustments to each condition were observed by comparing the proton leak kinetics of isolated liver and skeletal muscle mitochondria at 25 degrees C. In response to cold exposure, liver mitochondria showed a decrease in proton conductance while skeletal muscle mitochondria were unchanged. Additional food deprivation had minor effects in skeletal muscle, but in liver we uncovered surprising differences in energy saving mechanisms between the acclimation temperatures: in warm-acclimated toads, fasting resulted in a decrease of the proton conductance whereas in cold-acclimated toads, the activity of the respiratory chain was reduced. To investigate the molecular mechanism underlying mitochondrial proton leakage, we determined the adenine-nucleotide transporter (ANT) content, which explained tissue-specific differences in the basal proton leak, but neither the ANT nor uncoupling protein (UCP) gene expression correlated with alterations of the proton leak in response to physiological stimuli.

  18. Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone.

    Science.gov (United States)

    Petersson, Stine J; Christensen, Louise L; Kristensen, Jonas M; Kruse, Rikke; Andersen, Marianne; Højlund, Kurt

    2014-07-01

    Recent studies have indicated that serum testosterone in aging men is associated with insulin sensitivity and expression of genes involved in oxidative phosphorylation (OxPhos), and that testosterone treatment increases lipid oxidation. Herein, we investigated the effect of testosterone therapy on regulators of mitochondrial biogenesis and markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable testosterone levels. Skeletal muscle biopsies were obtained before and after treatment with either testosterone gel (n=12) or placebo (n=13) for 6 months. Insulin sensitivity and substrate oxidation were assessed by euglycemic-hyperinsulinemic clamp and indirect calorimetry. Muscle mRNA levels and protein abundance and phosphorylation of enzymes involved in mitochondrial biogenesis, OxPhos, and lipid metabolism were examined by quantitative real-time PCR and western blotting. Despite an increase in lipid oxidation (Ptestosterone therapy had no effect on insulin sensitivity or mRNA levels of genes involved in mitochondrial biogenesis (PPARGC1A, PRKAA2, and PRKAG3), OxPhos (NDUFS1, ETFA, SDHA, UQCRC1, and COX5B), or lipid metabolism (ACADVL, CD36, CPT1B, HADH, and PDK4). Consistently, protein abundance of OxPhos subunits encoded by both nuclear (SDHA and UQCRC1) and mitochondrial DNA (ND6) and protein abundance and phosphorylation of AMP-activated protein kinase and p38 MAPK were unaffected by testosterone therapy. The beneficial effect of testosterone treatment on lipid oxidation is not explained by increased abundance or phosphorylation-dependent activity of enzymes known to regulate mitochondrial biogenesis or markers of OxPhos and lipid metabolism in the skeletal muscle of aging men with subnormal bioavailable testosterone levels. © 2014 European Society of Endocrinology.

  19. CaMKII content affects contractile, but not mitochondrial, characteristics in regenerating skeletal muscle

    NARCIS (Netherlands)

    Eilers, W.; Jaspers, R.T.; de Haan, A.; Ferrié, C.; Valdivieso, P.; Flueck, M.

    2014-01-01

    Background: The multi-meric calcium/calmodulin-dependent protein kinase II (CaMKII) is the main CaMK in skeletal muscle and its expression increases with endurance training. CaMK family members are implicated in contraction-induced regulation of calcium handling, fast myosin type IIA expression and

  20. Pioglitazone enhances mitochondrial biogenesis and ribosomal protein biosynthesis in skeletal muscle in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen

    2008-01-01

    Insulin resistance is a common metabolic abnormality in women with PCOS and leads to an elevated risk of type 2 diabetes. Studies have shown that thiazolidinediones (TZDs) improve metabolic disturbances in PCOS patients. We hypothesized that the effect of TZDs in PCOS is, in part, mediated...... by changes in the transcriptional profile of muscle favoring insulin sensitivity. Using Affymetrix microarrays, we examined the effect of pioglitazone (30 mg/day for 16 weeks) on gene expression in skeletal muscle of 10 obese women with PCOS metabolically characterized by a euglycemic-hyperinsulinemic clamp....... Moreover, we explored gene expression changes between these PCOS patients before treatment and 13 healthy women. Treatment with pioglitazone improved insulin-stimulated glucose metabolism and plasma adiponectin, and reduced fasting serum insulin (all P

  1. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Lefort, Natalie; Glancy, Brian; Bowen, Benjamin

    2010-01-01

    and palmitoyl-DL-carnitine (both including malate) ROS production were significantly higher in obesity. Mitochondria from obese individuals maintained higher (more negative) extramitochondrial ATP free energy at low metabolic flux, suggesting that stronger mitochondrial thermodynamic driving forces may underlie......OBJECTIVE: The contribution of mitochondrial dysfunction to skeletal muscle insulin resistance remains elusive. Comparative proteomics are being applied to generate new hypotheses in human biology and were applied here to isolated mitochondria to identify novel changes in mitochondrial protein...

  2. Protection of rat skeletal muscle fibers by either L-carnitine or coenzyme Q10 against statins toxicity mediated by mitochondrial reactive oxygen generation

    Science.gov (United States)

    La Guardia, P. G.; Alberici, L. C.; Ravagnani, F. G.; Catharino, R. R.; Vercesi, A. E.

    2013-01-01

    Mitochondrial redox imbalance has been implicated in mechanisms of aging, various degenerative diseases and drug-induced toxicity. Statins are safe and well-tolerated therapeutic drugs that occasionally induce myotoxicity such as myopathy and rhabdomyolysis. Previous studies indicate that myotoxicity caused by statins may be linked to impairment of mitochondrial functions. Here, we report that 1-h incubation of permeabilized rat soleus muscle fiber biopsies with increasing concentrations of simvastatin (1–40 μM) slowed the rates of ADP-or FCCP-stimulated respiration supported by glutamate/malate in a dose-dependent manner, but caused no changes in resting respiration rates. Simvastatin (1 μM) also inhibited the ADP-stimulated mitochondrial respiration supported by succinate by 24% but not by TMPD/ascorbate. Compatible with inhibition of respiration, 1 μM simvastatin stimulated lactate release from soleus muscle samples by 26%. Co-incubation of muscle samples with 1 mM L-carnitine, 100 μM mevalonate or 10 μM coenzyme Q10 (Co-Q10) abolished simvastatin effects on both mitochondrial glutamate/malate-supported respiration and lactate release. Simvastatin (1 μM) also caused a 2-fold increase in the rate of hydrogen peroxide generation and a decrease in Co-Q10 content by 44%. Mevalonate, Co-Q10 or L-carnitine protected against stimulation of hydrogen peroxide generation but only mevalonate prevented the decrease in Co-Q10 content. Thus, independently of Co-Q10 levels, L-carnitine prevented the toxic effects of simvastatin. This suggests that mitochondrial respiratory dysfunction induced by simvastatin, is associated with increased generation of superoxide, at the levels of complexes-I and II of the respiratory chain. In all cases the damage to these complexes, presumably at the level of 4Fe-4S clusters, is prevented by L-carnitine. PMID:23720630

  3. Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacity.

    Science.gov (United States)

    Naples, Scott P; Borengasser, Sarah J; Rector, R Scott; Uptergrove, Grace M; Morris, E Matthew; Mikus, Catherine R; Koch, Lauren G; Britton, Steve L; Ibdah, Jamal A; Thyfault, John P

    2010-04-01

    Rats selected artificially to be low-capacity runners (LCR) possess a metabolic syndrome phenotype that is worsened by a high-fat diet (HFD), whereas rats selected to be high-capacity runners (HCR) are protected against HFD-induced obesity and insulin resistance. This study examined whether protection against, or susceptibility to, HFD-induced insulin resistance in the HCR-LCR strains is associated with contrasting metabolic adaptations in skeletal muscle. HCR and LCR rats (generation 20; n = 5-6; maximum running distance approximately 1800 m vs. approximately 350 m, respectively (p < 0.0001)) were divided into HFD (71.6% energy from fat) or normal chow (NC) (16.7% energy from fat) groups for 7 weeks (from 24 to 31 weeks of age). Skeletal muscle (red gastrocnemius) mitochondrial-fatty acid oxidation (FAO), mitochondrial-enzyme activity, mitochondrial-morphology, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), and peroxisome proliferator-activated receptor delta (PPARdelta) expression and insulin sensitivity (intraperitoneal glucose tolerance tests) were measured. The HFD caused increased adiposity and reduced insulin sensitivity only in the LCR and not the HCR strain. Isolated mitochondria from the HCR skeletal muscle displayed a 2-fold-higher rate of FAO on NC, but both groups increased FAO following HFD. PGC-1alpha mRNA expression and superoxide dismutase activity were significantly reduced with the HFD in the LCR rats, but not in the HCR rats. PPARdelta expression did not differ between strains or dietary conditions. These results do not provide a clear connection between protection of insulin sensitivity and HFD-induced adaptive changes in mitochondrial function or transcriptional responses but do not dismiss the possibility that elevated mitochondrial FAO in the HCR may play a protective role.

  4. Insulin Resistance and Increased Muscle Cytokine Levels in Patients With Mitochondrial Myopathy

    DEFF Research Database (Denmark)

    Rue, Nana; Vissing, John; Galbo, Henrik

    2014-01-01

    in P (55 ± 10, 980 ± 92, and 102 ± 13 pM) than in C (36 ± 12, 712 ± 98, and 44 ± 10 pM) (two-sided significance testing [2P ]homeostasis model assessment insulin sensitivity index and glucose infusion rate (6.8 ± 1.0 vs 9.4 ± 1.3 mg/min·kg) were lower, and free fatty acids and glycerol......: The intervention included a 120-minute hyperinsulinemic, euglycemic clamp. Another morning, microdialysis of both vastus lateralis muscles for 4 hours, including one-legged, knee extension exercise for 30 minutes, was performed. MAIN OUTCOME MEASURES: Glucose infusion rate during 90-120 minutes of insulin infusion...... was measured. Cytokine concentrations in dialysate were also measured. RESULTS: Muscle strength, percentage fat mass, and creatine kinase in plasma did not differ between groups. The maximal oxygen uptake was 21 ± 3 (SE) (P) and 36 ± 3(C) mL/kg·min (2P

  5. Expenditure Cascades

    OpenAIRE

    Frank, R; Levine, A.; Dijk, O.

    2014-01-01

    Prevailing economic models of consumer behavior completely ignore the well-documented link between context and evaluation. We propose and test a theory that explicitly incorporates this link. Changes in one group's spending shift the frame of reference that defines consumption standards for others just below them on the income scale, giving rise to expenditure cascades. Our model, a descendant of James Duesenberry's relative income hypothesis, predicts the observed ways in which individual sa...

  6. PPAR-α agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Dohm G Lynis

    2007-04-01

    Full Text Available Abstract Background Insulin resistance is often associated with increased levels of intracellular triglycerides, diacylglycerol and decreased fat β-oxidation. It was unknown if this relationship was present in patients with acute insulin resistance induced by trauma. Methods A double blind placebo controlled trial was conducted in 18 children with severe burn injury. Metabolic studies to assess whole body palmitate oxidation and insulin sensitivity, muscle biopsies for mitochondrial palmitate oxidation, diacylglycerol, fatty acyl Co-A and fatty acyl carnitine concentrations, and magnetic resonance spectroscopy for muscle and liver triglycerides were compared before and after two weeks of placebo or PPAR-α agonist treatment. Results Insulin sensitivity and basal whole body palmitate oxidation as measured with an isotope tracer increased significantly (P = 0.003 and P = 0.004, respectively after PPAR-α agonist treatment compared to placebo. Mitochondrial palmitate oxidation rates in muscle samples increased significantly after PPAR-α treatment (P = 0.002. However, the concentrations of muscle triglyceride, diacylglycerol, fatty acyl CoA, fatty acyl carnitine, and liver triglycerides did not change with either treatment. PKC-θ activation during hyper-insulinemia decreased significantly following PPAR-α treatment. Conclusion PPAR-α agonist treatment increases palmitate oxidation and decreases PKC activity along with reduced insulin sensitivity in acute trauma, However, a direct link between these responses cannot be attributed to alterations in intracellular lipid concentrations.

  7. The MRC1/CD68 ratio is positively associated with adipose tissue lipogenesis and with muscle mitochondrial gene expression in humans.

    Directory of Open Access Journals (Sweden)

    José María Moreno-Navarrete

    Full Text Available BACKGROUND: Alternative macrophages (M2 express the cluster differentiation (CD 206 (MCR1 at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23. The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6. RESULTS: MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005 in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3. AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures. CONCLUSION: A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.

  8. The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function.

    Science.gov (United States)

    MacNeil, Lauren G; Glover, Elisa; Bergstra, T Graham; Safdar, Adeel; Tarnopolsky, Mark A

    2014-01-01

    Concurrent exercise combines different modes of exercise (e.g., aerobic and resistance) into one training protocol, providing stimuli meant to increase muscle strength, aerobic capacity and mass. As disuse is associated with decrements in strength, aerobic capacity and muscle size concurrent training is an attractive modality for rehabilitation. However, interference between the signaling pathways may result in preferential improvements for one of the exercise modes. We recruited 18 young adults (10 ♂, 8 ♀) to determine if order of exercise mode during concurrent training would differentially affect gene expression, protein content and measures of strength and aerobic capacity after 2 weeks of knee-brace induced disuse. Concurrent exercise sessions were performed 3x/week for 6 weeks at gradually increasing intensities either with endurance exercise preceding (END>RES) or following (RES>END) resistance exercise. Biopsies were collected from the vastus lateralis before, 3 h after the first exercise bout and 48 h after the end of training. Concurrent exercise altered the expression of genes involved in mitochondrial biogenesis (PGC-1α, PRC, PPARγ), hypertrophy (PGC-1α4, REDD2, Rheb) and atrophy (MuRF-1, Runx1), increased electron transport chain complex protein content, citrate synthase and mitochondrial cytochrome c oxidase enzyme activity, muscle mass, maximum isometric strength and VO 2peak. However, the order in which exercise was completed (END>RES or RES>END) only affected the protein content of mitochondrial complex II subunit. In conclusion, concurrent exercise training is an effective modality for the rehabilitation of the loss of skeletal muscle mass, maximum strength, and peak aerobic capacity resulting from disuse, regardless of the order in which the modes of exercise are performed.

  9. The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function.

    Directory of Open Access Journals (Sweden)

    Lauren G MacNeil

    Full Text Available Concurrent exercise combines different modes of exercise (e.g., aerobic and resistance into one training protocol, providing stimuli meant to increase muscle strength, aerobic capacity and mass. As disuse is associated with decrements in strength, aerobic capacity and muscle size concurrent training is an attractive modality for rehabilitation. However, interference between the signaling pathways may result in preferential improvements for one of the exercise modes. We recruited 18 young adults (10 ♂, 8 ♀ to determine if order of exercise mode during concurrent training would differentially affect gene expression, protein content and measures of strength and aerobic capacity after 2 weeks of knee-brace induced disuse. Concurrent exercise sessions were performed 3x/week for 6 weeks at gradually increasing intensities either with endurance exercise preceding (END>RES or following (RES>END resistance exercise. Biopsies were collected from the vastus lateralis before, 3 h after the first exercise bout and 48 h after the end of training. Concurrent exercise altered the expression of genes involved in mitochondrial biogenesis (PGC-1α, PRC, PPARγ, hypertrophy (PGC-1α4, REDD2, Rheb and atrophy (MuRF-1, Runx1, increased electron transport chain complex protein content, citrate synthase and mitochondrial cytochrome c oxidase enzyme activity, muscle mass, maximum isometric strength and VO 2peak. However, the order in which exercise was completed (END>RES or RES>END only affected the protein content of mitochondrial complex II subunit. In conclusion, concurrent exercise training is an effective modality for the rehabilitation of the loss of skeletal muscle mass, maximum strength, and peak aerobic capacity resulting from disuse, regardless of the order in which the modes of exercise are performed.

  10. Excessive Endoplasmic Reticulum Stress Correlates with Impaired Mitochondrial Dynamics, Mitophagy and Apoptosis, in Liver and Adipose Tissue, but Not in Muscles in EMS Horses

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2018-01-01

    Full Text Available Nowadays, endocrine disorders have become more frequent in both human and veterinary medicine. In horses, reduced physical activity combined with carbohydrate and sugar overload may result in the development of the so-called equine metabolic syndrome (EMS. EMS is characterized by insulin resistance, hyperinsulinemia, elevated blood triglyceride concentrations and usually obesity. Although the phenotypic features of EMS individuals are well known, the molecular mechanism underlying disease development remains elusive. Therefore, in the present study, we analyzed insulin-sensitive tissues, i.e., muscles, liver and adipose tissue in order to evaluate insulin resistance and apoptosis. Furthermore, we assessed mitochondrial dynamics and mitophagy in those tissues, because mitochondrial dysfunction is linked to the development of metabolic syndrome. We established the expression of genes related to insulin resistance, endoplasmic reticulum (ER stress and mitochondria clearance by mitophagy using RT-PCR and Western blot. Cell ultrastructure was visualized using electron transmission microscopy. The results indicated that adipose tissue and liver of EMS horses were characterized by increased mitochondrial damage and mitophagy followed by triggering of apoptosis as mitophagy fails to restore cellular homeostasis. However, in muscles, apoptosis was reduced, suggesting the existence of a protective mechanism allowing that tissue to maintain homeostasis.

  11. Age-and caste-dependent decrease in expression of genes maintaining DNA and RNA quality and mitochondrial integrity in the honeybee wing muscle.

    Science.gov (United States)

    Aamodt, Randi M

    2009-09-01

    I report here an investigation of the age- and caste-specific expression patterns of nine honeybee orthologs of genes involved in repair of oxidative and methylation damage of DNA, and possibly RNA, in wing muscle tissue of the honeybee Apis mellifera. mRNA expression levels were measured in a comparative study of queens and ageing workers. Two of these genes, both potentially involved in repair and prevention of oxidative damage, showed higher expression in queens than workers and a distinct downregulation during the ageing trajectory in workers. These were an ortholog of mammalian NTH1 and a gene encoding a fusion protein which seems to be unique for the honeybee, consisting of one domain homologous to mammalian MTH1/Nudix/bacterial mutT and another domain homologous to the mitochondrial ribosomal protein gene S23. Orthologs of aag, apn1, msh6, ogg1, smug1 and two orthologs of human ABH/E. coli alkB, had stable expression levels during the ageing trajectory except high apn1 levels in overwintering workers. To estimate eventual age-dependent mitochondrial maintenance, batches of mitochondrial DNA from young and old workers and young queens were re-sequenced using Solexa/Illumina high-throughput sequencing. The results indicate at least a 50% reduction of intact mitochondrial fragments in foragers compared to young workers, winter bees and queens.

  12. Sesamin prevents decline in exercise capacity and impairment of skeletal muscle mitochondrial function in mice with high-fat diet-induced diabetes.

    Science.gov (United States)

    Takada, Shingo; Kinugawa, Shintaro; Matsushima, Shouji; Takemoto, Daisuke; Furihata, Takaaki; Mizushima, Wataru; Fukushima, Arata; Yokota, Takashi; Ono, Yoshiko; Shibata, Hiroshi; Okita, Koichi; Tsutsui, Hiroyuki

    2015-11-01

    What is the central question of this study? Our aim was to examine whether sesamin can prevent a decline in exercise capacity in high-fat diet-induced diabetic mice. Our hypothesis was that maintenance of mitochondrial function and attenuation of oxidative stress in the skeletal muscle would contribute to this result. What is the main finding and its importance? The new findings are that sesamin prevents the diabetes-induced decrease in exercise capacity and impairment of mitochondrial function through the inhibition of NAD(P)H oxidase-dependent oxidative stress in the skeletal muscle. Sesamin may be useful as a novel agent for the treatment of diabetes mellitus. We previously reported that exercise capacity and skeletal muscle mitochondrial function in diabetic mice were impaired, in association with the activation of NAD(P)H oxidase. It has been reported that sesamin inhibits NAD(P)H oxidase-induced superoxide production. Therefore, we examined whether the antioxidant sesamin could prevent a decline in exercise capacity in mice with high-fat diet (HFD)-induced diabetes. C57BL/6J mice were fed a normal diet (ND) or HFD, then treated or not with sesamin (0.2%) to yield the following four groups: ND, ND+Sesamin, HFD and HFD+Sesamin (n = 10 each). After 8 weeks, body weight, fat weight, blood glucose, insulin, triglyceride, total cholesterol and fatty acid were significantly increased in HFD compared with ND mice. Sesamin prevented the increases in blood insulin and lipid levels in HFD-fed mice, but did not affect the plasma glucose. Exercise capacity determined by treadmill tests was significantly reduced in HFD mice, but almost completely recovered in HFD+Sesamin mice. Citrate synthase activity was significantly decreased in the skeletal muscle of HFD mice, and these decreases were also inhibited by sesamin. Superoxide anion and NAD(P)H oxidase activity were significantly increased in HFD mice compared with the ND mice and were ameliorated by sesamin. Sesamin

  13. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction.

    Science.gov (United States)

    Costa, Rafael M; Filgueira, Fernando P; Tostes, Rita C; Carvalho, Maria Helena C; Akamine, Eliana H; Lobato, Nubia S

    2016-09-01

    The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [A case of neurologic muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome with a novel mitochondrial mutation m.8729 G>A].

    Science.gov (United States)

    Miyawaki, Toko; Koto, Shusuke; Ishihara, Hiroyuki; Goto, Yuichi; Nishino, Ichizo; Kanda, Fumio; Toda, Tatsushi

    2015-01-01

    We report a patient having classical clinical feature of neurologic muscle weakness, ataxia, and retinitis pigmentosa (NARP) and a novel mutation, m.8729 G>A in mitochondria DNA. The patient was referred to our hospital because of progressive ataxia in her limbs and trunk. She had a history of incapability of running long distances from childhood. Neurological examination revealed cerebellar ataxia, distal dominant muscle weakness in the limbs, hyporeflexia, hypoesthesia, myoclonus, sensorineural deafness, and retinitis pigmentosa. Magnetic resonance imaging (MRI) showed atrophy of brain stem and cerebellum as well as calcification of basal ganglia. In both serum and cerebrospinal fluid, lactate and pyruvate levels were elevated. Histological examination of biopsied muscle revealed chronic neurogenic changes without ragged red fibers. Genetic analysis of mitochondrial DNA (mtDNA) of the muscle revealed a heteroplasmic mutation, m.8729 G>A. Chemical analysis of the respiratory chain complexes in her muscle specimen demonstrated lower activities of complexes I and V. In our case, novel mutation of m.8729 G>A in mtDNA was indicated as the cause of NARP syndrome.

  15. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers

    Science.gov (United States)

    Feng, Han-Zhong; Chen, Xuequn; Malek, Moh H.

