WorldWideScience

Sample records for expansive cement

  1. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  2. Expansive cements for the manufacture of the concrete protective bandages

    Science.gov (United States)

    Yakymechko, Yaroslav; Voloshynets, Vladyslav

    2017-12-01

    One of the promising directions of the use of expansive cements is making the protective bandages for the maintenance of pipelines. Bandages expansive application of the compositions of the pipeline reinforce the damaged area and reduce stress due to compressive stress in the cylindrical area. Such requirements are best suited for expansive compositions obtained from portland cement and modified quicklime. The article presents the results of expansive cements based on quick lime in order to implement protective bandages pipelines.

  3. Setting time and thermal expansion of two endodontic cements.

    Science.gov (United States)

    Santos, Alailson D; Araújo, Eudes B; Yukimitu, Keizo; Barbosa, José C; Moraes, João C S

    2008-09-01

    The purpose of this study was to evaluate the setting time and the thermal expansion coefficient of 2 endodontic cements, MTA-Angelus and a novel cement called CER. The setting time was determined in accordance to ANSI/ADA specifications no. 57. Three samples of 10 mm diameter and 2 mm thickness were prepared for each cement. The thermal expansion measurements were performed by strain gauge technique. Four samples of each cement were prepared using silicone rings of 5 mm diameter and 2 mm thickness. The data were analyzed statistically using the Student t test. The setting time obtained for the MTA-Angelus and CER cements was 15 (SD 1) min and 7 (SD 1) min, respectively. The linear coefficient of thermal expansion was 8.86 (SD 0.28) microstrain/ degrees C for MTA-Angelus and 11.76 (SD 1.20) microstrain/ degrees C for CER. The statistical analysis showed significant difference (P linear coefficient of thermal expansion between the 2 cements. The CER cement has a coefficient of expansion similar to dentin, which could contribute to a decrease of microleakage degree.

  4. Impact of Casing Expansion on the Mechanical and Petro-Physical Properties of Wellbore Cements

    Science.gov (United States)

    Oyibo, A. E.

    2014-12-01

    The main objective of this research is to investigate the applicability of expandable casing technology as a remediation technique for leaky wells resulting in gas migration problems. Micro annulus is usually created at the cement-formation/cement-casing interface or within the cement matrix either due to poor primary cementing or as a result of activities such as temperature and pressure variation or fracturing operations. Recent reports on gas migration in hydraulically fractured wellbores, has raised concerns on the contamination of fresh water aquifers resulting from fluid migration though this flow path. A unique bench-scale physical model which utilizes expandable tubulars in the remediation of micro annular gas flow has been used to simulate expansion of a previously-cemented casing under field-like conditions. Three different designs of cement slurry: regular 16.4 lb. /gal, 16.4 lb. /gal base slurry foamed to 13 lb. /gal and 16.4 lb. /gal cement slurry with 10% salt concentration. Gas flow path (microannulus) was artificially created at the pipe-cement interface by rotating the inner pipe in a pipe inside pipe assembly with cement in the annulus within the first few hours of hydration to create debonding at the cement-casing interface. Nitrogen gas flow-through experiments were performed before and after the expansion to confirm the sealing of the microannulus. The results obtained confirmed the effectiveness of this technique in the complete closure of gas leakage path, providing seal-tight cement-formation interface free of microannulus. The manipulation of the cement sheath during the casing expansion resulted in improved porosity, permeability and the strength of the cement sheath. SEM micrographs revealed decrease in pore size and fracturing of unhydrated cement grains within the cement matrix. This technology has great potential to become one of the leading cement remediation techniques for leaks behind the casing if implemented. Keywords: Wellbore

  5. Elasticity and expansion test performance of geopolymer as oil well cement

    Science.gov (United States)

    Ridha, S.; Hamid, A. I. Abd; Halim, A. H. Abdul; Zamzuri, N. A.

    2018-04-01

    History has shown that geopolymer cement provides high compressive strength as compared to Class G cement. However, the research had been done at ambient temperature, not at elevated condition which is the common oil well situation. In this research, the physical and mechanical properties performance of the oil well cement were investigated by laboratory work for two types of cement that are geopolymer and Class G cement. The cement samples were produced by mixing the cement according to the API standards. Class C fly ash was used in this study. The alkaline solution was prepared by mixing sodium silicate with NaOH solution. The NaOH solution was prepared by diluting NaOH pellets with distilled water to 8M. The cement samples were cured at a pressure of 3000 psi and a temperature of 130 °C to simulate the downhole condition. After curing, the physical properties of the cement samples were investigated using OYO Sonic Viewer to determine their elastic properties. Autoclave expansion test and compressive strength tests were conducted to determine the expansion value and the strength of the cement samples, respectively. The results showed that the geopolymer cement has a better physical and mechanical properties as compared with Class G cement at elevated condition.

  6. Determination of coefficient of thermal expansion for Portland Cement Concrete pavements for MEPDG Implementation

    Science.gov (United States)

    2012-10-01

    The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...

  7. Effects of fibers on expansive shotcrete mixtures consisting of calcium sulfoaluminate cement, ordinary Portland cement, and calcium sulfate

    Directory of Open Access Journals (Sweden)

    H. Yu

    2018-04-01

    Full Text Available The mining industry often uses shotcrete for ground stabilization. However, cracking within shotcrete is commonly observed, which delays production schedules and increases maintenance costs. A possible crack reduction method is using expansive shotcrete mixture consisting of calcium sulfoaluminate cement (CSA, ordinary Portland cement (OPC, and calcium sulfate (CS to reduce shrinkage. Furthermore, fibers can be added to the mixture to restrain expansion and impede cracking. The objective of this paper is to study the effects of nylon fiber, glass fiber, and steel fiber on an expansive shotcrete mixture that can better resist cracking. In this study, parameters such as density, water absorption, volume of permeable voids, unconfined compressive strength (UCS, splitting tensile strength (STS, and volume change of fiber-added expansive mixtures were determined at different time periods (i.e. the strengths on the 28th day, and the volume changes on the 1st, 7th, 14th, 21st, and 28th days. The results show that addition of fibers can improve mixture durability, in the form of decreased water absorption and reduced permeable pore space content. Moreover, the expansion of the CSA-OPC-CS mixture was restrained up to 50% by glass fiber, up to 43% by nylon fiber, and up to 28% by steel fiber. The results show that the STS was improved by 57% with glass fiber addition, 43% with steel fiber addition, and 38% with nylon fiber addition. The UCS was also increased by 31% after steel fiber addition, 26% after nylon fiber addition, and 16% after glass fiber addition. These results suggest that fiber additions to the expansive shotcrete mixtures can improve durability and strengths while controlling expansion. Keywords: Shotcrete, Restrained expansion, Fibers, Calcium sulfoaluminate cement (CSA, Ordinary Portland cement (OPC, Calcium sulfate (CS

  8. Study of the sulphate expansion phenomenon in concrete: behaviour of the cemented radioactive wastes containing sulphate

    International Nuclear Information System (INIS)

    Li, Guanshu

    1994-01-01

    Sulphate attack is one of the major degradation processes of concrete. It is especially important in storing cemented radioactive wastes containing sulphate. In this thesis, we have thoroughly investigated the degradation mechanisms of cemented radioactive wastes by sulphate. The CaO-Al 2 O 3 -SO 3 -H 2 O systems with and without alkalis are studied. For the system without alkalis, experimental results show that it is the formation of a secondary ettringite under external water supply by steric effect that causes the expansion. For the system with alkalis, the ettringite does not appear while a new mineral called 'U', a sodium-substituted AFm phase is detected. This phase is shown to be responsible for the expansion and destruction of the specimens. The conditions for the formation, the product of solubility and many means of its synthesis are discussed, and a complete list of the inter-reticular distances file is given. The behaviour of the different types of cemented wastes containing sulphate are then studied with a special focus on the U phase on entity which was heretofore very little understood. The following three hypothetical mechanisms of sulphate expansion are proposed: the formation of the secondary U phase, the transformation of the U phase to the ettringite and the topochemical hydration of thenardite into mirabilite. Experiments on a simplified system have demonstrated clearly that the formation of the secondary U phase can induce enormous expansion by steric effect, this justifying the first assumption. Simulation by the mass and volume balances is carried out thereafter and enables us to estimate the expansion induced by the formation of the secondary U phase in the cemented wastes. The second assumption is also well verified by a series of leaching tests in different solutions on mixtures containing the U phase. On the basis of the analysis of the specimens under leaching, it has been assumed that the expansion is associated with the

  9. Expansive failure reactions and their prevention in the encapsulation of phenol formaldehyde type ion exchange resins in cement based systems

    Energy Technology Data Exchange (ETDEWEB)

    Constable, M.; Howard, C.G.; Johnson, M.A.; Jolliffe, C.B. (AEA Decommissioning and Waste Management, Winfrith (United Kingdom)); Sellers, R.M. (Nuclear Electric plc, Barnwood (United Kingdom))

    1992-01-01

    Lewatit DN is a phenol formaldehyde based ion exchange resin used to remove radioactive caesium from liquid waste streams such as fuel cooling ponds and effluents. This paper presents the results of a study of the encapsulation of the bead form of the resin in cement with particular reference to the mechanisms of its interaction with the encapsulant. When incorporated in pure ordinary Portland cement (OPC) at loadings in excess of 15 wt % an unstable product results due to expansion of the systems and at higher waste loadings failure results after only a few days. Evidence from differential scanning calorimetry, X-ray diffraction and scanning electron microscopy all indicate the cause of the expansive reaction to be the formation of crystals of calcium salts around and within the resin beads. Addition of BFS and sodium hydroxide prevent the formation of these salts by removal of calcium hydroxide from the system in other reactions. (author).

  10. INTEGRAL INDICATORS OF THE INFLUENCE OF FORMULATECHNOLOGICAL FACTORS ON THE CEMENT MATRIX OF CONCRETE STRUCTURE FORMATION FOR INJECTION WITH TWO-STEP EXPANSION

    Directory of Open Access Journals (Sweden)

    T. N. Zhilnikova

    2016-01-01

    Full Text Available Objectives. The formation of the structure of hardened concrete grouting with two-stage expansion is a complex process that is influenced by many factors, both of a prescriptive nature (composition and additive dosage, mineralogical composition of Portland cement clinker, concrete composition, the presence of chemical additives and in terms of process (the fineness of cement grinding, temperature of curing, etc.. Methods. In order to assess the impact of the above factors, the article proposes the introduction of a number of integrated indicators being characterised as a process in which influences are shown alongside the factor generating the influence. For the evaluation of the influence of different factors on the process of gas generation, an effectiveness ratio of gas generation is proposed by the authors. Results. The article presents the results of an investigation into the influence of the amount of gassing agent and the type and dosage of superplasticiser on the process of gassing by means of the displacement method on the mortar mix. The authors similarly propose a expansion efficiency coefficient. The article presents the results of the investigation into the influence of the amount of gassing agent, the presence and amount of superplasticiser, the sand/cement ratio, aggregate size and water-cement ratio during the first stage of expansion of the mixture. The authors propose a formula for describing the dependence of the relative expansion deformations on the concentration of filler. In order to assess the conditions in which a mixture is present, it is proposed to use an indicator consisting in the constraint expansion coefficient. Conclusion. Use of the hardening condition coefficient is proposed as a means of accounting for the effect of curing conditions on the strength of the concrete grouting with two-stage expansion. The authors recommend taking the introduction of correction factors into account when considering the impact of

  11. Cermet cements.

    Science.gov (United States)

    McLean, J W

    1990-01-01

    Cermet ionomer cements are sintered metal/glass powders, which can be made to react with poly(acids). These new cements are significantly more resistant to abrasion than regular glass ionomer cements and are widely accepted as core build-up materials and lining cements. They can strengthen teeth and provide the clinician with an opportunity to treat early dental caries.

  12. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  13. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  14. Study on properties and testing methods of thermo-responsive cementing system for well cementing in heavy oil thermal recovery

    Science.gov (United States)

    Li, Lianjiang

    2017-08-01

    In this paper, thermo-responsive cement slurry system were being developed, the properties of conventional cement slurry, compressive strength high temperature of cement sheath, mechanical properties of cement sheath and thermal properties of cement sheath were being tested. Results were being used and simulated by Well-Life Software, Thermo-responsive cement slurry system can meet the requirements of heavy oil thermal recovery production. Mechanical and thermal properties of thermo-responsive cement sheath were being tested. Tensile fracture energy of the thermo-responsive cement sheath is larger than conventional cement. The heat absorption capacity of conventional cement sheath is larger than that of thermo-responsive cement sheath, this means more heat is needed for the unit mass once increasing 1.0 °C, which also indicates that thermo-responsive cement own good heat insulating and preservation effects. The heat conductivity coefficient and thermal expansion coefficient of thermo-responsive cement is less than and conventional cement, this means that thermo-responsive cement have good heat preservation and insulation effects with good thermal expansion stabilities.

  15. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  16. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  17. Effect of sodium sulphate attack on the resistance to flexion, formation of expansive compounds and microcracking in cement paste; Efeito do ataque por sulfato de sodio na resistencia a flexao, formacao de compostos expansivos e microfissuracao de pastas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rui Barbosa de; John, Vanderlei Moacyr; Cincotto, Maria Alba [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica], e-mail: rui.souza@poli.usp.br, e-mail: vanderley.john@poli.usp.br, e-mail: maria.cincotto@poli.usp.br; Simao, Cristina Aiex [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Tecnologia e Engenharia de Poco], e-mail: caies@petrobras.com.br

    2008-06-15

    The main objective of this research is to study the common methods for evaluating cement reactivity to sulfate attack. Resistance to sulfate attack was measured by determining the flexural strength in cement paste samples with exposure to Na{sub 2}SO{sub 4} solution (45,426 ppm of SO{sub 4}{sup 2-}), at a high temperature (55 deg C). The results of flexural strength showed that the resistance increases due to the attack because the products fill the pores. (author)

  18. Stabilization techniques for reactive aggregate in soil-cement base course : technical summary.

    Science.gov (United States)

    2003-01-01

    The objectives of this research are 1) to identify the mineralogical properties of soil-cement bases which have heaved or can potentially heave, 2) to simulate expansion of cement-stabilized soil in the laboratory, 3) to correlate expansion with the ...

  19. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  20. The suitability of a supersulfated cement for nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Collier, N.C.; Milestone, N.B.; Gordon, L.E.; Ko, S.-C.

    2014-01-01

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste

  1. Producing cement

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E G

    1923-09-12

    A process and apparatus are described for producing Portland cement in which pulverized shale is successively heated in a series of inclined rotary retorts having internal stirrers and oil gas outlets, which are connected to condensers. The partially treated shale is removed from the lowermost retort by a conveyor, then fed separately or conjointly into pipes and thence into a number of vertically disposed retorts. Each of these retorts may be fitted interiorly with vertical arranged conveyors which elevate the shale and discharge it over a lip, from whence it falls to the bottom of the retorts. The lower end of each casing is furnished with an adjustable discharge door through which the spent shale is fed to a hopper, thence into separate trucks. The oil gases generated in the retorts are exhausted through pipes to condensers. The spent shale is conveyed to a bin and mixed while hot with ground limestone. The admixed materials are then ground and fed to a rotary kiln which is fired by the incondensible gases derived from the oil gases obtained in the previous retorting of the shale. The calcined materials are then delivered from the rotary kiln to rotary coolers. The waste gases from the kiln are utilized for heating the retorts in which the ground shale is heated for the purpose of extracting therefrom the contained hydrocarbon oils and gases.

  2. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  3. Radioactivity of bone cement

    International Nuclear Information System (INIS)

    Scherer, M.A.; Winkler, R.; Ascherl, R.; Lenz, E.

    1993-01-01

    A total of 14 samples of different types of bone cement from five different manufacturers were examined for their radioactivity. Each of the investigated bone cements showed a low radioactivity level, i.e. between [de

  4. Ultrafine portland cement performance

    Directory of Open Access Journals (Sweden)

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  5. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  6. Properties of expansive cements, made with Portland cement, gypsum and high alumina cement

    Directory of Open Access Journals (Sweden)

    Monfore, G. E.

    1966-03-01

    Full Text Available Not availableLos cementos expansivos se han desarrollado durante las tres décadas pasadas, principalmente por las investigaciones llevadas a cabo en Francia, URSS y Estados Unidos. Los cementos expansivos que fueron utilizados en los estudios de los cuales se da cuenta en el presente trabajo se obtuvieron mediante la mezcla de cemento Portland, cemento aluminoso y yeso. En las investigaciones se utilizaron morteros con los cuales se pudo determinar los efectos de la composición, tiempo y temperatura de curado sobre las resistencias, dilatación libre, retracción y desarrollo de resistencias en probetas pretensadas. Se hace una revisión sobre los estudios hechos con cementos expansivos y desarrollados en la Universidad de California. Las propiedades de taIes hormigones son, en términos generales, comparables a aquellos obtenidos con mezclas de cementos portland, cemento aluminoso y yeso. Es necesaria más información sobre pérdidas de tensión en los aceros y durabilidad de los hormigones autopretensados.

  7. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter

  8. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  9. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  10. SYNTHESIS OF EXPANDER TO PREVENT CONTRACTION OF CEMENT STONE

    Directory of Open Access Journals (Sweden)

    Elenova Aurika Almazovna

    2017-03-01

    Full Text Available This article contains the results of studies of the use of additives containing crystallization components significantly affecting the curing of cement, improving the structure of cement stone and concrete. The crystalline component is obtained using the rotary-pulse unit, which provides not only the grinding of agents, but their interaction with each other as well in order to accelerate the hydration and structure formation in cement stone. The degree, and kinetics of hydration, the composition of hydrated phases, the structure of the additives and cement stone was studied using the following methods: x-ray diffraction (XRD, differential thermal analysis (DTA, scanning electron microscope (SEM. Mechanical properties of cement were determined by standard methods and techniques. The expander produced by means of hydrodynamic activation of the sulfoaluminate clinker (SAC consists of ettringite and hydrated calcium silicates, which are characterized by high dispersion rate (less than 10 µm and reactivity as the seed for the crystallization of hydrated compounds. The introduction of the ultrafine additives of the crystalline SAC (within 1-5% was discovered to cause expansion of the cement stone. Implementation of the additives increases cement hydration and contributes to the formation of active centers of crystallization that lead to the fast formation of ettringite, hydrated calcium aluminates and calcium silicates. The activated crystalline additive provides for significant reduction of porosity, initial curing, and high strength of cement stone. In addition, the additive is an expansive component, forming needle-like crystals of ettringite during hydration. These microcrystals grow in the capillaries of cement stone, filling them, and create conditions for improving the crack resistance of cement concrete.

  11. Microbial-influenced cement degradation: Literature review

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; McConnell, J.W. Jr.

    1993-03-01

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews literature which addresses the effect of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are identified, which are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with concrete and can ultimately lead to structural failure. Mechanisms inherent in microbial-influenced degradation of cement-based material are the focus of this report. This report provides sufficient evidence of the potential for microbial-influenced deterioration of cement-solidified LLW to justify the enumeration of the conditions necessary to support the microbiological growth and population expansion, as well as the development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbiological-induced degradation that could impact the stability of the waste form

  12. In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells

    Science.gov (United States)

    Kupresan, D.; Radonjic, M.; Heathman, J.

    2013-12-01

    mechanical manipulation (shear stress). The main advantage of this methodology is that mechanical manipulation of cement can induce healing of existing fractures, channels and microannulus seal in a wellbore without introducing new materials (e.g. cement squeeze jobs). Furthermore, this methodology is less sensitive to the influence of downhole conditions such as pressure, temperature and formation fluids, since it uses cement pore water as a medium to alter cement sheath. Based on lab experiments observation, it is possible to perceive that once tested at the industrial scale and if successful, the implementation of this method in the field can potentially mitigate leaky wells in CO2 sequestration projects, wellbores completed for hydraulic-fracturing and other conventional oil and gas producing wells. Key words: Wellbore cement integrity; Leaky wells; Cement microstructures; Casing expansion effect on cement mineralogy alterations.

  13. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  14. Use of lime cement stabilized pavement construction

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.A.; Raju, G.V.R.P. [JNTU College of Engineering, Kakinada (India). Dept. of Civil Engineering

    2009-08-15

    Expansive clay is a major source of heave induced structural distress. Swelling of expansive soils causes serious problems and produce damages to many structures. Many research organizations are doing extensive work on waste materials concerning the feasibility and environmental suitability. Fly ash, a waste by product from coal burning in thermal power stations, is abundant in India causing severe health, environmental and disposal problems. Attempts are made to investigate the stabilization process with model test tracks over expansive subgrade in flexible pavements. Cyclic plate load tests are carried out on the tracks with chemicals like lime and cement introduced in fly ash subbase laid on sand and expansive subgrades. Test results show that maximum load carrying capacity is obtained for stabilized fly ash subbase compared to untreated fly ash subbase.

  15. Early-age monitoring of cement structures using FBG sensors

    Science.gov (United States)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  16. Advanced cementation concepts

    International Nuclear Information System (INIS)

    Howard, C.G.

    1989-10-01

    The purpose of this programme of work was to investigate whether improvements could be made to existing formulations for cement suitable for the immobilization of intermediate level radioactive waste. Two additives were selected, microsilica and limestone flour. Improvements to the cement were only slight. (author)

  17. Preparation of hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement by the use of oil-shale residues is characterized in that the oil-shale refuse is mixed with granular basic blast-furnace slag and a small amount of portland cement and ground together.

  18. Low force cementation.

    Science.gov (United States)

    Wilson, P R

    1996-07-01

    The marginal adaptation of full coverage restorations is adversely affected by the introduction of luting agents of various minimum film thicknesses during the cementation process. The increase in the marginal opening may have long-term detrimental effects on the health of both pulpal and periodontal tissues. The purpose of this study was to determine the effects of varying seating forces (2.5, 12.5, 25 N), venting, and cement types on post-cementation marginal elevation in cast crowns. A standardized cement space of 40 microns was provided between a machined gold crown and a stainless steel die. An occlusal vent was placed that could be opened or closed. The post-cementation crown elevation was measured, following the use of two commercially available capsulated dental cements (Phosphacap, and Ketac-cem Applicap). The results indicate that only the combination of Ketac-Cem Applicap and crown venting produced post-cementation crown elevation of less than 20 microns when 12.5 N seating force was used. Higher forces (25 N) and venting were required for comparable seating when using Phosphacap (19 microns). The amount of force required to allow maximum seating of cast crowns appears to be cement specific, and is reduced by effective venting procedures.

  19. Cementation process study

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Ahn, S.J.; Choi, K.S.; Lee, M.W.; Ryu, Y.K.

    1985-01-01

    In the cementation process study, in 1984, design of the waste treatment simulator was finished for the first step. We can experience not only the operation of solidification system but the design and construction of comming large scale plant through the design of cementation process. (Author)

  20. 0-6717 : investigation of alternative supplementary cementing materials (SCMs) : [project summary].

    Science.gov (United States)

    2014-08-01

    In Texas, Class F fly ash is extensively used as a : supplementary cementing material (SCM) : because of its ability to control thermal cracking : in mass concrete and to mitigate deleterious : expansions in concrete from alkali-silica reaction : (AS...

  1. Modified pavement cement concrete

    Science.gov (United States)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  2. Radioactive waste cementation

    International Nuclear Information System (INIS)

    Soriano B, A.

    1996-01-01

    This research was carried out to develop the most adequate technique to immobilize low and medium-activity radioactive waste. different brands of national cement were used, portland and pozzolanic cement. Prismatic and cylindrical test tubes were prepared with different water/cement (W/C) relationship. Additives such a as clay and bentonite were added in some other cases. Later, the properties of these test tubes were evaluated. Properties such as: mechanical resistance, immersion resistance, lixiviation and porosity resistance. Cement with the highest mechanical resistance values, 62,29 MPa was pozzolanic cement for a W/C relationship of 0,35. It must be mentioned that the other types of cements reached a mechanical resistance over 10 MPa, a value indicated by the international standards for transportation and storage of low and medium-activity radioactive waste at a superficial level. However, in the case of immersion resistance, Sol cement (portland type I) with a W/C relationship of 0,35 reached a compression resistance over 61,92 MPa; as in the previous cases, the other cements reached a mechanical resistance > 10 MPa. Regarding porosity, working with W/C relationships = 0,35 0,40 and 0,45, without additives and with additives, the percentage of porosity found for all cements is lower than 40% percentage indicated by international standards. With regard to the lixiviation test, pozzolanic cement best retained Cesium-137 and Cobalt-60, and increased its advantages when bentonite was added, obtaining a lixiviation rate of 2,02 x E-6 cm/day. Sol cement also improved its properties when bentonite was added and obtained a lixiviation rate of 2,84 x E-6 cm/day for Cesium-137. However, Cobalt-60 is almost completely retained with the 3 types of cement with or without additives, reaching the limits indicated by the international standards for the lixiviation rate of beta-gamma emitter < 5,00E-4 cm/day. Characterizing the final product involves the knowledge of its

  3. Tympanoplasty with ionomeric cement

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those...... of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy...

  4. the Danish cement industry

    OpenAIRE

    la Cour, Lisbeth Funding; Møllgård, Peter

    2001-01-01

    We test econometrically whether the sole Danish producer of cement holds a dominant position in the Danish market for (grey) cement. In import penetration tests, we find that its pricing and quantity decisions are independent of import price and quantity, implying that it can act to a considerable extent independently of its competitors. We also test whether it can act independently of its customers and find that its demand is inelastic with respect to its price. It thus holds a dominant posi...

  5. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  6. expansion method

    Indian Academy of Sciences (India)

    of a system under investigation is to model the system in terms of some ... The organization of the paper is as follows: In §2, a brief account of the (G /G)- expansion ...... It is interesting to note that from the general results, one can easily recover.

  7. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  8. Cement for Oil Well Cementing Operations in Ghana

    African Journals Online (AJOL)

    Michael

    For Portland cement to qualify as oil well cement, the chemical and physical properties must meet ..... Reservoir Engineering, Stanford University,. Stanford, California, pp. ... Construction”, PhD Thesis, Kwame Nkrumah. University of Science ...

  9. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  10. Physical properties and comparative strength of a bioactive luting cement.

    Science.gov (United States)

    Jefferies, Steven; Lööf, Jesper; Pameijer, Cornelis H; Boston, Daniel; Galbraith, Colin; Hermansson, Leif

    2013-01-01

    New dental cement formulations require testing to determine physical and mechanical laboratory properties. To test an experimental calcium aluminate/glass-ionomer cement, Ceramir C and B (CC and B), regarding compressive strength (CS), film thickness (FT), net setting time (ST) and Vickers hardness. An additional test to evaluate potential dimensional change/expansion properties of this cement was also conducted. CS was measured according to a slightly modified ISO 9917:2003 for the CC and B specimens. The samples were not clamped while being exposed to relative humidity of great than 90 percent at 37 degrees C for 10 minutes before being stored in phosphate-buffered saline at 37 degrees C. For the CS, four groups were tested: Group 1-CC and B; Group 2-RelyX Luting Cement; Group 3-Fuji Plus; and Group 4-RelyX Unicem. Samples from all groups were stored for 24 hours before testing. Only CCandB was tested for ST and FT according to ISO 9917:2003. The FT was tested 2 minutes after mixing. Vickers hardness was evaluated using the CSM Microhardness Indentation Tester using zinc phosphate cement as a comparison material. Expansion testing included evaluating potential cracks in feldspathic porcelain jacket crowns (PJCs). The mean and standard deviation after 24 hours were expressed in MPa: Group 1 equals 160 plus or equal to 27; Group 2 equals 96 plus or equal to 10; Group 3 equals 138 plus or equal to 15; Group 4 equals 157 plus or equal to 10. A single-factor ANOVA demonstrated statistically significant differences between the groups (P less than 0.001). Pair-wise statistical comparison demonstrated a statistically significant difference between Groups 1 and 2. No statistically significant differences were found between other groups. The FT was 16.8 plus or equal to 0.9 and the ST was 4.8 plus or equal to 0.1 min. Vickers hardness for Ceramir C and B was 68.3 plus or equal to 17.2 and was statistically significantly higher (P less than 0.05) than Fleck's Zinc Phosphate

  11. Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements

    Institute of Scientific and Technical Information of China (English)

    Yanhua GUAN; Ying GAO; Renjuan SUN; Moon C.WON; Zhi GE

    2017-01-01

    The fast-track repair of deteriorated concrete pavement requires materials that can be placed,cured,and opened to the traffic in a short period.Type Ⅲ cement and Calcium Sulfoaluminate (CSA) cement are the most commonly used fast-setting hydraulic cement (FSHC).In this study,the properties of Type Ⅲ and CSA cement concrete,including compressive strength,coefficient of thermal expansion (CTE) and shrinkage were evaluated.The test results indicate that compressive strength of FSHC concrete increased rapidly at the early age.CSA cement concrete had higher early-age and long term strength.The shrinkage of CSA cement concrete was lower than that of Type Ⅲ cement concrete.Both CSA and Type Ⅲ cement concrete had similar CTE values.Based on the laboratory results,the CSA cement was selected as the partial-depth rapid repair material for a distressed continuously reinforced concrete pavement.The data collected during and after the repair show that the CSA cement concrete had good short-term and long-term performances and,therefore,was suitable for the rapid repair of concrete pavement.

  12. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design : technical summary report.

    Science.gov (United States)

    2011-12-01

    The coefficient of thermal expansion (CTE) has been widely considered as a fundamental property of : Portland cement concrete (PCC) pavement but has never played an important role in the thickness design : procedure for PCC pavement until recently. I...

  13. Concrete = aggregate, cement, water?

    International Nuclear Information System (INIS)

    Jelinek, J.

    1990-01-01

    Concrete for the Temelin nuclear power plant is produced to about 70 different formulae. For quality production, homogeneous properties of aggregates, accurate proportioning devices, technological discipline and systematic inspections and tests should be assured. The results are reported of measuring compression strength after 28 days for different concrete samples. The results of such tests allow reducing the proportion of cement, which brings about considerable savings. Reduction in cement quantities can also be achieved by adding ash to the concrete mixes. Ligoplast, a plasticizer addition is used for improving workability. (M.D). 8 figs

  14. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  15. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  16. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  17. Cementation of liquid radioactive waste

    International Nuclear Information System (INIS)

    Efremenkov, V.

    2004-01-01

    The cementation methods for immobilisation of radioactive wastes are discussed in terms of methodology, chemistry and properties of the different types of cements as well as the worldwide experience in this field. Two facilities for cementation - DEWA and MOWA - are described in details

  18. Properties and hydration of blended cements with steelmaking slag

    International Nuclear Information System (INIS)

    Kourounis, S.; Tsivilis, S.; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-01-01

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C 2 S and its low content in calcium silicates

  19. Shrinkage Module of Soil Samples with Different Cement Content

    Directory of Open Access Journals (Sweden)

    Mohannad Sabry

    2017-12-01

    Full Text Available The differences in soil's body mass during shrinkage over time have changes in soil physical properties which provide an important reason to check the design of underground foundations in expansive soils. In this paper, a state-of-art of the soil heat stress-strain relationship prediction methods is checked using soil engineering laboratory experiments and Matlab R2013b numerical modelling. The shrinkage of soils with different cement content of (0%, 2%, 4%, 6% and 8% with the same water content of 20 percent in room temperature for 24 hours, are critically reviewed in terms of their predictive shrinkage along with their strengths and flexural behaviour. The review highlights the prediction methods present to determine the effect of heat stress on the shrinkage of soil samples with different cement content after classifying the soils into clay, silt and sand depending on their particle size using sieve and hydrometer experiments. The results of the soil engineering laboratory experiments showed that as the cement content increases, the shrinkage of soil decreases as a result of increased elasticity in soil. The numerical analysis using finite element method in Matlab R2013b shows that as the cement content increases the displacement in the soil sample decreases and that the soil sample with 8% cement content has more resistance to shrinkage and less displacement than the soil with 6% cement, which has less resistance to heat stresses and more displacement.

  20. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  1. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  2. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  3. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    Science.gov (United States)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  4. Durability of blended cements in contact with sulfate-bearing ground water

    International Nuclear Information System (INIS)

    Duerden, S.L.; Majumdar, A.J.; Walton, P.L.

    1990-01-01

    In the concept of radioactive waste disposal developed in the UK (United Kingdom), OPC (ordinary portland cement) blended with pulverized fuel ash or ground granulated blastfurnace slag is being considered for encapsulation of waste forms, as a material for backfilling and sealing a repository, and for concrete in repository construction. This paper describes a laboratory study of the long term durability of such cements in contact with sulfate-bearing ground water under accelerated exposure conditions. Mineralogical analysis of the cements over the exposure period, carried out with the aid of scanning electron microscope observations and x-ray diffraction studies, provides an indication of the stability of cementitious phases exposed to an aggressive environment. It is shown that for intact cement blocks there is minimal interaction between cement and sulfate-bearing ground water. Sulfate minerals produced by the reaction are accommodated in voids in the cement with no adverse effect on the cement structure. However, crystallization of C-S-H and sulfate minerals along cracks in hardened cement specimens causes expansion of fracture surfaces resulting in a more accessible route for ground water intrusion and radionuclide migration. The reaction of cement with ground water is greatly accelerated by the use of powdered material. Ettringite formed in the reaction is found to be unstable under these conditions. The mineralogical assemblage after exposure for 1 year is calcite, hydrotalcite, C-S-H and quartz

  5. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  6. Cement-latex grouting mortar for cementing boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Kateev, I S; Golyshkina, L A; Gorbunova, I V; Kurochkin, B M; Vakula, Ya V

    1980-01-01

    The need for the development of cement-latex grouting mortar for the purpose of separating strata when reinforcing boreholes at deposits in the Tatar Associated SSR is evaluated. Results of studies of the physical and mechanical properties of cement-latex grouting mortar systems (mortar plus brick) are presented. Formulas for preparing cement-latex grouting mortor are evaluated and results of industrial tests of such mortars shown.

