WorldWideScience

Sample records for expansion properties explained

  1. Thermal Expansion Properties of Aerospace Materials

    Science.gov (United States)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  2. An Analytical Diffusion–Expansion Model for Forbush Decreases Caused by Flux Ropes

    Science.gov (United States)

    Dumbović, Mateja; Heber, Bernd; Vršnak, Bojan; Temmer, Manuela; Kirin, Anamarija

    2018-06-01

    We present an analytical diffusion–expansion Forbush decrease (FD) model ForbMod, which is based on the widely used approach of an initially empty, closed magnetic structure (i.e., flux rope) that fills up slowly with particles by perpendicular diffusion. The model is restricted to explaining only the depression caused by the magnetic structure of the interplanetary coronal mass ejection (ICME). We use remote CME observations and a 3D reconstruction method (the graduated cylindrical shell method) to constrain initial boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several flux rope expansion modes are considered, which can lead to different FD characteristics. In general, the model is qualitatively in agreement with observations, whereas quantitative agreement depends on the diffusion coefficient and the expansion properties (interplay of the diffusion and expansion). A case study was performed to explain the FD observed on 2014 May 30. The observed FD was fitted quite well by ForbMod for all expansion modes using only the diffusion coefficient as a free parameter, where the diffusion parameter was found to correspond to an expected range of values. Our study shows that, in general, the model is able to explain the global properties of an FD caused by a flux rope and can thus be used to help understand the underlying physics in case studies.

  3. Harmonic and Anharmonic Properties of Diamond Structure Crystals with Application to the Calculation of the Thermal Expansion of Silicon. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Wanser, K. H.

    1981-01-01

    Silicon has interesting harmonic and anharmonic properties such as the low lying transverse acoustic modes at the X and L points of the Brillouin zone, negative Gruneisen parameters, negative thermal expansion and anomalous acoustic attenuation. In an attempt to understand these properties, a lattice dynamical model employing long range, nonlocal, dipole-dipole interactions was developed. Analytic expression for the Gruneisen parameters of several modes are presented. These expressions explain how the negative Gruneisen parameters arise. This model is applied to the calculation of the thermal expansion of silicon from 5K to 1700K. The thermoelastic contribution to the acoustic attenuation of silicon is computed from 1 to 300 K. Strong attenuation anomalies associated with negative thermal expansion are found in the vicinity of 17K and 125K.

  4. High-temperature expansion and knock-out properties of moulding sands with water glass

    Directory of Open Access Journals (Sweden)

    Major-Gabryś K.

    2007-01-01

    Full Text Available The article focuses on the topic of improving the knock-out properties of moulding sand with water glass and ester hardener. It is settled that the cause of worse knock-out properties of moulding sand can be brought by their thermal expansion in increased temperatures. There is a presentation of the influence of different additives, containing Al2O3, on moulding sands’ expansion in increased temperatures. Within the frames of research, there was an elaboration of the influence of authors own additive- Glassex, on the expansion phenomenon of moulding sands with water glass and ester hardener. It is concluded, that the new additive stops the expansion of moulding sands and as well it improves their knock-out properties.

  5. Isentropic expansion and related thermodynamic properties of non-ionic amphiphile-water mixtures.

    Science.gov (United States)

    Reis, João Carlos R; Douhéret, Gérard; Davis, Michael I; Fjellanger, Inger Johanne; Høiland, Harald

    2008-01-28

    A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed

  6. Enhancing the engineering properties of expansive soil using bagasse ash

    Science.gov (United States)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  7. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.

    Science.gov (United States)

    Li, Wen; Huang, Rongjin; Wang, Wei; Zhao, Yuqiang; Li, Shaopeng; Huang, Chuanjun; Li, Laifeng

    2015-02-28

    The cubic NaZn13-type La(Fe,Al)13 compounds were synthesized, and their linear thermal expansion properties were investigated in the temperature range of 4.2-300 K. It was found that these compounds exhibit abnormal thermal expansion behavior, i.e., pronounced negative thermal expansion (NTE) or zero thermal expansion (ZTE) behavior, below the Curie temperature due to the magnetovolume effect (MVE). Moreover, in the La(Fe,Al)13 compounds, the modification of the coefficient of thermal expansion (CTE) as well as the abnormal thermal expansion (ATE) temperature-window is achieved through optimizing the proportion of Fe and Al. Typically, the average CTE of the LaFe13-xAlx compounds with x = 1.8 reaches as large as -10.47 × 10(-6) K(-1) between 100 and 225 K (ΔT = 125 K). Also, the ZTE temperature-window of the LaFe13-xAlx compounds with x = 2.5 and x = 2.7 could be broadened to 245 K (from 5 to 250 K). Besides, the magnetic properties of these compounds were measured and correlated with the abnormal thermal expansion behavior. The present results highlight the potential application of such La(Fe,Al)13 compounds with abnormal thermal expansion properties in cryogenic engineering.

  8. Some properties and expansions associated with the q -digamma ...

    African Journals Online (AJOL)

    This paper is devoted to derive some properties and expansions associated with the q-digamma function. The Newton series which is consisting of terms of forward difference operator, is established for the q-digamma function. The maltiplication formula of the q-gamma function is used to present some recurrence relations ...

  9. Thermal expansion properties of Bi-2212 in Ag or an Ag-alloy matrix

    International Nuclear Information System (INIS)

    Tenbrink, J.; Krauth, H.

    1994-01-01

    The thermal expansion properties of polycrystalline Bi 2 Sr 2 Ca 1 Cu 2 O 8+x melt-processed bulk specimens, and Bi 2 Sr 2 Ca 1 Cu 2 O 8+x monocore as well as multifilamentary round wires in Ag or Ag-alloy matrix have been investigated over the temperature range from -150 to 800 degrees C. Although the thermal expansion of Bi 2 Sr 2 Ca 1 Cu 2 O 8+x is distinctly lower compared with Ag, the thermal expansion properties of the Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or AgNiMg-alloy composite conductors are essentially governed by the matrix material. The thermal expansion of the encountered oxide-dispersion-strengthened AgNiMg alloys is only slightly lower compared with that of pure Ag. Therefore the thermal expansion of all investigated Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or Ag-alloy composite wires was found to be close to that of pure Ag. The reason for this striking behaviour is shown to be related to a surprisingly low elastic modulus of the polycrystalline Bi-2212 wire cores of the order of 10 to a maximum 40 GPa. (author)

  10. Experimental datasets on engineering properties of expansive soil treated with common salt

    Directory of Open Access Journals (Sweden)

    Taiwo O. Durotoye

    2018-06-01

    Full Text Available Construction of highway pavements or high rise structures over the expansive soils are always problematic due to failures of volume change or swelling characteristic experienced in the water permeability of the soil. The data in this article represented summary of (Durotoye et al., 2016; Durotoye, 2016 [1,2]. The data explored different percentages of sodium chloride as additive in stabilizing the engineering properties of expansive soil compared with other available stabilizer previously worked on. Experimental procedures carried out on expansive soil include: (Liquid limit, Plastic limit, Plasticity index, Shrinkage limit, Specific gravity Free swell index and Optimum water content to determine the swelling parameters and (maximum dry density, California bearing ratio and unconfined compressive strength to determine the strength parameters. The results of the experiment were presented in pie charts. Keywords: Common salt, Expansive soil, Experimental procedure, Strength parameters, Swelling parameters

  11. Effect of Metakaolin on the geotechnical properties of Expansive Soil

    Directory of Open Access Journals (Sweden)

    Mahmoud D. Ahmed

    2015-12-01

    Full Text Available Expansive soil spreads in Iraq and some countries of the world. But there are many problems can be occurred to the structures that built on, so we must study the characteristics of these soils due to the problems that may be caused to these structures which built on these kinds of soil and then study the methods of treatment. The present study focuses on improving the geotechnical properties of expansive soils by treating it Metakaolin(M. Metakaolin (M has never been used before as an improvement material for stabilizing the expansive soil . Metakaolin is a pozzolanic material. It’s obtained by calcination of kaolinite clay at temperatures from 700°C to 800°C. Kaolin chemical composition is basically aluminous silicates hydrates associated with Mn, Fe, Ca, K, Na. Its crystal has a lattice structure of tetrahedral and octahedral layers with interplanar distance of 7.2 Å. The soil used in the present study can be classified according to the Unified Soil Classification System as clay with high plasticity (CH .

  12. Uniaxial Negative Thermal Expansion and Mechanical Properties of a Zinc-Formate Framework

    Directory of Open Access Journals (Sweden)

    Hongqiang Gao

    2017-02-01

    Full Text Available The thermal expansion behavior of a metal-formate framework, Zn(HCOO2·2(H2O (1, has been systematically studied via variable temperature single-crystal X-ray diffraction. Our results demonstrate that this formate exhibits significant negative thermal expansion (NTE, −26(2 MK−1 along its c-axis. Detailed structural analyses reveal that the large NTE response is attributed to the ‘hinge-strut’ like framework motion. In addition, the fundamental mechanical properties of framework 1 have been explored via nanoindentation experiments. The measured elastic modulus and hardness properties on the (00-2/(100/(110 facets are 35.5/35.0/27.1 and 2.04/1.83/0.47 GPa, respectively. The stiffness and hardness anisotropy can be correlated well with the underlying framework structure, like its thermoelastic behavior.

  13. Experimental datasets on engineering properties of expansive soil treated with common salt.

    Science.gov (United States)

    Durotoye, Taiwo O; Akinmusuru, Joseph O; Ogundipe, Kunle E

    2018-06-01

    Construction of highway pavements or high rise structures over the expansive soils are always problematic due to failures of volume change or swelling characteristic experienced in the water permeability of the soil. The data in this article represented summary of (Durotoye et al., 2016; Durotoye, 2016) [1], [2]. The data explored different percentages of sodium chloride as additive in stabilizing the engineering properties of expansive soil compared with other available stabilizer previously worked on. Experimental procedures carried out on expansive soil include: (Liquid limit, Plastic limit, Plasticity index, Shrinkage limit, Specific gravity Free swell index and Optimum water content) to determine the swelling parameters and (maximum dry density, California bearing ratio and unconfined compressive strength) to determine the strength parameters. The results of the experiment were presented in pie charts.

  14. A Physical Model of Sill Expansion to Explain the Dynamics of Unrest at Calderas with Application to Campi Flegrei

    Directory of Open Access Journals (Sweden)

    Flora Giudicepietro

    2017-07-01

    Full Text Available Many calderas show remarkable unrest, which often does not culminate in eruptions (non-eruptive unrest. In this context the interpretation of the geophysical data collected by the monitoring networks is difficult. When the unrest is eruptive, a vent opening process occurs, which leads to an eruption. In calderas, vent locations typically are scattered over a large area and monogenic cones form. The resulting pattern is characterized by a wide dispersion of eruptive vents, therefore, the location of the future vent is not easily predictable. We propose an interpretation of the deformation associated to unrest and vent pattern commonly observed at calderas, based on a physical model that simulates the intrusion and the expansion of a sill. The model can explain both the uplift and any subsequent subsidence through a single process. Considering that the stress mainly controls the vent opening process, we try to gain insight on the vent opening in calderas through the study of the stress field produced by the intrusion of an expanding sill. We find that the tensile stress in the rock above the sill is concentrated at the sill edge in a ring-shaped area with radius depending on the physical properties of magma and rock, the feeding rate and the magma cooling rate. This stress field is consistent with widely dispersed eruptive vents and monogenic cone formation, which are often observed in the calderas. However, considering the mechanical properties of the elastic plate and the rheology of magma, we show that remarkable deformations may be associated with low values of stress in the rock at the top of the intrusion, thereby resulting in non-eruptive unrest. Moreover, we have found that, under the assumption of isothermal conditions, the stress values decrease over time during the intrusion process. This result may explain why the long-term unrest, in general, do not culminate in an eruption. The proposed approach concerns a general process and is

  15. Prediction of hole expansion ratio for various steel sheets based on uniaxial tensile properties

    Science.gov (United States)

    Kim, Jae Hyung; Kwon, Young Jin; Lee, Taekyung; Lee, Kee-Ahn; Kim, Hyoung Seop; Lee, Chong Soo

    2018-01-01

    Stretch-flangeability is one of important formability parameters of thin steel sheets used in the automotive industry. There have been many attempts to predict hole expansion ratio (HER), a typical term to evaluate stretch-flangeability, using uniaxial tensile properties for convenience. This paper suggests a new approach that uses total elongation and average normal anisotropy to predict HER of thin steel sheets. The method provides a good linear relationship between HER of the machined hole and the predictive variables in a variety of materials with different microstructures obtained using different processing methods. The HER of the punched hole was also well predicted using the similar approach, which reflected only the portion of post uniform elongation. The physical meaning drawn by our approach successfully explained the poor HER of austenitic steels despite their considerable elongation. The proposed method to predict HER is simple and cost-effective, so it will be useful in industry. In addition, the model provides a physical explanation of HER, so it will be useful in academia.

  16. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  17. Effects of Shrinkage Reducing Agent and Expansive Additive on Mortar Properties

    Directory of Open Access Journals (Sweden)

    Sarapon Treesuwan

    2017-01-01

    Full Text Available This research is to study the effect of mortar mixed with shrinkage reducing agent (polyoxyalkylene alkyl ether type, expansive additive (CaO type, and fly ash (hereinafter “SRA,” “EX,” and “FA,” resp.. Moreover, steam curing was studied to improve the properties of mortar. The plastic shrinkage test was conducted by using the strain gauge embedded at 0.5 cm from the surface according to the ASTM C1579-06 standard within early age followed by the total shrinkage test and compressive strength test. The test results showed that mixing both the EX and SRA increases the plastic enlargement of the mortar during the early age more than using either the EX or SRA solely. The steam curing helps to reduce the plastic shrinkage when the mortar is added with the FA and SRA while adding the EX increases the enlargement compared to the normal curing. When the EX, SRA, and FA are all added to the mortar mixing, great attention should be paid due to the increase of greater enlargement. For the compressive strength view, the steam curing increases the compressive strength in all types of mixture. The steam curing significantly helps increasing the compressive strength of mortar with combination of EX, SRA, and FA. Nevertheless, the XRD and SEM tests explain such enlargement accordingly.

  18. Molecular dynamics calculations of the thermal expansion properties and melting points of Si and Ge

    International Nuclear Information System (INIS)

    Timon, V; Brand, S; Clark, S J; Abram, R A

    2006-01-01

    The thermal expansion properties and melting points of silicon and germanium are calculated using molecular dynamics simulations within the density functional theory framework. An isothermal-isobaric (NPT) ensemble is considered in a periodic system with a relatively small number of particles per unit cell to obtain the thermal expansion data over a range of temperatures, and it is found that the calculated thermal expansion coefficients and bond lengths agree well with experimental data. Also, the positions of discontinuities in the potential energy as a function of temperature are in good agreement with the experimental melting points

  19. Range expansions transition from pulled to pushed waves with increasing cooperativity in an experimental microbial population

    Science.gov (United States)

    Gandhi, Saurabh; Yurtsev, Eugene; Korolev, Kirill; Gore, Jeff

    Range expansions are becoming more frequent due to environmental changes and rare long distance dispersal, often facilitated by anthropogenic activities. Simple models in theoretical ecology explain many emergent properties of range expansions, such as a constant expansion velocity, in terms of organism-level properties such as growth and dispersal rates. Testing these quantitative predictions in natural populations is difficult because of large environmental variability. Here, we used a controlled microbial model system to study range expansions of populations with and without intra-specific cooperativity. For non-cooperative growth, the expansion dynamics were dominated by population growth at the low-density front, which pulled the expansion forward. We found these expansions to be in close quantitative agreement with the classical theory of pulled waves by Fisher and Skellam, suitably adapted to our experimental system. However, as cooperativity increased, the expansions transitioned to being pushed, i.e. controlled by growth in the bulk as well as in the front. Although both pulled and pushed waves expand at a constant velocity and appear otherwise similar, their distinct dynamics leads to very different evolutionary consequences. Given the prevalence of cooperative growth in nature, understanding the effects of cooperativity is essential to managing invading species and understanding their evolution.

  20. Learning to Apply Models of Materials While Explaining Their Properties

    Science.gov (United States)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-01-01

    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  1. Mechanical and thermal expansion properties of β-eucryptite prepared by sol-gel methods and hot pressing

    International Nuclear Information System (INIS)

    Xia, L.; Wen, G.W.; Qin, C.L.; Wang, X.Y.; Song, L.

    2011-01-01

    Research highlights: → Dense LAS glass-ceramics were fabricated by sol-gel and hot pressing technique. → The LAS glass-ceramics have relative good mechanical properties. → The negative thermal expansion behavior of LAS glass-ceramics was investigated. -- Abstract: The microstructures, mechanical properties and thermal expansion behavior of monolithic lithium aluminosilicate glass-ceramics, prepared by sol-gel method and hot pressing, were investigated by using X-ray diffraction, scanning and transmission electron microscopies, three-point bend tests and dilatometry. β-eucryptite appeared as main phase in the monolithic lithium aluminosilicate glass-ceramics. The glass ceramics exhibited high relative densities and the average flexural strength and fracture toughness values were 154 MPa and 2.46 MPa m 1/2 , respectively. The lithium aluminosilicate glass-ceramics hot pressed 1300 and 1350 o C demonstrated negative coefficient of thermal expansion, which was affected by amount and type of crystalline phases.

  2. The Expansion of Tobacco and Its Effect on Cigarette Mainstream Smoke Properties

    Directory of Open Access Journals (Sweden)

    Green CR

    2014-12-01

    Full Text Available For nearly four decades, the expansion of tobacco has been recognized as one of eight technologies significant in the design of a ‘less hazardous’ cigarette. The data previously presented at scientific conferences and/or published in several scientific monographs and journals on the effect of the expansion of tobacco on the composition and biological properties of the mainstream smoke from cigarettes containing it are summarized. In addition, previously unpublished data on the same subjects are presented in considerable detail. Included are 1 the effect of tobacco expansion on the yields of total particulate matter (TPM, nicotine, and several hundred components of cigarette mainstream smoke from control tobacco cigarettes vs. expanded tobacco cigarettes; 2 the changes in mainstream smoke yields of total particulate matter, nicotine, and specific smoke components produced by inclusion of various levels of expanded tobacco in a cigarette blend; and 3 the changes in composition of expanded tobacco. In the latter study, the decrease in levels of numerous significant flavorful components of the tobacco produced by expansion provides the need for inclusion of such compounds in flavor formulations. In study 2, the reductions in per cigarette yields of total particulate matter, nicotine, and several components of concern were determined and confirmed the significance of tobacco expansion as a cigarette design technology to produce what was originally defined as a ‘less hazardous’ cigarette but more recently as a ‘potential reduced exposure product’ (PREP.

  3. Explaining the Origins and Expansion of Mass Education.

    Science.gov (United States)

    Boli, John; And Others

    1985-01-01

    Theories of mass education that emphasize processes of differentiation or the reproduction of inequalities ignore the universal and institutional character of mass education. A theoretical framework emphasizing individualism and the rationalization of individual and collective authority better explains the relationship of mass education to…

  4. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    Science.gov (United States)

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  5. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  6. Thermal Expansion Properties of Fe-42Ni-Si Alloy Strips Fabricated by Melt Drag Casting Process

    International Nuclear Information System (INIS)

    Kim, Moo Kyum; Ahn, Yong Sik; Namkung, Jeong; Kim, Moon Chul; Kim, Yong Chan

    2007-01-01

    Thermal expansion property was investigated on Fe-42% Ni alloy strip added by alloying element of Si of 0∼1.5wt.%. The strip was fabricated by a melt drag casting process. Addition of Si enlarged the solid-liquid region and reduced the melting point which leads to the increase of the formability of a strip. The alloy containing 0.6 wt.% Si showed the lowest thermal expansion ratio in the temperature range between 20 to 350 .deg. C. The grain size was increased with reduction ratio and annealing temperature, which resulted in the decrease of the thermal expansion coefficient of strip. Because of grain refining by precipitation of Ni 3 Fe, the alloy strip containing 1.5 wt.% Si showed higher thermal expansion ratio compared with the alloy containing 0.6 wt.% Si

  7. Research on Wetting-Drying Cycles’ Effect on the Physical and Mechanical Properties of Expansive Soil Improved by OTAC-KCl

    Directory of Open Access Journals (Sweden)

    Bao-tian Wang

    2015-01-01

    Full Text Available Expansive soil experiences periodic swelling and shrinkage during the alternate wet and dry environments, which will result in severe damage to the slope stability. In this study, a promising modifier OTAC-KCl is introduced, which has a good diffusivity and is soluble in water or other solvents easily. Firstly, a reasonable combination of ameliorant 0.3% STAC and 3% KCl is chosen referring to the free swell test. Then, the best curing period, 14 days, is gotten from UCS tests. The effect of wetting and drying cycles on engineering properties of expansive soil improved by OTAC-KCl admixtures after 14-day curing is also studied accordingly. Both treated and untreated expansive soil samples are prepared for the cyclic wetting-drying tests which mainly include cyclic swelling potential and cyclic strength tests. Experimental results show that the swelling potential of expansive soil samples stabilized with OTAC-KCl is suppressed efficiently, and the untreated soil specimens will collapse when immersed in water while the treated specimens keep in good conditions. Moreover, expansive soil samples modified with 0.3% OTAC + 3% KCl show enough durability on the swelling ability, shear strength, and unconfined compressive strength, which means, that both the physical and the mechanical properties of stabilized expansive soil have been improved effectively.

  8. A non-uniform expansion mechanical safety model of the stent.

    Science.gov (United States)

    Yang, J; Huang, N; Du, Q

    2009-01-01

    Stents have a serial unstable structure that readily leads to non-uniform expansion. Non-uniform expansion in turn creates a stent safety problem. We explain how a stent may be simplified to a serial unstable structure, and present a method to calculate the non-uniform expansion of the stent on the basis of the serial unstable structure. We propose a safety criterion based on the expansion displacement instead of the strain, and explain that the parameter Rd, the ratio of the maximum displacement of the elements to normal displacement, is meaningful to assess the safety level of the stent. We also examine how laser cutting influences non-uniform expansion. The examples illustrate how to calculate the parameter Rd to assess non-uniform expansion of the stent, and demonstrate how the laser cutting offset and strengthening coefficient of the material influence the stent expansion behaviour. The methods are valuable for assessing stent safety due to non-uniform expansion.

  9. Laboratory Evaluation of the Effects of 3-Chloride Compounds on the Geotechnical Properties of an Expansive Subgrade Soil

    Science.gov (United States)

    Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada

    2017-12-01

    Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.

  10. Explaining the Expansion of Feminist Ideas: Cultural Diffusion or Political Struggle?

    Science.gov (United States)

    Stromquist, Nelly P.

    2015-01-01

    This article explores the expansion of feminist ideas as both a conceptual and a political issue. It focuses on two major theories of social change, world culture theory (WCT) and world system analysis (WSA), comparing and contrasting how they frame gender as a factor shaping society, how they account for the diffusion of feminist ideas and how…

  11. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  12. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    Science.gov (United States)

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  13. Effects of Shrinkage Reducing Agent and Expansive Additive on Mortar Properties

    OpenAIRE

    Treesuwan, Sarapon; Maleesee, Komsan

    2017-01-01

    This research is to study the effect of mortar mixed with shrinkage reducing agent (polyoxyalkylene alkyl ether type), expansive additive (CaO type), and fly ash (hereinafter “SRA,” “EX,” and “FA,” resp.). Moreover, steam curing was studied to improve the properties of mortar. The plastic shrinkage test was conducted by using the strain gauge embedded at 0.5 cm from the surface according to the ASTM C1579-06 standard within early age followed by the total shrinkage test and compressive streng...

  14. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2013-01-01

    , char properties, measured at room temperature, were dependent on the preceding storage conditions (in air or in a desiccator). The char was found to have the highest mechanical strength against compression in the outer crust facing the heat source. For thin (147μm) free coating films, a tendency...... with respect to the mechanical resistance against compression, degree of expansion, and residual mass fraction. Experimental results show that when using this type of shock heating, the mechanical resistance of the char against compression cannot meaningfully be correlated to the expansion factor. In addition...

  15. Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver-palladium alloy composites

    Science.gov (United States)

    Pal, Hemant; Sharma, Vimal

    2014-11-01

    The mechanical, electrical, and thermal expansion properties of carbon nanotube (CNT)-based silver and silver-palladium (10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver-palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion (CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%-40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver-palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.

  16. Development of Cone Wedge Ring Expansion Test to Evaluate Mechanical Properties of Clad Tubing Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’s vertical displacement soon after the wedge-clad contact resistance is initiated.

  17. Some Improved Nonperturbative Bounds for Fermionic Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)

    2016-06-15

    We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

  18. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining

    Directory of Open Access Journals (Sweden)

    Masahiko Kanaoka et al

    2007-01-01

    Full Text Available Optical mirrors used in extreme ultraviolet lithography systems require a figure accuracy and a roughness of about 0.1 nm rms. In addition, mirror substrates must be low-thermal-expansion materials. Thus, in this study, we processed two low-thermal-expansion materials, ULE [K. Hrdina, B. Hanson, P. Fenn, R. Sabia, Proc. SPIE 4688 (2002 454.] (Corning Inc. and Zerodur [I. Mitra, M.J. Davis, J. Alkemper, Rolf Müller, H. Kohlmann, L. Aschke, E. Mörsen, S. Ritter, H. Hack, W. Pannhorst, Proc. SPIE 4688 (2002 462.] (SCHOTT AG, with elastic emission machining (EEM in order to evaluate the removal properties. Consequently, we successfully calculated the respective removal rates, because removal volumes were found to be proportional to process times in EEM. Moreover, we demonstrated that the surface roughness of Zerodur is reduced to 0.1 nm rms in the spatial wavelength range from 100 μm to 1 mm.

  19. Is thermodynamic irreversibility a consequence of the expansion of the Universe?

    Science.gov (United States)

    Osváth, Szabolcs

    2018-02-01

    This paper explains thermodynamic irreversibility by applying the expansion of the Universe to thermodynamic systems. The effect of metric expansion is immeasurably small on shorter scales than intergalactic distances. Multi-particle systems, however, are chaotic, and amplify any small disturbance exponentially. Metric expansion gives rise to time-asymmetric behaviour in thermodynamic systems in a short time (few nanoseconds in air, few ten picoseconds in water). In contrast to existing publications, this paper explains without any additional assumptions the rise of thermodynamic irreversibility from the underlying reversible mechanics of particles. Calculations for the special case which assumes FLRW metric, slow motions (v ≪ c) and approximates space locally by Euclidean space show that metric expansion causes entropy increase in isolated systems. The rise of time-asymmetry, however, is not affected by these assumptions. Any influence of the expansion of the Universe on the local metric causes a coupling between local mechanics and evolution of the Universe.

  20. Thermal expansion model for multiphase electronic packaging materials

    International Nuclear Information System (INIS)

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  1. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  2. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  3. Changes in materials properties explain the effects of humidity on gecko adhesion.

    Science.gov (United States)

    Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar

    2010-11-01

    Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.

  4. From greedy to lazy expansions and their driving dynamics

    NARCIS (Netherlands)

    Dajani, K.; Kraaikamp, C.

    2001-01-01

    In this paper we study the ergodic properties of non-greedy series expansions to non-integer bases β > 1. It is shown that the so-called 'lazy' expansion is isomorphic to the 'greedy' expansion. Furthermore, a class of expansions to base β > 1, β =2 Z, 'in between' the lazy and the greedy

  5. Chromatic Derivatives, Chromatic Expansions and Associated Spaces

    OpenAIRE

    Ignjatovic, Aleksandar

    2009-01-01

    This paper presents the basic properties of chromatic derivatives and chromatic expansions and provides an appropriate motivation for introducing these notions. Chromatic derivatives are special, numerically robust linear differential operators which correspond to certain families of orthogonal polynomials. Chromatic expansions are series of the corresponding special functions, which possess the best features of both the Taylor and the Shannon expansions. This makes chromatic derivatives and ...

  6. Warp drive with zero expansion

    Energy Technology Data Exchange (ETDEWEB)

    Natario, Jose [Department of Mathematics, Instituto Superior Tecnico (Portugal)

    2002-03-21

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.

  7. Thermal expansion and pressure effect in MnWO4

    International Nuclear Information System (INIS)

    Chaudhury, R.P.; Yen, F.; Cruz, C.R. de la; Lorenz, B.; Wang, Y.Q.; Sun, Y.Y.; Chu, C.W.

    2008-01-01

    MnWO 4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order. We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T 1 =7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low-temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure

  8. 2D XXZ model ground state properties using an analytic Lanczos expansion

    International Nuclear Information System (INIS)

    Witte, N.S.; Hollenberg, L.C.L.; Weihong Zheng

    1997-01-01

    A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs

  9. Plasma expansion: fundamentals and applications

    International Nuclear Information System (INIS)

    Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C

    2002-01-01

    The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures

  10. Regulation of gas infrastructure expansion

    International Nuclear Information System (INIS)

    De Joode, J.

    2012-01-01

    The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities - such as gas storage facilities, LNG import terminals and certain gas transmission pipelines - need to be regulated, as there may be scope for competition. In practice, the choice of regulation of gas infrastructure expansion varies among different types of gas infrastructure facilities and across EU Member States. Based on a review of economic literature and on a series of in-depth case studies, this study explains these differences in choices of regulation from differences in policy objectives, differences in local circumstances and differences in the intrinsic characteristics of the infrastructure projects. An important conclusion is that there is potential for a larger role for competition in gas infrastructure expansion.

  11. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  12. Radial expansion for spinning conformal blocks

    CERN Document Server

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-07-12

    This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

  13. Thermal expansion coefficient and thermomechanical properties of SiN(x) thin films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Tien, Chuen-Lin; Lin, Tsai-Wei

    2012-10-20

    We present a new method based on fast Fourier transform (FFT) for evaluating the thermal expansion coefficient and thermomechanical properties of thin films. The silicon nitride thin films deposited on Corning glass and Si wafers were prepared by plasma-enhanced chemical vapor deposition in this study. The anisotropic residual stress and thermomechanical properties of silicon nitride thin films were studied. Residual stresses in thin films were measured by a modified Michelson interferometer associated with the FFT method under different heating temperatures. We found that the average residual-stress value increases when the temperature increases from room temperature to 100°C. Increased substrate temperature causes the residual stress in SiN(x) film deposited on Si wafers to be more compressive, but the residual stress in SiN(x) film on Corning glass becomes more tensile. The residual-stress versus substrate-temperature relation is a linear correlation after heating. A double substrate technique is used to determine the thermal expansion coefficients of the thin films. The experimental results show that the thermal expansion coefficient of the silicon nitride thin films is 3.27×10(-6)°C(-1). The biaxial modulus is 1125 GPa for SiN(x) film.

  14. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  15. The rights of a Florida wife: slavery, U.S. expansion, and married women's property law.

    Science.gov (United States)

    Clark, Laurel A

    2010-01-01

    Civil law rules were adopted in Florida that granted married women property rights long before legal reforms occurred in northern states. This article analyzes white wives' property and law in Florida between 1820 and 1860. Initially, married women's property rights were inadvertently protected by treaty law and limited to women who married before 1818. Wives' right to own separate property in Florida was subsequently reconfirmed in statute and extended to include later marriages. In contrast, nonwhites generally lost the rights and property they had enjoyed under Spain's civil law in the same period. This contrast reveals that in Florida (and other southern borderlands) it was not concern for women, or simply legal precedent, but the desire to incorporate new territory and expand slavery that influenced the development of marital property law. This challenges previous histories, which have excluded the earlier acts in the Southern borderlands and emphasized those passed in the Northeast beginning in the late 1840s. While those later acts were influenced by the early woman's rights movement and by concern for families reduced to poverty during the rise of market capitalism, this case study indicates that expansion of United States territory and slavery were responsible for the earlier married women's property rights in southern borderland territories such as Florida.

  16. Global operator expansions in conformally invariant relativistic quantum field theory

    International Nuclear Information System (INIS)

    Schoer, B.; Swieca, J.A.; Voelkel, A.H.

    1974-01-01

    A global conformal operator expansions in the Minkowski region in several models and their formulation in the general theory is presented. Whereas the vacuum expansions are termwise manisfestly conformal invariant, the expansions away from the vacuum do not share this property

  17. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.

  18. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  19. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products.

    Science.gov (United States)

    Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai

    2016-01-01

    Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92-17.80 % (wb) and protein from 5.03 % (wb) to 5.46-13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33-33.53 and 5.30-11.53 fold increase in the phenolics and antioxidant activity in the enriched snack products. The effects of feed moisture content, screw speed, and barrel temperature on expansion and nutritional properties of the extruded products were investigated by using response surface methodology. Regression equations describing the effect of each variable on the product responses were obtained. The snacks extruded with feed moisture 13-15 % (wb) and extrusion temperature at 160-180 °C indicated the products with high preference in terms of expansion ratio between insoluble dietary fiber and soluble dietary fiber balance. The results showed that the by-products could be successfully used for nutritional supplemented expanded snacks.

  20. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking

    OpenAIRE

    Corn?lio, Alianda M.; de Bittencourt-Navarrete, Ruben E.; de Bittencourt Brum, Ricardo; Queiroz, Claudio M.; Costa, Marcos R.

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appeal...

  1. Dolomite addition effects on the thermal expansion of ceramic tiles

    International Nuclear Information System (INIS)

    Marino, Luis Fernando Bruno; Boschi, Anselmo Ortega

    1997-01-01

    The thermal expansion of ceramic tiles is of greater importance in engineering applications because the ceramics are relatively brittle and cannot tolerate large internal strain imposed by thermal expansion. When ceramic bodies are produced for glazed ties the compatibility of this property of the components should be considered to avoid damage in the final products. Carbonates are an important constituent of ceramic wall-title bodies and its presence in formulations and the reactions that occur between them and other components modify body properties. The influence in expansivity by additions of calcium magnesium carbonate in a composition of wall tile bodies has been investigated. The relative content of mineralogical components was determined by X-ray diffraction and thermal expansion by dilatometric measurements. The results was indicated that with the effect of calcium-magnesium phases and porosity on thermal expansion of wall tile bodies. (author)

  2. Discrete expansions of continuum functions. General concepts

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1979-01-01

    Different discrete expansions of the continuum wave functions are considered: pole expansion (according to the Mittag-Lefler theorem), Weinberg states. The general property of these groups of states is their completeness in the finite region of space. They satisfy the Schroedinger type equations and are matched with free solutions of the Schroedinger equation at the boundary. Convergence of expansions for the S matrix, the Green functions and the continuous-spectrum wave functions is studied. A new group of states possessing the best convergence is introduced

  3. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  4. Toward convergence of the variational mass expansion in asymptotically free theories

    CERN Document Server

    Kneur, J L

    2001-01-01

    We re-examine a modification of perturbative expansions, valid for asymptotically free theories, producing "variationally improved" expansions of physical quantities relevant to dynamical (chiral) symmetry breaking. The large order behaviour of this expansion is shown to be drastically improved, for reasons analogous to the convergence properties of the delta-expansion of the anharmonic oscillator.

  5. Wigner-Kirkwood expansion of the phase-space density for half infinite nuclear matter

    International Nuclear Information System (INIS)

    Durand, M.; Schuck, P.

    1987-01-01

    The phase space distribution of half infinite nuclear matter is expanded in a ℎ-series analogous to the low temperature expansion of the Fermi function. Besides the usual Wigner-Kirkwood expansion, oscillatory terms are derived. In the case of a Woods-Saxon potential, a smallness parameter is defined, which determines the convergence of the series and explains the very rapid convergence of the Wigner-Kirkwood expansion for average (nuclear) binding energies

  6. Interbasis expansions for isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)

    2012-03-12

    The exact solutions of the isotropic harmonic oscillator are reviewed in Cartesian, cylindrical polar and spherical coordinates. The problem of interbasis expansions of the eigenfunctions is solved completely. The explicit expansion coefficients of the basis for given coordinates in terms of other two coordinates are presented for lower excited states. Such a property is occurred only for those degenerated states for given principal quantum number n. -- Highlights: ► Exact solutions of harmonic oscillator are reviewed in three coordinates. ► Interbasis expansions of the eigenfunctions is solved completely. ► This is occurred only for those degenerated states for given quantum number n.