    2015-01-01

    Unloading or disuse rapidly results in skeletal muscle atrophy, switching to fast-type fibers, and decreased resistance to fatigue. The recovery process is of major importance in rehabilitation for various clinical conditions. Here we studied mouse soleus muscle during 60 days of reloading after 4 wk of hindlimb suspension. Unloading produced significant atrophy of soleus muscle with decreased contractile force and fatigue resistance, accompanied by switches of myosin isoforms from IIa to IIx and IIb and fast troponin T to more low-molecular-weight splice forms. The total mass, fiber size, and contractile force of soleus muscle recovered to control levels after 15 days of reloading. However, the fatigue resistance showed a trend of worsening during this period with significant infiltration of inflammatory cells at days 3 and 7, indicating reloading injuries that were accompanied by active regeneration with upregulations of filamin-C, αB-crystallin, and desmin. The fatigue resistance partially recovered after 30–60 days of reloading. The expression of peroxisome proliferator-activated receptor γ coactivator 1α and mitofusin-2 showed changes parallel to that of fatigue resistance after unloading and during reloading, suggesting a causal role of decreased mitochondrial function. Slow fiber contents in the soleus muscle were increased after 30–60 days of reloading to become significantly higher than the normal level, indicating a secondary adaption to compensate for the slow recovery of fatigue resistance. PMID:26447205

  16. National Health Expenditure Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — National Health Expenditure Accounts are comprised of the following, National Health Expenditures - Historical and Projected, Age Estimates, State Health...

  17. In vivo effects of dietary quercetin and quercetin-rich red onion extract on skeletal muscle mitochondria, metabolism, and insulin sensitivity.

    Science.gov (United States)

    Henagan, T M; Cefalu, W T; Ribnicky, D M; Noland, R C; Dunville, K; Campbell, W W; Stewart, L K; Forney, L A; Gettys, T W; Chang, J S; Morrison, C D

    2015-01-01

    Red onions and low doses of the flavonoid, quercetin, increase insulin sensitivity and improve glucose tolerance. We hypothesized that dietary supplementation with red onion extract (RO) would attenuate high fat diet (HFD)-induced obesity and insulin resistance similar to quercetin supplementation by increasing energy expenditure through a mechanism involving skeletal muscle mitochondrial adaptations. To test this hypothesis, C57BL/6J mice were randomized into four groups and fed either a low fat diet (LF), HFD (HF), HFD + quercetin (HF + Q), or HFD + RO (HF + RO) for 9 weeks. Food consumption and body weight and composition were measured weekly. Insulin sensitivity was assessed by insulin and glucose tolerance tests. Energy expenditure and physical activity were measured by indirect calorimetry. Skeletal muscle incomplete beta oxidation, mitochondrial number, and mtDNA-encoded gene expression were measured. Quercetin and RO supplementation decreased HFD-induced fat mass accumulation and insulin resistance (measured by insulin tolerance test) and increased energy expenditure; however, only HF + Q showed an increase in physical activity levels. Although quercetin and RO similarly increased skeletal muscle mitochondrial number and decreased incomplete beta oxidation, establishing mitochondrial function similar to that seen in LF, only HF + Q exhibited consistently lower mRNA levels of mtDNA-encoded genes necessary for complexes IV and V compared to LF. Quercetin- and RO-induced improvements in adiposity, insulin resistance, and energy expenditure occur through differential mechanisms, with quercetin-but not RO-induced energy expenditure being related to increases in physical activity. While both treatments improved skeletal muscle mitochondrial number and function, mtDNA-encoded transcript levels suggest that the antiobesogenic, insulin-sensitizing effects of purified quercetin aglycone, and RO may occur through differential mechanisms.

  18. Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfam-mitochondrial DNA complex in skeletal muscle.

    Science.gov (United States)

    Saleem, Ayesha; Hood, David A

    2013-07-15

    The major tumour suppressor protein p53 plays an important role in maintaining mitochondrial content and function in skeletal muscle. p53 has been shown to reside in the mitochondria complexed with mitochondrial DNA (mtDNA); however, the physiological repercussions of mitochondrial p53 remain unknown. We endeavoured to elucidate whether an acute bout of endurance exercise could mediate an increase in mitochondrial p53 levels. C57Bl6 mice (n = 6 per group) were randomly assigned to sedentary, acute exercise (AE, 15 m min(-1) for 90 min) or acute exercise + 3 h recovery (AER) groups. Exercise concomitantly increased the mRNA content of nuclear-encoded (PGC-1α, Tfam, NRF-1, COX-IV, citrate synthase) and mtDNA-encoded (COX-I) genes in the AE group, and further by ∼5-fold in the AER group. Nuclear p53 protein levels were reduced in the AE and AER groups, while in contrast, the abundance of p53 was drastically enhanced by ∼2.4-fold and ∼3.9-fold in subsarcolemmal and intermyofibrillar mitochondria, respectively, in the AER conditions. Within the mitochondria, the interaction of p53 with mtDNA at the D-loop and with Tfam was elevated by ∼4.6-fold and ∼3.6-fold, respectively, in the AER group. In the absence of p53, the enhanced COX-I mRNA content observed with AE and AER was abrogated. This study is the first to indicate that endurance exercise can signal to localize p53 to the mitochondria where it may serve to positively modulate the activity of the mitochondrial transcription factor Tfam. Our findings help us understand the mechanisms underlying the effects of exercise as a therapeutic intervention designed to trigger the pro-metabolic functions of p53.

  19. Altered expression of genes involved in mitochondrial oxidative phosphorylation and insulin signaling in skeletal muscle of obese women with polycystic ovary syndrome (PCOS)

    DEFF Research Database (Denmark)

    Skov, Vibe

    be of similar importance for insulin resistance in the polycystic ovary syndrome (PCOS).   Materials and methods: Using the HG-U133 Plus 2.0 expression array from Affymetrix, we analyzed gene expression in skeletal muscle from obese women with PCOS (n=16) and age- and body mass index-matched control women (n=13...... a sum statistic and conducting a permutation test. Subsequently, we performed biological pathway analysis using Gene Set Enrichment Analysis (GSEA) and Gene Microarray Pathway Profiler (GenMAPP).   Results: Women with PCOS were characterized by fasting hyperinsulinemia and impaired insulin...... validated by quantitative real-time PCR and immunoblot analyses.   Conclusion: Our results, for the first time, provide evidence for an association between insulin resistance and impaired mitochondrial oxidative metabolism in skeletal muscle in women with PCOS. Furthermore, differential expression of genes...

  20. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function

    DEFF Research Database (Denmark)

    Jacobs, Robert Acton; Flueck, Daniela; Bonne, Thomas Christian

    2013-01-01

    Six sessions of high-intensity interval training (HIT) are sufficient to improve exercise capacity. The mechanisms explaining such improvements are unclear. Accordingly, the aim of this study was to perform a comprehensive evaluation of physiologically relevant adaptations occurring after six...... sessions of HIT to determine the mechanisms explaining improvements in exercise performance. Sixteen untrained (43 +/- 6 ml.kg(-1).min(-1)) subjects completed six sessions of repeated (8-12) 60 s intervals of high-intensity cycling (100% peak power output elicited during incremental maximal exercise test......) intermixed with 75 s of recovery cycling at a low intensity (30 W) over a 2-wk period. Potential training-induced alterations in skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes, and peripheral fatigue resistance were all assessed prior...

  1. Effects of intermittent ladder-climbing exercise training on mitochondrial biogenesis and endoplasmic reticulum stress of the cardiac muscle in obese middle-aged rats.

    Science.gov (United States)

    Kim, Kijin; Ahn, Nayoung; Jung, Suryun; Park, Solee

    2017-11-01

    The aim of this study is to investigate the effects of intermittent ladder-climbing exercise training on mitochondrial biogenesis and ER stress of the cardiac muscle in high fat diet-induced obese middle-aged rats. We induced obesity over 6 weeks of period in 40 male Sprague-Dawley rats around 50 weeks old, and were randomly divided into four experimental groups: chow, HFD, exercise+HFD, and exercise+chow. The exercising groups underwent high-intensity intermittent training using a ladder-climbing and weight exercise 3 days/week for a total of 8 weeks. High-fat diet and concurrent exercise resulted in no significant reduction in body weight but caused a significant reduction in visceral fat weight (p<0.05). Expression of PPARδ increased in the exercise groups and was significantly increased in the high-fat diet+exercise group (p<0.05). Among the ER stress-related proteins, the expression levels of p-PERK and CHOP, related to cardiac muscle damage, were significantly higher in the cardiac muscle of the high-fat diet group (p<0.05), and were significantly reduced by intermittent ladder-climbing exercise training (p<0.05). Specifically, this reduction was greater when the rats underwent exercise after switching back to the chow diet with a reduced caloric intake. Collectively, these results suggest that the combination of intermittent ladder-climbing exercise training and a reduced caloric intake can decrease the levels of ER stress-related proteins that contribute to cardiac muscle damage in obesity and aging. However, additional validation is required to understand the effects of these changes on mitochondrial biogenesis during exercise.

  2. Exercise Combined with Rhodiola sacra Supplementation Improves Exercise Capacity and Ameliorates Exhaustive Exercise-Induced Muscle Damage through Enhancement of Mitochondrial Quality Control

    Directory of Open Access Journals (Sweden)

    Yaoshan Dun

    2017-01-01

    Full Text Available Mounting evidence has firmly established that increased exercise capacity (EC is associated with considerable improvements in the survival of patients with cardiovascular disease (CVD and that antistress capacity is a prognostic predictor of adverse cardiovascular events in patients with CVD. Previous studies have indicated that aerobic exercise (AE and supplementation with Rhodiola sacra (RS, a natural plant pharmaceutical, improve EC and enable resistance to stress; however, the underlying mechanism remains unclear. This study explored the ability of AE and RS, alone or combined, to improve EC and ameliorate exhaustive exercise- (EE- induced stress and elucidate the mechanism involved. We found that AE and RS significantly increased EC in mice and ameliorated EE-induced stress damage in skeletal and cardiac muscles (SCM; furthermore, a synergistic effect was detected for the first time. To our knowledge, the present work is the first to report that AE and RS activate mitophagy, mitochondrial dynamics, and biogenesis in SCM, both in the resting state and after EE. These data indicate that AE and RS synergistically improve EC in mice and protect SCM from EE-induced stress by enhancing mitochondrial quality control, including the activation of mitophagy, mitochondrial dynamics, and biogenesis, both at rest and after EE.

  3. CTRP3 promotes energy production by inducing mitochondrial ROS and up-expression of PGC-1α in vascular smooth muscle cells.

    Science.gov (United States)

    Feng, Han; Wang, Jin-Yu; Zheng, Ming; Zhang, Cheng-Lin; An, Yuan-Ming; Li, Li; Wu, Li-Ling

    2016-02-15

    C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine with modulation effects on metabolism and inflammation. Adenosine triphosphate (ATP) exerts multiple biological effects in vascular smooth muscle cells (VSMCs) and energy imbalance is involved in vascular diseases. This study aimed to explore the effect of CTRP3 on energy production and its underlying mechanism in VSMCs. Our results indicated that exogenous CTRP3 increased ATP synthesis and the protein expression of oxidative phosphorylation (OXPHOS)-related molecules, including peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, sirtuin-3 (SIRT3), complex I, II, III, and V in cultured VSMCs. Depletion of endogenous CTRP3 by small interfering RNA (siRNA) reduced ATP synthesis and the expression of those molecules. PGC-1α knockdown abrogated CTRP3-induced ATP production and OXPHOS-related protein expression. Furthermore, CTRP3 increased mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential level. Pretreatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, and cyanidem-chlorophenylhydrazone, an uncoupler of OXPHOS, suppressed CTRP3-induced ROS production, PGC-1α expression and ATP synthesis. In conclusion, CTRP3 modulates mitochondrial energy production through targets of ROS and PGC-1α in VSMCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effect of carnitine supplementation on mitochondrial enzymes in liver and skeletal muscle of rat after dietary lipid manipulation and physical activity.

    Science.gov (United States)

    Karanth, Jyothsna; Jeevaratnam, K

    2010-05-01

    Effect of carnitine supplementation in enhancing fat utilization was investigated by looking into its effects on mitochondrial respiratory enzymes activity in liver and muscle as well as on membrane fatty acid profile in rats fed with hydrogenated fat (HF) and MUFA-rich peanut oil (PO) with or without exercise. Male Wistar rats were fed HF-diet (4 groups, 8 rats in each group) or PO-diet (4 groups, 8 rats in each group), with or without carnitine for 24 weeks. One group for each diet acted as sedentary control while the other groups were allowed swimming for 1 hr a day, 6 days/week, for 24 weeks. The PO diet as well as exercise increased the activities of mitochondrial enzymes, NADH dehydrogenase, NADH oxidase, cytochrome C reductase, cytochrome oxidase, while carnitine supplementation further augmented the oxidative capacity of both liver and muscle significantly by enhancing the activity of carnitine palmitoyl transferase and the respiratory chain enzymes. These effects can be attributed to the enhanced unsaturated fatty acids in phospholipids of mitochondria and may be due to increased fluidity of the membrane in these rats. Results of this study show a significant health promoting effects of carnitine supplementation which could be further augmented by regular exercise.

  5. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males...

  6. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Meghna Pant

    Full Text Available The utrophin-dystrophin deficient (DKO mouse model has been widely used to understand the progression of Duchenne muscular dystrophy (DMD. However, it is unclear as to what extent muscle pathology affects metabolism. Therefore, the present study was focused on understanding energy expenditure in the whole animal and in isolated extensor digitorum longus (EDL muscle and to determine changes in metabolic enzymes. Our results show that the 8 week-old DKO mice consume higher oxygen relative to activity levels. Interestingly the EDL muscle from DKO mouse consumes higher oxygen per unit integral force, generates less force and performs better in the presence of pyruvate thus mimicking a slow twitch muscle. We also found that the expression of hexokinase 1 and pyruvate kinase M2 was upregulated several fold suggesting increased glycolytic flux. Additionally, there is a dramatic increase in dynamin-related protein 1 (Drp 1 and mitofusin 2 protein levels suggesting increased mitochondrial fission and fusion, a feature associated with increased energy demand and altered mitochondrial dynamics. Collectively our studies point out that the dystrophic disease has caused significant changes in muscle metabolism. To meet the increased energetic demand, upregulation of metabolic enzymes and regulators of mitochondrial fusion and fission is observed in the dystrophic muscle. A better understanding of the metabolic demands and the accompanied alterations in the dystrophic muscle can help us design improved intervention therapies along with existing drug treatments for the DMD patients.

  7. L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes Syndrome.

    Directory of Open Access Journals (Sweden)

    Lance H Rodan

    Full Text Available To study the effects of L-arginine (L-Arg on total body aerobic capacity and muscle metabolism as assessed by (31Phosphorus Magnetic Resonance Spectroscopy ((31P-MRS in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes syndrome.We performed a case control study in 3 MELAS siblings (m.3243A>G tRNA(leu(UUR in MTTL1 gene with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO(2peak using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine.At baseline (no L-Arg, MELAS had lower serum Arg (p = 0.001. On 3(1P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr (p = 0.05, decreased ATP (p = 0.018, and decreased intracellular Mg(2+ (p = 0.0002 when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1 increase in mean % maximum work at anaerobic threshold (AT (2 increase in % maximum heart rate at AT (3 small increase in VO(2peak. On (31P-MRS the following mean trends were noted: (1 A blunted decrease in pH after exercise (less acidosis (2 increase in Pi/PCr ratio (ADP suggesting increased work capacity (3 a faster half time of PCr recovery (marker of mitochondrial activity following 5 minutes of moderate intensity exercise (4 increase in torque.These results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study.Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects.ClinicalTrials.gov NCT01603446.

  8. The proteomic signature of insulin-resistant human skeletal muscle reveals increased glycolytic and decreased mitochondrial enzymes

    DEFF Research Database (Denmark)

    Giebelstein, J; Poschmann, G; Højlund, K

    2012-01-01

    The molecular mechanisms underlying insulin resistance in skeletal muscle are incompletely understood. Here, we aimed to obtain a global picture of changes in protein abundance in skeletal muscle in obesity and type 2 diabetes, and those associated with whole-body measures of insulin action....

  9. Differential Effects of Sepsis and Chronic Inflammation on Diaphragm Muscle Fiber Type, Thyroid Hormone Metabolism, and Mitochondrial Function

    NARCIS (Netherlands)

    Bloise, Flavia F.; van der Spek, Anne H.; Surovtseva, Olga V.; Ortiga-Carvalho, Tania Maria; Fliers, Eric; Boelen, Anita

    2016-01-01

    The diaphragm is the main respiratory muscle, and its function is compromised during severe illness. Altered local thyroid hormone (TH) metabolism may be a determinant of impaired muscle function during illness. This study investigates the effects of bacterial sepsis and chronic inflammation on

  10. Bee Pollen Improves Muscle Protein and Energy Metabolism in Malnourished Old Rats through Interfering with the Mtor Signaling Pathway and Mitochondrial Activity

    Directory of Open Access Journals (Sweden)

    Jérôme Salles

    2014-12-01

    Full Text Available Although the management of malnutrition is a priority in older people, this population shows a resistance to refeeding. Fresh bee pollen contains nutritional substances of interest for malnourished people. The aim was to evaluate the effect of fresh bee pollen supplementation on refeeding efficiency in old malnourished rats. Male 22-month-old Wistar rats were undernourished by reducing food intake for 12 weeks. The animals were then renourished for three weeks with the same diet supplemented with 0%, 5% or 10% of fresh monofloral bee pollen. Due to changes in both lean mass and fat mass, body weight decreased during malnutrition and increased after refeeding with no between-group differences (p < 0.0001. Rats refed with the fresh bee pollen-enriched diets showed a significant increase in muscle mass compared to restricted rats (p < 0.05. The malnutrition period reduced the muscle protein synthesis rate and mTOR/p70S6kinase/4eBP1 activation, and only the 10%-pollen diet was able to restore these parameters. Mitochondrial activity was depressed with food restriction and was only improved by refeeding with the fresh bee pollen-containing diets. In conclusion, refeeding diets that contain fresh monofloral bee pollen improve muscle mass and metabolism in old, undernourished rats.

  11. PGC-1α induces mitochondrial and myokine transcriptional programs and lipid droplet and glycogen accumulation in cultured human skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Emma Mormeneo

    Full Text Available The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm. Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO(2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression

  12. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes.

    Science.gov (United States)

    Little, Jonathan P; Gillen, Jenna B; Percival, Michael E; Safdar, Adeel; Tarnopolsky, Mark A; Punthakee, Zubin; Jung, Mary E; Gibala, Martin J

    2011-12-01

    Low-volume high-intensity interval training (HIT) is emerging as a time-efficient exercise strategy for improving health and fitness. This form of exercise has not been tested in type 2 diabetes and thus we examined the effects of low-volume HIT on glucose regulation and skeletal muscle metabolic capacity in patients with type 2 diabetes. Eight patients with type 2 diabetes (63 ± 8 yr, body mass index 32 ± 6 kg/m(2), Hb(A1C) 6.9 ± 0.7%) volunteered to participate in this study. Participants performed six sessions of HIT (10 × 60-s cycling bouts eliciting ∼90% maximal heart rate, interspersed with 60 s rest) over 2 wk. Before training and from ∼48 to 72 h after the last training bout, glucose regulation was assessed using 24-h continuous glucose monitoring under standardized dietary conditions. Markers of skeletal muscle metabolic capacity were measured in biopsy samples (vastus lateralis) before and after (72 h) training. Average 24-h blood glucose concentration was reduced after training (7.6 ± 1.0 vs. 6.6 ± 0.7 mmol/l) as was the sum of the 3-h postprandial areas under the glucose curve for breakfast, lunch, and dinner (both P Training increased muscle mitochondrial capacity as evidenced by higher citrate synthase maximal activity (∼20%) and protein content of Complex II 70 kDa subunit (∼37%), Complex III Core 2 protein (∼51%), and Complex IV subunit IV (∼68%, all P training (both P volume HIT can rapidly improve glucose control and induce adaptations in skeletal muscle that are linked to improved metabolic health in patients with type 2 diabetes.

  13. Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Quistorff, Bjørn

    2008-01-01

    -II muscle from male Wistar rats were prepared. Respiration was measured while the medium P(i) concentration was gradually increased. The apparent K(m) values for P(i) were 607 +/- 17 microM and 405 +/- 15 microM (P values...... were significantly lower than type-1 permeabilized fibers, 338 +/- 130 microM and 235 +/- 30 microM (P values in the permeabilized muscle is unknown, but a similar pattern has been observed for K(m) of ADP...

  14. Role of Mitochondrial Dysfunction in Hypertension and Obesity.

    Science.gov (United States)

    Lahera, Vicente; de Las Heras, Natalia; López-Farré, Antonio; Manucha, Walter; Ferder, León

    2017-02-01

    Mitochondria are essential for the maintenance of normal physiological function of tissue cells. Mitochondria are subject to dynamic processes in order to establish a control system related to survival or cell death and adaptation to changes in the metabolic environment of cells. Mitochondrial dynamics includes fusion and fission processes, biogenesis, and mitophagy. Modifications of mitochondrial dynamics in organs involved in energy metabolism such as the pancreas, liver, skeletal muscle, and white adipose tissue could be of relevance for the development of insulin resistance, obesity, and type 2 diabetes. Mitochondrial dynamics and the factors involved in its regulation are also critical for neuronal development, survival, and function. Modifications in mitochondrial dynamics in either agouti-related peptide (AgRP) or pro-opiomelanocortin (POMC), circuits which regulates feeding behavior, are related to changes of food intake, energy balance, and obesity development. Activation of the sympathetic nervous system has been considered as a crucial point in the pathogenesis of hypertension among obese individuals and it also plays a key role in cardiac remodeling. Hypertension-related cardiac hypertrophy is associated with changes in metabolic substrate utilization, dysfunction of the electron transport chain, and ATP synthesis. Alterations in both mitochondrial dynamics and ROS production have been associated with endothelial dysfunction, development of hypertension, and cardiac hypertrophy. Finally, it might be postulated that alterations of mitochondrial dynamics in white adipose tissue could contribute to the development and maintenance of hypertension in obesity situations through leptin overproduction. Leptin, together with insulin, will induce activation of sympathetic nervous system with consequences at renal, vascular, and cardiac levels, driving to sodium retention, hypertension, and left ventricular hypertrophy. Moreover, both leptin and insulin will

  15. Oxidative capacities of cardiac and skeletal muscles of heart transplant recipients: mitochondrial effects of cyclosporin-A and its vehicle Cremophor-EL.