  7. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  8. Chemical environment in cements

    International Nuclear Information System (INIS)

    Glasser, F.B.; Angus, M.J.; McCulloch, C.E.; Macphee, D.; Rahman, A.A.

    1984-01-01

    The alkalinity of Portland cements is responsible for precipitation and low solubility of many radwastes species. The sources of alkalinity are evaluated and two chemical models, based on experimental and theoretical data presented enabling the effect of blending agents (PFA, silica fume, etc.) to be evaluated and the alkalinity of the system at longer ages predicted. The data take the form of a solubility model which is applicable to non-heat generating wastes. 7 refs., 10 figs

  9. Stabilization of Highway Expansive Soils with High Loss on Ignition ...

    African Journals Online (AJOL)

    This study was carried out to evaluate the effect of high loss on ignition content cement kiln dust on the stabilization of highway expansive soils. Laboratory tests were performed on the natural and stabilized soil samples in accordance with BS 1377 (1990) and BS 1924 (1990), respectively. The preliminary investigation ...

  10. A treatment of expansive soil using different additives

    Directory of Open Access Journals (Sweden)

    Bestun J. Nareeman

    2010-11-01

    Full Text Available There are many factors that govern the expansion behavior of soil. The primary factors are a change in water contentand the amount and type of clay size particles in the soil. Other important factors affecting the expansion behavior include the typeof soil (natural or fill, condition of the soil in terms of dry density and moisture content, magnitude of the surcharge pressure,and amount of no expansive material such as gravel or cobble size particles.In this paper, a swelling soil from the site Hamamuk earth dam, which is located in Koya town north of Iraq, is treated by fourtypes of additives; cement, steel fibers, gasoline fuel and injection by cement grout.The treatment of the expansive soil with 5 % of cement or steel fibers or the injection with cement grout revealed a betterimprovement while 4 % of gasoline oil is sufficient to reveal the optimum treatment by this material. The angle of internal friction is notaffected by the treatment while the cohesion between particles is slightly affected by these additives due to a change in the adhesionbetween the additive and soil particles.

  11. Barium aluminate cement: its application

    International Nuclear Information System (INIS)

    Drozdz, M.; Wolek, W.

    1975-01-01

    The technology of manufacturing barium aluminate cement from barium sulfate and alumina, using a rotary kiln for firing the clinker is described. The method of granulation of the homogenized charge was used. Conditions of using the ''to mud'' method in industry were indicated. The physical and chemical properties of barium aluminate cement are determined and the quality of several batches of cement prepared on a semi-industrial scale and their suitability for making highly refractory concretes are tested. The optimal composition of the concretes is determined as a function of the mixing water and barium aluminate cement contents. Several experimental batches of concretes were used in the linings of furnaces in the steel industry. The suitability of these cements for use in fields other than steelmaking is examined. It is established that calcium aluminate cement has certain limited applications [fr

  12. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    Science.gov (United States)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  13. Stability of reinforced cemented backfills

    International Nuclear Information System (INIS)

    Mitchell, R.J.; Stone, D.M.

    1987-01-01

    Mining with backfill has been the subject of several international meetings in recent years and a considerable research effort is being applied to improve both mining economics and ore recovery by using backfill for ground support. Classified mill tailings sands are the most commonly used backfill material but these fine sands must be stabilized before full ore pillar recovery can be achieved. Normal portland cement is generally used for stabilization but the high cost of cement prohibits high cement usage. This paper considers the use of reinforcements in cemented fill to reduce the cement usage. It is concluded that strong cemented layers at typical spacings of about 3 meters in a low cement content bulk fill can reinforce the fill and reduce the overall cement usage. Fibre reinforcements introduced into strong layers or into bulk fills are also known to be effective in reducing cement usage. Some development work is needed to produce the ideal type of anchored fibre in order to realize economic gains from fibre-reinforced fills

  14. Using dehydrated cement paste as new type of cement additive

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.; Dong, J

    2013-01-01

    This paper presents an experimental study, including evaluation and modification, on using dehydrated cement paste (DCP) as a new type of cement additive. After a series of processes, normal DCP (N-DCP) was produced as before and a modified form of DCP (M-DCP) was produced as well. The cementitious

  15. Biomass for green cement

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, R. [Lafarge Canada Inc., Calgary, AB (Canada)

    2006-07-01

    Lafarge examined the use of waste biomass products in its building materials and provided background information on its operations. Cement kiln infrastructure was described in terms of providing access to shipping, rail and highways; conveying and off-loading equipment; having large storage facilities; and, offering continuous monitoring and stack testing. The presentation identified the advantages and disadvantages of a few different biomass cases such as coal; scrap tires; non-recyclable household waste; and processed biomass. A chart representing landfill diversion rates was presented and the presentation concluded with a discussion of energy recovery and recycling. 1 tab., figs.

  16. Process of preparing hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1919-12-11

    A process of preparing hydraulic cement from oil shale or shale coke is characterized in that the oil shale or shale coke after the distillation is burned long and hot to liberate the usual amount of carbonic acid and then is fine ground to obtain a slow hardening hydraulic cement.

  17. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  18. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2011-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  19. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2010-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  20. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  1. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  2. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    International Nuclear Information System (INIS)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na + form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic. - Highlights: • Solidification of cationic resins in the Na + -form is investigated. • Portland and blast furnace slag cements are compared. • Deleterious expansion is observed with Portland cement only. • Resin swelling is due to a decrease in the osmotic pressure of the pore solution. • The consolidation rate of the matrix is a key parameter to prevent damage.

  3. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027) into...

  4. A cement based syntactic foam

    International Nuclear Information System (INIS)

    Li Guoqiang; Muthyala, Venkata D.

    2008-01-01

    In this study, a cement based syntactic foam core was proposed and experimentally investigated for composite sandwich structures. This was a multi-phase composite material with microballoon dispersed in a rubber latex toughened cement paste matrix. A trace amount of microfiber was also incorporated to increase the number of mechanisms for energy absorption and a small amount of nanoclay was added to improve the crystal structure of the hydrates. Three groups of cement based syntactic foams with varying cement content were investigated. A fourth group of specimens containing pure cement paste were also prepared as control. Each group contained 24 beam specimens. The total number of beam specimens was 96. The dimension of each beam was 30.5 cm x 5.1 cm x 1.5 cm. Twelve foam specimens from each group were wrapped with plain woven 7715 style glass fabric reinforced epoxy to prepare sandwich beams. Twelve cubic foam specimens, three from each group, with a side length of 5.1 cm, were also prepared. Three types of testing, low velocity impact test and four-point bending test on the beam specimens and compression test on the cubic specimens, were conducted to evaluate the impact energy dissipation, stress-strain behavior, and residual strength. Scanning electron microscope (SEM) was also used to examine the energy dissipation mechanisms in the micro-length scale. It was found that the cement based syntactic foam has a higher capacity for dissipating impact energy with an insignificant reduction in strength as compared to the control cement paste core. When compared to a polymer based foam core having similar compositions, it was found that the cement based foam has a comparable energy dissipation capacity. The developed cement based syntactic foam would be a viable alternative for core materials in impact-tolerant composite sandwich structures

  5. Crown and bridge cements: clinical applications.

    Science.gov (United States)

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  6. Sulfate resistance of nanosilica contained Portland cement mortars

    Science.gov (United States)

    Batilov, Iani B.

    Soils, sea water and ground water high in sulfates are commonly encountered hostile environments that can attack the structure of concrete via chemical and physical mechanisms which can lead to costly repairs or replacement. Sulfate attack is a slow acting deteriorative phenomenon that can result in cracking, spalling, expansion, increased permeability, paste-to-aggregate bond loss, paste softening, strength loss, and ultimately, progressive failure of concrete. In the presented research study, Portland cement (PC) mortars containing 1.5% to 6.0% nanosilica (nS) cement replacement by weight were tested for sulfate resistance through full submersion in sodium sulfate to simulate external sulfate attack. Mortars with comparable levels of cement replacement were also prepared with microsilica (mS). Three cement types were chosen to explore nS' effectiveness to reduce sulfate expansion, when paired with cements of varying tricalcium aluminate (C3A) content and Blaine fineness, and compare it to that of mS. Mortars were also made with combined cement replacement of equal parts nS and mS to identify if they were mutually compatible and beneficial towards sulfate resistance. Besides sulfate attack expansion of mortar bars, the testing program included investigations into transport and microstructure properties via water absorption, sulfate ion permeability, porosimetry, SEM with EDS, laser diffraction, compressive strength, and heat of hydration. Expansion measurements indicated that mS replacement mortars outperformed both powder form nS, and nS/mS combined replacement mixtures. A negative effect of the dry nS powder replacement attributed to agglomeration of its nanoparticles during mixing negated the expected superior filler, paste densification, and pozzolanic activity of the nanomaterial. Agglomerated nS was identified as the root cause behind poor performance of nS in comparison to mS for all cement types, and the control when paired with a low C3A sulfate resistant

  7. Cement/slag chemistry studies

    International Nuclear Information System (INIS)

    Glasser, F.P.; Macphee, D.; Atkins, M.; Beckley, N.; Carson, S.O.; Wilding, C.R.; McHugh, G.

    1988-01-01

    The performance of cement-based matrices intended for radwaste immobilization is assessed. The long-term performance of the matrix is characterized by thermodynamic evaluation of experimental data. The results are presented in a general form, amenable to a range of specific formulations. The interaction of specific radwaste components with cements has been studied, using Iodine as an example. It occurs as both I - and IO 3 - species, but these differ sharply in sorption characteristics. The effect of ionizing radiation of the pH and E h of cement matrices is reported. (author)

  8. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Glasser, F.P.

    2013-01-01

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  9. Cements in Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, F. P. [University of Aberdeen, Scotland (United Kingdom)

    2013-09-15

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  10. Does cement mantle thickness really matter?

    OpenAIRE

    Caruana, J.

    2008-01-01

    The thickness of the cement mantle around the femoral component of total hip replacements is a contributing factor to aseptic loosening and revision. Nevertheless, various designs of stems and surgical tooling lead to cement mantles of differing thicknesses. This thesis is concerned with variability in cement thickness around the Stanmore Hip, due to surgical approach, broach size and stem orientation, and its effects on stress and cracking in the cement. The extent to which cement mantle thi...

  11. Setting temperature evolution of nitrate radwaste immobilized in ordinary portland cement

    International Nuclear Information System (INIS)

    Rzyski, B.M.; Suarez, A.A.

    1988-01-01

    Materials based on hydraulic cements such as ordinary Portland cement (OPC) have many applications in the radioactive waste disposal field. Cement hydration process is an exothermic reaction and can cause a considerable temperature rise in the cemented waste form. Specially when large blocks of waste forms are produced it is necessary to have some information about the temperature build up which occurs inside the mass, because this effect may have some influences on the ultimate properties of the hardened cement paste. This temperature rise cause expansion while the cement paste is hardening. When the cooling process takes place, to the surrounding temperature, crackings and contractions may then occur. Whether cracking arise it depends both on the magnitude of the temperature induced stress and on the capacity of the mixture to accommodate the strain. This paper compares the temperature growth in pastes into two different geometries: one uses a waste container with 3.8 dm 3 (one US gallon) capacity placed inside a 0.21 m 3 (55 gallons) concrete lined drum, which acts as a radiation shielding, and the other the same container placed in ambient at room temperature. Correlations between the time of temperature occurrence, maximum temperature, the water to cement ratio and salt content were observed

  12. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  13. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  14. Rheological measurements on cement grouts

    International Nuclear Information System (INIS)

    Dalton, M.J.

    1986-06-01

    This report describes the techniques which have been developed at Winfrith for assessing the rheological properties of cement grouts. A discussion of the theory of rheology and its application to cement is given and the methodology for calibrating a special paddle measuring system for a commercial viscometer is described. The use of the system for determining flow curves, equilibrium viscosity, viscosity as a function of shearing time and structure changes is also discussed. (author)

  15. Cement pulmonary embolism after vertebroplasty.

    Science.gov (United States)

    Sifuentes Giraldo, Walter Alberto; Lamúa Riazuelo, José Ramón; Gallego Rivera, José Ignacio; Vázquez Díaz, Mónica

    2013-01-01

    In recent years, the use of vertebral cementing techniques for vertebroplasty and kyphoplasty has spread for the treatment of pain associated with osteoporotic vertebral compression fractures. This is also associated with the increased incidence of complications related with these procedures, the most frequent being originated by leakage of cementation material. Cement can escape into the vertebral venous system and reach the pulmonary circulation through the azygous system and cava vein, producing a cement embolism. This is a frequent complication, occurring in up to 26% of patients undergoing vertebroplasty but, since most patients have no clinical or hemodynamical repercussion, this event usually goes unnoticed. However, some serious, and even fatal cases, have been reported. We report the case of a 74-year-old male patient who underwent vertebroplasty for persistent pain associated with osteoporotic L3 vertebral fracture and who developed a cement leak into the cava vein and right pulmonary artery during the procedure. Although he developed a pulmonary cement embolism, the patient remained asymptomatic and did not present complications during follow-up. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  16. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  17. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures

    International Nuclear Information System (INIS)

    Sant, Gaurav; Lothenbach, Barbara; Juilland, Patrick; Le Saout, Gwenn; Weiss, Jason; Scrivener, Karen

    2011-01-01

    Studies on the early-age shrinkage behavior of cement pastes, mortars, and concretes containing shrinkage reducing admixtures (SRAs) have indicated these mixtures frequently exhibit an expansion shortly after setting. While the magnitude of the expansion has been noted to be a function of the chemistry of the cement and the admixture dosage; the cause of the expansion is not clearly understood. This investigation uses measurements of autogenous deformation, X-ray diffraction, pore solution analysis, thermogravimetry, and scanning electron microscopy to study the early-age properties and describe the mechanism of the expansion in OPC pastes made with and without SRA. The composition of the pore solution indicates that the presence of the SRA increases the portlandite oversaturation level in solution which can result in higher crystallization stresses which could lead to an expansion. This observation is supported by deformation calculations for the systems examined.

  18. Polymer-Cement Composites Containing Waste Perlite Powder

    Directory of Open Access Journals (Sweden)

    Paweł Łukowski

    2016-10-01

    Full Text Available Polymer-cement composites (PCCs are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  19. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  20. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  1. Development of cement material using inorganic additives

    International Nuclear Information System (INIS)

    Toyohara, Masumitsu; Satou, Tatsuaki; Wada, Mikio; Ishii, Tomoharu; Matsuo, Kazuaki.

    1997-01-01

    Inorganic admixtures to enhance the fluidity of cement material was developed. These admixtures turned into easy to immobilize the miscellaneous radioactive waste using cement material. It was found that the ζ potential of cement particles was directly proportional to the content of the inorganic admixtures in cement paste and the particles of cement were dispersed at the high ζ potential. The condensed sodium phosphate, which was the main component of the inorganic admixtures, retarded the dissolution of Ca 2+ ion from the cement, and generated the colloids by incorporating dissolved Ca 2+ ion. The cement material containing the inorganic admixtures was found to have the same mechanical strength and adsorption potential of radionuclides in comparison to normal cement materials. It was confirmed that the cement material containing the inorganic admixture was effectively filled gaps of miscellaneous radioactive waste. (author)

  2. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  3. Polymer-cement interactions towards improved wellbore cement fracture sealants

    Science.gov (United States)

    Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.

    2017-12-01

    Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.

  4. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  5. Seepage/Cement Interactions

    International Nuclear Information System (INIS)

    Carpenter, D.

    2000-01-01

    The Development Plan (CRWMS M andO 1999a) pertaining to this task defines the work scopes and objectives for development of various submodels for the Physical and Chemical Environment Abstraction Model for TSPA-LA. The Development Plan (CRWMS M andO 1999a) for this specific task establishes that an evaluation be performed of the chemical reactions between seepage that has entered the drift and concrete which might be used in the repository emplacement drifts. The Development Plan (CRWMS M andO 1999a) then states that the potential effects of these water/grout reactions on chemical conditions in the drift be assessed factoring in the influence of carbonation and the relatively small amount of grout. This task is also directed at: (1) developing a conceptualization of important cement/seepage interactions and potential impacts on EBS performance, (2) performing a screening analysis to assess the importance of cement/seepage interactions. As the work progresses and evolves on other studies, specifically the Engineered Barrier System: Physical and Chemical Environment (P andCE) Model (in progress), many of the issues associated with items 1 and 2, above, will be assessed. Such issues include: (1) Describing the mineralogy of the specified cementitious grout and its evolution over time. (2) Describing the composition of the water before contacting the grout. (3) Developing reasonable upper-bound estimates for the composition of water contacting grout, emphasizing pH and concentrations for anions such as sulfate. (4) Evaluating the equilibration of cement-influenced water with backfill and gas-phase CO 2 . (5) Developing reasonable-bound estimates for flow rate of affected water into the drift. The concept of estimating an ''upper-bound'' range for reaction between the grout and the seepage, particularly in terms of pH is based on equilibrium being established between the seepage and the grout. For example, this analysis can be based on equilibrium being established as

  6. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  7. Cement Type Influence on Alkali-Silica Reaction in Concrete with Crushed Gravel Aggregate

    Science.gov (United States)

    Rutkauskas, A.; Nagrockienė, D.; Skripkiūnas, G.

    2017-10-01

    Alkali-silica reaction is one of the chemical reactions which have a significant influence for durability of concrete. During alkali and silica reaction, silicon located in aggregates of the concrete, reacts with high alkali content. This way in the micropores of concrete is forming hygroscopic gel, which at wet environment, expanding and slowly but strongly destroying concrete structures. The goal of this paper- to determine the influence of cement type on alkali-silica reaction of mortars with crushed gravel. In the study crushed gravel with fraction 4/16 mm was used and four types of cements tested: CEM I 42.5 R; CEM I 42.5 SR; CEM II/A-S 42.5; CEM II/A-V 52.5. This study showed that crushed gravel is low contaminated on reactive particles containing of amorphous silica dioxide. The expansion after 14 days exceed 0.054 %, by RILEM AAR-2 research methodology (testing specimen dimension 40×40×160 mm). Continuing the investigation to 56 days for all specimens occurred alkaline corrosion features: microcracking and the surface plaque of gel. The results showed that the best resistance to alkaline corrosion after 14 days was obtained with cement CEM I 42.5 SR containing ash additive, and after 56 days with cement CEM II/A-V 52.5 containing low alkali content. The highest expansion after 14 and 56 days was obtained with cement CEM I 42.5 R without active mineral additives.

  8. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    Science.gov (United States)

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  9. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the subject... duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... and Cement Clinker from Japan: Investigation No. 731- TA-461 (Third Review). By order of the...

  10. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  11. Cement radwaste solidification studies third annual report

    International Nuclear Information System (INIS)

    Brown, D.J.; James, J.M.; Lee, D.J.; Smith, D.L.; Walker, A.T.

    1982-03-01

    This report summarises cement radwaste studies carried out at AEE Winfrith during 1981 on the encapsulation of medium and low active waste in cement. During the year more emphasis has been placed on the work which is directly related to the solidification of SGHWR active sludge. Information has been obtained on the properties of 220 dm 3 drums of cemented waste. The use of cement grouts for the encapsulation of solid items has also been investigated during 1981. (U.K.)

  12. Characterization of cement-stabilized Cd wastes

    International Nuclear Information System (INIS)

    Maria Diez, J.; Madrid, J.; Macias, A.

    1996-01-01

    Portland cement affords both physical and chemical immobilization of cadmium. The immobilization has been studied analyzing the pore fluid of cement samples and characterizing the solid pastes by X-ray diffraction. The influence of cadmium on the cement hydration and on its mechanical properties has been also studied by isothermal conduction calorimetry and by the measure of strength and setting development. Finally, the effect of cement carbonation on the immobilization of cadmium has been analyzed

  13. Substantial global carbon uptake by cement carbonation

    OpenAIRE

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn

    2016-01-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 20131, 2. Considerable attention has been paid to quantifying these industrial process emissions from cement production2, 3, but the natural reversal of the process—carbonation—has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondar...

  14. Thermal analysis of borogypsum and its effects on the physical properties of Portland cement

    International Nuclear Information System (INIS)

    Elbeyli, Iffet Yakar; Derun, Emek Moeroeydor; Guelen, Jale; Piskin, Sabriye

    2003-01-01

    Borogypsum, which consists mainly of gypsum crystals, B 2 O 3 and some impurities, is formed during the production of boric acid from colemanite, which is an important borate ore. In this study, the effect of borogypsum and calcined borogypsum on the physical properties of ordinary Portland cement (OPC) has been investigated. The calcination temperature and transformations in the structures of borogypsum and natural gypsum were determined by differential thermal analysis (DTA), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) techniques. Thermal experiments were carried out between ambient temperature and 500 deg. C in an air atmosphere at a heating rate of 10 deg. C min -1 . After calculation of enthalpy and determination of conversion temperatures, borogypsum (5% and 7%), hemihydrate borogypsum (5%) and natural gypsum (5%) were added separately to Portland cement clinker and cements were ground in the laboratory. The final products were tested for chemical analysis, compressive strength, setting time, Le Chatelier expansion and fineness properties according to the European Standard (EN 196). The results show that increasing the borogypsum level in Portland cement from 5% to 7% caused an increase in setting time and a decrease in soundness expansion and compressive strength. The cement prepared with borogypsum (5%) was found to have similar strength properties to those obtained with natural gypsum, whereas a mixture containing 5% of hemihydrate borogypsum was found to develop 25% higher compressive strength than the OPC control mixtures at 28 days. For this reason, utilization of calcined borogypsum in cement applications is expected to give better results than untreated borogypsum. It is concluded that hemihydrate borogypsum could be used as a retarder for Portland cement as an industrial side. This would play an important role in reducing environmental pollution

  15. Cementation unit for radioactive wastes

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto; Lima, Jose Rodrigues de

    2001-01-01

    This communication describes the waste cementation process and facility developed at Instituto de Pesquisas Energeticas e Nucleares - IPEN. The process is based on 200 litres batch operation, in drum mixing, with continuous cement feeding. The equipment is a single recoverable helicoidal mixer and a turning table that allows the drum to rotate during the mixing operation, simulating a planetary mixer. The facility was designed to treat contact handled liquids and wet solid wastes, but can be adapted for shielded equipment and remote operation. (author)

  16. 21 CFR 872.3275 - Dental cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns or...

  17. Cement production from coal conversion residues

    International Nuclear Information System (INIS)

    Brown, L.D.; Clavenna, L.R.; Eakman, J.M.; Nahas, N.C.

    1981-01-01

    Cement is produced by feeding residue solids containing carbonaceous material and ash constituents obtained from converting a carbonaceous feed material into liquids and/or gases into a cement-making zone and burning the carbon in the residue solids to supply at least a portion of the energy required to convert the solids into cement

  18. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  19. A thermal comparator sensor for measuring autogenous deformation in hardening Portland cement paste

    DEFF Research Database (Denmark)

    Østergaard, Thomas; Jensen, Ole Mejlhede

    2003-01-01

    This paper describes a simple and accurate experimental device specially developed to measure autogenous deformation in hardening cement-based materials. The measuring system consists of a so-called thermal comparator sensor and a modular thermostatically controlled system. The operating principle...... of the thermal comparator is based on thermal expansion of aluminium. A particular characteristic of the measuring system is the fixation of the thermal comparator sensor to the deforming specimen. The modular system ensures effective thermostatic control of the hydrating cement paste samples. The technique...... allows continuous measurement with high accuracy of the linear deformation as well as determination of the activation energy of autogenous deformation....

  20. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  1. Solidification of ion exchange resins saturated with Na{sup +} ions: Comparison of matrices based on Portland and blast furnace slag cement

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, E. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Cau dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Gauffinet, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université de Bourgogne, Dijon, France, 9 Av Alain Savary, BP 47870, 21078 Dijon cedex (France); Chartier, D. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Stefan, L. [AREVA, Back End Business Group, Dismantling & Services, 1 Place Jean Millier, 92084 Paris La Défense (France); Le Bescop, P. [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France)

    2017-01-15

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na{sup +} form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic. - Highlights: • Solidification of cationic resins in the Na{sup +}-form is investigated. • Portland and blast furnace slag cements are compared. • Deleterious expansion is observed with Portland cement only. • Resin swelling is due to a decrease in the osmotic pressure of the pore solution. • The consolidation rate of the matrix is a key parameter to prevent damage.

  2. Electrically conductive Portland cement concrete.

    Science.gov (United States)

    1986-01-01

    There is a need for an effective, simple-to-install secondary anode system for use in the cathodic protection of reinforced concrete bridge decks. In pursuit of such a system, carbon fibers and carbon black were incorporated in portland cement concre...

  3. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  4. [Cement augmentation on the spine : Biomechanical considerations].

    Science.gov (United States)

    Kolb, J P; Weiser, L; Kueny, R A; Huber, G; Rueger, J M; Lehmann, W

    2015-09-01

    Vertebral compression fractures are the most common osteoporotic fractures. Since the introduction of vertebroplasty and screw augmentation, the management of osteoporotic fractures has changed significantly. The biomechanical characteristics of the risk of adjacent fractures and novel treatment modalities for osteoporotic vertebral fractures, including pure cement augmentation by vertebroplasty, and cement augmentation of screws for posterior instrumentation, are explored. Eighteen human osteoporotic lumbar spines (L1-5) adjacent to vertebral bodies after vertebroplasty were tested in a servo-hydraulic machine. As augmentation compounds we used standard cement and a modified low-strength cement. Different anchoring pedicle screws were tested with and without cement augmentation in another cohort of human specimens with a simple pull-out test and a fatigue test that better reflects physiological conditions. Cement augmentation in the osteoporotic spine leads to greater biomechanical stability. However, change in vertebral stiffness resulted in alterations with the risk of adjacent fractures. By using a less firm cement compound, the risk of adjacent fractures is significantly reduced. Both screw augmentation techniques resulted in a significant increase in the withdrawal force compared with the group without cement. Augmentation using perforated screws showed the highest stability in the fatigue test. The augmentation of cement leads to a significant change in the biomechanical properties. Differences in the stability of adjacent vertebral bodies increase the risk of adjacent fractures, which could be mitigated by a modified cement compound with reduced strength. Screws that were specifically designed for cement application displayed greatest stability in the fatigue test.

  5. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  6. Leaching of tritium from a cement composite

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Ito, Akihiko

    1978-10-01

    Leaching of tritium from cement composites into an aqueous phase has been studied to evaluate the safety of incorporation of the tritiated liquid waste into cement. Leaching tests were performed by the method recommended by the International Atomic Energy Agency. The Leaching fraction was measured as functions of waste-cement ratio (Wa/C), temperature of leachant and curing time. The tritium leachability of cement in the long term test follows the order: alumina cement portland cement slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than synthetic sea water. The amount leached of tritium from a 200 l drum size specimen was estimated on the basis of the above results. (author)

  7. Convergence of mayer expansions

    International Nuclear Information System (INIS)

    Brydges, D.C.

    1986-01-01

    The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained

  8. Through BHA (Bottom Hole Assembly) cementing with proprietary cementing technology

    Energy Technology Data Exchange (ETDEWEB)

    Fanguy, Charles ' Joey' ; Mueller, Dan T. [BJ Services Company, Houston, TX (United States); Garrett, J.C. [Palm Energy Partners, LLC, Metairie, LA (United States)

    2004-07-01

    There are many problems that can arise when drilling into sub-normally pressured or naturally fractured zones. Lost circulation is one problem that is commonly encountered while drilling oil and gas wells. Lost circulation can lead to increased costs associated with drilling due to rig time, spreadsheet costs, and expensive mud system losses. Cement is one of the most effective treatment options, although it is not normally considered the first option because most operators are forced to trip out of the wellbore and utilize a squeeze packer. This is not always a viable option because of potential well control issues associated with the hydrostatic pressure reduction due to the losses of the whole mud. One treatment option that is commonly overlooked is pumping cement slurries through the bottom hole assembly and drill bit. This is generally not attempted for a variety of reasons. These reasons include: I Concern about 'squeezing off' of the cement in the bit II Lack of potential quality control associated with mixing 'on the fly' III Lack of the ability to test the actual mixed slurry samples The use of a pre-mixed, storable cement slurry has eliminated the concerns associated with pumping cement slurries through mud motors, MWD tools, BHA's, and drill bits. This advanced cement technology has been successfully utilized while reducing the risks associated with these lost circulation treatments. In addition, this technology has eliminated the costs associated with using a squeeze packer and the rig time required for several trips out of the wellbore. The paper will describe the premixed slurry properties and QA/QC procedures that are required for successful through the bit operations. This paper will also provide case histories of successful through the bit operation, as well as background information leading to the treatments. The case histories include successful through the bit remediation of severe lost circulation zones and as well the

  9. Analysis of cement-treated clay behavior by micromechanical approach

    OpenAIRE

    Zhang , Dong-Mei; Yin , Zhenyu; Hicher , Pierre Yves; Huang , Hong-Wei

    2013-01-01

    International audience; Experimental results show the significant influence of cement content on the mechanical properties of cement-treated clays. Cementation is produced by mixing a certain amount of cement with the saturated clay. The purpose of this paper is to model the cementation effect on the mechanical behavior of cement-treated clay. A micromechanical stress-strain model is developed considering explicitly the cementation at inter-cluster contacts. The inter-cluster bonding and debo...

  10. IMPACT OF FORMULA-TECHNOLOGICAL FACTORS ON CONCRETE STRENGTH INDICATORS FOR INJECTING WITH TWO-STAGE EXPANSION

    Directory of Open Access Journals (Sweden)

    Tatjana N. Zhilnikova

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the study is to clarify the dependence of the cement stone strength on additional porosity that is formed owing both to the cement stone’s development of free deformations and the expansion of the hardening concrete in the second stage as caused by the action of the expanding additive. Method The study is based on the introduction of a sulphoaluminate-type expanding additive in the composition of a binder based on alumina cement, natural gypsum stone and nitrilotrimethylphosphonic acid. Results It is shown that an important role is played in the technology of expanding concrete not only by the degree of expansion of the cement stone, but also by its strength, both during the development of deformations and following stabilisation. Among factors influencing the kinetics of hardening are not only recipe-related (composition and dosage of the additive, mineralogical composition of Portland cement clinker, composition of the concrete, presence of chemical additives, but also technological (fineness of cement grinding, hardening temperature, etc. that makes the management of the processes of structure formation quite complex. The dependence of the strength of cement stone on the additional porosity formed due to the growth of the cement stone own free deformations and expansion of the hardening concrete in the second stage due to the action of the expanding additive is revealed; dependence of the influence of kinetics of the structure formation regulator - nitrilotrimethylphosphonic acid - on the consistency of the development of the intrinsic free expansion deformations and the formation of the strength of the cement stone in the second stage; the dependence of the strength of the cement stone on the additional porosity formed due to gas evolution and expansion of the mixture in the first stage due to the action of the gas-forming additive; the influence of the constraint of expansion on the formation of the

  11. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    Science.gov (United States)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate

  12. The cement recycling of the earthquake disaster debris by Hachinohe Cement Co., Ltd

    International Nuclear Information System (INIS)

    Kataoka, Masayuki

    2015-01-01

    A tremendous quantity of earthquake disaster debris and tsunami sediment was resulted by the Great East Japan Earthquake on March 11, 2011. Hachinohe Cement Co., Ltd., a Sumitomo Osaka Cement subsidiary, was the first cement industry company to receive and process such waste materials outside of their usual prefecture area, while the company is performing their treatment and recycling services locally in Hachinohe City and Aomori Prefecture. This report provides an explanation about the recycling mechanism of waste materials and by-products in cement manufacturing process, and introduces an example of actual achievements for the disaster debris treatment by utilizing the cement recycling technologies at the Hachinohe Cement Plant. (author)

  13. Use sulfoferritic cements in construction

    Science.gov (United States)

    Samchenko, Svetlana V.; Zorin, Dmitriy A.

    2018-03-01

    Currently, high-rise construction has received increasing attention around the world. In the big cities under construction is less space and one solution is the high-rise construction. However, high-rise buildings use special requirements, such as strength, thermal insulation, wind load and others. When concrete is exposed to continuous loads by wind or to mechanical loads, it undergoes abrasion. Resistance to this process depends on the characteristics of materials that the concrete and finishing seams are made of. Research on increasing impact and abrasion resistance of calcium sulfoferrite-based cement stone from the perspective of formation of cement stone structure will be instrumental in developing durable materials for application in high-rise construction.

  14. Concrete research using blended cements

    International Nuclear Information System (INIS)

    Butler, W.B.