  7. Tube Expansion Under Various Down-Hole End Conditions

    Directory of Open Access Journals (Sweden)

    FJ Sanchez

    2013-06-01

    Full Text Available Fossil hydrocarbons are indispensables commodities that motorize the global economy, and oil and gas are two of those conventional fuels that have been extracted and processed for over a century. During last decade, operators face challenges discovering and developing reservoirs commonly found up to several kilometers underground, for which advanced technologies are developed through different research programs. In order to optimize the current processes to drill and construct oil/gas wells, a large number of mechanical technologies discovered centuries ago by diverse sectors are implemented by well engineers. In petroleum industry, the ancient tube forming manufacturing process founds an application once well engineers intend to produce from reservoirs that cannot be reached unless previous and shallower troublesome formations are isolated. Solid expandable tubular is, for instance, one of those technologies developed to mitigate drilling problems and optimize the well delivery process. It consists of in-situ expansion of a steel-based tube that is attained by pushing/pulling a solid mandrel, which permanently enlarge its diameters. This non-linear expansion process is strongly affected by the material properties of the tubular, its geometry, and the pipe/mandrel contact surface. The anticipated force required to deform long sections of the pipe in an uncontrollable expansion environment, might jeopardize mechanical properties of the pipe and the well structural integrity. Scientific-based solutions, that depend on sound theoretical formulation and are validated through experiments, will help to understand possible tubular failure mechanisms during its operational life. This work is aimed to study the effect of different loading/boundary conditions on mechanical/physical properties of the pipe after expansion. First, full-scale experiments were conducted to evaluate the geometrical and behavioral changes. Second, simulation of deformation

  8. Thin foil expansion into a vacuum

    International Nuclear Information System (INIS)

    Mora, P.

    2005-01-01

    Plasma expansion into a vacuum is an old problem which has been renewed recently in various contexts: expansion of ultra-cold plasmas, cluster expansion, of dust grains, expansion of thin foils. In this presentation I will first discuss the physics of the expansion of a thin foil irradiated by an ultra-short ultra-intense laser pulse. The expansion results in the formation of high energy ions. For an infinitely steep plasma-vacuum interface the fastest ions are located in the outer part of the expansion and their velocity is given by ν m ax∼ 2 C s (In ω p it) where c s (Zk B T e /m i )''1/2 is the ion-acoustic velocity ω p i=(n e 0Ze''2/m i e 0 )''1/2 is the ion plasma frequency, n e 0 is the electron density in the unperturbed plasma, Z is the ion charge number. In the above expression, t is either the pulse duration or the effective acceleration time (in particular t∼L/2c s , where L is the width of the foil, when the electron cooling is taken into account). A salient characteristic of the expansion is the occurrence of a double layer structure and a peak of the accelerating electric field at the ion front. I will explain the origin of the peak and predict its temporal behavior. This peak has been diagnosed in recent experiments. I will also discuss the effect of a 2-temperatures electron distribution function on the expansion, showing the dominant role of the hot electron component. Finally I will discuss the occurrence of ion spikes in the expansion when the initial density profile is smooth. The ion spike is due to a wave breaking which cannot be handled in a satisfactory way by a fluid code and requires a kinetic description. A. simple collisionless particle code has been used to treat the evolution of the spike after the wave breaking and the results will be shown. (Author)

  9. Genetic surfing, not allopatric divergence, explains spatial sorting of mitochondrial haplotypes in venomous coralsnakes.

    Science.gov (United States)

    Streicher, Jeffrey W; McEntee, Jay P; Drzich, Laura C; Card, Daren C; Schield, Drew R; Smart, Utpal; Parkinson, Christopher L; Jezkova, Tereza; Smith, Eric N; Castoe, Todd A

    2016-07-01

    Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern-local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation-not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male-biased dispersal. © 2016 The Author(s).

  10. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators

    International Nuclear Information System (INIS)

    Singh, Vibhor; Sengupta, Shamashis; Solanki, Hari S; Dhall, Rohan; Allain, Adrien; Dhara, Sajal; Deshmukh, Mandar M; Pant, Prita

    2010-01-01

    We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With a lowering of temperature, we find that the positively dispersing electromechanical modes evolve into negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature-compensated sensors.

  11. Research progress on expansive soil cracks under changing environment.

    Science.gov (United States)

    Shi, Bei-xiao; Zheng, Cheng-feng; Wu, Jin-kun

    2014-01-01

    Engineering problems shunned previously rise to the surface gradually with the activities of reforming the natural world in depth, the problem of expansive soil crack under the changing environment becoming a control factor of expansive soil slope stability. The problem of expansive soil crack has gradually become a research hotspot, elaborates the occurrence and development of cracks from the basic properties of expansive soil, and points out the role of controlling the crack of expansive soil strength. We summarize the existing research methods and results of expansive soil crack characteristics. Improving crack measurement and calculation method and researching the crack depth measurement, statistical analysis method, crack depth and surface feature relationship will be the future direction.

  12. Geometry of solar corona expansion and solar wind parameters

    International Nuclear Information System (INIS)

    Krajnev, M.B.

    1980-01-01

    The character of the parameter chanqe of solar wind plasma in the region of the Earth orbit is studied. The main regularities in the parametep behaviour of solar wind (plasma velocity and density) are qualitatively explained in the framework of a model according to which solar corona expansion stronqly differs from radial expansion, that is: the solar wind current lines are focused towards helioequator during the period of low solar activity with gradual transfer to radial expansion during the years of high solar activity. It is shown that the geometry of the solar wind current tubes and its change with the solar activity cycle can not serve an explanation of the observed change of the solar wind parameters

  13. Prediction and control of the coefficient of thermal expansion of concrete

    International Nuclear Information System (INIS)

    Ziegeldorf, S.; Kleiser, K.; Hilsdorf, H.K.

    1979-01-01

    Prediction and control of the coefficient of thermal expansion of concrete. In this report various procedures for the prediction of the coefficient of thermal expansion of concrete are summarized. The values predicted with these procedures are compared to experimental data. In the experimental investigation the coefficient of thermal expansion of various types of aggregates and types of concrete both in a dry and a moist state in the temperature range RT/180 0 C have been measured. The most significant result obtained is that for equal volume fractions the thermal properties of coarse aggregates have a more pronounced effect upon thermal expansion of concrete than those of fine aggregates. In the analysis an attempt has been made to estimate the thermal expansion of concrete from the properties of the concrete components by means of a finite element procedure. On the basis of the experimental data and of the analysis of internal temperature stresses in the concrete a simple relationship for the determination of the coefficient of thermal expansion of concrete has been deduced. In this relationship different thermal properties of coarse and fine aggregates may be taken into account. Compared to other methods this relationship yields, both for dry and for moist concrete, values which are in good agreement with the experimental data. (orig.) [de

  14. Notes on Mayer expansions and matrix models

    International Nuclear Information System (INIS)

    Bourgine, Jean-Emile

    2014-01-01

    Mayer cluster expansion is an important tool in statistical physics to evaluate grand canonical partition functions. It has recently been applied to the Nekrasov instanton partition function of N=2 4d gauge theories. The associated canonical model involves coupled integrations that take the form of a generalized matrix model. It can be studied with the standard techniques of matrix models, in particular collective field theory and loop equations. In the first part of these notes, we explain how the results of collective field theory can be derived from the cluster expansion. The equalities between free energies at first orders is explained by the discrete Laplace transform relating canonical and grand canonical models. In a second part, we study the canonical loop equations and associate them with similar relations on the grand canonical side. It leads to relate the multi-point densities, fundamental objects of the matrix model, to the generating functions of multi-rooted clusters. Finally, a method is proposed to derive loop equations directly on the grand canonical model

  15. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    Science.gov (United States)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the

  16. Light-induced reversible expansion of individual gold nanoplates

    Directory of Open Access Journals (Sweden)

    Jinsheng Lu

    2017-10-01

    Full Text Available Light-induced mechanical response of materials has been extensively investigated and widely utilized to convert light energy into mechanical energy directly. The metallic nanomaterials have excellent photothermal properties and show enormous potential in micromechanical actuators, etc. However, the photo-thermo-mechanical properties of individual metallic nanostructures have yet to be well investigated. Here, we experimentally demonstrate a way to realize light-induced reversible expansion of individual gold nanoplates on optical microfibers. The light-induced thermal expansion coefficient is obtained as 21.4 ± 4.6 ∼ 31.5 ± 4.2 μ·K-1 when the light-induced heating temperature of the gold nanoplates is 240 ∼ 490 °C. The photo-thermo-mechanical response time of the gold nanoplates is about 0.3 ± 0.1 s. This insight into the photo-thermo-mechanical properties of the gold nanoplates could deepen the understanding of the light-induced reversible expansion behavior in nanoscale and pave the way for applications based on this piezoelectric-like response, such as light-driven metallic micromotors.

  17. Studying medium effects with the optimized δ expansion

    International Nuclear Information System (INIS)

    Krein, G.; Menezes, D.P.; Nielsen, M.; Pinto, M.B.

    1995-04-01

    The possibility of using the optimized δ expansion for studying medium effects on hadronic properties in quark or nuclear matter is investigated. The δ expansion is employed to study density effects with two commonly used models in hadron and nuclear physics, the Nambu-Jona-Lasinio model for the dynamical chiral symmetry breaking and the Walecka model for the equation of state of nuclear matter. The results obtained with the δ expansion are compared to those obtained with the traditional Hartree-Fock approximation. Perspectives for using the δ expansion in other field theoretic models in hadron and nuclear physics are discussed. (author). 17 refs, 9 figs

  18. Studying medium effects with the optimized {delta} expansion

    Energy Technology Data Exchange (ETDEWEB)

    Krein, G [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Menezes, D P [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Fisica; Nielsen, M [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Pinto, M B [Montpellier-2 Univ., 34 (France). Lab. de Physique Mathematique

    1995-04-01

    The possibility of using the optimized {delta} expansion for studying medium effects on hadronic properties in quark or nuclear matter is investigated. The {delta} expansion is employed to study density effects with two commonly used models in hadron and nuclear physics, the Nambu-Jona-Lasinio model for the dynamical chiral symmetry breaking and the Walecka model for the equation of state of nuclear matter. The results obtained with the {delta} expansion are compared to those obtained with the traditional Hartree-Fock approximation. Perspectives for using the {delta} expansion in other field theoretic models in hadron and nuclear physics are discussed. (author). 17 refs, 9 figs.

  19. Anomalous thermal expansion, negative linear compressibility, and high-pressure phase transition in ZnAu2(CN) 4 : Neutron inelastic scattering and lattice dynamics studies

    Science.gov (United States)

    Gupta, Mayanak K.; Singh, Baltej; Mittal, Ranjan; Zbiri, Mohamed; Cairns, Andrew B.; Goodwin, Andrew L.; Schober, Helmut; Chaplot, Samrath L.

    2017-12-01

    We present temperature-dependent inelastic-neutron-scattering measurements, accompanied by ab initio calculations of the phonon spectra and elastic properties as a function of pressure to quantitatively explain an unusual combination of negative thermal expansion and negative linear compressibility behavior of ZnAu2(CN) 4 . The mechanism of the negative thermal expansion is identified in terms of specific anharmonic phonon modes that involve bending of the -Zn-NC-Au-CN-Zn- linkage. The soft phonon at the L point at the Brillouin zone boundary quantitatively relates to the high-pressure phase transition at about 2 GPa. The ambient pressure structure is also found to be close to an elastic instability that leads to a weakly first-order transition.

  20. A pedagogical approach to the Magnus expansion

    International Nuclear Information System (INIS)

    Blanes, S; Casas, F; Oteo, J A; Ros, J

    2010-01-01

    Time-dependent perturbation theory as a tool to compute approximate solutions of the Schroedinger equation does not preserve unitarity. Here we present, in a simple way, how the Magnus expansion (also known as exponential perturbation theory) provides such unitary approximate solutions. The purpose is to illustrate the importance and consequences of such a property. We suggest that the Magnus expansion may be introduced to students in advanced courses of quantum mechanics.

  1. Origami structures for tunable thermal expansion

    Science.gov (United States)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  2. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.

    1984-01-01

    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  3. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  4. Task-Based Language Teaching and Expansive Learning Theory

    Science.gov (United States)

    Robertson, Margaret

    2014-01-01

    Task-Based Language Teaching (TBLT) has become increasingly recognized as an effective pedagogy, but its location in generalized sociocultural theories of learning has led to misunderstandings and criticism. The purpose of this article is to explain the congruence between TBLT and Expansive Learning Theory and the benefits of doing so. The merit…

  5. A new separable expansion for the two-body problem

    International Nuclear Information System (INIS)

    Haberzettl, H.

    1988-07-01

    We derive a new separable expansion of the two-body T matrix which represents the T matrix as a series of diagonal separable terms. The representation is exact half-on-shell at all energies even when truncated to one single term; moreover, the truncated expansion satisfies the full off-shell unitarity relation. The approach does not take recourse to some complete set of functions but rather uses properties of the Lippmann-Schwinger equation itself to arrive at the expansion. It is based on the W-matrix representation of the two-body T matrix introduced by Bartnik, Haberzettl, and Sandhas. That representation provides a splitting of the T matrix in one single separable term which contains all bound state poles and scatttering cuts and in a nonsingular, real remainder which vanishes half-on-shell. The method presented here yields a separable expansion of this remainder in which all its properties are preserved term by term. Any given n-term approximation can easily be refined to an (n+1)-term expansion by simply adding a new term. At each stage the amount of additional numerical work is constant. The method is applicable to any kind of short range potential, local, nonlocal or energy dependent. (orig.)

  6. Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion

    Directory of Open Access Journals (Sweden)

    Astafyeva Liudmila

    2011-01-01

    Full Text Available Abstract Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell, created under laser heating of nanoparticle in water, were theoretically investigated. Vapor shell expansion leads to decreasing up to one to two orders of magnitude in comparison with initial values of scattering and extinction of the radiation with wavelengths 532 and 633 nm by system while shell radius is increased up to value of about two radii of nanoparticle. Subsequent increasing of shell radius more than two radii of nanoparticle leads to rise of scattering and extinction properties of system over initial values. The significant decrease of radiation scattering and extinction by system of nanoparticle-vapor shell can be used for experimental detection of the energy threshold of vapor shell formation and investigation of the first stages of its expansion. PACS: 42.62.BE. 78.67. BF

  7. Fabrication and properties of polyimide composites filled with zirconium tungsten phosphate of negative thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Shi, XinWei, E-mail: Shixw@zzu.edu.cn [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Lian, Hong; Yan, XiaoSheng; Qi, Ruiqiong; Yao, Ning [School of Physical Science & Engineering, Zhengzhou University, 100th Science Road, Zhengzhou 450001 (China); Li, Tao [Department of Technology & Physics, Zhengzhou University of Lightindustry, 5th Dongfeng Road, Zhengzhou 450002 (China)

    2016-08-15

    Negative thermal expansion Zr{sub 2}WP{sub 2}O{sub 12} (ZWP) powder prepared by hydrothermal method was used as fillers to tailor the thermal expansion coefficient (TEC) of the polyimide (PI)-based composites. A series of PI-based composites containing different loading (0–40 wt% or 0–19.6 vol%) of ZWP powder were fabricated by the in-situ polymerization technique. Their structures and properties were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Impedance meter, Thermal mechanical analysis (TMA) and Thermogravimetric analysis (TGA). The additions of ZWP steadily reduced the TEC of the PI matrix at all loadings studied. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of TEC. The thermal stability of the ZWP/PI composites can be enhanced with the increment of ZWP powder. The independence of the dielectric constant on frequency is improved by introduction of ZWP particles to PIs. The dielectric loss displays good stability, which indicates that the ZWP/PI composites show potential applications in microelectronic and aerospace industries. - Graphical abstract: With increasing of ZWP in the composites, the CTEs of the ZWP/PI were reduced. A 40 wt% (19.6 vol%) ZWP loading gives a 32.5% (about 15 × 10{sup −6}/K) reduction of CTE of the composite. - Highlights: • Zr{sub 2}P{sub 2}WO{sub 12} was firstly used as filler to tune the TEC of polyimides. • The TECs of polyimides were reduced by introduction of Zr{sub 2}P{sub 2}WO{sub 12} powders. • Polyimides with reduced TECs have favorable thermal and dielectric properties.

  8. Exact series expansions, recurrence relations, properties and integrals of the generalized exponential integral functions

    International Nuclear Information System (INIS)

    Altac, Zekeriya

    2007-01-01

    Generalized exponential integral functions (GEIF) are encountered in multi-dimensional thermal radiative transfer problems in the integral equation kernels. Several series expansions for the first-order generalized exponential integral function, along with a series expansion for the general nth order GEIF, are derived. The convergence issues of these series expansions are investigated numerically as well as theoretically, and a recurrence relation which does not require derivatives of the GEIF is developed. The exact series expansions of the two dimensional cylindrical and/or two-dimensional planar integral kernels as well as their spatial moments have been explicitly derived and compared with numerical values

  9. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus

    International Nuclear Information System (INIS)

    Sun, Hongyi; Liu, Gang; Li, Qingfang; Wan, X.G.

    2016-01-01

    The linear thermal expansion coefficients (LTEC) and thermomechanics of single-layer black and blue phosphorus are systematically studied using first-principles based on quasiharmonic approximation. We find the thermal expansion of black phosphorus is very anisotropic. The LTEC along zigzag direction has a turning from negative to positive at around 138 K, while the LTEC along armchair direction is positive (except below 8 K) and about 2.5 times larger than that along zigzag direction at 300 K. For blue phosphorus, the LTEC is negative in the temperature range from 0 to 350 K. In addition, we find that the Young's modulus and Poisson's ratio of black phosphorus along zigzag direction are 4 to 5 times larger than those along armchair direction within considered temperature range, showing a remarkable anisotropic in-plane thermomechanics property. The mechanisms of these peculiar thermal properties are also explored. This work provides a theoretical understanding of the thermal expansion and thermomechanics of this single layer phosphorus family, which will be useful in nanodevices. - Highlights: • The thermal properties of black and blue phosphorus are studied. • Black phosphorus shows remarkable anisotropic thermal expansion and thermomechanics properties. • Blue phosphorus shows novel negative thermal expansion. • The thermal expansion properties are well analyzed by grüneisen theory.

  10. Human brain expansion during evolution is independent of fire control and cooking

    Directory of Open Access Journals (Sweden)

    Alianda Maira Cornélio

    2016-04-01

    Full Text Available What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidences of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion.

  11. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking.

    Science.gov (United States)

    Cornélio, Alianda M; de Bittencourt-Navarrete, Ruben E; de Bittencourt Brum, Ricardo; Queiroz, Claudio M; Costa, Marcos R

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion.

  12. Soil food web properties explain ecosystem services across European land use systems.

    Science.gov (United States)

    de Vries, Franciska T; Thébault, Elisa; Liiri, Mira; Birkhofer, Klaus; Tsiafouli, Maria A; Bjørnlund, Lisa; Bracht Jørgensen, Helene; Brady, Mark Vincent; Christensen, Søren; de Ruiter, Peter C; d'Hertefeldt, Tina; Frouz, Jan; Hedlund, Katarina; Hemerik, Lia; Hol, W H Gera; Hotes, Stefan; Mortimer, Simon R; Setälä, Heikki; Sgardelis, Stefanos P; Uteseny, Karoline; van der Putten, Wim H; Wolters, Volkmar; Bardgett, Richard D

    2013-08-27

    Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.

  13. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  14. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    Directory of Open Access Journals (Sweden)

    Akihiro Takezawa

    2015-07-01

    Full Text Available Additive manufacturing (AM could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than −1 × 10−4 K−1 was observed for each test piece of the N = 3 experiment.

  15. Evaluation of tank thermal expansion data in CALDEX

    International Nuclear Information System (INIS)

    Suda, S.; Weh, R.

    1991-01-01

    A thermal expansion test involving a large annular input reprocessing tank was carried out as a part of the CALDEX Project at the TEKO test facility in Karlsruhe, FRG. The objective of this test was to investigate thermal expansion properties of the tank and effects on various pressure and level measurement instruments used in the determination of liquid volume. In the thermal expansion test, a weak nitric acid solution was heated internally to a temperature of 60 degrees C by means of steam injection through the sparge ring. After heating, the annular tank took about one hour to thermally equilibrate, and it took another hour for the sparge ring and pulsator pipes to fill before thermal effects could be followed. The temperature at the end of the test, after tank and its contents had cooled undisturbed for fifty hours, was 29.9 degrees C. Thirteen instrument readings were obtained during each measurement cycle of roughly 70 seconds for a total of over 2800 readings per instrument. Thermal expansion effects for the CALDEX annular tank were consistent with that reported for cylindrical tanks. Temperature variations effect each type of probe in a way that depends on the properties of the probe and the characteristics of the measurement system. 3 refs., 4 figs., 3 tabs

  16. An assessment of the expansion strategy followed by Avianca Airlines: Period 2008-2012

    Directory of Open Access Journals (Sweden)

    Mauricio Emboaba Moreira

    2017-04-01

    Full Text Available Purpose: This article aims to apply to the case of Avianca Airlines the Analytical Model for the Assessment of Airline Expansion Strategies developed by Moreira (2014 in order to explain the rationale of the expansion strategy followed by this airline and indicate other possible expansion strategies.  Design/methodology/approach: This article is a case study in the sense that it aims to arrive to broad generalizations based on the collected evidences, focusing on one of the most traditional airlines in the world. This article is a positivist case study, based in the positivist understanding; because it is supported by objective facts of the situation which are informed by the researcher’s interpretive understanding according to it is recommended for this type of study. Findings: The application of the Analytical Model for the Assessment of Airline Expansion Strategies above referred was successful, considering that the model was able to explain a wide range of complex aspects of the Avianca’s development. Thus, being one of the oldest airlines in continued operation in the world, the expansion process of this airline is connected to many political, sociological and economic facets - ie., its general environment - of its mother country, Colombia. The analytical model offered the opportunity to explore these issues in a detailed manner, adding a broader comprehension of this airline that goes beyond its operating and economic analysis. Originality/value: They reside on the fact that this is the first time that this analytical model is applied to study extensively an actual situation. Besides, airlines in Latin America have not been widely covered by the academia and this is an opportunity to begin to fill this gap. Furthermore, the referred analytical model is applicable to organizations or firms that operate in other industries if the proper adjustments are made. Implications: The implications for the academic research are to understand that

  17. On the stress-free lattice expansion of porous cordierite

    International Nuclear Information System (INIS)

    Bruno, Giovanni; Efremov, Alexander M.; Clausen, Bjorn; Balagurov, Anatoly M.; Simkin, Valeriy N.; Wheaton, Bryan R.; Webb, James E.; Brown, Donald W.

    2010-01-01

    An extensive investigation of the lattice expansion (up to 1200 deg. C) of porous synthetic cordierite (obtained by firing a mixture of talc, clay, alumina and silica) was carried out using time-of-flight neutron diffraction at LANSCE, Los Alamos, NM, USA and FNLP, Dubna, Russia. An extruded rod and several powders, with different particle size (dispersity), were studied, with the aim of monitoring the variation of the (lattice) micro-strain as a function of temperature and its influence on the microscopic and macroscopic thermal expansion. Results show a different expansion of the a- and b-axes of the orthorhombic cell (in the rod above 800 deg. C). While the finest powder seems to contract more along the c-axis, thus hinting at the presence of smaller stress, the integral peak width increases as a function of temperature in the intermediate range (300-700 deg. C). This could be explained by the integrity factor modeling in terms of micro-cracking. In polycrystalline cordierite, the model implies tension along the a- and b-axes (positive thermal expansion) accompanied by compression along the c-axis (negative thermal expansion) and a stress release upon cooling, via a thermal micro-cracking mechanism. The calculations of the cordierite macroscopic thermal expansion having as input crystal axial expansions assumed to be stress-free allowed us to conclude that even a fine powder (5 μm particle size) cannot be considered completely stress-free. This conclusion is supported by microstructural observations.

  18. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method.

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  19. Discrete expansions of continuum wave functions

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1980-01-01

    Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)

  20. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    Science.gov (United States)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  1. The Analytical Diffusion-Expansion Model for Forbush Decreases Caused by Flux Ropes

    Science.gov (United States)

    Dumbovic, M.; Temmer, M.

    2017-12-01

    Identification and tracking of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere is a growingly important aspect of space weather research. One of the "signatures" of ICME passage is the corresponding Forbush decrease (FD), a short term decrease in the galactic cosmic ray flux. These depressions are observed at the surface of the Earth for over 50 years, by several spacecraft in interplanetary space in the past couple of decades, and recently also on Mars' surface with Curiosity rover. In order to use FDs as ICME signatures efficiently, it is important to model ICME interaction with energetic particles by taking into account ICME evolution and constraining the model with observational data. We present an analytical diffusion-expansion FD model ForbMod which is based on the widely used approach of the initially empty, closed magnetic structure (i.e. flux rope) which fills up slowly with particles by perpendicular diffusion. The model is restricted to explain only the depression caused by the magnetic structure of the ICME and not of the associated shock. We use remote CME observations and a 3D reconstruction method (the Graduated Cylindrical Shell method) to constrain initial and boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several options of flux rope expansion are regarded as the competing mechanism to diffusion which can lead to different FD characteristics. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 745782.

  2. Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion

    International Nuclear Information System (INIS)

    Dudek, Krzysztof K; Attard, Daphne; Caruana-Gauci, Roberto; Grima, Joseph N; Wojciechowski, Krzysztof W

    2016-01-01

    Unimode metamaterials made from rotating rigid triangles are analysed mathematically for their mechanical and thermal expansion properties. It is shown that these unimode systems exhibit positive Poisson’s ratios irrespective of size, shape and angle of aperture, with the Poisson’s ratio exhibiting giant values for certain conformations. When the Poisson’s ratio in one loading direction is larger than +1, the systems were found to exhibit the anomalous property of negative linear compressibility along this direction, that is, the systems expand in this direction when hydrostatically compressed. Also discussed are the thermal expansion properties of these systems under the assumption that the units exhibit increased rotational agitation once subjected to an increase in temperature. The effect of the geometric parameters on the aforementioned thermo-mechanical properties of the system, are discussed, with the aim of identifying negative behaviour. (paper)

  3. Zero expansion glass ceramic ZERODUR® roadmap for advanced lithography

    Science.gov (United States)

    Westerhoff, Thomas; Jedamzik, Ralf; Hartmann, Peter

    2013-04-01

    The zero expansion glass ceramic ZERODUR® is a well-established material in microlithography in critical components as wafer- and reticle-stages, mirrors and frames in the stepper positioning and alignment system. The very low coefficient of thermal expansion (CTE) and its extremely high CTE homogeneity are key properties to achieve the tight overlay requirements of advanced lithography processes. SCHOTT is continuously improving critical material properties of ZERODUR® essential for microlithography applications according to a roadmap driven by the ever tighter material specifications broken down from the customer roadmaps. This paper will present the SCHOTT Roadmap for ZERODUR® material property development. In the recent years SCHOTT established a physical model based on structural relaxation to describe the coefficient of thermal expansion's temperature dependence. The model is successfully applied for the new expansion grade ZERODUR® TAILORED introduced to the market in 2012. ZERODUR® TAILORED delivers the lowest thermal expansion of ZERODUR® products at microlithography tool application temperature allowing for higher thermal stability for tighter overlay control in IC production. Data will be reported demonstrating the unique CTE homogeneity of ZERODUR® and its very high reproducibility, a necessary precondition for serial production for microlithography equipment components. New data on the bending strength of ZERODUR® proves its capability to withstand much higher mechanical loads than previously reported. Utilizing a three parameter Weibull distribution it is possible to derive minimum strength values for a given ZERODUR® surface treatment. Consequently the statistical uncertainties of the earlier approach based on a two parameter Weibull distribution have been eliminated. Mechanical fatigue due to stress corrosion was included in a straightforward way. The derived formulae allows calculating life time of ZERODUR® components for a given stress

  4. Thermal expansion of fibre-reinforced composites

    International Nuclear Information System (INIS)

    Schneider, B.

    1991-07-01

    The integral thermal expansion and the coefficient of thermal expansion (CTE) of carbon and Kevlar fibre-reinforced composites were measured with high accuracy from 5 K to room temperature. For this, a laser dilatometer and a sophisticated measuring procedure were used. CTE dependence on the orientation angle ω of angle-ply laminates was determined for samples with 5 different fibre alignments (UD 0deg, +/-30deg, +/-45deg, +/-60deg and UD 90deg). A high variability of the CTE with the orientation angle was shown. At angles of approximately +/-30deg even negative CTEs were found. With suitable reinforcing fibres being selected, their absolute values rose up to 30-100% of the positive CTEs of metals. Hence, composites of this type would be suitable as compensating materials in metal constructions where little thermal expansion is desired. To check the lamination theory, theoretical computations of the CTE- ω -dependence were compared with the measured values. An excellent agreement was found. Using the lamination theory, predictions about the expansion behaviour of angle-ply laminates can be made now, if the thermal and mechanical properties of the unidirectional (UD) laminate are known. Furthermore, it is possible to carry out simulation computations aimed at investigating the influence of a single parameter of the UD-laminate (e.g. shear modulus) on the expansion of the angle-ply laminate. (orig.) [de

  5. The thermal expansion of austenitic manganese and manganese-chromium steels

    International Nuclear Information System (INIS)

    Richter, F.

    1977-01-01

    The linear coefficient of thermal expansion was determined by dilatometer for 5 Mn steels and 6 Mn-Cr steels between -196 and +500 0 C. Because of the antiferromagnetic properties, the thermal expansion of austenitic Mn and Mn-Cr steels is determined by the position of the magnetic changeover temperature (Neel temperature), which depends on the chemical composition of the steel. Below the Neel temperature, the thermal coefficient of expansion is greatly reduced by volumetric magnetostriction (Invar effect). For this reason, one can only give approximate values for thermal expansion for all Mn and Mn-Cr steels in the temperature range of -100 0 C to about +100 0 C. (GSC) [de

  6. Eigenfunction expansions and scattering theory in rigged Hilbert spaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cubillo, F [Dpt. de Analisis Matematico, Universidad de Valladolid. Facultad de Ciencias, 47011 Valladolid (Spain)], E-mail: fgcubill@am.uva.es

    2008-08-15

    The work reviews some mathematical aspects of spectral properties, eigenfunction expansions and scattering theory in rigged Hilbert spaces, laying emphasis on Lippmann-Schwinger equations and Schroedinger operators.

  7. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    Directory of Open Access Journals (Sweden)

    Amparo Borrell, Olga García-Moreno, Ramón Torrecillas, Victoria García-Rocha and Adolfo Fernández

    2012-01-01

    Full Text Available Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C. The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  8. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    International Nuclear Information System (INIS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-01-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (−150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  9. Asymptotic Expansions of Generalized Nevanlinna Functions and their Spectral Properties

    NARCIS (Netherlands)

    Derkach, Vladimir; Hassi, Seppo; de Snoo, Hendrik

    2007-01-01

    Asymptotic expansions of generalized Nevanlinna functions Q are investigated by means of a factorization model involving a part of the generalized zeros and poles of nonpositive type of the function Q. The main results in this paper arise from the explicit construction of maximal Jordan chains in

  10. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2018-03-01

    Full Text Available Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS. The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  11. Thermal expansion and magnetostriction measurements at cryogenic temperature using the strain gage method

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-03-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra low temperature (<77 K) environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gage method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 K and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  12. A topological expansion for high energy hadronic collisions. I

    International Nuclear Information System (INIS)

    Ciafaloni, M.; Marchesini, G.; Veneziano, G.

    1975-01-01

    In this and in a companion paper a 'topological expansion' for high-energy hadronic processes is proposed and discussed. In the first paper the general properties of the expansion and its connection with Gribov's reggeon calculus are presented. The topological expansion is first defined mathematically for a large class of theories and is shown to be equivalent to a 'large N expansion' in some theories which include planar dual models and non-Abelaian gauge theories. Next, the definition of the bare parameters is given in terms of graphs on a sphere. The bare pomeron pole and its couplings are thus introduced. The (inclusive) form of s-channel unitarity and its consequences for the above couplings are recalled. It is then shown how the expansion in the number of 'handles' of the graph can be related to Gribov's reggeon calculus and how, with the aid of discontinuity equations in the J-plane, scaling solutions can be obtained and critical indices can be computed to yield known results. (Auth.)

  13. Environmental Impacts of Airport Operations: Maintenance, and Expansion

    National Research Council Canada - National Science Library

    Luther, Linda

    2007-01-01

    ... impacts associated with airport operations and expansion are likely to be debated. This issue is important to various stakeholders, particularly those whose health, property values, and quality of life may be affected by such impacts...

  14. Convergence of high-intensity expansions for atomic ionization

    International Nuclear Information System (INIS)

    Antunes Neto, H.S.; Davidovich, L.

    1984-01-01

    It is shown that a frequently used nonperturbative approximation for atomic ionization rates is cancelled out when corrections are taken into account. This explains the strong gauge dependence of previous results. A convergent and gauge invariant expansion is obtained. Numerical results show that its first term, which may be calculated analytically in many cases, describes very well the time-dependent behaviour of the ionization probability, for very strong fields. (Author) [pt

  15. The free-jet expansion from a capillary source

    International Nuclear Information System (INIS)

    Miller, D.R.; Fineman, M.A.; Murphy, H.

    1985-01-01

    This paper presents a comparison of the free-jet expansions originating from an orifice and a capillary by measuring the terminal gas properties. Time-of-flight and intensity data are reported for pure gases (He, Ar, CO 2 ) and mixtures of CO 2 /He, together with condensed dimer intensities for Ar and Co 2 . Pitot tube data are reported for N 2 . The results suggest that the free-jet expansions are nearly the same, provided the capillary is modeled as a non-isentropic Fanno flow process. The Fanno flow is slightly non-adiabatic, which complicates the analysis. Only the condensation kinetics appear strongly sensitive to the differences in the initial conditions for the supersonic expansion; any kinetic process relaxing near the capillary orifice exit would be affected

  16. Residual stresses associated with the hydraulic expansion of steam generator tubing into tubesheets

    International Nuclear Information System (INIS)

    Middlebrooks, W.B.; Harrod, D.L.; Gold, R.E.

    1991-01-01

    Westinghouse has used three different processes for the full depth expansion of tubes into the tube sheets of recirculating nuclear steam generators: mechanical rolling, explosive expansion and hydraulic expansion. Each process aims at expanding tubes tightly to tube sheets, leaving the smallest possible secondary side crevice depth, and minimizing the residual stress in the expanded tubes, all for the purpose of mitigating the effect of corrosion phenomena. The hydraulic expansion process was qualified and has been implemented since 1978, and more than 1.1 million tube ends have been hydraulically expanded into production units. In this paper, the results of the recent analytical studies related to the residual stress in the expanded tubes are summarized. The method of hydraulic expansion is explained, and some important parameters are given. Finite element method, theoretical incremental analysis, tube sheet yielding and residual stress, contact pressure, sensitivity analysis and temperature effect in the central region of tube sheets, and the residual stress in the transition zone are described. (K.I.)

  17. Mayer expansions for Euclidean lattice field theory: Convergence properties and relation with perturbation theory

    International Nuclear Information System (INIS)

    Pordt, A.