    Science.gov (United States)

    N' Guessan, Benoit Banga; Sanchez, Hervé; Zoll, Joffrey; Ribera, Florence; Dufour, Stéphane; Lampert, Eliane; Kindo, Michel; Geny, Bernard; Ventura-Clapier, Renée; Mettauer, Bertrand

    2014-04-01

    Chronic immunosuppressive treatment was suspected to alter maximal muscle oxidative capacity (Vmax ) of heart transplant recipients, leading to a limitation of their exercise tolerance. It remains undefined whether the mitochondrial respiratory chain (MRC) of right ventricle (RV) and vastus lateralis (VL) muscles were altered by immunosuppressants and/or their vehicles. Vmax was measured polarographically in saponin-skinned fibres of RV and VL biopsies of patients and compared with Vmax of healthy VL and myocardium. Effects of increasing concentrations (1-10-100 μM) of Sandimmune(®) , its vehicle, Cyclosporine (CsA) in ethanol (EtOH), or EtOH alone were tested. The vehicle's effects on MRC complexes were investigated using specific substrates and inhibitors. Ten months after grafting, Vmax of RV and VL of immunosuppressed patients were similar to their Vmax at time of transplantation and to that of control tissues. In Vitro, Sandimmune(®) significantly decreased Vmax while CsA in EtOH or EtOH exerted small and similar effects. Effects of the vehicle were higher than (RV) or identical to (VL) those of Sandimmune(®) . The sites of action of the vehicle on MRC were located on complexes I and IV. While unchanged under chronic immunosuppressive therapy, Vmax of RV and VL muscles was depressed by acute exposure to intravenous Sandimmune(®) in vitro, an effect attributed to its vehicle by inhibition of complexes I and IV of the MRC. This work provides an in vitro proof of a toxic effect on the mitochondria respiratory chain of the vehicle used in the intravenous formulation of Sandimmune(®) but with no clinical consequences in chronically immunosuppressed patients. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  16. Dynamic 31P–MRSI using spiral spectroscopic imaging can map mitochondrial capacity in muscles of the human calf during plantar flexion exercise at 7 T

    Science.gov (United States)

    Valkovič, Ladislav; Chmelík, Marek; Meyerspeer, Martin; Gagoski, Borjan; Rodgers, Christopher T.; Krššák, Martin; Andronesi, Ovidiu C.; Trattnig, Siegfried

    2016-01-01

    Abstract Phosphorus MRSI (31P–MRSI) using a spiral‐trajectory readout at 7 T was developed for high temporal resolution mapping of the mitochondrial capacity of exercising human skeletal muscle. The sensitivity and localization accuracy of the method was investigated in phantoms. In vivo performance was assessed in 12 volunteers, who performed a plantar flexion exercise inside a whole‐body 7 T MR scanner using an MR‐compatible ergometer and a surface coil. In five volunteers the knee was flexed (~60°) to shift the major workload from the gastrocnemii to the soleus muscle. Spiral‐encoded MRSI provided 16–25 times faster mapping with a better point spread function than elliptical phase‐encoded MRSI with the same matrix size. The inevitable trade‐off for the increased temporal resolution was a reduced signal‐to‐noise ratio, but this was acceptable. The phosphocreatine (PCr) depletion caused by exercise at 0° knee angulation was significantly higher in both gastrocnemii than in the soleus (i.e. 64.8 ± 19.6% and 65.9 ± 23.6% in gastrocnemius lateralis and medialis versus 15.3 ± 8.4% in the soleus). Spiral‐encoded 31P–MRSI is a powerful tool for dynamic mapping of exercising muscle oxidative metabolism, including localized assessment of PCr concentrations, pH and maximal oxidative flux with high temporal and spatial resolution. PMID:27862510

  17. Dynamic31P-MRSI using spiral spectroscopic imaging can map mitochondrial capacity in muscles of the human calf during plantar flexion exercise at 7 T.

    Science.gov (United States)

    Valkovič, Ladislav; Chmelík, Marek; Meyerspeer, Martin; Gagoski, Borjan; Rodgers, Christopher T; Krššák, Martin; Andronesi, Ovidiu C; Trattnig, Siegfried; Bogner, Wolfgang

    2016-12-01

    Phosphorus MRSI ( 31 P-MRSI) using a spiral-trajectory readout at 7 T was developed for high temporal resolution mapping of the mitochondrial capacity of exercising human skeletal muscle. The sensitivity and localization accuracy of the method was investigated in phantoms. In vivo performance was assessed in 12 volunteers, who performed a plantar flexion exercise inside a whole-body 7 T MR scanner using an MR-compatible ergometer and a surface coil. In five volunteers the knee was flexed (~60°) to shift the major workload from the gastrocnemii to the soleus muscle. Spiral-encoded MRSI provided 16-25 times faster mapping with a better point spread function than elliptical phase-encoded MRSI with the same matrix size. The inevitable trade-off for the increased temporal resolution was a reduced signal-to-noise ratio, but this was acceptable. The phosphocreatine (PCr) depletion caused by exercise at 0° knee angulation was significantly higher in both gastrocnemii than in the soleus (i.e. 64.8 ± 19.6% and 65.9 ± 23.6% in gastrocnemius lateralis and medialis versus 15.3 ± 8.4% in the soleus). Spiral-encoded 31 P-MRSI is a powerful tool for dynamic mapping of exercising muscle oxidative metabolism, including localized assessment of PCr concentrations, pH and maximal oxidative flux with high temporal and spatial resolution. © 2016 The Authors. NMR in Biomedicine Published by John Wiley & Sons Ltd.

  18. Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (Family: Tripterygiidae).

    Science.gov (United States)

    Khan, J R; Iftikar, F I; Herbert, N A; Gnaiger, Erich; Hickey, A J R

    2014-12-01

    Oxygen demand generally increases in ectotherms as temperature rises in order to sustain oxidative phosphorylation by mitochondria. The thermal plasticity of ectotherm metabolism, such as that of fishes, dictates a species survival and is of importance to understand within an era of warming climates. Within this study the whole animal O2 consumption rate of a common New Zealand intertidal triplefin fish, Forsterygion lapillum, was investigated at different acclimation temperatures (15, 18, 21, 24 or 25 °C) as a commonly used indicator of metabolic performance. In addition, the mitochondria within permeabilised skeletal muscle fibres of fish acclimated to a moderate temperature (18 °C Cool acclimation group-CA) and a warm temperature (24 °C. Warm acclimation group-WA) were also tested at 18, 24 and 25 °C in different states of coupling and with different substrates. These two levels of analysis were carried out to test whether any peak in whole animal metabolism reflected the respiratory performance of mitochondria from skeletal muscle representing the bulk of metabolic tissue. While standard metabolic rate (SMR- an indicator of total maintenance metabolism) and maximal metabolic rate ([Formula: see text]O2 max) both generally increased with temperature, aerobic metabolic scope (AMS) was maximal at 24 °C, giving the impression that whole animal (metabolic) performance was optimised at a surprisingly high temperature. Mitochondrial oxygen flux also increased with increasing assay temperature but WA fish showed a lowered response to temperature in high flux states, such as those of oxidative phosphorylation and in chemically uncoupled states of respiration. The thermal stability of mitochondria from WA fish was also noticeably greater than CA fish at 25 °C. However, the predicted contribution of respirational flux to ATP synthesis remained the same in both groups and WA fish showed higher anaerobic activity as a result of high muscle lactate loads in both

  19. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through induction of FGF21 as a myokine

    NARCIS (Netherlands)

    Keipert, S.; Ost, M.; Johann, K.; Imber, F.; Jastroch, M.; Schothorst, van E.M.; Keijer, J.; Klaus, S.

    2014-01-01

    UCP1-Tg mice with ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) are a model of improved substrate metabolism and increased longevity. Analysis of myokine expression showed an induction of fibroblast growth factor 21 (FGF21) in SM, resulting in approximately fivefold

  20. The effect of neoadjuvant chemoradiotherapy on whole-body physical fitness and skeletal muscle mitochondrial oxidative phosphorylation in vivo in locally advanced rectal cancer patients--an observational pilot study.

    Directory of Open Access Journals (Sweden)

    Malcolm A West

    Full Text Available In the United Kingdom, patients with locally advanced rectal cancer routinely receive neoadjuvant chemoradiotherapy. However, the effects of this on physical fitness are unclear. This pilot study is aimed to investigate the effect of neoadjuvant chemoradiotherapy on objectively measured in vivo muscle mitochondrial function and whole-body physical fitness.We prospectively studied 12 patients with rectal cancer who completed standardized neoadjuvant chemoradiotherapy, recruited from a large tertiary cancer centre, between October 2012 and July 2013. All patients underwent a cardiopulmonary exercise test and a phosphorus magnetic resonance spectroscopy quadriceps muscle exercise-recovery study before and after neoadjuvant chemoradiotherapy. Data were analysed and reported blind to patient identity and clinical course. Primary variables of interest were the two physical fitness measures; oxygen uptake at estimated anaerobic threshold and oxygen uptake at Peak exercise (ml.kg-1.min-1, and the post-exercise phosphocreatine recovery rate constant (min-1, a measure of muscle mitochondrial capacity in vivo.Median age was 67 years (IQR 64-75. Differences (95%CI in all three primary variables were significantly negative post-NACRT: Oxygen uptake at estimated anaerobic threshold -2.4 ml.kg-1.min-1 (-3.8, -0.9, p = 0.004; Oxygen uptake at Peak -4.0 ml.kg-1.min-1 (-6.8, -1.1, p = 0.011; and post-exercise phosphocreatine recovery rate constant -0.34 min-1 (-0.51, -0.17, p<0.001.The significant decrease in both whole-body physical fitness and in vivo muscle mitochondrial function raises the possibility that muscle mitochondrial mechanisms, no doubt multifactorial, may be important in deterioration of physical fitness following neoadjuvant chemoradiotherapy. This may have implications for targeted interventions to improve physical fitness pre-surgery.Clinicaltrials.gov registration NCT01859442.

  1. National health expenditures, 1987

    OpenAIRE

    Letsch, Suzanne W.; Levit, Katharine R.; Waldo, Daniel R.

    1988-01-01

    The 1987 national health expenditure estimates are examined from different perspectives in the following two articles. In the first article, revised expenditure estimates for 1984-87 are presented. A breakdown of the type of services and products purchased is included, as well as the source of funds used to finance health care. In the second article, health care expenditure estimates are used to explore marginal analysis as a policy tool for understanding health spending in relation to our Na...

  2. Pioglitazone enhances expression of genes involved in mitochondrial oxidative metabolism in skeletal muscle of women with polycystic ovary syndrome (PCOS)

    DEFF Research Database (Denmark)

    Skov, Vibe

    Aims                Polycystic ovary syndrome (PCOS) is a common endocrine disorder in premenopausal women and is associated with insulin resistance increasing the risk for developing type 2 diabetes mellitus. Studies have shown that thiazolidinediones (TZD) improve metabolic disturbances in PCOS...... patients. We hypothesized that the effect of TZD in PCOS is in part mediated by changes in the transcriptional profile of muscle favoring insulin sensitivity. Methods Using the HG-U133 2.0 Plus expression array from Affymetrix, we examined the effect of pioglitazone (30 mg/day for 16 weeks) on gene...... expression in skeletal muscle of 10 obese women with PCOS (dataset 1). Furthermore, evaluation of gene expression changes between PCOS patients before treatment and control subjects were performed (dataset 2). All subjects were metabolically characterised by a euglycemic-hyperinsulinemic clamp combined...

  3. Depleted skeletal muscle mitochondrial DNA, hyperlactatemia, and decreased oxidative capacity in HIV-infected patients on highly active antiretroviral therapy

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Pedersen, Steen B

    2005-01-01

    hyperlactatemia is associated with depletion of skeletal muscle (sm)-mtDNA and decreased oxidative capacity in HIV-infected patients on NRTI based highly active antiretroviral therapy (HAART) and whether HIV infection itself is associated with sm-mtDNA depletion. Sm-mtDNA was determined in 42 HIV...... to all HIV-NRTI (n = 35), in turn displaying decreased sm-mtDNA (P therapy. Further, HIV may deplete sm-mtDNA of NAIVE, which...

  4. Skeletal muscle contractions induce acute changes in cytosolic superoxide, but slower responses in mitochondrial superoxide and cellular hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Timothy Pearson

    Full Text Available Skeletal muscle generation of reactive oxygen species (ROS is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile

  5. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery

    OpenAIRE

    Coen, Paul M.; Menshikova, Elizabeth V.; Distefano, Giovanna; Zheng, Donghai; Tanner, Charles J.; Standley, Robert A.; Helbling, Nicole L.; Dubis, Gabriel S.; Ritov, Vladimir B.; Xie, Hui; Desimone, Marisa E.; Smith, Steven R.; Stefanovic-Racic, Maja; Toledo, Frederico G.S.; Houmard, Joseph A.

    2015-01-01

    Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined b...

  6. PGC-1{alpha} is required for AICAR induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Leick, Lotte; Fentz, Joachim; Biensø, Rasmus S

    2010-01-01

    GLUT4, cytochrome c oxidase (COX)I and cytochrome (cyt) c protein expression ~10-40% relative to saline in white muscles of the WT mice, but not of the PGC-1alpha KO mice. In line, GLUT4 and cyt c mRNA content increased 30-60% 4h after a single AICAR injection relative to saline only in WT mice. One...

  7. Catastrophic Medical Expenditure Risk

    NARCIS (Netherlands)

    G. Flores (Gabriela); O.A. O'Donnell (Owen)

    2012-01-01

    textabstractMedical expenditure risk can pose a major threat to living standards. We derive decomposable measures of catastrophic medical expenditure risk from reference-dependent utility with loss aversion. We propose a quantile regression based method of estimating risk exposure from cross-section

  8. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  9. Simvastatin effects on skeletal muscle

    DEFF Research Database (Denmark)

    Larsen, Steen; Stride, Nis; Hey-Mogensen, Martin

    2013-01-01

    Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9)....

  10. Fine-Tuning of PI3K/AKT Signalling by the Tumour Suppressor PTEN Is Required for Maintenance of Flight Muscle Function and Mitochondrial Integrity in Ageing Adult Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Lawrence B Mensah

    Full Text Available Insulin/insulin-like growth factor signalling (IIS, acting primarily through the PI3-kinase (PI3K/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K's direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten, in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1 pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight

  11. ENERGI EXPENDITURE PADA LANSIA

    Directory of Open Access Journals (Sweden)

    Yuniar Rosmalina

    2012-11-01

    Full Text Available ENERGY EXPENDITURE OF ELDERLY PEOPLE.Background: Physical activity is a factor to estimate the energy requirement. The elderly tend to reduce their activities which influence their energy requirement. Now aday the energy need for elderly is extrapolated from the adult. Energy expenditure based on their daily activities Is a method to estimate the energy requirement.Objectives: The purpose of the study was to assess energy expenditure of elderly people based on the daily physical activities.Methods: The study was conducted in 2 sub-sub districts of Bogar Country. A total of 92 elderly (42 men and 50 women were included in this study. The inclusion criteria were BMI 18.5- 25.0, physically and hematologically healthy and agree to participate in this study. Physical activities data were collected 3 days respectively using method record and recall and energy intakes using 3 day food record by weighing.Results: The average age was 67.5 ± 5,1 years for male elderly and 65.4 ± 3.9 years of female elderly. Recreational activities (reading, watching TV, sitting were the most activities done by male elderly (34.9% of the day while female elderly 34.8% of the day were spent for sleeping activity. The highest energy expenditure of male elderly was contributed from reactional activities (570.3 ± 187.8 Kcal/day while female elderly the highest energy expenditure was contributed from household work activities. The average energy expenditure for male elderly was 1870.2 ± 261.2 Kcal/day or 34.4 Kcal/Body weight/day and female elderly was 1840.2 ± 255.7 Kcal/day or 38.2 Kcal/Body weight/day. The energy Intake of male elderly was 1858 ± 471.7 Kcal/day or 34.1 Kcal/Body weight/day and female elderly was 1472 ± 255.7 Kcal/day or 30.8 Kcal/Body weight/day.Conclusions: Conclusion of this research was the energy expenditure of male elderly balance with their energy consumption, while the energy expenditure of female elderly higher than their energy consumption

  12. Projecting future drug expenditures--2004.

    Science.gov (United States)

    Hoffman, James M; Shah, Nilay D; Vermeulen, Lee C; Hunkler, Robert J; Hontz, Karrie M

    2004-01-15

    Drug expenditure trends since 2002 and projected drug expenditures for 2004 are discussed. In 2002 there was a moderation in the trend of increasing drug expenditures. Drug expenditures increased by 12.3% between 2001 and 2002. This trend continued in the first half of 2003, with expenditures increasing by only 10% compared with 2002. This moderation in the drug expenditures trend can be attributed to many factors, especially patent expirations and decreases in new drug approvals. Higher cost sharing for consumers and a general economic slowdown in the United States affecting employment and insurance coverage have resulted in a smaller increase in drug utilization. In 2004, there should be a 10-12% increase in drug expenditures for outpatient settings, a 19-21% increase for clinics, and a 6-8% increase for hospitals. Drug expenditure growth should continue to outpace the growth in overall health care expenditures and the growth in the U.S. economy.

  13. Measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology.

    NARCIS (Netherlands)

    Janssen, A.J.M.; Trijbels, J.M.F.; Sengers, R.C.A.; Wintjes, L.T.; Ruitenbeek, W.; Smeitink, J.A.M.; Morava, E.; Engelen, B.G.M. van; Heuvel, L.P.W.J. van den; Rodenburg, R.J.T.

    2006-01-01

    BACKGROUND: Diagnosis of mitochondrial disorders usually requires a muscle biopsy to examine mitochondrial function. We describe our diagnostic procedure and results for 29 patients with mitochondrial disorders. METHODS: Muscle biopsies were from 43 healthy individuals and 29 patients with defects

  14. Deletion of Kinin B2 Receptor Alters Muscle Metabolism and Exercise Performance.

    Directory of Open Access Journals (Sweden)

    Felipe C G Reis

    Full Text Available Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/- we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance.

  15. Narciclasine attenuates diet-induced obesity by promoting oxidative metabolism in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sofi G Julien

    2017-02-01

    Full Text Available Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls, attenuates diet-induced obesity (DIO in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes.

  16. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging

    National Research Council Canada - National Science Library

    Lustgarten, Michael S; Jang, Youngmok C; Liu, Yuhong; Qi, Wenbo; Qin, Yuejuan; Dahia, Patricia L; Shi, Yun; Bhattacharya, Arunabh; Muller, Florian L; Shimizu, Takahiko; Shirasawa, Takuji; Richardson, Arlan; Van Remmen, Holly

    2011-01-01

    In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice...

  17. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  18. Tax Expenditures for the Elderly.

    Science.gov (United States)

    Nelson, Gary M.

    1983-01-01

    Examines federal tax expenditures or subsidies directed toward enhancing the retirement income of the elderly. Charges that such expenditures annually target benefits to the wealthiest segment of the elderly population. Examines equity issues and recommends that these tax expenditures be examined on a case-to-case basis. (JAC)

  19. Exercise training-induced regulation of mitochondrial quality

    National Research Council Canada - National Science Library

    Yan, Zhen; Lira, Vitor A; Greene, Nicholas P

    2012-01-01

    .... The mitochondrial life cycle spans biogenesis, maintenance, and clearance. Exercise training may promote each of these processes, conferring positive impacts on skeletal muscle contractile and metabolic functions...

  20. Energy expenditure and muscular activation patterns through active sitting on compliant surfaces

    Directory of Open Access Journals (Sweden)

    D. Clark Dickin

    2017-06-01

    Conclusion: Compliant surfaces resulted in higher levels of muscular activation in the lower extremities facilitating increased caloric expenditure. Given the increasing trends in sedentary careers and the increases in obesity, this is an important finding to validate the merits of active sitting facilitating increased caloric expenditure and muscle activation.

  1. Forecasting military expenditure

    Directory of Open Access Journals (Sweden)

    Tobias Böhmelt

    2014-05-01

    Full Text Available To what extent do frequently cited determinants of military spending allow us to predict and forecast future levels of expenditure? The authors draw on the data and specifications of a recent model on military expenditure and assess the predictive power of its variables using in-sample predictions, out-of-sample forecasts and Bayesian model averaging. To this end, this paper provides guidelines for prediction exercises in general using these three techniques. More substantially, however, the findings emphasize that previous levels of military spending as well as a country’s institutional and economic characteristics particularly improve our ability to predict future levels of investment in the military. Variables pertaining to the international security environment also matter, but seem less important. In addition, the results highlight that the updated model, which drops weak predictors, is not only more parsimonious, but also slightly more accurate than the original specification.

  2. Mitochondrial efficiency and insulin resistance

    Directory of Open Access Journals (Sweden)

    Raffaella eCrescenzo

    2015-01-01

    Full Text Available Insulin resistance, ‘a relative impairment in the ability of insulin to exert its effects on glucose,protein and lipid metabolism in target tissues’, has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type 2 diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle.

  3. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes...... caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  4. MITOCHONDRIAL MYOPATHY: A NEW THERAPEUTIC APPROACH.

    Science.gov (United States)

    Hagiu, B A; Mungiu, C

    2016-01-01

    Restoration of deoxyribonucleic acid in mitochondrial myopathies may occur after a mechanical or chemical injury of striated muscle or by endurance training. Therapies with enzymes, gene therapies, or treatments with substances that stimulate mitochondrial biogenesis are used at the moment. Genesis of mitochondria may also come from myonuclei by releasing the nuclear respiratory factor-1/2 during muscle contractions. Multiplying of myonuclei depends on muscle satellite cell activation. Since the electromyostimulation increase the number of circulating stem cells that may participate in the genesis of new muscle fibers (adding to the deposit of specific stem cells of the muscle), and intermittent hypoxia stimulates the proliferation of muscle satellite cells, we propose to combine the two processes for the treatment of mitochondrial myopathies. Respective combined therapy may be useful for restoring damaged mitochondria by drug side effects.

  5. Energy expenditure in caving.

    Directory of Open Access Journals (Sweden)

    Giorgia Antoni

    Full Text Available The aim of this study was to determine the energy expenditure of a group of cavers of both genders and different ages and experience during a 10 hour subterranean exploration, using portable metabolimeters. The impact of caving activity on body composition and hydration were also assessed through bioelectrical impedance, and nutritional habits of cavers surveyed. During cave activity, measured total energy expenditure (TEE was in the range 225-287 kcal/h for women-men (MET = 4.1, respectively; subjects had an energy intake from food in the range 1000-1200 kcal, thus inadequate to restore lost calories. Bayesian statistical analysis estimated the effect of predictive variables on TEE, revealing that experienced subjects had a 5% lower TEE than the less skilled ones and that women required a comparatively larger energy expenditure than men to perform the same task. BIVA (bioelectrical impedance vector analysis showed that subjects were within the range of normal hydration before and after cave activity, but bioelectrical changes indicated a reduction of extracellular water in men, which might result in hypo-osmolal dehydration in the case of prolonged underground exercise. All these facts should be considered when planning cave explorations, preparing training programs for subjects practising caving, and optimizing a diet for cavers. Further, information gathered through this study could be of value to reduce accidents in caves related to increase in fatigue.

  6. Mitochondrial myopathy and myoclonic epilepsy

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1990-03-01

    Full Text Available The authors describe a family (mother, son and two daughters with mitochondrial myopathy. The mother was asymptomatic. Two daughters had lactic acidosis and myoclonic epilepsy, mild dementia, ataxia, weakness and sensory neuropathy. The son suffered one acute hemiplegic episode due to an ischemic infarct in the right temporal region. All the patients studied had hypertension. EEG disclosed photomyoclonic response in the proband patient. Muscle biopsy disclosed ragged-red fibers and abnormal mitochondria by electron microscopy. Biochemical analysis showed a defect of cytochrome C oxidase in mitochondria isolated from skeletal muscle. Several clinical and genetic aspects of the mitochondrial encephalomyopathies are discussed.

  7. The Mitochondrial Uncoupler DNP Triggers Brain Cell mTOR Signaling Network Reprogramming and CREB Pathway Upregulation

    OpenAIRE

    Liu, Dong; Zhang, Yongqing; Gharavi, Robert; Park, Hee Ra; Lee, Jaewon; Siddiqui, Sana; Telljohann, Richard; Nassar, Matthew R.; Cutler, Roy G.; Kevin G Becker; Mark P Mattson

    2015-01-01

    Mitochondrial metabolism is highly responsive to nutrient availability and ongoing activity in neuronal circuits. The molecular mechanisms by which brain cells respond to an increase in cellular energy expenditure are largely unknown. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2, 4-dinitrophenol (DNP), a proton ionophore previously used for weight loss. We found that DNP treatment reduces mitochondrial membrane potential, increas...

  8. The Use of Neuroimaging in the Diagnosis of Mitochondrial Disease

    Science.gov (United States)

    Friedman, Seth D.; Shaw, Dennis W. W.; Ishak, Gisele; Gropman, Andrea L.; Saneto, Russell P.