    2001-01-01

    Concrete research increasingly involves the use of mixes containing one or more of the supplementary cementitious materials (SCMs), often in conjunction with chemical admixtures. The influence of materials is commonly evaluated on the basis of water/ cement or water/ binder ratio and SCM content as a percentage of total binder, with dosage level of chemical admixture varied to maintain workability. As a result, more than one variable is introduced at a time and the objectives of the research may not be achieved. The significance of water/ cement ratio and addition rates of admixtures are examined from a practical standpoint with suggestions for more appropriate means of evaluation of the influence of individual materials. Copyright (2001) The Australian Ceramic Society

  15. The density of cement phases

    International Nuclear Information System (INIS)

    Balonis, M.; Glasser, F.P.

    2009-01-01

    The densities of principal crystalline phases occurring in Portland cement are critically assessed and tabulated, in some cases with addition of new data. A reliable and self-consistent density set for crystalline phases was obtained by calculating densities from crystallographic data and unit cell contents. Independent laboratory work was undertaken to synthesize major AFm and AFt cement phases, determine their unit cell parameters and compare the results with those recorded in the literature. Parameters were refined from powder diffraction patterns using CELREF 2 software. A density value is presented for each phase, showing literature sources, in some cases describing limitations on the data, and the weighting attached to numerical values where an averaging process was used for accepted data. A brief discussion is made of the consequences of the packing of water to density changes in AFm and AFt structures.

  16. Glass ionomer cement: literature review

    OpenAIRE

    Sérgio Spezzia

    2017-01-01

    Introduction: In the dental area preventive actions occur in an attempt to avoid the installation of caries, a disease that has an increased prevalence in the population and which is a Public Health problem. Some resources are used for such, such as: performing early diagnosis and the option for conservative treatments of minimal intervention. The glass ionomer cement (CIV), coming from its beneficial characteristics that meet current trends, is closely related to the precepts of Preventive a...

  17. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    OpenAIRE

    Y.C.P RAMANA BABU; B.SAI DOONDI; N. M .V .VAMSI KRISHNA; K.PRASANTHI

    2013-01-01

    India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO) and carbon dioxide (CO2) are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green hous...

  18. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  19. Modernization of Byuzmeyinsky Cement Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, investigations and discussions were given on a modernization project for Byuzmeyinsky Cement Factory, the only cement factory in Turkmenistan. Byuzmeyinsky Cement Factory uses the wet process which consumes a large amount of energy, is inferior in production efficiency and quality, and discharging a great amount of greenhouse effect gas. The present project will execute change of the raw material crusher into a vertical roll mill for one of the four wet kilns, and change of the facilities for raw material powder mixing and storing and clinker manufacturing into dry-type facilities using the NSP system. As a result of the discussions, the energy saving effect would be 86,321 tons of crude oil equivalent annually, and the greenhouse gas emission reducing effect would be 224,467 t-CO2 annually. The total fund amount required for the project is estimated to be 90,211,000 dollars. With regard to the profitability, the internal financial profit rate would be 9.71% after tax, and the ROE would be 18.62%, whereas the project is considered feasible. (NEDO)

  20. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation.

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-12-15

    To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation.

  1. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  2. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    Science.gov (United States)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  3. Natural cement as the precursor of Portland cement: Methodology for its identification

    International Nuclear Information System (INIS)

    Varas, M.J.; Alvarez de Buergo, M.; Fort, R.

    2005-01-01

    When cements appeared in the 19th century, they took the place of traditional binding materials (lime, gypsum, and hydraulic lime) which had been used until that time. Early cements can be divided into two groups, natural and artificial (Portland) cements. Natural cements were introduced first, but their widespread usage was short-lived as they were quickly replaced by artificial cements (Portland), still the most important and predominant today. The main differences between natural and artificial cements arise during the manufacturing process. The final properties of the cements are greatly influenced by differences in the raw materials and burning temperatures employed. The aim of this paper is to assess the efficiency of traditional analytical techniques (petrographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR)) used to differentiate natural and artificial cements

  4. Effects of cement particle size distribution on performance properties of Portland cement-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, D.P.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M.

    1999-10-01

    The original size, spatial distribution, and composition of Portland cement particles have a large influence on hydration kinetics, microstructure development, and ultimate properties of cement-based materials. In this paper, the effects of cement particle size distribution on a variety of performance properties are explored via computer simulation and a few experimental studies. Properties examined include setting time, heat release, capillary porosity percolation, diffusivity, chemical shrinkage, autogenous shrinkage, internal relative humidity evolution, and interfacial transition zone microstructure. The effects of flocculation and dispersion of the cement particles in the starting microstructures on resultant properties are also briefly evaluated. The computer simulations are conducted using two cement particle size distributions that bound those commonly in use today and three different water-to-cement ratios: 0.5, 0.3, and 0.246. For lower water-to-cement ratio systems, the use of coarser cements may offer equivalent or superior performance, as well as reducing production costs for the manufacturer.

  5. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  6. The cement solidification systems at LANL

    International Nuclear Information System (INIS)

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing

  7. Characterization of experimental cements with endodontic goal

    International Nuclear Information System (INIS)

    Dantas, A.M.X.; Sousa, W.J.B.; Oliveira, E.D.C.; Carrodeguas, R.G.; Fook, M.V. Lia; Universidade Estadual da Paraiba

    2017-01-01

    The present study aimed to characterize experimental endodontic cements using as comparative parameter MTA cement. Two experimental endodontic cements were assessed: one based on 95% tri-strontium aluminate and 5% gypsum (CE1) and another based on 50% Sr_3Al_2O_6 and 50% non-structural white cement (CE2). Experimental cements were manipulated and characterized by scanning electron microscopy (SEM), coupled to EDS mode, X-ray diffractometer (XRD) and Thermogravimetric (TG) analysis. Data analysis demonstrated that the particles of the materials used presented varied shapes and sizes, with similar elements and crystalline behavior. However, CE1 presented increased mass loss. Experimental cements presents similarities to MTA, nevertheless, further studies are encourage to determinate comparative properties with the commercially material. (author)

  8. Modelling porewater chemistry in hydrated Portland cement

    International Nuclear Information System (INIS)

    Berner, U.R.

    1987-01-01

    Extensive employment of concrete is foreseen in radioactive waste repositories. A prerequisite for modelling the interactions between concrete and formation waters is characterization of the concrete system. Available experimental data from high pressure squeezing of cement pore-water indicate that, besides the high pH due to alkali hydroxide dissolution, cement composition itself influences the solubility determining solid phases. A model which simulates the hydration of Portland cement assuming complete hydration of the main clinker minerals is presented. The model also includes parameters describing the reactions between the cement and blending agents. Comparison with measured pore-water data generally gives a consistent picture and, as expected, the model gives correct predictions for pure Portland cements. For blended cements, the required additional parameters can, to some extent, be derived from pore-water analysis. 14 references, 1 figure, 4 tables

  9. Chemistry of cements for nuclear applications

    International Nuclear Information System (INIS)

    Barrett, P.; Glasser, F.P.

    1992-01-01

    In recent times the nuclear industry has thrown up challenges which cannot be met by the application of conventional civil and materials engineering knowledge. The contributions in this volume investigate all aspects of cement performance. The scope of the papers demonstrates the current balance of activities which have as their objective the elucidation of kinetics and immobilization, determining material interactions and of assessing future performance. The papers reflect the varied goals of the sponsors who include national governments, the Commission of the European Communities and the nuclear industries. In six parts attention is paid to the durability of cement and concrete in repository environment; interactions between cement, waste components and ground water; properties and performance of cement materials; leach behavior and mechanisms, diffusional properties of cement and concrete, including porosity-permeability relationships; and thermodynamics of cementitious systems and modelling of cement performance

  10. Recent developments in the cement industry: a comparative study between Mexico and India

    Directory of Open Access Journals (Sweden)

    Ganesh Babu Kumaran

    2008-10-01

    Full Text Available Since early twentieth century, the use of cement has become a popular and strategic product for economic growth of every country. In India as in Mexico, the first factories began in the earlier twentieth century, India is nowadays the world’s second largest producer and Mexico is the third firm in cement production, despite being the tenth world producer. The eighties have significate for both countries major structural changes in its economy, which have radically altered the structure and functioning of the cement industry and even more during the decade of the nineties. This article discusses the recent performance of the cement industry in both countries, compares the dynamics and causes that gave rise to these changes. It examines changes in the structure of domestic market in both countries and the strategies employed by large companies that operate in both, including a brief analysis of the role of transnational corporations in their development at the stage of globalization and liberalization of markets that characterizes the last two decades. Finally, it explores the great changes that make possible the growth and expansion of the cement industry during the period, based on technological change, the determinants of competitiveness and the role of economic policies in the development of industry in both countries.

  11. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    Science.gov (United States)

    Keeling, Parnell; Lennon, Alexander B; Kenny, Patrick J; O'Reilly, Peter; Prendergast, Patrick J

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct. Primary cement mantles were formed by cementing a polished stem into sections of tubular steel. If in the test group, the mantle underwent conditioning in saline to simulate ageing and was subject to a fatigue of 1 million cycles. If in the control group no such conditioning or fatigue was carried out. The cement-in-cement procedure was then undertaken. Both groups underwent a fatigue of 1 million cycles subsequent to the revision procedure. Application of a Mann-Whitney test on the recorded subsidence (means: 0.51, 0.46, n=10+10, P=0.496) and inducible displacement (means: 0.38, 0.36, P=0.96) revealed that there was no statistical difference between the groups. This study represents further biomechanical investigation of the mechanical behaviour of cement-in-cement revision constructs. Results suggest that pre-revision fatigue and ageing of the cement may not be deleterious to the mechanical performance of the revision construct. Thus, this study provides biomechanical evidence to back-up recent successes with this useful revision technique. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Sobolev, Konstantin

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  13. Pulmonary Cement Embolism following Percutaneous Vertebroplasty

    Directory of Open Access Journals (Sweden)

    Ümran Toru

    2014-01-01

    Full Text Available Percutaneous vertebroplasty is a minimal invasive procedure that is applied for the treatment of osteoporotic vertebral fractures. During vertebroplasty, the leakage of bone cement outside the vertebral body leads to pulmonary cement embolism, which is a serious complication of this procedure. Here we report a 48-year-old man who was admitted to our hospital with dyspnea after percutaneous vertebroplasty and diagnosed as pulmonary cement embolism.

  14. Evaluation of sulfate resistance of cement mortars containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2009-03-01

    In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.

  15. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Tanaka, S.; Yamawaki, M.

    1994-01-01

    In a fusion reactor or tritium handling facilities, contamination of concrete by tritium and subsequent release from it to the reactor or experimental rooms is a matter of problem for safety control of tritium and management of operational environment. In order to evaluate these tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were studied by combining various experimental methods. From the basic studies on tritium-cement interactions, it has become possible to evaluate tritium uptake by cement or concrete and subsequent tritium release behavior as well as tritium removing methods from them

  16. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  17. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement, 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the products' properties. (author)

  18. Use of rubber crumbs in cement concrete

    Science.gov (United States)

    Longvinenko, A. A.

    2018-03-01

    Rubber crumb obtained from worn out tires has been increasingly used over the last 15-20 years, especially in manufacture of asphalt and cement concrete mixtures. This review pays principal attention to application of the rubber crumb to cement concrete mixtures. Use of the rubber crumb in cement concrete is not as successful as in asphalt concrete mixtures, due to incompatibility problems linked to chemical composition and a significant difference in rigidity between the rubber crumb and concrete mixture aggregates. Different methods are proposed and studied to mitigate the adverse influence and increase the beneficial effects of the rubber crumb when added to cement concrete.

  19. Controls on Cementation in a Chalk Reservoir

    DEFF Research Database (Denmark)

    Meireles, Leonardo Teixeira Pinto; Hussein, A.; Welch, M.J.

    2017-01-01

    In this study, we identify different controls on cementation in a chalk reservoir. Biot’s coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot’s coefficient is correlated...... that some degree of pore filling cementation occurred in Kraka (Alam, 2010). Lack of correlation between Biot’s coefficient and Gamma Ray (GR) indicates that the small amount of clay present is generally located in the pore space, thus not contributing to frame stiffness. While there was no compositional...... control on cementation via clay, we could infer that stratigraphy impacts on the diagenetic process....

  20. Immobilisation of radwaste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Macphee, D.; Atkins, M.; Pointer, C.; Cowie, J.; Wilding, C.R.; Mattingley, N.J.; Evans, P.A.

    1989-01-01

    The solubilities and influence on cement pH are reported for calcium aluminate and aluminosulphate hydrates. The solubility of Ca(OH) 2 is reported to 700 bars. Polymerization of C-S-H is investigated by NMR. Specific interactions of U 6+ and iodine (I - , IO 3 - ) with cement components are described. The impact of radiation on cements and the influence of higher temperature are documented. The role of dissolved Ca and CO 2 in groundwaters as dissolution media for cements are reported. (author)

  1. Integer programming of cement distribution by train

    Science.gov (United States)

    Indarsih

    2018-01-01

    Cement industry in Central Java distributes cement by train to meet daily demand in Yogyakarta and Central Java area. There are five destination stations. For each destination station, there is a warehouse to load cements. Decision maker of cement industry have a plan to redesign the infrastructure and transportation system. The aim is to determine how many locomotives, train wagons, and containers and how to arrange train schedules with subject to the delivery time. For this purposes, we consider an integer programming to minimize the total of operational cost. Further, we will discuss a case study and the solution the problem can be calculated by LINGO software.

  2. Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2000-01-01

    In this paper, a 3D numerical cement hydration model is used for predicting alkali and hydroxyl concentrations in cement pore water. First, this numerical model is calibrated for Dutch cement employing both chemical shrinkage and calorimetric experiments. Secondly, the strength development of some

  3. Evaluation of cement thixotropy for the cement of oil wells in areas ...

    African Journals Online (AJOL)

    ... economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster. Keywords: cementing; lost circulation; ...

  4. Experimental Study on the Tensile Strength and Linear Expansion Coefficient of Air Tunnel Terrazzo Surface

    Directory of Open Access Journals (Sweden)

    Boping Li

    2015-01-01

    Full Text Available At present, studies on the surface tension of air tunnel terrazzo under wind load and how regularly it is affected by temperature are relatively less, and the measured results of the thermal expansion coefficient of terrazzo have not yet been given. In this paper, based on the top terrazzo surface structure of the inner wall of the wind tunnel, the tensile performance tests of terrazzo surface layer are conducted, while the thermal expansion coefficient of the six terrazzo test blocks were tested. The tests and analysis show that the construction of terrazzo surface, based on the proposed construction process, can effectively guarantee the reliable cement performance for the binding layer between mortar and concrete base layer, terrazzo surface layer and the cement mortar layer. And the thermal expansion coefficient of terrazzo can be valued at 1.06e-5/ºC.

  5. Geotechnical Properties of Clayey Soil Stabilized with Cement ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-31

    Dec 31, 2017 ... ... to investigate the different effects of cement-sawdust ash and cement on a ... Keywords: Cement, Saw dust, strength test subgrade material, highway construction ... characteristics of lateritic soil stabilized with sawdust ash.

  6. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  7. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  8. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  9. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  10. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  11. Rietveld analysis, powder diffraction and cement

    International Nuclear Information System (INIS)

    Peterson, V.

    2002-01-01

    Full text: Phase quantification of cement is essential in its industrial use, however many methods are inaccurate and/or time consuming. Powder diffraction is one of the more accurate techniques used for quantitative phase analysis of cement. There has been an increase in the use of Rietveld refinement and powder diffraction for the analysis and phase quantification of cement and its components in recent years. The complex nature of cement components, existence of solid solutions, polymorphic variation of phases and overlapping phase peaks in diffraction patterns makes phase quantification of cements by powder diffraction difficult. The main phase in cement is alite, a solid solution of tricalcium silicate. Tricalcium silicate has been found to exist in seven modifications in three crystal systems, including triclinic, monoclinic, and rhombohedral structures. Hence, phase quantification of cements using Rietveld methods usually involves the simultaneous modelling of several tricalcium silicate structures to fit the complex alite phase. An industry ordinary Portland cement, industry and standard clinker, and a synthetic tricalcium silicate were characterised using neutron, laboratory x-ray and synchrotron powder diffraction. Diffraction patterns were analysed using full-profile Rietveld refinement. This enabled comparison of x-ray, neutron and synchrotron data for phase quantification of the cement and examination of the tricalcium silicate. Excellent Rietveld fits were achieved, however the results showed that the quantitative phase analysis results differed for some phases in the same clinker sample between various data sources. This presentation will give a short introduction about cement components including polymorphism, followed by the presentation of some problems in phase quantification of cements and the role of Rietveld refinement in solving these problems. Copyright (2002) Australian X-ray Analytical Association Inc

  12. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    OpenAIRE

    Auday A Mehatlaf

    2017-01-01

    Cement Klin Dust (CKD) was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40) had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28) d...

  13. Thermal expansion data

    International Nuclear Information System (INIS)

    Taylor, D.

    1984-01-01

    This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)

  14. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    Science.gov (United States)

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  15. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    OpenAIRE

    Choi, Yun-Wang; Oh, Sung-Rok; Choi, Byung-Keol

    2017-01-01

    We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite m...

  16. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    OpenAIRE

    Bediako, Mark; Amankwah, Eric Opoku

    2015-01-01

    The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC) and Portland limestone cement (PLC), CSIR-BRRI Pozzomix, Dangote OPC, a...

  17. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    Science.gov (United States)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  18. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  19. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  20. Feasibility of producing nano cement in a traditional cement factory in Iraq

    Directory of Open Access Journals (Sweden)

    Sada Abdalkhaliq Hasan Alyasri

    2017-12-01

    Full Text Available This study investigates the economic feasibility of producing nano cement through the establishment of a production line within an existing cement factory. Creating a nano cement production line within the Alkufa Cement factory in Iraq is selected as a case study. Evaluation measures including internal rate of return (IRR, net present value (NPV and breakeven point (BEP are used to evaluate the possible gain that can be achieved from this option. The results demonstrated a positive NPV. The IRR is found to be 26.8% and BEP is reached within 3 years after the establishment of the line. This indicates that producing nano cement in the existing cement factory is economically feasible and can be more advantageous than the ordinary cement.

  1. Is it cement to be? Downhole cement that uses zeolite additive may offer lightweight alternative

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-05-01

    C2C Zeolite Corporation produces zeolites from a large deposit near Cache Creek, British Columbia, and processes them for use as an additive in downhole cement well casings. Early research indicates that zeolites can significantly improve the way downhole cement is made in the oil industry. Zeolites are made up mostly of silicates of aluminum and calcium. They have a great ability to absorb water, resulting in a lighter and more fluid cement than is currently available. C2C claims that zeolites will reduce cement weight, column pressure and operator costs. The cost benefits of using lighter cement downhole includes easier moving, processing and handling of the mix. Initial research suggests that zeolites might prove to be viable alternatives to other cement lighteners such as silica fumes or flyash. Zeolite-based cement also performed reasonably well in freeze-thaw tests and showed good adhesion and no evidence of shrinkage in downhole tests. 3 figs.

  2. Cements in radioactive waste management. Characterization requirements of cement products for acceptance and quality assurance purposes

    International Nuclear Information System (INIS)

    Rahman, A.A.; Glasser, F.P.

    1987-01-01

    Cementitious materials are used as immobilizing matrices for low (LLW) and medium-level wastes (MLW) and are also components of the construction materials in the secondary barriers and the repositories. This report has concerned itself with a critical assessment of the quality assurance aspects of the immobilization and disposal of MLW and LLW cemented wastes. This report has collated the existing knowledge of the use and potential of cementitious materials in radioactive waste immobilization and highlighted the physico-chemical parameters. Subject areas include an assessment of immobilization objectives and cement as a durable material, waste stream and matrix characterization, quality assurance concepts, nature of cement-based systems, chemistry and modelling of cement hydration, role and effect of blending agents, radwaste-cement interaction, assessment of durability, degradative and radiolytic processes in cements and the behaviour of cement-based matrices and their near-field interactions with the environment and the repository conditions

  3. Shrinkage Properties of Cement Stabilized Gravel

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard

    2014-01-01

    Cement stabilized gravel is an attractive material in road construction because its strength prop-erties are accommodating the increasingly higher requirements to the bearing capacity of a base course. However, reflection cracking of cement stabilized gravel is a major concern. In this pa...

  4. Development and design of a cementation process

    International Nuclear Information System (INIS)

    Vicente, R.

    1986-01-01

    The conceptual design of a facility for the immobilization of intermediate level liquid waste in cement is presented. The cementation process adopted a vibration assisted mixing process. The solidified waste is packed in 200 litres drum with barite concrete lining. The waste package is classified as Type A package for transport. (Author) [pt

  5. Development and design of a cementation process

    International Nuclear Information System (INIS)

    Vicente, R.

    1987-01-01

    The conceptual design of a facility for the immobilization of intermediate-level liquid wastes in cement is presented. The cementation process adopted a vibration assisted mixing process. The solidified waste is packed in 200 litres drum with barite concrete lining. The waste package is classified as Type A package for transport. (Author) [pt

  6. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  7. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  8. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  9. Facial skeletal augmentation using hydroxyapatite cement.

    Science.gov (United States)

    Shindo, M L; Costantino, P D; Friedman, C D; Chow, L C

    1993-02-01

    This study investigates the use of a new calcium phosphate cement, which sets to solid, microporous hydroxyapatite, for facial bone augmentation. In six dogs, the supraorbital ridges were augmented bilaterally with this hydroxyapatite cement. On one side, the hydroxyapatite cement was placed directly onto the bone within a subperiosteal pocket. On the opposite side, the cement was contained within a collagen membrane tubule and then inserted into a subperiosteal pocket. The use of collagen tubules facilitated easy, precise placement of the cement. All implants maintained their original augmented height throughout the duration of the study. They were well tolerated without extrusion or migration, and there was no significant sustained inflammatory response. Histologic studies, performed at 3, 6, and 9 months revealed that when the cement was placed directly onto bone, progressive replacement of the implant by bone (osseointegration of the hydroxyapatite with the underlying bone) without a loss of volume was observed. In contrast, when the cement-collagen tubule combination was inserted, primarily a fibrous union was noted. Despite such fibrous union, the hydroxyapatite-collagen implant solidly bonded to the underlying bone, and no implant resorption was observed. Hydroxyapatite cement can be used successfully for the experimental augmentation of the craniofacial skeleton and may be applicable for such uses in humans.

  10. Elaborating the History of Our Cementing Societies

    DEFF Research Database (Denmark)

    Cao, Zhi; Shen, Lei; Løvik, Amund N.

    2017-01-01

    Modern cities and societies are built fundamentally based on cement and concrete. The global cement production has risen sharply in the past decades due largely to urbanization and construction. Here we deployed a top-down dynamic material flow analysis (MFA) model to quantify the historical deve...

  11. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    Science.gov (United States)

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  12. Pre-portland cements and geopolymers

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Tomáš; Perná, Ivana; Ertl, Z.; Miller, S.M.

    2012-01-01

    Roč. 9, č. 1 (2012), s. 57-62 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : caementum * cement itious * calcareous cement Subject RIV: JN - Civil Engineering Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_01/5_Hanzlicek.pdf

  13. Contact dermatitis in cement workers in Isfahan

    Directory of Open Access Journals (Sweden)

    Iraji Fariba

    2006-01-01

    Full Text Available BACKGROUND: Due to recent industrialization and inadequately protected workers or in other words poor supervision on constructive workers habits in our large city of Isfahan cement contact dermatitis is relatively high especially among cement factory workers and constructive personnel. PURPOSES: To investigate the prevalence rate of cement contact dermatitis in cement factory workers in Isfahan. METHODS: A case-control clinical study was carried out by randomly selecing 150 factory workders and 150 official clerks in a cement factory in Isfahan in 2001. After a complete physical examination, data was recorded in observational checklists. FINDINGS: The percentages of contact dermatitis prevalences in the first and the second groups were 22% and 5.3% respectively. About 60% of cement workers with contact dermatitis were between 30-40 years of age. There was a direct relationship with age in both groups of the workers. In the high-exposure group, the hand eczema along was 70% but in the other group the percentage of involvement was the same in exposed and unexposed anatomical areas. CONCLUSIONS: There was a direct relationship between occurrence and the severity of involvement and duration of contact in the first group. Cent percent of cement workers had contact dermatitis after 10 or less years, but the percentage among the other group was 35%. LIMITATION: Irritant contact dermatitis to cement has not been detected.

  14. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  15. Leach characterization of cement encapsulated wastes

    International Nuclear Information System (INIS)

    Roy, D.M.; Scheetz, B.E.; Wakeley, L.D.; Barnes, M.W.

    1982-01-01

    Matrix encapsulation of defense nuclear waste as well as intermediate-level commercial wastes within a low-temperature cementitious composite were investigated. The cements for this study included both as-received and modified calcium silicate and calcium aluminate cements. Specimens were prepared following conventional formulation techniques designed to produce dense monoliths, followed by curing at 60 0 C. An alternative preparation procedure is contrasted in which the specimens were ''warm'' pressed in a uniaxial press at 150 0 C at 50,000 psi for 0.5 h. Specimens of the waste/cement composites were leached in deionized water following three different procedures which span a wide range of temperatures and solution saturation conditions. Aluminate and compositionally adjusted silicate cements exhibited a better retentivity for Cs and Sr than did the as-received silicate cement. 15 refs

  16. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    Vejmelka, P.; Rudolph, G.; Kluger, W.; Koester, R.

    1992-02-01

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG) [de

  17. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  18. Cement analysis using d + D neutrons

    International Nuclear Information System (INIS)

    Womble, Phillip C.; Paschal, Jon; Moore, Ryan

    2005-01-01

    In the cement industry, the primary concern is quality control. The earlier the cement industry can institute quality control upon their product, the more significant their savings in labor, energy and material. We are developing a prototype cement analyzer using pulsed neutrons from a d-D electronic neutron generator with the goal of ensuring quality control of cement in an on-line manner. By utilizing a low intensity d-D neutron source and a specially-designed moderator assembly, we are able to produce one of the safest neutron-based systems in the market. Also, this design includes some exciting new methods of data acquisition which may substantially reduce the final installation costs. In our proof-of-principle measurements, we were able to measure the primary components of cement (Al, Si, Ca and Fe) to limits required for the raw materials, the derived mixes and the clinkers utilizing this neutron generator

  19. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → A recycling/treatment process to remove lead on funnel glass surface is described. → Utilizing recycled funnel glass in mortar can reduce hazardous CRT glass wastes. → Effects of CRT glass content on the properties of cement mortar are studied. → Fly ash can effectively mitigate ASR expansion of mortar even at 100% glass content. → Alkaline medium in cement matrix successfully prevented the leaching of lead. - Abstract: Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  20. Lace expansion for dummies

    NARCIS (Netherlands)

    Bolthausen, Erwin; Van Der Hofstad, Remco; Kozma, Gady

    2018-01-01

    We show Green's function asymptotic upper bound for the two-point function of weakly self-Avoiding walk in d >4, revisiting a classic problem. Our proof relies on Banach algebras to analyse the lace-expansion fixed point equation and is simpler than previous approaches in that it avoids Fourier

  1. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    Sandrea, I.

    2005-01-01

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  2. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  3. Dentin-cement Interfacial Interaction

    Science.gov (United States)

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  4. Cement and concrete options paper

    International Nuclear Information System (INIS)

    1999-10-01

    Greenhouse gas emissions associated with the production of concrete are projected to increase from 10.5 million tonnes in 1990 to almost 14 million tonnes in 2010. Over half of this amount will be non-energy related emissions of carbon dioxide resulting from the conversion of limestone to lime. According to this report by industry experts, the industry has an excellent record of improving energy efficiency and there are few easy gains remaining. Nevertheless, improvements in energy efficiency and fuel use, increased use of concrete where it can be shown to result in net reduction of GHG emissions, and partial replacement of cement by supplementary cementitious materials that involve no additional generation of GHGs, could yield an approximate reduction in carbon dioxide emissions of nearly seven million tons in 2010. The industry proposes three measures to realise these benefits: (1) encouraging replacement of fossil fuels by otherwise waste material, (2) encouraging increased use of concrete in constructing houses and roads, and (3) encouraging increased use of supplementary cementing materials. The industry is opposed to carbon or energy taxes that increase the cost of doing business, on the grounds that such taxes would adversely affect the industry's competitive position internationally. tabs

  5. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  6. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  7. Cemented materials in the LLW and MLW Spanish disposal

    Directory of Open Access Journals (Sweden)

    Guerrero, A.

    1999-09-01

    Full Text Available BWR and PWR cemented matrices to confine low and medium simulated liquid radioactive wastes have been submitted to the leaching process in de-ionized water at 20ºC and 40ºC, to obtain the medium leachability index (L and the effective diffusion coefficient (De of different ions. Otherwise, it has been studied the associated expansion of the backfilling mortar of the concrete containers of the Spanish repository of these wastes, due to a possible attack of the sulfate ions coming from the cemented matrices.

    Matrices cementicias confinantes tipo BWR y PWR de residuos simulados de baja y media radiactividad se han sometido a procesos de lixiviación en agua desionizada a 20ºC y 40ºC, obteniéndose los índices medios de lixiviación (L y el coeficiente de difusión efectiva (De de algunos iones. Por otra parte, se ha estudiado la expansión asociada a un mortero de relleno constitutivo del depósito de almacenamiento de los residuos, por posible ataque de los iones SO4-2 procedentes de las matrices.

  8. Synthesis of Expansive Mortar Developed in Laboratory for Dismounting of Ornamental Rocks

    International Nuclear Information System (INIS)

    Lucena D V; Campos D B C; Lira H L; Neves G A

    2011-01-01

    The expansive mortar is constituted by a mixture of watery phase with an agent expander, when hydrated, presents volume increase and the generation of fictions in the rock due to generated pressure. The objective of this work is to synthecize expansive mortar that they present enough expansive pressure for the dismounting of granite and marble. They had been used as raw materials: carbonate of calcium, Portland cement and additives for control of the expansion. The formularizations had been synthecized on the basis of the chemical analysis of a mortar commercial and characterized by XRD, laser particle size measurements and evaluation of expansive pressure. All the developed formularizations had presented similar characteristics to the ones of the commercial mortar.

  9. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    Science.gov (United States)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  10. Microscale Investigation of Arsenic Distribution and Species in Cement Product from Cement Kiln Coprocessing Wastes

    Directory of Open Access Journals (Sweden)

    Yufei Yang

    2013-01-01

    Full Text Available To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O were mixed with cement production raw materials and calcined to produce cement clinker. Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the cement paste. As content in calcium silicate hydrates gel (C-S-H was in low level, but higher than that in other cement mineral phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases. Linear combination fitting (LCF of the X-ray absorption near edge structure spectra revealed that As in the cement paste was predominantly As(V and mainly existed as Mg3(AsO42, Ca3(AsO42, and Na2HAsO4.

  11. Cement-in-cement acetabular revision with a constrained tripolar component.

    Science.gov (United States)

    Leonidou, Andreas; Pagkalos, Joseph; Luscombe, Jonathan

    2012-02-17

    Dislocation of a total hip replacement (THR) is common following total hip arthroplasty (THA). When nonoperative management fails to maintain reduction, revision surgery is considered. The use of constrained acetabular liners has been extensively described. Complete removal of the old cement mantle during revision THA can be challenging and is associated with significant complications. Cement-in-cement revision is an established technique. However, the available clinical and experimental studies focus on femoral stem revision. The purpose of this study was to present a case of cement-in-cement acetabular revision with a constrained component for recurrent dislocations and to investigate the current best evidence for this technique. This article describes the case of a 74-year-old woman who underwent revision of a Charnley THR for recurrent low-energy dislocations. A tripolar constrained acetabular component was cemented over the primary cement mantle following removal of the original liner by reaming, roughening the surface, and thoroughly irrigating and drying the primary cement. Clinical and radiological results were good, with the Oxford Hip Score improving from 11 preoperatively to 24 at 6 months postoperatively. The good short-term results of this case and the current clinical and biomechanical data encourage the use of the cement-in-cement technique for acetabular revision. Careful irrigation, drying, and roughening of the primary surface are necessary. Copyright 2012, SLACK Incorporated.

  12. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.; Patzek, Tadeusz; van Oort, Eric

    2017-01-01

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  13. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    Directory of Open Access Journals (Sweden)

    Konstantin Sobolev

    2003-01-01

    Full Text Available The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and - at the same time - uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  14. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.

    2017-10-02

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  15. Parameters of Alumina Cement and Portland Cement with Addition of Chalcedonite Meal

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Aluminous cement is a quick binder with special properties. It is used primarily to make non-standard monolithic components exposed to high temperatures, + 1300°C. It is also a component of adhesives and mortars. It has a very short setting time. It is characterized by rapid increase in mechanical strength and resistance to aggressive sulphates. It can be used in reinforced concrete structures. Laying of concrete, construction mortar made of alumina cement can be carried out even at temperatures of -10°C. This article discusses a comparison of the parameters of hardened mortar made of alumina cement GÓRKAL 40 and Portland cement CEM I 42.5R. The mortars contain an addition of chalcedonite meal with pozzolanic properties, with particle size of less than 0.063μm. The meal was added in amounts of 5% and 20% of cement weight. Chalcedonite meal used in the laboratory research is waste material, resulting from chalcedonite aggregate mining. It has the same properties as the rock from which it originates. We have compared the parameters of hardened mortar i.e. compressive strength, water absorption and capillarity. The addition of 20% chalcedonite meal to mortars made from aluminous cement will decrease durability by 6.1% relative to aluminous cement mortar without addition of meal. Considering the results obtained during the absorbency tests, it can be stated that the addition of chalcedonite meal reduces weight gains in mortars made with cement CEM I 42.5 R and alumina cement. Use of alumina cement without addition of meal in mortars causes an increase of mass by 248% compared to Portland cement mortars without additions, in the absorption tests. The addition of chalcedonite meal did not cause increased weight gain in the capillary action tests. For the alumina cement mortars, a lesser weight gains of 24.7% was reported, compared to the Portland cement mortar after 28 days of maturing.