    1985-10-01

    The author describes the Mayer expansion in Euclidean lattice field theory by comparing it with the statistical mechanics of polymer systems. In this connection he discusses the Borel summability and the analyticity of the activities on the lattice. Furthermore the relations between renormalization and the Mayer expansion are considered. (HSI)

  18. Properties of glass, oil's formation...how to explain it? The secret is to amaze!

    Science.gov (United States)

    Merlino, Silvia; Evangelista, Rosaria; Bianucci, Marco; Mantovani, Carlo; Gambarelli, Licia

    2013-04-01

    The design and testing of numerous routes for teaching and dissemination of topics in physics, biology, geology and energy is born from a collaboration between teachers and researchers that lasted for many years in Parma, Italy. These projects are implemented by the association "Parma Casa della Scienza", which promotes the dissemination of scientific culture in schools and among the public. The main purpose of the association is to create a science center in Parma, offering also training opportunities on techniques for teaching science. The funds for the projects come from European competitions and Cariparma Foundation. Currently the association is proposing laboratory activities, with the widespread diffusion of 20 educational programs, included in school curricula. The approach is informal and aims at the stimulation of curiosity and surprise. Students who participate arise so spontaneously in an attitude of research - action, working directly on the phenomena under study. This avoids the clichés of standard passive listening. Our work is a constant search for ideas, ways and means to demonstrate, for the purposes of school education, how useful is the game and the interaction with the phenomena, many of which are usually only seen in books and not lived with awareness. Two in particular are the educational proposals that we would like to present , relating to content of great importance that are rarely addressed in the context of schooling completed First Path: explains the physico-chemical properties and structural properties of glassy materials; enters the details of the molecular structure of "amorphous solid" contrasting it with that of crystalline solid; llustrates the process of formation; gives reason for its peculiar properties from which derive extreme flexibility of working and the many optical properties. This is achieved through the actual processing of a fluid "pseudo glassy" realized at low temperatures, which simulates the processes described

  19. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiński, Wojciech, E-mail: wkaminsk@fuw.edu.pl [Wydział Fizyki, Uniwersytet Warszawski, Hoża 69, 00-681, Warsaw (Poland); Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany); Steinhaus, Sebastian, E-mail: steinhaus.sebastian@gmail.com [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-12-15

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  20. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    International Nuclear Information System (INIS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-01-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol

  1. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Science.gov (United States)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-12-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  2. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer.

    Science.gov (United States)

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G; Shimakawa, Yuichi; Attfield, J Paul

    2011-06-14

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion linear expansion coefficient for Bi(0.95)La(0.05)NiO(3) is -137×10(-6) K(-1) and a value of -82×10(-6) K(-1) is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders.

  3. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  4. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    Science.gov (United States)

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  5. Towards finite density QCD with Taylor expansions

    International Nuclear Information System (INIS)

    Karsch, F.; Schaefer, B.-J.; Wagner, M.; Wambach, J.

    2011-01-01

    Convergence properties of Taylor expansions of observables, which are also used in lattice QCD calculations at non-zero chemical potential, are analyzed in an effective N f =2+1 flavor Polyakov quark-meson model. A recently developed algorithmic technique allows the calculation of higher-order Taylor expansion coefficients in functional approaches. This novel technique is for the first time applied to an effective N f =2+1 flavor Polyakov quark-meson model and the findings are compared with the full model solution at finite densities. The results are used to discuss prospects for locating the QCD phase boundary and a possible critical endpoint in the phase diagram.

  6. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  7. Effect of Aggregate Mineralogy and Concrete Microstructure on Thermal Expansion and Strength Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Jinwoo An

    2017-12-01

    Full Text Available Aggregate type and mineralogy are critical factors that influence the engineering properties of concrete. Temperature variations result in internal volume changes could potentially cause a network of micro-cracks leading to a reduction in the concrete’s compressive strength. The study specifically studied the effect of the type and mineralogy of fine and coarse aggregates in the normal strength concrete properties. As performance measures, the coefficient of thermal expansion (CTE and compressive strength were tested with concrete specimens containing different types of fine aggregates (manufactured and natural sands and coarse aggregates (dolomite and granite. Petrographic examinations were then performed to determine the mineralogical characteristics of the aggregate and to examine the aggregate and concrete microstructure. The test results indicate the concrete CTE increases with the silicon (Si volume content in the aggregate. For the concrete specimens with higher CTE, the micro-crack density in the interfacial transition zone (ITZ tended to be higher. The width of ITZ in one of the concrete specimens with a high CTE displayed the widest core ITZ (approx. 11 µm while the concrete specimens with a low CTE showed the narrowest core ITZ (approx. 3.5 µm. This was attributed to early-age thermal cracking. Specimens with higher CTE are more susceptible to thermal stress.

  8. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    International Nuclear Information System (INIS)

    Zhou, Xiafeng; Guo, Jiong; Li, Fu

    2015-01-01

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  9. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  10. Economic expansion and increase in labout market formality: a poaching approach

    Directory of Open Access Journals (Sweden)

    Carlos Henrique L. Corseuil

    2012-06-01

    Full Text Available This paper investigates the relationship between economic expansion and the degree of formalization for the Brazilian labour market in the recent period. We present a theoretical framework that attempts to explain this relationship through the dynamics of firms hiring strategies. The main predictions are: the share of formal employment rises as the unemployment rate falls, and that the formal-informal wage gap increases, at least at the beginning of the economic expansion. In the empirical part, we use longitudinal microdata from a Brazilian household survey to check whether these two predictions are confirmed. To a large extent our results corroborate both predictions.

  11. Derivative expansion and renormalisation group flows

    CERN Document Server

    Litim, Daniel F

    2001-01-01

    We study the convergence of the derivative expansion for flow equations. The convergence strongly depends on the choice for the infrared regularisation. Based on the structure of the flow, we explain why optimised regulators lead to better physical predictions. This is applied to O(N)-symmetric real scalar field theories in 3d, where critical exponents are computed for all N. In comparison to the sharp cut-off regulator, an optimised flow improves the leading order result up to 10%. An analogous reasoning is employed for a proper time renormalisation group. We compare our results with those obtained by other methods.

  12. Properties and development of the middle European Lithospere: Reality and Ideas

    Directory of Open Access Journals (Sweden)

    Miloš Suk

    2007-01-01

    Full Text Available The structure of the middle European lithosphere is extra-ordinary complicated by a combination of the shield type (Baltica the organic type (European Cadomiles, Hercyniles and Alpides and the basin types (Po and Pannonian basins lithosphere. The geological and geophysical data on its structure, age distribution of temperature and pressures and on the plate movements in its geological development inspire some loubts about the correctness of the theories exploining the relations of the parts by subduction processes only. For example, the long distance autonomous movements deduced from paleomagnetic data can be explained by an expansion of the continental crust and the anomalous properties or tne basins are explainable by the beginning of the origin of a new intracontinental rift zone.

  13. Expansion of a stochastic stationary optical field at a fixed point

    International Nuclear Information System (INIS)

    Martinez-Herrero, R.; Mejias, P.M.

    1984-01-01

    An important problem in single and multifold photoelectron statistics is to determine the statistical properties of a totally polarized optical field at some point →r from the photoelectron counts registered by the detector. The solution to this problem may be found in the determination of the statistical properties of an integral over a stochastic process; a complicated and formidable task. This problem can be solved in some cases of interest by expanding the process V(t) (which represents the field at →r) in a set of complete orthonormal deterministic functions, resulting in the so-called Karhunen-Loeve expansion of V(t). Two disadvantages are that the process must be defined over a finite time interval, and that each term of the series does not represent any special optical field. Taking into account these limitations of the expansion, the purpose of this work is to find another alternative expansion of stationary optical fields defined over the infinite time interval, and whose terms represent stochastic fields

  14. Negative thermal expansion in Sc2(WO4)3

    International Nuclear Information System (INIS)

    Evans, J.S.O.; Mary, T.A.; Sleight, A.W.

    1998-01-01

    Sc 2 (WO 4 ) 3 has been found to show the highly unusual property of negative thermal expansion over a temperature range of 10 to 1,073 K. Powder neutron diffraction data from 10 to 450 K shows an essentially linear decrease in cell volume as a function of temperature. The intrinsic linear coefficient of thermal expansion from this data is -2.2 x 10 -6 K -1 . The linear coefficient of thermal expansion measured on a ceramic bar of Sc 2 (WO 4 ) 3 can be as negative as -11 x 10 -6 K -1 due to microstructure changes as a function of temperature. Rietveld refinement as a function of temperature suggests that the intrinsic negative thermal expansion can be related to transverse vibrations of bridging oxygen atoms in the structure. The anharmonic nature of these vibrations leads to a coupled tilting of the quasi-rigid framework polyhedra. This tilting in turn causes the structure to become more dense with increasing temperature

  15. Linear expansion, specific heat and thermodynamic properties of the CdTl2Te4 compound

    International Nuclear Information System (INIS)

    Karimov, S.K.

    1979-01-01

    Presented are the results of studying temperature dependence of the thermal expansion coefficient for poly- and monocrystalline samples of CdTl 2 Te 4 . The coefficient of linear expansion in a perpendicular direction to the axis of growth (0010) is shown to be larger than the coefficient of linear expansion along the axis. Temperature dependence of thermal capacity (Csub(p)(T)) has been obtained, which is used to plot tables of adjusted values of Csub(p)(T); the values of entropy and enthalpy are calculated. Standard values of these parameters are as follows: Csub(p)=42.90 cal/molxgrad; Ssub(298.15K)sup(.)=78.95+-0.32 cal/mol, and Δsub(298.15K)sup(.)=10629+-31 cal/mol. Lattice contribution and thermal expansion contribution into thermal capacity are calculated. Determined are Debye characteristic temperature, isothermal coefficient of compressibility, and Grueneisen constant. The calculations testify to the prevalence of the repulsive force along the axis (0010) over the attractive force

  16. Effects of cation substitution on thermal expansion and electrical properties of lanthanum chromites

    International Nuclear Information System (INIS)

    Ding Xifeng; Liu Yingjia; Gao Ling; Guo Lucun

    2006-01-01

    The effects of cation substitution on the sintering characteristics, thermal expansion and electrical conductivity properties of La(AE)Cr(M)O 3 (AE=Mg, Ca, Sr, M=Ni, Cu, Co) were investigated. The sinterability of alkaline metal earth (AE)-doped LaCrO 3 increased with AE contents in a sequence of Ca > Sr > Mg. Sr-doped LaCrO 3 sample had a TEC compatible with that of 8YSZ electrolyte. The transition metals of Ni, Co and Cu substituted in Cr-site further optimized the sinterability of La 0.85 Sr 0.15 CrO 3 in air. Ni and Co could effectively enhance the electrical conductivity from room temperature to 1123 K though the concomitant increase in TEC was distinctively large with Co doping. The TEC was controlled by co-doping Ni and Co in Cr-site, and La 0.85 Sr 0.15 Cr 0.95 Ni 0.02 Co 0.02 O 3 exhibited a TEC of 10.9 x 10 -6 /K, which was matched with that of 8YSZ, indicating that it could be suitable to be used as an SOFC interconnect material

  17. Thermal expansion of crystals of the N2 type

    International Nuclear Information System (INIS)

    Tolkachev, A.M.; Manzhelii, V.G.; Azarenkov, V.P.; Jezowski, A.; Kosobutskaya, E.A.

    1981-01-01

    Linear expansion coefficients of low temperature crystals with linear molecules and Pa3 lattice N 2 (2-21 K), CO(2-28 K), CO 2 (2-25 K), N 2 O(2-90 K) were measured. A version of the law of corresponding states to describe the translational component of the thermal expansion of the substances studied and other low temperature crystals with close-packed lattices is proposed. In the thermal properties of crystals consisting of molecules without inversion centre, we have found anomalies interpreted as the evidence of a partial dipole ordering. (orig.)

  18. Violation of self-similarity in the expansion of a one-dimensional Bose gas

    International Nuclear Information System (INIS)

    Pedri, P.; Santos, L.; Oehberg, P.; Stringari, S.

    2003-01-01

    The expansion of a one-dimensional Bose gas after releasing its initial harmonic confinement is investigated employing the Lieb-Liniger equation of state within the local-density approximation. We show that during the expansion the density profile of the gas does not follow a self-similar solution, as one would expect from a simple scaling ansatz. We carry out a variational calculation, which recovers the numerical results for the expansion, the equilibrium properties of the density profile, and the frequency of the lowest compressional mode. The variational approach allows for the analysis of the expansion in all interaction regimes between the mean-field and the Tonks-Girardeau limits, and in particular shows the range of parameters for which the expansion violates self-similarity

  19. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  20. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    Science.gov (United States)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  1. The influence of the relative thermal expansion and electric permittivity on phase transitions in the perovskite-type bidimensional layered NH3(CH2)3NH3CdBr4 compound

    Science.gov (United States)

    Staśkiewicz, Beata; Staśkiewicz, Anna

    2017-07-01

    Hydrothermal method has been used to synthesized the layered hybrid compound NH3(CH2)3NH3CdBr4 of perovskite architecture. Structural, dielectric and dilatometric properties of the compound have been analyzed. Negative thermal expansion (NTE) effect in the direction perpendicular to the perovskite plane as well as an unusual phase sequence have been reported based on X-ray diffraction analysis. Electric permittivity measurements evidenced the phase transitions at Tc1=326/328 K and Tc2=368/369 K. Relative linear expansion measurements almost confirmed these temperatures of phase transitions. Anomalies of electric permittivity and expansion behavior connected with the phase transitions are detected at practically the same temperatures as those observed earlier in differential scanning calorimetry (DSC), infrared (IR), far infrared (FIR) and Raman spectroscopy studies. Mechanism of the phase transitions is explained. Relative linear expansion study was prototype to estimate critical exponent value β for continuous phase transition at Tc1. It has been inferred that there is a strong interplay between the distortion of the inorganic network, those hydrogen bonds and the intermolecular interactions of the organic component.

  2. Thermal expansion and its impacts on thermal transport in the FPU-α-β model

    Directory of Open Access Journals (Sweden)

    Xiaodong Cao

    2015-05-01

    Full Text Available We study the impacts of thermal expansion, arising from the asymmetric interparticle potential, on thermal conductance in the FPU-α-β model. A nonmonotonic dependence of the temperature gradient and thermal conductance on the cubic interaction parameter α are shown, which corresponds to the variation of the coefficient of thermal expansion. Three domains with respect to α can be identified. The results are explained based on the detailed analysis of the asymmetry of the interparticle potential. The self-consistent phonon theory, which can capture the effect of thermal expansion, is developed to support our explanation in a quantitative way. Our result would be helpful to understand the issue that whether there exist normal thermal conduction in the FPU-α-β model.

  3. In search of zero thermal expansion anisotropy in Mo{sub 5}Si{sub 3} by strategic alloying

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardhana, C.C., E-mail: ccdxz8@mail.umkc.edu; Sakidja, R., E-mail: sakidjar@umkc.edu; Aryal, S.; Ching, W.Y.

    2015-01-25

    Highlights: • For the first time, theoretical prediction of achieving isotropic thermal expansion anisotropy (TEA) for T1 phase Mo{sub 5}Si{sub 3} by alloying with a mere 17.5% Al substitution on the Si sites. Most effective alloying proposed for the said system up to date. • The theoretical approach is verified by simulating the experimentally observed unusual TEA behaviour for (Mo,V){sub 5}Si{sub 3} alloys as a function of percent alloying. • The 2nd order and 3rd order elastic constants we explain the origin of the TEA in T1 phase for Mo{sub 5}Si{sub 3} system and how Al effect in reducing the TEA. • We use directional dependent phonon density of state, a novel approach, to identify the origin of the anisotropy and show this method of analysis could be used for other intermetallic alloys as well. - Abstract: Reducing the thermal expansion anisotropy (TEA) of alloy compounds is one of the most important issues for their potential applications in high temperature environment. The Mo{sub 5}Si{sub 3} (T1 phase) is known to be an important intermetallic compound with high melting temperature. Unfortunately, its large TEA renders it unsuitable for high temperature structural/coating applications. Many attempts have been made in the past to reduce TEA by substituting Mo by other transition metal ions such as V with little success and some unexpected observations. Here we use accurate ab initio molecular dynamics (AIMD) simulations to obtain the TEA from thermal expansion coefficients for two T1 phase alloy systems (Mo,V){sub 5}Si{sub 3} and Mo{sub 5}(Si,Al){sub 3}. We demonstrate that strategic alloying with Al substituting Si can achieve zero TEA for T1 phase. The microscopic origin of this outstanding thermomechanical properties in this alloy is explained by the calculation of higher order elastic constants in conjunction with atom and direction-resolved phonon density of states.

  4. Morphology control and negative thermal expansion in cubic ZrWMoO8 powders

    International Nuclear Information System (INIS)

    Liu, Qinqin; Yang, Juan; Sun, Xiujuan; Cheng, Xiaonong

    2008-01-01

    Cubic ZrWMoO 8 powders with rod-like aggregate and thin fasciculus-like and flower-like rod cluster morphologies have been successfully fabricated with different amounts of (NH 4 ) 2 HPO 4 as surfactant using a hydrothermal method. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry were utilized to investigate the influence of the addition of (NH 4 ) 2 HPO 4 on the crystallization process and crystal morphology of the resulting products. The results show that the purity and the thermal expansion property of the resulting products are not influenced by the addition of (NH 4 ) 2 HPO 4 . The cubic ZrWMoO 8 powders with both rod-like aggregate and flower-like rod cluster morphologies show a positive thermal expansion property in the temperature range from room temperature to 120 C, while they show a negative thermal expansion property in the temperature range from 120 C to 700 C. The abnormal thermal expansion property of cubic ZrWMoO 8 below 120 C is caused by the presence of water molecules. Investigations also show that the essence of the different morphologies of the ZrWMoO 8 particles obtained is the result of the different aggregation modes of the nanorods, which act as nuclei, and the corresponding aggregation process is dominated by the addition of (NH 4 ) 2 HPO 4 and its amount. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Comparison of the unitary pole and Adhikari-Sloan expansions in the three nucleon system

    International Nuclear Information System (INIS)

    Afnan, I.R.; Birrell, N.D.

    1977-01-01

    The binding energy of 3 H, percentage S-, S'- and D-state probability, and charge form factor of 3 He are calculated using the unitary pole and Adhikari-Sloan separable expansions to the Reid soft core potential. Comparison of the results for the two separable expansions show that the expansion of Adhikari and Sloan has the better convergence property, and the lowest rank expansion considered (equivalent to the unitary pole approximation) gives a good approximation to the binding energy of 3 H and the charge form factor of 3 He, even at large momentum transfer (K 2 -2 ). (Author)

  6. Implementation of a state-to-state analytical framework for the calculation of expansion tube flow properties

    Science.gov (United States)

    James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.

    2018-03-01

    Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.

  7. Internal friction and linear expansion coefficient in zirconium and cobalt within the range of phase transitions

    International Nuclear Information System (INIS)

    Boyarskij, S.V.

    1986-01-01

    Experimental results are presented for internal friction and linear expansion coefficient at zirconium and cobalt in the temperature range from 440 K to the point of the phase transition of the first kind (1138 K for Zr and 706 for Co). Anomalous changes of the internal friction and linear expansion coefficient in the phase transition region are found. Theoretical considerations are given to explain the sharp decrease of the internal friction as temperature approaches the phase transition point

  8. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  9. SnO{sub 2} thin films morphological and optical properties in terms of the Boubaker Polynomials Expansion Scheme BPES-related Opto-Thermal Expansivity {psi}{sub AB}

    Energy Technology Data Exchange (ETDEWEB)

    Amlouk, A.; Boubaker, K. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia)

    2010-02-04

    In this study, SnO{sub 2} thin films have been grown using spray pyrolysis technique on glass substrates under a substrate temperature (T{sub s} = 440 {sup o}C). The precursors were methanol CH{sub 4}O and anhydrous tin tetrachloride. XRD analyses yielded strong (1 1 0)-(1 0 1)-(2 0 0) X-ray diffraction peaks which are characteristics to tetragonal crystals. Atomic Force Microscopy (AFM) analyses showed the existence of clusters with particular pyramidal shapes. The main part of this study concerns the optical measurements of transmittance T({lambda}) and reflectance R({lambda}) spectra inside 250-1800 nm domain. Conjoint optical and thermal properties were deduced using the Amlouk-Boubaker Opto-Thermal Expansivity {psi}{sub AB}. The obtained value: {psi}{sub AB} {approx} 23.4 m{sup 3} s{sup -1} helped situating the performance of the as-grown SnO{sub 2} compound among most known PV-T oxides like ZnO and TiO{sub 2}.

  10. Thermophysical properties of solid lithium hydride and its isotopic modifications

    International Nuclear Information System (INIS)

    Mel'nikova, T.N.

    1981-01-01

    The theory of the anharmonic lattice is used to calculate the thermophysical properties (thermal expansivity, lattice constant, compressibility, and elastic moduli) of all the isotopic modifications of solid lithium hydride sup(6,7)Li(H,D,T) at temperatures up to the melting point. A general analysis of isotopic effects is carried out; in particular the reverse isotopic effect in the lattice constant is explained and the isotopic effect in melting is discussed. The results of the calculations agree with available experimental data and can be used for those isotopic modifications of lithium hydride for which there exist no experimental results. (author)

  11. Spin fluctuations and low temperature features of thermal coefficient of linear expansion of iron monosilicide

    International Nuclear Information System (INIS)

    Volkov, A.G.; Kortov, S.V.; Povzner, A.A.

    1996-01-01

    The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density

  12. β-expansion attractors observed in A/D converters

    Science.gov (United States)

    Kohda, Tohru; Horio, Yoshihiko; Aihara, Kazuyuki

    2012-12-01

    The recently proposed β-encoders, analog-to-digital converters using an amplifier with a factor β and a flaky quantizer with threshold ν, have proven to be explained by the deterministic dynamics of multi-valued Rényi-Parry maps. Such a map is locally eventually onto [ν-1, ν), which is topologically conjugate to Parry's (β,α)-map with α =(β-1)(ν-1). This implies that β-encoders have a closed subinterval [ν-1,ν), which includes an attractor. Thus, the iteration of the multi-valued Rényi-Parry map performs the β-expansion of x while quantization errors in β-encoders behave chaotically and do not converge to a fixed point. This β-expansion attractor is relatively simpler than previously reported attractors. The object of this paper is twofold: to observe the embedded attractors in the β-encoder and to identify attractors that are useful for spread-spectrum codes and optimization techniques using pseudo-random numbers.

  13. Considerations about the apparent 'superluminal expansions' in astrophysics

    International Nuclear Information System (INIS)

    Recami, E.; Castellino, A.; Maccarrone, G.D.; Rodono, M.

    1984-01-01

    The orthodox models devised to explain the apparent 'superluminal expansions' observed in astrophysics - and here briefly summarized and discussed together with the experimental data - do not seem to be too much succesful. Especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual Superluminal motions take place. The ground is prepared starting from a variational principle, introducing the elements of a tachyon mechanics within special relativity, and arguing about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. Then the simplest 'Superluminal models' are reviewed and developed, paying particular attention to the observations which they would give rise to. Itis concluded that some of them appear to be physically acceptable and are statistically favoured with respect to the orthodox ones. (Author) [pt

  14. Considerations about the apparent superluminal expansions in astrophysics

    International Nuclear Information System (INIS)

    Recami, E.; Castellino, A.; Maccarrone, G. D.; Rodono, M.

    1985-01-01

    The ortodox models devised to explain the apparent ''superluminal expansions'' observed in astrophysics, and here briefly summarized and discussed together with th experimental data, do not seem to be to much successful. Especially when confronted with the most recent observations, suggesting complicated expansion patterns, even with possible accelerations. At this point it may be, therefore, of some interest to explore the possible alternative models in which actual superluminal motion take place. To prepare the ground one starts from a variational principle, introduces the elements of a tachyon mechanics within special relativity, and argues about the expected behaviour of tachyonic objects when interacting (gravitationally, for instance) among themselves or with ordinary matter. Then the simplest ''superluminal models'', paying particular attention to the observations which they would give rise to are revie wed and developed. It is concluded that some of them appear to be physically acceptable and are statistically favoured with respect to the ortodox ones

  15. Thermal expansion measurements on boron carbide and europium sesquioxide by laser interferometry

    International Nuclear Information System (INIS)

    Preston, S.D.

    1980-01-01

    A laser interferometer technique for measuring the absolute linear thermal expansion of small annular specimens is described. Results are presented for unirradiated boron carbide (B 4 C) and europia (Eu 2 O 3 ) up to 1000 0 C. Both compounds are neutron-absorbing materials of potential use in fast-reactor control rods and data on their thermophysical properties, in particular linear thermal expansion, are essential to the control rod designers. (author)

  16. Evaluation of the potential expansiveness of soils in the Hermanos Cruz neighbourhood, Pinar del Rio, Cuba: a contribution to urban planning

    International Nuclear Information System (INIS)

    Chinthaka-Ganepola, G.A.; Mohammed, A. S.; Ordaz Hernandez, A.; Estevez Cruz, E.; Hernandez Santana, J.R.

    2016-01-01

    Expansive soils can be categorized as one of the geohazards observed in the urban environment, representing a silent hazard to buildings and infrastructure. To evaluate this problematic soil it is necessary to know some of its geotechnical properties. Generally, the average values of soil properties are used in the methods which characterize the geological formation and the lithological group, which causes a great degree of uncertainty. To overcome this problem, this study proposes a procedure for estimating and modelling the principle soil properties that have an impact on expansive soils. The selected case study is located in the Hermanos Cruz neighbourhood in the city of Pinar del Rio in Cuba. The investigation was organized into the following stages: primary assessment of the potential expansiveness of the soils, modelling of the soil properties utilizing 3D geostatistical methods and finally the cartographic representation of the potential Expansiveness of soils on a Geographic Information System (GIS) platform at different depth zones which are of importance in the construction of shallow foundations of engineering works. The application of this methodology in the Hermanos Cruz neighbourhood revealed that its soils possess a potential expansiveness of low to medium, apart from some isolated zones which show a potential expansiveness of medium to high. (Author)

  17. Evaluation of the potential expansiveness of soils in the Hermanos Cruz neighbourhood, Pinar del Rio, Cuba: a contribution to urban planning

    Energy Technology Data Exchange (ETDEWEB)

    Chinthaka-Ganepola, G.A.; Mohammed, A. S.; Ordaz Hernandez, A.; Estevez Cruz, E.; Hernandez Santana, J.R.

    2016-07-01

    Expansive soils can be categorized as one of the geohazards observed in the urban environment, representing a silent hazard to buildings and infrastructure. To evaluate this problematic soil it is necessary to know some of its geotechnical properties. Generally, the average values of soil properties are used in the methods which characterize the geological formation and the lithological group, which causes a great degree of uncertainty. To overcome this problem, this study proposes a procedure for estimating and modelling the principle soil properties that have an impact on expansive soils. The selected case study is located in the Hermanos Cruz neighbourhood in the city of Pinar del Rio in Cuba. The investigation was organized into the following stages: primary assessment of the potential expansiveness of the soils, modelling of the soil properties utilizing 3D geostatistical methods and finally the cartographic representation of the potential Expansiveness of soils on a Geographic Information System (GIS) platform at different depth zones which are of importance in the construction of shallow foundations of engineering works. The application of this methodology in the Hermanos Cruz neighbourhood revealed that its soils possess a potential expansiveness of low to medium, apart from some isolated zones which show a potential expansiveness of medium to high. (Author)

  18. Two Decades of Negative Thermal Expansion Research: Where Do We Stand?

    Science.gov (United States)

    Lind, Cora

    2012-01-01

    Negative thermal expansion (NTE) materials have become a rapidly growing area of research over the past two decades. The initial discovery of materials displaying NTE over a large temperature range, combined with elucidation of the mechanism behind this unusual property, was followed by predictions that these materials will find use in various applications through controlled thermal expansion composites. While some patents have been filed and devices built, a number of obstacles have prevented the widespread implementation of NTE materials to date. This paper reviews NTE materials that contract due to transverse atomic vibrations, their potential for use in controlled thermal expansion composites, and known problems that could interfere with such applications. PMID:28817027

  19. Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method.

    Science.gov (United States)

    Zhang, Siyuan; Zhou, Shihong; Li, Huaiyong; Li, Ling

    2008-09-01

    The chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO 4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO 4 to LuVO 4; on the contrary, the bulk moduli increase progressively. Our calculated results are in good agreement with some experimental values for linear expansion coefficients and bulk moduli.

  20. Correlations between Socioeconomic Drivers and Indicators of Urban Expansion: Evidence from the Heavily Urbanised Shanghai Metropolitan Area, China

    Directory of Open Access Journals (Sweden)

    Jinghui Li

    2017-07-01

    Full Text Available Rapid urban expansion resulting in increased impervious surfaces causes a series of urban environmental problems, e.g., the urban heat island and urban forest fragmentation. Urban expansion is a serious threat to human quality of life and living environments. It has been studied from a variety of aspects, but its driving factors and time series expansion characteristics (i.e., expansion intensity, pattern and direction need to be better explained in order to devise more effective management strategies. This study examined how social and economic factors are linked in driving urban expansion. Based on multi-temporal aerial images, a rapid urban expansion period, 2000–2010, in Shanghai was analysed. The urban area expanded from 1770.36 to 2855.44 km2 in the period, with a mean annual expansion rate of 108.51 km2. Urban expansion in 2000–2005 (40.42% was much faster than in 2005–2010 (14.86%, and its direction was southeast, southwest and south. The main pattern was edge expansion in both sub-periods. Social factors, especially population density, significantly affected urban expansion. These findings can help understand the urban expansion process and its driving factors, which has important implications for urban planning and management in Shanghai and similar cities.

  1. Measurement of thermal expansion for a Li2TiO3 pebble bed

    International Nuclear Information System (INIS)

    Hisashi Tanigawa; Mikio Enoeda; Masato Akiba

    2006-01-01

    In the current design of the blanket with ceramic breeders, pebbles of breeding materials are packed into a container and used as a pebble bed. Thermal and mechanical conditions externally loaded on the bed affect thermal and mechanical properties of the bed. It is necessary to analyze thermo-mechanical properties of the bed under controlled thermal and mechanical conditions. In the present paper, thermal expansion of a Li 2 TiO 3 pebble bed was investigated. Our apparatus consists of a tensile test-apparatus and a measurement chamber. Pebbles of Li 2 TiO 3 with 2 mm diameter were used. They were packed into a container made of alumina. At first, thermal expansion of the apparatus was calibrated because the measured deformation included thermal expansions of the load rods and the container. Instead of the pebble bed, a column made of copper was installed and thermal expansion of the system was measured for the calibration. Taking into account the estimated thermal expansion of the column, thermal expansion of the rods and the container could be analyzed. Based on the correction, thermal expansion of the pebble bed was measured under compression of 0.1 MPa. Temperature of the bed was regulated from room temperature to 973 K. From the measured expansion of the bed, average thermal expansion coefficient was estimated. For the beds with different packing factors ranging from 65.5 to 68.5 %, thermal expansion coefficients were 1.4 ± 0. 10-5 K -1 . In the first measurement of the beds without pre-loading, expansion coefficients were larger for the cooling process than heating. When the beds were successively heated and cooled, the difference decreased. This means that relocation of the pebbles arises in the first heat treatment and progress of compaction is larger in the cooling process than heating. After a few heat treatments, packing states of the beds reach stable and expansion coefficients for both heat and cooling processes are close. In the case of the beds that

  2. Negative thermal expansion materials: technological key for control of thermal expansion

    OpenAIRE

    Koshi Takenaka

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining pra...

  3. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle

    Science.gov (United States)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-01

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  4. Following Surgically Assisted Rapid Palatal Expansion, Do Tooth-Borne or Bone-Borne Appliances Provide More Skeletal Expansion and Dental Expansion?

    Science.gov (United States)

    Hamedi-Sangsari, Adrien; Chinipardaz, Zahra; Carrasco, Lee

    2017-10-01

    The aim of this study was to compare outcome measurements of skeletal and dental expansion with bone-borne (BB) versus tooth-borne (TB) appliances after surgically assisted rapid palatal expansion (SARPE). This study was performed to provide quantitative measurements that will help the oral surgeon and orthodontist in selecting the appliance with, on average, the greatest amount of skeletal expansion and the least amount of dental expansion. A computerized database search was performed using PubMed, EBSCO, Cochrane, Scopus, Web of Science, and Google Scholar on publications in reputable oral surgery and orthodontic journals. A systematic review and meta-analysis was completed with the predictor variable of expansion appliance (TB vs BB) and outcome measurement of expansion (in millimeters). Of 487 articles retrieved from the 6 databases, 5 articles were included, 4 with cone-beam computed tomographic (CBCT) data and 1 with non-CBCT 3-dimensional cast data. There was a significant difference in skeletal expansion (standardized mean difference [SMD], 0.92; 95% confidence interval [CI], 0.54-1.30; P appliances. However, there was no significant difference in dental expansion (SMD, 0.05; 95% CI, -0.24 to 0.34; P = .03). According to the literature, to achieve more effective skeletal expansion and minimize dental expansion after SARPE, a BB appliance should be favored. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-05

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.

  6. Giant Thermal Expansion in 2D and 3D Cellular Materials.

    Science.gov (United States)

    Zhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di

    2018-03-25

    When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two-ingredient microstructured hierarchical and self-similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature-sensitive functional materials and devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Science.gov (United States)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-01

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.

  8. Low expansion and high gain Nd laser glasses

    International Nuclear Information System (INIS)

    Izumitani, Tetsuro; Peng, B.

    1995-01-01

    Due to the relationship between Judd-Ofelt intensity parameter and covalency, new laser glasses have been developed which have low expansion coefficients (85--91 x 10 -7 /cm C, 0--70 C) and high emission cross sections. They have good chemical properties, high Young's modulus and high thermal conductivities. These glasses are suitable for the National Ignition Facility

  9. Interpretation of Piezocones in Silt, Using Cavity Expansion and Critical State Methods

    DEFF Research Database (Denmark)

    Bakmar, Christian LeBlanc; Randolph, M. F.

    2008-01-01

    was simulated using cylindrical cavity expansion in conjunction with a plasticity model formulated within the framework of critical state soil mechanics. The results readily explain the low cone tip resistance measured in silt sediments; this is a derived effect of the silt having a large slope of the critical...... state line, resulting in rather weak and compressible behaviour at high mean effective stresses....

  10. Can The Pore Scale Geometry Explain Soil Sample Scale Hydrodynamic Properties?

    Directory of Open Access Journals (Sweden)

    Sarah Smet

    2018-04-01

    Full Text Available For decades, the development of new visualization techniques has brought incredible insights into our understanding of how soil structure affects soil function. X-ray microtomography is a technique often used by soil scientists but challenges remain with the implementation of the procedure, including how well the samples represent the uniqueness of the pore network and structure and the systemic compromise between sample size and resolution. We, therefore, chose to study soil samples from two perspectives: a macroscopic scale with hydrodynamic characterization and a microscopic scale with structural characterization through the use of X-ray microtomography (X-ray μCT at a voxel size of 21.53 μm3 (resampled at 433 μm3. The objective of this paper is to unravel the relationships between macroscopic soil properties and microscopic soil structure. The 24 samples came from an agricultural field (Cutanic Luvisol and the macroscopic hydrodynamic properties were determined using laboratory measurements of the saturated hydraulic conductivity (Ks, air permeability (ka, and retention curves (SWRC. The X-ray μCT images were segmented using a global method and multiple microscopic measurements were calculated. We used Bayesian statistics to report the credible correlation coefficients and linear regressions models between macro- and microscopic measurements. Due to the small voxel size, we observed unprecedented relationships, such as positive correlations between log(Ks and a μCT global connectivity indicator, the fractal dimension of the μCT images or the μCT degree of anisotropy. The air permeability measured at a water matric potential of −70 kPa was correlated to the average coordination number and the X-ray μCT porosity, but was best explained by the average pore volume of the smallest pores. Continuous SWRC were better predicted near saturation when the pore-size distributions calculated on the X-ray μCT images were used as model input. We

  11. Oxidação dos amidos de mandioca e de milho comum fermentados: desenvolvimento da propriedade de expansão Oxidation of fermented cassava and corn starches: development of the expansion property

    Directory of Open Access Journals (Sweden)

    Alvaro Renato Guerra Dias

    2007-12-01

    Full Text Available Amidos de mandioca e de milho comum foram fermentados em laboratório a 20 °C, sendo uma fração seca ao sol e outra oxidada com peróxido de hidrogênio e secada artificialmente, visando o desenvolvimento da propriedade de expansão. Estudou-se a fermentação em 0, 10, 30 e 50 dias, sendo a propriedade de expansão no forneamento avaliada pelo teste do biscoito e o comportamento viscoamilográfico pelo RVA. Verificou-se que a fermentação promove modificação que auxilia na oxidação dos amidos de mandioca e de milho elevando a acidez titulável do produto. O amido de mandioca fermentado oxidado com exposição solar ou com peróxido de hidrogênio pode desenvolver a propriedade de expansão, já o amido de milho comum nessas condições não tem essa capacidade. Os melhores resultados para a propriedade de expansão foram no amido de mandioca oxidado com peróxido de hidrogênio aos 50 dias de fermentação.Cassava and corn starches were fermented in the laboratory at 20 °C, and a fraction was in the sun while another fraction was oxidized with hydrogen peroxide and dried artificially to develop the expansion property. Fermentation in 0, 10, 30 and 50 days was checked and the expansion property was evaluated by the baking test and viscoamilograph behavior (RVA. Fermentation was found to cause changes that help the oxidation of cassava and corn starches, increasing the product's titrable acidity. The fermented cassava starch, oxidized by exposure to sunlight or hydrogen peroxide, may develop the expansion property, but the corn starch did not display that ability under these conditions. The best results for the expansion property were obtained with cassava starch oxidized with hydrogen peroxide after 50 days of fermentation.