    2010-01-01

    Mutations in nuclear and mitochondrial DNA impacting mitochondrial function result in disease manifestations ranging from early death to abnormalities in all major organ systems and to symptoms that can be largely confined to muscle fatigue. The definitive diagnosis of a mitochondrial disorder can be difficult to establish. When the constellation…

  9. Mitochondrial tRNA genes are hotspots for mutations in a cohort of patients with exercise intolerance and mitochondrial myopathy

    NARCIS (Netherlands)

    Lu, Y.; Zhao, D.; Yao, S.; Wu, S.; Hong, D.; Wang, Q.; Liu, J.; Smeitink, J.A.M.; Yuan, Y.; Wang, Z.

    2017-01-01

    OBJECTIVE: Mitochondrial myopathy (MM) is a relatively rare type of mitochondrial disorder characterized by predominant skeletal muscle involvement. Both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) mutations have been reported as the genetic causes of this disease. Here, we described the

  10. Association between uncoupling protein 2, adiponectin and resting energy expenditure in obese women with normal and low resting energy expenditure.

    Science.gov (United States)

    Taghadomi Masoumi, Zahra; Eshraghian, Mohammad Reza; Hedayati, Mahdi; Pishva, Hamideh

    2018-02-01

    Obesity is recognized as the most prevalent metabolic disease worldwide. Decreases in energy expenditure may increase risk of obesity. One of the key regulators of energy balance is uncoupling protein2 (UCP2), a transporter protein presents in mitochondrial inner membrane. Moreover, adiponectin is the most abundant adipocytokine, it may play a role in energy metabolism and gene expression of UCP2. The aim of this study was to investigate potential associations between the level of uncoupling protein 2 and adiponectin and their relationship with REE (Resting Energy Expenditure) in obese women with normal and low resting energy expenditure. A total of 49 subjects (women, 25-50 years old), were included in current study, 16 subjects with BMI > 30 and low resting energy expenditure, 17 subjects with BMI > 30 and normal resting energy expenditure and 16 non-obese subjects as a control group. Anthropometric, body composition parameters and resting energy expenditure were measured. Plasma adiponectin, UCP2 protein and total protein in PBMC were determined. Measured resting energy expenditure in obese subjects with low REE was significantly lower than other groups. Plasma adiponectin in the obese subjects with low REE was significantly lower compared to normal weight group. There was a significant relationship between 'UCP2 protein/Total protein' ratio and plasma adiponectin in obese group with low REE and in three groups when we pooled. There was a significant association between REE and plasma adiponectin in three groups when we pooled. There was a significant association between plasma adiponectin and REE. Moreover, there was a significant relationship between UCP2 and REE.

  11. Geographic Distribution of VA Expenditures Report FY2015

    Data.gov (United States)

    Department of Veterans Affairs — Geographic Distribution of VA Expenditures Report (GDX) located on the Expenditures page in the Expenditure Tables category. This report details VA expenditures at...

  12. Historical Perspective on Mitochondrial Medicine

    Science.gov (United States)

    DiMauro, Salvatore; Garone, Caterina

    2010-01-01

    In this review, we trace the origins and follow the development of mitochondrial medicine from the premolecular era (1962-1988) based on clinical clues, muscle morphology, and biochemistry into the molecular era that started in 1988 and is still advancing at a brisk pace. We have tried to stress conceptual advances, such as endosymbiosis,…

  13. Mitochondrial Plasticity With Exercise Training and Extreme Environments

    DEFF Research Database (Denmark)

    Boushel, Robert; Lundby, Carsten; Qvortrup, Klaus

    2014-01-01

    Mitochondria form a reticulum in skeletal muscle. Exercise training stimulates mitochondrial biogenesis, yet an emerging hypothesis is that training also induces qualitative regulatory changes. Substrate oxidation, oxygen affinity and biochemical coupling efficiency may be differentially regulated...... with training and exposure to extreme environments. Threshold training doses inducing mitochondrial up-regulation remain to be elucidated considering fitness level. SUMMARY: Muscle mitochondrial are responsive to training and environment, yet thresholds for volume vs. regulatory changes and their physiological...

  14. Mitochondrial diseases: a review

    Directory of Open Access Journals (Sweden)

    Daniel Jarovsky

    2006-12-01

    Full Text Available Mitochondria are organelles responsible for production of mostenergy through oxidative phosphorylation process (OXPHOS. Itcontains a double strand DNA (mitDNA of about 16,500 bp encodingtwo ribosomal RNAs and 37 mitochondrial proteins. Mutation inmitDNA may result in multisystem syndromes known asmitochondrial diseases, affecting predominantly tissues thatrequire high levels of ATP such as skeletal muscle (mitochondrialmyopathies, brain (e.g. MELAS, MERRF, LHON e NARP, liver,kidney (Fanconi syndrome, heart and endocrine glands (Pearsonsyndrome. A case of mitochondrial disease was first reported in1962 and correlation of such disease with mutations in mitDNAgained scientific importance in late 1980’s. There are 150 alterationsreported in mitDNA capable of producing metabolic dysfunctionsof clinical relevance. To date, no standard protocol for diagnosis ofmitochondrial diseases has been established, partially due to thewide amplitude of clinical manifestation generally observed. Acombined analysis of clinical data, biochemical, morphologicaland laboratory tests must be performed to evaluate mitochondrialrespiratory chain activity and integrity of nuclear and mitochondrialgenomes. Currently, there are no effective treatments availablefor mitochondrial diseases, but only palliative therapeutics usingconventional strategies to relieve symptoms. Thus, gene therapyemerges as potential therapeutic strategy for more efficienttreatment of mitochondrial diseases.

  15. Why Worry About Tax Expenditure?

    OpenAIRE

    Swift, Zhicheng Li; Cavalcanti, Carlos B.

    2003-01-01

    Tax expenditures are concessions that fall outside tax norms or benchmarks. These norms include accounting conventions, the structure of tax rates, the deductibility of compulsory payments, provisions to facilitate tax administration, and norms related to international fiscal obligations. Tax expenditures are deviations from these norms, implemented to encourage behavior deemed desirable b...

  16. Energy Expenditure of Sport Stacking

    Science.gov (United States)

    Murray, Steven R.; Udermann, Brian E.; Reineke, David M.; Battista, Rebecca A.

    2009-01-01

    Sport stacking is an activity taught in many physical education programs. The activity, although very popular, has been studied minimally, and the energy expenditure for sport stacking is unknown. Therefore, the purposes of this study were to determine the energy expenditure of sport stacking in elementary school children and to compare that value…

  17. MITOCHONDRIAL NEUROGASTROINTESTINAL ENCEPHALOMYOPATHY (MNGIE

    Directory of Open Access Journals (Sweden)

    P. Ayatollahi

    2006-06-01

    Full Text Available Mitochondrial neurogastrointestinal encephalo-myopathy (MNGIE is a rare autosomal recessive disease caused by thymidine phosphorylase (TP gene mutation. Here we report a patient with MNGIE in whom sensorimotor polyneuropathy was the first presenting symptom and had a fluctuating course. This 26-year-old female patient developed acute-onset demyelinating polyneuropathy from the age of 6 with two relapses later on. In addition, she had gastrointestinal symptoms (diarrhea, recurrent abdominal pain, progressive weight loss and ophthalmoparesis. Brain magnetic resonance imaging showed white matter abnormalities, and muscle biopsy showed ragged red fibers. This constellation of clinical and laboratory findings raised the diagnosis of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE. This report highlights the uncommon clinical characteristics of this rare disease.

  18. Mitochondrial Myopathy

    Science.gov (United States)

    ... muscle and nerve tissue. Muscle and nerve cells use the ATP derived from mitochondria as their main source of energy. The combined effects of energy deprivation and toxin accumulation in these cells can lead ...

  19. The role of mitochondrial DNA mutations in aging and sarcopenia: Implications for the mitochondrial vicious cycle theory of aging

    OpenAIRE

    Hiona, Asimina; Leeuwenburgh, Christiaan

    2007-01-01

    Aging is associated with a progressive loss of skeletal muscle mass and strength and the mechanisms mediating these effects likely involve mitochondrial DNA (mtDNA) mutations, mitochondrial dysfunction and the activation of mitochondrial mediated apoptosis. Because the mitochondrial genome is densely packed and close to the main generator of reactive oxygen species (ROS) in the cell, the electron transport chain (ETC), an important role for mtDNA mutations in aging has been proposed. Point mu...

  20. Skeletal muscle mitochondrial H2O2 emission increases with immobilization and decreases after aerobic training in young and older men

    DEFF Research Database (Denmark)

    Gram, Martin; Vigelsø, Andreas; Yokota, Takashi

    2015-01-01

    ZnSOD), catalase and gluthathione peroxidase 1 (GPX1) were measured by Western Blotting. Immobilization decreased ATP generating respiration using PM and increased H2O2 emission using both PM and SR similarly in young and older men. Both were restored to baseline after the training period. Furthermore, Mn......SOD and catalase content increased with endurance training. The young men had a higher leak respiration at inclusion using PM and a higher membrane potential in state 3 using both substrate combinations. Collectively, this study supports the notion that increased mitochondrial ROS mediates the detrimental effects...

  1. Mitochondrial DNA.

    Science.gov (United States)

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  2. Flux control analysis of mitochondrial oxidative phosphorylation in rat skeletal muscle: pyruvate and palmitoyl-carnitine as substrates give different control patterns

    DEFF Research Database (Denmark)

    Fritzen, Anette J; Grunnet, Niels; Quistorff, Bjørn

    2007-01-01

    Flux control analysis of eight reactions involved in oxidative phosphorylation of mitochondria from rat quadriceps muscle was performed under circumstances resembling in vivo conditions of carbohydrate or fatty acid oxidation. The major flux control at a respiration rate of 55% of state 3 was ass...

  3. Carnitine supplementation in high-fat diet fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo

    NARCIS (Netherlands)

    Wessels, Bart; van den Broek, Nicole M A; Ciapaite, Jolita; Houten, Sander M; Wanders, Ronald J A; Nicolay, Klaas; Prompers, Jeanine J

    2015-01-01

    Muscle lipid overload and the associated accumulation of lipid intermediates plays an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid

  4. AMP-activated protein kinase (AMPK) {beta}1{beta}2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise

    DEFF Research Database (Denmark)

    O'Neill, Hayley M; Maarbjerg, Stine Just; Crane, Justin D

    2011-01-01

    AMP-activated protein kinase (AMPK) ß1 or ß2 subunits are required for assembling of AMPK heterotrimers and are important for regulating enzyme activity and cellular localization. In skeletal muscle, a2ß2¿3-containing heterotrimers predominate. However, compensatory up-regulation and redundancy o...

  5. Upregulation of Ca2+ removal in human skeletal muscle: a possible role for Ca2+-dependent priming of mitochondrial ATP synthesis.

    NARCIS (Netherlands)

    Koopman, W.J.H.; Renders, M.; Oosterhof, A.; Kuppevelt, A.H.M.S.M. van; Engelen, B.G.M. van; Willems, P.H.G.M.

    2003-01-01

    In muscle, ATP is required for the powerstroke of the myosin head, the detachment of actin and myosin filaments, and the reuptake of Ca2+ into the sarcoplasmic reticulum. During contraction-relaxation, large amounts of ATP are consumed at the sites of action of the myosin-ATPase and sarcoplasmic

  6. EU pharmaceutical expenditure forecast

    Science.gov (United States)

    Urbinati, Duccio; Rémuzat, Cécile; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    (−€5,589 million), and, far behind them, Germany (−€831 million), Greece (−€808 million), Portugal (−€243 million), and Hungary (−€84 million). The main source of savings came from the cardiovascular, central nervous system, and respiratory areas and from biosimilar entries. Oncology, immunology, and inflammation, in contrast, lead to additional expenditure. The model was particularly sensitive to the time to market of branded products, generic prices, generic penetration, and the distribution of biosimilars. Conclusions The results of this forecast suggested a decrease in pharmaceutical expenditure in the studied period. The model was sensitive to pharmaceutical policy decisions. PMID:27226837

  7. [Muscle fiber atrophy].

    Science.gov (United States)

    Nonaka, Ikuya

    2012-01-01

    Muscle fibers have been classified into two major forms of red (slow twitch) and white (fast twitch) muscles. The red muscle utilizes lipid as energy source through mitochondrial metabolism and function to sustain the position against gravity (sometimes called as antigravity muscle). Under microgravity the red muscle is selectively involved. In our unloading study by hindlimb suspension experiment on rats, the one of the representative red muscle of soleus muscle underwent rapid atrophy; they reduced their weights about 50% after 2 week-unloading. In addition, myofibrils were occasionally markedly disorganized with selective thin filament loss. Mitochondria in the degenerated area were decreased in number. The white muscle fibers in the soleus muscle had mostly transformed to the red ones. It took about 1 month to recover morphologically. The satellite cell playing a major role in muscle regeneration was not activated. There still remained unsolved what are the mechanosensors to keep muscle function under normal gravity. Dr Nikawa's group proposed that one of ubiquitin ligases, Cbl-b is activated under microgravity and induces muscle fiber degeneration. There might be many factors to induce muscle atrophy and degeneration under microgravity. Further study is necessary to explore the pathomechanism of muscle atrophy in disused and under immobility conditions.

  8. Increasing Public Expenditure

    Directory of Open Access Journals (Sweden)

    Ammar Ben Zaed

    2017-04-01

    Full Text Available This article aims to analyze and interpret the phenomenon of increased public expenditures and test explanatory theories as well as to analyze Abstract the relationship between public spending and GDP in the short and long term where you see the Wagner hypothesis that causal heading of GDP to government spending while there is a causal relationship analysis positive trending of government spending to GDP according to the Keynesian hypothesis in this study will be used descriptive analytical method to validate these hypotheses. Results in the short and long term made it clear that there is a difference in the outcome of Applied Studies where we find that each supports a relationship Wagner in the sense that the causal trending of real GDP to government spending and more precisely to increase the economic growth lead to increased aggregate demand which leads in turn increasing the need to increase government spending and to increase the resources available to the government sector to finance the increase in spending by the additional resources resulting from the economic growth while others opines opposes the existence of the relationship.

  9. Improved Muscle Function in Duchenne Muscular Dystrophy through L-Arginine and Metformin: An Investigator-Initiated, Open-Label, Single-Center, Proof-Of-Concept-Study.

    Science.gov (United States)

    Hafner, Patricia; Bonati, Ulrike; Erne, Beat; Schmid, Maurice; Rubino, Daniela; Pohlman, Urs; Peters, Thomas; Rutz, Erich; Frank, Stephan; Neuhaus, Cornelia; Deuster, Stefanie; Gloor, Monika; Bieri, Oliver; Fischmann, Arne; Sinnreich, Michael; Gueven, Nuri; Fischer, Dirk

    2016-01-01

    Altered neuronal nitric oxide synthase function in Duchenne muscular dystrophy leads to impaired mitochondrial function which is thought to be one cause of muscle damage in this disease. The study tested if increased intramuscular nitric oxide concentration can improve mitochondrial energy metabolism in Duchenne muscular dystrophy using a novel therapeutic approach through the combination of L-arginine with metformin. Five ambulatory, genetically confirmed Duchenne muscular dystrophy patients aged between 7–10 years were treated with L-arginine (3 x 2.5 g/d) and metformin (2 x 250 mg/d) for 16 weeks. Treatment effects were assessed using mitochondrial protein expression analysis in muscular biopsies, indirect calorimetry, Dual-Energy X-Ray Absorptiometry, quantitative thigh muscle MRI, and clinical scores of muscle performance. There were no serious side effects and no patient dropped out. Muscle biopsy results showed pre-treatment a significantly reduced mitochondrial protein expression and increased oxidative stress in Duchenne muscular dystrophy patients compared to controls. Post-treatment a significant elevation of proteins of the mitochondrial electron transport chain was observed as well as a reduction in oxidative stress. Treatment also decreased resting energy expenditure rates and energy substrate use shifted from carbohydrates to fatty acids. These changes were associated with improved clinical scores. In conclusion pharmacological stimulation of the nitric oxide pathway leads to improved mitochondria function and clinically a slowing of disease progression in Duchenne muscular dystrophy. This study shall lead to further development of this novel therapeutic approach into a real alternative for Duchenne muscular dystrophy patients. ClinicalTrials.gov NCT02516085.

  10. Tax Expenditures: A Theoretical Review

    Directory of Open Access Journals (Sweden)

    Vjekoslav Bratić

    2006-06-01

    Full Text Available Tax expenditures are an instrument frequently used when a government wishes to achieve certain economic and social effects. But because of the increasing number and scope of tax expenditures, their proper use, quality of administration and record-keeping have become a major challenge for the tax authorities and the whole of the government. The article considers and explains very diverse forms of tax expenditure such as reliefs, tax deductions, tax allowances, tax exceptions and special rates of taxation and the ways in which they are defined and calculated. The key problems in the analysis are the absence of a single definition and of methodology for the calculations; these ultimately make it impossible to compare tax expenditures between or among countries.

  11. Public expenditure planning in Albania

    OpenAIRE

    Bogdani, Irena Dh.

    2002-01-01

    This paper looks at public expenditure planning in Albania, presenting and analysing the first two post-communist era Medium-Term Expenditure Plans (METPs) that have been introduced by the Albanian government for the periods 2000-2001 and 2002-2004, respectively. Albania's medium-term macroeconomic perspectives and elements of fiscal decentralisation, as incorporated by the Local Government Law of Albania, are presented, too. It is found that, taking into account the first years of post-commu...

  12. Corporate Expenditure on Environmental Protection

    OpenAIRE

    Haller, Stefanie; Murphy, Liam

    2010-01-01

    We examine the determinants of firm's current environmental expenditure and firm's capital investment in equipment for pollution control using a Heckman selection model. As regards current environmental expenditure, we find that larger, exporting firms and firms subject to the Integrated Pollution Prevention and Control directive are more likely to spend resources at all. Once the decision to commit resources has been taken, larger firms, firms that are foreign-owned, and firms that report lo...

  13. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management.

    Science.gov (United States)

    Meyers, Deborah E; Basha, Haseeb Ilias; Koenig, Mary Kay

    2013-01-01

    Mitochondrial disease is a heterogeneous group of multisystemic diseases that develop consequent to mutations in nuclear or mitochondrial DNA. The prevalence of inherited mitochondrial disease has been estimated to be greater than 1 in 5,000 births; however, the diagnosis and treatment of this disease are not taught in most adult-cardiology curricula. Because mitochondrial diseases often occur as a syndrome with resultant multiorgan dysfunction, they might not immediately appear to be specific to the cardiovascular system. Mitochondrial cardiomyopathy can be described as a myocardial condition characterized by abnormal heart-muscle structure, function, or both, secondary to genetic defects involving the mitochondrial respiratory chain, in the absence of concomitant coronary artery disease, hypertension, valvular disease, or congenital heart disease. The typical cardiac manifestations of mitochondrial disease--hypertrophic and dilated cardiomyopathy, arrhythmias, left ventricular myocardial noncompaction, and heart failure--can worsen acutely during a metabolic crisis. The optimal management of mitochondrial disease necessitates the involvement of a multidisciplinary team, careful evaluations of patients, and the anticipation of iatrogenic and noniatrogenic complications. In this review, we describe the complex pathophysiology of mitochondrial disease and its clinical features. We focus on current practice in the diagnosis and treatment of patients with mitochondrial cardiomyopathy, including optimal therapeutic management and long-term monitoring. We hope that this information will serve as a guide for practicing cardiologists who treat patients thus affected.

  14. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Egelund, Jon; Mandrup Jensen, Camilla Maria

    2017-01-01

    the haemodynamic response to acute exercise in matched pre- and postmenopausal women before and after 12 weeks of aerobic high intensity exercise training. Twenty premenopausal and 16 early postmenopausal (3.1 ± 0.5 [mean ± SEM] years after final menstrual period) women only separated by 4 (50 ± 0 versus 54 ± 1...... high intensity exercise training are more pronounced in recent post- compared to premenopausal women, possibly as an effect of enhanced ERRα signalling. Also, the hyperaemic response to acute exercise appears to be preserved in the early postmenopausal phase. This article is protected by copyright. All......Exercise training leads to favourable adaptations within skeletal muscle; however, this effect of exercise training may be blunted in postmenopausal women due to the loss of oestrogens. Furthermore, postmenopausal women may have an impaired vascular response to acute exercise. We examined...

  15. [Energy expenditure in construction industry].

    Science.gov (United States)

    Santini, M; Borleri, D; Bresciani, M; Riva, M M; Ielapi, M; Bonelli, G; Mosconi, G

    2012-01-01

    The aim of this study is to show the results obtained from measuring energy expenditure (EE) during work, through portable devices, in a group of male construction workers. After defining cardio-respiratory parameters in laboratory, authors applied to all subjects an heart rate monitor for measuring the heart rate (HR) and, at the same time, a calorimeter for measuring energy expenditure (EE). To analyse data obtained, authors calculate the Relative Aerobic Strain (RAS), both for the measurements of EE and for HR detected. Results confirm that in many of the typical activities of construction industry, in particular in those characterised by an higher component of manual engagement compared to foreman, workloads are exceeding limits of the probable threshold fatigue (33% of RAS), both for energy expenditure than for HR measured.

  16. [Topology of the mitochondrial potassium ion channels].

    Science.gov (United States)

    Laskowski, Michał; Kulawiak, Bogusz

    In the inner mitochondrial membrane several potassium channels have been identified whose activation lead to cytoprotection during ischemic event. It was found that activation of mitochondrial large conductance calcium activated potassium channel (mitoBKCa) and ATP regulated potassium channel (mitoKATP) preserves brain and heart muscle cells against ischemia/reperfusion induced damage. However the detailed cytoprotection mechanism remains unclear. Similarly, the molecular structures and protein interactions of the mitochondrial potassium channels are still unknown. In this article, we summarize the current knowledge of the mitoKATP and mitoBKCa channels topology. Different aspects of this topic are discussed like import and assembly of the channel subunits and biophysical properties of mitochondrial compartments. Additionally, the consequences of different topology models on the cytoprotective function of the mitochondrial potassium channels were analyzed.

  17. Autophagy and skeletal muscles in sepsis.

    Directory of Open Access Journals (Sweden)

    Mahroo Mofarrahi

    Full Text Available Mitochondrial injury develops in skeletal muscles during the course of severe sepsis. Autophagy is a protein and organelle recycling pathway which functions to degrade or recycle unnecessary, redundant, or inefficient cellular components. No information is available regarding the degree of sepsis-induced mitochondrial injury and autophagy in the ventilatory and locomotor muscles. This study tests the hypotheses that the locomotor muscles are more prone to sepsis-induced mitochondrial injury, depressed biogenesis and autophagy induction compared with the ventilatory muscles.Adult male C57/Bl6 mice were injected with i.p. phosphate buffered saline (PBS or E. coli lipopolysaccharide (LPS, 20 mg/kg and sacrificed 24 h later. The tibialis anterior (TA, soleus (SOLD and diaphragm (DIA muscles were quickly excised and examined for mitochondrial morphological injury, Ca(++ retention capacity and biogenesis. Autophagy was detected with electron microscopy, lipidation of Lc3b proteins and by measuring gene expression of several autophagy-related genes. Electron microscopy revealed ultrastructural injuries in the mitochondria of each muscle, however, injuries were more severe in the TA and SOL muscles than they were in the DIA. Gene expressions of nuclear and mitochondrial DNA transcription factors and co-activators (indicators of biogenesis were significantly depressed in all treated muscles, although to a greater extent in the TA and SOL muscles. Significant autophagosome formation, Lc3b protein lipidation and upregulation of autophagy-related proteins were detected to a greater extent in the TA and SOL muscles and less so in the DIA. Lipidation of Lc3b and the degree of induction of autophagy-related proteins were significantly blunted in mice expressing a muscle-specific IκBα superrepresor.We conclude that locomotor muscles are more prone to sepsis-induced mitochondrial injury, decreased biogenesis and increased autophagy compared with the

  18. Optimization-Based Models of Muscle Coordination

    OpenAIRE

    Prilutsky, Boris I.; Zatsiorsky, Vladimir M.