  16. Environmental Assessment of Different Cement Manufacturing ...

    Science.gov (United States)

    Due to its high environmental impact and energy intensive production, the cement industry needs to adopt more energy efficient technologies to reduce its demand for fossil fuels and impact on the environment. Bearing in mind that cement is the most widely used material for housing and modern infrastructure, the aim of this paper is to analyse the Emergy and Ecological Footprint of different cement manufacturing processes for a particular cement plant. There are several mitigation measures that can be incorporated in the cement manufacturing process to reduce the demand for fossil fuels and consequently reduce the CO2 emissions. The mitigation measures considered in this paper were the use of alternative fuels and a more energy efficient kiln process. In order to estimate the sustainability effect of the aforementioned measures, Emergy and Ecological Footprint were calculated for four different scenarios. The results show that Emergy, due to the high input mass of raw material needed for clinker production, stays at about the same level. However, for the Ecological Footprint, the results show that by combining the use of alternative fuels together with a more energy efficient kiln process, the environmental impact of the cement manufacturing process can be lowered. The research paper presents an analysis of the sustainability of cement production , a major contributor to carbon emissions, with respect to using alternative fuels and a more efficient kiln. It show

  17. Correlating cement characteristics with rheology of paste

    International Nuclear Information System (INIS)

    Vikan, H.; Justnes, H.; Winnefeld, F.; Figi, R.

    2007-01-01

    The influence of cement characteristics such as cement fineness and clinker composition on the 'flow resistance' measured as the area under the shear stress-shear rate flow curve has been investigated. Three different types of plasticizers namely naphthalene sulphonate-formaldehyde condensate, polyether grafted polyacrylate, and lignosulphonate have been tested in this context on 6 different cements. The flow resistance correlated well with the cement characteristic (Blaine.{d.cC 3 A + [1 - d].C 3 S}) where the factor d represents relative reactivity of cubic C 3 A and C 3 S while cC 3 A and C 3 S represent the content of these minerals. It was found to be either a linear or exponential function of the combined cement characteristic depending on plasticizer type and dosage. The correlation was valid for a mix of pure cement and cement with fly ash, limestone filler (4%), as well as pastes with constant silica fume dosage, when the mineral contents were determined by Rietveld analysis of X-ray diffractograms

  18. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.” [67 FR 46855, July 17, 2002] ...

  19. Effect of Cement Grades on some properties of Sandcrete ...

    African Journals Online (AJOL)

    The purpose of this study is to investigate the effects of cement grade on some properties of sandcrete. The cement used for this work was Ordinary Portland cement (Dangote brand) of grade 42.5 and 32.5 meeting the requirement of ASTM C150 type 1 cement. Three types of fine aggregate was also used to produce ...

  20. Energy economy and industrial ecology in the Brazilian cement sector

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto

    1999-01-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector

  1. Expansion at Olympic Dam

    International Nuclear Information System (INIS)

    Lewis, C.

    1997-01-01

    The Olympic Dam orebody is the 6th largest copper and the single largest uranium orebody in the world. Mine production commenced in June 1988, at an annual production rate of around 45,000 tonnes of copper and 1,000 tonnes of uranium. Western Mining Corporation announced in 1996 a proposed $1.25 billion expansion of the Olympic Dam operation to raise the annual production capacity of the mine to 200,000 tonnes of copper, approximately 3,700 tonnes of uranium, 75,000 ounces of gold and 950,000 ounces of silver by 2001. Further optimisation work has identified a faster track expansion route, with an increase in the capital cost to $1.487 billion but improved investment outcome, a new target completion date of end 1999, and a new uranium output of 4,600 tonnes per annum from that date

  2. Financing electricity expansion

    International Nuclear Information System (INIS)

    Hyman, L.S.

    1994-01-01

    Expansion of electricity supply is associated with economic development. The installation and enlargement of power systems in developing countries entails a huge financial burden, however. Energy consumers in such countries must pay not only for supplies but for the cost of raising the capital for expansion on the international markets. Estimates are presented for the capital expenditure for electricity supply over the period 1990 to 2020 for the major world regions, using approximations for the cost of plant and capital and for the returns earned. These data lead to the conclusion that the five regions with the lowest per capita incomes are those which will need the major part of the capital expenditure and the highest percentage of external finance. (6 tables) (UK)

  3. Bigravity from gradient expansion

    International Nuclear Information System (INIS)

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-01-01

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  4. Expansion of magnetic clouds

    International Nuclear Information System (INIS)

    Suess, S.T.

    1987-01-01

    Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun

  5. IKEA's International Expansion

    OpenAIRE

    Harapiak, Clayton

    2013-01-01

    This case concerns a global retailing firm that is dealing with strategic management and marketing issues. Applying a scenario of international expansion, this case provides a thorough analysis of the current business environment for IKEA. Utilizing a variety of methods (e.g. SWOT, PESTLE, McKinsey Matrix) the overall objective is to provide students with the opportunity to apply their research skills and knowledge regarding a highly competitive industry to develop strategic marketing strateg...

  6. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  7. Series expansions without diagrams

    International Nuclear Information System (INIS)

    Bhanot, G.; Creutz, M.; Horvath, I.; Lacki, J.; Weckel, J.

    1994-01-01

    We discuss the use of recursive enumeration schemes to obtain low- and high-temperature series expansions for discrete statistical systems. Using linear combinations of generalized helical lattices, the method is competitive with diagrammatic approaches and is easily generalizable. We illustrate the approach using Ising and Potts models. We present low-temperature series results in up to five dimensions and high-temperature series in three dimensions. The method is general and can be applied to any discrete model

  8. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Claudy, P.M.; Letoffe, J.M.; Martin, D.; Planche, J.P.

    1998-01-01

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin C n H 2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20 g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Joining of cemented carbides to steel by laser beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Barbatti, C.; Garcia, J.; Pyzalla, A. [Max-Planck-Institut fuer Eisenforschung GmbH, 40237 Duesseldorf (Germany); Liedl, G. [TU Wien, Institut fuer Umform- und Hochleistungslasertechnik (IFLT), 1040 Vienna (Austria)

    2007-11-15

    Welding of dissimilar materials such as steel and cemented carbides (hardmetals, cermets) is particularly challenging e.g. because mismatches in their thermal expansion coefficients and thermal conductivities result in residual stress formation and because of the formation of brittle intermetallic phases. Laser beam welding of cemented carbides to steel appears as an attractive complementary technique to conventional brazing processes due to its high precision, high process speed, low heat input and the option of welding without filler. Here a laser welding process including pre-heat treatment and post-heat treatment was applied successfully to joining as-sintered and nitrided hardmetals and cermets to low alloyed steel. The microstructure and mechanical properties of the welds are investigated by microscopy, X-ray diffraction, microhardness measurements, and bending tests. The results reveal that the three-step laser beam welding process produced crack-free and non-porous joints. Nitridation of the cemented carbides results in a significant reduction of the amount of brittle intermetallic phases. The mechanical properties of the joints are competitive to those of the conventional brazed steel-cemented carbide joints. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Das Schweissen von ungleichartigen Werkstoffen wie z. B. Staehlen mit Hartmetallen und Cermets stellt eine erhebliche Herausforderung dar, u. a. infolge der unterschiedlichen thermischen Ausdehnungskoeffizienten und Waermeleitfaehigkeiten, welche die Bildung von Eigenspannungen zur Folge haben, sowie aufgrund der Bildung sproeder intermetallischer Phasen. Das Laserstrahlschweissen von Hartmetallen/Cermets mit Stahl erscheint als attraktives komplementaeres Verfahren zum ueblicherweise verwendeten Loeten, da es die Herstellung von Verbindungen mit hoeherer Praezision, hoeherer Geschwindigkeit sowie geringerem Waermeeintrag erlaubt und die Verwendung eines Zusatzwerkstoffs nicht notwendig ist

  10. Operating experience with KRAFTWERK UNION cementation line

    International Nuclear Information System (INIS)

    Podmaka, L.; Tomik, L.

    1988-01-01

    A facility is described designed for fixation in a cement matrix of the radioactive concentrate produced by thickening waste water from the Bohunice nuclear power plant. The cementation line output is 0.6 m 3 concentrate/h. The concentrate is put in 200 l drums. The individual operating units, cement management, air conditioning, dosimetric monitoring and the building part are described. The requirements for the operators and the assessment of the quality of raw materials and the product are discussed. (M.D.). 3 figs., 4 refs

  11. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  12. Estimation and measurement of porosity change in cement paste

    International Nuclear Information System (INIS)

    Lee, Eunyong; Jung, Haeryong; Kwon, Ki-jung; Kim, Do-Gyeum

    2011-01-01

    Laboratory-scale experiments were performed to understand the porosity change of cement pastes. The cement pastes were prepared using commercially available Type-I ordinary Portland cement (OPC). As the cement pastes were exposed in water, the porosity of the cement pastes sharply increased; however, the slow decrease of porosity was observed as the dissolution period was extended more than 50 days. As expected, the dissolution reaction was significantly influenced by w/c ratio and the ionic strength of solution. A thermodynamic model was applied to simulate the porosity change of the cement pastes. It was highly influenced by the depth of the cement pastes. There was porosity increase on the surface of the cement pastes due to dissolution of hydration products, such as portlandite, ettringite, and CSH. However, the decrease of porosity was estimated inside the cement pastes due to the precipitation of cement minerals. (author)

  13. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    Directory of Open Access Journals (Sweden)

    Auday A Mehatlaf

    2017-12-01

    Full Text Available Cement Klin Dust (CKD was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40 had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28 day. In addition, mechanical properties included the coefficient of thermal conductivity and compressive strength had also observed with different age (3,7, and 28 for all prepared specimens. From the obtained the experimental results and their discussion, it was clear that the addition (20% of CKD had the good results in cement mortars.  

  14. Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-09-01

    To evaluate the chemical activity of Portland cement and two other cement types with similar chemical composition to mineral trioxide aggregate with the aim of developing these cements for further applications in dentistry. The chemical composition of the three cement types namely Portland cement, calcium sulpho-aluminate cement and calcium fluoro-aluminate cement was evaluated by elemental analysis using energy dispersive analysis with X-ray under the scanning electron microscope and by X-ray diffraction analysis (XRD) to determine the phases. The constituents of the hydration reaction by-products were evaluated by XRD analysis of the set cements at 1, 7, 28 and 56 days and by analysis of the leachate by ion chromatography. The pH of both cements and leachate was determined at different time intervals. Cements admixed with micro-silica were also tested to determine the effect of micro-silica on the reaction by-products. All three cement types were composed of tricalcium silicate as the main constituent phase. The hydration reaction of Portland cement produced calcium hydroxide. However, this was not present in the other cements tested at all ages. Admixed micro-silica had little or no effect on the cements with regard to reaction by-products. The pH of all cements tested was alkaline. Both the experimental calcium sulpho-aluminate cement and calcium fluoro-aluminate cement had different hydration reactions to that of Portland cement even though calcium silicate was the major constituent element of both cement types. No calcium hydroxide was produced as a by-product to cement hydration. Micro-silica addition to the cement had no effect on the hydration reaction.

  15. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Science.gov (United States)

    2011-08-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-461 (Third Review)] Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United States International...

  16. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Jensen, Ole Mejlhede; Hansen, Kurt Kielsgaard

    2001-01-01

    The influence of cement particle-size distribution on autogenous strains and stresses in cement pastes of identical water-to-cement ratios is examined for cement powders of four different finenesses. Experimental measurements include chemical shrinkage, to quantify degree of hydration; internal r...

  17. Effect of Abutment Modification and Cement Type on Retention of Cement-Retained Implant Supported Crowns

    OpenAIRE

    Farzin, Mitra; Torabi, Kianoosh; Ahangari, Ahmad Hasan; Derafshi, Reza

    2014-01-01

    Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an ac...

  18. Foamed cement for squeeze cementing low-pressure, highly permeable reservoirs

    International Nuclear Information System (INIS)

    Chmllowski, W.; Kondratoff, L.B.

    1992-01-01

    Four different cement squeezing techniques have been used on wells producing from the Keg River formation in the Rainbow Lake area of Alberta, Canada. This paper evaluates 151 cement squeeze treatments performed at 96 wellsites and compares the use of foam cement vs. conventional squeeze treatments and techniques. Discussion includes key aspects, such as candidate selection, slurry design, treatment design, economic evaluation, and operational considerations

  19. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  20. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Directory of Open Access Journals (Sweden)

    Shujie Fan

    2017-11-01

    Full Text Available Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  1. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    Science.gov (United States)

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  2. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Science.gov (United States)

    Fan, Shujie; Li, Tongchun; Zhou, Jun; Liu, Xiaoqing; Liu, Xiaoming; Qi, Huijun; Mu, Zhiyong

    2017-11-01

    Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz) non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS) during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  3. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives

    Directory of Open Access Journals (Sweden)

    Riaz Gillani

    2009-12-01

    Full Text Available Riaz Gillani1, Batur Ercan1, Alex Qiao3, Thomas J Webster1,21Division of Engineering, 2Department of Orthopaedics, Brown University, Providence, RI, USA; 3G3 Technology Innovations, LLC, Pittsford, NY, USAAbstract: Zirconia (ZrO2 and barium sulfate (BaSO4 particles were introduced into a methyl methacrylate monomer (MMA solution with polymethyl methacrylate (PMMA beads during polymerization to develop the following novel bone cements: bone cements with unfunctionalized ZrO2 micron particles, bone cements with unfunctionalized ZrO2 nanoparticles, bone cements with ZrO2 nanoparticles functionalized with 3-(trimethoxysilylpropyl methacrylate (TMS, bone cements with unfunctionalized BaSO4 micron particles, bone cements with unfunctionalized BaSO4 nanoparticles, and bone cements with BaSO4 nanoparticles functionalized with TMS. Results demonstrated that in vitro osteoblast (bone-forming cell densities were greater on bone cements containing BaSO4 ceramic particles after four hours compared to control unmodified bone cements. Osteoblast densities were also greater on bone cements containing all of the ceramic particles after 24 hours compared to unmodified bone cements, particularly those bone cements containing nanofunctionalized ceramic particles. Bone cements containing ceramic particles demonstrated significantly altered mechanical properties; specifically, under tensile loading, plain bone cements and bone cements containing unfunctionalized ceramic particles exhibited brittle failure modes whereas bone cements containing nanofunctionalized ceramic particles exhibited plastic failure modes. Finally, all bone cements containing ceramic particles possessed greater radio-opacity than unmodified bone cements. In summary, the results of this study demonstrated a positive impact on the properties of traditional bone cements for orthopedic applications with the addition of unfunctionalized and TMS functionalized ceramic nanoparticles

  4. Cement stabilization of hazardous and radioactive electroplating sludge

    International Nuclear Information System (INIS)

    Langton, C.A.; Pickett, J.B.; Martin, M.L.

    1991-01-01

    Cement stabilization was evaluated for treatment of nickel and uranium in electroplating sludge at the Savannah River Site. Waste forms were prepared by pretreating the sludge and the solidifying it in a variety of cement, cement plus flyash, and cement-flyash-slag mixes. The sludge was also treated by one-step filtration-solidification. Leaching results and processing data indicate the cement solidification is an effective method of treating hazardous-low-level electroplating waste

  5. experimental study of cement grout: rheological behavior and sedimentation

    OpenAIRE

    Rosquoët , Frédéric; Alexis , Alain ,; Khelidj , Abdelhafid; Phelipot-Mardelé , Annabelle

    2002-01-01

    International audience; Three basic elements (cement, water and admixture) usually make up injectable cement grouts used for prestressed cable coating, repair and consolidation of masonry, soil grouting, etc... The present study was divided into two parts. First, in order to characterize rheologically fresh cement paste with W/C ratios (water/cement ratio) varying between 0.35 and 1, an experimental study was carried out and has revealed that the cement past behaves like a shear-thinning mate...

  6. Nanoscaled Mechanical Properties of Cement Composites Reinforced with Carbon Nanofibers

    OpenAIRE

    Barbhuiya, Salim; Chow, PengLoy

    2017-01-01

    This paper reports the effects of carbon nanofibers (CNFs) on nanoscaled mechanical properties of cement composites. CNFs were added to cement composites at the filler loading of 0.2 wt % (by wt. of cement). Micrographs based on scanning electron microscopy (SEM) show that CNFs are capable of forming strong interfacial bonding with cement matrices. Experimental results using nanoindentation reveal that the addition of CNFs in cement composites increases the proportions of high-density calcium...

  7. Effect of Cement Composition in Lampung on Concrete Strength

    OpenAIRE

    Riyanto, Hery

    2014-01-01

    The strength and durability of concrete depends on the composition of its constituent materials ie fine aggregate, coarse aggregate, cement, water and other additives. The cement composition is about 10% acting as a binder paste material fine and coarse aggregates. In the Lampung market there are several brands of portland cement used by the community to make concrete construction. Although there is a standard of the government of portland cement composition, yet each brand of cement has diff...

  8. Sealing of decant structure at QCM using a tailings cement grout mix

    Energy Technology Data Exchange (ETDEWEB)

    Bedard, C.; Goulisty, P.; Lemieux, J. [Journeaux, Bedard and Associates Inc., Dorval, PQ (Canada)

    2001-10-01

    It became necessary for Quebec Cartier Mining (QCM) to transfer the decantation point at the Mont-Wright mine to the Hesse 4 dam and proceed with the permanent sealing of the decant structure at dam A, as a result of the gradual advancement of the tailings mine waste in the Hesse North primary settling basin. A study was conducted to evaluate the use of tailings incorporated in a non-shrink Portland cement grout mix to adequately seal the decant structure of the 30 m high process water earth dam, and the results are presented in this paper. Along with the existing tailings, a type I Portland cement and supplementary cementing materials including fly ash and silica fume were tested. Using a series of design criteria including durability requirements, strength, density, segregation, bleeding, initial and final set, shrinkage, expansion, underwater placement, flowability, pumpability, and others, Journeaux, Bedard and Associates Incorporated completed a series of laboratory tests and trial mixes. Air entrainment admixture, anti-washout admixture, expansion admixture, bentonite, superplasticizer, etc. were tested in the various grout mixes. The design criteria, methodology, laboratory results, various placing techniques, such as pressure grouting, pumping, tremie and others, and formwork used to seal the decant structures are all detailed in the paper. A section is also devoted to the many challenges encountered during the testing. 11 figs.

  9. Combined Use of Shrinkage Reducing Admixture and CaO in Cement Based Materials

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Monosi, Saveria

    2017-10-01

    The combined addition of a Shrinkage-Reducing Admixture (SRA) with a CaO-based expansive agent (CaO) has been found to have a synergistic effect to improve the dimensional stability of cement based materials. In this work, aimed to further investigate the effect, mortar and self-compacting concrete specimens were prepared either without admixtures, as reference, or with SRA alone and/or CaO. Their performance was compared in terms of compressive strength and free shrinkage measurements. Results showed that the synergistic effect in reducing shrinkage is confirmed in the specimens manufactured with SRA and CaO. In order to clarify this phenomenon, the effect of SRA on the hydration of CaO as well as cement was evaluated through different techniques. The obtained results show that SRA induces a finer microstructure of the CaO hydration products and a retarding effect on the microstructure development of cement based materials. A more deformable mortar or concrete, due to the delay in microstructure development by SRA, coupled with a finer microstructure of CaO hydration products could allow higher early expansion, which might contribute in contrasting better the successive drying shrinkage.

  10. PERFORMANCE OF CEMENT MORTARS REPLACED BY GROUND WASTE BRICK IN DIFFERENT AGGRESSIVE CONDITIONS

    Directory of Open Access Journals (Sweden)

    ILHAMI DEMIR

    2011-09-01

    Full Text Available This article investigates the sulphate resistance of cement mortars when subjected to different exposure conditions. Cement mortars were prepared using ground waste brick (GWB as a pozzolanic partial replacement for cement at replacement levels of 0%, 2.5%, 5%, 7.5, 10%, 12.5 and 15%. Mortar specimens were stored under three different conditions: continuous curing in lime-saturated tab water (TW, continuous exposure to 5% sodium sulphate solution (SS, and continuous exposure to 5% ammonium nitrate solution (AN, at a temperature of 20 ± 3 ºC, for 7, 28, 90, and 180 days. Prisms with dimensions of 25×25×285 mm, to determine the expansions of the mortar samples; and another set of prisms with dimensions of 40×40×160 mm, were prepared to calculate the compressive strength of the samples. It was determined that the GWB replacement ratios between 2.5% and 10% decreased the 180 days expansion values. The highest compressive strength values were found for the samples with 10% replacement ratio in the TW, SS, and AN conditions for 180 days. The microstructure of the mortars were investigated using scanning electron microscopy (SEM and the Energy dispersive X-ray (EDX.

  11. INFLUENCE OF WINE ACID ON RHEOLOGICAL PROPERTIES OF WELL BORE CEMENT SLURRIES AND HARDENED CEMENT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1989-12-01

    Full Text Available Adaptation of commercial types of domestic cements for use in cementing the deep wells is a process by which Yugoslav oil industry tends to solve problems of completion of those wells independently. In order to design a domestic, cheep and effective retarder, tests of applicability of wine acid on cement slurries have been carried out. Besides examining the necessary wine acid content to achieve desirable Theological properties, the influence of this additive on properties of hardened cement samples has been tested too (the paper is published in Croatian.

  12. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  13. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  14. Subgrade stabilization alternatives to lime and cement.

    Science.gov (United States)

    2010-04-15

    This project involved four distinct research activities, (1) the influence of temperature on lime-stabilized soils, (2) the influence of temperature on cement-stabilized soils (3) temperature modeling of stabilized subgrade and (4) use of calcium chl...

  15. Cement materials for cesium and iodine confinement

    International Nuclear Information System (INIS)

    Nicolas, G.; Lequeux, N.; Boch, P.; Prene, S.

    2001-01-01

    The following topics were dealt with: radioactive waste storage, cement materials reacting with radioactive cesium and iodine, chemical barrier formation against radioactive pollution, ceramization, long term stability, XRD, PIXE analysis

  16. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  17. Recycled materials in Portland cement concrete

    Science.gov (United States)

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  18. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained by...... on assumptions of degree of reaction and product densities gave for plain cement pastes results comparable to MIP data.......Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...

  19. High performance concrete with blended cement

    International Nuclear Information System (INIS)

    Biswas, P.P.; Saraswati, S.; Basu, P.C.

    2012-01-01

    Principal objectives of the proposed project are two folds. Firstly, to develop the HPC mix suitable to NPP structures with blended cement, and secondly to study its durability necessary for desired long-term performance. Three grades of concrete to b considered in the proposed projects are M35, M50 and M60 with two types of blended cements, i.e. Portland slag cement (PSC) and Portland pozzolana cement (PPC). Three types of mineral admixtures - silica fume, fly ash and ground granulated blast furnace slag will be used. Concrete mixes with OPc and without any mineral admixture will be considered as reference case. Durability study of these mixes will be carried out

  20. Effects of the super plasticizers and the water/cement ratio on the mini-slump of Portland cement pastes

    International Nuclear Information System (INIS)

    Meirelles, J.R.; Morelli, A.C.; Baldo, J.B.

    1998-01-01

    The rheology of Portland cement concrete is dominated by the cement paste rheology. In general the rheological behavior of cement pastes is evaluated by means of the mini-slump test. In the present paper it was investigated the effect of the water/cement ratio was as of two types of superplasticizers (melamine and naftalen based) on the mini-slump of pastes of common cement pastes. (author)

  1. Mechanical characterization of sisal reinforced cement mortar

    OpenAIRE

    R. Fujiyama; F. Darwish; M.V. Pereira

    2014-01-01

    This work aims at evaluating the mechanical behavior of sisal fiber reinforced cement mortar. The composite material was produced from a mixture of sand, cement, and water. Sisal fibers were added to the mixture in different lengths. Mechanical characterization of both the composite and the plain mortar was carried out using three point bend, compression, and impact tests. Specimens containing notches of different root radii were loaded in three point bending in an effort to determine the eff...

  2. Topics in cement and concrete research

    OpenAIRE

    Brouwers, Jos; Russel, M.I.; Basheer, P.A.M.

    2007-01-01

    The present paper addresses several topics in regard to the sustainable design and use of concrete. First, major features concerning the sustainable aspects of the material concrete are summarised. Then the major constituent, from an environmental point of view, cement is discussed in detail, particularly the hydration and application of slag cement. The intelligent combining of mineral oxides, which are found in clinker, slag, fly ashes etc., is designated as mineral oxide engineering. It re...

  3. Radial expansion and multifragmentation

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  4. Rethinking expansive learning

    DEFF Research Database (Denmark)

    Kolbæk, Ditte; Lundh Snis, Ulrika

    Abstract: This paper analyses an online community of master’s students taking a course in ICT and organisational learning. The students initiated and facilitated an educational design for organisational learning called Proactive Review in the organisation where they are employed. By using an online...... discussion forum on Google groups, they created new ways of reflecting and learning. We used netnography to select qualitative postings from the online community and expansive learning concepts for data analysis. The findings show how students changed practices of organisational learning...

  5. Load regulating expansion fixture

    International Nuclear Information System (INIS)

    Wagner, L.M.; Strum, M.J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located there between. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig

  6. Photoactive glazed polymer-cement composite

    Science.gov (United States)

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  7. Pre-cementation of deep shaft

    Science.gov (United States)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  8. Analysis of rheological properties of bone cements.

    Science.gov (United States)

    Nicholas, M K D; Waters, M G J; Holford, K M; Adusei, G

    2007-07-01

    The rheological properties of three commercially available bone cements, CMW 1, Palacos R and Cemex ISOPLASTIC, were investigated. Testing was undertaken at both 25 and 37 degrees C using an oscillating parallel plate rheometer. Results showed that the three high viscosity cements exhibited distinct differences in curing rate, with CMW 1 curing in 8.7 min, Palacos R and Cemex ISOPLASTIC in 13 min at 25 degrees C. Furthermore it was found that these curing rates were strongly temperature dependent, with curing rates being halved at 37 degrees C. By monitoring the change of viscosity with time over the entire curing process, the results showed that these cements had differing viscosity profiles and hence exhibit very different handling characteristics. However, all the cements reached the same maximum viscosity of 75 x 10(3) Pa s. Also, the change in elastic/viscous moduli and tan delta with time, show the cements changing from a viscous material to an elastic solid with a clear peak in the viscous modulus during the latter stages of curing. These results give valuable information about the changes in rheological properties for each commercial bone cement, especially during the final curing process.

  9. Development of a biodegradable bone cement

    International Nuclear Information System (INIS)

    Yusof Abdullah; Nurhaslinda Ee Abdullah; Wee Pee Chai; Norita Mohd Zain

    2002-01-01

    Biodegradable bone cement is a newly developed bone repair material, which is able to give immediate support to the implant area, and does not obstruct the bone repairing and regeneration process through appropriate biodegradation rate, which is synchronized with the mechanical load it should bear. The purpose of this study is to locally produce biodegradable bone cement using HA as absorbable filler. The cement is composed of an absorbable filler and unsaturated polyester for 100% degradation. Cross-linking effect is achieved through the action of poly (vinyl pyrrol lidone) (PVP) and an initiator. On the other hand, PPF was synthesized using direct esterification method. Characteristics of the bone cement were studied; these included the curing time, cross-linking effect and curing temperature. The products were characterized using X-Ray diffraction (XRD) to perform phase analysis and Scanning Electrons Microscopes to determine the morphology. The physical and mechanical properties of the bone cement were also investigated. The biocompatibility of the bone cement was tested using simulated body physiological solution. (Author)

  10. Evaluation of the amount of excess cement around the margins of cement-retained dental implant restorations: the effect of the cement application method.

    Science.gov (United States)

    Chee, Winston W L; Duncan, Jesse; Afshar, Manijeh; Moshaverinia, Alireza

    2013-04-01

    Complete removal of excess cement from subgingival margins after cementation of implant-supported restorations has been shown to be unpredictable. Remaining cement has been shown to be associated with periimplant inflammation and bleeding. The purpose of this study was to investigate and compare the amount of excess cement after cementation with 4 different methods of cement application for cement-retained implant-supported restorations. Ten implant replicas/abutments (3i) were embedded in acrylic resin blocks. Forty complete veneer crowns (CVCs) were fabricated by waxing onto the corresponding plastic waxing sleeves. The wax patterns were cast and the crowns were cemented to the implant replicas with either an interim (Temp Bond) or a definitive luting agent (FujiCEM). Four methods of cement application were used for cementation: Group IM-Cement applied on the internal marginal area of the crown only; Group AH-Cement applied on the apical half of the axial walls of the crown; Group AA-Cement applied to all axial walls of the interior surface of the crown, excluding the occlusal surface; and Group PI-Crown filled with cement then seated on a putty index formed to the internal configuration of the restoration (cementation device) (n=10). Cement on the external surfaces was removed before seating the restoration. Cement layers were applied on each crown, after which the crown was seated under constant load (80 N) for 10 minutes. The excess cement from each specimen was collected and measured. One operator performed all the procedures. Results for the groups were compared, with 1 and 2-way ANOVA and the Tukey multiple range test (α=.05). No significant difference in the amount of excess/used cement was observed between the 2 different types of cements (P=.1). Group PI showed the least amount of excess cement in comparison to other test groups (P=.031). No significant difference was found in the amount of excess cement among groups MI, AH, and AA. Group AA showed the

  11. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions

    Directory of Open Access Journals (Sweden)

    S. P. Dunuweera

    2018-01-01

    Full Text Available We first discuss cement production and special nomenclature used by cement industrialists in expressing the composition of their cement products. We reveal different types of cement products, their compositions, properties, and typical uses. Wherever possible, we tend to give reasons as to why a particular cement type is more suitable for a given purpose than other types. Cement manufacturing processes are associated with emissions of large quantities of greenhouse gases and environmental pollutants. We give below quantitative and qualitative analyses of environmental impact of cement manufacturing. Controlling pollution is a mandatory legal and social requirement pertinent to any industry. As cement industry is one of the biggest CO2 emitters, it is appropriate to discuss different ways and means of CO2 capture, which will be done next. Finally, we give an account of production of nanocement and advantages associated with nanocement. Nanofillers such as nanotitania, nanosilica, and nanoalumina can be produced in large industrial scale via top-down approach of reducing size of naturally available bulk raw materials to those in the nanorange of 1 nm–100 nm. We mention the preparation of nanotitania and nanosilica from Sri Lankan mineral sands and quartz deposits, respectively, for the use as additives in cement products to improve performance and reduce the amount and cost of cement production and consequent environmental impacts. As of now, mineral sands and other treasures of minerals are exported without much value addition. Simple chemical modifications or physical treatments would add enormous value to these natural materials. Sri Lanka is gifted with highly pure quartz and graphite from which silica and graphite nanoparticles, respectively, can be prepared by simple size reduction processes. These can be used as additives in cements. Separation of constituents of mineral sands is already an ongoing process.

  12. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    Science.gov (United States)

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  14. Provincial hydro expansions

    Energy Technology Data Exchange (ETDEWEB)

    Froschauer, K J

    1993-01-01

    A study of the development of five provincial hydroelectric utilities in Canada indicates that power companies and the state invited manufacturers to use hydroelectricity and natural resources in order to diversify provincial economies. These hydro expansions also show that utilities and government designed hydro projects to serve continental requirements; serving both objectives became problematic. It is argued that when the Canadian state and firms such as utilities use hydro expansions to serve both continentalism and industrialization, then at best they foster dependent industrialization and staple processing. At worst, they overbuild the infrastructure to generate provincial surplus energy for continental, rather than national, integration. Hydro developments became subject to state intervention in Canada mainly through the failures of private utilities to provide power for the less-lucrative industrial markets within provincial subregions. Although the state and utilities invited foreign firms to manufacture hydro equipment within the provinces and others to use electricity to diversify production beyond resource processing, such a diversification did not occur. Since 1962, ca 80% of industrial energy was used to semi-process wood-derived products, chemicals, and metals. The idea for a national power network became undermined by interprovincial political-economic factors and since 1963, the federal national/continential power policy prevailed. 187 refs., 6 figs., 52 tabs.

  15. Measuring of tube expansion

    International Nuclear Information System (INIS)

    Vogeleer, J. P.

    1985-01-01

    The expansion of the primary tubes or sleeves of the steam generator of a nuclear reactor plant are measured while the tubes or sleeves are being expanded. A primary tube or sleeve is expanded by high pressure of water which flows through a channel in an expander body. The water is supplied through an elongated conductor and is introduced through a connector on the shank connected to the conductor at its outer end. A wire extends through the mandrel and through the conductor to the end of the connector. At its inner end the wire is connected to a tapered pin which is subject to counteracting forces produced by the pressure of the water. The force on the side where the wire is connected to the conductor is smaller than on the opposite side. The tapered pin is moved in the direction of the higher force and extrudes the wire outwardly of the conductor. The tapered surface of the tapered pin engages transverse captive plungers which are maintained in engagement with the expanding tube or sleeve as they are moved outwardly by the tapered pin. The wire and the connector extend out of the generator and, at its outer end, the wire is connected to an indicator which measures the extent to which the wire is moved by the tapered pin, thus measuring the expansion of the tube or sleeve as it progresses

  16. In vitro tensile strength of luting cements on metallic substrate.

    Science.gov (United States)

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied.