  12. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Science.gov (United States)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  13. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Cai, Weizhao; Katrusiak, Andrzej

    2014-07-04

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices.

  14. Fabrication of two-dimensional nanosheets via water freezing expansion exfoliation

    International Nuclear Information System (INIS)

    Li, Chen; Wang, Tailin; Wu, Yongzhong; Ma, Fukun; Zhao, Gang; Hao, Xiaopeng

    2014-01-01

    Layered materials, if exfoliated effectively, will exhibit several unique properties, offering great potential for diverse applications. To this end, in this study, we develop a novel, universal, and environmentally friendly method named as ‘water freezing expansion exfoliation’ for producing two-dimensional nanosheets. This method exploits the expansion in the volume of water upon freezing. When the water freezing expansion condition is reproduced in layered materials, the layers exfoliate to overcome the van der Waals force between them. The expansion process is performed by repeated cycling between 4 °C and −20 °C to effectively exfoliate layered materials of graphite, hexagonal boron nitride (h-BN), MoS 2 and WS 2 . Systematic characterization of the samples thus obtained using electron microscopy and optical studies substantiate the formation of thin flakes (graphene, h-BN, MoS 2 , and WS 2 nanosheets). The method demonstrated in this study is cost-effective and does not demand sophisticated equipment and stringent high temperature conditions. Given this general applicability, this method holds great promise for exfoliating layered materials that are sensitive to elevated temperature. (paper)

  15. The dynamics of innovation through the expansion in the adjacent possible

    International Nuclear Information System (INIS)

    Tria, F.

    2016-01-01

    The experience of something new is part of our daily life. At different scales, innovation is also a crucial feature of many biological, technological and social systems. Recently, large databases witnessing human activities allowed the observation that novelties —such as the individual process of listening a song for the first time— and innovation processes —such as the fixation of new genes in a population of bacteria— share striking statistical regularities. We here indicate the expansion into the adjacent possible as a very general and powerful mechanism able to explain such regularities. Further, we will identify statistical signatures of the presence of the expansion into the adjacent possible in the analyzed datasets, and we will show that our modeling scheme is able to predict remarkably well these observations.

  16. Can superhorizon cosmological perturbations explain the acceleration of the universe?

    International Nuclear Information System (INIS)

    Hirata, Christopher M.; Seljak, Uros

    2005-01-01

    We investigate the recent suggestions by Barausse et al. and Kolb et al. that the acceleration of the universe could be explained by large superhorizon fluctuations generated by inflation. We show that no acceleration can be produced by this mechanism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous cosmologies results in several 'no go' theorems for accelerated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no acceleration is present. We show that the discrepancy can be traced to higher-order terms that were dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general relativity to argue that causality severely limits what observable effects can be derived from superhorizon perturbations. By constructing a Riemann normal coordinate system on initial slice we show that no infrared divergence terms arise in this coordinate system. Thus any divergences found previously can be eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit analysis of the variance of the deceleration parameter for the case of single-field inflation using usual coordinates and show that the infrared-divergent terms found by Barausse et al. and Kolb et al. cancel against several additional terms not considered in their analysis. Finally, we argue that introducing isocurvature perturbations does not alter our conclusion that the accelerating expansion of the universe cannot be explained by superhorizon modes

  17. Thermal expansion studies on zircaloy-2

    International Nuclear Information System (INIS)

    Sivabharathy, M.; Senthilkumar, A.; Palanichamy, P.; Ramachandran, K.

    2016-01-01

    Zircaloy-2 and Zr-2.5% Nb alloys are widely used in the pressurized heavy water reactors (PHWR) as the material for the pressure tubes. The pressure tube operates at 573 K, 11 MPa internal pressures and is subjected to neutron flux of the order of 1013 n/cm 2 /s. These conditions lead to degradations in the pressure tube with respect to dimensional changes, deterioration in mechanical properties due to irradiation embrittlement, thereby reducing its flaw tolerance, the growth of existing flaws, which were too small or 'insignificant' at the time of installation. Physical and chemical properties of materials are also very essential in nuclear industry and the relations among them is of interest in the selection of materials when they are used in the design and manufacturing of devices particularly for atomic reactors.Studies on the relations between mechanical and thermal properties are of interest to the steel and metal industries as these would give useful information on the relation between hardness and thermal diffusivity (α) of steel. Jayakumar et al have already carried out the ultrasonic and metallographic investigations to see that all the heat-treated specimens retained essentially the martensite structure. In this present work, thermal expansion measurements on useful reactor material, Zircaloy-2 with different sample. Given a β-quenching treatment by heating to 1223 K and holding for 2 h, followed by water quenching. These specimens were then thermally aged for 1 h in the temperature range 473 to 973 K and air-cooled. For all samples, the thermal expansion was carried out and the results are correlated with ultrasonic measurements, metallographic and photoacoustic studies. (author)

  18. Thermal expansion properties of calcium aluminate hydrates

    International Nuclear Information System (INIS)

    Song, Tae Woong

    1986-01-01

    In order to eliminate the effect of impurities and aggregates on the thermomechanical properties of the various calcium aluminate hydrates, and to prepare clinkers in which all calcium aluminates are mixed homogeneously, chemically pure CaO and Al 2 O 3 were weighed, blended and heated in various conditions. After quantitative X-ray diffractometry(QXRD), the synthesized clinker was hydrated and cured under the conditions of 30 deg C, W/C=0.5, relative humidity> 90% respectively during 24 hours. And then differential thermal analysis(DTA), thermogravimetry(TG), micro calorimetry, thermomechanical analysis(TMA) and scanning electron microanalysis(SEM) were applied to examine the thermal properties of samples containing, calcium aluminate hydrates in various quantity. (Author)

  19. Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite

    International Nuclear Information System (INIS)

    Wu, Huang; Drzal, Lawrence T.

    2014-01-01

    Thermal expansion is one of the major concerns for polymer composites. In this research, graphene nanoplatelets (GNPs) were added to polyetherimide (PEId) thermoplastic polymer in order to reduce the coefficient of thermal expansion (CTE) of the injection molded composite. First, the coefficient of linear thermal expansion (LTE) was measured in three directions in the anisotropic coupon: 0°, 90° and the out of plane Z direction. It is found that the GNP particles are very effective in terms of reducing the LTE in 0° direction due to high degree of alignment. After annealing above glass transition temperature, significant increase of 0° LTE and decrease of Z° LTE were observed. The bulk CTE was calculated by adding up the LTEs in all three directions and is found to be independent of annealing. Second, several models were applied to predict both CTE and LTE. It is found that Schapery's lower limit model fits the experimental CTE very well. Chow's model was applied for LTEs in three directions. The behavior of GNP-5/PEId composites is explained by the combination of Chow's model and morphology obtained by scanning electron microscope (SEM). - Highlights: • Coefficient of thermal expansion (CTE) of polymer composite is characterized. • Reduction of linear thermal expansion depends on filler orientation. • Filler orientation is characterized based on the location of the specimen. • Filler orientation is changed by annealing, causing subsequent change in CTE. • CTE and linear thermal expansion coefficient are modeled

  20. Effect of high thermal expansion glass infiltration on mechanical ...

    Indian Academy of Sciences (India)

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol% yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature.

  1. Negative thermal expansion materials: technological key for control of thermal expansion.

    Science.gov (United States)

    Takenaka, Koshi

    2012-02-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over -30 ppm K -1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  2. Negative thermal expansion materials: technological key for control of thermal expansion

    Directory of Open Access Journals (Sweden)

    Koshi Takenaka

    2012-01-01

    Full Text Available Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K−1. Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade.

  3. Negative thermal expansion materials: technological key for control of thermal expansion

    International Nuclear Information System (INIS)

    Takenaka, Koshi

    2012-01-01

    Most materials expand upon heating. However, although rare, some materials contract upon heating. Such negative thermal expansion (NTE) materials have enormous industrial merit because they can control the thermal expansion of materials. Recent progress in materials research enables us to obtain materials exhibiting negative coefficients of linear thermal expansion over −30 ppm K −1 . Such giant NTE is opening a new phase of control of thermal expansion in composites. Specifically examining practical aspects, this review briefly summarizes materials and mechanisms of NTE as well as composites containing NTE materials, based mainly on activities of the last decade. (topical review)

  4. Three-dimensional static and dynamic reactor calculations by the nodal expansion method

    International Nuclear Information System (INIS)

    Christensen, B.

    1985-05-01

    This report reviews various method for the calculation of the neutron-flux- and power distribution in an nuclear reactor. The nodal expansion method (NEM) is especially described in much detail. The nodal expansion method solves the diffusion equation. In this method the reactor core is divided into nodes, typically 10 to 20 cm in each direction, and the average flux in each node is calculated. To obtain the coupling between the nodes the local flux inside each node is expressed by use of a polynomial expansion. The expansion is one-dimensional, so inside each node such three expansions occur. To calculate the expansion coefficients it is necessary that the polynomial expansion is a solution to the one-dimensional diffusion equation. When the one-dimensional diffusion equation is established a term with the transversal leakage occur, and this term is expanded after the same polynomials. The resulting equation system with the expansion coefficients as the unknowns is solved with weigthed residual technique. The nodal expansion method is built into a computer program (also called NEM), which is divided into two parts, one part for steady-state calculations and one part for dynamic calculations. It is possible to take advantage of symmetry properties of the reactor core. The program is very flexible with regard to the number of energy groups, the node size, the flux expansion order and the transverse leakage expansion order. The boundary of the core is described by albedos. The program and input to it are described. The program is tested on a number of examples extending from small theoretical one up to realistic reactor cores. Many calculations are done on the wellknown IAEA benchmark case. The calculations have tested the accuracy and the computing time for various node sizes and polynomial expansions. In the dynamic examples various strategies for variation of the time step-length have been tested. (author)

  5. Dynein-Based Accumulation of Membranes Regulates Nuclear Expansion in Xenopus laevis Egg Extracts.

    Science.gov (United States)

    Hara, Yuki; Merten, Christoph A

    2015-06-08

    Nuclear size changes dynamically during development and has long been observed to correlate with the space surrounding the nucleus, as well as with the volume of the cell. Here we combine an in vitro cell-free system of Xenopus laevis egg extract with microfluidic devices to systematically analyze the effect of spatial constraints. The speed of nuclear expansion depended on the available space surrounding the nucleus up to a threshold volume in the nanoliter range, herein referred to as the nuclear domain. Under spatial constraints smaller than this nuclear domain, the size of microtubule-occupied space surrounding the nucleus turned out to be limiting for the accumulation of membranes around the nucleus via the motor protein dynein, therefore determining the speed of nuclear expansion. This mechanism explains how spatial information surrounding the nucleus, such as the positioning of the nucleus inside the cell, can control nuclear expansion. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  7. Effects of Cr Substitution on Negative Thermal Expansion and Magnetic Properties of Antiperovskite Ga1-x Cr x N0.83Mn3 Compounds.

    Science.gov (United States)

    Guo, Xinge; Tong, Peng; Lin, Jianchao; Yang, Cheng; Zhang, Kui; Lin, Shuai; Song, Wenhai; Sun, Yuping

    2018-01-01

    Negative thermal expansion (NTE) and magnetic properties were investigated for antiperovskite Ga 1- x Cr x N 0.83 Mn 3 compounds. As x increases, the temperature span (Δ T ) of NTE related with Γ 5g antiferromagnetic (AFM) order is expanded and shifted to lower temperatures. At x = 0.1, NTE happens between 256 and 318 K (Δ T = 62 K) with an average linear coefficient of thermal expansion, α L = -46 ppm/K. The Δ T is expanded to 81 K (151-232 K) in x = 0.2 with α L = -22.6 ppm/K. Finally, NTE is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and continuously strengthened with increasing x , which may impede the AFM ordering and thus account for the broadening of NTE temperature window. Moreover, our specific heat measurement suggests the electronic density of states at the Fermi level is enhanced upon Cr doping, which favors the FM order rather than the AFM one.

  8. Business Associations, Conservative Networks, and the Ongoing Republican War over Medicaid Expansion.

    Science.gov (United States)

    Hertel-Fernandez, Alexander; Skocpol, Theda; Lynch, Daniel

    2016-04-01

    A major component of the Affordable Care Act involves the expansion of state Medicaid programs to cover the uninsured poor. In the wake of the 2012 Supreme Court decision upholding and modifying reform legislation, states can decide whether to expand Medicaid-and twenty states are still not proceeding as of August 2015. What explains state choices about participation in expansion, including governors' decisions to endorse expansion or not as well as final state decisions? We tackle this puzzle, focusing closely on outcomes and battles in predominantly Republican-led states. Like earlier scholars, we find that partisan differences between Democrats and Republicans are central, but we go beyond earlier analyses to measure added effects from two dueling factions within the Republican coalition: statewide business associations and cross-state networks of ideologically conservative organizations. Using both statistical modeling and case studies, we show that GOP-leaning or GOP-dominated states have been most likely to embrace the expansion when organized business support outweighs pressures from conservative networks. Our findings help make sense of ongoing state-level debates over a core part of health reform and shed new light on mounting policy tensions within the Republican Party. Copyright © 2016 by Duke University Press.

  9. Correlation between isothermal expansion and functional properties change of the Fe81B13Si4C2 amorphous alloy

    Directory of Open Access Journals (Sweden)

    Kalezić-Glišović A.

    2009-01-01

    Full Text Available The structural changes effect on functional properties of ribbon shaped samples of the Fe81B13Si4C2 amorphous alloy during annealing process was investigated in this paper. Differential scanning calorimetry method has shown that this alloy crystallizes in one stage, in temperature range from room temperature up to 700°C. Structural relaxation process was investigated by sensitive dilatation method in nonisothermal and isothermal conditions. It has been shown that structural relaxation process occurs in two stages by measuring thermal expansion at constant temperatures of t1=420°C, t2 = 440°C and t3 = 460°C. The first stage is characterized by linear logarithmic dependence of thermal expansion upon time at constant temperature. The second stage of structural relaxation process is characterized by linear dependence of isothermal expansion upon the square root of process time. These results imply that the first stage of structural relaxation process is a rapid kinetic process, while the second stage of structural relaxation process is a slow diffusion process. The rate constants k11 = 2,27⋅10- 3 s-1, k12 = 2,79⋅10-3 s-1, k13 = 3,6⋅10-3 s-1, k21 = 0,67⋅10-4 s-1, k22 = 3,72⋅10-4 s-1, k23 = 21,53⋅10-4 s-1 and activation energies E1 = 48,64 kJ/mol and E2 = 366, 23 kJ/mol were determined for both stages of structural relaxation process. The distinct correlation between structural relaxation process and magnetic susceptibility relative change was determined by thermomagnetic measurements. It has been shown that magnetic susceptibility can be increased by up to 80%, by convenient annealings after structural relaxation process, at magnetic field intensity of 8 kA/m.

  10. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  11. Radial expansion and multifragmentation

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  12. Effects of volumetric expansion in molecular crystals: A quantum mechanical investigation on aspirin and paracetamol most stable polymorphs

    Science.gov (United States)

    Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana

    2015-02-01

    This work reports a study performed at hybrid semi-empirical density functional level (B3LYP-D2*) of the physico-chemical properties of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) in their most stable crystalline forms. It is shown how effects arising from volumetric expansions influence the properties of the materials. Structural, energetic, and vibrational properties are in good agreement with experimental values reported at temperatures far from 0 K. Results show that the proposed approach is reliable enough to reproduce effects of volumetric expansion on lattice energies and other measurable physico-chemical observables related to inter-molecular forces.

  13. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures

    International Nuclear Information System (INIS)

    Sant, Gaurav; Lothenbach, Barbara; Juilland, Patrick; Le Saout, Gwenn; Weiss, Jason; Scrivener, Karen

    2011-01-01

    Studies on the early-age shrinkage behavior of cement pastes, mortars, and concretes containing shrinkage reducing admixtures (SRAs) have indicated these mixtures frequently exhibit an expansion shortly after setting. While the magnitude of the expansion has been noted to be a function of the chemistry of the cement and the admixture dosage; the cause of the expansion is not clearly understood. This investigation uses measurements of autogenous deformation, X-ray diffraction, pore solution analysis, thermogravimetry, and scanning electron microscopy to study the early-age properties and describe the mechanism of the expansion in OPC pastes made with and without SRA. The composition of the pore solution indicates that the presence of the SRA increases the portlandite oversaturation level in solution which can result in higher crystallization stresses which could lead to an expansion. This observation is supported by deformation calculations for the systems examined.

  14. Fabrication of Zr2WP2O12/ZrV0.6P1.4O7 composite with a nearly zero-thermal-expansion property.

    Science.gov (United States)

    Yanase, Ikuo; Sakai, Hiroshi; Kobayashi, Hidehiko

    2017-11-15

    Sintered bodies of Zr 2 WP 2 O 12 (ZWP) and ZrV 0.6 P 1.4 O 7 (ZVP) were fabricated, and their linear thermal expansion coefficients (TEC) were found to be -2.92 × 10 -6 and 3.27 × 10 -6  °C -1 , respectively, in the range 25-500 °C. In an attempt to fabricate composites with a zero-thermal-expansion property, sintered ZWP/ZVP composites with ZVP/ZWP volume ratios of 0.5/0.5, 0.53/0.47, 0.55/0.45, and 0.6/0.4 were fabricated. Scanning electron microscopy revealed that sintering of ZVP/ZWP composites progressed well compared with that of ZWP. A porous ZVP/ZWP composite with a relative density of ca. 83% was fabricated at a ZVP/ZWP volume ratio of 0.53/0.47. X-ray diffractometry and energy dispersive X-ray spectrometry clarified that the ZVP/ZWP composite mainly consisted of ZWP and ZVP grains. Thermomechanical analysis confirmed that the ZVP/ZWP composite exhibited very low thermal expansion with a slight hysteresis with a TEC of -0.29 × 10 -7  °C -1 in the range 25-500 °C.

  15. Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder

    Directory of Open Access Journals (Sweden)

    James Jijo

    2018-03-01

    Full Text Available Lime stabilization has been and still is one of the most preferred methods for stabilization of expansive soils. However, in the recent times, utilization of solid waste materials in soil stabilization has gained prominence as an effective means to manage wastes generated from various sources. In this work, an attempt has been made to utilize waste materials from two sources as auxiliary additives to lime in the stabilization of an expansive soil. Bagasse ash (BA, a waste by-product from the sugar industry and Coconut shell powder (CSP, a processed waste obtained from left over coconut shells of oil extraction industry were used as auxiliary additives. An expansive soil obtained from a local field was subjected to chemical, mineral, microstructural and geotechnical characterization in the laboratory and stabilized using 3% lime. The waste materials were subjected to chemical, mineral and microstructural characterization. The stabilization process was amended with four different contents viz. 0.25%, 0.5%, 1% and 2% of BA and CSP separately and the effect of the amendment was studied on the unconfined compressive strength (UCS, plasticity, swell-shrink and microstructural characteristics of the expansive soil. The results of the study indicated that BA amendment of lime stabilization performed better than CSP in improving the UCS, plasticity, swell-shrink and microstructure of the lime stabilized expansive soil.

  16. Select geotechnical properties of a lime stabilized expansive soil amended with bagasse ash and coconut shell powder

    Science.gov (United States)

    James, Jijo; Pandian, P. Kasinatha

    2018-03-01

    Lime stabilization has been and still is one of the most preferred methods for stabilization of expansive soils. However, in the recent times, utilization of solid waste materials in soil stabilization has gained prominence as an effective means to manage wastes generated from various sources. In this work, an attempt has been made to utilize waste materials from two sources as auxiliary additives to lime in the stabilization of an expansive soil. Bagasse ash (BA), a waste by-product from the sugar industry and Coconut shell powder (CSP), a processed waste obtained from left over coconut shells of oil extraction industry were used as auxiliary additives. An expansive soil obtained from a local field was subjected to chemical, mineral, microstructural and geotechnical characterization in the laboratory and stabilized using 3% lime. The waste materials were subjected to chemical, mineral and microstructural characterization. The stabilization process was amended with four different contents viz. 0.25%, 0.5%, 1% and 2% of BA and CSP separately and the effect of the amendment was studied on the unconfined compressive strength (UCS), plasticity, swell-shrink and microstructural characteristics of the expansive soil. The results of the study indicated that BA amendment of lime stabilization performed better than CSP in improving the UCS, plasticity, swell-shrink and microstructure of the lime stabilized expansive soil.

  17. Detonative propagation and accelerative expansion of the Crab Nebula shock front.

    Science.gov (United States)

    Gao, Yang; Law, Chung K

    2011-10-21

    The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society

  18. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Science.gov (United States)

    Shen, Fei-Ran; Kuang, Hao; Hu, Feng-Xia; Wu, Hui; Huang, Qing-Zhen; Liang, Fei-Xiang; Qiao, Kai-Ming; Li, Jia; Wang, Jing; Liu, Yao; Zhang, Lei; He, Min; Zhang, Ying; Zuo, Wen-Liang; Sun, Ji-Rong; Shen, Bao-Gen

    2017-10-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn-Co-Ge-In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10-6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  19. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    Directory of Open Access Journals (Sweden)

    Fei-Ran Shen

    2017-10-01

    Full Text Available Materials with zero thermal expansion (ZTE or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE owing to a martensitic magnetostructural transition. The major finding is that the thermal expansion behavior can be totally controlled by modulating the crystallinity degree and phase transition from atomic scale. Self-compensation effect leads to ultra-low thermal expansion with a linear expansion coefficient as small as +0.68 × 10−6/K over a wide temperature range around room temperature. The present study opens an avenue to reach ZTE particularly from the large class of giant NTE materials based on phase transition.

  20. Differences in radial expansion force among inferior vena cava filter models support documented perforation rates.

    Science.gov (United States)

    Robins, J Eli; Ragai, Ihab; Yamaguchi, Dean J

    2018-05-01

    Inferior vena cava (IVC) filters are used in patients at risk for pulmonary embolism who cannot be anticoagulated. Unfortunately, these filters are not without risk, and complications include perforation, migration, and filter fracture. The most prevalent complication is filter perforation of the IVC, with incidence varying among filter models. To our knowledge, the mechanical properties of IVC filters have not been evaluated and are not readily available through the manufacturer. This study sought to determine whether differences in mechanical properties are similar to differences in documented perforation rates. The radial expansion forces of Greenfield (Boston Scientific, Marlborough, Mass), Cook Celect (Cook Medical, Bloomington, Ind), and Cook Platinum filters were analyzed with three replicates per group. The intrinsic force exerted by the filter on the measuring device was collected in real time during controlled expansion. Replicates were averaged and significance was determined by calculating analysis of covariance using SAS software (SAS Institute, Cary, NC). Each filter model generated a significantly different radial expansion force (P filter, followed by the Cook Celect and Greenfield filters. Radial force dispersion during expansion was greatest in the Cook Celect, followed by the Cook Platinum and Greenfield filters. Differences in radial expansion forces among IVC filter models are consistent with documented perforation rates. Cook Celect IVC filters have a higher incidence of perforation compared with Greenfield filters when they are left in place for >90 days. Evaluation of Cook Celect filters yielded a significantly higher radial expansion force at minimum caval diameter, with greater force dispersion during expansion. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  1. Elasticity and expansion test performance of geopolymer as oil well cement

    Science.gov (United States)

    Ridha, S.; Hamid, A. I. Abd; Halim, A. H. Abdul; Zamzuri, N. A.

    2018-04-01

    History has shown that geopolymer cement provides high compressive strength as compared to Class G cement. However, the research had been done at ambient temperature, not at elevated condition which is the common oil well situation. In this research, the physical and mechanical properties performance of the oil well cement were investigated by laboratory work for two types of cement that are geopolymer and Class G cement. The cement samples were produced by mixing the cement according to the API standards. Class C fly ash was used in this study. The alkaline solution was prepared by mixing sodium silicate with NaOH solution. The NaOH solution was prepared by diluting NaOH pellets with distilled water to 8M. The cement samples were cured at a pressure of 3000 psi and a temperature of 130 °C to simulate the downhole condition. After curing, the physical properties of the cement samples were investigated using OYO Sonic Viewer to determine their elastic properties. Autoclave expansion test and compressive strength tests were conducted to determine the expansion value and the strength of the cement samples, respectively. The results showed that the geopolymer cement has a better physical and mechanical properties as compared with Class G cement at elevated condition.

  2. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively.

    Science.gov (United States)

    Nakanishi, Koichi; Kogure, Akinori; Fujii, Takenao; Kokawa, Ryohei; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu

    2013-10-09

    If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for

  3. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation

    OpenAIRE

    Fei-Ran Shen; Hao Kuang; Feng-Xia Hu; Hui Wu; Qing-Zhen Huang; Fei-Xiang Liang; Kai-Ming Qiao; Jia Li; Jing Wang; Yao Liu; Lei Zhang; Min He; Ying Zhang; Wen-Liang Zuo; Ji-Rong Sun

    2017-01-01

    Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE o...

  4. Multiple pathways of commodity crop expansion in tropical forest landscapes

    Science.gov (United States)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  5. Multiple pathways of commodity crop expansion in tropical forest landscapes

    International Nuclear Information System (INIS)

    Meyfroidt, Patrick; Lambin, Eric F; Carlson, Kimberly M; Fagan, Matthew E; DeFries, Ruth S; Gutiérrez-Vélez, Victor H; Macedo, Marcia N; Curran, Lisa M; Dyer, George A; Gibbs, Holly K; Morton, Douglas C; Robiglio, Valentina

    2014-01-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  6. The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I.; Parkoun, V.; Sokol, V.; Schreckenbach, J.; Marx, G

    2004-01-30

    The volume expansion factor of porous alumina, formed by through anodizing of an Al foil of thickness 11.5 {mu}m in the range of current densities of 4-35 mA cm{sup -2} in oxalic and sulfuric acid at 18-24 deg. C has been studied. The microstructure of anodizing samples has been observed using scanning electron microscopy. The thickness of obtained porous alumina films was measured by a mechanical profilometer with a computer signal-processing. The volume expansion factor of porous alumina varied from 1.35 to 1.65. Linear dependences were obtained for the volume expansion factor of porous alumina versus the anodizing voltage and the ionic current-density logarithm versus the inverse volume expansion factor. Unlike oxide formation in sulfuric acid, these dependences have two subsequential rectilinear regions in oxalic acid. This peculiarity of the dependences in oxalic acid was explained by formation of a region of the immobile negative space charge in the barrier Al oxide layer and its influence on the ionic transport.

  7. Anisotropic thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Madsen, Solveig Røgild; Lock, Nina; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2014-06-01

    Ionothermal reaction between Mn(II)(acetate)2·4H2O and 1,3,5-benzenetricarboxylic acid (H3BTC) in either of the two ionic liquids 1-ethyl-3-methylimidazolium bromide (EMIMBr) and 1-ethyl-3-methylimidazolium tosylate (EMIMOTs) resulted in the formation of the new metal-organic framework (MOF) EMIM[Mn(II)BTC] (BTC = 1,3,5-benzenetricarboxylate). The compound crystallizes in the orthorhombic space group Pbca with unit-cell parameters of a = 14.66658 (12), b = 12.39497 (9), c = 16.63509 (14) Å at 100 K. Multi-temperature single-crystal (15-340 K) and powder X-ray diffraction studies (100-400 K) reveal strongly anisotropic thermal expansion properties. The linear thermal expansion coefficients, αL(l), attain maximum values at 400 K along the a- and b-axis, with αL(a) = 115 × 10(-6) K(-1) and αL(b) = 75 × 10(-6) K(-1). At 400 K a negative thermal expansion coefficient of -40 × 10(-6) K(-1) is observed along the c-axis. The thermal expansion is coupled to a continuous deformation of the framework, which causes the structure to expand in two directions. Due to the rigidity of the linker, the expansion in the ab plane causes the network to contract along the c-axis. Hirshfeld surface analysis has been used to describe the interaction between the framework structure and the EMIM cation that resides within the channel. This reveals a number of rather weak interactions and one governing hydrogen-bonding interactions.

  8. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  9. Enhanced thermal expansion control rod drive lines for improving passive safety of fast reactors

    International Nuclear Information System (INIS)

    Edelmann, M.; Baumann, W.; Kuechle, M.; Kussmaul, G.; Vaeth, W.; Bertram, A.

    1992-01-01

    The paper presents a device for increasing the thermal expansion effect of control rod drive lines on negative reactivity feedback in fast reactors. The enhanced thermal expansion of this device can be utilized for both passive rod drop and forced insertion of absorbers in unprotected transients, e.g. ULOF. In this way the reactor is automatically brought into a permanently subcritical state and temperatures are kept well below the boiling point of the coolant. A prototype of such a device called ATHENa (German: Shut-down by THermal Expansion of Na) is presently under construction and will be tested. The paper presents the principle, design features and thermal properties of ATHENs as well as results of reactor dynamics calculations of ULOF's for EFR with enhanced thermal expansion control rod drive lines. (author)

  10. Plastic deformation tests on fragile materials using a thermal expansion machine

    International Nuclear Information System (INIS)

    Orozco, E.; Morales, A.; Mendoza, A.

    1991-01-01

    Applying an electrical current on an iron bar, a thermal expansion can be induced. We have taken advantage of this to deform fragile materials, in order to study their mechanical properties. In this paper we show some gels and high T c oxide superconductors (Author)

  11. The Educational Aspirations of Saudi Arabian Youth: Implications for Creating a New Framework to Explain Saudi Arabian Society

    Science.gov (United States)

    Sim, Woohyang

    2016-01-01

    Higher education in Saudi Arabia has garnered immense praise for its rapid expansion and developments in both quantity and quality. In response to this, the tertiary school enrollment in Saudi Arabia is rapidly rising. These achievements can be explained by changes in educational policies. However, studies regarding youth's awareness are scarce.…

  12. Heat kernel expansion in the background field formalism

    CERN Document Server

    Barvinsky, Andrei

    2015-01-01

    Heat kernel expansion and background field formalism represent the combination of two calculational methods within the functional approach to quantum field theory. This approach implies construction of generating functionals for matrix elements and expectation values of physical observables. These are functionals of arbitrary external sources or the mean field of a generic configuration -- the background field. Exact calculation of quantum effects on a generic background is impossible. However, a special integral (proper time) representation for the Green's function of the wave operator -- the propagator of the theory -- and its expansion in the ultraviolet and infrared limits of respectively short and late proper time parameter allow one to construct approximations which are valid on generic background fields. Current progress of quantum field theory, its renormalization properties, model building in unification of fundamental physical interactions and QFT applications in high energy physics, gravitation and...

  13. Impact of Casing Expansion on the Mechanical and Petro-Physical Properties of Wellbore Cements

    Science.gov (United States)

    Oyibo, A. E.

    2014-12-01

    The main objective of this research is to investigate the applicability of expandable casing technology as a remediation technique for leaky wells resulting in gas migration problems. Micro annulus is usually created at the cement-formation/cement-casing interface or within the cement matrix either due to poor primary cementing or as a result of activities such as temperature and pressure variation or fracturing operations. Recent reports on gas migration in hydraulically fractured wellbores, has raised concerns on the contamination of fresh water aquifers resulting from fluid migration though this flow path. A unique bench-scale physical model which utilizes expandable tubulars in the remediation of micro annular gas flow has been used to simulate expansion of a previously-cemented casing under field-like conditions. Three different designs of cement slurry: regular 16.4 lb. /gal, 16.4 lb. /gal base slurry foamed to 13 lb. /gal and 16.4 lb. /gal cement slurry with 10% salt concentration. Gas flow path (microannulus) was artificially created at the pipe-cement interface by rotating the inner pipe in a pipe inside pipe assembly with cement in the annulus within the first few hours of hydration to create debonding at the cement-casing interface. Nitrogen gas flow-through experiments were performed before and after the expansion to confirm the sealing of the microannulus. The results obtained confirmed the effectiveness of this technique in the complete closure of gas leakage path, providing seal-tight cement-formation interface free of microannulus. The manipulation of the cement sheath during the casing expansion resulted in improved porosity, permeability and the strength of the cement sheath. SEM micrographs revealed decrease in pore size and fracturing of unhydrated cement grains within the cement matrix. This technology has great potential to become one of the leading cement remediation techniques for leaks behind the casing if implemented. Keywords: Wellbore

  14. 6th International Symposium on Thermal Expansion

    CERN Document Server

    1978-01-01

    This 6th International Symposium on Thermal Expansion, the first outside the USA, was held on August 29-31, 1977 at the Gull Harbour Resort on Hecla Island, Manitoba, Canada. Symposium Chairman was Ian D. Peggs, Atomic Energy of Canada Limited, and our continuing sponsor was CINDAS/Purdue University. We made considerable efforts to broaden the base this year to include more users of expansion data but with little success. We were successful, however, in establishing a session on liquids, an area which is receiving more attention as a logical extension to the high-speed thermophysical property measurements on materials at temperatures close to their melting points. The Symposium had good international representation but the overall attendance was, disappointingly, relatively low. Neverthe­ less, this enhanced the informal atmosphere throughout the meeting with a resultant frank exchange of information and ideas which all attendees appreciated. A totally new item this year was the presentation of a bursary to ...

  15. Definite behavioral variant of frontotemporal dementia with C9ORF72 expansions despite positive Alzheimer's disease cerebrospinal fluid biomarkers.

    Science.gov (United States)

    Wallon, David; Rovelet-Lecrux, Anne; Deramecourt, Vincent; Pariente, Jeremie; Auriacombe, Sophie; Le Ber, Isabelle; Schraen, Suzanna; Pasquier, Florence; Campion, Dominique; Hannequin, Didier

    2012-01-01

    Hexanucleotide expansion repeats in the C9ORF72 gene are a major cause of familial and, to a lesser extent, sporadic frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and FTLD-ALS. To examine whether C9ORF72 expansions could be involved in early-onset Alzheimer's disease (EOAD), we genotyped the hexanucleotide repeat region in a large cohort of 114 EOAD patients who all had positive AD cerebrospinal fluid (CSF) biomarkers. We found hexanucleotide expansion repeats of the C9ORF72 gene in 3 out of 114 patients (2.6%). We raise several hypotheses to explain our results and discuss the current status of AD CSF biomarkers in the dementia diagnostic algorithm.

  16. More on zeta-function regularization of high-temperature expansions

    International Nuclear Information System (INIS)

    Actor, A.