    2002-01-01

    Optimization-based models may provide reasonably accurate estimates of activation and force patterns of individual muscles in selected well-learned tasks with submaximal efforts. Such optimization criteria as minimum energy expenditure, minimum muscle fatigue, and minimum sense of effort seem most promising.

  19. Optimization-based models of muscle coordination.

    Science.gov (United States)

    Prilutsky, Boris I; Zatsiorsky, Vladimir M

    2002-01-01

    Optimization-based models may provide reasonably accurate estimates of activation and force patterns of individual muscles in selected well-learned tasks with submaximal efforts. Such optimization criteria as minimum energy expenditure, minimum muscle fatigue, and minimum sense of effort seem most promising.

  20. Pacific Marine Recreational Fishing Expenditure Survey 2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A series of expenditure surveys have been done both regionally and nationally. This data pertains to the West coast states . Expenditures on trips by mode (for-hire,...

  1. Southeast Marine Recreational Fishing Expenditure Survey 1999

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A series of expenditure surveys have been done both regionally and nationally. Expenditures on trips by mode (for-hire, private boat, and shore) were collected for...

  2. Resveratrol and SRT1720 Elicit Differential Effects in Metabolic Organs and Modulate Systemic Parameters Independently of Skeletal Muscle Peroxisome Proliferator-activated Receptor γ Co-activator 1α (PGC-1α).

    Science.gov (United States)

    Svensson, Kristoffer; Schnyder, Svenia; Albert, Verena; Cardel, Bettina; Quagliata, Luca; Terracciano, Luigi M; Handschin, Christoph

    2015-06-26

    Resveratrol (RSV) and SRT1720 (SRT) elicit beneficial metabolic effects and are postulated to ameliorate obesity and related metabolic complications. The co-activator, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), has emerged as a major downstream effector responsible for metabolic remodeling of muscle and other metabolic tissues in response to RSV or SRT treatment. However, the requirement of PGC-1α in skeletal muscle for the systemic metabolic effects of these compounds has so far not been demonstrated. Using muscle-specific PGC-1α knock-out mice, we show that PGC-1α is necessary for transcriptional induction of mitochondrial genes in muscle with both RSV and SRT treatment. Surprisingly, the beneficial effects of SRT on glucose homeostasis and of both compounds on energy expenditure occur even in the absence of muscle PGC-1α. Moreover, RSV and SRT treatment elicit differential transcriptional effects on genes involved in lipid metabolism and mitochondrial biogenesis in liver and adipose tissue. These findings indicate that RSV and SRT do not induce analogous metabolic effects in vivo. Our results provide important insights into the mechanism, effects, and organ specificity of the caloric restriction mimetics RSV and SRT. These findings are important for the design of future therapeutic interventions aimed at ameliorating obesity and obesity-related metabolic dysfunction. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Resveratrol and SRT1720 Elicit Differential Effects in Metabolic Organs and Modulate Systemic Parameters Independently of Skeletal Muscle Peroxisome Proliferator-activated Receptor γ Co-activator 1α (PGC-1α)*

    Science.gov (United States)

    Svensson, Kristoffer; Schnyder, Svenia; Albert, Verena; Cardel, Bettina; Quagliata, Luca; Terracciano, Luigi M.; Handschin, Christoph

    2015-01-01

    Resveratrol (RSV) and SRT1720 (SRT) elicit beneficial metabolic effects and are postulated to ameliorate obesity and related metabolic complications. The co-activator, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), has emerged as a major downstream effector responsible for metabolic remodeling of muscle and other metabolic tissues in response to RSV or SRT treatment. However, the requirement of PGC-1α in skeletal muscle for the systemic metabolic effects of these compounds has so far not been demonstrated. Using muscle-specific PGC-1α knock-out mice, we show that PGC-1α is necessary for transcriptional induction of mitochondrial genes in muscle with both RSV and SRT treatment. Surprisingly, the beneficial effects of SRT on glucose homeostasis and of both compounds on energy expenditure occur even in the absence of muscle PGC-1α. Moreover, RSV and SRT treatment elicit differential transcriptional effects on genes involved in lipid metabolism and mitochondrial biogenesis in liver and adipose tissue. These findings indicate that RSV and SRT do not induce analogous metabolic effects in vivo. Our results provide important insights into the mechanism, effects, and organ specificity of the caloric restriction mimetics RSV and SRT. These findings are important for the design of future therapeutic interventions aimed at ameliorating obesity and obesity-related metabolic dysfunction. PMID:25987562

  4. Mitochondrial oxidative function and type 2 diabetes

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Boushel, Robert; Dela, Flemming

    2006-01-01

    The cause of insulin resistance and type 2 diabetes is unknown. The major part of insulin-mediated glucose disposal takes place in the skeletal muscle, and increased amounts of intramyocellular lipid has been associated with insulin resistance and linked to decreased activity of mitochondrial...... oxidative phosphorylation. This review will cover the present knowledge and literature on the topics of the activity of oxidative enzymes and the electron transport chain (ETC) in skeletal muscle of patients with type 2 diabetes. Different methods of studying mitochondrial function are described, including...... discussed. Several studies show reduced activity of oxidative enzymes in skeletal muscle of type 2 diabetics. The reductions are independent of muscle fiber type, and are accompanied by visual evidence of damaged mitochondria. In most studies, the reduced oxidative enzyme activity is explained by decreases...

  5. Corruption, Government Expenditures and Economic Performance ...

    African Journals Online (AJOL)

    Corruption, Government Expenditures and Economic Performance: Nigeria's Experience in the New Democratic Era (1999-2012) ... African Journal of Sustainable Development ... It further indicates that capital expenditure component of government expenditure negatively impacted growth in the sample periods. The impact ...

  6. The Neuro-Ophthalmology of Mitochondrial Disease

    Science.gov (United States)

    Fraser, J. Alexander; Biousse, Valérie; Newman, Nancy J.

    2010-01-01

    Mitochondrial diseases frequently manifest neuro-ophthalmologic symptoms and signs. Because of the predilection of mitochondrial disorders to involve the optic nerves, extraocular muscles, retina, and even the retrochiasmal visual pathways, the ophthalmologist is often the first physician to be consulted. Disorders caused by mitochondrial dysfunction can result from abnormalities in either the mitochondrial DNA or in nuclear genes which encode mitochondrial proteins. Inheritance of these mutations will follow patterns specific to their somatic or mitochondrial genetics. Genotype-phenotype correlations are inconstant, and considerable overlap may occur among these syndromes. The diagnostic approach to the patient with suspected mitochondrial disease entails a detailed personal and family history, careful ophthalmic, neurologic, and systemic examination, directed investigations, and attention to potentially life-threatening sequelae. Although curative treatments for mitochondrial disorders are currently lacking, exciting research advances are being made, particularly in the area of gene therapy. Leber hereditary optic neuropathy, with its window of opportunity for timely intervention and its accessibility to directed therapy, offers a unique model to study future therapeutic interventions. Most patients and their relatives benefit from informed genetic counseling. PMID:20471050

  7. Skeletal muscle autophagy and mitophagy in response to high-fat feeding and endurance training

    OpenAIRE

    Tarpey, Michael

    2016-01-01

    Obesity is associated with reduced skeletal muscle insulin sensitivity, a major risk factor for development of type II diabetes. These metabolic diseases are commonly associated with an accumulation of mitochondrial dysfunction, which is speculated to contribute toward insulin resistance. High-fat diets reduce human skeletal muscle insulin sensitivity and mitochondrial function. Conversely, endurance training increases insulin sensitivity and enhances mitochondrial performance. Recent evidenc...

  8. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  9. Your Muscles

    Science.gov (United States)

    ... Should You Go to School? Breast Cancer Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  10. Contribution of anaerobic energy expenditure to whole body thermogenesis

    Directory of Open Access Journals (Sweden)

    Scott Christopher B

    2005-06-01

    Full Text Available Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis. An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

  11. Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells.

    Science.gov (United States)

    Kim, Nami; Nam, Miso; Kang, Mi Sun; Lee, Jung Ok; Lee, Yong Woo; Hwang, Geum-Sook; Kim, Hyeon Soo

    2017-01-24

    This study characterizes the human metabolic response to piperine, a curcumin extract, and the details of its underlying molecular mechanism. Using (1)H-NMR-based metabolome analysis, we showed the metabolic effect of piperine on skeletal muscle and found that piperine increased the level of intracellular lactate, an important metabolic intermediate that controls expression of several genes involved in mitochondrial activity. Piperine also induced the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target, acetyl-CoA carboxylase (ACC), while additionally stimulating glucose uptake in an AMPK dependent manner. Piperine also stimulates the p38 mitogen-activated protein kinase (p38 MAPK), an effect that was reversed by pretreatment with compound C, an AMPK inhibitor. Inhibition of p38 MAPK resulted in no piperine-induced glucose uptake. Increased level of lactate resulted in increased expression of mitochondrial uncoupling protein 1 (UCP1), which regulates energy expenditure, thermogenesis, and fat browning. Knock-down of AMPK blocked piperine-induced UCP1 up-regulation, demonstrating the required role of AMPK in this effect. Taken together, these results suggest that piperine leads to benign metabolic effects by activating the AMPK-p38 MAPK signaling pathway and UCP1 expression by activating intracellular lactate production in skeletal muscle.

  12. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    Science.gov (United States)

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  13. Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration

    DEFF Research Database (Denmark)

    Larsen, Steen; Rabøl, R; Hansen, C N

    2012-01-01

    The glucose-lowering drug metformin has been shown to inhibit complex I of the mitochondrial electron transport chain in skeletal muscle. To investigate this effect in vivo we studied skeletal muscle mitochondrial respiratory capacity and content from patients with type 2 diabetes treated with me...

  14. Social Welfare Expenditures and Infant Mortality.

    Science.gov (United States)

    Shim, Joyce

    2015-01-01

    This study examines the effects of social welfare expenditures on infant mortality (deaths younger than age 1 per 1,000 live births) across 19 Organisation for Economic Co-operation and Development (OECD) countries from 1980 to 2010. Data are obtained from various sources including the OECD, World Health Organization, and World Bank. The findings indicate that among three social welfare expenditure measures for families, the expenditures on family cash allowances are predicted to reduce infant mortality. However, the other two measures-the expenditures on parental and maternity leave and expenditures on family services-have no significant effects on infant mortality.

  15. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  16. Legal procedures regarding state budget expenditure

    Directory of Open Access Journals (Sweden)

    Andrzej Borodo

    2016-03-01

    Full Text Available Government spending and the procedures for making them can be examined on the basis of many of public regulations, which are the legal grounds for these expenditure. The procedures of government spending can be studied in the field of personal expenditure of the state budget (including salaries, pensions and social benefits. Appropriate procedures are related to expenditure for purchases of goods and services and for making of public investments (e.g. public roads and buildings. An extensive area of expenditure is in the form of grants. There are special legal ways for transferring the budget grants to different legal organizations and entities. The state expenditure are fixed in the Budget Act. The implementation of the budgetary expenditure needs to take up, by state authorities and agencies, thousands of individual and concrete actions (e.g. the contracts, administrative decisions, other activities. That is, in the Budget Act fixed expenditure have, in principle, normative act features.

  17. Mitochondrial fusion, fission, and mitochondrial toxicity.

    Science.gov (United States)

    Meyer, Joel N; Leuthner, Tess C; Luz, Anthony L

    2017-08-05

    Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mitochondrial signatures revealed panmixia in Lutjanus ...

    Indian Academy of Sciences (India)

    user

    photographed, tissue collected and preserved in absolute alcohol for further DNA isolation. The total genomic DNA was isolated from the muscle tissue/fin clips ..... red snapper (Lutjanus campechanus) from the Gulf of Mexico and Atlantic coast of Florida as determined from mitochondrial DNA control region sequence. Mar ...

  19. Intramuscular variation in mitochondrial functionality of beef ...

    African Journals Online (AJOL)

    Intramuscular color stability variations in beef semimembranosus have been reported previously. Mitochondria remain biochemically active in postmortem muscle and can influence fresh beef color stability. However, the role of mitochondrial functionality in intramuscular color variations in beef semimembranosus is yet to be ...

  20. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance

    Science.gov (United States)

    Fazakerley, Daniel J; Chaudhuri, Rima; Yang, Pengyi; Maghzal, Ghassan J; Thomas, Kristen C; Krycer, James R; Humphrey, Sean J; Parker, Benjamin L; Fisher-Wellman, Kelsey H; Meoli, Christopher C; Hoffman, Nolan J; Diskin, Ciana; Burchfield, James G; Cowley, Mark J; Kaplan, Warren; Modrusan, Zora; Kolumam, Ganesh; Yang, Jean YH; Chen, Daniel L; Samocha-Bonet, Dorit; Greenfield, Jerry R; Hoehn, Kyle L

    2018-01-01

    Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance. PMID:29402381

  1. Incentives of Health Care Expenditure

    Directory of Open Access Journals (Sweden)

    Eero Siljander

    2012-12-01

    Full Text Available The incentives of health care expenditure (HCE have been a topic of discussion in the USA (Obama reforms and in Europe (adjustment to debt crisis. There are competing views of institutional versus GDP (unit income elasticity and productivity related factors of growth of expenditure. However ageing of populations, technology change and economic incentives related to institutions are also key drivers of growth according to the OECD and EU’s AWG committee. Simulation models have been developed to forecast the growth of social expenditure (including HCEs to 2050. In this article we take a historical perspective to look at the institutional structures and their relationship to HCE growth. When controlling for age structure, price developments, doctor density and in-patient and public shares of expenditures, we find that fee-for-service in primary care, is according to the results, in at least 20 percent more costly than capitation or salary remuneration. Capitation and salary (or wage remuneration are at same cost levels in primary care. However we did not find the cost lowering effect for gatekeeping which could have been expected based on previous literature. Global budgeting 30 (partly DRG based percent less costly in specialized care than other reimbursement schemes like open contracting or volume based reimbursement. However the public integration of purchaser and provider cost seems to result to about 20 higher than public reimbursement or public contracting. Increasing the number of doctors or public financing share results in increased HCEs. Therefore expanding public reimbursement share of health services seems to lead to higher HCE. On the contrary, the in-patient share reduced expenditures. Compared to the previous literature, the finding on institutional dummies is in line with similar modeling papers. However the results for public expansion of services is a contrary one to previous works on the subject. The median lag length of

  2. Skeletal Muscle Mitochondria and Aging: A Review

    Directory of Open Access Journals (Sweden)

    Courtney M. Peterson

    2012-01-01

    Full Text Available Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline.

  3. Mitochondrial DNA Alterations and Reduced Mitochondrial Function in Aging

    OpenAIRE

    Hebert, Sadie L.; Lanza, Ian R.; Nair, K. Sreekumaran

    2010-01-01

    Oxidative damage to mitochondrial DNA increases with aging. This damage has the potential to affect mitochondrial DNA replication and transcription which could alter the abundance or functionality of mitochondrial proteins. This review describes mitochondrial DNA alterations and changes in mitochondrial function that occur with aging. Age-related alterations in mitochondrial DNA as a possible contributor to the reduction in mitochondrial function are discussed.

  4. Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux

    NARCIS (Netherlands)

    Ost, M.; Keipert, S.; Schothorst, van E.M.; Donner, V.; Stelt, van der I.; Kipp, A.; Petzke, K.J.; Jove, M.; Pamplona, R.; Portero-Otin, M.; Keijer, J.; Klaus, S.

    2015-01-01

    Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory

  5. Amino acid deprivation due to overexpression of UCP1 in skeletal muscle: signalling via FGF-21

    NARCIS (Netherlands)

    Ost, M.; Schothorst, van Evert; Keipert, S.; Romijnders-van der Stelt, Inge; Klaus, S.; Keijer, Jaap

    2015-01-01

    Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory

  6. Irisin Controls Growth, Intracellular Ca2+ Signals, and Mitochondrial Thermogenesis in Cardiomyoblasts.

    Directory of Open Access Journals (Sweden)

    Chao Xie

    Full Text Available Exercise offers short-term and long-term health benefits, including an increased metabolic rate and energy expenditure in myocardium. The newly-discovered exercise-induced myokine, irisin, stimulates conversion of white into brown adipocytes as well as increased mitochondrial biogenesis and energy expenditure. Remarkably, irisin is highly expressed in myocardium, but its physiological effects in the heart are unknown. The objective of this work is to investigate irisin's potential multifaceted effects on cardiomyoblasts and myocardium. For this purpose, H9C2 cells were treated with recombinant irisin produced in yeast cells (r-irisin and in HEK293 cells (hr-irisin for examining its effects on cell proliferation by MTT [3-(4, 5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay and on gene transcription profiles by qRT-PCR. R-irisin and hr-irisin both inhibited cell proliferation and activated genes related to cardiomyocyte metabolic function and differentiation, including myocardin, follistatin, smooth muscle actin, and nuclear respiratory factor-1. Signal transduction pathways affected by r-irisin in H9C2 cells and C57BL/6 mice were examined by detecting phosphorylation of PI3K-AKT, p38, ERK or STAT3. We also measured intracellular Ca2+ signaling and mitochondrial thermogenesis and energy expenditure in r-irisin-treated H9C2 cells. The results showed that r-irisin, in a certain concentration rage, could activate PI3K-AKT and intracellular Ca2+ signaling and increase cellular oxygen consumption in H9C2 cells. Our study also suggests the existence of irisin-specific receptor on the membrane of H9C2 cells. In conclusion, irisin in a certain concentration rage increased myocardial cell metabolism, inhibited cell proliferation and promoted cell differentiation. These effects might be mediated through PI3K-AKT and Ca2+ signaling, which are known to activate expression of exercise-related genes such as follistatin and myocardin. This work

  7. [Familiar chronic progressive external ophthalmoplegia of mitochondrial origin].

    Science.gov (United States)

    Pineda, M; Playán-Ariso, A; Alcaine-Villarroya, M J; Vernet, A M; Serra-Castanera, A; Solano, A; Vilaseca, M A; Artuch, R; López-Pérez, M; Briones-Godino, M P; Andreu, A; Montoya, J

    The syndrome of chronic progressive external ophthalmoplegia (CPEO) is a mitochondrial disease characterized by ptosis and ophthalmoplegia has that has been associated to the presence of large deletion, single or multiple, in the mitochondrial DNA of skeletal muscle. We report a familiar case of chronic progressive external ophthalmoplegia of maternal inheritance that began at birth, and developed with slow progression but with no multisystemic involvement. Non of the affected individuals had ragged-red fibers in skeletal muscle. Genetic analysis of mitochondrial DNA revealed the presence of a single deletion of 4,977 bp that encompasses the nucleotide positions 8,482 to 13,460, flanked by a direct repeat sequence. The amount of deleted mitochondrial DNA (15%) in this patient's muscle suggests, even if the percentage of the mutation is low, that this deletion is the molecular cause of the phenotypic presentation of this patient. This is one of the few cases described in the literature of CPEO maternally inherited.

  8. Mitochondrial Aging: Is There a Mitochondrial Clock?

    Science.gov (United States)

    Zorov, Dmitry B; Popkov, Vasily A; Zorova, Ljubava D; Vorobjev, Ivan A; Pevzner, Irina B; Silachev, Denis N; Zorov, Savva D; Jankauskas, Stanislovas S; Babenko, Valentina A; Plotnikov, Egor Y

    2017-09-01

    Fragmentation (fission) of mitochondria, occurring in response to oxidative challenge, leads to heterogeneity in the mitochondrial population. It is assumed that fission provides a way to segregate mitochondrial content between the "young" and "old" phenotype, with the formation of mitochondrial "garbage," which later will be disposed. Fidelity of this process is the basis of mitochondrial homeostasis, which is disrupted in pathological conditions and aging. The asymmetry of the mitochondrial fission is similar to that of their evolutionary ancestors, bacteria, which also undergo an aging process. It is assumed that mitochondrial markers of aging are recognized by the mitochondrial quality control system, preventing the accumulation of dysfunctional mitochondria, which normally are subjected to disposal. Possibly, oncocytoma, with its abnormal proliferation of mitochondria occupying the entire cytoplasm, represents the case when segregation of damaged mitochondria is impaired during mitochondrial division. It is plausible that mitochondria contain a "clock" which counts the degree of mitochondrial senescence as the extent of flagging (by ubiquitination) of damaged mitochondria. Mitochondrial aging captures the essence of the systemic aging which must be analyzed. We assume that the mitochondrial aging mechanism is similar to the mechanism of aging of the immune system which we discuss in detail. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Perinatal protein malnutrition affects mitochondrial function in adult and results in a resistance to high fat diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Céline Jousse

    Full Text Available Epidemiological findings indicate that transient environmental influences during perinatal life, especially nutrition, may have deleterious heritable health effects lasting for the entire life. Indeed, the fetal organism develops specific adaptations that permanently change its physiology/metabolism and that persist even in the absence of the stimulus that initiated them. This process is termed "nutritional programming". We previously demonstrated that mothers fed a Low-Protein-Diet (LPD during gestation and lactation give birth to F1-LPD animals presenting metabolic consequences that are different from those observed when the nutritional stress is applied during gestation only. Compared to control mice, adult F1-LPD animals have a lower body weight and exhibit a higher food intake suggesting that maternal protein under-nutrition during gestation and lactation affects the energy metabolism of F1-LPD offspring. In this study, we investigated the origin of this apparent energy wasting process in F1-LPD and demonstrated that minimal energy expenditure is increased, due to both an increased mitochondrial function in skeletal muscle and an increased mitochondrial density in White Adipose Tissue. Importantly, F1-LPD mice are protected against high-fat-diet-induced obesity. Clearly, different paradigms of exposure to malnutrition may be associated with differences in energy expenditure, food intake, weight and different susceptibilities to various symptoms associated with metabolic syndrome. Taken together these results demonstrate that intra-uterine environment is a major contributor to the future of individuals and disturbance at a critical period of development may compromise their health. Consequently, understanding the molecular mechanisms may give access to useful knowledge regarding the onset of metabolic diseases.

  10. State energy price and expenditure report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.

  11. State energy price and expenditure report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1980, and 1985 through 1992. Data for all years, 1970 through 1992, are available on personal computer diskettes.

  12. Geographic Distribution of VA Expenditures FY2012

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  13. Geographic Distribution of VA Expenditures FY2007

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  14. Geographic Distribution of VA Expenditures FY1999

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  15. Geographic Distribution of VA Expenditures FY2008

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  16. Geographic Distribution of VA Expenditures FY2004

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  17. Geographic Distribution of VA Expenditures FY2000

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  18. Geographic Distribution of VA Expenditures FY2005

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  19. Geographic Distribution of VA Expenditures FY2003

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  20. Geographic Distribution of VA Expenditures FY 2016

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  1. Geographic Distribution of VA Expenditures FY2009

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  2. Geographic Distribution of VA Expenditures FY2006

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  3. Geographic Distribution of VA Expenditures FY2011

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  4. Geographic Distribution of VA Expenditures FY2013

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  5. Geographic Distribution of VA Expenditures FY1997

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  6. Geographic Distribution of VA Expenditures FY2010

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  7. Geographic Distribution of VA Expenditures FY1996

    Data.gov (United States)

    Department of Veterans Affairs — This report details VA expenditures at the state, county, and Congressional District level. It includes categories such as Compensation and Pension, Construction,...