  17. DEVELOPMENT and TESTING OF A CEMENT-BASED SOLID WASTE FORM USING SYNTHETIC UP-1 GROUNDWATER

    International Nuclear Information System (INIS)

    COOKE, G.A.; LOCKREM, L.L.

    2006-01-01

    The Effluent Treatment Facility (ETF) in the 200 East Area of the Hanford Site is investigating the conversion of several liquid waste streams from evaporator operations into solid cement-based waste forms. The cement/waste mixture will be poured into plastic-lined mold boxes. After solidification the bags will be removed from the molds and sealed for land disposal at the Hanford Site. The RJ Lee Group, Inc. Center for Laboratory Sciences (CLS) at Columbia Basin College (CBC) was requested to develop and test a cementitious solids (CS) formulation to solidify evaporated groundwater brine, identified as UP-1, from Basin 43. Laboratory testing of cement/simulant mixtures is required to demonstrate the viability of cement formulations that reduce the overall cost, minimize bleed water and expansion, and provide suitable strength and cure temperature. Technical support provided mixing, testing, and reporting of values for a defined composite solid waste form. In this task, formulations utilizing Basin 43 simulant at varying wt% solids were explored. The initial mixing consisted of making small (∼ 300 g) batches and casting into 500-mL Nalgene(reg s ign) jars. The mixes were cured under adiabatic conditions and checked for bleed water and consistency at recorded time intervals over a 1-week period. After the results from the preliminary mixing, four formulations were selected for further study. The testing documentation included workability, bleed water analysis (volume and pH) after 24 hours, expansivity/shrinkage, compressive strength, and selected Toxicity Characteristic Leaching Procedure (TCLP) leach analytes of the resulting solid waste form

  18. Study on Cr(VI) Leaching from Cement and Cement Composites

    Science.gov (United States)

    Palascakova, Lenka; Kanuchova, Maria

    2018-01-01

    This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55–80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time. PMID:29690550

  19. Sulphur cement pre-composition and process for preparing such sulphur cement pre-composition

    NARCIS (Netherlands)

    2013-01-01

    The invention provides a process for the preparation of a sulphur cement pre-composition comprising reacting sulphur modifier with polysulphide-containing organosilane to obtain in the presence of sulphur the sulphur cement pre-composition, wherein the organosilane has the general molecular formula:

  20. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  1. Ceramic residue for producing cements, method for the production thereof, and cements containing same

    OpenAIRE

    Sánchez de Rojas, María Isabel; Frías, Moisés; Asensio, Eloy; Medina Martínez, César

    2014-01-01

    [EN] The invention relates to a ceramic residue produced from construction and demolition residues, as a puzzolanic component of cements. The invention also relates to a method for producing said ceramic residues and to another method of producing cements using said residues. This type of residue is collected in recycling plants, where it is managed. This invention facilitates a potential commercial launch.

  2. Analysis of CCRL proficiency cements 151 and 152 using the Virtual Cement and Concrete Testing Laboratory

    International Nuclear Information System (INIS)

    Bullard, Jeffrey W.; Stutzman, Paul E.

    2006-01-01

    To test the ability of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software to predict cement hydration properties, characterization of mineralogy and phase distribution is necessary. Compositional and textural characteristics of Cement and Concrete Reference Laboratory (CCRL) cements 151 and 152 were determined via scanning electron microscopy (SEM) analysis followed by computer modeling of hydration properties. The general procedure to evaluate a cement is as follows: (1) two-dimensional SEM backscattered electron and X-ray microanalysis images of the cement are obtained, along with a measured particle size distribution (PSD); (2) based on analysis of these images and the measured PSD, three-dimensional microstructures of various water-to-cement ratios are created and hydrated using VCCTL, and (3) the model predictions for degree of hydration under saturated conditions, heat of hydration (ASTM C186), setting time (ASTM C191), and strength development of mortar cubes (ASTM C109) are compared to experimental measurements either performed at NIST or at the participating CCRL proficiency sample evaluation laboratories. For both cements, generally good agreement is observed between the model predictions and the experimental data

  3. The effect of sand/cement ratio on radon exhalation from cement specimens containing 226Ra

    International Nuclear Information System (INIS)

    Takriti, S.; Shweikani, R.; Ali, A. F.; Rajaa, G.

    2002-09-01

    Portland cement was mixed with different kind of sand (calcite and silica) in different ratio to produce radioactive specimens with radium chloride. The release of radon from these samples was studied. The results showed that radon release from the calcite-cement samples increased with the increases of the sand mixed ratio until fixed value (about 20%) then decreased to less than its release from the beginning, and the release changed with the sand size also. Radon release from silica-cement samples had the same observations of calcite-cement samples. It was found that calcite-cement reduced the radon exhalation quantity rather than the silica-cement samples. The decreases of the radon exhalation from the cement-sand may be due to the creation of free spaces in the samples, which gave the possibility to radon to decay into these free spaces rather than radon exhalation. The daughters of the radon decay 214 Bi and 214 Pb reported by gamma measurements of the cement-sand samples. (author)

  4. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    International Nuclear Information System (INIS)

    Skibsted, Jorgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly

  5. Glass ionomer cement: literature review

    Directory of Open Access Journals (Sweden)

    Sérgio Spezzia

    2017-12-01

    Full Text Available Introduction: In the dental area preventive actions occur in an attempt to avoid the installation of caries, a disease that has an increased prevalence in the population and which is a Public Health problem. Some resources are used for such, such as: performing early diagnosis and the option for conservative treatments of minimal intervention. The glass ionomer cement (CIV, coming from its beneficial characteristics that meet current trends, is closely related to the precepts of Preventive and Minimally Invasive Dentistry and the new preservative techniques recommended. Objective: The objective of the present article was to carry out a literature review study, to determine the characteristics of CIV that has a prominent role in the Minimally Invasive Dentistry profile. Results: The dentist surgeon must be aware of the classification, according to its composition and physical-chemical nature: conventional ionomers; ionomers reinforced by metals; high viscosity and various types of resin modified glass ionomers to correctly choose the CIV that will be used in their clinical interventions, which should occur based on the properties of the material and its clinical indication. Conclusion: It was concluded that the implementation of preventive techniques with CIV in public health care, tend to minimize curative treatments, concurrently valuing the low complexity dental procedures performed in Primary Care, avoiding referrals for treatment of cases of greater complexity at the level Secondary and tertiary care, saving resources.

  6. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  7. Cement for oil well developed from ordinary cement: characterization physical, chemical and mineralogical

    International Nuclear Information System (INIS)

    Oliveira, D.N.S.; Neves, G. de A.; Chaves, A.C.; Mendonca, A.M.G.D.; Lima, M.S. de; Bezerra, U.T.

    2012-01-01

    This work aims to characterize a new type of cement produced from the mixture of ordinary Portland cement, which can be used as an option in the cementing of oil wells. To enable this work we used the method of lineal programming for the new cement composition, then conducted tests to characterize through particle size analysis by laser diffraction, chemical analysis by EDX, TGA, X-ray diffraction, time grip, resistance to compression. The overall result showed that the new cement had made low-C3A, takes more time to the CPP, thermal stability up to 500 ° C, the kinetics of hydration and low levels of major components consistent with the specifications of ABNT. (author)

  8. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    In this paper, measurements of non-evaporable water content, chemical shrinkage, autogenous deformation, internal relative humidity (RH), pore solution composition, and early-age elastic modulus are presented and discussed. All experiments were performed on Portland cement and blast-furnace slag...... (BFS) cement pastes. Self-desiccation shrinkage of the BFS cement paste was modeled based on the RH measurements, following the capillary-tension approach. The main findings of this study are: 1) self-desiccation shrinkage can be related to self-desiccation both for Portland and for BFS cement pastes......, taking into account the influence of the dissolved salts in the pore solution, 2) the BFS cement paste studied shows pronounced self-desiccation and self-desiccation shrinkage, mainly caused by its very fine pore structure....

  9. Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength

    Science.gov (United States)

    Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed

    2017-08-01

    Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.

  10. Comparative study on strength properties of cement mortar by partial replacement of cement with ceramic powder and silica fume

    Science.gov (United States)

    Himabindu, Ch.; Geethasri, Ch.; Hari, N.

    2018-05-01

    Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.

  11. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...... and unexposed skin was observed, despite a more permeable skin barrier at the alkaline pH of the cement suspensions, i.e., pH 12.5. Increased chromium levels in epidermis and dermis were seen when ordinary Portland cement was applied as a suspension with added sodium sulphate (20%) on the skin surface for 96 h...

  12. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, S.; Atkins, M.; Beckley, N.; Carson, S.

    1986-11-01

    Experimental and theoretical studies of hydrated cement systems are described. The behaviour of slag-based cement is described with a view to predicting their long term pH, Esub(n) and mineralogical balance. Modelling studies which enable the prediction at long ages of cement composites are advanced and a base model of the CaO-SiO 2 -H 2 O system presented. The behaviour of U and I in cements is explored. The tolerance of cement systems for a wide range of miscellaneous waste stream components and environmental hazards is described. The redox potential in cements is effectively lowered by irradiation. (author)

  13. Use of an Italian pozzolanic cement for the solidification of bead ion exchange resins

    International Nuclear Information System (INIS)

    De Angelis, G.

    1988-05-01

    Granular ion-exchange resins represent a large portion of the medium-active wastes generated at nuclear power stations. The most common practice for their confinement is to mix them with cement paste and cast the mixture in a concrete shell. Such a procedure however does not prove successful in many cases, because of the extreme swelling to which the embedded resin can give rise. This phenomenon has been investigated carefully. In particular, measurements of the swelling pressure have been made together with evaluation of the volume changes of the resin beads due to ion exchange and of the weight increase as a function of relative humidity. The ion exchange capacity, which continues even after incorporation in the cement matrix has also been put into evidence. The conclusion was drawn that a three component diagram (water - dry resin- cement) has to be prepared every time in order to identify the region corresponding to the better formulations. With this in mind the optimum waste loading of 11.5 wt% of dry resin was chosen to incorporate a mixed bed resin (Amberlite IR 120 Na + and IRA 400 Cl - in the weight ratio of 1:1) into an Italian pozzolanic cement (425 type). Several properties of the final waste form have been investigated, ranging from mechanical (crushing strength, tensile strength, flexural strength, ultrasonic pulse velocity, elastic modulus and Poisson ratio), to thermal stability, radiation stability, permeability, leachability and resistance to bacterial attack. Dimensional stability was also measured with the aim of examining the expansion phenomena which can take place in the presence of resin beads. The data obtained are encouraging for future application of the type 425 cement tested in the field of radwastes. An attempt to explain the performance of this binder, based on its intrinsic properties, was also made. (author)

  14. Vitrified medical wastes bottom ash in cement clinkerization. Microstructural, hydration and leaching characteristics.

    Science.gov (United States)

    Papamarkou, S; Christopoulos, D; Tsakiridis, P E; Bartzas, G; Tsakalakis, K

    2018-04-19

    The present investigation focuses on the utilization of medical wastes incineration bottom ash (MBA), vitrified with soda lime recycled glass (SLRG), as an alternative raw material in cement clinkerization. Bottom ash is recovered from the bottom of the medical wastes incineration chamber, after being cooled down through quenching. It corresponds to 10-15 wt% of the initial medical wastes weight and since it has been classified in the category of hazardous wastes, its safe management has become a major environmental concern worldwide. MBA glasses of various syntheses were initially obtained during the MBA vitrification simultaneously with various amounts of silica scrap (20, 25 and 30 wt% correspondingly). The produced MBA glasses were in turn used for the production of Portland cement clinker, after sintering at 1400 °C, thus substituting traditional raw materials. Both evaluation of vitrification and sintering products was carried out by chemical and mineralogical analyses along with microstructure examination. The final cements were prepared by clinkers co-grinding in a laboratory ball mill with appropriate amounts of gypsum (≈5.0 wt%) and the evaluation of their quality was carried out by determining setting times, standard consistency, expansibility and compressive strength at 2, 7, 28 and 90 days. Finally, the leaching behaviour of the vitrified MBA and hydrated cements, together with the corresponding of the "as received" MBA, was further examined using the standard leaching tests of the Toxicity Characteristic Leaching Procedure (TCLP) and the EN 12457-2. According to the obtained results, the quality of the produced cement clinkers was not affected by the addition of the vitrified MBA in the raw meal, with the trace elements detected in all leachates measured well below the corresponding regulatory limits. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Stabilization of ZnCl2-Containing Waste Using Calcium Sulfoaluminate Cement

    International Nuclear Information System (INIS)

    Cau Dit Coumes, C.; Berger, S.; Le Bescop, P.; Damidot, D.

    2013-01-01

    The potential of calcium sulfoaluminate (CSA) cement was investigated to solidify and stabilize radwastes containing large amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration). Hydration of pastes and mortars prepared with a 0.5 mol/L ZnCl 2 mixing solution was characterized over one year as a function of the gypsum content of the binder and the thermal history of the material. Blending the CSA clinker with 20% gypsum enabled rapid hydration, with only very small delay compared with a reference prepared with pure water. It also improved the compressive strength of the hardened material and significantly reduced its expansion under wet curing. Moreover, the hydrate assemblage was less affected by a thermal treatment at early age simulating the temperature rise and fall occurring in a large-volume drum of cemented waste. Fully hydrated materials contained ettringite, amorphous aluminum hydroxide, straetlingite, together with AFm phases (Kuzel's salt associated with monosulfoaluminate or Friedel's salt depending on the gypsum content of the binder), and possibly C-(A)-S-H. Zinc was readily insolubilized and could not be detected in the pore solution extracted from cement pastes, or in their leachates after 3 months of leaching by pure water at pH 7. The good retention of zinc by the cement matrix was mainly attributed to the precipitation of a hydrated and well crystallized phase with platelet morphology (which may belong to the layered double hydroxides family) at early age ≤ 1 day), and to chemisorption onto aluminum hydroxide at later age. (author)

  16. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  17. Colorectal cancer and non-malignant respiratory disease in asbestos cement and cement workers

    International Nuclear Information System (INIS)

    Jacobsson, K.

    1993-09-01

    Radiologically visible parenchymal changes (small opacities >= 1/0;ILO 1980 classification) were present in 20% of a sample of workers (N=174), employed for 20 years (median) in an asbestos cement plant. Exposure-response relationships were found, after controlling for age and smoking habits. In a sample of asbestos cement workers with symptoms and signs suggestive of pulmonary disease (N=33), increased lung density measured by x-ray computed tomography, and reduced static lung volumes and lung compliance was found. In a cohort of asbestos cement workers (N=1.929) with an estimated median exposure of 1.2 fibres/ml, the mortality from non-malignant respiratory disease was increased in comparison to a regional reference cohort (N=1.233). A two-to three-fold increase of non-malignant respiratory mortality was noted among workers employed for more than a decade in the asbestos cement plant, compared to cement workers (N=1.526), who in their turn did not experience and increased risk compared to the general population. In the cohorts of asbestos cement and cement workers, there was a tow-to three-fold increased incidence of cancer in the right part of the colon, compared to the general population as well as to external reference cohorts of other industrial workers (N=3.965) and fishermen (N=8.092). A causal relation with the exposure to mineral dust and fibres was supported by the findings of higher risk estimated in subgroups with high cumulated asbestos doses or longer duration of cement work. The incidence of cancer in the left part of the colon was not increased. Morbidity data, but not mortality data, disclosed the subsite-specific risk pattern. Both asbestos cement workers and cement workers has an increased incidence of rectal cancer, compared with the general population, and with the fishermen. The risk was, however, of the same magnitude among the other industrial workers. 181 refs

  18. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents

    Directory of Open Access Journals (Sweden)

    Dongliang Li

    2015-07-01

    Full Text Available Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08 under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa were obtained. Based on the test results, the effect of the cementing agent content (Cv on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using Cv. The research reveals that when Cv is high (e.g., Cv = 0.03, 0.05 or 0.08, the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as Cv increases, both the peak strength and residual strength of the samples show a significant increase. When Cv is low (e.g., Cv = 0.01, the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of Cv (the cementing agent content with c′ (the cohesion force of the sample and Δϕ′ (the increment of the angle of shearing resistance is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  19. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents.

    Science.gov (United States)

    Li, Dongliang; Liu, Xinrong; Liu, Xianshan

    2015-07-02

    Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC) as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08) under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa) were obtained. Based on the test results, the effect of the cementing agent content ( C v ) on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using C v . The research reveals that when C v is high (e.g., C v = 0.03, 0.05 or 0.08), the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as C v increases, both the peak strength and residual strength of the samples show a significant increase. When C v is low (e.g., C v = 0.01), the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of C v (the cementing agent content) with c ' (the cohesion force of the sample) and Δϕ' (the increment of the angle of shearing resistance) is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  20. Push-out bond strengths of different dental cements used to cement glass fiber posts.

    Science.gov (United States)

    Pereira, Jefferson Ricardo; Lins do Valle, Accácio; Ghizoni, Janaina Salomon; Lorenzoni, Fábio César; Ramos, Marcelo Barbosa; Barbosa, Marcelo Ramos; Dos Reis Só, Marcus Vinícius

    2013-08-01

    Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dual-polymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (Pcements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  1. The differences between soil grouting with cement slurry and cement-water glass slurry

    Science.gov (United States)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  2. Identity Expansion and Transcendence

    Directory of Open Access Journals (Sweden)

    William Sims Bainbridge

    2014-05-01

    Full Text Available Emerging developments in communications and computing technology may transform the nature of human identity, in the process rendering obsolete the traditional philosophical and scientific frameworks for understanding the nature of individuals and groups.  Progress toward an evaluation of this possibility and an appropriate conceptual basis for analyzing it may be derived from two very different but ultimately connected social movements that promote this radical change. One is the governmentally supported exploration of Converging Technologies, based in the unification of nanoscience, biology, information science and cognitive science (NBIC. The other is the Transhumanist movement, which has been criticized as excessively radical yet is primarily conducted as a dignified intellectual discussion within a new school of philosophy about human enhancement.  Together, NBIC and Transhumanism suggest the immense transformative power of today’s technologies, through which individuals may explore multiple identities by means of online avatars, semi-autonomous intelligent agents, and other identity expansions.

  3. Effect of wet curing duration on durability parameters of hydraulic cement concretes.

    Science.gov (United States)

    2010-01-01

    Hydraulic cement concrete slabs were cast and stored outdoors in Charlottesville, Virginia, to study the impact of wet curing duration on durability parameters. Concrete mixtures were produced using portland cement, portland cement with slag cement, ...

  4. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    Science.gov (United States)

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Improved cement solidification of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    1993-01-01

    Cementation was the first and is still the most widely applied technique for the conditioning of low and intermediate level radioactive wastes. Compared with other solidification techniques, cementation is relatively simple and inexpensive. However, the quality of the final cemented waste forms depends very much on the composition of the waste and the type of cement used. Different kinds of cement are used for different kinds of waste and the compatibility of a specific waste with a specific cement type should always be carefully evaluated. Cementation technology is continuously being developed in order to improve the characteristics of cemented waste in accordance with the increasing requirements for quality of the final solidified waste. Various kinds of additives and chemicals are used to improve the cemented waste forms in order to meet all safety requirements. This report is meant mainly for engineers and designers, to provide an explanation of the chemistry of cementation systems and to facilitate the choice of solidification agents and processing equipment. It reviews recent developments in cementation technology for improving the quality of cemented waste forms and provides a brief description of the various cement solidification processes in use. Refs, figs and tabs

  6. Alpha radioactivity in Indian cement samples

    International Nuclear Information System (INIS)

    Nain, M.; Chauhan, R. P.; Chakarvarti, S. K.

    2006-01-01

    The essential constituents of radioactive and each of cements like lime, silica and alumina are derived from earth's crust in which radioactive elements like uranium, thorium etc are also present in varying amounts almost everywhere. These two elements are considered as the parent elements of uranium and thorium radioactive decay series in which radon and thoron are produced respectively as decay products. In the present study the samples of ordinary Portland cement , Portland pozzolana cement and some other cementious finishing materials like white cement, Plaster of Paris , cement putty etc were collected and analysed for radium and radon concentrations along with radon exhalation rates. Materials and Methods: Alpha sensitive LR-115 Type II plastic track detectors commonly known as S olid State Nuclear Track Detectors w ere used to measure the radium and radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The Chemical etching in NaOH at 60 C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon and radium concentrations along with exhalation rate of radon, were determined using required formulae. Results: The radon and radium concentration in various brands of cements found to vary from 333±9.9 to 506±13.3 Bq m-3 and from 3.7±0.1 to 5.6±0.2 Bq k g-1 while in various cementious finishing materials used in the construction, these were found to vary from 378±19.7 to 550±9.8 Bq m-3 and from 4.2±0.2 to 6.1±0.1 Bq Kg-1, respectively. Based on the data the mass and surface exhalation rates were also calculated Conclusion: The measurements indicate that there is marginal variation of the concentration of radium and radon in various brands of cements in India with lower levels in the cement samples having red oxide and higher levels in fly ash based cement

  7. Stimuli-responsive cement-reinforced rubber.

    Science.gov (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  8. Possibilities of special cements in ceramic applications

    International Nuclear Information System (INIS)

    Capmas, A.; Bier, T.A.

    1993-01-01

    About 25 years ago, the only way to have confinement material for high temperature applications was to prepare a ceramic by sintering or fusion at high temperature. A new technology came, with the production of Low Cement Castables. This new product was obtained by a careful choice of the granulometry of the aggregates, an optimization of the defloculation of fine particles, including the cement (Calcium Aluminate Cement) and the addition of silica fume. Silica fume brought two improvements: a) a fluidifying effect, due partly to the low sensitivity of viscosity to pH, and partly to the geometric effect of the nicely spherical particle, b) a chemical effect, brought by the reaction of silica and Calcium Aluminate Cement to give a coherent zeolithic structure, through which water could escape during the first firing. From a ceramist point of view, it is interesting to understand how this components, nearly colloidal system mixed in water can be heated up to ceramization without any noticeable change in mechanical characteristics and shrinkage. From a more practical point of view, it is also interesting to realize that some characteristics, usually attributed only to ceramics, also apply with low cement castables technology: high compressive strength, flexural strength, corrosion resistance, abrasion resistance, impact resistance. (orig.)

  9. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  10. Reinforcing of Cement Composites by Estabragh Fibres

    Science.gov (United States)

    Merati, A. A.

    2014-04-01

    The influence of Estabragh fibres has been studied to improve the performance characteristics of the reinforced cement composites. The concrete shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of concrete specimens. Although, the Estabragh fibres lose their strength in an alkali environment of cement composites, but, the ability of Estabragh fibres to bridge on the micro cracks in the concrete matrix causes to decrease the width of the cracks on the surface of the concrete samples in comparison with the plain concrete. However, considering the mechanical properties of specimens such as bending strength and impact resistance, the specimens with 0.25 % of Estabragh fibre performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of concrete. Consequently, by adding 0.25 % of Estabragh fibres to the cement composite of concrete, a remarkable improvement in physical and mechanical properties of fibre-containing cement composite is achieved.

  11. Plug cementing: Horizontal to vertical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Calvert, D.G.; Heathman, J.F.; Griffith, J.E.

    1995-12-31

    This paper presents an in-depth study of cement plug placement that was conducted with large-scale models for the improvement of plug cementing practices and plug integrity. Common hole and workstring geometries were examined with various rheology and density ratios between the drilling fluid and cement. The critical conditions dictating the difference between success and failure for various wellbore angles and conditions were explored, and the mechanisms controlling slurry movement before and after placement are now better understood. An understanding of these mechanisms allows the engineer to better tailor a design to specific hole conditions. Controversial concepts regarding plug-setting practices have been examined and resolved. The cumulative effects of density, rheology, and hole angle are major factors affecting plug success. While the Boycott effect and an extrusion effect were observed to be predominant in inclined wellbores, a spiraling or {open_quotes}roping{close_quotes} effect controls slurry movement in vertical wellbores. Ultimate success of a cement plug can be obtained if allowances are made for these effects in the job design, provided all other previously published recommended placement practices are followed. Results of this work can be applied to many sidetracking and plug-to-abandon operations. Additionally, the understanding of the fluid movement (creep) mechanisms holds potential for use in primary and remedial cementing work, and in controlling the placement of noncementitious fluids in the wellbore.

  12. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  13. Investigation of Expanding Cements. Report 1. Summary of Information Available as of 1 July 1963

    Science.gov (United States)

    1965-09-01

    the authors: (a) Portland cement mixed with CaSO4 and the dried hydratioQ products of lime and burnt kaolin (Budnikov and Kosuirevu[1 5i); it is...expansive ef- fects are strongly influenced by the amount of mixing water and by the nature of the alu.minous component; that is, kaolin , slag and bauxite...mechanical proper- ties of high-molecular system dispersion ." Colloidal Rev., Acad. Opement Sci. USSR, vol XVII, No. 2 (1955). .MI, 43. Mikhailov, V

  14. Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement.

    Science.gov (United States)

    Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José

    2014-11-01

    The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p cements reduced the bond strength to Panavia self-etching resin cements only (p cements did not interfere in the bond strength to dentin of self-adhesive resin cements.

  15. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  16. Heat of hydration measurements on cemented radioactive wastes. Part 1: cement-water pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1983-12-01

    This report describes the hydration of cement pastes in terms of chemical and kinetic models. A calorimetric technique was used to measure the heat of hydration to develop these models. The effects of temperature, water/cement ratio and cement replacements, ground granulated blast furnace slag (BFS) and pulverised fuel ash (PFA) on the hydration of ordinary Portland cement (OPC) is reported. The incorporation of BFS or PFA has a marked effect on the hydration reaction. The effect of temperature is also important but changing the water/cement ratio has little effect. Results from cement pastes containing only water and cement yield total heats of reaction of 400, 200 and 100 kJ/kg for OPC, BFS and PFA respectively. Using the results from the models which have been developed, the effect of major salts present in radioactive waste streams can be assessed. Values of the total heat of reaction, the time to complete 50 percent reaction, and the energy of activation, can be compared for different waste systems. (U.K.)

  17. Preparing hydraulic cement from oil-shale residue

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  18. compaction delay versus properties of cement-bound lateritic soil

    African Journals Online (AJOL)

    hp

    hour intervals on soil-cement mixes 3,5,8; and 1, 3, 5 percent cement contents by weight of dry soils, for ... stabilized soils were the Compaction test (Standard Proctor), the Unconfined Compressive. Strength .... Plastic limit (%). % passing BS ...

  19. Diffusion of radon through varying depths of cement

    International Nuclear Information System (INIS)

    Takriti, S.; Shweikani, R.; Ali, A.F.; Hushari, M.; Kheitou, M.

    2001-01-01

    Portland cement was mixed with different concentrations of radium chloride (1200, 2400 and 3600 Bq) to produce radioactive sources. These sources were surrounded with cement of different thickness (1, 2 and 4 cm). The release of radon from these sources (before and after being surrounded) was studied. The results showed that radon release from the sources itself was less then its release from the same source after being surrounded by cement, and the release did not change with the thickness of cement. Samples were covered with a thin layer of polyethylene before being surrounded with cement. It was found that this additional layer reduced the radon exhalation. This thin layer stopped any reaction between the source and the surrounding cement during solidification of the cement layers. These reactions are thought to be the reason for the increase of radon exhalation from the sources surrounded by cement

  20. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use .... or open dumping which have effect on surface and ... Table 1: Chemical Composition of Calcium Carbide Waste and Cement.

  1. Study on cementation of simulated radioactive borated liquid wastes

    International Nuclear Information System (INIS)

    Sun Qina; Li Junfeng; Wang Jianlong

    2010-01-01

    To compare sulfoaluminate cement with ordinary Portland cement on their cementation of radioactive borated liquid waste and to provide more data for formula optimization, simulated radioactive borated liquid waste were solidified by the two cements. 28 d compressive strength and strength losses after water/freezing/irradiation resistance tests were investigated. Leaching test and X-ray diffraction analysis were also conducted. The results show that it is feasible to solidify borated liquid wastes with sulfoaluminate cement and ordinary Portland cement with formulas used in the study. The 28 d compressive strengths, strength losses after tests and simulated nuclides leaching rates of the solidified waste forms meet the demand of GB 14569.1-93. The sulfoaluminate cement formula show better retention of Cs + than ordinary Portland cement formula. Boron, in form of B (OH) 4 - , incorporate in ettringite as solid solutions. (authors)

  2. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  3. Transportation of ions through cement based materials

    International Nuclear Information System (INIS)

    Chatterji, S.

    1994-01-01

    Transportation of ions, both anions and cations, through cement based materials is one of the important processes in their durability and as such has been studied very extensively. It has been studied from the point of view of the reinforcement corrosion, alkali-silica reaction, sulfate attack on cement and concrete, as well as in the context of the use of the cement based materials in the disposal of nuclear waste. In this paper the fundamental equations of diffusion, i.e. Fick's two equations, Nernst and Nernst-Planck equations have been collected. Attention has been drawn to the fact that Fick's two equations are valid for non-ionic diffusants and that for ions the relevant equations are those of Nernst and Nernst-Planck. The basic measurement techniques have also been commented upon

  4. Heavy cement slurries; Pastas pesadas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Avelar da; Conceicao, Antonio C. Farias [PETROBRAS, XX (Brazil). Distrito de Perfuracao do Nordeste. Div. de Tecnicas de Perfuracao; Marins, Carlos Cesar Silva [PETROBRAS, XX (Brazil). Dept. de Perfuracao. Div. de Revestimento e Cimentacao

    1990-12-31

    When going deeper in a high pressure well, the only way to successfully cement your casing or linear is through the use of heavy cement slurry. In 1987 PETROBRAS geologists presented to the Drilling Department a series of deep, hot and high pressure wells to be drilled. The Casing and Cement Division of this department then started a program to face this new challenge. This paper introduces the first part of this program and shows how PETROBRAS is dealing with heavy weight slurries. We present the slurry formulations tested in laboratory, the difficulties found in mixing them in the field, rheology measurements, API free water and API fluid loss from both laboratory and field samples. (author) 3 tabs.

  5. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-02-01

    Over the last seven years, Low Oxidation State Metal Ion reagents (LOMI) have been used to decontaminate the 100 MW(e) Steam Generating Heavy Water Ractor (SGHWR) at Winfrith. The use of these reagents has resulted in a dilute ionic solution containing activation products which are produced by corrosion of metallic components in the reactor. It has been demonstrated that the amount of activity in the solution can be reduced using organic ion exchanger resins. These resins consist of a cross linked polystyrene with sulphonic acid or quaternary ammonium function groups and can be successfully immobilised in blended cement systems. The formulation which has been developed is produced from a 9 to 1 blend of ground granulated blast furnace slag (BFS) and ordinary Portland cement (OPC) containing 28% ion exchange resin in the water saturated form. If 6% Microsilica is added to the blended cement the waste loading can be increased to 36 w/o. (author)

  6. Application of Carbonate Looping to Cement Industry

    DEFF Research Database (Denmark)

    Lin, Weigang; Illerup, Jytte Boll; Dam-Johansen, Kim

    2012-01-01

    In the present work, cycle experiments of different types of limestone, cement raw meal and a mixture of limestone and clay were carried out in laboratory scale setups at more realistic conditions (i.e. calcination temperature is 950°C and CO2 concentration is 80%) to simulate the performance...... with an increase in the CO2 partial pressure during calcination, indicating enhancement of sintering by the presence of CO2. As sorbents, cement raw meal and the mixture of limestone and clay show a similar trend as limestone with respect to the decay of the CO2 carrying capacity and this capacity is lower than...... that of limestone at the same conditions in most cases. SEM and XRD analyses indicate that a combination of severe sintering and formation of calcium silicates attributes to the poor performance of the cement raw meal....

  7. Mechanical characterization of sisal reinforced cement mortar

    Directory of Open Access Journals (Sweden)

    R. Fujiyama

    2014-01-01

    Full Text Available This work aims at evaluating the mechanical behavior of sisal fiber reinforced cement mortar. The composite material was produced from a mixture of sand, cement, and water. Sisal fibers were added to the mixture in different lengths. Mechanical characterization of both the composite and the plain mortar was carried out using three point bend, compression, and impact tests. Specimens containing notches of different root radii were loaded in three point bending in an effort to determine the effect of the fibers on the fracture toughness of the material. The results obtained indicate that, while fiber reinforcement leads to a decrease in compressive strength, J-integral calculations at maximum load for the different notch root radii have indicated, particularly for the case of long fibers, a significant superiority of the reinforced material in comparison with the plain cement mortar, in consistence with the impact test data.

  8. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    , whereas in a normal cement plant, it is 0.9 kg/ kg cl. However the thermal energy demand in the integrated plant increases from 3.9 MJ/ kg cl to 5.6 MJ/ kg cl. But on the other side this additional energy spent can be recovered as a high quality heat to generate electricity. The potential to generate...... electricity depends on the scale of the plant, the bigger the production capacity of cement plant the better, with capacity higher than 3400 tons of clinker/day is required to produce captive electricity to meet the demand both from the cement plant operations and from the CO2 capture system operations....