    1987-01-01

    A recent paper using the Riemann ζ-function to regularize the (divergent) coefficients occurring in the high-temperature expansions of one-loop thermodynamic potentials is extended. This method proves to be a powerful tool for converting Dirichlet-type series Σ m a m (x i )/m s into power series in the dimensionless parameters x i . The coefficients occurring in the power series are (proportional to) ζ-functions evaluated away from their poles - this is where the regularization occurs. High-temperature expansions are just one example of this highly-nontrivial rearrangement of Dirichlet series into power series form. We discuss in considerable detail series in which a m (x i ) is a product of trigonometric, algebraic and Bessel function factors. The ζ-function method is carefully explained, and a large number of new formulae are provided. The means to generalize these formulae are also provided. Previous results on thermodynamic potentials are generalized to include a nonzero constant term in the gauge potential (time component) which can be used to probe the electric sector of temperature gauge theories. (author)

  17. Self-force calculations with matched expansions and quasinormal mode sums

    International Nuclear Information System (INIS)

    Casals, Marc; Dolan, Sam; Ottewill, Adrian C.; Wardell, Barry

    2009-01-01

    Accurate modeling of gravitational wave emission by extreme-mass ratio inspirals is essential for their detection by the LISA mission. A leading perturbative approach involves the calculation of the self-force acting upon the smaller orbital body. In this work, we present the first application of the Poisson-Wiseman-Anderson method of 'matched expansions' to compute the self-force acting on a point particle moving in a curved spacetime. The method employs two expansions for the Green function, which are, respectively, valid in the 'quasilocal' and 'distant past' regimes, and which may be matched together within the normal neighborhood. We perform our calculation in a static region of the spherically symmetric Nariai spacetime (dS 2 xS 2 ), in which scalar-field perturbations are governed by a radial equation with a Poeschl-Teller potential (frequently used as an approximation to the Schwarzschild radial potential) whose solutions are known in closed form. The key new ingredients in our study are (i) very high order quasilocal expansions and (ii) expansion of the distant past Green function in quasinormal modes. In combination, these tools enable a detailed study of the properties of the scalar-field Green function. We demonstrate that the Green function is singular whenever x and x ' are connected by a null geodesic, and apply asymptotic methods to determine the structure of the Green function near the null wave front. We show that the singular part of the Green function undergoes a transition each time the null wave front passes through a caustic point, following a repeating fourfold sequence δ(σ), 1/πσ, -δ(σ), -1/πσ, etc., where σ is Synge's world function. The matched-expansion method provides insight into the nonlocal properties of the self-force. We show that the self-force generated by the segment of the worldline lying outside the normal neighborhood is not negligible. We apply the matched-expansion method to compute the scalar self-force acting on

  18. Quasinormal-Mode Expansion of the Scattering Matrix

    Directory of Open Access Journals (Sweden)

    Filippo Alpeggiani

    2017-06-01

    Full Text Available It is well known that the quasinormal modes (or resonant states of photonic structures can be associated with the poles of the scattering matrix of the system in the complex-frequency plane. In this work, the inverse problem, i.e., the reconstruction of the scattering matrix from the knowledge of the quasinormal modes, is addressed. We develop a general and scalable quasinormal-mode expansion of the scattering matrix, requiring only the complex eigenfrequencies and the far-field properties of the eigenmodes. The theory is validated by applying it to illustrative nanophotonic systems with multiple overlapping electromagnetic modes. The examples demonstrate that our theory provides an accurate first-principles prediction of the scattering properties, without the need for postulating ad hoc nonresonant channels.

  19. Spring-like motion caused large anisotropic thermal expansion in nonporous M(eim)2 (M = Zn, Cd).

    Science.gov (United States)

    Liu, Zhanning; Liu, Chenxi; Li, Qiang; Chen, Jun; Xing, Xianran

    2017-09-20

    Two nonporous coordination polymers were found to possess large anisotropic thermal expansion, which was derived from the flexible structures. A "spring-like" thermal motion was proposed to illustrate the mechanism. Compound Cd(eim) 2 (eim = 2-ethylimidazole) possesses large linear and reversible thermal expansion properties and the emission intensity shows a linear decrease with temperature, making it a candidate for thermo-responsive materials.

  20. An evaluation of the statistical variability in thermal expansion properties of steam generator tubesheet (SA-508) and tubing (Alloy-600TT)

    International Nuclear Information System (INIS)

    Riccardella, P.C.; Staples, J.F.; Kandra, J.T.

    2009-01-01

    Inspections of steam generator tubing are performed in U.S. PWRs as part of the Steam Generator Management Program. Westinghouse has recently completed a technical justification demonstrating that in steam generators with thermally treated Ni-Cr Alloy (Alloy 600TT) tubes that are hydraulically expanded into low alloy steel (SA-508) tubesheets, flaws in the region of the tubes below a certain distance from the top of the tubesheet, denoted H * , will not result in reactor coolant pressure boundary breach nor unacceptable primary-to-secondary leakage. This is because, even if a flaw in this region were to result in complete tube sever, if the length of undegraded tube in the tubesheet exceeds H*, neither operating nor accident loadings create sufficient pull-out forces to overcome the frictional forces between the tube and tubesheet. One key component of this technical justification is the differential thermal expansion between the tube and tubesheet, since a significant portion of the pullout strength of the hydraulically expanded tube-to-tubesheet joint is due to mechanical interference resulting from the larger expansion of the tubing relative to the tubesheet at a given temperature. To address this phenomenon, a detailed statistical evaluation of coefficient of thermal expansion (CTE) data for the tubesheet material (SA-508) and the tube material (thermally treated Alloy-600) was performed. Data used in the evaluation included existing test results obtained from a number of sources as well as extensive new laboratory data developed specifically for this purpose. The evaluation resulted in recommended statistical distributions of this property for the two materials including their means and probabilistic variability. In addition, it was determined that the CTE values reported in the ASME Code (Section II) represent reasonably conservative mean values for both the tubesheet and tubing material. (author)

  1. Properties of quantum self-gravitating gases

    International Nuclear Information System (INIS)

    Rumyantseva, E.N.

    1981-01-01

    Ways of development of the quantum field theory in the general relativity theory are under consideration. A direction, where consideration of quantum fields in strong nonstatic gravitational fields leads to such effects as particle production, is found out. Authors managed to explain properties of quantum self-gravitating gases on the base of an expansion the fugacity in power series for bose- and fermi gases. Expressions for fluctuations in statistical models of the Fridmann universe are presented. The spectrum density of relict neutrinos in Fridmann models is calculated. A characteristic low boundary of the neutrino energy spectrum constitutes 1 MeV. A number of neutrinos with such energies practically is equal to zero. A great number of neutrinos has energies 0 . It is precisely these neurinos, which are responsible for the closed state of the universe according to the built up model

  2. Thermostatic properties of semi-infinite polarized nuclear matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.; Hassan, M.Y.M.; Ramadan, S.

    1988-03-01

    The surface and curvature properties of semi-infinite polarized nuclear matter (SPNM) are calculated using an expansion for the Fermi integrals up to T 2 . A density matrix expansion is obtained for a modified form of Seyler-Blanchard interaction. New parameters that characterize the surface and curvature properties of SPNM are introduced. The level density parameter is extracted from the low temperature expansion of the free energy and compared with previous calculations. A reasonable agreement is obtained for the parameters calculated before. (author). 78 refs, 1 fig., 5 tabs

  3. Effects of Cr Substitution on Negative Thermal Expansion and Magnetic Properties of Antiperovskite Ga1−xCrxN0.83Mn3 Compounds

    Science.gov (United States)

    Guo, Xinge; Tong, Peng; Lin, Jianchao; Yang, Cheng; Zhang, Kui; Lin, Shuai; Song, Wenhai; Sun, Yuping

    2018-01-01

    Negative thermal expansion (NTE) and magnetic properties were investigated for antiperovskite Ga1−xCrxN0.83Mn3 compounds. As x increases, the temperature span (ΔT) of NTE related with Γ5g antiferromagnetic (AFM) order is expanded and shifted to lower temperatures. At x = 0.1, NTE happens between 256 and 318 K (ΔT = 62 K) with an average linear coefficient of thermal expansion, αL = −46 ppm/K. The ΔT is expanded to 81 K (151–232 K) in x = 0.2 with αL = −22.6 ppm/K. Finally, NTE is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and continuously strengthened with increasing x, which may impede the AFM ordering and thus account for the broadening of NTE temperature window. Moreover, our specific heat measurement suggests the electronic density of states at the Fermi level is enhanced upon Cr doping, which favors the FM order rather than the AFM one. PMID:29619367

  4. Does query expansion limit our learning? A comparison of social-based expansion to content-based expansion for medical queries on the internet.

    Science.gov (United States)

    Pentoney, Christopher; Harwell, Jeff; Leroy, Gondy

    2014-01-01

    Searching for medical information online is a common activity. While it has been shown that forming good queries is difficult, Google's query suggestion tool, a type of query expansion, aims to facilitate query formation. However, it is unknown how this expansion, which is based on what others searched for, affects the information gathering of the online community. To measure the impact of social-based query expansion, this study compared it with content-based expansion, i.e., what is really in the text. We used 138,906 medical queries from the AOL User Session Collection and expanded them using Google's Autocomplete method (social-based) and the content of the Google Web Corpus (content-based). We evaluated the specificity and ambiguity of the expansion terms for trigram queries. We also looked at the impact on the actual results using domain diversity and expansion edit distance. Results showed that the social-based method provided more precise expansion terms as well as terms that were less ambiguous. Expanded queries do not differ significantly in diversity when expanded using the social-based method (6.72 different domains returned in the first ten results, on average) vs. content-based method (6.73 different domains, on average).

  5. Microeconomic principles explain an optimal genome size in bacteria.

    Science.gov (United States)

    Ranea, Juan A G; Grant, Alastair; Thornton, Janet M; Orengo, Christine A

    2005-01-01

    Bacteria can clearly enhance their survival by expanding their genetic repertoire. However, the tight packing of the bacterial genome and the fact that the most evolved species do not necessarily have the biggest genomes suggest there are other evolutionary factors limiting their genome expansion. To clarify these restrictions on size, we studied those protein families contributing most significantly to bacterial-genome complexity. We found that all bacteria apply the same basic and ancestral 'molecular technology' to optimize their reproductive efficiency. The same microeconomics principles that define the optimum size in a factory can also explain the existence of a statistical optimum in bacterial genome size. This optimum is reached when the bacterial genome obtains the maximum metabolic complexity (revenue) for minimal regulatory genes (logistic cost).

  6. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    OpenAIRE

    Wei Wang; Wei Wang; Huiming Liu; Rongjin Huang; Rongjin Huang; Yuqiang Zhao; Chuangjun Huang; Shibin Guo; Yi Shan; Laifeng Li; Laifeng Li; Laifeng Li

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K) environment easily. This paper describes the design and ...

  7. Thermal expansion studies of ThW2O8 and UWO6

    International Nuclear Information System (INIS)

    Keskar, Meera; Krishnan, K.; Sali, S.K.

    2014-01-01

    Thorium and uranium oxysalts with hexavalent cations of elements of VI th group of the periodic table are important from mineralogical, environmental and technological points of view. Several molybdates and tungstates of uranium and thorium are known to have similar structural and thermo-physical properties. Earlier, thermal expansion behavior of ThMo 2 O 8 and UMoO 6 were reported from our laboratory. In the present work, thermal expansion behavior of ThW 2 O 8 and UWO 6 studied under vacuum from ambient to 1000 and 800℃, respectively using high temperature X-ray diffraction (HTXRD) technique is reported

  8. Baumax's Expansion into the Emerging Markets of Central and Eastern Europe

    DEFF Research Database (Denmark)

    Nell, Phillip C.; Ruckensteiner-Geyer, Nicoleta; Kvapil, Kerstin

    2017-01-01

    ) in the early 1990s, growth and profitability in the home market and in a number of host-markets became increasingly disappointing. The owners (and managers) saw further international expansion as the key to bring back growth and profitability. Romania was identified as one of the target markets. The case...... explains bauMax’ business and strategy and presents data on the Romanian market situation. The discussion focuses not only on the Romanian decision but also on the more general logic behind bauMax’ internationalisation...

  9. A Negative Thermal Expansion Material of ZrMgMo3O12

    International Nuclear Information System (INIS)

    Song Wen-Bo; Liang Er-Jun; Liu Xian-Sheng; Li Zhi-Yuan; Yuan Bao-He; Wang Jun-Qiao

    2013-01-01

    A material with the formula ZrMgMo 3 O 12 having negative thermal expansion is presented and characterized. It is shown that ZrMgMo 3 O 12 crystallizes in an orthorhombic symmetry with space group Pnma(62) or Pna2 1 (33) and exhibits negative thermal expansion in a large temperature range (α l = −3.8 × 10 −6 K −1 from 300K to 1000K by x-ray diffraction and α l = −3.73 × 10 −6 K −1 from 295K to 775K by dilatometer). ZrMgMo 3 O 12 remains the orthorhombic structure without phase transition or decomposition at least from 123K to 1200K and is not hygroscopic. These properties make it an excellent material with negative thermal expansion for a variety of applications

  10. Effects of Pr-deficiency on thermal expansion and electrochemical properties in Pr_1_−_xBaCo_2O_5_+_δ cathodes for IT-SOFCs

    International Nuclear Information System (INIS)

    Zhang, Leilei; Yao, Guibin; Song, Zhaoyuan; Niu, Bingbing; Long, Wen; Zhang, Lei; Shen, Yu; He, Tianmin

    2016-01-01

    Highlights: • Single phase oxides P_1_−_xBCO with x = 0.00–0.10 were successfully prepared. • TECs and electrical conductivities of P_1_−_xBCO cathodes decrease with Pr-deficiency. • Among P_1_−_xBCO cathodes, P_0_._9_2BCO exhibits the lowest polarization resistance. • Electron charge transfer plays a dominant role in cathode oxygen reduction. • P_m_a_x of 987 mW cm"−"2 at 800 °C for P_0_._9_2BCO cathode is obtained on SDC electrolyte. - Abstract: Pr-deficient Pr_1_−_xBaCo_2O_5_+_δ (P_1_−_xBCO) oxides are evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). Effects of Pr-deficiency on electrical conductivity, thermal expansion and electrochemical properties are investigated. Both the conductivity and thermal expansion coefficient (TEC) decrease with increasing Pr-deficiency. All of the conductivity, thermal expansion and TGA measurements demonstrate the existence of high temperature order-disorder transition. The oxygen reduction mechanism for P_1_−_xBCO cathodes are characterized by electrochemical impedance spectroscopy. Over the temperature range of 600−800 °C, the cathode polarization resistance is mainly contributed from electronic charge transfer over the cathode surface. Proper Pr-deficiency reduces cathode polarization resistance (R_p), and the lowest R_p (0.081 Ω cm"2 at 700 °C) is obtained for the P_0_._9_2BCO cathode. In addition, the effects of order-disorder transition on the properties of P_1_−_xBCO cathodes have also been discussed. Maximum power densities of a single-cell with P_0_._9_2BCO cathode on 300-μm thick Sm_0_._2Ce_0_._8O_1_._9 (SDC) electrolyte achieve 446–987 mW cm"−"2 at 650–800 °C. These results suggest that, among various P_1_−_xBCO oxides, P_0_._9_2BCO is the most promising candidate cathode material for IT-SOFCs.

  11. Ab initio, mean field theory and series expansions calculations study of electronic and magnetic properties of antiferromagnetic MnSe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, BP. 63, 46000 Safi (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O.; El Moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2014-06-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnSe lattice. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn lattices. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the spin −4.28 nearest-neighbor Ising model on face centered cubic (fcc) and lattices is thoroughly analyzed by means of a power series coherent anomaly method (CAM). The exchange interaction between the magnetic atoms and the Néel temperature are deduced using the mean filed and HTSEs theories. - Highlights: • Ab initio calculations are used to investigate both electronic and magnetic properties of the MnSe alloys. • Obtained data from ab initio calculations are used as input for the HTSEs. • The Néel temperature is obtained for MnSe alloys.

  12. Overview of the environmental impact assessment for the proposed expansion of the Elliot Lake Ontario uranium mines

    International Nuclear Information System (INIS)

    Gorber, D.M.; Graham, R.G.; Ibbotson, B.G.

    1978-01-01

    As a result of the resurgence in the demand for uranium, Denison Mines Limited and Rio Algom Limited began preparations, in 1973 and 1974 respectively, for expansion of their facilities at Elliot Lake, Ontario. These programmes involved not only the expansion of facilities currently in operation in the area, but also the rehabilitation of non-operating properties that were previously used during the 1960's. This paper reviews the methodology employed during the environmental assessment study of the proposed expansion and highlights the long and short-term strategies recommended

  13. One-loop topological expansion for spin glasses in the large connectivity limit

    Science.gov (United States)

    Chiara Angelini, Maria; Parisi, Giorgio; Ricci-Tersenghi, Federico

    2018-01-01

    We apply for the first time a new one-loop topological expansion around the Bethe solution to the spin-glass model with a field in the high connectivity limit, following the methodological scheme proposed in a recent work. The results are completely equivalent to the well-known ones, found by standard field-theoretical expansion around the fully connected model (Bray and Roberts 1980, and following works). However this method has the advantage that the starting point is the original Hamiltonian of the model, with no need to define an associated field theory, nor to know the initial values of the couplings, and the computations have a clear and simple physical meaning. Moreover this new method can also be applied in the case of zero temperature, when the Bethe model has a transition in field, contrary to the fully connected model that is always in the spin-glass phase. Sharing with finite-dimensional model the finite connectivity properties, the Bethe lattice is clearly a better starting point for an expansion with respect to the fully connected model. The present work is a first step towards the generalization of this new expansion to more difficult and interesting cases as the zero-temperature limit, where the expansion could lead to different results with respect to the standard one.

  14. Effect of graphene orientation on microstructure and mechanical properties of silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    Yubing Zhang

    2018-03-01

    Full Text Available Mechanical properties and microstructure of graphene platelets reinforced Si3N4 composites have been investigated and compared to monolithic Si3N4. The microstructure shows that graphene platelets are parallel to each other and perpendicular to the hot pressing direction. Fracture toughness and flexural strength of composite with 1 wt.% graphene measured on polished surface perpendicular to hot pressing direction are 8.7 MPa·m1/2 and 892 MPa, respectively, which are increased about 14.5% and 20.2% compared with that parallel to hot pressing direction. The anisotropy of microstructure and mechanical properties of composites can be explained by the intrinsic anisotropy of graphene as well as the crack deflection energy release rate and the weak boundary bonding between graphene and Si3N4 caused by the thermal expansion mismatch.

  15. Monte Carlo methods for flux expansion solutions of transport problems

    International Nuclear Information System (INIS)

    Spanier, J.

    1999-01-01

    Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error

  16. Expansion tunnel characterization and development of non-intrusive microwave plasma diagnostics

    Science.gov (United States)

    Dufrene, Aaron T.

    The focus of this research is the development of non-intrusive microwave diagnostics for characterization of expansion tunnels. The main objectives of this research are to accurately characterize the LENS XX expansion tunnel facility, develop non-intrusive RF diagnostics that will work in short-duration expansion tunnel testing, and to determine plasma properties and other information that might otherwise be unknown, less accurate, intrusive, or more difficult to determine through conventional methods. Testing was completed in LENS XX, a new large-scale expansion tunnel facility at CUBRC, Inc. This facility is the largest known expansion tunnel in the world with an inner diameter of 24 inches, a 96 inch test section, and an end-to-end length of more than 240 ft. Expansion tunnels are currently the only facilities capable of generating high-enthalpy test conditions with minimal or no freestream dissociation or ionization. However, short test times and freestream noise at some conditions have limited development of these facilities. To characterize the LENS XX facility, the first step is to evaluate the facility pressure, vacuum, temperature, and other mechanical restrictions to derive a theoretical testing parameter space. Test condition maps are presented for a variety of parameters and gases based on 1D perfect gas dynamics. Test conditions well beyond 10 km/s or 50 MJ/kg are identified with minimum test times of 200 us. Additionally, a four-chamber expansion tube configuration is considered for extending the stagnation enthalpy range of the facility even further. A microwave shock speed diagnostic measures primary and secondary shock speeds accurately every 30 in. down the entire length of the facility resulting in a more accurate determination of freestream conditions required for computational comparisons. The high resolution of this measurement is used to assess shock speed attenuation as well as secondary diaphragm performance. Negligible shock attenuation is

  17. A mixture of sparse coding models explaining properties of face neurons related to holistic and parts-based processing.

    Directory of Open Access Journals (Sweden)

    Haruo Hosoya

    2017-07-01

    Full Text Available Experimental studies have revealed evidence of both parts-based and holistic representations of objects and faces in the primate visual system. However, it is still a mystery how such seemingly contradictory types of processing can coexist within a single system. Here, we propose a novel theory called mixture of sparse coding models, inspired by the formation of category-specific subregions in the inferotemporal (IT cortex. We developed a hierarchical network that constructed a mixture of two sparse coding submodels on top of a simple Gabor analysis. The submodels were each trained with face or non-face object images, which resulted in separate representations of facial parts and object parts. Importantly, evoked neural activities were modeled by Bayesian inference, which had a top-down explaining-away effect that enabled recognition of an individual part to depend strongly on the category of the whole input. We show that this explaining-away effect was indeed crucial for the units in the face submodel to exhibit significant selectivity to face images over object images in a similar way to actual face-selective neurons in the macaque IT cortex. Furthermore, the model explained, qualitatively and quantitatively, several tuning properties to facial features found in the middle patch of face processing in IT as documented by Freiwald, Tsao, and Livingstone (2009. These included, in particular, tuning to only a small number of facial features that were often related to geometrically large parts like face outline and hair, preference and anti-preference of extreme facial features (e.g., very large/small inter-eye distance, and reduction of the gain of feature tuning for partial face stimuli compared to whole face stimuli. Thus, we hypothesize that the coding principle of facial features in the middle patch of face processing in the macaque IT cortex may be closely related to mixture of sparse coding models.

  18. Unique Optoelectronic Structure and Photoreduction Properties of Sulfur-Doped Lead Chromates Explaining Their Instability in Paintings.

    Science.gov (United States)

    Rahemi, Vanoushe; Sarmadian, Nasrin; Anaf, Willemien; Janssens, Koen; Lamoen, Dirk; Partoens, Bart; De Wael, Karolien

    2017-03-21

    Chrome yellow refers to a group of synthetic inorganic pigments that became popular as an artist's material from the second quarter of the 19th century. The color of the pigment, in which the chromate ion acts as a chromophore, is related to its chemical composition (PbCr 1-x S x O 4 , with 0 ≤ x ≤ 0.8) and crystalline structure (monoclinic/orthorhombic). Their shades range from the yellow-orange to the paler yellow tones with increasing sulfate amount. These pigments show remarkable signs of degradation after limited time periods. Pure PbCrO 4 (crocoite in its natural form) has a deep yellow color and is relatively stable, while the coprecipitate with lead sulfate (PbCr 1-x S x O 4 ) has a paler shade and seems to degrade faster. This degradation is assumed to be related to the reduction of Cr(VI) to Cr(III). We show that, when the the sulfur(S)-content in chrome yellow increases, the band gap increases. Typically, when increasing the band gap, one might assume that a decrease in photoactivity is the result. However, the photoactivity relative to the Cr content and, thus, Cr reduction of sulfur-rich PbCr 1-x S x O 4 is found to be much higher compared to the sulfur-poor or nondoped lead chromates. This discrepancy can be explained by the evolution of the crystal and electronic structure as a function of the sulfur content: first-principles density functional theory calculations show that both the absorption coefficient and reflection coefficients of the lead chromates change as a result of the sulfate doping in such a way that the generation of electron-hole pairs under illumination relative to the total Cr content increases. These changes in the material properties explain why paler shade yellow colors of this pigment are more prone to discoloration. The electronic structure calculations also demonstrate that lead chromate and its coprecipitates are p-type semiconductors, which explains the observed reduction reaction. Because understanding this phenomenon is

  19. Explaining NDVI trends in northern Burkina Faso

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Fensholt, Rasmus; Fog, Bjarne

    2014-01-01

    by a distinct spatial pattern and strongly dominated by negative trends in Normalized Difference Vegetation Index (NDVI). The aim of the paper is to explain this distinct pattern. When studied over the period 2000–2012, using NDVI data from the MODIS sensor the spatial pattern of NDVI trends indicates that non......-climatic factors are involved. By relating NDVI trends to landscape elements and land use change we demonstrate that NDVI trends in the north-western parts of the study area are mostly related to landscape elements, while this is not the case in the south-eastern parts, where rapidly changing land use, including....... expansion of irrigation, plays a major role. It is inferred that a process of increased redistribution of fine soil material, water and vegetation from plateaus and slopes to valleys, possibly related to higher grazing pressure, may provide an explanation of the observed pattern of NDVI trends. Further work...

  20. Topological expansion of the chain of matrices

    International Nuclear Information System (INIS)

    Eynard, B.; Ferrer, A. Prats

    2009-01-01

    We solve the loop equations to all orders in 1/N 2 , for the Chain of Matrices matrix model (with possibly an external field coupled to the last matrix of the chain). We show that the topological expansion of the free energy, is, like for the 1 and 2-matrix model, given by the symplectic invariants of [19]. As a consequence, we find the double scaling limit explicitly, and we discuss modular properties, large N asymptotics. We also briefly discuss the limit of an infinite chain of matrices (matrix quantum mechanics).

  1. The convergence radius of the chiral expansion in the Dyson-Schwinger approach

    International Nuclear Information System (INIS)

    Meissner, T.

    1994-01-01

    We determine the convergence radius m conv or the expansion in the current quark mass using the Dyson-Schwinger (DS) equation of QCD in the rainbow approximation. Within a Gaussian form for the gluon propagator D μ ν(p) ∼ δμνχ 2 e - Δ /p 2 we find that m conv increases with decreasing width Δ and increasing strength χ 2 . For those values of χ 2 and Δ, which provide the best known description of low energy hadronic phenomena, m conv lies around 2Λ QCD , which is big enough, that the chiral expansion in the strange sector converges. Our analysis also explains the rather low value of m conv ∼ 50...80 MeV in the Nambu-Jona-Lasinio model, which as itself can be regarded as a special case of the rainbow DS models, where the gluon propagator is a constant in momentum space

  2. The principal component analysis method used with polynomial Chaos expansion to propagate uncertainties through critical transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Rising, M. E.; Prinja, A. K. [Univ. of New Mexico, Dept. of Chemical and Nuclear Engineering, Albuquerque, NM 87131 (United States)

    2012-07-01

    A critical neutron transport problem with random material properties is introduced. The total cross section and the average neutron multiplicity are assumed to be uncertain, characterized by the mean and variance with a log-normal distribution. The average neutron multiplicity and the total cross section are assumed to be uncorrected and the material properties for differing materials are also assumed to be uncorrected. The principal component analysis method is used to decompose the covariance matrix into eigenvalues and eigenvectors and then 'realizations' of the material properties can be computed. A simple Monte Carlo brute force sampling of the decomposed covariance matrix is employed to obtain a benchmark result for each test problem. In order to save computational time and to characterize the moments and probability density function of the multiplication factor the polynomial chaos expansion method is employed along with the stochastic collocation method. A Gauss-Hermite quadrature set is convolved into a multidimensional tensor product quadrature set and is successfully used to compute the polynomial chaos expansion coefficients of the multiplication factor. Finally, for a particular critical fuel pin assembly the appropriate number of random variables and polynomial expansion order are investigated. (authors)

  3. Energy expansion planning by considering electrical and thermal expansion simultaneously

    International Nuclear Information System (INIS)

    Abbasi, Ali Reza; Seifi, Ali Reza

    2014-01-01

    Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies

  4. Thermal expansion of the cryoprotectant cocktail DP6 combined with synthetic ice modulators in presence and absence of biological tissues.

    Science.gov (United States)

    Eisenberg, David P; Taylor, Michael J; Rabin, Yoed

    2012-10-01

    This study explores physical effects associated with the application of cryopreservation via vitrification using a class of compounds which are defined here as synthetic ice modulators (SIMs). The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. A sub-category of SIMs, referred to in the literature as synthetic ice blockers (SIBs), are compounds that interact directly with ice nuclei or crystals to modify their structure and/or rate of growth. The current study is part of an ongoing effort to characterize thermo-mechanical effects during vitrification, with emphasis on measuring the physical property of thermal expansion-the driving mechanism to thermo-mechanical stress. Materials under investigation are the cryoprotective agent (CPA) cocktail DP6 in combination with one of the following SIMs: 12% polyethylene glycol 400, 6% 1,3 cyclohexanediol, and 6% 2,3 butanediol. Results are presented for the CPA-SIM cocktail in the absence and presence of bovine muscle and goat artery specimens. This study focuses on the upper part of the cryogenic temperature range, where the CPA behaves as a fluid for all practical applications. Results of this study indicate that the addition of SIMs to DP6 allows lower cooling rates to ensure vitrification and extends the range of measurements. It is demonstrated that the combination of SIM with DP6 increases the thermal expansion of the cocktail, with implications for the likelihood of fracture formation-the most dramatic outcome of thermo-mechanical stress. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Estimates of radiation over clouds and dust aerosols: Optimized number of terms in phase function expansion

    International Nuclear Information System (INIS)

    Ding Shouguo; Xie Yu; Yang Ping; Weng Fuzhong; Liu Quanhua; Baum, Bryan; Hu Yongxiang

    2009-01-01

    The bulk-scattering properties of dust aerosols and clouds are computed for the community radiative transfer model (CRTM) that is a flagship effort of the Joint Center for Satellite Data Assimilation (JCSDA). The delta-fit method is employed to truncate the forward peaks of the scattering phase functions and to compute the Legendre expansion coefficients for re-constructing the truncated phase function. Use of more terms in the expansion gives more accurate re-construction of the phase function, but the issue remains as to how many terms are necessary for different applications. To explore this issue further, the bidirectional reflectances associated with dust aerosols, water clouds, and ice clouds are simulated with various numbers of Legendre expansion terms. To have relative numerical errors smaller than 5%, the present analyses indicate that, in the visible spectrum, 16 Legendre polynomials should be used for dust aerosols, while 32 Legendre expansion terms should be used for both water and ice clouds. In the infrared spectrum, the brightness temperatures at the top of the atmosphere are computed by using the scattering properties of dust aerosols, water clouds and ice clouds. Although small differences of brightness temperatures compared with the counterparts computed with 4, 8, 128 expansion terms are observed at large viewing angles for each layer, it is shown that 4 terms of Legendre polynomials are sufficient in the radiative transfer computation at infrared wavelengths for practical applications.

  6. The effect of van der Waal's gap expansions on the surface electronic structure of layered topological insulators

    International Nuclear Information System (INIS)

    Eremeev, S V; Vergniory, M G; Chulkov, E V; Menshchikova, T V; Shaposhnikov, A A

    2012-01-01

    On the basis of relativistic ab initio calculations, we show that an expansion of van der Waal's (vdW) spacings in layered topological insulators caused by intercalation of deposited atoms, leads to the simultaneous emergence of parabolic and M-shaped two-dimensional electron gas (2DEG) bands as well as Rashba-splitting of the former states. The expansion of vdW spacings and the emergence of the 2DEG states localized in the (sub)surface region are also accompanied by a relocation of the topological surface state to the lower quintuple layers, that can explain the absence of inter-band scattering found experimentally. (paper)

  7. The Glycine-Alanine Dipeptide Repeat from C9orf72 Hexanucleotide Expansions Forms Toxic Amyloids Possessing Cell-to-Cell Transmission Properties.

    Science.gov (United States)

    Chang, Yu-Jen; Jeng, U-Ser; Chiang, Ya-Ling; Hwang, Ing-Shouh; Chen, Yun-Ru

    2016-03-04

    Hexanucleotide expansions, GGGGCC, in the non-coding regions of the C9orf72 gene were found in major frontotemporal lobar dementia and amyotrophic lateral sclerosis patients (C9FTD/ALS). In addition to possible RNA toxicity, several dipeptide repeats (DPRs) are translated through repeat-associated non-ATG-initiated translation. The DPRs, including poly(GA), poly(GR), poly(GP), poly(PR), and poly(PA), were found in the brains and spinal cords of C9FTD/ALS patients. Among the DPRs, poly(GA) is highly susceptible to form cytoplasmic inclusions, which is a characteristic of C9FTD/ALS. To elucidate DPR aggregation, we used synthetic (GA)15 DPR as a model system to examine the aggregation and structural properties in vitro. We found that (GA)15 with 15 repeats fibrillates rapidly and ultimately forms flat, ribbon-type fibrils evidenced by transmission electron microscopy and atomic force microscopy. The fibrils are capable of amyloid dye binding and contain a characteristic cross-β sheet structure, as revealed by x-ray scattering. Furthermore, using neuroblastoma cells, we demonstrated the neurotoxicity and cell-to-cell transmission property of (GA)15 DPR. Overall, our results show the structural and toxicity properties of GA DPR to facilitate future DPR-related therapeutic development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Optimisation of expansion liquefaction processes using mixed refrigerant N_2–CH_4

    International Nuclear Information System (INIS)

    Ding, He; Sun, Heng; He, Ming

    2016-01-01

    Highlights: • A refrigerant composition matching method for N_2–CH_4 expansion processes. • Efficiency improvements for propane pre-cooled N_2–CH_4 expansion processes. • The process shows good adaptability to varying natural gas compositions. - Abstract: An expansion process with a pre-cooling system is simulated and optimised by Aspen HYSYS and MATLAB"™. Taking advantage of higher specific refrigeration effect of methane and easily reduced refrigeration temperature of nitrogen, the designed process adopts N_2–CH_4 as a mixed refrigerant. Based on the different thermodynamic properties and sensitivity difference of N_2 and CH_4 over the same heat transfer temperature range, this work proposes a novel method of matching refrigerant composition which aims at single-stage or multi-stage series expansion liquefaction processes with pre-cooling systems. This novel method is applied successfully in propane pre-cooled N_2–CH_4 expansion process, and the unit power consumption is reduced to 7.09 kWh/kmol, which is only 5.35% higher than the global optimised solutions obtained by genetic algorithm. This novel method can fulfil the accomplishments of low energy consumption and high liquefaction rate, and thus decreases the gap between the mixed refrigerant and expansion processes in energy consumption. Furthermore, the high exergy efficiency of the process indicates good adaptability to varying natural gas compositions.

  9. Mechanical properties of non-centrosymmetric CePt3Si and CePt3B

    Science.gov (United States)

    Rogl, G.; Legut, D.; Sýkora, R.; Müller, P.; Müller, H.; Bauer, E.; Puchegger, S.; Zehetbauer, M.; Rogl, P.

    2017-05-01

    Elastic moduli, hardness (both at room temperature) and thermal expansion (4.2-670 K) have been experimentally determined for polycrystalline CePt3Si and its prototype compound CePt3B as well as for single-crystalline CePt3Si. Resonant ultrasound spectroscopy was used to determine elastic properties (Young’s modulus E and Poisson’s ratio ν) via the eigenfrequencies of the sample and the knowledge of sample mass and dimensions. Bulk and shear moduli were calculated from E and ν, and the respective Debye temperatures were derived. In addition, ab initio DFT calculations were carried out for both compounds. A comparison of parameters evaluated from DFT with those of experiments revealed, in general, satisfactory agreement. Positive and negative thermal expansion values obtained from CePt3Si single crystal data are fairly well explained in terms of the crystalline electric field model, using CEF parameters derived recently from inelastic neutron scattering. DFT calculations, in addition, demonstrate that the atomic vibrations keep almost unaffected by the antisymmetric spin-orbit coupling present in systems with crystal structures having no inversion symmetry. This is opposite to electronic properties, where the antisymmetric spin-orbit interaction has shown to distinctly influence features like the superconducting condensate of CePt3Si.

  10. ACRES - Brownfields Properties

    Data.gov (United States)

    U.S. Environmental Protection Agency — Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance,...

  11. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  12. The contribution of fiscal/financial decentralization to the debt expansion of the local financing platform

    Science.gov (United States)

    Huayang, Yin; Di, Zhou; Bing, Cui

    2018-02-01

    Using soft budget theory to explore the formation mechanism and the deep institutional incentive of the local financing platform debt expansion from the perspective of fiscal / financial decentralization, construct theoretical framework which explain the expansion of local debt financing platform and conduct an empirical test, the results showed that the higher the degree of fiscal decentralization, fiscal autonomy as a soft constraint body of local government the stronger, local financing platform debt scale is greater; the higher the degree of financial decentralization, local government and financial institutions have the higher autonomy with respect to the central, local financing platform debt scale is bigger; financial synergy degree is stronger, local government financial mutual supervision prompted the local government debt more transparency, local debt financing platform size is smaller.