  8. State energy price and expenditure report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1975, 1980, and 1985 through 1991. Data for all years, 1970 through 1991, are available on personal computer diskettes. Documentation in Appendix A describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. This report is an update of the State Energy Price and Expenditure Report 1990, published in September 1992.

  9. Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2012-01-01

    satellite cells at early and late passage numbers. We show that cultured muscle satellite cells undergoing senescence express a reduced mitochondrial mass, decreased whole cell ATP level, normal to increased mitochondrial ATP production under ATP utilization, increased mitochondrial membrane potential......The free radical theory of aging says that increased oxidative stress and mitochondrial dysfunction are associated with old age. In the present study we have investigated the effects of cellular senescence on muscle energetic by comparing mitochondrial content and function in cultured muscle...... and increased superoxide/mitochondrial mass and hydrogen peroxide/mitochondrial mass ratios. Moreover, the increased ROS production correlates with the corresponding mitochondrial ATP production. Thus, myotubes differentiated from human myoblasts undergoing senescence have a reduced mitochondrial content...

  10. Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Ehinger, Johannes K; Morota, Saori; Hansson, Magnus J; Paul, Gesine; Elmér, Eskil

    2015-06-01

    Mitochondrial dysfunction is implicated in amyotrophic lateral sclerosis, where the progressive degeneration of motor neurons results in muscle atrophy, paralysis and death. Abnormalities in both central nervous system and muscle mitochondria have previously been demonstrated in patient samples, indicating systemic disease. In this case-control study, venous blood samples were acquired from 24 amyotrophic lateral sclerosis patients and 21 age-matched controls. Platelets and peripheral blood mononuclear cells were isolated and mitochondrial oxygen consumption measured in intact and permeabilized cells with additions of mitochondrial substrates, inhibitors and titration of an uncoupler. Respiratory values were normalized to cell count and for two markers of cellular mitochondrial content, citrate synthase activity and mitochondrial DNA, respectively. Mitochondrial function was correlated with clinical staging of disease severity. Complex IV (cytochrome c-oxidase)-activity normalized to mitochondrial content was decreased in platelets from amyotrophic lateral sclerosis patients both when normalized to citrate synthase activity and mitochondrial DNA copy number. In mononuclear cells, complex IV-activity was decreased when normalized to citrate synthase activity. Mitochondrial content was increased in amyotrophic lateral sclerosis patient platelets. In mononuclear cells, complex I activity declined and mitochondrial content increased progressively with advancing disease stage. The findings are, however, based on small subsets of patients and need to be confirmed. We conclude that when normalized to mitochondria-specific content, complex IV-activity is reduced in blood cells from amyotrophic lateral sclerosis patients and that there is an apparent compensatory increase in cellular mitochondrial content. This supports systemic involvement in amyotrophic lateral sclerosis and suggests further study of mitochondrial function in blood cells as a future biomarker for the

  11. 11 CFR 110.20 - Prohibition on contributions, donations, expenditures, independent expenditures, and...

    Science.gov (United States)

    2010-01-01

    ..., expenditures, independent expenditures, and disbursements by foreign nationals (2 U.S.C. 441e, 36 U.S.C. 510..., independent expenditures, and disbursements by foreign nationals (2 U.S.C. 441e, 36 U.S.C. 510). (a... abroad. (6) Solicit has the same meaning as in 11 CFR 300.2(m). (7) Safe Harbor. For purposes of...

  12. Mitochondrial disease and epilepsy.

    Science.gov (United States)

    Rahman, Shamima

    2012-05-01

    Mitochondrial respiratory chain disorders are relatively common inborn errors of energy metabolism, with a combined prevalence of one in 5000. These disorders typically affect tissues with high energy requirements, and cerebral involvement occurs frequently in childhood, often manifesting in seizures. Mitochondrial diseases are genetically heterogeneous; to date, mutations have been reported in all 37 mitochondrially encoded genes and more than 80 nuclear genes. The major genetic causes of mitochondrial epilepsy are mitochondrial DNA mutations (including those typically associated with the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS] and myoclonic epilepsy with ragged red fibres [MERRF] syndromes); mutations in POLG (classically associated with Alpers syndrome but also presenting as the mitochondrial recessive ataxia syndrome [MIRAS], spinocerebellar ataxia with epilepsy [SCAE], and myoclonus, epilepsy, myopathy, sensory ataxia [MEMSA] syndromes in older individuals) and other disorders of mitochondrial DNA maintenance; complex I deficiency; disorders of coenzyme Q(10) biosynthesis; and disorders of mitochondrial translation such as RARS2 mutations. It is not clear why some genetic defects, but not others, are particularly associated with seizures. Epilepsy may be the presenting feature of mitochondrial disease but is often part of a multisystem clinical presentation. Mitochondrial epilepsy may be very difficult to manage, and is often a poor prognostic feature. At present there are no curative treatments for mitochondrial disease. Individuals with mitochondrial epilepsy are frequently prescribed multiple anticonvulsants, and the role of vitamins and other nutritional supplements and the ketogenic diet remain unproven. © The Author. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  13. State energy price and expenditure report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-30

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates for the 50 States, the District of Columbia, and the United States. The estimates are provided by energy source (e.g., petroleum, natural gas, coal, and electricity) and by major consuming or economic sector. This report is an update of the State Energy Price and Expenditure Report 1988 published in September 1990. Changes from the last report are summarized in a section of the documentation. Energy price and expenditure estimates are published for the years 1970, 1975, 1980, and 1985 through 1989. Documentation follows the tables and describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. Consumption estimates used to calculate expenditures, and the documentation for those estimates, are from the State Energy Data Report, Consumption Estimates, 1960--1989 (SEDR), published in May 1991. Expenditures are calculated by multiplying the price estimates by the consumption estimates, adjusted to remove process fuel and intermediate product consumption. All expenditures are consumer expenditures, that is, they represent estimates of money directly spent by consumers to purchase energy, generally including taxes. 11 figs., 43 tabs.

  14. Determinants of dairy consumption expenditure in urban ...

    African Journals Online (AJOL)

    The main purpose of the study was to examine the level of household expenditure on dairy products and to identify the principal factors that influence the level of consumption expenditure on dairy products across households in Accra and Kumasi. Structured questionnaire was used to elicit primary information from a total of ...

  15. Cassava household expenditure and anthropometric indices of ...

    African Journals Online (AJOL)

    Expenditure on cassava and other staple foods was determined for each household of the preschool children and classified into two groups and the average determined. Significance of difference between the mean Z – scores of the children for above and below average expenditure households was determined by Student ...

  16. Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Shunsuke Miura

    2017-09-01

    Full Text Available Aging is a major factor in the decline of limb blood flow with ischemia. However, the underlying mechanism remains unclear. We investigated the role of mitochondrial reactive oxygen species (ROS with regard to limb perfusion recovery in aging during ischemia. We performed femoral artery ligation in young and old mice with or without treatment with a scavenger of mitochondrial superoxide, MitoTEMPO (180 μg/kg/day, from pre-operative day 7 to post-operative day (POD 21 infusion using an implanted mini-pump. The recoveries of cutaneous blood flow in the ischemic hind limb were lower in old mice than in young mice but were improved in MitoTEMPO-treated old mice. Mitochondrial DNA damage appeared in ischemic aged muscles but was eliminated by MitoTEMPO treatment. For POD 2, MitoTEMPO treatment suppressed the expression of p53 and the ratio of Bax/Bcl2 and upregulated the expression of hypoxia-inducible factor-1α (HIF-1α and vascular endothelial growth factor (VEGF in ischemic aged skeletal muscles. For POD 21, MitoTEMPO treatment preserved the expression of PGC-1α in ischemic aged skeletal muscle. The ischemic soleus of old mice showed a lower mitochondrial respiratory control ratio in POD 21 compared to young mice, which was recovered in MitoTEMPO-treated old mice. Scavenging of mitochondrial superoxide attenuated mitochondrial DNA damage and preserved the mitochondrial respiration, in addition to suppression of the expression of p53 and preservation of the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α in ischemic skeletal muscles with aging. Resolution of excessive mitochondrial superoxide could be an effective therapy to recover blood flow of skeletal muscle during ischemia in senescence.

  17. Mitochondrial multiorgan disorder syndrome score generated from definite mitochondrial disorders

    Directory of Open Access Journals (Sweden)

    Finsterer J

    2017-10-01

    Full Text Available Josef Finsterer,1 Sinda Zarrouk-Mahjoub2 1Municipal Hospital Rudolfstiftung, Vienna, Austria; 2Genomics Platform, Pasteur Institute of Tunis, Tunis, Tunisia Objectives: Mitochondrial disorders (MIDs frequently present as mitochondrial multiorgan disorder syndrome (MIMODS at onset or evolve into MIMODS during the course. This study aimed to find which organs and/or tissues are most frequently affected by MIMODS, which are the most frequent abnormalities within an affected organ, whether there are typical MIMODS patterns, and to generate an MIMODS score to assess the diagnostic probability for an MID.Methods: This is a retrospective evaluation of clinical, biochemical, and genetic investigations of adult patients with definite MIDs. A total of 36 definite MID patients, 19 men and 17 women, aged 29–82 years were included in this study. The diagnosis was based on genetic testing (n=21, on biochemical investigations (n=17, or on both (n=2.Results: The number of organs most frequently affected was 4 ranging from 1 to 9. MIMODS was diagnosed in 97% of patients. The organs most frequently affected were the muscle (97%, central nervous system (CNS; 72%, endocrine glands (69%, heart (58%, intestines (55%, and peripheral nerves (50%. The most frequent CNS abnormalities were leukoencephalopathy, prolonged visually evoked potentials, and atrophy. The most frequent endocrine abnormalities included thyroid dysfunction, short stature, and diabetes. The most frequent cardiac abnormalities included arrhythmias, systolic dysfunction, and hypertrophic cardiomyopathy. The most frequent MIMODS patterns were encephalomyopathy, encephalo-myo-endocrinopathy, and encepalo-myo-endocrino-cardiopathy. The mean ± 2SD MIMODS score was 35.97±27.6 (range =11–71. An MIMODS score >10 was regarded as indicative of an MID.Conclusion: Adult MIDs manifest as MIMODS in the vast majority of the cases. The organs most frequently affected in MIMODS are muscles, CNS, endocrine

  18. State energy price and expenditure report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the US. The estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1995. Data for all years are available on a CD-ROM and via Internet. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1995, Consumption Estimates (SEDR), published in December 1997. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources.

  19. Muscle atrophy

    Science.gov (United States)

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  20. Muscle Disorders

    Science.gov (United States)

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  1. Muscle Cramps

    Science.gov (United States)

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  2. Impaired translocation and activation of mitochondrial Akt1 mitigated mitochondrial oxidative phosphorylation Complex V activity in diabetic myocardium.

    Science.gov (United States)

    Yang, Jia-Ying; Deng, Wu; Chen, Yumay; Fan, Weiwei; Baldwin, Kenneth M; Jope, Richard S; Wallace, Douglas C; Wang, Ping H

    2013-06-01

    Insulin can translocate Akt to mitochondria in cardiac muscle. The goals of this study were to define sub-mitochondrial localization of the translocated Akt, to dissect the effects of insulin on Akt isoform translocation, and to determine the direct effect of mitochondrial Akt activation on Complex V activity in normal and diabetic myocardium. The translocated Akt sequentially localized to the mitochondrial intermembrane space, inner membrane, and matrix. To confirm Akt translocation, in vitro import assay showed rapid entry of Akt into mitochondria. Akt isoforms were differentially regulated by insulin stimulation, only Akt1 translocated into mitochondria. In the insulin-resistant Type 2 diabetes model, Akt1 translocation was blunted. Mitochondrial activation of Akt1 increased Complex V activity by 24% in normal myocardium in vivo and restored Complex V activity in diabetic myocardium. Basal mitochondrial Complex V activity was lower by 22% in the Akt1(-/-) myocardium. Insulin-stimulated Complex V activity was not impaired in the Akt1(-/-) myocardium, due to compensatory translocation of Akt2 to mitochondria. Akt1 is the primary isoform that relayed insulin signaling to mitochondria and modulated mitochondrial Complex V activity. Activation of mitochondrial Akt1 enhanced ATP production and increased phosphocreatine in cardiac muscle cells. Dysregulation of this signal pathway might impair mitochondrial bioenergetics in diabetic myocardium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Clinical manifestation of mitochondrial diseases.

    Science.gov (United States)

    Magner, Martin; Kolářová, Hana; Honzik, Tomáš; Švandová, Ivana; Zeman, Jiří

    2015-01-01

    Mitochondrial disorders (MD) represent a clinically, biochemically and genetically heterogeneous group of diseases associated with dysfunction of the oxidative phosphorylation system and pyruvate dehydrogenase complex. Our aim was to illustrate the most common clinical presentation of MD on the example of selected diseases and syndromes. The minimal prevalence of MD is estimated as 1 to 5,000. MD may manifest at any age since birth until late-adulthood with acute manifestation or as a chronic progressive disease. Virtually any organ may be impaired, but the organs with the highest energetic demands are most frequently involved, including brain, muscle, heart and liver. Some MD may manifest as a characteristic cluster of clinical features (e.g. MELAS syndrome, Kearns-Sayre syndrome). Diagnostics includes detailed history, the comprehensive clinical examination, results of specialized examinations (especially cardiology, visual fundus examination, brain imaging, EMG), laboratory testing of body fluids (lactate, aminoacids, organic acids), and analysis of bioptic samples of muscle, skin, and liver, eventually. Normal lactate level in blood does not exclude the possibility of MD. Although the aimed molecular genetic analyses may be indicated in some of mitochondrial diseases, the methods of next generation sequencing come into focus. Examples of treatment are arginine supplementation in MELAS syndrome, ketogenic diet in pyruvate oxidation disorders or quinone analogs in patients with LHON. Conclusion: The clinical suspicion of a mitochondrial disorder is often delayed, or the disease remains undiagnosed. The correct diagnosis and adequate treatment can improve prognosis of the patient. Access to genetic counseling is also of great importance.

  4. Mitochondrial disorders in progressive muscular dystrophies

    Directory of Open Access Journals (Sweden)

    D. A. Kharlamov

    2014-01-01

    Full Text Available The literature review gives data on the role of mitochondrial disorders in the pathogenesis of different progressive muscular dystrophies. It describes changes in Duchenne, limb-girdle, facial scapulohumeral (Landuzi—Degerina muscular dystrophies. The review is based on both clinical and experimental animal studies. Along with the implication of mitochondria in the pathogenesis of the diseases, it describes muscular dystrophy treatment options compensating for energy disorders and overcoming oxidative stress and mitochondrial dysfunction. Mitochondrial studies in different muscle diseases hand physicians treatment modalities that fail to lead to recovery, but compensate for disorders caused by mutations in the genetic apparatus. 

  5. Muscle coordination: the discussion continues

    Science.gov (United States)

    Prilutsky

    2000-01-01

    In this response, the major criticisms of the target article are addressed. Terminology from the target article that may have caused some confusion is clarified. In particular, the tasks that have the basic features of muscle coordination, as identified in the target article, have been limited in scope. A new metabolic optimization criterion suggested by Alexander (2000) is examined for its ability to predict muscle coordination in walking. Issues concerning the validation of muscle force predictions, the rules of muscle coordination, and the role of directional constraints in coordination of two-joint muscles are discussed. It is shown in particular that even in one-joint systems, the forces predicted by the criterion of Crowninshield and Brand (1981) depend upon the muscle moment arms and the physiological cross-sectional areas in much more complex ways than either previously assumed in the target article, or incorrectly derived by Herzog and Ait-Haddou (2000). It is concluded that the criterion of Crowninshield and Brand qualitatively predicts the basic coordination features of the major one- and two-joint muscles in a number of highly skilled, repetitive motor tasks performed by humans under predictable conditions and little demands on stability and accuracy. A possible functional significance of such muscle coordination may be the minimization of perceived effort, muscle fatigue, and/or energy expenditure.

  6. Energy expenditure of acutely ill hospitalised patients

    Directory of Open Access Journals (Sweden)

    Gariballa Salah

    2006-03-01

    Full Text Available Abstract Objective To measure energy expenditure of acutely ill elderly patients in hospital and following discharge in the community. Design Sixty-three consecutive hospitalised acutely ill elderly patients were recruited. Eight patients were studied to assess the reliability of the Delta Tract Machine as a measure of energy expenditure; 35 patients had their energy expenditure studied in hospital on two occasions and 20 patients had their energy expenditure measured in hospital and at 6 weeks in the community Results Men had higher basal energy expenditure (BMR values compared to women however the difference was not statistically significant [Men, mean (SD 1405 (321 Kcal, women 1238 (322 kcal; mean difference (95% CI 166 kcal (-17 to 531, p = 0.075]. After adjusting for age, gender and body mass index both medication and C-reactive protein (CRP, concentrations showed significant correlation with measured energy expenditure in hospital, (r = -0.36, "p Conclusion Tissue inflammation and medications were associated with change in measured energy expenditure in acutely ill patients.

  7. Health care expenditure in the Nordic countries.

    Science.gov (United States)

    Gerdtham, U G; Jönsson, B

    1994-01-15

    International comparisons of health care expenditure are associated with many different kinds of problems. One type of problem is due to heterogenous definitions and to difficulties with conversion to common prices. Such problems are present also if one selects homogeneous countries as, for example, the Nordic countries, which have a similar GDP per capita and social system. In this paper we compare the health care expenditure in the Nordic countries to illustrate the significance of these problems in international comparisons. We also correct the latest available OECD statistics for local nursing homes, which are not included in health care expenditure for Denmark but are included for the other Nordic countries, and also for the care of the mentally retarded, which is not included in health care expenditure for Denmark or, after 1985, for Sweden. In addition, comparisons of health care expenditure are presented with different currency conversion factors. The comparisons show, for example, that Sweden has a higher expenditure share of gross domestic product (GDP) than Denmark, even after corrections have been made, but that the difference between the countries becomes considerably smaller, from 37% higher expenditure for Sweden without correction to 12-15% after correction.

  8. LHON/MELAS overlap syndrome associated with a mitochondrial MTND1 gene mutation.

    Science.gov (United States)

    Blakely, Emma L; de Silva, Rajith; King, Andrew; Schwarzer, Verena; Harrower, Tim; Dawidek, Gervase; Turnbull, Douglass M; Taylor, Robert W

    2005-05-01

    Pathogenic point mutations in the mitochondrial MTND1 gene have previously been described in association with two distinct clinical phenotypes -- Leber hereditary optic neuropathy (LHON) and mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Here we report the first heteroplasmic mitochondrial DNA (mtDNA) point mutation (3376G>A) in the MTND1 gene associated with an overlap syndrome comprising the clinical features of both LHON and MELAS. Muscle histochemistry revealed subtle mitochondrial abnormalities, while biochemical analysis showed an isolated complex I deficiency. Our findings serve to highlight the growing importance of mutations in mitochondrial complex I structural genes in MELAS and its associated overlap syndromes.

  9. Lactate metabolism during exercise in patients with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina Dysgaard; Ørngreen, Mette Cathrine; van Hall, Gerrit

    2013-01-01

    Patients with mitochondrial DNA mutations often have elevated plasma lactate at rest and during exercise, but it is unknown whether the high lactate levels are caused by a high production, an impaired oxidation or a combination. We studied lactate kinetics in 10 patients with mtDNA mutations and ...... is not solely an indicator of impaired oxidative capacity, but an important fuel for oxidative metabolism, even in muscle with severely impaired mitochondrial function....

  10. The PINK1/Parkin pathway regulates mitochondrial morphology

    OpenAIRE

    Poole, Angela C.; Ruth E Thomas; Andrews, Laurie A.; McBride, Heidi M.; Whitworth, Alexander J.; Pallanck, Leo J

    2008-01-01

    Loss-of-function mutations in the PTEN-induced kinase 1 (PINK1) or parkin genes, which encode a mitochondrially localized serine/threonine kinase and a ubiquitin-protein ligase, respectively, result in recessive familial forms of Parkinsonism. Genetic studies in Drosophila indicate that PINK1 acts upstream of Parkin in a common pathway that influences mitochondrial integrity in a subset of tissues, including flight muscle and dopaminergic neurons. The mechanism by which PINK1 and Parkin influ...

  11. Complete mitochondrial genome of a wild Siberian tiger.

    Science.gov (United States)

    Sun, Yujiao; Lu, Taofeng; Sun, Zhaohui; Guan, Weijun; Liu, Zhensheng; Teng, Liwei; Wang, Shuo; Ma, Yuehui

    2015-01-01

    In this study, the complete mitochondrial genome of Siberian tiger (Panthera tigris altaica) was sequenced, using muscle tissue obtained from a male wild tiger. The total length of the mitochondrial genome is 16,996 bp. The genome structure of this tiger is in accordance with other Siberian tigers and it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes, and 1 control region.

  12. Mitochondrial dysfunction in type 2 diabetes and obesity

    DEFF Research Database (Denmark)

    Højlund, Kurt; Mogensen, Martin; Sahlin, Kent

    2008-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes mellitus (T2D) and obesity that is characterized by impaired insulin-mediated glucose transport and glycogen synthesis and by increased intramyocellular content of lipid metabolites. Several studies have provided evidence...... for mitochondrial dysfunction in skeletal muscle of type 2 diabetic and prediabetic subjects, primarily due to a lower content of mitochondria (mitochondrial biogenesis) and possibly to a reduced functional capacity per mitochondrion. This article discusses the latest advances in the understanding of the molecular...... mechanisms underlying insulin resistance in human skeletal muscle in T2D and obesity, with a focus on possible links between insulin resistance and mitochondrial dysfunction....

  13. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    Science.gov (United States)

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen

  14. Energy expenditure of hunter-gatherers: when statistics turns to be unreliable.

    Science.gov (United States)

    Heneberg, Petr

    2014-01-01

    Physical inactivity is a major public health problem in developed countries, and the fourth leading mortality risk factor globally. Recently, it was suggested that the total energy expenditure of sedentary Western population is similar to the total energy expenditure of Hadza hunter-gatherers known for their traditional foraging lifestyle in the savannah-woodland environment. However, this claim was based on the similarity of metabolic rates of walking and resting, and completely ignored the effects of different total energy expenditure normalized to the fat free body mass in individuals of different height and weight. The above claim stemmed from mixing the effects of tissues with low metabolic rate (bone) and those with high metabolic rate (muscle, liver, brain, etc.). Thus, the total energy expenditure is not similar among the sedentary Westerners and the Hadza hunter-gatherers. While the total energy expenditure recorded for basic human activities is similar across a broad range of cultures and lifestyles when adjusted to the weight, the unadjusted values differ. Thus, increase in body mass, and particularly the obesity, serves as compensatory total energy expenditure increasing mechanism resulting from the combination of low physical activity levels and high long-term total energy intake. Thus if two individuals at iso-energetic conditions match their energy demand with different substrates' contribution, it may be caused, e.g., by their reliance on a different contribution of fatty acids oxidation to cope with energy demand. Differences in substrate partitioning need to be addressed when assessing the energy expenditure across multiple human populations.

  15. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  16. Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Hannah G Radley-Crabb

    Full Text Available The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old and adult (12- to 14-wk-old male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles.