  9. Hospital waste ashes in Portland cement mortars

    International Nuclear Information System (INIS)

    Genazzini, C.; Zerbino, R.; Ronco, A.; Batic, O.; Giaccio, G.

    2003-01-01

    Nowadays, most concretes incorporate mineral additions such as pozzolans, fly ash, silica fume, blast furnace slag, and calcareous filler among others. Although the technological and economical benefits were the main reasons for the use of mineral additions, the prevention of environmental contamination by means of proper waste disposal becomes a priority. The chance of incorporating hospital waste ashes in Portland cement-based materials is presented here. Ash characterization was performed by chemical analysis, X-ray diffraction, radioactive material detection, and fineness and density tests. Conduction calorimetry and setting time tests were developed on pastes including ash contents from 0% to 100%. Mortars were prepared including ash contents up to 50% of cement. The results of setting time, temperature development, flexural and compressive strengths, water absorption, density, and leachability are analyzed. Results indicate that Portland cement systems could become an alternative for the disposal of this type of ashes

  10. Cementation of wastes with boric acid

    International Nuclear Information System (INIS)

    Tello, Cledola C.O.; Haucz, Maria Judite A.; Alves, Lilian J.L.; Oliveira, Arno H.

    2000-01-01

    In nuclear power plants (PWR) are generated wastes, such as concentrate, which comes from the evaporation of liquid radioactive wastes, and spent resins. Both have boron in their composition. The cementation process is one of the options to solidify these wastes, but the boron has a negative effect on the setting of the cement mixture. In this paper are presented the experiments that are being carried out in order to overcome this problem and also to improve the efficiency of the process. Simulated wastes were cemented using additives (clays, admixtures etc.). In the process and product is being evaluated the effect of the amount, type and addition order of the materials. The mixtures were selected in accordance with their workability and incorporated waste. The solidified products are monolithic without free water with a good mechanical resistance. (author)

  11. Hydration kinetics of cement composites with varying water-cement ratio using terahertz spectroscopy

    Science.gov (United States)

    Ray, Shaumik; Dash, Jyotirmayee; Devi, Nirmala; Sasmal, Saptarshi; Pesala, Bala

    2015-03-01

    Cement is mixed with water in an optimum ratio to form concrete with desirable mechanical strength and durability. The ability to track the consumption of major cement constituents, viz., Tri- and Dicalcium Silicates (C3S, C2S) reacting with water along with the formation of key hydration products, viz., Calcium-Silicate-Hydrate (C-S-H) which gives the overall strength to the concrete and Calcium Hydroxide (Ca(OH)2), a hydration product which reduces the strength and durability, using an efficient technique is highly desirable. Optimizing the amount of water to be mixed with cement is one of the main parameters which determine the strength of concrete. In this work, THz spectroscopy has been employed to track the variation in hydration kinetics for concrete samples with different water-cement ratios, viz., 0.3, 0.4, 0.5 and 0.6. Results show that for the sample with water-cement ratio of 0.3, significant amount of the C3S and C2S remain unreacted even after the initial hydration period of 28 days while for the cement with water-cement ratio of 0.6, most of the constituents get consumed during this stage. Analysis of the formation of Ca(OH)2 has been done which shows that the concrete sample with water-cement ratio of 0.6 produces the highest amount of Ca(OH)2 due to higher consumption of C3S/C2S in presence of excess water which is not desirable. Samples with water-cement ratio of 0.4 and 0.5 show more controlled reaction during the hydration which can imply formation of an optimized level of desired hydration products resulting in a more mechanically strong and durable concrete.

  12. Cementation of the solid radioactive waste with polymer-cement solutions using the method of impregnation

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    Cementation of solid radioactive waste (SRW), i.e. inclusion of solid radioactive waste into cement matrix without cavities - is one of the main technological processes used for conditioning low and intermediate level radioactive waste. At FSUE 'Radon' the industrialized method of impregnation has been developed and since 2003 has been using for cementation of solid radioactive waste. The technology is that the polymer-cement solution, having high penetrating properties, is supplied under pressure through a tube to the bottom of the container in which solid radioactive waste has preliminarily been placed. The polymer-cement solution is evenly moving upwards through the channels between the particles of solid radioactive waste, fills the voids in the bulk volume of the waste and hardens, forming a cement compound, the amount of which is equal to the original volume. The aim of the investigation was a selection of a cement solution suitable for SRW impregnation (including fine particles) without solution depletion and bottom layers stuffing. It has been chosen a polymer: PHMG (polyhexamethylene-guanidine), which is a stabilizing and water-retaining component of the cement solution. The experiments confirm that the polymer increases the permeability of the cement solution by a 2-2.5 factor, the viscosity by a 1.2 factor, the stability of the consistency by a 1.5-1.7 factor, and extends the operating range of the W/C ratio to 0.5-1.1. So it is possible to penetrate a volume of SRW bigger by a 1.5-2.0 factor. It has been proved, that PHMG polymer increases strength and frost-resistance of the final compounds by a 1.8-2.7 factor, and contributes to fast strength development at the beginning of hardening and it decreases Cs-137 leashing rate by a 1.5-2 factor

  13. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. Because hydraulic cement requires a chemical hydration reaction for setting and hardening, it is subject to potential interactions between elements in the waste and binder that can retard or prevent solidification. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above its melting point, combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991

  14. Density and mechanical properties of calcium aluminate cement

    Science.gov (United States)

    Ahmed, Syed Taqi Uddin; Ahmmad, Shaik Kareem

    2018-04-01

    Calcium aluminate cements are a special type of cements which have their composition mainly dominated by the presence of Monocalcium Aluminates. In the present paper for the first time we have shown theoretical density and elastic constants for various calcium aluminate cements. The density of the present CAS decrease with aluminates presents in the cement. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter.

  15. Comparison of creep of the cement pastes included fly ash

    Directory of Open Access Journals (Sweden)

    Padevět Pavel

    2017-01-01

    Full Text Available The paper is devoted to comparison of creep of cement pastes containing fly ash admixture. The size of creep in time depends on the amount of components of the cement paste. Attention is paid to the content of classical fly ash in cement paste and its impact on the size of creep. The moisture of cement pastes is distinguished because it significantly affects the rheological properties of the material.

  16. Fabrication of Phosphate Cement with High Integrity

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Cheol Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    As the development of industrial society has accelerated, hazardous wastes are generated as well. According to the 1986 statistics of U.S.A, each person made 40 tons of waste in America that year. Treatment of radioactive waste is one of the most important and serious problems related to waste treatments, because its radioactivity and decaying heat have harmful effects to human and environment for a long time. Nuclear developed countries have used conventional method of treatment such as vitrification or cementation in order to stabilize and solidify radioactive waste. Although the former guarantees the formation of high leaching resistant and durable waste form, it requires several hundred (or even more than one thousand) temperature to melt glass frit. This process generates secondary waste volatilized, as well as being non-economical. Cement technology played a role of immobilizing low and middle class wastes. It has advantages of low temperature setting, low cost, easy process, etc. The alkalinity of ordinary cement, however, constrains the utility of cement to the solidification of alkaline waste. In addition, leachability and mechanical strength of cements are not quite appropriate for the stabilization of high level waste. In this regard, chemically bonded phosphate cement(CBPC), which sets by an acid-base reaction, is a potentially expectable material for immobilization of radioactive waste. CBPC not only sets at room temperature, but also encapsulates various isotopes chemically. The performance of CBPC can be enhanced by the addition of fly ash, sand, wollastonite, etc. This study aims at fabricating the CBPC containing fly ash with high integrity. Morphology, microstructure, and compressive strength are evaluated using SEM, and digital compressing machine

  17. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  18. Controls on Cementation in a Chalk Reservoir

    DEFF Research Database (Denmark)

    Meireles, Leonardo Teixeira Pinto; Hussein, A.; Welch, M.J.

    In this study, we identify different controls on cementation in a chalk reservoir. Biot’s coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot’s coefficient is correlated...... to the water saturation of the Kraka reservoir and is partly controlled by its stratigraphic sub-units. While the direct causal relationship between Biot’s coefficient and water saturation cannot be extended for Biot’s coefficient and porosity, a correlation is also identified between the two, implying...

  19. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  20. Characterization of monolith block of spent resin cementation

    International Nuclear Information System (INIS)

    Prayitno; Endro-Kismolo; Isman MT

    1996-01-01

    Spent resin immobilization process with cement was done to prevent release of radionuclide in the ultimate storage or disposal. The varied Composition of water/cement ratio in the cementation process were 0.3; 0.4; 0.5 and the various weight of resin waste are 25 g, 37.5 g and 50 gram. The compressive strength of the various water/cement ratio without spent resin was bigger than 0.3. This investigation proved that the compressive strength of Tiga Roda cement was bigger than those of Gresik cement or Nusantara cement. The compressive of the cement block of were the spent resin cementation was influenced by the water/cement ratio and the total spent resin addition. The best condition reached at the water/cement ratio of 0.3 and 25 gram spent resin, was compressive strength of 17.86 N/mm 2 . Leaching rate of the various weight composition of spent resin cementation for 91 days were between 10 -2 - 10 -4 gram.cm -2 .day -1

  1. Immobilisation of shredded waste in a cement monolith

    International Nuclear Information System (INIS)

    James, J.M.; Smith, D.L.

    1987-11-01

    During 1983/84 work was continued on the development of the process for the encapsulation of shredded waste in cement. Using simulant shredded waste the conditions for operating the process on the 500 litres scale have been established. Evaluation of the cemented product showed that it was satisfactorily infilled with cement grout with no significant voidage. (author)

  2. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  3. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    Science.gov (United States)

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  4. 21 CFR 888.4230 - Cement ventilation tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted into...

  5. 21 CFR 888.4210 - Cement mixer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in mixing...

  6. Geotechnical properties of clayey soil stabilized with cement ...

    African Journals Online (AJOL)

    The study was conducted to investigate the different effects of cement-sawdust ash and cement on a clayey soil sampled from Mandate Lodge, Landmark University, Omu-Aran, Nigeria. The binder mix of cementsawdust ash (CSDA) was mixed in a ratio of 1:1. The CSDA and cement were added to the soil samples at ...

  7. the effect of cement dust exposure on haematological and liver

    African Journals Online (AJOL)

    Daniel Owu

    LIVER FUNCTION PARAMETERS OF CEMENT FACTORY WORKERS IN. SOKOTO ... to cement dust. (mean years of exposure = 9.6± 1.5 years) and 46 matched unexposed controls. ... was assessed by measuring serum liver function tests. .... of cement, may increase the risk of autoimmune disease. ... Mosby's Manual of.

  8. Optimization of mix design by using superplasticized cement

    International Nuclear Information System (INIS)

    Khaskheli, G.B.; Kumar, A.; Umrani, A.N.

    2009-01-01

    Superplasticizers are high range water reducers which are capable of producing high-strength concrete with low permeability. Recently a cement factory in Sindh has launched SPC (Superplasticized Cement) which contains the required amount of superplasticizers. It is needed to investigate its performance compared to that of OPC (Ordinal-Y Portland Cement). This study is framed to optimize various strengths of structural concrete through the use of SPC of the cement factory. In total 288 cubes (6x6x6) were cast and tested for four different compressive strength of concrete (8000, 6000, 5000 and 4000 psi) manufactured with two brands of cement (OPC and SPC) of the cement factory and two different coarse aggregate sizes (40 and 20 mm) at three different curing ages (7,14 and 28 days). The effect on compressive strength of structural concrete was also observed by adopting 5 and 10% reduction in cement content of the superplasticized cement. Results have indicated that structural concrete made with superplasticized cement could give higher compressive strength than that of OPC at all the curing ages, and 10% saving in cement content could be achieved by using superplasticized cement. Structural concrete made with superplasticized cement could attain higher strength in a shorter period of time, and workability of structural concrete could be increased by using SPC. (author)

  9. Computation of X-ray powder diffractograms of cement components ...

    Indian Academy of Sciences (India)

    Computation of X-ray powder diffractograms of cement components and its application to phase analysis and hydration performance of OPC cement. Rohan Jadhav N C Debnath. Volume 34 Issue 5 August 2011 pp 1137- ... Keywords. Portland cement; X-ray diffraction; crystal structure; characterization; Rietveld method.

  10. Assessment of Pollution Potentialities of some Portland Cement ...

    African Journals Online (AJOL)

    Chemical analysis of some Portland cement commonly used in Nigeria was carried out. All the cement studies were found to be good for concrete work especially where no special property is required. The concentration levels of heavy metals in all the cement samples were above the tolerance limit and therefore need to ...

  11. Radiopacity of portland cement associated with different radiopacifying agents.

    Science.gov (United States)

    Húngaro Duarte, Marco Antonio; de Oliveira El Kadre, Guâniara D'arc; Vivan, Rodrigo Ricci; Guerreiro Tanomaru, Juliane Maria; Tanomaru Filho, Mário; de Moraes, Ivaldo Gomes

    2009-05-01

    This study evaluated the radiopacity of Portland cement associated with the following radiopacifying agents: bismuth oxide, zinc oxide, lead oxide, bismuth subnitrate, bismuth carbonate, barium sulfate, iodoform, calcium tungstate, and zirconium oxide. A ratio of 20% radiopacifier and 80% white Portland cement by weight was used for analysis. Pure Portland cement and dentin served as controls. Cement/radiopacifier and dentin disc-shaped specimens were fabricated, and radiopacity testing was performed according to the ISO 6876/2001 standard for dental root sealing materials. Using Insight occlusal films, the specimens were radiographed near to a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The radiographs were digitized and radiopacity compared with the aluminum stepwedge using Digora software (Orion Corporation Soredex, Helsinki, Finland). The radiographic density data were converted into mmAl and analyzed statistically by analysis of variance and Tukey-Kramer test (alpha = 0.05). The radiopacity of pure Portland cement was significantly lower (p cement/radiopacifier mixtures were significantly more radiopaque than dentin and Portland cement alone (p cement/bismuth oxide and Portland cement/lead oxide presented the highest radiopacity values and differed significantly from the other materials (p cement/zinc oxide presented the lowest radiopacity values of all mixtures (p cement as radiopacifying agents. However, the possible interference of the radiopacifiers with the setting chemistry, biocompatibility, and physical properties of the Portland cement should be further investigated before any clinical recommendation can be done.

  12. Automated system for management of cementation line at Kursk NPP

    International Nuclear Information System (INIS)

    Petukhov, K.S.; Troshchenko, V.G.; Osintsev, V.V.; Molotkov, V.P.

    2005-01-01

    At Kursk NPP technological scheme of radioactive wastes tempering by dry cement mixture in continuously working mixer with continuous dosing of cement mixture components is accepted. The automated system designed for control and management of liquid radioactive wastes cementation in real time is represented [ru

  13. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    Substitution of strontium for calcium in glass ionomer cements (Part 1): Glass synthesis and characterisation, and the effects on the cement handling variables and ... acid to form glass ionomer cements, whose properties were investigated at different time points: working and setting times were determined by rheometry; and, ...

  14. CEMENT KILN DUST AS A MATERIAL FOR BUILDING BLOCKS ...

    African Journals Online (AJOL)

    This paper presents the results of a study on the properties of hollow sandcrete blocks with cement kiln dust (CKD) as an additive and as a replacement for ordinary portland cement (OPC). When CKD was used as a replacement for cement, the compressive strength and density of blocks generally decreased with higher ...

  15. Renormalization group and Mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-02-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)

  16. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  17. Renormalization group and mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere

  18. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  19. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    OpenAIRE

    Weijing Yao; Jianyong Pang; Yushan Liu

    2018-01-01

    Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry inject...

  20. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    International Nuclear Information System (INIS)

    Wong, H.S.; Buenfeld, N.R.

    2009-01-01

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  1. The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature Part II: Microstructural and microchemical investigations

    International Nuclear Information System (INIS)

    Ramlochan, T.; Thomas, M.D.A.; Hooton, R.D.

    2004-01-01

    The microstructural and microchemical development of heat-cured Portland cement mortars containing silica fume, metakaolin, blast-furnace slag, and fly ash were analysed using pore solution analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX). Incorporation of these materials into the mixture modifies the composition of the C-S-H gel, the quantities of the hydration products, and the microstructure. Ettringite was formed during moist storage in all specimens, but was not accompanied by expansion where a sufficient amount of metakaolin, blast-furnace slag, or a suitable fly ash replaced a proportion of the Portland cement; replacement with silica fume was not as effective at eliminating expansion. The different behaviour of silica fume from the other supplementary cementing materials is believed to reflect a difference in the way ettringite is formed in the presence of Al 2 O 3 -bearing mineral admixtures

  2. SHRINKAGE REDUCTION AND CRACK PREVENTION OF ALKALI-ACTIVATED PHOSPHOROUS SLAG CEMENT

    Directory of Open Access Journals (Sweden)

    Yanan Wang

    2016-05-01

    Full Text Available The effects of fly ash, calcium oxide and polypropylene fiber on the physical and mechanical properties, shrinkage and cracking behaviors of alkali-activated phosphorous slag cement (AA-PS-C were studied. The results show that replacing 10-15% phosphorous slag by fly ash and adding calcium oxide as an expansive agent reduce the shrinkage of AA-PS-C. Fly ash will increase the flexural strength, although the compressive strength will be slightly decreased, while the calcium oxide expansive agent coated with aluminum stearate will slightly shorten the setting time and reduce the strength. Adding polypropylene fiber can greatly increase the crack-resistance of AA-PS-C.

  3. Influence of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.

    2013-01-01

    This paper presents a study, including experimental and mechanism analysis, on investigating the effect of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials. The recycled additive is firstly produced form waste hardened cement paste

  4. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study

    Directory of Open Access Journals (Sweden)

    Sheen Juneja Arora

    2016-01-01

    Conclusion: The temporary cements with eugenol showed more microleakage than those without eugenol. SC-10 crowns showed more microleakage compared to Protemp 4 crowns. SC-10 crowns cemented with Kalzinol showed maximum microleakage and Protemp 4 crowns cemented with HY bond showed least microleakage.

  5. Dose response effect of cement dust on respiratory muscles competence in cement mill workers.

    Science.gov (United States)

    Meo, Sultan A; Azeem, Muhammad A; Qureshi, Aijaz A; Ghori, G Moinudin; Al-Drees, Abdul Majeed; Feisal Subhan, Mirza Muhammad

    2006-12-01

    Electromyography (EMG) of respiratory muscles is a reliable method of assessing the ventilatory muscle function, but still its use has not been fully utilized to determine the occupational and environmental hazards on respiratory muscles. Therefore, EMG of intercostal muscles was performed to determine the dose response effect of cement dust on respiratory muscles competence. Matched cross-sectional study of EMG in 50 non-smoking cement mill workers with an age range of 20 - 60 years, who worked without the benefit of cement dust control ventilation or respiratory protective devices. EMG was performed by using surface electrodes and chart recorder. Significant reduction was observed in number of peaks (p competence and stratification of results shows a dose-effect of years of exposure in cement mill.

  6. Micropore characteristics of organic matter pools in cemented and non-cemented podzolic horizons

    NARCIS (Netherlands)

    Catoni, M.; D'amico, M.E.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.; Bonifacio, E.

    2014-01-01

    In Podzols, organic matter (OM) is stabilized mainly by interaction with minerals, as a direct consequence of pedogenic processes. Metal-organic associations strongly affect OM surface features, particularly microporosity. Cemented ortstein horizons (CM) may form during podzolization, accompanied by

  7. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone

    Science.gov (United States)

    Ivanov, I. M.; Kramar, L. Ya; Orlov, A. A.

    2017-11-01

    According to the study results, the influence of complex additives based on microsilica and superplasticizers on the processes of the heat release, hydration, hardening, formation of the structure and properties of cement stone was determined. Calorimetry, derivatography, X-ray phase analysis, electronic microscopy and physical-mechanical methods for analyzing the properties of cement stone were used for the studies. It was established that plasticizing additives, in addition to the main water-reducing and rheological functions, regulate cement solidification and hardening while polycarboxylate superplasticizers even contribute to the formation of a special, amorphized microstructure of cement stone. In a complex containing microsilica and a polycarboxylate superplasticizer the strength increases sharply with a sharp drop in the capillary porosity responsible for the density, permeability, durability, and hence, the longevity of concrete. All this is a weighty argument in favor of the use of microsilica jointly with a polycarboxylate superplasticizer in road concretes operated under aggressive conditions.

  9. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  10. Red mud addition in the raw meal for the production of Portland cement clinker.

    Science.gov (United States)

    Tsakiridis, P E; Agatzini-Leonardou, S; Oustadakis, P

    2004-12-10

    The aim of the present research work was to investigate the possibility of adding red mud, an alkaline leaching waste, which is obtained from bauxite during the Bayer process for alumina production, in the raw meal for the production of Portland cement clinker. For that reason, two samples of raw meals were prepared: one with ordinary raw materials, as a reference sample ((PC)Ref), and another with 3.5% red mud ((PC)R/M). The effect on the reactivity of the raw mix was evaluated on the basis of the unreacted lime content in samples sintered at 1350, 1400 and 1450 degrees C. Subsequently, the clinkers were produced by sintering the two raw meals at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the red mud did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting time, compressive strength and expansibility. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the red mud did not negatively affect the quality of the produced cement.

  11. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  12. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  13. Peat Soil Stabilization using Lime and Cement

    Directory of Open Access Journals (Sweden)

    Mohd Zambri Nadhirah

    2018-01-01

    Full Text Available This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  14. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Yamawaki, M.

    1995-01-01

    In a fusion reactor or tritium-handling facilities, contamination of concrete by tritium and subsequent release from it to the reator or experimental room is a matter of problem for safe control of tritium and management of operational environment. In order to evaluate this tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were experimentally studied.(1)Sorption experiments were conducted using columns packed with cement particles of different sizes. From the analysis of the breakthrough curve, tritium diffusivity in macropores and microparticles were evaluated.(2)From the short-term tritium release experiments, effective desorption rate constants were evaluated and the effects of temperature and moisture were studied.(3)In the long-term tritium release experiments to 6000h, the tritium release mechanism was found to be composed of three kinds of water: initially from capillary water, and in the second stage from gel water and from the water in the cement crystal.(4)Tritium release behavior by heat treatment to 800 C was studied. A high temperature above 600 C was required for the tritium trapped in the crystal water to be released. (orig.)

  15. Kinetics of strength gain of biocidal cements

    Directory of Open Access Journals (Sweden)

    Rodin Aleksandr Ivanovich

    Full Text Available Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

  16. The fixation of radioactive wastes in cement

    International Nuclear Information System (INIS)

    Kulichenko, V.V.; Dukhovich, F.S.; Volkova, O.I.; Boyarinova, M.V.

    1976-01-01

    The authors study the leaching behaviour of the main long-lived fission products 90 Sr and 137 Cs. It is found that 90 Sr and 137 Cs have high elution values, namely (2-12) x 10 -2 resp. (2-6) x 10 -2 g/cm 2 /24h, independently of the type of waste. On the basis of these results, maximum concentrations for the solutions in the cement/solution mixtures are proposed. Further studies relate to the formation of radiolysis gas in the waste fixed to cement. Experiments are described to make use of the empty space in the containers, filled with solid waste by filling them with mixtures of cement and liquid radioactive waste of 10 -4 to 1- 6 Ci. The ratio solution/cement should amount to 0.5. The containers are then buried underground. This method of combined waste storage helped to reduce the cost for the storage of liquid waste by about 40-50%. (RB) [de

  17. Consolidation behavior of cement-based systems

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette

    2007-01-01

    partikler på pakning og middelporestørrelse i frisk beton. Modellen er beskrevet og eftervist for Portland cement pasta med og uden silicastøv og såkaldte superplastificerende stoffer. Superplastificerende stoffer anvendes for at mindske de attraktive kræfter mellem de fine partikler og dermed øge...

  18. Topics in cement and concrete research

    NARCIS (Netherlands)

    Brouwers, Jos; Russel, M.I.; Basheer, P.A.M.

    2007-01-01

    The present paper addresses several topics in regard to the sustainable design and use of concrete. First, major features concerning the sustainable aspects of the material concrete are summarised. Then the major constituent, from an environmental point of view, cement is discussed in detail,

  19. Calcium phosphate cement scaffolds with PLGA fibers.

    Science.gov (United States)

    Vasconcellos, Letícia Araújo; dos Santos, Luís Alberto

    2013-04-01

    The use of calcium phosphate-based biomaterials has revolutionized current orthopedics and dentistry in repairing damaged parts of the skeletal system. Among those biomaterials, the cement made of hydraulic grip calcium phosphate has attracted great interest due to its biocompatibility and hardening "in situ". However, these cements have low mechanical strength compared with the bones of the human body. In the present work, we have studied the attainment of calcium phosphate cement powders and their addition to poly (co-glycolide) (PLGA) fibers to increase mechanical properties of those cements. We have used a new method that obtains fibers by dripping different reagents. PLGA fibers were frozen after lyophilized. With this new method, which was patented, it was possible to obtain fibers and reinforcing matrix which furthered the increase of mechanical properties, thus allowing the attainment of more resistant materials. The obtained materials were used in the construction of composites and scaffolds for tissue growth, keeping a higher mechanical integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Portland cement concrete air content study.

    Science.gov (United States)

    1987-04-20

    This study took the analysis of Portland cement concrete air content. Based on the information gathered, this study hold the results were : 1) air-entrained concrete was more durable than non-air entrained concrete all other factors being equal; 2) A...

  1. CEMENT BONDED COMPOSITES – A MECHANICAL REVIEW

    Directory of Open Access Journals (Sweden)

    Stephan Frybort

    2008-05-01

    Full Text Available Over the last years promising cement bonded wood composites for structural purposes have evolved. Durability, toughness, high dimen-sional stability, resistance against environmental influences such as biodegradation or weathering but also availability of the raw material as well as economic factors are features which can make cement-bonded composites superior to conventionally bonded composites. This paper reviews the relationship of diverse parameters, including density and particle size on mechanical and physical properties of cement bonded composites, based on published sources from the last 60 years. For general and recent information about bonding mechanisms, compatibility and setting problems, determination and improvement of compatibility, the used raw materials as well as accelerators are discussed. The main part deals with failure mechanisms in connection with several production parameters. Furthermore, the influence of particle size and geometry, orientation of the particles, cement-wood ratio and the effect of accelerators and treatment of the particles on modulus of elasticity, modulus of rupture as well as thickness swelling are discussed.

  2. Remediation of contaminated soil by cement treatment

    International Nuclear Information System (INIS)

    Dimovic, S.

    2004-01-01

    This manuscript presents the most applicable remedial technologies for contaminated soil with focus on cement stabilisation/solidification treatment. These technologies are examined in the light of soil contamination with depleted uranium in the large area of south Serbia,after Nato bombing 1999. (author) [sr

  3. European cement conference and exhibition. Proceedings volume

    Energy Technology Data Exchange (ETDEWEB)

    McCaffrey, R. (ed.)

    2004-07-01

    Topics covered various aspects of the European cement industry including trends, market, emissions trading, environment, state-of-the-art technology, kilns and dedusting solutions. Two papers have been abstracted separately. A CD-ROM of the conference papers, including additional papers not in the printed volume, is also available.

  4. Environmental interactions of cement-based products

    NARCIS (Netherlands)

    Florea, M.V.A.; Schmidt, W.; Msinjili, N.S.

    2016-01-01

    The environmental interactions of concrete and other cement-based products encompasses both the influence of such materials on their environment, as well as the effects of the environment on the materials in time. There are a number of ways in which the environmental impact of concrete can be

  5. Peat Soil Stabilization using Lime and Cement

    Science.gov (United States)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  6. The AFm phase in Portland cement

    International Nuclear Information System (INIS)

    Matschei, T.; Lothenbach, B.; Glasser, F.P.

    2007-01-01

    The AFm phase of Portland cements refers to a family of hydrated calcium aluminates based on the hydrocalumite-like structure of 4CaO.Al 2 O 3 .13-19 H 2 O. However OH - may be replaced by SO 4 2- and CO 3 2- . Except for limited replacement (50 mol%, maximum) of sulfate by hydroxide, these compositions do not form solid solutions and, from the mineralogical standpoint, behave as separate phases. Therefore many hydrated cements will contain mixtures of AFm phases. AFm phases have been made from precursors and experimentally-determined phase relationships are depicted at 25 deg. C. Solubility data are reported and thermodynamic data are derived. The 25 deg. C stability of AFm phases is much affected by the nature of the anion: carbonate stabilises AFm and displaces OH and SO 4 at species activities commonly encountered in cement systems. However in the presence of portlandite, and as carbonate displaces sulfate in AFm, the reaction results in changes in the amount of both portlandite and ettringite: specimen calculations are presented to quantify these changes. The scheme of phase balances enables calculation of the mineralogical balances of a hydrated cement paste with greater accuracy than hitherto practicable

  7. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  8. Experimental study of cement grout : Rheological behavior and sedimentation

    OpenAIRE

    ROSQUOET, F; ALEXIS, A; KHELIDJ, A; PHELIPOT, A

    2003-01-01

    Three basic elements (cement, water and admixture) usually make up injectable cement grouts used for prestressed cable coating, repair and consolidation of masonry, soil grouting, etc. The present study was divided into two parts. First, in order to characterize rheologically fresh cement paste with water/cement ratios (W/C) varying between 0,35 and 1, an expeirmental study was carried out and has revealed that the cement past behaves like a shear-thinning material, whatever is the W/C ratio....

  9. Absorption Characteristics of Cement Combination Concrete Containing Portland Cement, fly ash, and Metakaolin

    Directory of Open Access Journals (Sweden)

    Folagbade S.O.

    2016-03-01

    Full Text Available The resistance to water penetration of cement combination concretes containing Portland cement (PC, fly ash (FA, and metakaolin (MK have been investigated at different water/cement (w/c ratios, 28-day strengths, and depths of water penetration using their material costs and embodied carbon-dioxide (eCO2 contents. Results revealed that, at equal w/c ratio, eCO2 content reduced with increasing content of FA and MK. MK contributed to the 28-day strengths more than FA. Compared with PC, FA reduced cost and increased the depth of water penetration, MK increased cost and reduced the depth of water penetration, and their ternary combinations become beneficial. At equal strengths and levels of resistance to water penetration, most of the cement combination concretes are more environmentally compatible and costlier than PC concrete. Only MK binary cement concretes with 10%MK content or more and ternary cement concretes at a total replacement level of 55% with 10%MK content or more have higher resistance to water penetration than PC concrete.

  10. Portland cement hydration and early setting of cement stone intended for efficient paving materials

    Science.gov (United States)

    Grishina, A.

    2017-10-01

    Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.

  11. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    Science.gov (United States)

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  12. Effects of Coal Gangue on Cement Grouting Material Properties

    Science.gov (United States)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  13. Assessment of cement durability in repository environment

    International Nuclear Information System (INIS)

    Ferreira, E.G.A.; Vicente, R.; Isiko, V.L.K.; Miyamoto, H.; Marumo, J.T.; Gobbo, L.A.

    2015-01-01

    The present research aimed at investigating the durability of cement paste under nuclear waste repository conditions using accelerated tests. Cement paste samples are examined after being exposed to the environmental conditions that are expected to prevail in the repository environment and the results are compared with those obtained with unexposed specimens or specimens exposed to reference conditions. The following exposure conditions were selected: a) Immersion in salt solution, distilled water, or kept in dry storage; b) Room temperature (20 C. degrees) or high temperature (60 C. degrees); c) Immersion time of 30 days or 60 days (not for dry storage); d) Irradiation to a dose of (400 kGy) or background radiation (0 kGy). After exposure to the stressing conditions, the effects of each factor on the cement paste samples were observed by changes in their characteristics. Compressive strength tests were performed on all samples and some of them were investigated in terms of changes in mineralogy by X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). With the results obtained so far it was possible to point out the following conclusions. First, after a period of immersion in water, cement paste samples further hydrated and presented higher mechanical resistance, as expected. Secondly, dry storage did not allow a complete hydration as a consequence of pore water evaporation. High temperatures intensified this process and led to the ettringite decomposition to meta-ettringite. Thirdly, higher temperature accelerated hydration kinetics and promoted higher mechanical resistance in samples kept under immersion. Fourthly, the irradiation dose applied was unable to change the mineralogy of cement paste samples and fifthly, no statistically significant differences were observed between 30 or 60 days exposure time, for the test conditions

  14. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  15. Cementation and solidification of Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Phillips, J.A.; Semones, G.B.

    1994-01-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes

  16. Leaching behaviour of tritium from a hardened cement paste

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Moriyama, N.; Ito, A.

    1979-01-01

    Leaching of tritium from a hardened cement paste into an aqueous phase has been studied to assess the safety of solidification of the tritiated liquid waste with cement. Leaching tests were carried out in accordance with the method recommended by the International Atomic Energy Agency. The leaching fraction was measured as functions of the waste-cement wt ratio (Wa/C), temperature of leachant and curing time. the tritium leachability of cements follows the order: alumina cement > Portland cement > slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than the synthetic sea water. The coating of the specimen surface with bitumen reduces the leachability to about 5% of its value for the specimen without coating. (author)

  17. Studies of the setting behavior of cement suspensions

    International Nuclear Information System (INIS)

    Rudolph, G.; Luo, S.; Vejmelka, P.; Koester, R.