  13. Experimental investigation of linear thermal expansion of pyrolytic graphite at high temperatures

    Science.gov (United States)

    Senchenko, V. N.; Belikov, R. S.

    2017-11-01

    Using the previously described [1] experimental setup for investigation of the thermophysical properties of refractory materials under high pressure and temperature a few experiments with pyrolytic graphite were carried out. The density of the material was equal to 2.18 g/cm3. Experimental data on the linear thermal expansion in the perpendicular and parallel to the basal plane direction were obtained. Thermal expansion in the perpendicular to the basal plane direction during the heating from room temperature up to the melting point was 16.4 ± 1.6%. The results obtained allow calculating the density of pyrolytic graphite in the wide range of high temperatures up to the melting point.

  14. Global Monte Carlo Simulation with High Order Polynomial Expansions

    International Nuclear Information System (INIS)

    William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin

    2007-01-01

    The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as 'local' piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi's method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source convergence

  15. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  16. Y chromosome diversity, human expansion, drift, and cultural evolution.

    Science.gov (United States)

    Chiaroni, Jacques; Underhill, Peter A; Cavalli-Sforza, Luca L

    2009-12-01

    The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent "Out of Africa" expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production.

  17. Nickel-base alloys having a low coefficient of thermal expansion

    International Nuclear Information System (INIS)

    Baldwin, J.F.; Maxwell, D.H.

    1975-01-01

    Alloy compositions consisting predominantly of nickel, chromium, molybdenum, carbon, and boron are disclosed. The alloys possess a duplex structure consisting of a nickel--chromium--molybdenum matrix and a semi-continuous network of refractory carbides and borides. A combination of desirable properties is provided by these alloys, including elevated temperature strength, resistance to oxidation and hot corrosion, and a very low coefficient of thermal expansion

  18. Linked cluster expansions for open quantum systems on a lattice

    Science.gov (United States)

    Biella, Alberto; Jin, Jiasen; Viyuela, Oscar; Ciuti, Cristiano; Fazio, Rosario; Rossini, Davide

    2018-01-01

    We propose a generalization of the linked-cluster expansions to study driven-dissipative quantum lattice models, directly accessing the thermodynamic limit of the system. Our method leads to the evaluation of the desired extensive property onto small connected clusters of a given size and topology. We first test this approach on the isotropic spin-1/2 Hamiltonian in two dimensions, where each spin is coupled to an independent environment that induces incoherent spin flips. Then we apply it to the study of an anisotropic model displaying a dissipative phase transition from a magnetically ordered to a disordered phase. By means of a Padé analysis on the series expansions for the average magnetization, we provide a viable route to locate the phase transition and to extrapolate the critical exponent for the magnetic susceptibility.

  19. Explaining Away Intuitions

    Directory of Open Access Journals (Sweden)

    Jonathan Ichikawa

    2009-12-01

    Full Text Available What is it to explain away an intuition? Philosophers regularly attempt to explain intuitions away, but it is often unclear what the success conditions for their project consist in. I attempt to articulate some of these conditions, taking philosophical case studies as guides, and arguing that many attempts to explain away intuitions underestimate the challenge the project of explaining away involves. I will conclude, therefore, that explaining away intuitions is a more difficult task than has sometimes been appreciated; I also suggest, however, that the importance of explaining away intuitions has often been exaggerated.

  20. Can molecular diffusion explain Space Shuttle plume spreading?

    Science.gov (United States)

    Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.

    2010-04-01

    The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.

  1. PENGARUH FOTOOKSIDASI UV-C TERHADAP SIFAT FISIKOKIMIA DAN BAKING EXPANSION PATI SAGU (Metroxylon sago

    Directory of Open Access Journals (Sweden)

    Eduard Fransisco Tethool

    2017-09-01

    Full Text Available Native Sago starch is difficult to used in industry because of the limitations of its phisycochemical properties. The aim of this research was to studied effect of UV-C photo-oxidation on  physicochemical properties and baking expansion of sago starch. Five slurries ratio (starch : water ratio: 1:2; 1:4; 1:6; 1:8; and 1:10 were oxidized with UV-C irradiation for 20 minutes, and then compared with native sago starch. The results showed that UV-C photo-oxidation increasing amylose content and paste viscosity, but decreasing swelling power and solubility, and carbonyl and carboxyl content. Used of UV-C as a photooxidator effective to increasing baking expansion characteristic, and the best slurry ratio was 1:6, which has 6.97 ml/g specific volume or 33.7% increased from native sago starch (5.22 ml/g

  2. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lei [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Qin, Feiyu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sanson, Andrea [Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy; Huang, Liang-Feng [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Pan, Zhao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Li, Qiang [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Sun, Qiang [International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China; Wang, Lu [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Guo, Fangmin [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Aydemir, Umut [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Department of Chemistry, Koc University, Sariyer, Istanbul 34450, Turkey; Ren, Yang [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Sun, Chengjun [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Deng, Jinxia [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Aquilanti, Giuliana [Elettra Sincrotrone Trieste, Basovizza, Trieste I-34149, Italy; Rondinelli, James M. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Jun [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

    2018-03-15

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.

  3. Asymptotic expansion and statistical description of turbulent systems

    International Nuclear Information System (INIS)

    Hagan, W.K. III.

    1986-01-01

    A new approach to studying turbulent systems is presented in which an asymptotic expansion of the general dynamical equations is performed prior to the application of statistical methods for describing the evolution of the system. This approach has been applied to two specific systems: anomalous drift wave turbulence in plasmas and homogeneous, isotropic turbulence in fluids. For the plasma case, the time and length scales of the turbulent state result in the asymptotic expansion of the Vlasov/Poisson equations taking the form of nonlinear gyrokinetic theory. Questions regarding this theory and modern Hamiltonian perturbation methods are discussed and resolved. A new alternative Hamiltonian method is described. The Eulerian Direct Interaction Approximation (EDIA) is slightly reformulated and applied to the equations of nonlinear gyrokinetic theory. Using a similarity transformation technique, expressions for the thermal diffusivity are derived from the EDIA equations for various geometries, including a tokamak. In particular, the unique result for generalized geometry may be of use in evaluating fusion reactor designs and theories of anomalous thermal transport in tokamaks. Finally, a new and useful property of the EDIA is pointed out. For the fluid case, an asymptotic expansion is applied to the Navier-Stokes equation and the results lead to the speculation that such an approach may resolve the problem of predicting the Kolmogorov inertial range energy spectrum for homogeneous, isotropic turbulence. 45 refs., 3 figs

  4. Thermal Expansion and Luminescent Properties of Triorthogermanates CaLa2- x Eu x Ge3O10 ( x = 0.0-0.6)

    Science.gov (United States)

    Lipina, O. A.; Surat, L. L.; Baklanova, Ya. V.; Berger, I. F.; Tyutyunnik, A. P.; Zubkov, V. G.

    2018-02-01

    Solid solutions CaLa2- x Eu x Ge3O10 ( x = 0.0-0.6, Δ x = 0.1) have been synthesized for the first time. The compounds are isostructural to CaLa2Ge3O10, they crystallize in the monoclinic system, space group P21/ c, Z = 4. The low-temperature X-ray diffraction studies have revealed the strain anisotropy of germanate CaLa2Ge3O10 crystal lattice in the temperature range 80-298 K, and the linear thermal expansion coefficients have been calculated. The optical properties of the activated phases have been studied, and the influence of the dopant concentration and the excitation wavelength on the luminescence characteristics of the synthesized compounds has been established.

  5. The Role of Auxin in Cell Wall Expansion.

    Science.gov (United States)

    Majda, Mateusz; Robert, Stéphanie

    2018-03-22

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.

  6. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production.

    Directory of Open Access Journals (Sweden)

    Pintu Patra

    2016-06-01

    Full Text Available Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.

  7. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production.

    Science.gov (United States)

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B; Igoshin, Oleg A

    2016-06-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.

  8. Phase behaviour, thermal expansion and compressibility of SnMo 2 O 8

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.; Evans, John S.O. (Durham); (GIT)

    2018-02-01

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298–513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ'. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family. Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ~36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.

  9. Expansive soil stabilization with coir waste and lime for flexible pavement subgrade

    Science.gov (United States)

    Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.

    2018-03-01

    Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.

  10. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  11. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  12. The intrinsic thermal expansion of point defects in Al

    International Nuclear Information System (INIS)

    Asty, Michel.

    1975-11-01

    The differential length measurement between two specimens, on pure and the other containing point defects, leads to the intrinsic thermal coefficient of expansion β(d) of the defect. A differential dilatometer by Laser interferometry is described operating between 77 and 300 K, with a sensitivity of about 100A on the length difference between an alloy sample and a pure dummy. Concerning substitutional impurities in aluminium between -190 deg C and -90 deg C, the intrinsic thermal coefficient of expansion of the defect β(d) is shown to have an absolute value much larger than the thermal expansion coefficient β 0 of the aluminium matrix: β(d)/β 0 =+3 to +6 for the magnesium impurity, β(d)/β 0 =-3 to -4 for the calcium impurity, and to be independent of the temperature. The existing theoretical models give evaluations for away from modeles theoriques existant sont tres loin d'expliquer les resultats experimentaux. high temperature, the results show that vacancies and divacancies, before collapsing in dislocation loops, form multivacancy clusters with large formation volumes: such a property makes these clusters comparable to cavities where the formation volume per vacancy is equal to the atomic volume of the matrix [fr

  13. Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate.

    Science.gov (United States)

    Fortes, A Dominic; Suard, Emmanuelle; Knight, Kevin S

    2011-02-11

    The vast majority of materials shrink in all directions when hydrostatically compressed; exceptions include certain metallic or polymer foam structures, which may exhibit negative linear compressibility (NLC) (that is, they expand in one or more directions under hydrostatic compression). Materials that exhibit this property at the molecular level--crystalline solids with intrinsic NLC--are extremely uncommon. With the use of neutron powder diffraction, we have discovered and characterized both NLC and extremely anisotropic thermal expansion, including negative thermal expansion (NTE) along the NLC axis, in a simple molecular crystal (the deuterated 1:1 compound of methanol and water). Apically linked rhombuses, which are formed by the bridging of hydroxyl-water chains with methyl groups, extend along the axis of NLC/NTE and lead to the observed behavior.

  14. X-RAY FADING AND EXPANSION IN THE “MINIATURE SUPERNOVA REMNANT” OF GK PERSEI

    Energy Technology Data Exchange (ETDEWEB)

    Takei, D. [Institute of Physical and Chemical Research (RIKEN), RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Drake, J. J.; Slane, P. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Yamaguchi, H. [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Uchiyama, Y. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); Katsuda, S., E-mail: takei@spring8.or.jp [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2015-03-10

    We report on a second epoch of Chandra X-ray imaging spectroscopy of the spatially resolved old nova remnant GK Persei. An ACIS-S3 observation of 97.4 ks was conducted in 2013 November after a lapse of 13.8 yr from the last visit in 2000. The X-ray emitting nebula appeared more faint and patchy compared with the first epoch. The flux decline was particularly evident in fainter regions and the mean decline was 30%–40% in the 0.5–1.2 keV energy band. A typical expansion of the brightest part of the remnant was 1.″9, which corresponds to an expansion rate of 0.″14 yr{sup −1}. The soft X-ray spectra extracted from both the 2000 and 2013 data can be explained by a non-equilibrium ionization collisional plasma model convolved with interstellar absorption, though do not allow us to constrain the origin of the flux evolution. The plasma temperature has not significantly evolved since the 2000 epoch and we conclude that the fading of the X-ray emission is due largely to expansion. This implies that recent expansion has been into a lower density medium, a scenario that is qualitatively consistent with the structure of the circumstellar environment photographed soon after the initial explosion more than a century ago. Fainter areas are fading more quickly than brighter areas, indicating that they are fainter because of a lower ambient medium density and consequently more rapid expansion.

  15. Observation of Dynamical Super-Efimovian Expansion in a Unitary Fermi Gas

    Science.gov (United States)

    Deng, Shujin; Diao, Pengpeng; Li, Fang; Yu, Qianli; Yu, Shi; Wu, Haibin

    2018-03-01

    We report an observation of a dynamical super Efimovian expansion in a strongly interacting Fermi gas by engineering time dependent external harmonic trap frequencies. When the trap frequency is tailored as [1 /4 t2+1 /t2λ log2(t /t*)]1/2, where t* and λ are two controllable parameters, and the change is faster than a critical value, the expansion of such a quantum gas shows novel dynamics that share the same characteristics as the super Efimov effect. A clear double-log periodicity with discrete geometric scaling emerges for the cloud size in the expansion. The universality of such scaling dynamics is verified both in the noninteracting and in the unitarity limit of Fermi gas. Moreover, the measured energy scaling reveals that the potential and internal energy also show double-log periodicity with a π /2 phase difference, but the total energy is monotonically decreased. Observing super Efimovian evolution represents a paradigm in probing universal properties and allows us in a new way to study many-body nonequilibrium dynamics with experiments.

  16. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.

    Science.gov (United States)

    Iudicone, Paola; Fioravanti, Daniela; Bonanno, Giuseppina; Miceli, Michelina; Lavorino, Claudio; Totta, Pierangela; Frati, Luigi; Nuti, Marianna; Pierelli, Luca

    2014-01-27

    Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic

  17. Expansion in finite simple groups of Lie type

    CERN Document Server

    Tao, Terence

    2015-01-01

    Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.

  18. Development of Genetic Testing for Fragile X Syndrome and Associated Disorders, and Estimates of the Prevalence of FMR1 Expansion Mutations

    Directory of Open Access Journals (Sweden)

    James N. Macpherson

    2016-11-01

    Full Text Available The identification of a trinucleotide (CGG expansion as the chief mechanism of mutation in Fragile X syndrome in 1991 heralded a new chapter in molecular diagnostic genetics and generated a new perspective on mutational mechanisms in human genetic disease, which rapidly became a central paradigm (“dynamic mutation” as more and more of the common hereditary neurodevelopmental disorders were ascribed to this novel class of mutation. The progressive expansion of a CGG repeat in the FMR1 gene from “premutation” to “full mutation” provided an explanation for the “Sherman paradox,” just as similar expansion mechanisms in other genes explained the phenomenon of “anticipation” in their pathogenesis. Later, FMR1 premutations were unexpectedly found associated with two other distinct phenotypes: primary ovarian insufficiency and tremor-ataxia syndrome. This review will provide a historical perspective on procedures for testing and reporting of Fragile X syndrome and associated disorders, and the population genetics of FMR1 expansions, including estimates of prevalence and the influence of AGG interspersions on the rate and probability of expansion.

  19. δ expansion applied to quantum electrodynamics

    International Nuclear Information System (INIS)

    Bender, C.M.; Boettcher, S.; Milton, K.A.

    1992-01-01

    A recently proposed technique known as the δ expansion provides a nonperturbative treatment of a quantum field theory. The δ-expansion approach can be applied to electrodynamics in such a way that local gauge invariance is preserved. In this paper it is shown that for electrodynamic processes involving only external photon lines and no external electron lines the δ expansion is equivalent to a fermion loop expansion. That is, the coefficient of δ n in the δ expansion is precisely the sum of all n-electron-loop Feynman diagrams in a conventional weak-coupling approximation. This equivalence does not extend to processes having external electron lines. When external electron lines are present, the δ expansion is truly nonperturbative and does not have a simple interpretation as a resummation of conventional Feynman diagrams. To illustrate the nonperturbative character of the δ expansion we perform a speculative calculation of the fermion condensate in the massive Schwinger model in the limit of large coupling constant

  20. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting.

    Science.gov (United States)

    Xavier, Miguel; de Andrés, María C; Spencer, Daniel; Oreffo, Richard O C; Morgan, Hywel

    2017-08-01

    The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. © 2017 The Authors.

  1. Accelerated Urban Expansion in Lhasa City and the Implications for Sustainable Development in a Plateau City

    Directory of Open Access Journals (Sweden)

    Wei Tang

    2017-08-01

    Full Text Available Urbanization challenges regional sustainable development, but a slight expansion mechanism was revealed in a plateau city. We have integrated the urban expansion process and analyzed its determinants in Lhasa (Tibet, and we provide insightful suggestions for urban management and planning for Lhasa. The full continuum of the urban expansion process has been captured using time-series of high-resolution remote sensing data (1990–2015. Four categories of potential determinants involved in economic, demographic, social, and government policy factors were selected, and redundancy analysis was employed to define the contribution rates of these determinants. The results illustrate that considerable urban expansion occurred from 1990 to 2015 in Lhasa, with the area of construction land and transportation land increasing at rates of 117.2% and 564.7%, respectively. The urban expansion in the center of Lhasa can be characterized as temperate sprawl from 1990 through 2008, primarily explained by governmental policies and investment, economic development, tourist growth, and increased governmental investment resulting in faster urban expansion from 2008 to 2015, mainly occurring in the east, south, and west of Lhasa. In contrast with other cities of China, central government investment and “pairing-up support” projects have played an important role in infrastructure construction in Lhasa. The miraculous development of the tourism industry had prominent effects on this economic development and urbanization after 2006, due to the running of the Tibetan Railway. An integrative and proactive policy framework, the “Lhasa development model”, having important theoretical, methodological, and management implications for urban planning and development, has been proposed.

  2. Operator product expansions on the vacuum in conformal quantum field theory in two spacetime dimensions

    International Nuclear Information System (INIS)

    Luescher, M.

    1975-11-01

    Let phi 1 (x) and phi 2 (y) be two local fields in a conformal quantum field theory (CQFT) in two-dimensional spacetime. It is then shown that the vector-valued distribution phi 1 (x) phi 2 (y) /0 > is a boundary value of a vector-valued holomorphic function which is defined on a large conformally invariant domain. By group theoretical arguments alone it is proved that phi 1 (x) phi 2 (y) /0 > can be expanded into conformal partial waves. These have all the properties of a global version of Wilson's operator product expansions when applied to the vacuum state /0 >. Finally, the corresponding calculations are carried out more explicitly in the Thirring model. Here, a complete set of local conformally covariant fields is found, which is closed under vacuum expansion of any two of its elements (a vacuum expansion is an operator product expansion applied to the vacuum). (orig.) [de

  3. The part of acoustic phonons in the negative thermal expansion of the layered structures and nanotubes based on them

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Sirenko, V.A.; Dolbin, A.V.; Gospodarev, I.A.; Syrkin, E.S.; Feodos'ev, S.B.; Bondar', I.S.; Sirenko, A.F.; Minakova, K.A.

    2016-01-01

    A negative linear thermal expansion observed experimentally in a number of crystalline compounds with a complicated lattice and anisotropic interaction between atoms. The nature of negative linear thermal expansion along a number of directions is explained on the basis of calculations which were carried out at a microscopic level. We analyze anomalies in the temperature dependence of the coefficients of linear thermal expansion (the LTEC) along different directions: in layered crystals, formed as a monoatomic layers (graphite and carbon nanofilms) and multilayer ''sand-wiches'' (dichalcogenides of transition metals); in multilayer crystal structures such as high-temperature superconductors in which the anisotropy of the interatomic interaction is not saved in the long-range order; in carbon nanotubes. The results of theoretical calculations are compared with the data of x-ray, neutron diffraction and dilatometric measurements.

  4. Measurement of Mechanical Property and Thermal Expansion Coefficient of Carbon-Nano tube-Reinforced Epoxy Composites

    International Nuclear Information System (INIS)

    Ku, Min Ye; Kim, Jung Hyun; Kang, Hee Yong; Lee, Gyo Woo

    2013-01-01

    By using shear mixing and ultrasonication, we fabricated specimens of well-dispersed multi-walled carbon nano tube composites. To confirm the proper dispersion of the filler, we used scanning electron microscopy images for quantitative evaluation and a tensile test for qualitative assessment. Furthermore, the coefficients of thermal expansion of several specimens having different filler contents were calculated from the measured thermal strains and temperatures of the specimens. Based on the microscopy images of the well-dispersed fillers and the small deviations in the measurements of the tensile strength and stiffness, we confirmed the proper dispersion of absentee in the epoxy. As the filler contents were increased, the values of tensile strength increased from 58.33 to 68.81 MPa, and those of stiffness increased from 2.93 to 3.27 GPa. At the same time, the coefficients of thermal expansion decreased. This implies better thermal stability of the specimen

  5. Properties of extrudates from sorghum varieties | Byaruhanga ...

    African Journals Online (AJOL)

    Physical-chemical properties of the extrudates including, lateral expansion, bulk density, hardness, water absorption index, water solubility index, as well as proximate composition were determined. The extrudates exhibited 240-300% lateral expansion and 0.067-0.095 g cm-3 bulk density. The water absorption index was ...

  6. Thermal expansion of UO2-Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Une, Katsumi

    1986-01-01

    In recent years, more consideration has been given to the application of UO 2 -Gd 2 O 3 burnable poison fuel to LWRs in order to improve the core physics and to extend the burnup. It has been known that UO 2 forms a single phase cubic fluorite type solid solution with Gd 2 O 3 up to 20 - 30 wt.% above 1300 K. The addition of Gd 2 O 3 to UO 2 lattices changes the properties of the fuel pellets. The limited data on the thermal expansion of UO 2 -Gd 2 O 3 fuel exist, but those are inconsistent. UO 2 -Gd 2 O 3 fuel pellets were fabricated, and the linear thermal expansion of UO 2 and UO 2 -(5, 8 and 10 wt.%)Gd 2 O 3 fuel pellets was measured with a differential dilatometer over the temperature range of 298 - 1973 K. A sapphire rod of 6 mm diameter and 15.5 mm length was used as the reference material. After the preheating cycle, the measurement was performed in argon atmosphere. The results for UO 2 pellets showed excellent agreement with the data in literatures. The linear thermal expansion of UO 2 -Gd 2 O 3 fuel pellets showed the increase with increasing the Gd 2 O 3 content. Consideration must be given to this excessive expansion in the fuel design of UO 2 -Gd 2 O 3 pellets. The equations for the linear thermal expansion and density of UO 2 -Gd 2 O 3 fuel pellets were derived by the method of least squares. (Kako, I.)

  7. Thermophysical and anion diffusion properties of (U x ,Th1-x )O2.

    Science.gov (United States)

    Cooper, Michael W D; Murphy, Samuel T; Fossati, Paul C M; Rushton, Michael J D; Grimes, Robin W

    2014-11-08

    Using molecular dynamics, the thermophysical properties of the (U x ,Th 1- x )O 2 system have been investigated between 300 and 3600 K. The thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure is explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's law is approximately observed for solid solution thermal expansion below 2000 K. Different deviations from Vegard's law above this temperature occur owing to the different temperatures at which the solid solutions undergo the superionic transition (2500-3300 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high U content. Correspondingly, oxygen diffusivity is higher in pure UO 2 than in pure ThO 2 . Furthermore, at temperatures below the superionic transition, oxygen mobility is notably higher in solid solutions than in the end members. Enhanced diffusivity is promoted by lower oxygen-defect enthalpies in (U x ,Th 1- x )O 2 solid solutions. Unlike in UO 2 and ThO 2 , there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (U x ,Th 1- x )O 2 .

  8. Thermophysical and anion diffusion properties of (Ux,Th1−x)O2

    Science.gov (United States)

    Cooper, Michael W. D.; Murphy, Samuel T.; Fossati, Paul C. M.; Rushton, Michael J. D.; Grimes, Robin W.

    2014-01-01

    Using molecular dynamics, the thermophysical properties of the (Ux,Th1−x)O2 system have been investigated between 300 and 3600 K. The thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure is explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's law is approximately observed for solid solution thermal expansion below 2000 K. Different deviations from Vegard's law above this temperature occur owing to the different temperatures at which the solid solutions undergo the superionic transition (2500–3300 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high U content. Correspondingly, oxygen diffusivity is higher in pure UO2 than in pure ThO2. Furthermore, at temperatures below the superionic transition, oxygen mobility is notably higher in solid solutions than in the end members. Enhanced diffusivity is promoted by lower oxygen-defect enthalpies in (Ux,Th1−x)O2 solid solutions. Unlike in UO2 and ThO2, there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (Ux,Th1−x)O2. PMID:25383028

  9. Debye temperature, thermal expansion, and heat capacity of TcC up to 100 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Song, T., E-mail: songting@mail.lzjtu.cn [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Ma, Q. [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Tian, J.H. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Liu, X.B. [School of Physics and Information Science, Tianshui Normal University, Tianshui 741000 (China); Ouyang, Y.H.; Zhang, C.L.; Su, W.F. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2015-01-15

    Highlights: • A number of thermodynamic properties of rocksalt TcC are investigated for the first time. • The quasi-harmonic Debye model is applied to take into account the thermal effect. • The pressure and temperature up to about 100 GPa and 3000 K, respectively. - Abstract: Debye temperature, thermal expansion coefficient, and heat capacity of ideal stoichiometric TcC in the rocksalt structure have been studied systematically by using ab initio plane-wave pseudopotential density functional theory method within the generalized gradient approximation. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of Debye temperature, thermal expansion coefficient, constant-volume heat capacity, and constant-pressure heat capacity on pressure and temperature are successfully predicted. All the thermodynamic properties of TcC with rocksalt phase have been predicted in the entire temperature range from 300 to 3000 K and pressure up to 100 GPa.

  10. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    International Nuclear Information System (INIS)

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  11. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  12. Thermal expansion studies on low-dimensional frustrated quantum magnets. The case of κ-(BEDT-TTF)2Cu2(CN)3 and azurite

    International Nuclear Information System (INIS)

    Manna, Rudra Sekhar

    2012-01-01

    Thermal expansion measurements provide a sensitive tool for exploring a material's thermodynamic properties in condensed matter physics as they provide useful information on the electronic, magnetic and lattice properties of a material. In this thesis, thermal expansion measurements have been carried out both at ambient-pressure and under hydrostatic pressure conditions. From the materials point of view, the spin-liquid candidate κ-(BEDT-TTF) 2 Cu 2 (CN) 3 has been studied extensively as a function of temperature and magnetic field. Azurite, Cu 3 (CO 3 ) 2 (OH) 2 - a realization of a one-dimensional distorted Heisenberg chain is also studied both at ambient and hydrostatic pressure to demonstrate the proper functioning of the newly built setup ''thermal expansion under pressure''.

  13. Thermal expansion data

    International Nuclear Information System (INIS)

    Taylor, D.

    1984-01-01

    This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)

  14. Does Cosmological Scale Expansion Explain the Universe?

    Science.gov (United States)

    Masreliez, C. J.

    2009-12-01

    The idea of the creation of the world has been central in Western civilization since the earliest recorded history some 6000 years ago and it still prevails, supported by religious dogma. If the creation idea is wrong and the universe is eternal we might wonder why science has not yet revealed this fundamental truth. To understand why, we have to review how the Big Bang theory came to be the dominant cosmological paradigm in spite of many clear indications that the theory might be fundamentally flawed.

  15. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  16. Explaining Physics – What Skills does a good Explainer Need?

    CERN Multimedia

    CERN. Geneva; Bartels, Hauke

    2018-01-01

    Explaining physics in a way that it is both scientifically correct and comprehensible is a highly demanding practice. But are explanations an effective way to teach physics? Under which circumstances should a physics teacher explain – and is there such a thing as a guideline for effective instructional explanations? Of course, explaining is more than just presenting content knowledge in clear language – but what more? In our talk, we want to discuss empirical studies on instructional explanations from science education and psychology to address these questions. Among other things, we will refer to results from a large study aiming to research whether teacher education contributes to the development of explaining skills. Besides, we will give insights into a project that seeks to measure explaining skills with an interactive online test instrument.

  17. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design : research project capsule.

    Science.gov (United States)

    2009-01-01

    PROBLEM: The coefficient of thermal expansion (CTE) is a fundamental property of construction : materials such as steel and concrete. Although the CTE of steel is a well-defined : constant, the CTE of concrete varies substantially with aggregate type...

  18. Determination of coefficient of thermal expansion effects on Louisiana's PCC pavement design : technical summary report.

    Science.gov (United States)

    2011-12-01

    The coefficient of thermal expansion (CTE) has been widely considered as a fundamental property of : Portland cement concrete (PCC) pavement but has never played an important role in the thickness design : procedure for PCC pavement until recently. I...

  19. IMPLEMENTATION OF THE POLICY OF REGIONAL EXPANSION IN NORTH MAMUJU REGENCY OF WEST SULAWESI

    Directory of Open Access Journals (Sweden)

    Syamsuddin Maldun

    2016-11-01

    Full Text Available this study aims to: (1 Analyze and explain the stages of the implementation of the policy of regional expansion, and (2 analyze and explain the factors that support the implementation of the policy of regional expansion, in order to support national integration in North Mamuju Regency of West Sulawesi Province. This research is a kind of exploratory research using qualitative analysis approach. Data collection carried through; observation, interviews, and documents. Informant research include; Assistant I, II, III, Assistant to the Preparatory Committee the establishment of district (PPPK, head of the Central Bureau of statistics, the head of the Agency for the unity of the nation, the head of the Office library, Archives, and documents, the head of the Department of organization and Personnel, the head of the General section of the Secretariat of the Parliament, members of Religious Communication Forum (FKUB, the leadership of Dharma Wanita, professors, students, and community leaders. While the data analysis done in a descriptive qualitative. Technique of data analysis is interactive analysis: Data collection, (2 Data reduction, (3 Data Display, and (4 the Conclusion/verification. This is intended to give description in a systematic, factual and actual against objects that are examined. Research results show that; (1 the policy implementation stages of the extraction region North Mamuju Regency has been implemented in accordance with the legislation governing the extraction of such areas; the establishment of local governance devices, preparation of the vision and mission, the preparation of regional development strategies, and preparation of the regional development programs, and the factors that support the implementation of regional expansion policy is the existence of natural resources, capital investment (investment, infrastructure, transport and communications, openness toward outsiders, and support public (community

  20. Convergence of mayer expansions

    International Nuclear Information System (INIS)

    Brydges, D.C.

    1986-01-01

    The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained

  1. Expansion of Chiari I-associated syringomyelia after posterior-fossa decompression.

    Science.gov (United States)

    Gil, Z; Rao, S; Constantini, S

    2000-09-01

    Chiari I malformation (CMI) is an abnormality that involves caudal herniation of the cerebellar tonsils into the foramen magnum. CMI has been shown to be closely associated with the development of syringomyelia (SM). Several theories have emerged to explain the apparent correlation between the existence of CMI with subsequent development of SM. However, the exact mechanism of the evolution of SM is still subject to controversy. We report here the case of a 12-year-old girl admitted to hospital with headache, vomiting, ataxia, and moderate pyramidal signs. Radiological evaluation revealed the presence of CMI, accompanied by a small SM. The patient underwent posterior fossa decompression and improved significantly. She was re-admitted 6 months later with clinical evidence of progressive spinal cord dysfunction. MR revealed gross expansion of the syrinx. This case raises questions regarding the pathophysiology of CMI and its association with SM. The case indicates the need for neurological and radiological follow-up for patients undergoing posterior fossa decompression due to CMI, even for those without an initial syrinx. This is the first report known to us of expansion of a syrinx following decompression of an associated CMI.

  2. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    Science.gov (United States)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  3. Peculiarities of linear thermal expansion of CuInS2 single crystal

    International Nuclear Information System (INIS)

    Akira, Nagaoka; Kenji, Yoshino; Hideto, Miyake

    2010-01-01

    Full text : I-III-VI 2 chalcopyrire semiconductors have made rapid progress in recent years. In addition chalcopyrite semiconductors show unique thermal properties. Usually, liner thermal expansion in semiconductors increases with increasing temperature. However, liner thermal expansion of most chalcopyrite semiconductors decreases at low temperature. For example, AgGaSe 2 shows decreasing the liner thermal expansion below 100 K 1 , 2). It is well known that high-quality single crystals of the I-III-VI 2 compounds are difficult to grow because most of the compounds grow through a peritectic reaction or a solid state transition during the cooling process. CuInS 2 single crystal can be grown by traveling heater method (THM), which is one of the solution growth techniques. Advantages of the THM growth are following that growth temperature is low compared with that of the other melt growth and larger crystals can be grown compared with a conventional solution growth. In a previous study, CuGaS 2 , CuGaSe 2 , CuGaTe 2 , CuInSe 2 ternary compounds have been obtained by the THM technique. In this work, it is investigated a liner thermal expansion of single crystal CuInS 2 by using X-ray diffraction. Measurement temperature was changed from 10 K to 300 K. From results of XRD measurement, it is calculated lattice constants of a and c axes and the liner thermal expansion. As a result, lattice constants of a axis increase with increasing temperature, that of c axis decreases with increasing temperature. The liner thermal expansion decreases for T 2 single crystal at low temperature

  4. Discrete symmetries in the Weyl expansion for quantum billiards

    International Nuclear Information System (INIS)

    Pavloff, N.

    1994-01-01

    2 and 3 dimensional quantum billiards with discrete symmetries are considered. The boundary condition is either Dirichlet or Neumann. The first terms of the Weyl expansion are derived for the level density projected onto the irreducible representations of the symmetry group. The formulae require only the knowledge of the character table of the group and the geometrical properties (such as surface, perimeter etc.) of sub-parts of the billiard invariant under a group transformation. (author). 17 refs., 1 fig., 1 tab

  5. Physiological and behavioral responses of poultry exposed to gas-filled high expansion foam.

    Science.gov (United States)

    McKeegan, D E F; Reimert, H G M; Hindle, V A; Boulcott, P; Sparrey, J M; Wathes, C M; Demmers, T G M; Gerritzen, M A

    2013-05-01

    Disease control measures require poultry to be killed on farms to minimize the risk of disease being transmitted to other poultry and, in some cases, to protect public health. We assessed the welfare implications for poultry of the use of high-expansion gas-filled foam as a potentially humane, emergency killing method. In laboratory trials, broiler chickens, adult laying hens, ducks, and turkeys were exposed to air-, N2-, or CO2-filled high expansion foam (expansion ratio 300:1) under standardized conditions. Birds were equipped with sensors to measure cardiac and brain activity, and measurements of oxygen concentration in the foam were carried out. Initial behavioral responses to foam were not pronounced but included headshakes and brief bouts of wing flapping. Both N2- and CO2-filled foam rapidly induced ataxia/loss of posture and vigorous wing flapping in all species, characteristic of anoxic death. Immersion in air-filled, high expansion foam had little effect on physiology or behavior. Physiological responses to both N2- and CO2-filled foam were characterized by a pronounced bradyarrythymia and a series of consistent changes in the appearance of the electroencephalogram. These were used to determine an unequivocal time to loss of consciousness in relation to submersion. Mean time to loss of consciousness was 30 s in hens and 18 s in broilers exposed to N2-filled foam, and 16 s in broilers, 1 s in ducks, and 15 s in turkeys exposed to CO2-filled foam. Euthanasia achieved with anoxic foam was particularly rapid, which is explained by the very low oxygen concentrations (below 1%) inside the foam. Physiological observations and postmortem examination showed that the mode of action of high expansion, gas-filled foam is anoxia, not occlusion of the airway. These trials provide proof-of-principle that submersion in gas-filled, high expansion foam provides a rapid and highly effective method of euthanasia, which may have potential to provide humane emergency killing

  6. Self-Consistency Method to Evaluate a Linear Expansion Thermal Coefficient of Composite with Dispersed Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available The rational use of composites as structural materials, while perceiving the thermal and mechanical loads, to a large extent determined by their thermoelastic properties. From the presented review of works devoted to the analysis of thermoelastic characteristics of composites, it follows that the problem of estimating these characteristics is important. Among the thermoelastic properties of composites occupies an important place its temperature coefficient of linear expansion.Along with fiber composites are widely used in the technique of dispersion hardening composites, in which the role of inclusions carry particles of high-strength and high-modulus materials, including nanostructured elements. Typically, the dispersed particles have similar dimensions in all directions, which allows the shape of the particles in the first approximation the ball.In an article for the composite with isotropic spherical inclusions of a plurality of different materials by the self-produced design formulas relating the temperature coefficient of linear expansion with volume concentration of inclusions and their thermoelastic characteristics, as well as the thermoelastic properties of the matrix of the composite. Feature of the method is the self-accountability thermomechanical interaction of a single inclusion or matrix particles with a homogeneous isotropic medium having the desired temperature coefficient of linear expansion. Averaging over the volume of the composite arising from such interaction perturbation strain and stress in the inclusions and the matrix particles and makes it possible to obtain such calculation formulas.For the validation of the results of calculations of the temperature coefficient of linear expansion of the composite of this type used two-sided estimates that are based on the dual variational formulation of linear thermoelasticity problem in an inhomogeneous solid containing two alternative functional (such as Lagrange and Castigliano

  7. Fluid Volume Expansion and Depletion in Hemodialysis Patients Lack Association with Clinical Parameters

    Directory of Open Access Journals (Sweden)

    Sylvia Kalainy

    2015-12-01

    Full Text Available Background: Achievement of normal volume status is crucial in hemodialysis (HD, since both volume expansion and volume contraction have been associated with adverse outcome and events. Objectives: The objectives of this study are to assess the prevalence of fluid volume expansion and depletion and to identify the best clinical parameter or set of parameters that can predict fluid volume expansion in HD patients. Design: This study is cross-sectional. Setting: This study was conducted in three hemodialysis units. Patients: In this study, there are 194 HD patients. Methods: Volume status was assessed by multifrequency bio-impedance spectroscopy (The Body Composition Monitor, Fresenius prior to the mid-week HD session. Results: Of all patients, 48 % ( n = 94 were volume-expanded and 9 % of patients were volume-depleted ( n = 17. Interdialytic weight gain was not different between hypovolemic, normovolemic, and hypervolemic patients. Fifty percent of the volume-expanded patients were hypertensive. Paradoxical hypertension was very common (31 % of all patients; its incidence was not different between patient groups. Intradialytic hypotension was relatively common and was more frequent among hypovolemic patients. Multivariate regression analysis identified only four predictors for volume expansion (edema, lower BMI, higher SBP, and smoking. None of these parameters displayed both a good sensitivity and specificity. Limitations: The volume assessment was performed once. Conclusions: The study indicates that volume expansion is highly prevalent in HD population and could not be identified using clinical parameters alone. No clinical parameters were identified that could reliably predict volume status. This study shows that bio-impedance can assist to determine volume status. Volume status, in turn, is not related to intradialytic weight gain and is unable to explain the high incidence of paradoxical hypertension.