  17. Northeast Marine Recreational Fishing Expenditure Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A series of expenditure surveys have been done both regionally and nationally. This data pertains to the Northeast U.S. states that was collected in 1998....

  18. Marine angler expenditures 2006 (NCEI Accession 0145343)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Angler expenditures for their most recent trip in 2006, by fishing mode - for-hire, private boat, shore. Includes categories such as bait, ice, fuel, lodging, meals,...

  19. Modeling Per Capita State Health Expenditure Variat...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Modeling Per Capita State Health Expenditure Variation State-Level Characteristics Matter, published in Volume 3, Issue 4, of the Medicare and Medicaid Research...

  20. Government Expenditure on Growth Strategies and Poverty ...

    African Journals Online (AJOL)

    poverty and government expenditure on growth strategies that have been implemented in Tanzania since the mid 2000s. The paper shows that despite impressive economic growth of about 6 percent per annum that the country has enjoyed in ...

  1. Reconciling Medical Expenditure Estimates from the MEPS...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Reconciling Medical Expenditure Estimates from the MEPS and NHEA, 2007, published in Volume 2, Issue 4 of the Medicare and Medicaid Research Review, provides a...

  2. Executive function, episodic memory, and Medicare expenditures.

    Science.gov (United States)

    Bender, Alex C; Austin, Andrea M; Grodstein, Francine; Bynum, Julie P W

    2017-07-01

    We examined the relationship between health care expenditures and cognition, focusing on differences across cognitive systems defined by global cognition, executive function, or episodic memory. We used linear regression models to compare annual health expenditures by cognitive status in 8125 Nurses' Health Study participants who completed a cognitive battery and were enrolled in Medicare parts A and B. Adjusting for demographics and comorbidity, executive impairment was associated with higher total annual expenditures of $1488 per person (P memory impairment was found. Expenditures exhibited a linear relationship with executive function, but not episodic memory ($584 higher for every 1 standard deviation decrement in executive function; P losses in executive function may be effective in reducing costly services. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  3. Wafer-scale Mitochondrial Membrane Potential Assays

    Science.gov (United States)

    Lim, Tae-Sun; Davila, Antonio; Zand, Katayoun; Douglas, Wallace C.; Burke, Peter J.

    2012-01-01

    It has been reported that mitochondrial metabolic and biophysical parameters are associated with degenerative diseases and the aging process. To evaluate these biochemical parameters, current technology requires several hundred milligrams of isolated mitochondria for functional assays. Here, we demonstrate manufacturable wafer-scale mitochondrial functional assay lab-on-a-chip devices, which require mitochondrial protein quantities three orders of magnitude less than current assays, integrated onto 4” standard silicon wafer with new fabrication processes and materials. Membrane potential changes of isolated mitochondria from various well-established cell lines such as human HeLa cell line (Heb7A), human osteosarcoma cell line (143b) and mouse skeletal muscle tissue were investigated and compared. This second generation integrated lab-on-a-chip system developed here shows enhanced structural durability and reproducibility while increasing the sensitivity to changes in mitochondrial membrane potential by an order of magnitude as compared to first generation technologies. We envision this system to be a great candidate to substitute current mitochondrial assay systems. PMID:22627274

  4. Acute mitochondrial myopathy with respiratory insufficiency and motor axonal polyneuropathy.

    Science.gov (United States)

    Zhou, Ying; Yi, Jianhua; Liu, Li; Wang, Xiaoping; Dong, Liang; Du, Ailian

    2017-10-16

    Mitochondrial myopathies (MMs) are mainly presented with chronic muscle weakness and accompanied with other syndromes. MM with acute respiratory insufficiency is rare. To reveal the clinical, pathological and molecular characteristics of a life-threatening MM. Muscle biopsy and enzyme staining were performed in skeletal muscles. Mitochondrial DNA (mtDNA) sequencing was analyzed and heteroplasmy were quantified by pyrosequencing. All three patients had tachycardia, acute lactic acidosis, dyspnea and sudden severe muscle weakness. Two patients had calf edema and abdominal pain, and one had a heart attack. Electromyography in two patients showed dramatically decreased axonal amplitudes of motor nerves. Muscle biopsies showed ragged red fibers and dramatic mitochondrial abnormality. A mtDNA m.3243A>G mutation was identified in Patient 1 (mutation load: 29% in blood and 73% in muscle) and Patient 3 (79% in blood and 89% in muscle). A mtDNA m.8344A>G mutation was found in Patient 2 (mutation load 80.4% in blood). MM characterized by lactic acidosis, respiratory failure and acute motor axonal neuropathy is life threatening.

  5. Novel methodology for pharmaceutical expenditure forecast

    OpenAIRE

    Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Rémuzat, Cécile; Urbinati, Duccio; Kornfeld, Åsa; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and objective: The value appreciation of new drugs across countries today features a disruption that is making the historical data that are used for forecasting pharmaceutical expenditure poorly reliable. Forecasting methods rarely addressed uncertainty. The objective of this project was to propose a methodology to perform pharmaceutical expenditure forecasting that integrates expected policy changes and uncertainty (developed for the European Commission as the ‘EU Pharmaceutical e...

  6. The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging.

    Science.gov (United States)

    Hiona, Asimina; Leeuwenburgh, Christiaan

    2008-01-01

    Aging is associated with a progressive loss of skeletal muscle mass and strength and the mechanisms mediating these effects likely involve mitochondrial DNA (mtDNA) mutations, mitochondrial dysfunction and the activation of mitochondrial-mediated apoptosis. Because the mitochondrial genome is densely packed and close to the main generator of reactive oxygen species (ROS) in the cell, the electron transport chain (ETC), an important role for mtDNA mutations in aging has been proposed. Point mutations and deletions in mtDNA accumulate with age in a wide variety of tissues in mammals, including humans, and often coincide with significant tissue dysfunction. Here, we examine the evidence supporting a causative role for mtDNA mutations in aging and sarcopenia. We review experimental outcomes showing that mtDNA mutations, leading to mitochondrial dysfunction and possibly apoptosis, are causal to the process of sarcopenia. Moreover, we critically discuss and dispute an important part of the mitochondrial 'vicious cycle' theory of aging which proposes that accumulation of mtDNA mutations may lead to an enhanced mitochondrial ROS production and ever increasing oxidative stress which ultimately leads to tissue deterioration and aging. Potential mechanism(s) by which mtDNA mutations may mediate their pathological consequences in skeletal muscle are also discussed.

  7. World Public Expenditure: Education and Armaments, 1965-74

    Science.gov (United States)

    Carceles, Gabriel

    1977-01-01

    The latest data on public expenditures show that since 1973 world expenditures on education have exceeded military expenditures in developed nations, but that the opposite situation prevails in developing nations. Beginning with 1965, this article summarizes these expenditures for the world as a whole, including developed and developing nations.…

  8. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea); Kim, Eung Yeop [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Brain Korea 21 Project for Medical Science, Seoul (Korea); Lee, Young-Mock; Lee, Joon Soo [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Kim, Heung Dong [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Yonsei University College of Medicine, Department of Pediatrics, Seoul (Korea)

    2008-08-15

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  9. Bigger expenditure on health required.

    Science.gov (United States)

    1994-01-01

    The most serious health problem in Uganda is AIDS, and prevalence rates range from 2% in remote areas to 30% in cities. AIDS is often seen in infants who were infected by their mothers and who generally die by age 5. The disease is rare in children between age 5 and 14 years, at which time sexual activity begins and infection occurs. By 1993, approximately 115,000 children in Uganda had been orphaned by AIDS. Because of widespread poverty, orphans are at jeopardy for malnutrition and reduced educational opportunities. The health infrastructure, hampered by low spending and an emphasis on curative rather than preventative measures, has been seriously overburdened by the AIDS crisis. The economy has also been affected, since AIDS has taken a particularly heavy toll on those 15-40 years old upon whom economic activities, such as labor intensive farming and growing cash crops, depends. Investments in other areas are in jeopardy also as highly trained professionals leave work to care for the sick or become sick themselves. Declines in domestic income and savings have repercussions throughout the national economy. Widespread poverty also exacerbates the AIDS crisis, especially since poverty drives individuals into adopting risk-taking behavior such as prostitution. Domestic violence has also increased as wives have refused to have sexual intercourse with husbands whom they believe have HIV infections. In order to deal with this crisis, the entire Ugandan society must be mobilized. Alternative sources of income must be sought for the poor, income-generating activities must be available to AIDS patients and their families, health care expenditures must increase, and home-based health care should be promoted. It is absolutely urgent for Ugandans to translate their knowledge about the causes of AIDS into changes in their sexual behavior which will protect them from the disease.

  10. Mitochondrial determinants of mammalian longevity.

    Science.gov (United States)

    Kitazoe, Yasuhiro; Hasegawa, Masami; Tanaka, Masashi; Futami, Midori; Futami, Junichiro

    2017-10-01

    Current ageing theories are far from satisfactory because of the many determinants involved in ageing. The well-known rate-of-living theory assumes that the product (lifetime energy expenditure, LEE) of maximum lifespan (MLS) and mass-specific basal metabolic rate (msBMR) is approximately constant. Although this theory provides a significant inverse correlation between msBMR and MLS as a whole for mammals, it remains problematic for two reasons. First, several interspecies studies within respective orders (typically within rodents) have shown no inverse relationships between msBMR and MLS. Second, LEE values widely vary in mammals and birds. Here, to solve these two problems, we introduced a new quantity designated as mitochondrial (mt) lifetime energy output, mtLEO = MLS × mtMR, in place of LEE, by using the mt metabolic rate (mtMR) per mitochondrion. Thereby, we found that mtLEO values were distributed more narrowly than LEE ones, and strongly correlated with the four amino-acid variables (AAVs) of Ser, Thr and Cys contents and hydrophobicity of mtDNA-encoded membrane proteins (these variables were related to the stability of these proteins). Consequently, only these two mt items, mtMR and the AAVs, solved the above-mentioned problems in the rate-of-living theory, and thus extensively improved the correlation with MLS compared with that given by LEE. © 2017 The Authors.

  11. Coenzyme Q10 Deficiency and Type 2C Muscle Fibers

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-12-01

    Full Text Available Investigators at Washington University School of Medicine, St Louis, MO, evaluated retrospectively clinical, laboratory, and muscle histochemistry and oxidative enzyme characteristics in 49 children with suspected mitochondrial disorders.

  12. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  13. Control of gene expression and mitochondrial biogenesis in the muscular adaption to endurance exercise

    DEFF Research Database (Denmark)

    Joseph, A. M.; Pilegaard, H.; Leick, L.

    2006-01-01

    of these adaptations is an increase in mitochondrial content, which confers a greater resistance to muscle fatigue. This essay reviews current knowledge on the regulation of exercise-induced mitochondrial biogenesis at the molecular level. The major steps involved include, (i) transcriptional regulation of nuclear...... disorders, as well as a variety of metabolic diseases....

  14. Muscle disorder

    Science.gov (United States)

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  15. Paternal reproductive strategy influences metabolic capacities and muscle development of Atlantic salmon (Salmo salar L.) embryos.

    Science.gov (United States)

    Morasse, Sébastien; Guderley, Helga; Dodson, Julian J

    2008-01-01

    Male Atlantic salmon follow a conditional strategy, becoming either "combatants" that undertake a seaward migration and spend at least a year at sea or "sneakers" that remain in freshwater and mature as parr. A variety of physiological indices showed significant but small differences between the offspring of males that use these two reproductive tactics. Offspring fathered by anadromous male Atlantic salmon (Salmo salar L.) showed greater muscular development and muscle metabolic capacities but lower spontaneous movements than those fathered by mature male parr. At hatch and at maximum attainable wet weight (MAWW), offspring fathered by anadromous males had higher activities of mitochondrial (cytochrome C oxidase and citrate synthase) and glycolytic (lactate dehydrogenase [LDH]) enzymes than progeny of mature male parr. Enzymatic profiles of progeny of anadromous fathers also suggested greater nitrogen excretion capacity (glutamate dehydrogenase) and increased muscular development (creatine kinase and LDH) than in the progeny of mature parr. At MAWW, juveniles fathered by mature parr made considerably more spontaneous movements, presumably increasing their energy expenditures. For juveniles fathered by anadromous males, total cross-sectional areas of white and red muscle at hatch were higher due to the greater number of large-diameter fibers. We suggest that the slightly lower metabolic capacities and muscular development of alevins fathered by mature parr could reflect differences in energy partitioning during their dependence on vitellus. Greater spontaneous movements of offspring of mature male parr could favor feeding and growth after the resorption of the vitellus.

  16. Re-interpreting anaerobic metabolism: an argument for the application of both anaerobic glycolysis and excess post-exercise oxygen comsumption (EPOC) as independent sources of energy expenditure.

    Science.gov (United States)

    Scott, C B

    1998-02-01

    Due to current technical difficulties and changing cellular conditions, the measurement of anaerobic and recovery energy expenditure remains elusive. During rest and low-intensity steady-state exercise, indirect calorimetric measurements successfully represent energy expenditure. The same steady-state O2 uptake methods are often used to describe the O2 deficit and excess post-oxygen consumption (EPOC): 1 l O2 = 5 kcal = 20.9 kJ. However, an O2 deficit plus exercise O2 uptake measurement ignores energy expenditure during recovery, and an exercise O2 uptake plus EPOC measurement misrepresents anaerobic energy expenditure. An alternative solution has not yet been proposed. Anaerobic glycolysis and mitochondrial respiration are construed here as a symbiotic union of metabolic pathways, each contributing independently to energy expenditure and heat production. Care must be taken when using O2 uptake alone to quantify energy expenditure because various high-intensity exercise models reveal that O2 uptake can lag behind estimated energy demands or exceed them. The independent bioenergetics behind anaerobic glycolysis and mitochondrial respiration can acknowledge these discrepancies. Anaerobic glycolysis is an additive component to an exercise O2 uptake measurement. Moreover, it is the assumptions behind steady-state O2 uptake that do not permit proper interpretation of energy expenditure during EPOC; 1 l O2 not = 20.9 kJ. Using both the O2 deficit and a modified EPOC for interpretation, rather than one or the other, leads to a better method of quantifying energy expenditure for higher intensity exercise and recovery.

  17. Progress in mitochondrial epigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana

    2013-08-01

    Mitochondria, intracellular organelles with their own genome, have been shown capable of interacting with epigenetic mechanisms in at least four different ways. First, epigenetic mechanisms that regulate the expression of nuclear genome influence mitochondria by modulating the expression of nuclear-encoded mitochondrial genes. Second, a cell-specific mitochondrial DNA content (copy number) and mitochondrial activity determine the methylation pattern of nuclear genes. Third, mitochondrial DNA variants influence the nuclear gene expression patterns and the nuclear DNA (ncDNA) methylation levels. Fourth and most recent line of evidence indicates that mitochondrial DNA similar to ncDNA also is subject to epigenetic modifications, particularly by the 5-methylcytosine and 5-hydroxymethylcytosine marks. The latter interaction of mitochondria with epigenetics has been termed 'mitochondrial epigenetics'. Here we summarize recent developments in this particular area of epigenetic research. Furthermore, we propose the term 'mitoepigenetics' to include all four above-noted types of interactions between mitochondria and epigenetics, and we suggest a more restricted usage of the term 'mitochondrial epigenetics' for molecular events dealing solely with the intra-mitochondrial epigenetics and the modifications of mitochondrial genome.

  18. Mitochondrial multiorgan disorder syndrome score generated from definite mitochondrial disorders.

    Science.gov (United States)

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2017-01-01

    Mitochondrial disorders (MIDs) frequently present as mitochondrial multiorgan disorder syndrome (MIMODS) at onset or evolve into MIMODS during the course. This study aimed to find which organs and/or tissues are most frequently affected by MIMODS, which are the most frequent abnormalities within an affected organ, whether there are typical MIMODS patterns, and to generate an MIMODS score to assess the diagnostic probability for an MID. This is a retrospective evaluation of clinical, biochemical, and genetic investigations of adult patients with definite MIDs. A total of 36 definite MID patients, 19 men and 17 women, aged 29-82 years were included in this study. The diagnosis was based on genetic testing (n=21), on biochemical investigations (n=17), or on both (n=2). The number of organs most frequently affected was 4 ranging from 1 to 9. MIMODS was diagnosed in 97% of patients. The organs most frequently affected were the muscle (97%), central nervous system (CNS; 72%), endocrine glands (69%), heart (58%), intestines (55%), and peripheral nerves (50%). The most frequent CNS abnormalities were leukoencephalopathy, prolonged visually evoked potentials, and atrophy. The most frequent endocrine abnormalities included thyroid dysfunction, short stature, and diabetes. The most frequent cardiac abnormalities included arrhythmias, systolic dysfunction, and hypertrophic cardiomyopathy. The most frequent MIMODS patterns were encephalomyopathy, encephalo-myo-endocrinopathy, and encepalo-myo-endocrino-cardiopathy. The mean ± 2SD MIMODS score was 35.97±27.6 (range =11-71). An MIMODS score >10 was regarded as indicative of an MID. Adult MIDs manifest as MIMODS in the vast majority of the cases. The organs most frequently affected in MIMODS are muscles, CNS, endocrine glands, and heart. An MIMODS score >10 suggests an MID.

  19. Muscle histochemistry in chronic alcoholism

    Directory of Open Access Journals (Sweden)

    M. L. Ferraz

    1989-06-01

    Full Text Available Twenty-two chronic acoholic patients were assessed by neurologic examination and muscle biopsy. The patients manifested proximal muscular weakness to a variable extent. One case presented as an acute bout of myopathy, according to the Manual Muscle Test, MMT. The most prominent histologic feature observed was muscle atrophy (95.3% better evidenced through the ATPase stain with the predominance of type II A fibers (71.4%. Lack of the mosaic pattern (type grouping seen in 76% of the cases and an important mitochondrial proliferation with intrasarcoplasmatic lipid accumulation in 63% of the patients. In case of acute presentation of muscle weakness the. pathological substrate is quite different, i.e. presence of myositis mainly interstitial characterized by lymphoplasmocytic infiltrate and several spots of necrosis like Zencker degeneration. Based on histologic criteria, our data suggest that: the main determinant of muscle weakness seen in chronic alcoholic patients is neurogenic in origin (alcoholic polineuropathy; the direct toxic action of ethanol under the skeletal muscle is closely related to the mitochondrial metabolism; the so-called acute alcoholic myopathy has probably viral etiology.

  20. Skeletal muscle mitochondria: a major player in exercise, health and disease.

    Science.gov (United States)

    Russell, Aaron P; Foletta, Victoria C; Snow, Rod J; Wadley, Glenn D

    2014-04-01

    Maintaining skeletal muscle mitochondrial content and function is important for sustained health throughout the lifespan. Exercise stimulates important key stress signals that control skeletal mitochondrial biogenesis and function. Perturbations in mitochondrial content and function can directly or indirectly impact skeletal muscle function and consequently whole-body health and wellbeing. This review will describe the exercise-stimulated stress signals and molecular mechanisms positively regulating mitochondrial biogenesis and function. It will then discuss the major myopathies, neuromuscular diseases and conditions such as diabetes and ageing that have dysregulated mitochondrial function. Finally, the impact of exercise and potential pharmacological approaches to improve mitochondrial function in diseased populations will be discussed. Exercise activates key stress signals that positively impact major transcriptional pathways that transcribe genes involved in skeletal muscle mitochondrial biogenesis, fusion and metabolism. The positive impact of exercise is not limited to younger healthy adults but also benefits skeletal muscle from diseased populations and the elderly. Impaired mitochondrial function can directly influence skeletal muscle atrophy and contribute to the risk or severity of disease conditions. Pharmacological manipulation of exercise-induced pathways that increase skeletal muscle mitochondrial biogenesis and function in critically ill patients, where exercise may not be possible, may assist in the treatment of chronic disease. This review highlights our understanding of how exercise positively impacts skeletal muscle mitochondrial biogenesis and function. Exercise not only improves skeletal muscle mitochondrial health but also enables us to identify molecular mechanisms that may be attractive targets for therapeutic manipulation. This article is part of a Special Issue entitled Frontiers of mitochondrial research. Copyright © 2013 Elsevier B

  1. Cinnamomum cassia Prevents High-Fat Diet-Induced Obesity in Mice through the Increase of Muscle Energy.

    Science.gov (United States)

    Song, Mi Young; Kang, Seok Yong; Kang, Anna; Hwang, Ji Hye; Park, Yong-Ki; Jung, Hyo Won

    2017-01-01

    The cortex of Cinnamomum cassia Presl (Cinnamomi Cortex: CC) has commonly been used for weight control in traditional medicines, but without a scientific basis. Therefore, this study was undertaken to investigate the anti-obesity effect of CC extract in a high-fat diet (HFD)-induced obese mouse model and in C2C12 mouse skeletal muscle cells. Male C57BL/6 mice were fed a normal diet or a HFD for 16 consecutive weeks, and orally administered CC extract (100 or 300[Formula: see text]mg/kg) or metformin (250[Formula: see text]mg/kg; positive control) daily for 16 weeks. CC extract administration significantly decreased body weights, food intakes, and serum levels of glucose, insulin, total cholesterol and ALT levels, prevented oral glucose tolerance and insulin resistance, inhibited the protein expressions of MyHC and PGC1[Formula: see text] and the phosphorylation of AMPK, suppressed lipid accumulation in liver, decreased adipocyte size and increased muscle mass in obese mice. For this in vitro study, C2C12 myoblasts were differentiated into the myotubes for five days, and then treated with CC extract (0.1 or 0.2[Formula: see text]mg/ml) for 24[Formula: see text]h. CC extract significantly increased ATP levels by increasing the mRNA expressions of mitochondrial biogenesis-related factors, such as, PGC1[Formula: see text], NRF-1, and Tfam, and the phosphorylations of AMPK and ACC. Our results suggest CC extract controls weight gain in obese mice by inhibiting lipid accumulation and increasing energy expenditure, and that its action mechanism involves the up-regulation of mitochondrial biogenesis in skeletal muscle cells.

  2. Vimar Is a Novel Regulator of Mitochondrial Fission through Miro.

    Directory of Open Access Journals (Sweden)

    Lianggong Ding

    2016-10-01

    Full Text Available As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF. However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro's effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson's disease (PD, caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional.

  3. Private dental insurance expenditure in Brazil

    Science.gov (United States)

    Cascaes, Andreia Morales; de Camargo, Maria Beatriz Junqueira; de Castilhos, Eduardo Dickie; Silva, lexandre Emídio Ribeiro; Barros, Aluísio J D

    2018-01-01

    ABSTRACT OBJECTIVE To quantify the household expenditure per capita and to estimate the percentage of Brazilian households that have spent with dental insurance. METHODS We analyzed data from 55,970 households that participated in the research Pesquisa de Orçamentos Familiares in 2008–2009. We have analyzed the annual household expenditure per capita with dental insurance (business and private) according to the Brazilian states and the socioeconomic and demographic characteristics of the households (sex, age, race, and educational level of the head of the household, family income, and presence of an older adult in the household). RESULTS Only 2.5% of Brazilian households have reported spending on dental insurance. The amount spent per capita amounted to R$5.10 on average, most of which consisted of private dental insurance (R$4.70). Among the characteristics of the household, higher educational level and income were associated with higher spending. São Paulo was the state with the highest household expenditure per capita (R$10.90) and with the highest prevalence of households with expenditures (4.6%), while Amazonas and Tocantins had the lowest values, in which both spent less than R$1.00 and had a prevalence of less than 0.1% of households, respectively. CONCLUSIONS Only a small portion of the Brazilian households has dental insurance expenditure. The market for supplementary dentistry in oral health care covers a restricted portion of the Brazilian population.