    1983-10-01

    The design of process for cementation of radioactive waste solutions is determined not only by the quality of the final product but also by the behavior of the cement grout before and during setting. For these reasons quantitative investigations were performed on the characteristics of the cement suspensions considered for solidification of intermediate-level liquid wastes which are composed mainly of cement, bentonite, simulated waste solution, and water. Particular interest was given to the differences in behavior of the various types of cement. The parameters investigated include viscosity, bleeding, volume change during setting, influence of compacting by vibration, time of setting, heat of hydration. At the end of the report the merits and drawbacks of the different cements are tabulated. These data may serve as a decision aid in selecting an appropriate type of cement

  18. Mechanical Properties and Decay Resistance of Hornbeam Cement Bonded Particleboards

    Directory of Open Access Journals (Sweden)

    Antonios N. Papadopoulos

    2008-01-01

    Full Text Available Cement bonded particleboards were manufactured from hornbeam (Carpinus betulus L. wood particles. Hydration tests were carried out to determine the inhibitory index in order to characterise wood-cement compatibility. The results revealed that the mixture of hornbeam-cement can be classified as moderate inhibition. Two wood: cement ratios were applied in this study, namely, 1 : 3 and 1 : 4, for the board manufacture. It was found that an increase of cement-wood ratio resulted in an improvement in all properties examined, except MOR. All properties of the boards made from 1 : 4 wood: cement ratio surpassed the minimum requirements set forth by the building type HZ code. Boards were exposed to brown and white rot fungi, Coniophora puteana, and Trametes versicolor, respectively. Overall, both fungi failed to attack the cement-bonded boards.

  19. Studies on diffusion of 137Cs in cement mortar

    International Nuclear Information System (INIS)

    Takebe, Shinichi; Shimooka, Kenji; Wadachi, Yoshiki; Kuramoto, Yuzuru.

    1989-12-01

    Penetration experiment of 137 Cs into the impermeable cement mortar which has been treated by the impermeable reagent (XYPEX reagent) was carried out in order to advance the performance of engineered barrier for Low Level Radioactive Waste. The result showed that the radioactive concentration at deeper region in the impermeable cement mortar specimen was decreased about 1 order of magnitude below that in the untreated specimen. Diffusion coefficient calculated from the radioactive concentration of 137 Cs in the cement mortar specimen was 9.1 x 10 -5 cm 2 /day for untreated cement mortar specimen and 4.0 x 10 -5 cm 2 /day for the impermeable cement mortar specimen, respectively. Treatment of cement mortar by the impermeable reagent was found to be effective to reduce the value of appearent diffusion coefficient for 137 Cs in the cement mortar. (author)

  20. Plasma expansion: fundamentals and applications

    International Nuclear Information System (INIS)

    Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C

    2002-01-01

    The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures

  1. The effects of cement-based and cement-ash-based mortar slabs on indoor air quality

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Wargocki, Pawel

    2018-01-01

    The effects of emissions from cement-based and cement-ash-based mortar slabs were studied. In the latter, 30% of the cement content had been replaced by sewage sludge ash. They were tested singly and together with either carpet or linoleum. The air exhausted from the chambers was assessed by means...... of odour intensity and chemical characterization of emissions. Odour intensity increased with the increased exposed area of the slabs. It did not differ significantly between cement-based or cement-ash-based mortar and neither did the chemical composition of the exhaust air. A significant sink effect...

  2. The influence of clay drilling grout on the quality of well cementation

    Energy Technology Data Exchange (ETDEWEB)

    Romic, L; Martinko, B

    1979-01-01

    The influence of clay drilling grout on the behavior of the cement mixture during the cementing of casings is described. Experimental results are given which demonstrate that clay drill grout slows down the setting of the cement mixture, lowers the durability of cement stone and its adherence to the well's walls, and changes the rheological properties and viscosity of the cement mixture. Separating devices, which prevent the mixing of the clay drilling grout and the cement solutions during the cementation process, are recommended.

  3. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements

    International Nuclear Information System (INIS)

    Schmidt, Thomas; Lothenbach, Barbara; Romer, Michael; Neuenschwander, Juerg; Scrivener, Karen

    2009-01-01

    The consequences of external sulfate attack were investigated by traditional test methods, i.e. length and mass change, as well as by a newly developed, surface sensitive ultrasonic method, using Leaky Rayleigh waves (1 MHz). The macroscopic changes are discussed and compared with thermodynamic calculations and microstructural findings (SEM/EDS). The results show that the main impact of limestone additions on resistance to sulfate degradation are physical - i.e. addition of a few percent in Portland cement reduces the porosity and increases the resistance of Portland cement systems to sulfate; but higher addition of 25% increase porosity and lower resistance to sulfate. The kinetics of degradation were dramatically affected by the solution concentration (4 or 44 g Na 2 SO 4 /l) and the higher concentration also resulted in the formation of gypsum, which did not occur at the low concentration. However the pattern of cracking was similar in both cases and it appears that gypsum precipitates opportunistically in pre-formed cracks so it is not considered as making a significant contribution to the degradation. At 8 deg. C limited formation of thaumasite occurred in the surface region of the samples made from cement with limestone additions. This thaumasite formation led to loss of cohesion of the paste and loss of material from the surface of the samples. However thaumasite formation was always preceded by expansion and cracking of the samples due to ettringite formation and given the very slow kinetics of thaumasite formation it was probably facilitated by the opening up of the structure due to ettringite induced cracking. The expansion of the samples showed a steady stage, followed by a rapidly accelerating stage, with destruction of the samples. The onset of the rapidly accelerating stage occurred when the thickness of the cracked surface layer reached about 1-1.5 mm-10-15% of the total specimen thickness (10 mm).

  4. Evaluation of stainless steel crowns cemented with glass-ionomer and resin-modified glass-ionomer luting cements.

    Science.gov (United States)

    Yilmaz, Yucel; Simsek, Sera; Dalmis, Anya; Gurbuz, Taskin; Kocogullari, M Elcin

    2006-04-01

    To evaluate in vitro and in vivo conditions of stainless steel crowns (SSC) cemented using one luting glass-ionomer cement (Aqua Meron) and one luting resin-modified glass-ionomer cement (Vitremer). In the in vitro part of this study, retentive properties of SSCs cemented using Aqua Meron and Vitremer on extracted primary first molars were tested. In addition, two specimens of each group were used to evaluate the tooth hard tissue-cement, within the cement itself, cement-SSC, and tooth hard tissue-cement-SSC under scanning electron microscope (SEM). In the in vivo part of this study, 152 SSCs were placed on the first or second primary molars of 86 children, and cemented using either Aqua Meron or Vitremer. The crowns were examined for retention. In addition, the clinical views of the crowns were recorded with an intraoral camera. No significant difference was found between the mean retentive forces of Aqua Meron and Vitremer (P> 0.05). SSCs cemented with Aqua Meron and Vitremer had an average lifespan of 26.44 and 24.07 months respectively. Only one (0.66%) of 152 SSCs was lost from the Aqua Meron group during post-cementation periods. Nineteen of the 152 SSCs (12.5%) had dents or perforations.

  5. Examination of the jarosite-alunite precipitate addition in the raw meal for the production of sulfoaluminate cement clinker.

    Science.gov (United States)

    Katsioti, M; Tsakiridis, P E; Leonardou-Agatzini, S; Oustadakis, P

    2006-04-17

    The aim of the present research work was to investigate the possibility of adding a jarosite-alunite chemical precipitate, a waste product of a new hydrometallurgical process developed to treat economically low-grade nickel oxides ores, in the raw meal for the production of sulfoaluminate cement clinker. For that reason, two samples of raw meals were prepared, one contained 20% gypsum, as a reference sample ((SAC)Ref) and another with 11.31% jarosite-alunite precipitate ((SAC)J/A). Both raw meals were sintered at 1300 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the jarosite-alunite precipitate did not affect the mineralogical characteristics of the so produced sulfoaluminate cement clinker and there was confirmed the formation of the sulfoaluminate phase (C4A3S), the most typical phase of this cement type. Furthermore, both clinkers were tested by determining the grindability, setting time, compressive strength and expansibility. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of jarosite-alunite precipitate did not negatively affect the quality of the produced cement.

  6. Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Patterson, Amanda; Schäfer, Oliver

    2017-09-27

    A composite resin cement and matching self-etch adhesive was developed to simplify the dependable retention of lithium disilicate crowns. The efficacy of this new system is unknown. The purpose of this in vitro study was to determine whether lithium disilicate crowns cemented with a new composite resin and adhesive system and 2 other popular systems provide clinically acceptable crown retention after long-term aging with monthly thermocycling. Extracted human molars were prepared with a flat occlusal surface, 20-degree convergence, and 4 mm axial length. The axio-occlusal line angle was slightly rounded. The preparation surface area was determined by optical scanning and the analysis of the standard tessellation language (STL) files. The specimens were distributed into 3 cement groups (n=12) to obtain equal mean surface areas. Lithium disilicate crowns (IPS e.max Press) were fabricated for each preparation, etched with 9.5% hydrofluoric acid for 15 seconds, and cleaned. Cement systems were RelyX Ultimate with Scotch Bond Universal (3M Dental Products); Monobond S, Multilink Automix with Multilink Primer A and B (Ivoclar Vivadent AG); and NX3 Nexus with OptiBond XTR (Kerr Corp). Each adhesive provided self-etching of the dentin. Before cementation, the prepared specimens were stored in 35°C water. A force of 196 N was used to cement the crowns, and the specimens were polymerized in a 35°C oven at 100% humidity. After 24 hours of storage at 100% humidity, the cemented crowns were thermocycled (5°C to 55°C) for 5000 cycles each month for 6 months. The crowns were removed axially at 0.5 mm/min. The removal force was recorded and the dislodgement stress calculated using the preparation surface area. The type of cement failure was recorded, and the data were analyzed by 1-way ANOVA and the chi-square test (α=.05) after the equality of variances had been assessed with the Levene test. The Levene test was nonsignificant (P=.936). The ANOVA revealed the mean removal

  7. Warp drive with zero expansion

    Energy Technology Data Exchange (ETDEWEB)

    Natario, Jose [Department of Mathematics, Instituto Superior Tecnico (Portugal)

    2002-03-21

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.

  8. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  9. Estimates of expansion time scales

    International Nuclear Information System (INIS)

    Jones, E.M.

    1979-01-01

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure

  10. Strategic Complexity and Global Expansion

    DEFF Research Database (Denmark)

    Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina

    2012-01-01

    The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....

  11. Range expansion of heterogeneous populations.

    Science.gov (United States)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  12. Salt Attack on Rocks and Expansion of Soils on Mars

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.

    2004-12-01

    Salt-rich sediments observed by the MER rover Opportunity at Meridiani Planum show that brines have been present on Mars in the past, but a role for groundwater in widespread rock weathering and soil formation is uncertain. Experiments by several groups suggest instead the action of acid fog over long time spans, with episodic input of volcanic gases, as a more significant agent of Mars weathering. Salt minerals formed in these acid weathering experiments consistently include gypsum and alunogen, with epsomite or hexahydrite forming where olivine provides a source of Mg. Analogous to the martian acid fog scenario are terrestrial acid rain or acid fog attacks on building and monument stone by chemical action and mechanical wedging through growth of gypsum, anhydrite, epsomite, hexahydrite, kieserite, and other sulfate minerals. Physical effects can be aggressive, operating by both primary salt growth and hydration of anhydrous or less-hydrous primary salts. In contrast, soils evolve to states where chemical attack is lessened and salt mineral growth leads to expansion with cementation; in this situation the process becomes constructive rather than destructive. We have made synthetic salt-cemented soils (duricrusts) from clays, zeolites, palagonites and other media mixed with ultrapure Mg-sulfate solutions. Although near-neutral in pH, these solutions still exchange or leach Ca from the solids to form cements containing gypsum as well as hexahydrite. At low total P (1 torr) and low RH (duricrust expands by formation of a complex mixture of Mg-sulfate phases with various hydration states. The expanded form is retained even if the duricrust is again dehydrated, suggesting that soil porosity thus formed is difficult to destroy. These processes can be considered in the context of Viking, Pathfinder, and MER evidence for differing salt components in the weathered surfaces of rocks versus duricrust-like materials in soils. The divergent chemical trends indicate that soil

  13. Composite cements benefit from light-curing.

    Science.gov (United States)

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To investigate the effect of curing of composite cements and a new ceramic silanization pre-treatment on the micro-tensile bond strength (μTBS). Feldspathic ceramic blocks were luted onto dentin using either Optibond XTR/Nexus 3 (XTR/NX3; Kerr), the silane-incorporated 'universal' adhesive Scotchbond Universal/RelyX Ultimate (SBU/RXU; 3M ESPE), or ED Primer II/Panavia F2.0 (ED/PAF; Kuraray Noritake). Besides 'composite cement', experimental variables were 'curing mode' ('AA': complete auto-cure at 21°C; 'AA*': complete auto-cure at 37°C; 'LA': light-curing of adhesive and auto-cure of cement; 'LL': complete light-curing) and 'ceramic surface pre-treatment' ('HF/S/HB': hydrofluoric acid ('HF': IPS Ceramic Etching Gel, Ivoclar-Vivadent), silanization ('S': Monobond Plus, Ivoclar-Vivadent) and application of an adhesive resin ('HB': Heliobond, Ivoclar-Vivadent); 'HF/SBU': 'HF' and application of the 'universal' adhesive Scotchbond Universal ('SBU'; 3M ESPE, only for SBU/RXU)). After water storage (7 days at 37°C), ceramic-dentin sticks were subjected to μTBS testing. Regarding the 'composite cement', the significantly lowest μTBSs were measured for ED/PAF. Regarding 'curing mode', the significantly highest μTBS was recorded when at least the adhesive was light-cured ('LA' and 'LL'). Complete auto-cure ('AA') revealed the significantly lowest μTBS. The higher auto-curing temperature ('AA*') increased the μTBS only for ED/PAF. Regarding 'ceramic surface pre-treatment', only for 'LA' the μTBS was significantly higher for 'HF/S/HB' than for 'HF/SBU'. Complete auto-cure led to inferior μTBS than when either the adhesive (on dentin) or both adhesive and composite cement were light-cured. The use of a silane-incorporated adhesive did not decrease luting effectiveness when also the composite cement was light-cured. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Personal exposure to inhalable cement dust among construction workers

    International Nuclear Information System (INIS)

    Peters, Susan; Kromhout, Hans; Thomassen, Yngvar; Fechter-Rink, Edeltraud

    2009-01-01

    A case study was carried out in 2006-2007 to assess the actual cement dust exposure among construction workers involved in a full-scale construction project and as a comparison among workers involved in various stages of cement and concrete production. Full-shift personal exposure measurements were performed for several job types. Inhalable dust and cement dust (based on analysis of elemental calcium) concentrations were determined. Inhalable dust exposures at the construction site ranged from 0.05 to 34 mg/m3, with a mean concentration of 1.0 mg/m3. For inhalable cement dust mean exposure was 0.3 mg/m3 (range 0.02-17 mg/m3). Reinforcement and pouring workers had the lowest average concentrations. Inhalable dust levels in the ready-mix and pre-cast concrete plants were, on average, below 0.5 mg/m3 for inhalable dust and below 0.2 mg/m3 for inhalable cement dust. Highest dust concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM=55 mg/m3; inhalable cement dust GM=33 mg/m3) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages of cement during reinforcement work and pouring.

  15. The contemporary cement cycle of the United States

    Science.gov (United States)

    Kapur, A.; Van Oss, H. G.; Keoleian, G.; Kesler, S.E.; Kendall, A.

    2009-01-01

    A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000-2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement. ?? 2009 Springer Japan.

  16. Laboratory Electrical Resistivity Studies on Cement Stabilized Soil

    Science.gov (United States)

    Lokesh, K. N.; Jacob, Jinu Mary

    2017-01-01

    Electrical resistivity measurement of freshly prepared uncured and cured soil-cement materials is done and the correlations between the factors controlling the performance of soil-cement and electrical resistivity are discussed in this paper. Conventional quality control of soil-cement quite often involves wastage of a lot of material, if it does not meet the strength criteria. In this study, it is observed that, in soil-cement, resistivity follows a similar trend as unconfined compressive strength, with increase in cement content and time of curing. Quantitative relations developed for predicting 7-day strength of soil-cement mix, using resistivity of the soil-cement samples at freshly prepared state, after 1-hour curing help to decide whether the soil-cement mix meets the desired strength and performance criteria. This offers the option of the soil-cement mix to be upgraded (possibly with additional cement) in its fresh state itself, if it does not fulfil the performance criteria, rather than wasting the material after hardening. PMID:28540364

  17. Alkali-slag cements for the immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Shi, C.; Day, R.L.

    1996-01-01

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH) 2 , Al (OH) 3 and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs + from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes

  18. Development of fluorapatite cement for dental enamel defects repair.

    Science.gov (United States)

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  19. VUJE experience with cementation of liquid and wet radioactive waste

    International Nuclear Information System (INIS)

    Kravarik, Kamil; Holicka, Zuzana; Pekar, Anton; Zatkulak, Milan

    2011-01-01

    Liquid and wet LLW generated during operation as well as decommissioning of NPPs is treated with different methods and fixed in a suitable fixation matrix so that a final product meets required criteria for its disposal in a final repository. Cementation is an important process used for fixation of liquid and wet radioactive waste such as concentrate, spent resins and sludge. Active cement grout is also used for fixation of low level solid radioactive waste loaded in final packing containers. VUJE Inc. has been engaged in research of cementation for long. The laboratory for analyzing radioactive waste properties, prescription of cementation formulation and estimation of final cement product properties has been established. Experimental, semi-production cementation plant has been built to optimize operation parameters of cementation. VUJE experience with cementation of liquid and wet LLW is described in the presented paper. VUJE has assisted in commissioning of Jaslovske Bohunice Treatment Centre. Cement formulations for treatment of concentrate, spent resins and sludge have been developed. Research studies on the stability of a final concrete packaging container for disposal in repository have been performed. Gained experience has been further utilized for design and manufacture of several cementation plants for treatment of various liquid and wet LLW. Their main technological and technical parameters as well as characterization of treated waste are described in the paper. Applications include the Mochovce Final Treatment Centre, Movable Cementation Facility utilizing in-drum mixing for treatment of sludge, Cementation Facility for treatment of tritiated water in Latvia and Cementation Facility for fixation of liquid and solid institutional radioactive waste in Bulgaria, which utilizes lost stirrer mixer. (author)

  20. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.

    Science.gov (United States)

    Moon, Deok Hyun; Grubb, Dennis G; Reilly, Trevor L

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO(3)(2-)) and selenate (SeO(4)(2-)). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO(3).H(2)O) and selenate substituted ettringite (Ca(6)Al(2)(SeO(4))(3)(OH)(12).26H(2)O), respectively.

  1. Stabilization of marly soils with portland cement

    Science.gov (United States)

    Piskunov, Maksim; Karzin, Evgeny; Lukina, Valentina; Lukinov, Vitaly; Kholkin, Anatolii

    2017-10-01

    Stabilization of marlous soils with Portland cement will increase the service life of motor roads in areas where marl is used as a local road construction material. The result of the conducted research is the conclusion about the principal possibility of stabilization of marlous soils with Portland cement, and about the optimal percentage of the mineral part and the binding agent. When planning the experiment, a simplex-lattice plan was implemented, which makes it possible to obtain a mathematical model for changing the properties of a material in the form of polynomials of incomplete third order. Brands were determined for compressive strength according to GOST 23558-94 and variants of stabilized soils were proposed for road construction.

  2. High temperature cement raw meal flowability

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Dam-Johansen, Kim

    2014-01-01

    The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated by incre......The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated...

  3. DESIGN OF CEMENT COMPOSITES WITH INCREASED IMPERMEABILITY

    Directory of Open Access Journals (Sweden)

    Fedyuk Roman Sergeevich

    2016-05-01

    Full Text Available The paper deals with the development of composite binders for producing concrete with improved characteristics of gas, water and vapor permeability. The authors investigate the processes of composite materials formation in order of decreasing scale levels from macro to nanostructures. The criteria for optimization of the volume of dispersed additives in concrete are offered. The authors theoretically studied the technological features of the formation of hydrated cement stone structure. A positive effect of nanodispersed additives on the structure and physico-mechanical properties of cement composite materials are predicted. Thanks to its improved features, such as good ratio of strength and body density, high density and lifetime, the modified concrete may be used when solving various practical tasks of the construction branch.

  4. Radiopacity of dental restorative materials and cements

    International Nuclear Information System (INIS)

    Kang, Byung Chul; Yang, Hong So; Chung, Hyun Ju; Oh, Won Mann

    1994-01-01

    The radiopacity of six composite resins, three resin luting cements and ten filling materials were studied. The purpose was to obtain an indication of radiopacity value of different brands within each of these groups of materials and to show differences in radiopacities of filling materials and natural tooth structures. On radiographs, the optimal densities of standardized samples were determined by computer imaging system and radiopacity values of the materials were expressed in millimeter equivalent aluminum. Within to groups of materials studied, there was considerable variation in radiopacity. The composite resins of P-50, Zl00 and prisma AP. H displayed much higher radiopacities than aluminum. Panavia resin cement was shown to be similarly radiopaque to aluminum. Generally, the radiopacity of base and filling materials appeared to combined applications for restorative treatment of teeth, lower radiopacity can interfere with the diagnosis and detection of gaps near the restoration.

  5. Exploratory characterization of volcanic ash sourced from Uganda as a pozzolanic material in portland cement concrete

    NARCIS (Netherlands)

    Buregyeya, A.; Quercia Bianchi, G.; Spiesz, P.R.; Florea, M.V.A.; Nassingwa, R.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    The need for alternative cementing materials to ordinary Portland cement (OPC) has promoted characterization research on pozzolana as an important ingredient in cement production. In Uganda, natural pozzolana application in cement production is done by only two producers of Portland cement and at a

  6. 40 CFR 427.20 - Applicability; description of the asbestos-cement sheet subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos-cement sheet subcategory. 427.20 Section 427.20 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos-Cement Sheet Subcategory § 427.20 Applicability; description of the asbestos-cement sheet... asbestos, Portland cement, silica, and other ingredients are used in the manufacturing of asbestos-cement...

  7. 40 CFR 427.10 - Applicability; description of the asbestos-cement pipe subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos-cement pipe subcategory. 427.10 Section 427.10 Protection of Environment ENVIRONMENTAL PROTECTION... Asbestos-Cement Pipe Subcategory § 427.10 Applicability; description of the asbestos-cement pipe... asbestos. Portland cement, silica and other ingredients are used in the manufacturing of asbestos-cement...

  8. 76 FR 28318 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-05-17

    ... Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants AGENCY... Emission Standards for Hazardous Air Pollutants from the Portland Cement Manufacturing Industry Response to... by the Portland Cement Industry and the New Source Performance Standards for Portland Cement Plants...

  9. 76 FR 2832 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-01-18

    ... Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants AGENCY...) from the Portland Cement Manufacturing Industry and Standards of Performance (NSPS) for Portland Cement... Standards for Hazardous Air Pollutant From the Portland Cement Manufacturing Industry Docket, Docket ID No...

  10. A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength

    Science.gov (United States)

    Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin

    2017-12-01

    The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.

  11. Cementation Analysis by Eddy Current Method

    OpenAIRE

    M. Zergoug; H. Oubouchou; N. Amimeur

    2009-01-01

    Increase the hardness, the endurance and the life time of material can be realised by surface treatments and remetallings, the electromagnetic properties of steels depend on their composition, their microstructures and constraints applied. We can use the electric and magnetic parameters to evaluate their microstructure. The object of this work is the characterization of cementation by the non-destructive methods and the determination of physicochemical parameters. Samples of low carbon tenor ...

  12. Estimating the chloride transport in cement paste

    Directory of Open Access Journals (Sweden)

    Princigallo, A.

    2012-06-01

    Full Text Available A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method proved to be useful for exploring cement hydration-induced changes in the diffusion coefficient of cement paste.

    Se ha desarrollado un método para medir el coeficiente de difusión de los iones cloruro en la pasta de cemento, partiendo de una aplicación analítica de la segunda ley de Fick en un sistema de coordinadas cilíndrico. Este método, que es natural, demostró ser capaz de producir resultados de difusividad en tan solo un mes. Se consiguió reducir el tiempo de ensayo mediante el aprovechamiento de la tridimensionalidad del flujo desde el exterior al interior de la probeta. A fin de determinar la concentración de saturación, se sometieron las pastas de cemento Portland a una disolución de cloruros concentrada. Este método resultó ser útil en el estudio de los cambios del coeficiente de difusión de la pasta de cemento provocados por las reacciones de hidratación que tienen lugar en esta.

  13. Preparation of cement from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    1922-08-24

    A process for preparing cement from oil shale is described. The simultaneous recovery of shale oil by heating the oil shale formed into briquets with finely ground lime or limestone in a stream of hot gases is characterized by the fact that live steam or fine drops of water as preserving and carbonization means is introduced into the furnace, at the place, where the temperature of the briquet reaches about 500 to 600/sup 0/ C.

  14. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2017-01-01

    Full Text Available We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite materials because they are protected from moisture by the wall material. Therefore, the untreated cement is present in the form of a capsule within the cement composite, and hydration can be induced by moisture penetrating the crack surface in the event of cracking. In the process of granulating the cement, it is important to obtain a suitable consistency through the kneading agent and to maintain the moisture barrier performance of the wall material. We can utilize the results of this study as a basis for advanced self-healing capsule technology for cement composites.

  15. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  16. Retention of metal-ceramic crowns with contemporary dental cements.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Zhang, Hai; Wataha, John C

    2009-09-01

    New types of crown and bridge cement are in use by practitioners, and independent studies are needed to assess their effectiveness. The authors conducted a study in three parts (study A, study B, and study C) and to determine how well these new cements retain metal-ceramic crowns. The authors prepared teeth with a 20-degree taper and a 4-millimeter length. They cast high-noble metal-ceramic copings, then fitted and cemented them with a force of 196 newtons. The types of cements they used were zinc phosphate, resin-modified glass ionomer, conventional resin and self-adhesive modified resin. They thermally cycled the cemented copings, then removed them. They recorded the removal force and calculated the stress of dislodgment by using the surface area of each preparation. They used a single-factor analysis of variance to analyze the data (alpha = .05). The mean stresses necessary to remove crowns, in megapascals, were 8.0 for RelyX Luting (3M ESPE, St. Paul, Minn.), 7.3 for RelyX Unicem (3M ESPE), 5.7 for Panavia F (Kuraray America, New York) and 4.0 for Fuji Plus (GC America, Alsip, Ill.) in study A; 8.1 for RelyX Luting, 2.6 for RelyX Luting Plus (3M ESPE) and 2.8 for Fuji CEM (GC America) in study B; and 4.9 for Maxcem (Kerr, Orange, Calif.), 4.0 for BisCem (Bisco, Schaumburg, Ill.), 3.7 for RelyX Unicem Clicker (3M ESPE), 2.9 for iCEM (Heraeus Kulzer, Armonk, N.Y.) and 2.3 for Fleck's Zinc Cement (Keystone Industries, Cherry Hill, N.J.) in study C. Powder-liquid versions of new cements were significantly more retentive than were paste-paste versions of the same cements. The mean value of crown removal stress for the new self-adhesive modified-resin cements varied appreciably among the four cements tested. All cements retained castings as well as or better than did zinc phosphate cement. Powder-liquid versions of cements, although less convenient to mix, may be a better clinical choice when crown retention is an issue. All cements tested will retain castings

  17. Low level radwaste packaging: why not cement

    International Nuclear Information System (INIS)

    Wilson, R.B.

    1978-01-01

    Over the past several years many words have been expended in a quest to define a variety of competing radioactive waste immobilization technologies. With the more recent recognition of the technical pitfalls of urea-formaldehyde (UF) a liquid chemical binder considered as optimum less than two years ago, utilities, architect-engineers and systems vendors find themselves in a technology void, awaiting the inevitable breakthrough which will identify the perfect immobilization agent. The culmination of these pressures has brought about the introduction of new immobilization technologies including: one which offers both volume reduction and immobilization in yet another new binder agent; the costly development of highly sophisticated volume reduction systems, the highly-concentrated products from which may pose as-yet unknown immobilization problems; and, the marketing of several new more expensive liquid chemical binders which are reputed to have eliminated the kinds of problems associated with urea-formaldehyde. This paper addresses these issues by coming full circle and arriving back at the initial approach employed for low level radwaste immobilization, the use of cement. Based on an evaluation of the three principal competing immobilization approaches, liquid chemical, bitumen and cement, the merits and drawbacks of each is examined. As will be described, an objective assessment of these competing technologies has resulted in a somewhat surprising conclusion that, while none of the approaches is without disadvantages, cement can be shown to offer the most reliable, versatile long-term solution to today's needs

  18. Tunisian gypsums: Characteristics and use in cement

    Science.gov (United States)

    Mahmoudi, Salah; Bennour, Ali; Chalwati, Youssef; Souidi, Khouloud; Thabet, Manel; Srasra, Ezzedine; Zargouni, Fouad

    2016-09-01

    Gypsum materials of hundred meters thickness and interbedded with marine claystones and limestones from different paleogeographic sectors in the Tunisian territory are studied to assess their suitability for cement production. For this reason, thirty representative samples are analysed by chemical, physical and geotechnical tests. The obtained results for the studied gypsum materials are compared to Tunisian and European norms and with the local cements, currently marketed and which obey international norms. Indeed, for all samples hydraulic modulus HM, silica modulus SM and alumina modulus AM vary from (2.37-2.44), (2.48-2.68) and (1.45-2.5), respectively; whereas the required values for these modulus are (1.5-2.5), (2-3) and (1.5-2.5). The same behavior is observed for mineralogical analyses of C3S, C2S, C3A and C4AF and compressive strength at different ages. Briefly, Tunisia contains important reserves of gypsum scattered and spread over the Tunisian territory and can be used for cement production.

  19. Application of tracer technique in cement industry

    International Nuclear Information System (INIS)

    Baran'ai, L.

    1979-01-01

    Application is stated of the radioisotope indication method in the cement industry. The method was applied in three directions. In the first direction, by means of labelling of 300 steel mill balls by cobalt-60, wear of them was examined. The degree of wear of milling balls in the process of milling was determined according to the decrease of their weight. Radioactive label served only for tracing controll balls. In the second direction, according to the natural radioactivity being presented in ashes by radioisotopes radium-226 and thorium-229, amount of ashes in the products of cement milling was determined (in the mill product, cement product, flying dust and back loading groats). In the third direction, by means of labelling of definite fractions of mille by radioisotope gold-198, optimization of technological parameters of silos were raw meal is homogenization. The following technological parameters have been established: amount of homogenized material; time of homogenization and frequency of intensity changing of supplied compressed air jet [ru

  20. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  1. Shrinkage deformation of cement foam concrete

    Science.gov (United States)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  2. Leaching tests of cemented organic radioactive waste

    International Nuclear Information System (INIS)

    Calabria, Jaqueline A. Almeida; Haucz, Maria Judite A.; Tello, Cledola Cassia O.

    2011-01-01

    The use of radioisotopes in research, medical and industrial activities generates organic liquid radioactive wastes. At Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) are produced organic liquid wastes from different sources, one of these are the solvent extraction activities, whose the waste volume is the largest one. Therefore a research was carried out to treat them. Several techniques to treat organic liquid radioactive wastes have been evaluated, among them incineration, oxidation processes, alkaline hydrolysis, distillation, absorption and cementation. Laboratory experiments were accomplished to establish the most adequate process in order to obtain qualified products for storage and disposal. Absorption followed by cementation was the procedure used in this study, i.e. absorbent substances were added to the organic liquid wastes before mixing with the cement. Initially were defined the absorbers, and evaluated the formulation in relation to the compressive strength of its products. Bentonite from different suppliers (B and G) and vermiculite in two granulometries (M - medium and F - small) were tested. In order to assess the product quality the specimens were submitted to the leaching test according the Standard ISO 6961 and its results were evaluated. Then they were compared with the values established by Standard CNEN NN 6.09 A cceptance criteria for waste products to be disposed , to verify if they meet the requirements for safely storage and disposal. Through this study the best formulations to treat the organic wastes were established. (author)

  3. On genus expansion of superpolynomials

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)

    2014-12-15

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  4. Analytic hierarchy process helps select site for limestone quarry expansion in Barbados.

    Science.gov (United States)

    Dey, Prasanta Kumar; Ramcharan, Eugene K

    2008-09-01

    Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.

  5. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Directory of Open Access Journals (Sweden)

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  6. Solidification and performance of cement doped with phenol

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Krishnan, S.

    1991-01-01

    Treating mixed hazardous wastes using the solidification/stabilization technology is becoming a critical element in waste management planning. The effect of phenol, a primary constituent in many hazardous wastes, on the setting and solidification process of Type I Portland cement was evaluated. The leachability of phenol from solidified cement matrix (TCLP test) and changes in mechanical properties were studied after curing times up to 28 days. The changes in cement hydration products due to phenol were studied using the X-ray diffraction (XRD) powder technique. Results show that phenol interferes with initial cement hydration by reducing the formation of calcium hydroxide and also reduces the compressive strength of cement. A simple model has been proposed to quantify the phenol leached from the cement matrix during the leachate test

  7. Formulating a low-alkalinity cement for radioactive waste repositories

    International Nuclear Information System (INIS)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X.