  8. Thermo-physical Properties and Mechanical Properties of Burn-resistant Titanium Alloy Ti40

    Directory of Open Access Journals (Sweden)

    LAI Yunjin

    2017-10-01

    Full Text Available As a functional material of burn-resistant titanium alloy, the physical properties of Ti40 alloy were first reported. The chemical compositions of Ti40 alloy ingots by VAR were uniform. The microstructures of Ti40 alloy slab manufactured by HEFF+WPF were uniform. The results show that the room temperature tensile strength of Ti40 alloy is 950 MPa degree. The properties of high temperature heat exposure, creep resistance and lasting time are good at 500 ℃. In the range from room temperature to 600 ℃, Young's modulus and shear modulus are decreased linearly with increasing the temperature, Poisson's ratio is increases slowly as the temperature rises, and linear thermal expansion coefficient and average linear expansion coefficient is increase as the temperature rises.

  9. Raman spectra and anomalies of dielectric properties and thermal expansion of lead-free (1-x)Na.sub.0.5./sub.Bi.sub.0.5./sub.TiO.sub.3./sub.-xSrTiO.sub.3./sub.(x=0,0.08 and 0.1) ceramics

    Czech Academy of Sciences Publication Activity Database

    Dutkiewicz, E.M.; Suchanicz, J.; Bovtun, Viktor; Konieczny, K.; Czaja, P.; Kluczewska, K.; Handke, B.; Antonova, M.; Sternberg, A.

    2016-01-01

    Roč. 89, 7-8 (2016), s. 823-828 ISSN 0141-1594 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : thermal expansion * dielectric properties * structural properties * relaxor behaviour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.060, year: 2016

  10. Policy changes and the dynamics of capacity expansion in the Swiss electricity market

    International Nuclear Information System (INIS)

    Ochoa, Patricia; Van Ackere, Ann

    2009-01-01

    Capacity of supply is a crucial matter in electricity markets as it directly influences reliability of supply, price volatility and blackout risk. In this paper, we analyse the dynamics of capacity expansion in the Swiss electricity market and the impact of different policies such as nuclear phaseout and management of electricity exchanges - imports and exports - policies. This article develops the conceptualization model presented in [Ochoa, P., 2007b. Policy changes in the Swiss electricity market: a system dynamics analysis of likely market responses. Socio-Economic Planning Sciences 41 (4):336-349.]. We build a system dynamics model based on the dynamics of capacity expansion explained in the latter paper and present and analyse different scenarios. We conclude that international electricity exchanges are important for the Swiss market as they help to lower costs and to increase the income of the utility companies; however, we illustrate the need for explicit policies for managing imports and exports of electricity to avoid import dependence from neighbouring countries. (author)

  11. Long-Term Expansion, Enhanced Chondrogenic Potential, and Suppression of Endochondral Ossification of Adult Human MSCs via WNT Signaling Modulation

    Directory of Open Access Journals (Sweden)

    Roberto Narcisi

    2015-03-01

    Full Text Available Mesenchymal stem cells (MSCs are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair.

  12. Cluster-Expansion Model for Complex Quinary Alloys: Application to Alnico Permanent Magnets

    Science.gov (United States)

    Nguyen, Manh Cuong; Zhou, Lin; Tang, Wei; Kramer, Matthew J.; Anderson, Iver E.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-11-01

    An accurate and transferable cluster-expansion model for complex quinary alloys is developed. Lattice Monte Carlo simulation enabled by this cluster-expansion model is used to investigate temperature-dependent atomic structure of alnico alloys, which are considered as promising high-performance non-rare-earth permanent-magnet materials for high-temperature applications. The results of the Monte Carlo simulations are consistent with available experimental data and provide useful insights into phase decomposition, selection, and chemical ordering in alnico. The simulations also reveal a previously unrecognized D 03 alloy phase. This phase is very rich in Ni and exhibits very weak magnetization. Manipulating the size and location of this phase provides a possible route to improve the magnetic properties of alnico, especially coercivity.

  13. Quantum-statistical mechanics of an atom-dimer mixture: Lee-Yang cluster expansion approach

    International Nuclear Information System (INIS)

    Ohkuma, Takahiro; Ueda, Masahito

    2006-01-01

    We use the Lee-Yang cluster expansion method to study quantum-statistical properties of a mixture of interconvertible atoms and dimers, where the dimers form in a two-body bound state of the atoms. We point out an infinite series of cluster diagrams whose summation leads to the Bose-Einstein condensation of the dimers below a critical temperature. Our theory captures some important features of a cold atom-dimer mixture such as interconversion of atoms and dimers and properties of the mixture at the unitarity limit

  14. Can a microscopic stochastic model explain the emergence of pain cycles in patients?

    International Nuclear Information System (INIS)

    Di Patti, Francesca; Fanelli, Duccio

    2009-01-01

    A stochastic model is introduced here to investigate the molecular mechanisms which trigger the perception of pain. The action of analgesic drug compounds is discussed in a dynamical context, where the competition with inactive species is explicitly accounted for. Finite size effects inevitably perturb the mean-field dynamics: oscillations in the amount of bound receptors are spontaneously manifested, driven by the noise which is intrinsic to the system under scrutiny. These effects are investigated both numerically, via stochastic simulations, and analytically, through a large size expansion. The claim that our findings could provide a consistent interpretative framework for explaining the emergence of cyclic behaviors in response to analgesic treatments is substantiated

  15. $\\delta$-Expansion at Finite Temperature

    OpenAIRE

    Ramos, Rudnei O.

    1996-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.

  16. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    Science.gov (United States)

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-09

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.

  17. Anisotropic thermal expansion of SnSe from first-principles calculations based on Grüneisen's theory.

    Science.gov (United States)

    Liu, Gang; Zhou, Jian; Wang, Hui

    2017-06-14

    Based on Grüneisen's theory, the elastic properties and thermal expansion of bulk SnSe with the Pnma phase are investigated by using first-principles calculations. Our numerical results indicate that the linear thermal expansion coefficient along the a direction is smaller than the one along the b direction, while the one along the c direction shows a significant negative value, even at high temperature. The numerical results are in good accordance with experimental results. In addition, generalized and macroscopic Grüneisen parameters are also presented. It is also found that SnSe possesses negative Possion's ratio. The contributions of different phonon modes to NTE along the c direction are investigated, and it is found that the two modes which make the most important contributions to NTE are transverse vibrations perpendicular to the c direction. Finally, we analyze the relation of elastic constants to negative thermal expansion, and demonstrate that negative thermal expansion can also occur even with all positive macroscopic Grüneisen parameters.

  18. Laser ablation in CdZnTe crystal due to thermal self-focusing: Secondary phase hydrodynamic expansion

    Energy Technology Data Exchange (ETDEWEB)

    Medvid’, A., E-mail: mychko@latnet.lv [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Mychko, A.; Dauksta, E. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Kosyak, V. [Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy (Ukraine); Grase, L. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia)

    2016-06-30

    Highlights: • We found two laser induced threshold intensity for CdZnTe crystal. • The laser beam self-focusing lead to increase of intensity of laser radiation at exit surface. • Laser ablation is a result of Te inclusion hydrodynamic expansion. - Abstract: The present paper deals with the laser ablation in CdZnTe crystal irradiated by pulsed infrared laser. Two values of threshold intensities of the laser ablation were determined, namely of about 8.5 and 6.2 MW/cm{sup 2} for the incident and the rear surfaces, correspondingly. Lower intensity of the laser ablation for the rear surface is explained by thermal self-focusing of the laser beam in the CdZnTe crystal due to heating of Te inclusions with a following hydrodynamic expansion.

  19. Thermal expansion and magnetostriction studies on iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liran

    2010-09-19

    }){sub 2}As{sub 2} is one of the first materials where single crystals are available. The thermal expansion results on the undoped compound with x = 0 show a large anomaly at the combined magnetic and structural transition which is far sharper than that for polycrystalline systems. Upon doping, both transitions are suppressed and their splitting is visible in the thermal expansion data. The high precision thermal expansion and magnetostriction results presented in this work are among the first data on the novel family of iron-based superconductors. A valuable insight in the respective ordering phenomena and the thermodynamic properties is provided.

  20. Thermal conductivity and thermal expansion of stainless steels D9 and HT9

    International Nuclear Information System (INIS)

    Leibowitz, L.; Blomquist, R.A.

    1988-01-01

    Renewed interest in the use of metallic fuels in liquid-metal fast breeder reactors has prompted study of the thermodynamic and transport properties of its materials. Two stainless steels are of particular interest because of their good performance under irradiation. These are D9, an austenitic steel, and HT9, a ferritic steel. Thermal conductivity and thermal expansion data for these alloys are of particular interest in assessing in-reactor behavior. Because literature data were inadequate, measurements of these two properties for the two steels were performed and are reported to 1200 K. Of particular interest is the influence on these properties of a phase transition in HT9

  1. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  2. Disjoint sum expansion method in FTA

    International Nuclear Information System (INIS)

    Ruan Keqiang

    1987-01-01

    An expansion formula for transforming boolean algebraic expressions into disjoint form was proved. Based on this expansion formula, a method for transforming system failure function into disjoint form was devised. The fact that the expansion can be done for several elements simulatneously makes the method flexible and fast. Some examples from fault tree analysis (FTA) and network analysis were examined by the new method to show its algorithm and its merit. Besides, by means of the proved expansion formula some boolean algebraic relations can proved very easily

  3. Maxwell superalgebras and Abelian semigroup expansion

    Directory of Open Access Journals (Sweden)

    P.K. Concha

    2014-09-01

    Full Text Available The Abelian semigroup expansion is a powerful and simple method to derive new Lie algebras from a given one. Recently it was shown that the S-expansion of so(3,2 leads us to the Maxwell algebra M. In this paper we extend this result to superalgebras, by proving that different choices of abelian semigroups S lead to interesting D=4 Maxwell Superalgebras. In particular, the minimal Maxwell superalgebra sM and the N-extended Maxwell superalgebra sM(N recently found by the Maurer–Cartan expansion procedure, are derived alternatively as an S-expansion of osp(4|N. Moreover, we show that new minimal Maxwell superalgebras type sMm+2 and their N-extended generalization can be obtained using the S-expansion procedure.

  4. Maxwell superalgebras and Abelian semigroup expansion

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodríguez, E.K. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria, 1, 10125 Torino (Italy)

    2014-09-15

    The Abelian semigroup expansion is a powerful and simple method to derive new Lie algebras from a given one. Recently it was shown that the S-expansion of so(3,2) leads us to the Maxwell algebra M. In this paper we extend this result to superalgebras, by proving that different choices of abelian semigroups S lead to interesting D=4 Maxwell Superalgebras. In particular, the minimal Maxwell superalgebra sM and the N-extended Maxwell superalgebra sM{sup (N)} recently found by the Maurer–Cartan expansion procedure, are derived alternatively as an S-expansion of osp(4|N). Moreover, we show that new minimal Maxwell superalgebras type sM{sub m+2} and their N-extended generalization can be obtained using the S-expansion procedure.

  5. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites.

    Science.gov (United States)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-01-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23 × 10 -6 K -1 (192-305 K) and -1167.09 × 10 -6 K -1 (246-305 K) have been obtained in Mn 0.90 Fe 0.10 NiGe and MnNi 0.90 Fe 0.10 Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn 0.92 Fe 0.08 NiGe/ x %Cu, the CTE gradually changes from -64.92 × 10 -6 K -1 (125-274 K) to -4.73 × 10 -6 K -1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  6. Optimal separable bases and series expansions

    International Nuclear Information System (INIS)

    Poirier, B.

    1997-01-01

    A method is proposed for the efficient calculation of the Green close-quote s functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert-space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, is a problem of reduced dimensionality. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. The full solution is obtained from the approximation via iterative expansion. In the time-independent perturbation expansion for instance, all of the first-order energy corrections are zero. In the Green close-quote s function case, we have a distorted-wave Born series with optimized convergence properties. This series may converge even when the usual Born series diverges. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic-oscillator system, in the course of which the quantum tanh 2 potential problem is solved exactly. The universal presence of bound states in the latter is shown to imply long-lived resonances in the former. In a comparison with other theoretical methods, we find that the reaction path Hamiltonian fails to predict such resonances. copyright 1997 The American Physical Society

  7. The Sturmian expansion: A well-depth-method for orbitals in a deformed potential

    International Nuclear Information System (INIS)

    Bang, J.M.; Vaagen, J.S.

    1980-01-01

    The Sturmian expansion method has over the years successfully been used to generate orbitals in a deformed potential. In this paper we review the method in detail including more recent extentions. The convergence properties are discussed in terms of examples of current interest for nucleon-transfer reactions. Comparisons with other methods are also made. (orig.)

  8. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  9. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A. S., E-mail: elsaid@kfupm.edu.sa, E-mail: a.s.el-said@hzdr.de [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden (Germany); Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Djebli, M. [Theoretical Physics Laboratory, Faculty of Physics USTHB, B.P. 32 Bab Ezzour, 16079 Algiers (Algeria)

    2014-06-09

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  10. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    International Nuclear Information System (INIS)

    El-Said, A. S.; Moslem, W. M.; Djebli, M.

    2014-01-01

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  11. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.

    Science.gov (United States)

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2017-09-12

    Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.

  12. Thermal conductivity, diffusivity and expansion of Avery Island salt at pressure and temperature

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.; Trimmer, D.A.

    1980-01-01

    Preliminary data on the thermal properties of a coarse-grained rock salt from Avery Island, Louisiana, indicates that hydrostatic pressure to 50 MPa has little effect on the thermal conductivity, diffusivity and linear expansion at temperatures from 300 to 573 K. The measurements were made in a new apparatus under conditions of true hydrostatic loading. At room temperature and effective confining pressure increasing from 10 to 50 MPa, thermal conductivity and diffusivity are constant at roughly 7W/mK and 3.6 x 10 -6 m 2 /s, respectively. At 50 MPa and temperature increasing from 300 to 573K, both conductivity and diffusivity drop by a factor of 2. Thermal linear expansion at 0 MPa matches that at 50 MPa, increasing from roughly 4.2 x 10 -5 /K at 300 K to 5.5 x 10 -5 at 573 K. The lack of a pressure effect on all three properties is confirmed by previous work. Simple models of microcracking suggest that among common geological materials the lack of pressure dependence is unique to rock salt

  13. Forest Clearing Dynamics and the Expansion of Landholdings in Apuí, a Deforestation Hotspot on Brazil's Transamazon Highway

    Directory of Open Access Journals (Sweden)

    Gabriel C. Carrero

    2011-06-01

    Full Text Available We present a local-scale case study in the Rio Juma Settlement Project (RJSP in Apuí, a deforestation hotspot in the southern portion of Brazil's state of Amazonas. We analyze land accumulation and land use strategies of households with a view to elucidating how their strategies are shaping deforestation. More than 76% of the household sample was from southern Brazil, and around 72% of them migrated to older expansion frontiers before reaching Apuí. The percentage of properties with legal land titles was up to five times less while land accumulation was much greater than reported for other settlement projects in Brazil. Land use change followed different patterns depending on whether the lot had been obtained with 100% forest cover or with inherited land use. Regression-tree analysis showed that the size of the cattle herd and the total area of the property do not always explain the area deforested, nor is the size of the deforested area necessarily related to productive activities. Lack of income obtained from livestock indicated that at least 30% of the cases studied were related to the speculative nature of land acquisition and deforestation. Increasing consolidation of land in larger, more highly capitalized ranches indicates the potential for high rates of deforestation in the future, even when the profitability of livestock is questionable.

  14. Experimental Field Tests and Finite Element Analyses for Rock Cracking Using the Expansion of Vermiculite Materials

    Directory of Open Access Journals (Sweden)

    Chi-hyung Ahn

    2016-01-01

    Full Text Available In the previous research, laboratory tests were performed in order to measure the expansion of vermiculite upon heating and to convert it into expansion pressure. Based on these test results, this study mainly focuses on experimental field tests conducted to verify that expansion pressure obtained by heating vermiculite materials is enough to break massive and hard granite rock with an intention to excavate the tunnel. Hexahedral granite specimens with a circular hole perforated in the center were constructed for the experimental tests. The circular holes were filled with vermiculite plus thermal conduction and then heated using the cartridge heater. As a result, all of hexahedral granite specimens had cracks in the surface after 700-second thermal heating and were finally spilt into two pieces completely. The specimen of larger size only requires more heating time and expansion pressure. The material properties of granite rocks, which were obtained from the experimental tests, were utilized to produce finite element models used for numerical analyses. The analysis results show good agreement with the experimental results in terms of initial cracking, propagation direction, and expansion pressure.

  15. Thermal expansion of Cr2xFe2-2xMo3O12, Al2xFe2-2xMo3O12 and Al2xCr2-2xMo3O12 solid solutions

    International Nuclear Information System (INIS)

    Ari, M.; Jardim, P.M.; Marinkovic, B.A.; Rizzo, F.; Ferreira, F.F.

    2008-01-01

    The transition temperature from monoclinic to orthorhombic and the thermal expansion of the orthorhombic phase were investigated for three systems of the family A 2 M 3 O 12 : Cr 2x Fe 2-2x Mo 3 O 12 , Al 2x Fe 2-2x Mo 3 O 12 and Al 2x Cr 2-2x Mo 3 O 12 . It was possible to obtain a single-phase solid solution in all studied samples (x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1). A linear relationship between the transition temperature and the fraction of A 3+ cations (x) was observed for each system. In all orthorhombic solid solutions studied here the observed thermal expansion was anisotropic. These anisotropic thermal expansion properties of crystallographic axes a, b and c result in a low positive or near-zero overall linear coefficient of thermal expansion (α l =α V /3). The relationship between the size of A 3+ cations in A 2 M 3 O 12 and the coefficient of thermal expansion is discussed. Near-zero thermal expansion of Cr 2 Mo 3 O 12 is explained by the behavior of Cr-O and Mo-O bond distances, Cr-Mo non-bond distances and Cr-O-Mo bond angles with increasing temperature, estimated by Rietveld analysis of synchrotron X-ray powder diffraction data. - Graphical abstract: In this figure, all published overall linear coefficients of thermal expansion for orthorhombic A 2 M 3 O 12 family obtained through diffraction methods as a function of A 3+ cation radii size, together with dilatometric results, are plotted. Our results indicate that Cr 2 Mo 3 O 12 does not exactly follow the established relationship

  16. Theoretical study of negative thermal expansion mechanism of ZnF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei [Center for Clean Energy and Quantum Structures, Zhengzhou University, Zhengzhou 450001 (China); Yuan, Peng-Fei; Wang, Fei; Sun, Qiang [Center for Clean Energy and Quantum Structures, Zhengzhou University, Zhengzhou 450001 (China); School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Liang, Er-Jun, E-mail: ejliang@zzu.edu.cn [Center for Clean Energy and Quantum Structures, Zhengzhou University, Zhengzhou 450001 (China); School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Jia, Yu, E-mail: jiay@zzu.edu.cn [Center for Clean Energy and Quantum Structures, Zhengzhou University, Zhengzhou 450001 (China); School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2012-05-15

    Graphical abstract: ZnF{sub 2} owns open-framework structure and its negative thermal expansion (NTE) properties have been confirmed using a first-principles calculation. According to the phonon eigenvectors and group theory analysis, the lowest frequency (48.9 cm{sup -1}, B{sub 1g} mode) rigid unit mode (RUM) of ZnF{sub 6} causes a rotary coupling between two adjacent octahedrons and makes the Zn-Zn distance shorter, which is considered to be most responsible for the NTE properties of ZnF{sub 2}. Highlights: Black-Right-Pointing-Pointer The NTE properties of ZnF{sub 2} are confirmed using a first-principles calculation. Black-Right-Pointing-Pointer Phonon mode classification and Grueneisen parameters are systematically presented. Black-Right-Pointing-Pointer The rigid unit mode causes a rotary coupling and makes the Zn-Zn distance shorter. Black-Right-Pointing-Pointer The optical branch with the lowest frequency is most responsible for the NTE. -- Abstract: ZnF{sub 2} is reported to exhibit negative thermal expansion (NTE) at lower temperatures very recently. In this article, we present the electronic and NTE properties of ZnF{sub 2} using a first-principles calculation. Our results show that ZnF{sub 2} is an insulator with a direct band gap and a strong hybridization occurs between Zn-3p, 4s and F-2p states. The related calculations on NTE properties are obtained within the quasi-harmonic approximation. The resulting relationship between volume and temperature confirms the NTE properties. Besides, we discuss the NTE mechanism in accordance to phonon vibrational modes. The phonon vibrational modes contributing to the NTE are singled out by Grueneisen parameters and all these modes are low-frequency optical phonons. The lowest frequency rigid unit mode (RUM) of ZnF{sub 6} causes a rotary coupling between two adjacent octahedrons and makes the Zn-Zn distance shorter, which is most responsible for the NTE properties of ZnF{sub 2}.

  17. Asymmetric Evolution and Expansion of the NAC Transcription Factor in Polyploidized Cotton

    Directory of Open Access Journals (Sweden)

    Kai Fan

    2018-01-01

    Full Text Available Polyploidy in Gossypium hirsutum conferred different properties from its diploid ancestors under the regulation of transcription factors. The NAC transcription factor is a plant-specific family that can be related to plant growth and development. So far, little is known about the NAC family in cotton. This study identified 495 NAC genes in three cotton species and investigated the evolution and expansion of different genome-derived NAC genes in cotton. We revealed 15 distinct NAC subfamilies in cotton. Different subfamilies had different gene proportions, expansion rate, gene loss rate, and orthologous exchange rate. Paleohexaploidization (35% and cotton-specific decaploidy (32% might have primarily led to the expansion of the NAC family in cotton. Half of duplication events in G. hirsutum were inherited from its diploid ancestor, and others might have occurred after interspecific hybridization. In addition, NAC genes in the At and Dt subgenomes displayed asymmetric molecular evolution, as evidenced by their different gene loss rates, orthologous exchange, evolutionary rates, and expression levels. The dominant duplication event was different during the cotton evolutionary history. Different genome-derived NACs might have interacted with each other, which ultimately resulted in morphogenetic evolution. This study delineated the expansion and evolutionary history of the NAC family in cotton and illustrated the different fates of NAC genes during polyploidization.

  18. Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of Al-Salam-Carlitz I polynomials

    International Nuclear Information System (INIS)

    Doha, E H; Ahmed, H M

    2005-01-01

    Two formulae expressing explicitly the derivatives and moments of Al-Salam-Carlitz I polynomials of any degree and for any order in terms of Al-Salam-Carlitz I themselves are proved. Two other formulae for the expansion coefficients of general-order derivatives D p q f(x), and for the moments x l D p q f(x), of an arbitrary function f(x) in terms of its original expansion coefficients are also obtained. Application of these formulae for solving q-difference equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Al-Salam-Carlitz I polynomials and any system of basic hypergeometric orthogonal polynomials, belonging to the q-Hahn class, is described

  19. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  20. Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids

    Science.gov (United States)

    1977-01-01

    topography of the state of knowledge on the thermal expansion of nonmetallic solids. We believe there is also much food for reflec- West Lafayette...34 Lithium Silicates ......... 713 209 Magnesium Metasilicate MgSiO. .. ......... 715 210 Magnesium Orthosilicate Mg2 SiO . . . . . . . . . . . . 718 211...Antiferromagnetism of Praseodymium," Phys. Rev. Letters, 12(20), 553-5, 1964. 66. Goode, J.M., "Phase Transition Temperature of Polonium ,"J. Chem. Phys., 26(5), 1269

  1. Thermophysical properties of selected wear-resistant alloys

    International Nuclear Information System (INIS)

    Farwick, D.G.; Johnson, R.N.

    1980-06-01

    Thermophysical properties of 13 selected wear-resistant materials, including specific heat, thermal conductivity, thermal diffusivity, and thermal expansion (instantaneous, mean, and linear) are provided. The Center for Information and Numerical Data Analysis and Synthesis (CINDAS) at Purdue University supplied properties data

  2. Sensitivity analysis of the Expansion Process for Alloy UNS N08028

    Directory of Open Access Journals (Sweden)

    Navarro Aitor

    2016-01-01

    Full Text Available Due to the good mechanical properties of forged parts, the forging process plays a decisive role in the manufacturing of seamless stainless steel pipes for oil country tubular goods (OCTG lines. Tough competition between manufacturers gives them plenty of incentive to make their processes in raw material and energy usage more and more efficient. In this context the expansion process is one of the critical production steps in the manufacturing of seamless stainless steel pipes. This work presents a sensitivity analysis of a finite element method (FEM for the simulation of the expansion of the alloy UNS N08028. The input parameters ram speed, tool angle, initial ID and final ID of the billet as well as temperature were used to describe responses like tool wear and material loss. With the aim to minimize the tool wear and to reduce the material waste, a study of influence of the input parameters on the mentioned responses were performed. This development is supported by experimental work in order to validate the simulation model. The sector demand for new materials with specific properties and the cost-intensive experimental trials justifies the use of such simulation tools and opens great opportunities for the industry.

  3. The use of many-body expansions and geometry optimizations in fragment-based methods.

    Science.gov (United States)

    Fedorov, Dmitri G; Asada, Naoya; Nakanishi, Isao; Kitaura, Kazuo

    2014-09-16

    Conspectus Chemists routinely work with complex molecular systems: solutions, biochemical molecules, and amorphous and composite materials provide some typical examples. The questions one often asks are what are the driving forces for a chemical phenomenon? How reasonable are our views of chemical systems in terms of subunits, such as functional groups and individual molecules? How can one quantify the difference in physicochemical properties of functional units found in a different chemical environment? Are various effects on functional units in molecular systems additive? Can they be represented by pairwise potentials? Are there effects that cannot be represented in a simple picture of pairwise interactions? How can we obtain quantitative values for these effects? Many of these questions can be formulated in the language of many-body effects. They quantify the properties of subunits (fragments), referred to as one-body properties, pairwise interactions (two-body properties), couplings of two-body interactions described by three-body properties, and so on. By introducing the notion of fragments in the framework of quantum chemistry, one obtains two immense benefits: (a) chemists can finally relate to quantum chemistry, which now speaks their language, by discussing chemically interesting subunits and their interactions and (b) calculations become much faster due to a reduced computational scaling. For instance, the somewhat academic sounding question of the importance of three-body effects in water clusters is actually another way of asking how two hydrogen bonds affect each other, when they involve three water molecules. One aspect of this is the many-body charge transfer (CT), because the charge transfers in the two hydrogen bonds are coupled to each other (not independent). In this work, we provide a generalized view on the use of many-body expansions in fragment-based methods, focusing on the general aspects of the property expansion and a contraction of a

  4. Thermal expansion of L-ascorbic acid

    Science.gov (United States)

    Nicolaï, B.; Barrio, M.; Tamarit, J.-Ll.; Céolin, R.; Rietveld, I. B.

    2017-04-01

    The specific volume of vitamin C has been investigated by X-ray powder diffraction as a function of temperature from 110 K up to complete degradation around 440 K. Its thermal expansion is relatively small in comparison with other organic compounds with an expansivity α v of 1.2(3) × 10-4 K-1. The structure consists of strongly bound molecules in the ac plane through a dense network of hydrogen bonds. The thermal expansion is anisotropic. Along the b axis, the expansion has most leeway and is about 10 times larger than in the other directions.

  5. Chemical graph-theoretic cluster expansions

    International Nuclear Information System (INIS)

    Klein, D.J.

    1986-01-01

    A general computationally amenable chemico-graph-theoretic cluster expansion method is suggested as a paradigm for incorporation of chemical structure concepts in a systematic manner. The cluster expansion approach is presented in a formalism general enough to cover a variety of empirical, semiempirical, and even ab initio applications. Formally such approaches for the utilization of chemical structure-related concepts may be viewed as discrete analogues of Taylor series expansions. The efficacy of the chemical structure concepts then is simply bound up in the rate of convergence of the cluster expansions. In many empirical applications, e.g., boiling points, chromatographic separation coefficients, and biological activities, this rate of convergence has been observed to be quite rapid. More note will be made here of quantum chemical applications. Relations to questions concerning size extensivity of energies and size consistency of wave functions are addressed

  6. Defining chemical expansion: the choice of units for the stoichiometric expansion coefficient

    DEFF Research Database (Denmark)

    Marrocchelli, Dario; Chatzichristodoulou, Christodoulos; Bishop, Sean R.

    2014-01-01

    Chemical expansion refers to the spatial dilation of a material that occurs upon changes in its composition. When this dilation is caused by a gradual, iso-structural increase in the lattice parameter with composition, it is related to the composition change by the stoichiometric expansion coeffi...... are provided for changes in oxygen content in fluorite, perovskite, and Ruddlesden-Popper (K2NiF4) phase materials used in solid oxide fuel cells....

  7. Carbon fibre reinforced copper matrix composites: processing routes and properties

    Energy Technology Data Exchange (ETDEWEB)

    Le Petitcorps, Y. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Poueylaud, J.M. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Albingre, L. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Berdeu, B. [L`Electrolyse, 33 - Latresne (France); Lobstein, P. [L`Electrolyse, 33 - Latresne (France); Silvain, J.F. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB

    1997-06-01

    Copper matrix composites are of interest for applications in the electronic field which requires materials with high thermal conductivity properties. The use of carbon fibres can (1) decrease the density and the coefficient of thermal expansion of the material and (2) increase the stiffness and strength to rupture of the resulting composite. In order to produce cheap materials, chemical plating and uniaxial hot pressing processing routes were chosen. 1D-C{sub (P55Thornel)} / Cu prepregs were hot pressed in an argon atmosphere at 750 C during 30 min. The volume fraction of the fibres within the composite was in the range of 10-35%. Physical (density and thermal expansion coefficient) and thermal conductivity properties of the composite were in good agreement with the predictions. However this material exhibits very poor mechanical properties (Young`s modulus and tensile strength). Scanning electron microscopy (SEM) observations of the surfaces of ruptures have shown that (1) a very weak bonding between the graphite fibres and the copper matrix was formed and (2) the rupture of the composite was initiated in the matrix at the copper grain boundaries. In order to overcome these two difficulties, the carbon fibres were pre-coated with a thin layer (100 nm) of cobalt. The aim of the cobalt was to react with the carbon to form carbide compounds and as a consequence to increase the bonding between the metal and the fibre. The tensile properties ({sigma}{sub c}{sup R} and E{sub c}) of this composite were then increased by 50% in comparison with the former material; however the strain to rupture was still too weak ({epsilon}{sub c}{sup R} = 0.5%). In order to explain the role of each constituents, X-ray profiles and TEM analyses were done at the fibre/matrix interface and at the grain boundaries. Some modifications of the chemical plating steps were done to improve the purity of the copper. (orig.)

  8. NICER Detection of Strong Photospheric Expansion during a Thermonuclear X-Ray Burst from 4U 1820–30

    Science.gov (United States)

    Keek, L.; Arzoumanian, Z.; Chakrabarty, D.; Chenevez, J.; Gendreau, K. C.; Guillot, S.; Güver, T.; Homan, J.; Jaisawal, G. K.; LaMarr, B.; Lamb, F. K.; Mahmoodifar, S.; Markwardt, C. B.; Okajima, T.; Strohmayer, T. E.; in ’t Zand, J. J. M.

    2018-04-01

    The Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS) observed strong photospheric expansion of the neutron star in 4U 1820–30 during a Type I X-ray burst. A thermonuclear helium flash in the star’s envelope powered a burst that reached the Eddington limit. Radiation pressure pushed the photosphere out to ∼200 km, while the blackbody temperature dropped to 0.45 keV. Previous observations of similar bursts were performed with instruments that are sensitive only above 3 keV, and the burst signal was weak at low temperatures. NICER's 0.2–12 keV passband enables the first complete detailed observation of strong expansion bursts. The strong expansion lasted only 0.6 s, and was followed by moderate expansion with a 20 km apparent radius, before the photosphere finally settled back down at 3 s after the burst onset. In addition to thermal emission from the neutron star, the NICER spectra reveal a second component that is well fit by optically thick Comptonization. During the strong expansion, this component is six times brighter than prior to the burst, and it accounts for 71% of the flux. In the moderate expansion phase, the Comptonization flux drops, while the thermal component brightens, and the total flux remains constant at the Eddington limit. We speculate that the thermal emission is reprocessed in the accretion environment to form the Comptonization component, and that changes in the covering fraction of the star explain the evolution of the relative contributions to the total flux.

  9. Fabrication of mesoporous silica/polymer composites through solvent evaporation process and investigation of their excellent low thermal expansion property.

    Science.gov (United States)

    Suzuki, Norihiro; Kiba, Shosuke; Yamauchi, Yusuke

    2011-03-21

    We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.