  4. PUBLIC EXPENDITURE ON HEALTH IN LOCAL BUDGETS

    Directory of Open Access Journals (Sweden)

    Cristinel ICHIM

    2017-06-01

    Full Text Available This paper entitled "Public expenditure on health in local budgets" aims analysing and deepening major spending categories that public authorities finance at local level, namely health expenditure. In the first part of the article we have specified the content and role of this category of expenditure in local budgets and also made some feedback on decentralization in health. In the second part of the work, based on data available in Statistical Yearbook of Romania, we have carried out an analysis of the dynamics of health spending from local budgets to emphasize their place and role in the health care expenses. The research carried out follows that the evolution and structure of health expenditure financed from local budgets is determined, along with the legislative framework in the field, by several variables that differ from one territorial administrative unit to another: the existence of sanitary units, their type, the involving of local public authorities in their development and modernization, the number and the social structure of the population. The research shows that over the period 1993-2015, the dynamics of the share of health spending in total expenditures of local budgets is sinusoidal, with a minimum threshold in 2000 of only 0.3%.

  5. Modulation of Energy Intake and Expenditure Due to Habitual Physical Exercise.

    Science.gov (United States)

    Martin, Matoulek; Krystof, Slaby; Jiri, Radvansky; Martina, Dankova; Renata, Vetrovska; Ondrej, Mikes; Stepan, Svacina; Vladimir, Tuka

    2016-01-01

    The 20th and 21st centuries are marked by an increase in life expectancy on one hand and on the other hand by the increase of so called civilization diseases. Their share one common trait: the energy metabolism imbalance, with low energy expenditure and high energy uptake. Our age can be viewed as the age of inactivity and wealth. The aim of the present review is to highlight the influence of habitual physical activity on energy metabolism and balance. Energy balance is the difference between energy intake and energy expenditure, where energy expenditure further divides into resting metabolic rate, thermic effect of feeding and energy used by physical activity. In general population, resting metabolic rate remains constant and proportional to muscle body mass. Muscle mass increases with exercise, especially resistance exercise, concomitantly with increasing energy expenditure. The effect of exercise on appetite is very strong, proportional to exercise intensity. An acute bout of aerobic exercise suppresses appetite by decreasing ghrelin plasma levels, and increasing gut hormones. Different subgroups of patients respond differently to the same exercise or habitual activity and have thus distinct effects on energy balance. Different myokines plasma levels after exercise could explain these different reactions although most of their effect is still unclear. Physical activity plays an important role in the prevention and treatment of many disorders, like obesity, type 1 and type 2 diabetes, dyslipidaemia, hypertension, coronary heart disease, osteoporosis, psychiatric and neurologic disorders. It is evident, that physical activity has an effect not only on energy balance but also has a direct effect on other body organ via its own molecules - myokines. The pharmacological effect of myokines gives hope that one day we could have a "myokine drug" that could be used in patients who are unable to exercise. Until then we should use our "muscle-pharmacy" and try to convince

  6. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans.

    Science.gov (United States)

    Hayashi, Genki; Jasoliya, Mittal; Sahdeo, Sunil; Saccà, Francesco; Pane, Chiara; Filla, Alessandro; Marsili, Angela; Puorro, Giorgia; Lanzillo, Roberta; Brescia Morra, Vincenzo; Cortopassi, Gino

    2017-08-01

    The induction of mitochondrial biogenesis could potentially alleviate mitochondrial and muscle disease. We show here that dimethyl fumarate (DMF) dose-dependently induces mitochondrial biogenesis and function dosed to cells in vitro, and also dosed in vivo to mice and humans. The induction of mitochondrial gene expression is more dependent on DMF's target Nrf2 than hydroxycarboxylic acid receptor 2 (HCAR2). Thus, DMF induces mitochondrial biogenesis primarily through its action on Nrf2, and is the first drug demonstrated to increase mitochondrial biogenesis with in vivo human dosing. This is the first demonstration that mitochondrial biogenesis is deficient in Multiple Sclerosis patients, which could have implications for MS pathophysiology and therapy. The observation that DMF stimulates mitochondrial biogenesis, gene expression and function suggests that it could be considered for mitochondrial disease therapy and/or therapy in muscle disease in which mitochondrial function is important. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Household energy consumption and expenditures 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  8. [Diagnostic value of mitochondrial DNA analysis in chronic progressive external ophthalmoplegia (CPEO)].

    Science.gov (United States)

    Kornblum, C; Kunz, W S; Klockgether, T; Roggenkämper, P; Schröder, R

    2004-12-01

    Chronic progressive external ophthalmoplegia (CPEO) is a mitochondrial cytopathy presenting with ptosis and external ophthalmoparesis. Mitochondrial disorders are characterized by a broad clinical spectrum and genetic background with marked genotype/phenotype variability. The routine diagnostic work-up usually includes clinical and laboratory examinations as well as histological and histochemical analysis of skeletal muscle biopsy. In our case only an additional molecular biological examination allowed the diagnosis of CPEO. We report a 35-year-old woman with a 7-years history of slowly progressive diplopia due to impaired ocular motility and bilateral ptosis. We performed ophthalmological and neurological examinations, laboratory testing, lower limb skeletal muscle biopsy including histological and histochemical investigations, biochemical analysis of respiratory chain enzymes in skeletal muscle homogenate and molecular genetic testing of skeletal muscle DNA. Although clinical, laboratory, histological and biochemical analyses did not give any hints suggesting a mitochondrial cytopathy, molecular genetic testing of total DNA from skeletal muscle tissue by Southern blot analysis finally revealed a 3.8 kb mitochondrial DNA deletion with a degree of heteroplasmy of 45 %. In patients with unexplained binocular diplopia , oculomotor deficits and/or acquired ptosis, an underlying mitochondrial cytopathy should be considered. Even in the case of inconspicuous skeletal muscle histology and biochemistry, molecular genetic testing of skeletal muscle DNA is advisable in order to establish the diagnosis.

  9. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  10. Fortifying the Link between SIRT1, Resveratrol, and Mitochondrial Function

    OpenAIRE

    Denu, John M.

    2012-01-01

    The molecular mechanisms behind the health benefits of resveratrol remain enigmatic and controversial. Here, Price et al. establish a clear chemical-genetic connection between SIRT1 and resveratrol, providing strong evidence that SIRT1 is critical for resveratrol to stimulate mitochondrial biogenesis and a switch toward oxidative muscle fibers (Price et al., 2012).

  11. Mangiferin Accelerates Glycolysis and Enhances Mitochondrial Bioenergetics

    Directory of Open Access Journals (Sweden)

    Zhongbo Liu

    2018-01-01

    Full Text Available One of the main causes of hyperglycemia is inefficient or impaired glucose utilization by skeletal muscle, which can be exacerbated by chronic high caloric intake. Previously, we identified a natural compound, mangiferin (MGF that improved glucose utilization in high fat diet (HFD-induced insulin resistant mice. To further identify the molecular mechanisms of MGF action on glucose metabolism, we conducted targeted metabolomics and transcriptomics studies of glycolyic and mitochondrial bioenergetics pathways in skeletal muscle. These data revealed that MGF increased glycolytic metabolites that were further augmented as glycolysis proceeded from the early to the late steps. Consistent with an MGF-stimulation of glycolytic flux there was a concomitant increase in the expression of enzymes catalyzing glycolysis. MGF also increased important metabolites in the tricarboxylic acid (TCA cycle, such as α-ketoglutarate and fumarate. Interestingly however, there was a reduction in succinate, a metabolite that also feeds into the electron transport chain to produce energy. MGF increased succinate clearance by enhancing the expression and activity of succinate dehydrogenase, leading to increased ATP production. At the transcriptional level, MGF induced mRNAs of mitochondrial genes and their transcriptional factors. Together, these data suggest that MGF upregulates mitochondrial oxidative capacity that likely drives the acceleration of glycolysis flux.

  12. Impaired mitochondrial function in chronically ischemic human heart

    DEFF Research Database (Denmark)

    Stride, Nis Ottesen; Larsen, Steen; Hey-Mogensen, Martin

    2013-01-01

    Chronic ischemic heart disease is associated with myocardial hypoperfusion. The resulting hypoxia potentially inflicts damage upon the mitochondria, leading to a compromised energetic state. Furthermore, ischemic damage may cause excessive production of reactive oxygen species (ROS), producing.......05), and the levels of antioxidant protein expression was lower. Diminished mitochondrial respiration capacity and excessive ROS production demonstrate an impaired mitochondrial function in ischemic human heart muscle. No chronic ischemic preconditioning effect was found......., and finally to assess myocardial antioxidant levels. Mitochondrial respiration in biopsies from ischemic and nonischemic regions from the left ventricle of the same heart was compared in nine human subjects. Maximal oxidative phosphorylation capacity in fresh muscle fibers was lower in ischemic compared...

  13. ANALYSIS OF PUBLIC EXPENDITURE IN ROMANIA DURING 1995-2009

    Directory of Open Access Journals (Sweden)

    ANA-PETRINA STANCIU

    2011-01-01

    Full Text Available The objective of this paper is to analyze the evolution of Romania’s public expenditure during the period 1995-2009. Expenditure analysis involves tracking their evolution in absolute and relative size, determining the share of public expenditure within the GDP, as well as determining the level of total public expenditure and of each category of expenditure per capita. At the same time there are several econometric models used in optimizing public expenditure for the various economic sectors by means of econometric modelling software Eviews.

  14. Lipid Metabolism and energetic expenditure during exercise

    OpenAIRE

    Adriano Eduardo Lima-Silva; Flávio de Oliveira Pires; Fernando Roberto De Oliveira; Maria Augusta Peduti Dal Molin Kiss

    2008-01-01

    http://dx.doi.org/10.5007/1980-0037.2008v10n3p308 The goal of this study was to present a new perspective on the relationship between lipid metabolism and the intensity/duration of exercise and energy expenditure. The idea was to use the second lactate threshold as a marker of the best ratio between energy expenditure and duration of exercise. From the literature review and analyses of experimental data, it was demonstrated that the second lactate threshold mark is the point at which the ...

  15. Health care expenditures: the approaching crisis.

    Science.gov (United States)

    Herrell, J H

    1980-11-01

    Health-related expenditures in the United States have represented an increasing share of the national output since World War II, driven primarily by rapidly advancing frontiers of knowledge and exploding demand generated by expansion of third-part payment mechanisms and governmental tax incentives. In the decades ahead, the demands of an aging population will add a new dimension to the forces already driving total expenditures upward. The demographics of the 1990's and beyond pose a challenge to our society which must be faced today.

  16. Behavioral health expenditures and state organizational structure.

    Science.gov (United States)

    Fleming, E; Ma, C A; McGuire, T G

    2000-01-01

    The authors present a study on expenditures by state mental health, substance abuse, and developmental disability agencies in the United States for the period between 1981 and 1993. The relationship between agency spending and organizational structure of state bureaucracy was examined. Results indicate that organizational structure is a determinant of agency spending. The more independent an agency, the higher its spending; conversely, the more independent its competitor, the lower the agency's spending. The number of levels between an agency and the governor's office was not significant in explaining agency expenditures.

  17. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.

    Science.gov (United States)

    Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-Ichiro; Nakao, Mitsuyoshi

    2012-03-27

    Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis.

  18. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat.

    Science.gov (United States)

    Kazak, Lawrence; Chouchani, Edward T; Jedrychowski, Mark P; Erickson, Brian K; Shinoda, Kosaku; Cohen, Paul; Vetrivelan, Ramalingam; Lu, Gina Z; Laznik-Bogoslavski, Dina; Hasenfuss, Sebastian C; Kajimura, Shingo; Gygi, Steve P; Spiegelman, Bruce M

    2015-10-22

    Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respiration in beige-fat mitochondria when ADP is limiting. In murine beige fat, cold exposure stimulates mitochondrial creatine kinase activity and induces coordinated expression of genes associated with creatine metabolism. Pharmacological reduction of creatine levels decreases whole-body energy expenditure after administration of a β3-agonist and reduces beige and brown adipose metabolic rate. Genes of creatine metabolism are compensatorily induced when UCP1-dependent thermogenesis is ablated, and creatine reduction in Ucp1-deficient mice reduces core body temperature. These findings link a futile cycle of creatine metabolism to adipose tissue energy expenditure and thermal homeostasis. PAPERCLIP. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Mitochondrial Disease as a Cause of Neonatal Hemophagocytic Lymphohistiocytosis

    Directory of Open Access Journals (Sweden)

    Kazumasa Fuwa

    2016-01-01

    Full Text Available Diagnosis of mitochondrial respiratory chain disorder (MRCD is often difficult. Its pathogenesis is still unclear. We diagnosed MRCD by measuring the activity of the mitochondrial respiratory chain enzyme, and the patient also had hemophagocytic lymphohistiocytosis (HLH. A preterm female infant was born at 34 weeks of gestation. On day 6, HLH was revealed by bone marrow aspiration. She died on day 10 due to uncontrollable HLH. An autopsy was performed, and we measured the activity of the mitochondrial respiratory chain enzyme in the liver, muscle, and heart. The activity of complex I was decreased in all tissues. As we could not prove another origin of the HLH, she was diagnosed as having HLH caused by MRCD. It is useful to measure the activity of the mitochondrial respiratory chain enzyme for diagnosing MRCD. MRCD, which has a severe clinical course, may be related to HLH.

  20. EMG-normalised kinase activation during exercise is higher in human gastrocnemius compared to soleus muscle

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Leutert, Robin; Rasmussen, Søren T

    2012-01-01

    In mice, certain proteins show a highly confined expression in specific muscle groups. Also, resting and exercise/contraction-induced phosphorylation responses are higher in rat skeletal muscle with low mitochondrial content compared to muscles with high mitochondrial content, possibly related...... activating soleus and gastrocnemius in a comparable dynamic work-pattern. Hexokinase II and GLUT4 were 46-59% and 26-38% higher (p...

  1. Mutation in the Novel Nuclear-Encoded Mitochondrial Protein CHCHD10 in a Family with Autosomal Dominant Mitochondrial Myopathy

    Science.gov (United States)

    Ajroud-Driss, Senda; Fecto, Faisal; Ajroud, Kaouther; Lalani, Irfan; Calvo, Sarah E.; Mootha, Vamsi K.; Deng, Han-Xiang; Siddique, Nailah; Tahmoush, Albert J.; Heiman-Patterson, Terry D.; Siddique, Teepu

    2016-01-01

    Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or the nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of a previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established C22orf16 (later designated as CHCHD10) as the only high scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double missense mutation (R15S; G58R) in cis in CHCHD10 which encodes a coiled-coil helix coiled-coil helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria. PMID:25193783

  2. Modeling of Human Arm Energy Expenditure for Predicting Energy Optimal Trajectories

    Directory of Open Access Journals (Sweden)

    L. Zhou

    2011-07-01

    Full Text Available Human arm motion can inspire the trajectory planning of anthropomorphic robotic arms to achieve energy-efficient movements. An approach for predicting metabolic cost in the planar human arm motion by means of the biomechanical simulation is proposed in this work. Two biomechanical models, including an analytical model and a musculoskeletal model, are developed to implement the proposed approach. The analytical model is developed by modifying a human muscle expenditure model, in which the muscles are grouped as torque providers for computation efficiency. In the musculoskeletal model, the predication of metabolic cost is conducted on the basis of individual muscles. With the proposed approach, metabolic costs for parameterized target-reaching arm motions are calculated and utilized to identify optimal arm trajectories.

  3. Government Expenditure on Growth Strategies and Poverty ...

    African Journals Online (AJOL)

    This paper explores the relationship between the reduction in income-poverty and government expenditure on growth strategies that have been implemented in Tanzania since the mid 2000s. The paper shows that despite impressive economic growth of about 6 percent per annum that the country has enjoyed in the course ...

  4. Functional data analysis of sleeping energy expenditure

    Science.gov (United States)

    Adequate sleep is crucial during childhood for metabolic health, and physical and cognitive development. Inadequate sleep can disrupt metabolic homeostasis and alter sleeping energy expenditure (SEE). Functional data analysis methods were applied to SEE data to elucidate the population structure of ...

  5. Energy Expenditure in Vinyasa Yoga Versus Walking.

    Science.gov (United States)

    Sherman, Sally A; Rogers, Renee J; Davis, Kelliann K; Minster, Ryan L; Creasy, Seth A; Mullarkey, Nicole C; O'Dell, Matthew; Donahue, Patrick; Jakicic, John M

    2017-08-01

    Whether the energy cost of vinyasa yoga meets the criteria for moderate-to-vigorous physical activity has not been established. To compare energy expenditure during acute bouts of vinyasa yoga and 2 walking protocols. Participants (20 males, 18 females) performed 60-minute sessions of vinyasa yoga (YOGA), treadmill walking at a self-selected brisk pace (SELF), and treadmill walking at a pace that matched the heart rate of the YOGA session (HR-Match). Energy expenditure was assessed via indirect calorimetry. Energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 79.5 ± 44.3 kcal; P YOGA = 3.6 ± 0.6; P YOGA, showed energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 68.0 ± 40.1 kcal; P YOGA meets the criteria for moderate-intensity physical activity. Thus, YOGA may be a viable form of physical activity to achieve public health guidelines and to elicit health benefits.

  6. The Effect of Recessions on Gambling Expenditures

    NARCIS (Netherlands)

    C. Horváth (Csilla); R. Paap (Richard)

    2012-01-01

    textabstractThis article examines the influence of the business cycle on expenditures of three major types of legalized gambling activities: Casino gambling, lottery, and pari-mutuel wagering. Empirical results are obtained using monthly aggregated US per capita consumption time series for the

  7. Government Expenditure Management and Control within the ...

    African Journals Online (AJOL)

    Government Expenditure Management and Control within the Framework of Ethiopian Economy. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and ...

  8. Factors influencing large wildland fire suppression expenditures

    Science.gov (United States)

    Jingjing Liang; Dave E. Calkin; Krista M. Gebert; Tyron J. Venn; Robin P. Silverstein

    2008-01-01

    There is an urgent and immediate need to address the excessive cost of large fires. Here, we studied large wildland fire suppression expenditures by the US Department of Agriculture Forest Service. Among 16 potential nonmanagerial factors, which represented fire size and shape, private properties, public land attributes, forest and fuel conditions, and geographic...

  9. DEFENSE EXPENDITURE AND ECONOMIC GROWTH: THE ...

    African Journals Online (AJOL)

    None

    economy. Benoit (1973, 1978) argued that with increase in military expenditure, economic growth can be promoted by increasing human capital capabilities of the workforce through provisions of education ... spending is financed by taxation, taxation will not only reduce the amount of resources available to the private sector ...

  10. Government Expenditure Management and Control within the ...

    African Journals Online (AJOL)

    This paper examined the pattern, growth, impact, management and control of government expenditure within the framework of the Ethiopian Economy. This was done with the view that policy options towards effective and efficient management of the government lean resources will be proffered as. This will help in ensuring ...

  11. Central America Social Expenditures and Institutional Review

    OpenAIRE

    World Bank

    2016-01-01

    Nicaragua has had decent economic growth in the past decade, which has contributed to substantial poverty reduction (the largest in Central America), as well as improvements in human development indicators. Fiscal accounts have deteriorated recently, which may pose some challenges to the sustainability of current levels of financing for social sector expenditures. Better planning and monit...

  12. Aspects of mitochondrial activity in the estuarine bivalves Crassostrea rhizophorae and Lucina pectinatus: a comparative approach.

    Science.gov (United States)

    Nascimento, I A; Erlon, L; Rodrigues, A

    1976-12-01

    In identical laboratory conditions, some differences in the endogenous relative activity (mul O2/mg protein/ml/h) were determined by the addition of succinate and alpha-keto-glutarate to the mitochondrial-rich-fraction from heart and both parts of the adductor muscle in oyster (Crassostrea rhizophorae) and from heart and adductor muscle in clams (Lucina pectinatus).

  13. A multi-center comparison of diagnostic methods for the biochemical evaluation of suspected mitochondrial disorders

    NARCIS (Netherlands)

    Rodenburg, R.J.T.; Schoonderwoerd, G.C.; Tiranti, V.; Taylor, R.W.; Rotig, A.; Valente, L.; Invernizzi, F.; Chretien, D.; He, L.; Backx, G.P.; Janssen, K.J.; Chinnery, P.F.; Smeets, H.J.M.; Coo, I.F. de; Heuvel, L.P. van den

    2013-01-01

    A multicenter comparison of mitochondrial respiratory chain and complex V enzyme activity tests was performed. The average reproducibility of the enzyme assays is 16% in human muscle samples. In a blinded diagnostic accuracy test in patient fibroblasts and SURF1 knock-out mouse muscle, each lab made

  14. Government Expenditure, Efficiency and Economic Growth: A Panel ...

    African Journals Online (AJOL)

    Angelopoulos et al. 2008). Based on this contention it is logical to conclude that government expenditure and government efficiency are complementary if countries aspire to achieve better economic growth by using government expenditure.

  15. Estimating energy expenditure during front crawl swimming using accelerometers

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Espinosa, Hugo G.; Van Thiel, David H

    2014-01-01

    The determination of energy expenditure is of major interest in training load and performance assessment. Small, wireless accelerometer units have the potential to characterise energy expenditure during swimming. The correlation between absorbed oxygen versus flume swimming speed and absorbed oxy...

  16. Disability Compensation and Patient Expenditures: FY2000 to FY2013

    Data.gov (United States)

    Department of Veterans Affairs — This report contains FY2000 through FY2013 data on disability compensation expenditures and recipients and on VA healthcare system patients and patient expenditures.

  17. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance.

    Science.gov (United States)

    Pereira, Renata Oliveira; Tadinada, Satya M; Zasadny, Frederick M; Oliveira, Karen Jesus; Pires, Karla Maria Pereira; Olvera, Angela; Jeffers, Jennifer; Souvenir, Rhonda; Mcglauflin, Rose; Seei, Alec; Funari, Trevor; Sesaki, Hiromi; Potthoff, Matthew J; Adams, Christopher M; Anderson, Ethan J; Abel, E Dale

    2017-07-14

    Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism. © 2017 The Authors.

  18. Resting energy expenditure is not influenced by classical music

    Directory of Open Access Journals (Sweden)

    Slinde Frode

    2005-08-01

    Full Text Available Abstract Obesity shows an increasing prevalence worldwide and a decrease in energy expenditure has been suggested to be one of the risk factors for developing obesity. An increase in resting energy expenditure would have a great impact on total energy expenditure. This study shows that classical music do not influence resting energy expenditure compared to complete silence. Further studies should be performed including other genres of music and other types of stress-inductors than music.

  19. Revenue and Expenditure Nexus: A Case Study of Romania

    Directory of Open Access Journals (Sweden)

    Qazi Muhammad Adnan HYE

    2010-07-01

    Full Text Available This study determines the causal relationship between the expenditure and revenue of government in the case of Romania by using the autoregressive distributive lag approach to cointegration, variance decomposition and rolling regression method. The results indicate that bidirectional long run relationship exist between expenditure and revenue of government. The variance decomposition method suggests government revenue shock has more sharply impact on the government expenditure as compared to the shock in government expenditure and response of government revenue collection.

  20. Skeletal muscle performance and ageing.

    Science.gov (United States)

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2017-11-19

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.