    2004-01-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  8. Possibilities of using aluminate cements in high-rise construction

    Science.gov (United States)

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  9. Formulating a low-alkalinity cement for radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X

    2004-07-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  10. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  11. Safety evaluation of the radioactive waste-cement composites, (4)

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Wadachi, Yoshiki; Ito, Akihiko

    1976-10-01

    The leaching behavior of 137 Cs has been studied to evaluate safety of sea and ground disposal of the cement composites. The rate depends on flow rate of the external solution, particle radius and composition of the cement composite. The rate-determining step of the leaching in the dynamic condition is the internal diffusion through the matrix cement composite. The rate in the static condition, on the other hand is controlled by external diffusion through the interface layer between solid and liquid. The cement composites containing mineral zeolite(25%) give very low leachability; the leaching fraction is 0.001 - 0.02 for the portland cement and 0.001 - 0.002 for the slag cement. (auth.)

  12. Settlement Control of Soft Ground using Cement-Ricehusk Stabilization

    Directory of Open Access Journals (Sweden)

    Mokhtar M.

    2012-01-01

    Full Text Available Cement is widely used for improvement of soft soils, but financial and environmental concerns are causing genuine concerns to all parties, leading to the quest for alternative and effective stabilizers. Ricehusk is an agricultural waste in Malaysia, commonly disposed of by open burning or dumping in landfills. Considering that the ashes derived from ricehusk are pozzolanic in nature, there is a possibility that a cement-ricehusk mixture could effectively improve soft soils with reduced cement dosage. This study examines the mixture’s effectiveness by monitoring the settlement reduction in a clay soil. Standard oedometer tests were carried out on a soft marine clay sample admixed with cement-ricehusk. Test specimens contained 0-10% cement and 0-5% of ricehusk respectively, and were left to cure for either seven or 28 days. The stabilized specimens were observed to undergo significant reduction in compressibility, verifying the potential of cement-ricehusk as an alternative soft soil stabilizer.

  13. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1985-06-01

    The kinetics of reaction between cement and clinoptilolite are elucidated and rate equations containing temperature dependent constants derived for this reaction. Variations in clinoptilolite particle size and their consequences to reactivity are assessed. The presence of pozzolanic agents more reactive than clinoptilolite provides sacrificial agents which are partially effective in lowering the clinoptilolite reactivity. Blast furnace slag-cements have been evaluated and the background literature summarized. Experimental studies of the pore fluid in matured slag-cements show that they provide significantly more immobilization for Cs than Portland cement. The distribution of Sr in cemented waste forms has been examined, and it is shown that most of the chemical immobilization potential in the short term is likely to be associated with the aluminate phases. The chemical and structural nature of these are described. Carbonation studies on real cements are summarized. (author)

  14. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Crawford, R.W.; McCulloch, C.E.; Angus, M.J.

    1984-01-01

    Tobermorite and xonotlite, two synthetic calcium silicate hydrates, improve the Cs retention of cement matrices for Cs, when incorporated at the 6 to 10% level. A kinetic and mechanistic scheme is presented for the reaction of fine grained, Cs-loaded clinoptilolite with cement. The Magnox waste form reacts quickly with cement, leading to an exchange of carbonate between waste form and cement components. Carbonation of cements leads to a marked improvement in their physical properties of Cs retentivity. Diffusion models are presented for cement systems whose variable parameters can readily be derived from experimental measurements. Predictions about scaled-up behaviour of large immobilized masses are applied to extrapolation of laboratory scale results to full-size masses. (author)

  15. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1984-01-01

    Model studies of the behaviour of cement systems have been advanced by considering the nature of the phases formed during hydration and deriving pH-composition models for the CaO-SiO 2 -H 2 O system. Preliminary results of Esub(h) measurements are also reported. Leach tests on Sr from cements are interpreted in terms of Sr retention mechanisms. Present results indicate that the aluminate phases in OPC contribute to the chemical retentivity. Studies on cement-clinoptilolite reactions, made using coarse grained clinoptilolite are reported: ferrierite also reacts chemically with cement. Two critical surveys are presented, together with new data: one on the potential of blended cements, the other on cement durability in CO 2 -containing environments. (author)

  16. Portland-pfa cement: a comparison between intergrinding and blending

    Energy Technology Data Exchange (ETDEWEB)

    Monk, M

    1983-09-01

    Portland-pfa cements containing 20-40% (by weight) pfa have been prepared in the laboratory both by intergrinding the ashes with clinker and by blending with cement. Cement properties have been assessed according to BS 4550 and scanning electron microscopy was used to examine the effects of grinding upon the pfa particles. The work has shown that intergrinding leads to an improvement in the water-reducing properties of coarse pfas and also in their pozzolanic activity as indicated by compressive strength development at later ages. Setting times have been found to be essentially the same for blended and interground cements, both being considerably longer than for typical ordinary Portland cements. Thus the results of this investigation indicate that, provided pfa's are chemically acceptable, they can be used for Portland-pfa cement manufacture by intergrinding irrespective of their coarseness.

  17. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  18. [Significance of bone mineral density and modern cementing technique for in vitro cement penetration in total shoulder arthroplasty].

    Science.gov (United States)

    Pape, G; Raiss, P; Kleinschmidt, K; Schuld, C; Mohr, G; Loew, M; Rickert, M

    2010-12-01

    Loosening of the glenoid component is one of the major causes of failure in total shoulder arthroplasty. Possible risk factors for loosening of cemented components include an eccentric loading, poor bone quality, inadequate cementing technique and insufficient cement penetration. The application of a modern cementing technique has become an established procedure in total hip arthroplasty. The goal of modern cementing techniques in general is to improve the cement-penetration into the cancellous bone. Modern cementing techniques include the cement vacuum-mixing technique, retrograde filling of the cement under pressurisation and the use of a pulsatile lavage system. The main purpose of this study was to analyse cement penetration into the glenoid bone by using modern cement techniques and to investigate the relationship between the bone mineral density (BMD) and the cement penetration. Furthermore we measured the temperature at the glenoid surface before and after jet-lavage of different patients during total shoulder arthroplasty. It is known that the surrounding temperature of the bone has an effect on the polymerisation of the cement. Data from this experiment provide the temperature setting for the in-vitro study. The glenoid surface temperature was measured in 10 patients with a hand-held non-contact temperature measurement device. The bone mineral density was measured by DEXA. Eight paired cadaver scapulae were allocated (n = 16). Each pair comprised two scapulae from one donor (matched-pair design). Two different glenoid components were used, one with pegs and the other with a keel. The glenoids for the in-vitro study were prepared with the bone compaction technique by the same surgeon in all cases. Pulsatile lavage was used to clean the glenoid of blood and bone fragments. Low viscosity bone cement was applied retrogradely into the glenoid by using a syringe. A constant pressure was applied with a modified force sensor impactor. Micro-computed tomography

  19. An alternative clinical approach to achieve greater anterior than posterior maxillary expansion in cleft lip and palate patients.

    Science.gov (United States)

    Oliveira, Dauro Douglas; Bartolomeo, Flávia Uchôa Costa; Cardinal, Lucas; Figueiredo, Daniel Santos Fonseca; Palomo, Juan Martin; Andrade, Ildeu

    2014-11-01

    Cleft lip and palate patients commonly present maxillary constriction, particularly in the anterior region. The aim of this case report was to describe an alternative clinical approach that used a smaller Hyrax screw unconventionally positioned to achieve greater anterior than posterior expansion in patients with complete unilateral cleft lip and palate. The idea presented here is to take advantage of a reduced dimension screw to position it anteriorly. When only anterior expansion was needed (patient 1), the appliance was soldered to the first premolar bands and associated to a transpalatal arch cemented to the first molars. However, when overall expansion was required (patient 2), the screw was positioned anteriorly, but soldered to the first molar bands. Intercanine, premolar, and first molar widths were measured on dental casts with a digital caliper. Pre-expansion and postexpansion radiographs and tomographies were also evaluated. A significant anterior expansion and no intermolar width increase were registered in the first patient. Although patient 2 also presented a greater anterior than posterior expansion, a noteworthy expansion occurred at the molar region. The alternative approach to expand the maxilla in cleft patients reported here caused greater anterior than posterior expansion when the Mini-Hyrax was associated to a transpalatal arch, and its reduced dimension also minimized discomfort and facilitated hygiene.

  20. Norm in coal, fly ash and cement

    International Nuclear Information System (INIS)

    Kant, K.; Upadhyay, S.B.; Sharma, G.S.

    2006-01-01

    Coal is technologically important materials being used for power generation and its cinder (fly ash) is used in manufacturing of bricks, sheets, cement, land filling etc. 222 Rn (radon) and its daughters are the most important radioactive and potentially hazardous elements, which are released in the environment from the naturally occurring radioactive material (NORM) present in coal, fly ash and cement. Thus it is very important to carry out radioactivity measurements in coal, fly ash and cement from the health and hygiene point of view. Samples of coal and fly ash from different thermal power stations in northern India and various fly ash using establishments and commercially available cement samples (O.P.C. and P.P.C.) were collected and analyzed for radon concentration and exhalation rates. For the measurements, alpha sensitive LR-115 type II plastic track detectors were used. The radon concentration varied from 147 Bq/m 3 to 443 Bq/m 3 , the radium concentration varied from 1.5 to 4.5 Bq/kg and radon exhalation rate varied from 11.8 mBq.kg -1 .h -1 to 35.7 mBq.kg -1 .h -1 for mass exhalation rate and from 104.5 mBq.m -2 .h -1 to 314.8 mBq.m -2 .h -1 for surface exhalation rate in coal samples. The radon concentration varied from 214 Bq/m 3 to 590 Bq/m 3 , the radium concentration varied from 1.0 to 2.7 Bq/kg and radon exhalation rate varied from 7.8 mBq.kg -1 .h -1 to 21.6 mBq.kg -1 .h -1 for mass exhalation rate and from 138 mBq m -2 h -1 to 380.6 mBq.m -2 .h -1 for surface exhalation rate in fly ash samples. The radon concentration varied from 157.62 Bq/m 3 to 1810.48 Bq/m 3 , the radium concentration varied from 0.76 Bq/kg to 8.73 Bq/kg and radon exhalation rate varied from 6.07 mBq.kg -1 .hr -1 to 69.81 mBq.kg -1 .hr -1 for mass exhalation rate and from 107.10 mBq.m -2 .hr -1 to 1230.21 mBq.m -2 .hr -1 for surface exhalation rate in different cement samples. The values were found higher in P.P.C. samples than in O.P.C. samples. (authors)

  1. [Comparative studies on fissure sealing: composite versus Cermet cement].

    Science.gov (United States)

    Hickel, R; Voss, A

    1989-06-01

    Fifty two molars sealed with either composite or Cermet cement were compared. The composite sealant was applied after enamel etching using a rubber dam. Before sealing with Cermet cement the enamel was only cleaned with pumice powder and sodium hypochlorie and the material was applied without enamel etching. After an average follow-up of 1.6 years composite sealants proved to be significantly more reliable. Cermet cement sealings showed defects more frequently.

  2. Radioactive Wastes Cementation during Decommissioning Of Salaspils Research Reactor

    International Nuclear Information System (INIS)

    Abramenkova, G.; Klavins, M.; Abramenkovs, A.

    2009-01-01

    This paper deals with information on the radioactive wastes cementation technology for decommissioning of Salaspils Research Reactor (SRR). Dismantled radioactive materials were cemented in concrete containers using tritiated water-cement mortar. The laboratory tests system was developed to meet the waste acceptance criteria for disposal of containers with cemented radioactive wastes in near-surface repository 'Radons'. The viscosity of water-cement mortar, mechanical tests of solidified mortar's samples, change of temperature of the samples during solidification time and leakage of Cs-137 and T-3 radionuclides was studied for different water-cement compositions with different additives. The pH and electro conductivity of the solutions during leakage tests were controlled. It was shown, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.62 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas and decreases mechanical stability of water-cement samples from 23 N/mm 2 to the 12 N/mm 2 . The role of additives - fly ash and Penetron admix in reduction of solidification temperature is discussed. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature from 81 deg. C up to 62 deg. C. The optimal interval of water ratio in cement mortar is discussed. Tritium and Cs-137 leakage tests show, that radionuclides release curves has a complicate structure. The possible radionuclides release mechanisms are discussed. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium leakage in water phase. Further directions of investigations are drafted. (authors)

  3. Deflection hardening of sustainable fiber–cement composites

    OpenAIRE

    Lima, P. R. L.; Santos, D. O. J.; Fontes, C. M. A.; Barros, Joaquim A. O.; Toledo Filho, R. D.

    2016-01-01

    In the present study sisal fiber–cement composites reinforced with 4% and 6% of short fibers were developed and their physical–mechanical behavior was characterized. To ensure the composite sustainability and durability, the ordinary Portland cement matrix was modified by adding fly ash and metakaolin, and the natural aggregate was substituted by 10% and 20% of recycled concrete aggregate. Flat sheets were cast in a self-compacted cement matrix and bending tests were performed ...

  4. Strength properties of sandy soil-cement admixtures

    OpenAIRE

    Sara Rios; António Joaquim Pereira Viana Da Fonseca

    2009-01-01

    This paper will focus on the sensitivity of strength and stiffness properties of silty-sands, from granitic residual soil, which can be converted to a highly improved material if stabilized with cement. The study of soil stabilization with cement demands to quantify the influence of the cement percentage, porosity and water content adopted in the admixing process for different stresses and physical states. Firstly, this influence was quantified in terms of the unconfined strength and maximum ...

  5. Behaviour of soil-cement specimens in unconfined dynamic compression

    Science.gov (United States)

    Davies, J.; Fendukly, L. M.

    1994-06-01

    The response of the cement-stabilized red marl to dynamic loading in compression has been investigated over a range of cement contents and curing times. Specimens were subjected to different stress levels below unconfined compressive strength, at a frequency of 5 Hz, and a fatigue relationship for the material was developed. The value of resilient modulus was found to be greater than the modulus of elasticity for the same cement content and curing time.

  6. Macro-defect free cements. State of art

    International Nuclear Information System (INIS)

    Holanda, J.N.F.; Povoa, G.E.A.M.; Souza, G.P.; Pinatti, D.G.

    1998-01-01

    The purpose of this work is to prevent a state of art about macro-defect-free cement pastes (MDF cement ) of high mechanical strength. This new type of cement paste is obtained through addition of a water-soluble polymer, followed by intense shear mixing and application of low compacting pressure. It is presented fundamental aspects related to the processing of this MDF paste, as well as its main properties and applications are discussed. (author)

  7. Use of antibiotic-loaded cement in total knee arthroplasty.

    OpenAIRE

    Hinarejos Gómez, Pedro Angel; Guirro Castellnou, Pau; Puig Verdié, Luís; Torres Claramunt, Raúl; Leal Blanquet, Joan; Sánchez Soler, JF.; Monllau García, Juan Carlos

    2015-01-01

    Bone cement has the capacity to release antibiotic molecules if any antibiotic is included in it, and these elution properties are improved as cement porosity is increased. In vitro studies have shown high local antibiotic concentration for many hours or few days after its use. Antibiotic loaded bone cement (ALBC) is helpful when treating an infection in total knee arthroplasty (TKA) revision surgery. The purpose of this paper was to review the evidence for the routine use of ALBC in TKA in t...

  8. Personal exposure to inhalable cement dust among construction workers.

    Science.gov (United States)

    Peters, Susan; Thomassen, Yngvar; Fechter-Rink, Edeltraud; Kromhout, Hans

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and its cement content. Exposure variability was modelled with linear mixed models.Results- Inhalable dust concentrations at the construction site ranged from 0.05 to 34 mg/m(3), with a mean of 1.0 mg/m(3). Average concentration for inhalable cement dust was 0.3 mg/m(3) (GM; range 0.02-17 mg/m(3)). Levels in the ready-mix and pre-cast concrete plants were on average 0.5 mg/m(3) (GM) for inhalable dust and 0.2 mg/m(3) (GM) for inhalable cement dust. Highest concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM = 55 mg/m(3); inhalable cement dust GM = 33 mg/m(3)) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages during reinforcement work and pouring. Most likely other sources were contributing to dust concentrations, particularly at the construction site. Within job groups, temporal variability in exposure concentrations generally outweighed differences in average concentrations between workers. 'Using a broom', 'outdoor wind speed' and 'presence of rain' were overall the most influential factors affecting inhalable (cement) dust exposure.Conclusion- Job type appeared to be the main predictor of exposure to inhalable (cement) dust at the construction site. Inhalable dust concentrations in cement production plants, especially during cleaning tasks, are usually considerably higher than at the construction site.

  9. Small angle neutron scattering from hydrated cement pastes

    International Nuclear Information System (INIS)

    Sabine, T.M.; Bertram, W.K.; Aldridge, L.P.

    1996-01-01

    Small angle neutron scattering (SANS) was used to study the microstructure of hydrating cement made with, and without silica fume. Some significant differences were found between the SANS spectra of pastes made from OPC (ordinary Portland cement) and DSP (made with silica fume and superplasticiser). The SANS spectra are interpreted in terms of scattering from simple particles. Particle growth was monitored during hydration and it was found that the growth correlated with the heat of hydration of the cement

  10. Microstructure and durability of Portland cement-carbon nanotube composites

    OpenAIRE

    MacLeod, Alastair James Neil

    2017-01-01

    The incorporation of carbon nanotubes (CNTs), fibres with diameters less than 100 nanometres that exhibit a tensile strength in excess of ten times greater than steel, into Portland cement (OPC) is a relatively novel, yet promising, development for next-generation construction materials exhibiting enhanced strength and ductility, even multifunctionality. When added to Portland cement, creating a Portland cement-CNT nanocomposite material (OPC-CNT), CNTs promote the nucleation of the princi...

  11. A positron annihilation study on the hydration of cement pastes

    International Nuclear Information System (INIS)

    Consolati, G.; Quasso, F.

    2007-01-01

    Positron annihilation lifetime spectroscopy experiments were carried out in various ordinary Portland cement pastes, in an attempt to monitor the porosity of the pastes. It is found that positronium intensity is well correlated to the time evolution of the total porosity and it is influenced by the water-to-cement ratio. This parameter is also sensitive to the delayed hydration process induced by adding methanol to the water-cement mixture

  12. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  13. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  14. Regulation of gas infrastructure expansion

    International Nuclear Information System (INIS)

    De Joode, J.

    2012-01-01

    The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities - such as gas storage facilities, LNG import terminals and certain gas transmission pipelines - need to be regulated, as there may be scope for competition. In practice, the choice of regulation of gas infrastructure expansion varies among different types of gas infrastructure facilities and across EU Member States. Based on a review of economic literature and on a series of in-depth case studies, this study explains these differences in choices of regulation from differences in policy objectives, differences in local circumstances and differences in the intrinsic characteristics of the infrastructure projects. An important conclusion is that there is potential for a larger role for competition in gas infrastructure expansion.

  15. Applicability of low alkalinity cement for construction and alteration of bentonite in the cement

    International Nuclear Information System (INIS)

    Iriya, K.; Fujii, K.; Kubo, H.; Uegaki, Y.

    2002-02-01

    A concept of radioactive waste repository in which both bentonite and cementitious materials exist in deep cavern as engineered barriers is proposed. It is pointed out that pore water of cement is approximately 12.0 to 13.0 of pH and that it maintains for a long period. Therefore alteration of bentonite and rocks should be studied. Mixing test upon some interaction between modeled cement water and bentonite and rocks have been carried out since 1995 as a part of TRU repository's study. And low alkalinity of cement has been studied as parallel to study on alteration of bentonite. HFSC which has high fly ash content and which shows approximately 10.5 to 11.0 of pH of pore water was developed. Cementitious materials are generally use as a combination with steel, since its tensile strength is low. The corrosion of steel in concrete becomes a big problem in case of decreasing pH of cement. There is little available reference, since low alkalinity cement is quite new and special ordered one. Accelerating test for corrosion in low alkalinity concrete were carried out in order to collect data of corrosion. Although alteration of bentonite by several types of modeled cement water was tested. Long term test by actual cement pore water has not carried out. The alteration in 360 days was investigated. Conclusion obtained in this study is following. Corrosion of steel (re-bar) 1) Re-bar in HFSC with 60% of W/C is significantly corroded. The corrosion rate is bigger than the rate of ordinary used cement. 2) Diffusivity of Cl - ion in HFSC is similar to it in OPC comparing by the same water powder ratio. 3) Corrosion rate of HFSC 30 is similar to OPC60. However corrosion is progressed in HFSC 30 without Cl - ion due to lower alkalinity, but it isn't done in OPC within a certain amount of Cl - ion. Alteration of bentonite and rocks 1) Although no secondary minerals was observed in HFSC, monmorironite is gradually lost by increasing calcite. 2) Secondary minerals were observed in

  16. Influence of relationship water/cement upon the processing of cements with pozzolana in standard mortar

    Directory of Open Access Journals (Sweden)

    Gener Rizo, M.

    2002-03-01

    Full Text Available The processing of standard mortar is completed following different methods in accordance with the country, but they exist two fundamental tendecies, the ISO and the ASTM. The cuban norm for mechanic-physic tests is based in ISO, and so they use a constant relationship water/cement in the processing of standard mortar a great problem concerning the cement users when they tested those mixed with puzzolanes, because they don't take care of the bigger water needs of those materials. In this work we present an study of the behaviour of Pozzolanic Portland cements (PP-250 elaborates with a fix and changeable relationship water/cement, obtained starting from the fluidity of the pure Portland cement. (P-350 The results obtained shows that the mechanical resistance decreased in cement mortars PP-250 realised with changeable relationship water/cement. So we recommend the adoption of an optional procedure to elaborate a quality mortar with pozzolana cements.

    La elaboración del mortero normalizado se realiza internacionalmente por diferentes métodos, pero existen dos tendencias fundamentales, la enunciada por ISO y por ASTM. La norma cubana de ensayos físico-mecánicos de cemento se basa en la norma ISO, por lo que para la elaboración del mortero normalizado se utiliza una relación agua/cemento constante. Esto ha provocado discrepancias con los usuarios del cemento, especialmente cuando se ensayan los cementos que contienen puzolanas, ya que se plantea que no se tiene en cuenta la mayor demanda de agua de estos materiales. En el presente trabajo se presenta un estudio del comportamiento de cementos Portland Puzolánicos (PP-250 elaborados con una relación agua/ cemento fija y variable, lograda a partir de la fluidez de la pasta de cemento Portland puro (P-350. Los resultados obtenidos indican que se producen disminuciones en la resistencia mecánica en los morteros de cemento PP-250 elaborados con agua/ cemento variable y recomienda la

  17. Feasibility of backfilling mines using cement kiln dust, fly ash, and cement blends

    OpenAIRE

    Beltagui, Hoda; Sonebi, Mohammed; Maguire, K.; Taylor, Susan

    2018-01-01

    Cement kiln dust (CKD) is an industrial by-product of the cement manufacturing process, the composition of which can vary widely. Recent years of using alternative fuels have resulted in higher chloride and alkali contents within CKDs; as such, this limits the applications in which CKDs can be utilised. Using a CKD containing a high free lime content of 29.5%, it is shown that this CKD is capable of activating pulverized fuel ash (PFA) due to its high alkalinity, which can be utilised in low ...

  18. The loop expansion as a divergent-power-series expansion

    International Nuclear Information System (INIS)

    Murai, N.

    1981-01-01

    The loop expansion should be divergent, possibly an asymptotic one, in the Euclidean path integral formulation. This consideration is important in applications of the symmetric and mass-independent renormalization. The [1,1] Pade approximant is calculated in a PHI 4 model. Its classical vacua may be not truely stable for nonzero coupling constant. (author)

  19. Cosmological expansion and local physics

    International Nuclear Information System (INIS)

    Faraoni, Valerio; Jacques, Audrey

    2007-01-01

    The interplay between cosmological expansion and local attraction in a gravitationally bound system is revisited in various regimes. First, weakly gravitating Newtonian systems are considered, followed by various exact solutions describing a relativistic central object embedded in a Friedmann universe. It is shown that the 'all or nothing' behavior recently discovered (i.e., weakly coupled systems are comoving while strongly coupled ones resist the cosmic expansion) is limited to the de Sitter background. New exact solutions are presented which describe black holes perfectly comoving with a generic Friedmann universe. The possibility of violating cosmic censorship for a black hole approaching the big rip is also discussed

  20. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  1. Soft sensor for real-time cement fineness estimation.

    Science.gov (United States)

    Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir

    2015-03-01

    This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Characteristics of Cement Solidification of Metal Hydroxide Waste

    Directory of Open Access Journals (Sweden)

    Dae-Seo Koo

    2017-02-01

    Full Text Available To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  3. Bone cement allocation analysis in artificial cancellous bone structures

    Directory of Open Access Journals (Sweden)

    Ivan Zderic

    2017-01-01

    Conclusion: The simulated leakage path seemed to be the most important adverse injection factor influencing the uniformity of cement distribution. Another adverse factor causing dispersion of this distribution was represented by the simulated bone marrow. However, the rather uniform distribution of the totally injected cement amount, considered as one unit, could be ascribed to the medium viscosity of the used cement. Finally, with its short waiting time of 45 s, the stepwise injection procedure was shown to be ineffective in preventing cement leakage.

  4. Centralized cement solidification technique for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuda, Masami; Nishi, Takashi; Izumida, Tatsuo; Tsuchiya, Hiroyuki.

    1996-01-01

    A centralized cement solidification system has been developed to enable a single facility to solidify such low-level radioactive wastes as liquid waste, spent ion exchange resin, incineration ash, and miscellaneous solid wastes. Since the system uses newly developed high-performance cement, waste loading is raised and deterioration of waste forms after land burial prevented. This paper describes the centralized cement solidification system and the features of the high-performance cement. Results of full-scale pilot plant tests are also shown from the viewpoint of industrial applicability. (author)

  5. The Mechanism of Disintegration of Cement Concrete at High Temperatures

    Directory of Open Access Journals (Sweden)

    Jocius Vytautas

    2016-10-01

    Full Text Available Concrete is a composite material composed of a binder, aggregates, water and additives. Mixing of cement with water results in a number of chemical reactions known as cement hydration. Heating of concrete results in dehydration processes of cement minerals and new hydration products, which disintegrate the microstructure of concrete. This article reviews results of research conducted with Portland and alumina cement with conventional and refractory concrete aggregates. In civic buildings such common fillers as gravel, granite, dolomite or expanded clay are usually used. It is important to point out the differences between fillers because they constitute the majority of the concrete volume.

  6. Solidification of liquid radioactive concentrates by fixation with cement

    International Nuclear Information System (INIS)

    Pekar, A.; Breza, M.; Timulak, J.; Krajc, T.

    1985-01-01

    In testing the technology of liquid radioactive wastes cementation, the effect was mainly studied of the content of boric acid and its salts on cement solidification, the effect of additives on radionuclide leachability and the effect of the salt content on the cementation product. On the basis of experimental work carried out on laboratory scale with model samples and samples of radioactive concentrate from the V-1 nuclear power plant, the following suitable composition of the cementation mixture was determined: 40% Portland cement, 40% zeolite containing material and 20% power plant ash. The most suitable ratio of liquid radioactive wastes and the cementation mixture is 0.5. As long as in such case the salt content of the concentrate ranges between 20 and 25%, the cementation product will have a maximum salt content of 10% and a leachability of the order of 10 -3 to 10 -4 g/cm 2 per day with a mechanical strength allowing safe handling. It was also found that the quality processing of the cement paste with degassing, e.g., by vibration, is more effective for the production of a pore-free cementation product than the application of various additives which are supposed to eliminate pore formation. (Z.M.)

  7. Durability of cermet ionomer cement conditioned in different media.

    Science.gov (United States)

    el-Din, I M

    1992-01-01

    The glass ionomer cement has exhibited significant adhesion to hard tooth structures, and good cariostatic properties. The sintering of the silver alloy powder and glass ionomer cement "cermet cement" has provided additional improvement in the physical properties of the restorative material. These were flexural resistance, wear resistance, increased radio-opacity, hardness and porosity. The improvement in the physical properties of the cermet glass cements has provided an extension in their clinical use as core build up, lining for inlays, amalgam and composite restoratives, fissure filling, restoration of primary teeth, class II tunnel preparation, treatment of root caries and repair of defective metal margins in crown and inlays.

  8. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  9. Microindentation of Polymethyl Methacrylate (PMMA Based Bone Cement

    Directory of Open Access Journals (Sweden)

    F. Zivic

    2011-12-01

    Full Text Available Characterization of polymethyl methacrylate (PMMA based bone cement subjected to cyclical loading using microindentation technique is presented in this paper. Indentation technique represents flexible mechanical testing due to its simplicity, minimal specimen preparation and short time needed for tests. The mechanical response of bone cement samples was studied. Realised microindentation enabled determination of the indentation testing hardness HIT and indentation modulus EIT of the observed bone cement. Analysis of optical photographs of the imprints showed that this technique can be effectively used for characterization of bone cements.

  10. Immobilization of ion-exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1991-01-01

    The removal of activity from spent decontaminating solutions, can be achieved using organic ion-exchange resins. These resins can be successfully immobilized in cement-based matrices. The optimum cement system contained 10% ordinary Portland cement, 84% gg blast furnace slag, 6% microsilica with a water/cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres, giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. 26 tabs., 22 figs., 29 refs

  11. Immobilisation of ion exchange resins in cement: final report

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1989-03-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% Ordinary Portland Cement 84% gg Blast Furnace Slag, 6% Microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This information was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  12. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  13. Effect of olive waste (Husk on behavior of cement paste

    Directory of Open Access Journals (Sweden)

    Sharaf Alkheder

    2016-12-01

    Full Text Available Jordan is a famous country in terms of olive trees agriculture that resulted in a mass production of olive oil products. The huge amounts of olive waste (husk that resulted from olives processing to produce olive oil represent an environmental challenge in the country. The idea in this paper comes to use olive waste as a partial replacement for Portland cement in cement paste to conserve the environment, reduce cement consumption and increase cost efficiency. The wastes were burned properly in an oven and maintained for 6 h until it was fully transformed into ashes. Then, the oven was turned off and ashes were allowed to cool. After cooling, the material passed sieve #200 were used. The sieved ashes were used in the cement mix as a partial cement replacement for making the mortar and cement paste. Normal consistency and setting time were determined as well as soundness, compressive strength. Results indicated that normal consistency of the cement pastes containing different percentage of olive waste is somehow lower than that of the ordinary cement paste and slightly decreases with increasing the percentage. The results also indicated that the compressive strength of hardened blended cement paste containing different percentages of olive waste slightly decrease with olive waste content at 3, 7, and 28 days.

  14. Sodium diethyldithiocarbamate as accelerator of the rate of copper cementation

    Directory of Open Access Journals (Sweden)

    Abeer A. El-Saharty

    2015-12-01

    Full Text Available The effects of Cu2+ ion concentration and temperature on the cementation rate of copper from copper sulphate on zinc and the effect of additives of the organic compound “sodium diethyldithiocarbamate” (NaDDC were studied. It was noticed that the cementation increases significantly by increasing the concentrations of NaDDC. The rate of cementation increased by 58.58−100.31%. Our data showed that sodium diethyldithiocarbamate reacts with the Cu2+ solution giving a complex of copper diethyldithiocarbamate, which enhances the rate of cementation.

  15. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  16. Characteristics of cement solidification of metal hydroxide waste

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Sung, Hyun Hee; Kim, Seung Soo; Kim, Gye Nam; Choi, Jong Won [Dept. of Decontemination Decommission Technology Development, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

  17. Use of residual wood in the cement manufacturing process

    International Nuclear Information System (INIS)

    Gue, R.

    2005-01-01

    This PowerPoint presentation discussed the use of wood residuals in the cement manufacturing process. An outline of the cement manufacturing process was presented. Raw materials are combined in exact proportions to create a chemically correct mix, which is then pulverized in a mill. The mix is then burned in a kiln. The end product is cooled to form the pellet sized material known as clinker, which is then milled to form cement. The combustion and destruction characteristics of a cement kiln were presented. Modern cement kilns require approximately 3.2 Gj of energy to produce one tonne of cement. It was noted that wood residuals do not contain halogens, sulfur or other materials detrimental to the cement manufacturing process. Possible injection points for kilns were presented. Various studies have shown that wood residuals can be safely used as a fuel in the manufacture of cement. Environmental benefits derived from using wood included the complete destruction of organic portions, and the fact that residual ash becomes an indistinguishable part of the final product. It was concluded that wood residual materials are a satisfactory alternative fuel for the cement industry. tabs., figs

  18. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  19. Development of nanosilica bonded monetite cement from egg shells

    International Nuclear Information System (INIS)

    Zhou, Huan; Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri; Agarwal, Anand K.; Goel, Vijay K.; Bhaduri, Sarit B.

    2015-01-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement

  20. Interactions between cement grouts and sulphate bearing ground water

    International Nuclear Information System (INIS)

    Walton, P.L.; Duerden, S.L.; Atkins, K.M.; Majumdar, A.J.

    1989-01-01

    The physical, chemical and mineralogical properties of mixtures of Ordinary Portland cement and blastfurnace slag or pulverized fuel ash, exposed to a sulphate-bearing ground water at different temperatures and pressures, were investigated in order to assess the long term durability of cements for encapsulating radioactive waste and backfilling a repository. The effect of the ground water on the chemical and mineralogical characteristics of the cements is minimal. Calcite and C-S-H are present in all the samples and are durable throughout the test. Dimensional changes in the cements during setting and curing may cause weaknesses in the materials which may increase the effects of a percolating ground water. (author)