  10. Moralistic gods, supernatural punishment and the expansion of human sociality.

    Science.gov (United States)

    Purzycki, Benjamin Grant; Apicella, Coren; Atkinson, Quentin D; Cohen, Emma; McNamara, Rita Anne; Willard, Aiyana K; Xygalatas, Dimitris; Norenzayan, Ara; Henrich, Joseph

    2016-02-18

    Since the origins of agriculture, the scale of human cooperation and societal complexity has dramatically expanded. This fact challenges standard evolutionary explanations of prosociality because well-studied mechanisms of cooperation based on genetic relatedness, reciprocity and partner choice falter as people increasingly engage in fleeting transactions with genetically unrelated strangers in large anonymous groups. To explain this rapid expansion of prosociality, researchers have proposed several mechanisms. Here we focus on one key hypothesis: cognitive representations of gods as increasingly knowledgeable and punitive, and who sanction violators of interpersonal social norms, foster and sustain the expansion of cooperation, trust and fairness towards co-religionist strangers. We tested this hypothesis using extensive ethnographic interviews and two behavioural games designed to measure impartial rule-following among people (n = 591, observations = 35,400) from eight diverse communities from around the world: (1) inland Tanna, Vanuatu; (2) coastal Tanna, Vanuatu; (3) Yasawa, Fiji; (4) Lovu, Fiji; (5) Pesqueiro, Brazil; (6) Pointe aux Piments, Mauritius; (7) the Tyva Republic (Siberia), Russia; and (8) Hadzaland, Tanzania. Participants reported adherence to a wide array of world religious traditions including Christianity, Hinduism and Buddhism, as well as notably diverse local traditions, including animism and ancestor worship. Holding a range of relevant variables constant, the higher participants rated their moralistic gods as punitive and knowledgeable about human thoughts and actions, the more coins they allocated to geographically distant co-religionist strangers relative to both themselves and local co-religionists. Our results support the hypothesis that beliefs in moralistic, punitive and knowing gods increase impartial behaviour towards distant co-religionists, and therefore can contribute to the expansion of prosociality.

  11. Edgeworth expansion for functionals of continuous diffusion processes

    DEFF Research Database (Denmark)

    Podolskij, Mark; Yoshida, Nakahiro

    This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the Edgeworth expansion for power variation of diffusion processes....... Our methodology relies on martingale embedding, Malliavin calculus and stable central limit theorems for semimartingales. Finally, we demonstrate the density expansion for studentized statistics of power variations.......This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the Edgeworth expansion for power variation of diffusion processes...

  12. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  13. Soft Expansion of Double-Real-Virtual Corrections to Higgs Production at N$^3$LO

    CERN Document Server

    Anastasiou, Charalampos; Dulat, Falko; Furlan, Elisabetta; Herzog, Franz; Mistlberger, Bernhard

    2015-01-01

    We present methods to compute higher orders in the threshold expansion for the one-loop production of a Higgs boson in association with two partons at hadron colliders. This process contributes to the N$^3$LO Higgs production cross section beyond the soft-virtual approximation. We use reverse unitarity to expand the phase-space integrals in the small kinematic parameters and to reduce the coefficients of the expansion to a small set of master integrals. We describe two methods for the calculation of the master integrals. The first was introduced for the calculation of the soft triple-real radiation relevant to N$^3$LO Higgs production. The second uses a particular factorization of the three body phase-space measure and the knowledge of the scaling properties of the integral itself. Our result is presented as a Laurent expansion in the dimensional regulator, although some of the master integrals are computed to all orders in this parameter.

  14. Rarefied, superorbital flows in an expansion tube

    Energy Technology Data Exchange (ETDEWEB)

    Wheatley, V.; Chiu, H.S.; Jacobs, P.A.; Macrossan, M.N.; Mee, D.J.; Morgan, R.G.

    2004-04-01

    This paper describes a free-piston driven expansion tube and its instrumentation. The facility is used to generate rarefied flows at speeds of approximately 10 km/s. Although the flow in the tube itself is in the continuum regime, rarefied flow conditions are achieved by allowing the test gas to further expand as a free jet into the facility's test section. The test flow is surveyed to provide bar-gauge pressure measurements. Numerical simulation is then used to describe more fully the test flow properties. The flows produced are suitable for the aerodynamic testing of small models at superorbital speeds and should provide data that are suitable for the calibration of Direct Simulation Monte-Carlo codes. (author)

  15. Next generation dilatometer for highest accuracy thermal expansion measurement of ZERODUR®

    Science.gov (United States)

    Jedamzik, Ralf; Engel, Axel; Kunisch, Clemens; Westenberger, Gerhard; Fischer, Peter; Westerhoff, Thomas

    2015-09-01

    In the recent years, the ever tighter tolerance for the Coefficient of thermal expansion (CTE) of IC Lithography component materials is requesting significant progress in the metrology accuracy to determine this property as requested. ZERODUR® is known for its extremely low CTE between 0°C to 50°C. The current measurement of the thermal expansion coefficient is done using push rod dilatometer measurement systems developed at SCHOTT. In recent years measurements have been published showing the excellent CTE homogeneity of ZERODUR® in the one-digit ppb/K range using these systems. The verifiable homogeneity was limited by the CTE(0°C, 50°C) measurement repeatability in the range of ± 1.2 ppb/K of the current improved push rod dilatometer setup using an optical interferometer as detector instead of an inductive coil. With ZERODUR® TAILORED, SCHOTT introduced a low thermal expansion material grade that can be adapted to individual customer application temperature profiles. The basis for this product is a model that has been developed in 2010 for better understanding of the thermal expansion behavior under given temperature versus time conditions. The CTE behavior predicted by the model has proven to be in very good alignment with the data determined in the thermal expansions measurements. The measurements to determine the data feeding the model require a dilatometer setup with excellent stability and accuracy for long measurement times of several days. In the past few years SCHOTT spent a lot of effort to drive a dilatometer measurement technology based on the push rod setup to its limit, to fulfill the continuously demand for higher CTE accuracy and deeper material knowledge of ZERODUR®. This paper reports on the status of the dilatometer technology development at SCHOTT.

  16. Thermophysical properties of stainless steels

    International Nuclear Information System (INIS)

    Kim, C.S.

    1975-09-01

    Recommended values of the thermodynamic and transport properties of stainless steels Type 304L and Type 316L are given for temperatures from 300 to 3000 0 K. The properties in the solid region were obtained by extrapolating available experimental data to the melting range, while appropriate correlations were used to estimate the properties in the liquid region. The properties evaluated include the enthalpy, entropy, specific heat, vapor pressure, density, thermal expansion coefficient, thermal conductivity, thermal diffusivity, and viscosity. (9 fig, 11 tables)

  17. On the Equisummability of Hermite and Fourier Expansions

    Indian Academy of Sciences (India)

    We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.

  18. Early human speciation, brain expansion and dispersal influenced by African climate pulses.

    Directory of Open Access Journals (Sweden)

    Susanne Shultz

    Full Text Available Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration.

  19. Early human speciation, brain expansion and dispersal influenced by African climate pulses.

    Science.gov (United States)

    Shultz, Susanne; Maslin, Mark

    2013-01-01

    Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration.

  20. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  1. Some mathematical aspects of the Sturm-Liouville expansion with special reference to the nucleon-nucleus potential

    International Nuclear Information System (INIS)

    Bang, J.M.; Gareev, F.A.

    1977-01-01

    Different convergence properties of the Sturm-Liouville expansion are investigated with particular attention to the case of states which satisfy Schroedinger-like equations with a fixed energy and different depths of a potential, particulary of the Woods-Saxon used in nuclear physics

  2. Convergence and analytic properties of manifestly finite perturbation theory

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1979-01-01

    The author discusses more carefully the ultraviolet convergence properties of Feynman diagrams in recently proposed manifestly finite perturbation expansions. Speccifically, he refines one of the constraints on the γ's-the noncanonical dimensions-such that, when satisfied, any general product-type interaction of massive scalar, fermion and vector fields yields finite perturbation expansions requiring no conventional renormalization procedure. Moreover, the analytic properties of the Feynman integrals in the theory are discussed and concluded with remarks on the necessity of a modified Kaellen-Lehmann representation

  3. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    Energy Technology Data Exchange (ETDEWEB)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332‐0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332‐0245 (United States)

    2017-05-15

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression also reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.

  4. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model

    International Nuclear Information System (INIS)

    Deman, G.; Konakli, K.; Sudret, B.; Kerrou, J.; Perrochet, P.; Benabderrahmane, H.

    2016-01-01

    The study makes use of polynomial chaos expansions to compute Sobol' indices within the frame of a global sensitivity analysis of hydro-dispersive parameters in a simplified vertical cross-section of a segment of the subsurface of the Paris Basin. Applying conservative ranges, the uncertainty in 78 input variables is propagated upon the mean lifetime expectancy of water molecules departing from a specific location within a highly confining layer situated in the middle of the model domain. Lifetime expectancy is a hydrogeological performance measure pertinent to safety analysis with respect to subsurface contaminants, such as radionuclides. The sensitivity analysis indicates that the variability in the mean lifetime expectancy can be sufficiently explained by the uncertainty in the petrofacies, i.e. the sets of porosity and hydraulic conductivity, of only a few layers of the model. The obtained results provide guidance regarding the uncertainty modeling in future investigations employing detailed numerical models of the subsurface of the Paris Basin. Moreover, the study demonstrates the high efficiency of sparse polynomial chaos expansions in computing Sobol' indices for high-dimensional models. - Highlights: • Global sensitivity analysis of a 2D 15-layer groundwater flow model is conducted. • A high-dimensional random input comprising 78 parameters is considered. • The variability in the mean lifetime expectancy for the central layer is examined. • Sparse polynomial chaos expansions are used to compute Sobol' sensitivity indices. • The petrofacies of a few layers can sufficiently explain the response variance.

  5. On the Exact Solution Explaining the Accelerate Expanding Universe According to General Relativity

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2012-04-01

    Full Text Available A new method of calculation is applied to the frequency of a photon according to the tra- velled distance. It consists in solving the scalar geodesic equation (equation of energy of the photon, and manifests gravitation, non-holonomity, and deformation of space as the intrinsic geometric factors affecting the photon’s frequency. The solution obtained in the expanding space of Friedmann’s metric manifests the exponential cosmological redshift: its magnitude increases, exponentially, with distance. This explains the acce- lerate expansion of the Universe registered recently by the astronomers. According to the obtained solution, the redshift reaches the ultimately high value z = e π − 1 = 22 . 14 at the event horizon.

  6. Quantifying the mechanical micro-environment during three-dimensional cell expansion on microbeads by means of individual cell-based modelling.

    Science.gov (United States)

    Smeets, Bart; Odenthal, Tim; Tijskens, Engelbert; Ramon, Herman; Van Oosterwyck, Hans

    2013-10-01

    Controlled in vitro three-dimensional cell expansion requires culture conditions that optimise the biophysical micro-environment of the cells during proliferation. In this study, we propose an individual cell-based modelling platform for simulating the mechanics of cell expansion on microcarriers. The lattice-free, particle-based method considers cells as individual interacting particles that deform and move over time. The model quantifies how the mechanical micro-environment of individual cells changes during the time of confluency. A sensitivity analysis is performed, which shows that changes in the cell-specific properties of cell-cell adhesion and cell stiffness cause the strongest change in the mechanical micro-environment of the cells. Furthermore, the influence of the mechanical properties of cells and microbead is characterised. The mechanical micro-environment is strongly influenced by the adhesive properties and the size of the microbead. Simulations show that even in the absence of strong biological heterogeneity, a large heterogeneity in mechanical stresses can be expected purely due to geometric properties of the culture system.

  7. On genus expansion of superpolynomials

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)

    2014-12-15

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  8. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites

    Directory of Open Access Journals (Sweden)

    Wenjun Zhao

    2018-02-01

    Full Text Available Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE behaviors with the coefficients of thermal expansion (CTE of −285.23 × 10−6 K−1 (192–305 K and −1167.09 × 10−6 K−1 (246–305 K have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from −64.92 × 10−6 K−1 (125–274 K to −4.73 × 10−6 K−1 (173–229 K with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM state into ferromagnetic (FM state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  9. Path and semimartingale properties of chaos processes

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Graversen, Svend-Erik

    2010-01-01

    The present paper characterizes various properties of chaos processes which in particular include processes where all time variables admit a Wiener chaos expansion of a fixed finite order. The main focus is on the semimartingale property, p-variation and continuity. The general results obtained...

  10. Physical, Mineralogical, and Micromorphological Properities of Expansive Soil Treated at Different Temperature

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-01-01

    Full Text Available Different characterizations were carried out on unheated expansive soil and samples heated at different temperature. The samples are taken from the western outskirts of Nanning of Guangxi Province, China. In the present paper, the mineral and chemical composition and several essential physical parameters of unheated expansive soil are indicated by XRD and EDX analysis. Moreover, the structural transition and change of mechanical properties of samples heated in the range of room temperature to 140°C are proved by TG-DTA and SEM observation. The mean particle diameter, density, hydraulic behaviors, and bond strength also have been investigated. The results indicate that, along with the loss of free water, physical absorbed water, and chemically bound water, the microstructure experiences some obvious change. In addition, the particle size and density both will increase rapidly before 100°C and undertake a slow growth or decline when higher than 100°C. The hydraulic behaviors and strength performance of unheated samples and the one heated at 100°C are given out as well. All these researches play fundamental role in the pollution prevention, modification, and engineering application of expansive soil.

  11. Using expansive grasses for monitoring heavy metal pollution in the vicinity of roads.

    Science.gov (United States)

    Vachová, Pavla; Vach, Marek; Najnarová, Eva

    2017-10-01

    We propose a method for monitoring heavy metal deposition in the vicinity of roads using the leaf surfaces of two expansive grass species which are greatly abundant. A principle of the proposed procedure is to minimize the number of operations in collecting and preparing samples for analysis. The monitored elements are extracted from the leaf surfaces using dilute nitric acid directly in the sample-collection bottle. The ensuing steps, then, are only to filter the extraction solution and the elemental analysis itself. The verification results indicate that the selected grasses Calamagrostis epigejos and Arrhenatherum elatius are well suited to the proposed procedure. Selected heavy metals (Zn, Cu, Pb, Ni, Cr, and Cd) in concentrations appropriate for direct determination using methods of elemental analysis can be extracted from the surface of leaves of these species collected in the vicinity of roads with medium traffic loads. Comparing the two species showed that each had a different relationship between the amounts of deposited heavy metals and distance from the road. This disparity can be explained by specific morphological properties of the two species' leaf surfaces. Due to the abundant occurrence of the two species and the method's general simplicity and ready availability, we regard the proposed approach to constitute a broadly usable and repeatable one for producing reproducible results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  13. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    Sandrea, I.

    2005-01-01

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  14. On Learning Ring-Sum-Expansions

    DEFF Research Database (Denmark)

    Fischer, Paul; Simon, H. -U.

    1992-01-01

    The problem of learning ring-sum-expansions from examples is studied. Ring-sum-expansions (RSE) are representations of Boolean functions over the base {#123;small infinum, (+), 1}#125;, which reflect arithmetic operations in GF(2). k-RSE is the class of ring-sum-expansions containing only monomials...... of length at most k:. term-RSE is the class of ring-sum-expansions having at most I: monomials. It is shown that k-RSE, k>or=1, is learnable while k-term-RSE, k>2, is not learnable if RPnot=NP. Without using a complexity-theoretical hypothesis, it is proven that k-RSE, k>or=1, and k-term-RSE, k>or=2 cannot...... be learned from positive (negative) examples alone. However, if the restriction that the hypothesis which is output by the learning algorithm is also a k-RSE is suspended, then k-RSE is learnable from positive (negative) examples only. Moreover, it is proved that 2-term-RSE is learnable by a conjunction...

  15. The bootstrap and edgeworth expansion

    CERN Document Server

    Hall, Peter

    1992-01-01

    This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...

  16. The politics of social policy: welfare expansion in Brazil, China, India and South Africa in comparative perspective

    OpenAIRE

    Tillin, Louise; Duckett, Jane

    2017-01-01

    This introductory essay reviews the scholarship on the politics of social policy, and shows the contribution of the special issue to explaining expanded welfare commitments in Brazil, China, India and South Africa in the twenty first century. Much literature on welfare expansion in lower- and middle income contexts views it primarily as a policy corrective to the economic dislocations produced by global economic integration. This special issue focuses on the political factors that are critica...

  17. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  18. Time expansion chamber and single ionization cluster measurement

    International Nuclear Information System (INIS)

    Walenta, A.H.

    1978-10-01

    The time expansion chamber (TEC), a new type of drift chamber, allows the measurement of microscopic details of ionization. The mean drift time interval from subsequent sngle ionization clusters of a relativistic particle in the TEC can be made large enough compared to the width of a anode signal to allow the recording of the clusters separately. Since single primary electrons can be detected, the cluster counting would allow an improved particle separation using the relativistic rise of primary ionization. In another application, very high position accuracy for track detectors or improved energy resolution may be obtained. Basic ionization phenomena and drift properties can be measured at the single electron level

  19. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  20. Node-Expansion Operators for the UCT Algorithm

    Science.gov (United States)

    Yajima, Takayuki; Hashimoto, Tsuyoshi; Matsui, Toshiki; Hashimoto, Junichi; Spoerer, Kristian

    Recent works on the MCTS and UCT framework in the domain of Go focused on introducing knowledge to the playout and on pruning variations from the tree, but so far node expansion has not been investigated. In this paper we show that delaying expansion according to the number of the siblings delivers a gain of more than 92% when compared to normal expansion. We propose three improvements; one that uses domain knowledge and two that are domain-independent methods. Experimental results show that all advanced operators significantly improve the UCT performance when compared to the basic delaying expansion. From the results we may conclude that the new expansion operators are an appropriate means to improve the UCT algorithm.

  1. On the almost everywhere convergence of the eigenfunction expansions from Liouville classes L_1^\\alpha ({T^N})

    Science.gov (United States)

    Ahmedov, Anvarjon; Materneh, Ehab; Zainuddin, Hishamuddin

    2017-09-01

    The relevance of waves in quantum mechanics naturally implies that the decomposition of arbitrary wave packets in terms of monochromatic waves plays an important role in applications of the theory. When eigenfunction expansions does not converge, then the expansions of the functions with certain smoothness should be considered. Such functions gained prominence primarily through their application in quantum mechanics. In this work we study the almost everywhere convergence of the eigenfunction expansions from Liouville classes L_p^α ({T^N}), related to the self-adjoint extension of the Laplace operator in torus TN . The sufficient conditions for summability is obtained using the modified Poisson formula. Isomorphism properties of the elliptic differential operators is applied in order to obtain estimation for the Fourier series of the functions from the classes of Liouville L_p^α .

  2. The holonomy expansion: Invariants and approximate supersymmetry

    International Nuclear Information System (INIS)

    Jaffe, Arthur

    2000-01-01

    In this paper we give a new expansion, based on cyclicity of the trace, to study regularity properties of twisted expectations =Tr H (γU(θ)X(s)). Here X(s)=X 0 e -s 0 Q 2 X 1 e -s 1 Q 2 ...X k e -s k Q 2 is a product of operators X j , regularized by heat kernels e -s j Q 2 with s j >0. The twist groups γ(set-membership sign)Z 2 and U(θ)(set-membership sign)U(1) are commuting symmetries of Q 2 . The name ''holonomy expansion'' arises from picturing as a circular graph, with vertices in the graph representing the operators X j , in the order that they appear in the product, and the line-segment following X j representing the heat kernel e -s j Q 2 . The trace functional is cyclic, so the graph is circular. We generate our expansion by ''transporting'' a vertex X k around the circle, ending in its original position. We choose an X k that transforms under a one-dimensional representation of Z 2 xU(1). For θ in the complement of the discrete set γ sing (where the group Z 2 xU(1) acts trivially on X k ) we obtain an identity between the original expectation and some new expectations. We study an example from supersymmetric quantum mechanics, with a Dirac operator Q(λ) depending on a parameter λ and with a U(1) group of symmetries U(θ). We apply our expansion to invariants Z(λ;θ)=Z(Q(λ);θ) suggested by non-commutative geometry. These invariants are sums of expectations of the form above. We investigate this example as a first step toward developing an expansion to evaluate related invariants arising in supersymmetric quantum field theory. We establish differentiability of Z(λ; θ) in λ for λ(set-membership sign)(0,1] and show Z(λ; θ) is independent of λ. We wish to evaluate Z(λ; θ) at the endpoint λ=0, but Z(0; θ) is ill-defined. We regularize the endpoint, while preserving the U(θ)-symmetry, by replacing Q(λ) 2 with H(ε,λ)=Q(λ) 2 +ε 2 |z| 2 . The regularized function Z(ε, λ; θ) depends on all three variables ε, λ, θ; for fixed θ, it

  3. Thermal expansion in small metallic particles

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1985-01-01

    An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature

  4. Foam property tests to evaluate the potential for longwall shield dust control.

    Science.gov (United States)

    Reed, W R; Beck, T W; Zheng, Y; Klima, S; Driscoll, J

    2018-01-01

    Tests were conducted to determine properties of four foam agents for their potential use in longwall mining dust control. Foam has been tried in underground mining in the past for dust control and is currently being reconsidered for use in underground coal longwall operations in order to help those operations comply with the Mine Safety and Health Administration's lower coal mine respirable dust standard of 1.5 mg/m 3 . Foams were generated using two different methods. One method used compressed air and water pressure to generate foam, while the other method used low-pressure air generated by a blower and water pressure using a foam generator developed by the U.S. National Institute for Occupational Safety and Health. Foam property tests, consisting of a foam expansion ratio test and a water drainage test, were conducted to classify foams. Compressed-air-generated foams tended to have low expansion ratios, from 10 to 19, with high water drainage. Blower-air-generated foams had higher foam expansion ratios, from 30 to 60, with lower water drainage. Foams produced within these ranges of expansion ratios are stable and potentially suitable for dust control. The test results eliminated two foam agents for future testing because they had poor expansion ratios. The remaining two foam agents seem to have properties adequate for dust control. These material property tests can be used to classify foams for their potential use in longwall mining dust control.

  5. [Tissular expansion in giant congenital nevi treatment].

    Science.gov (United States)

    Nguyen Van Nuoi, V; Francois-Fiquet, C; Diner, P; Sergent, B; Zazurca, F; Franchi, G; Buis, J; Vazquez, M-P; Picard, A; Kadlub, N

    2014-08-01

    Surgical management of giant melanotic naevi remains a surgical challenge. Tissue expansion provides tissue of the same quality for the repair of defects. The aim of this study is to review tissular expansion for giant melanotic naevi. We conducted a retrospective study from 2000 to 2012. All children patients who underwent a tissular expansion for giant congenital naevi had been included. Epidemiological data, surgical procedure, complication rate and results had been analysed. Thirty-tree patients had been included; they underwent 61 procedures with 79 tissular-expansion prosthesis. Previous surgery, mostly simple excision had been performed before tissular expansion. Complete naevus excision had been performed in 63.3% of the cases. Complications occurred in 45% of the cases, however in 50% of them were minor. Iterative surgery increased the complication rate. Tissular expansion is a valuable option for giant congenital naevus. However, complication rate remained high, especially when iterative surgery is needed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    International Nuclear Information System (INIS)

    Wei, Yan; Li, Yuan; Chen, Chao; Stoelzel, Katharina; Kaufmann, Andreas M.; Albers, Andreas E.

    2011-01-01

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  7. Applications of the large mass expansion

    International Nuclear Information System (INIS)

    Fleischer, J.; Kotikov, A.V.; ); Veretin, O.L.

    1998-01-01

    The method of the large mass expansion (LME) is investigated for selfenergy and vertex functions in two-loop order. It has the technical advantage that in many cases the expansion coefficients can be expressed analytically. As long as only one non-zero external momentum squared, q 2 , is involved also the Taylor expansion (TE) w.r.t. small q 2 yields high precision results in a domain sufficient for most applications. In the case of only one non-zero mass M and only one external momentum squared, the expansion w.r.t. q 2 /M 2 is identical for the TE and the LME. In this case the combined techniques yield analytic expressions for many diagrams, which are quite easy to handle numerically. (author)

  8. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    Science.gov (United States)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  9. Hematoma Expansion Following Acute Intracerebral Hemorrhage

    Science.gov (United States)

    Brouwers, H. Bart; Greenberg, Steven M.

    2013-01-01

    Intracerebral hemorrhage, the most devastating form of stroke, has no specific therapy proven to improve outcome by randomized controlled trial. Location and baseline hematoma volume are strong predictors of mortality, but are non-modifiable by the time of diagnosis. Expansion of the initial hematoma is a further marker of poor prognosis that may be at least partly preventable. Several risk factors for hematoma expansion have been identified, including baseline ICH volume, early presentation after symptom onset, anticoagulation, and the CT angiography spot sign. Although the biological mechanisms of hematoma expansion remain unclear, accumulating evidence supports a model of ongoing secondary bleeding from ruptured adjacent vessels surrounding the initial bleeding site. Several large clinical trials testing therapies aimed at preventing hematoma expansion are in progress, including aggressive blood pressure reduction, treatment with recombinant factor VIIa guided by CT angiography findings, and surgical intervention for superficial hematomas without intraventricular extension. Hematoma expansion is so far the only marker of outcome that is amenable to treatment and thus a potentially important therapeutic target. PMID:23466430

  10. Renormalization group and mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere

  11. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan

    2014-01-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  12. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.

    2014-03-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  13. Crude oil pipeline expansion summary

    International Nuclear Information System (INIS)

    2005-02-01

    The Canadian Association of Petroleum Producers has been working with producers to address issues associated with the development of new pipeline capacity from western Canada. This document presents an assessment of the need for additional oil pipeline capacity given the changing mix of crude oil types and forecasted supply growth. It is of particular interest to crude oil producers and contributes to current available information for market participants. While detailed, the underlying analysis does not account for all the factors that may come into play when individual market participants make choices about which expansions they may support. The key focus is on the importance of timely expansion. It was emphasized that if pipeline expansions lags the crude supply growth, then the consequences would be both significant and unacceptable. Obstacles to timely expansion are also discussed. The report reviews the production and supply forecasts, the existing crude oil pipeline infrastructure, opportunities for new market development, requirements for new pipeline capacity and tolling options for pipeline development. tabs., figs., 1 appendix

  14. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  15. Investigating the Relationship between Cerebrospinal Fluid and Magnetic Induction Phase Shift in Rabbit Intracerebral hematoma expansion Monitoring by MRI.

    Science.gov (United States)

    Chen, Mingsheng; Yan, Qingguang; Sun, Jian; Jin, Gui; Qin, Mingxin

    2017-09-11

    In a prior study of intracerebral hemorrhage monitoring using magnetic induction phase shift (MIPS), we found that MIPS signal changes occurred prior to those seen with intracranial pressure. However, the characteristic MIPS alert is not yet fully explained. Combining the brain physiology and MIPS theory, we propose that cerebrospinal fluid (CSF) may be the primary factor that leads to hematoma expansion being alerted by MIPS earlier than with intracranial pressure monitoring. This paper investigates the relationship between CSF and MIPS in monitoring of rabbit intracerebral hemorrhage models, which is based on the MIPS measurements data, the quantified data on CSF from medical images and the amount of injected blood in the rabbit intracerebral hemorrhage model. In the investigated results, a R value of 0.792 with a significance of 0.019 is observed between the MIPS and CSF, which is closer than MIPS and injected blood. Before the reversal point of MIPS, CSF is the leading factor in MIPS signal changing in an early hematoma expansion stage. Under CSF compensation, CSF reduction compensates for hematoma expansion in the brain to keep intracranial pressure stable. MIPS decrease results from the reducing CSF volume. This enables MIPS to detect hematoma expansion earlier than intracranial pressure.

  16. Prediction of vertical expansion pressure stresses in coke oven heating walls

    Energy Technology Data Exchange (ETDEWEB)

    Duerselen, H; Janicka, J

    1987-08-01

    The paper describes an accurate method developed by Krupp Koppers for calculating stresses in the central areas of coke oven heating walls. The results of this calculation model have provided the following conclusions for the design of coke ovens: 1) a rising pre-stressing of the heating walls caused by the weight of the top deck of the coke oven leads - compared with the stress limits of W. Ahlers - to lower permissible expansion pressures. 2) A given heating wall width has its corresponding maximum feasible oven height. Heating wall width and top deck weight are not interchangeable parameters. 3) The dependence of the permissible expansion pressure on the stretcher brick thickness should not be overlooked. Stretcher brick thicknesses of under 90 mm are not recomended for tall ovens and heavily swelling coal. 4) The capacity of mortar to absorb tensile stresses is ultimately an undesirable property, because the stresses at the points where the mortar is not holding are higher than in a straightforward stretch of brickwork.

  17. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    Science.gov (United States)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  18. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series

    Science.gov (United States)

    Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng

    2018-04-01

    There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.

  19. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  20. Renormalization group and Mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-02-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)

  1. Patterned-ground facilitates shrub expansion in Low Arctic tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A; Matyshak, Georgiy; Ermokhina, Ksenia

    2013-01-01

    Recent expansion of tall shrubs in Low Arctic tundra is widely seen as a response to climate warming, but shrubification is not occurring as a simple function of regional climate trends. We show that establishment of tall alder (Alnus) is strongly facilitated by small, widely distributed cryogenic disturbances associated with patterned-ground landscapes. We identified expanding and newly established shrub stands at two northwest Siberian sites and observed that virtually all new shrubs occurred on bare microsites (‘circles’) that were disturbed by frost-heave. Frost-heave associated with circles is a widespread, annual phenomenon that maintains mosaics of mineral seedbeds with warm soils and few competitors that are immediately available to shrubs during favorable climatic periods. Circle facilitation of alder recruitment also plausibly explains the development of shrublands in which alders are regularly spaced. We conclude that alder abundance and extent have increased rapidly in the northwest Siberian Low Arctic since at least the mid-20th century, despite a lack of summer warming in recent decades. Our results are consistent with findings in the North American Arctic which emphasize that the responsiveness of Low Arctic landscapes to climate change is largely determined by the frequency and extent of disturbance processes that create mineral-rich seedbeds favorable for tall shrub recruitment. Northwest Siberia has high potential for continued expansion of tall shrubs and concomitant changes to ecosystem function, due to the widespread distribution of patterned-ground landscapes. (letter)

  2. Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys

    Science.gov (United States)

    1975-01-01

    the thermal expansion of metallic elements, alloys, and intermetallic compounds. We believe there is also much food for reflection by the specialist...24 39 Plutonium Pu ........ ............... 260 40’ t Polonium Po ..... ............... 270 41* Potassium K ..... ............... 271 42...923 209 NIckel-Palladium NI-Pd..................926 210 * Nickel-Pitaum Ni-Pt.................90 211 Nickel-Silicon NI-SI.................932 212

  3. expansion method

    Indian Academy of Sciences (India)

    of a system under investigation is to model the system in terms of some ... The organization of the paper is as follows: In §2, a brief account of the (G /G)- expansion ...... It is interesting to note that from the general results, one can easily recover.

  4. Thermodynamic properties of α-uranium

    International Nuclear Information System (INIS)

    Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao

    2016-01-01

    The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0–100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T"3 power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit. - Highlights: • Thermodynamic properties of α-U were predicted systematically with quasi-harmonic Debye model. • Summarizations of the corresponding experimental and theoretical results have been made for the EOS and other thermodynamic parameters. • The calculated thermodynamic properties show good agreement with the experimental results in general trends.

  5. Thermodynamic properties of α-uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao, E-mail: luochaoboss@sohu.com

    2016-11-15

    The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0–100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T{sup 3} power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit. - Highlights: • Thermodynamic properties of α-U were predicted systematically with quasi-harmonic Debye model. • Summarizations of the corresponding experimental and theoretical results have been made for the EOS and other thermodynamic parameters. • The calculated thermodynamic properties show good agreement with the experimental results in general trends.

  6. Expansion of Tubular with Elastomers in Multilateral Wells

    Directory of Open Access Journals (Sweden)

    Md Velden

    2013-06-01

    Full Text Available The use of solid expandable tubular technology during the last decade has focused on solving many challenges in well drilling and delivery including zonal isolation, deep drilling, conservation of hole sizes, etc. not only as pioneered solution but also providing cost effective and long lasting solutions. Concurrently, the technology was extended for construction of multilateral in typical wells. The process of horizontal tubular expansion is similar to the vertical expansion of expandable tubular in down-hole environment with the addition of uniformly distributed force due to its weight. The expansion is targeted to increase its diameter such that post expansion characteristics remain within allowable limits. In this study a typical expandable tubular of 57.15 mm outer diameter and 6.35 mm wall thickness was used with two different elastomer seals of 5 and 7 mm thickness placed at equal spacing of 200 mm. The developed stress contours during expansion process clearly showed the high stress areas in the vicinity of expansion region which lies around the mandrel. These high stresses may result in excessive wear of the mandrel. It was also found out that the drawing force increases as the mandrel angle, expansion ratio, and friction coefficient increases. A mandrel angle of 20o  requires minimum expansion force and can be considered as an optimum geometrical parameter to lower the power required for expansion.

  7. A model of cell wall expansion based on thermodynamics of polymer networks

    Science.gov (United States)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  8. Symmetry in the polarization expansion for intermolecular forces

    International Nuclear Information System (INIS)

    Chipman, D.M.; Hirschfelder, J.O.

    1980-01-01

    In the usual polarization expansion for intermolecular forces, exchange effects that determine the separations of energy levels within the manifold of interacting states are ignored. Previous low order calculations on simple physical systems have indicated that these exchange terms can be described reasonably well by an appropriate ad hoc symmetrization of the polarization wave function (the SYM-P method). But theoretical considerations suggest that the SYM-P method should be good for only one of the interacting states and not for the others in the manifold. Here this long standing apparent conflict between theoretical expectations and actual results is explained by consideration of a simple model system in which the relevant equations can be solved exactly. It is concluded that while the SYM-P method is potentially exact for only one of the interacting states, it may provide good approximations to the other states of the manifold in the case of large separations of the interacting subsystems

  9. Adiabatic supernova expansion into the circumstellar medium

    International Nuclear Information System (INIS)

    Band, D.L.; Liang, E.P.

    1987-01-01

    We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs

  10. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  11. Thermophysical properties of Conasauga shale

    International Nuclear Information System (INIS)

    Smith, D.D.

    1978-01-01

    Thermophysical-property characterizations of five Conasauga shale cores were determined at temperatures between 298 and 673 K. Methods of specimen fabrication for different tests were evaluated. Thermal-conductivity and thermal-expansion data were found to be dependent on the structure and orientation of the individual specimens. Thermal conductivities ranged between 2.8 and 1.0 W/m-K with a small negative temperature dependence. Thermal expansions were between 2 and 5 x 10 -3 over the temperature range for the group. Heat capacity varied with the composition. 17 figures, 3 tables

  12. Extending Social Learning Theory to Explain Victimization Among Gang and Ex-Gang Offenders.

    Science.gov (United States)

    Gagnon, Analisa

    2018-03-01

    This study is among the first to extend and test social learning theory's ability to understand property and violent victimization. It specifically tests whether aspects of definitions, differential reinforcement, and differential association/modeling can explain the three types of victimization of gang members: actual experience, perception of likelihood, and fear. The sample consists of over 300 male and female gang members incarcerated in jails throughout Florida. The results show that all three types of victimization can be explained by the three aspects of social learning theory.

  13. Experimental investigation on the initial expansion stage of vacuum arc on cup-shaped TMF contacts

    Science.gov (United States)

    Wang, Ting; Xiu, Shixin; Liu, Zixi; Zhang, Yanzhe; Feng, Dingyu

    2018-02-01

    Arc behavior and measures to control it directly affect the properties of vacuum circuit breakers. Nowadays, transverse magnetic field (TMF) contacts are widely used for medium voltages. A magnetic field perpendicular to the current direction between the TMF contacts makes the arc move, transmitting its energy to the whole contact and avoiding excessive local ablation. Previous research on TMF arc behavior concentrated mainly on the arc movement and less on the initial stage (from arc ignition to an unstable arc column). A significant amount of experiment results suggest that there is a short period of arc stagnation after ignition. The duration of this arc stagnation and the arc characteristics during this stage affect the subsequent arc motion and even the breaking property of interrupters. The present study is of the arc characteristics in the initial stage. Experiments were carried out in a demountable vacuum chamber with cup-shaped TMF contacts. Using a high-speed camera, both single-point arc ignition mode and multiple-point arc ignition (MPAI) mode were observed. The experimental data show that the probability of MPAI mode occurring is related to the arc current. The influences of arc-ignition mode, arc current, and contact diameter on the initial expansion process were investigated. In addition, simulations were performed to analyze the multiple arc expansion process mechanically. Based on the experimental phenomena and simulation results, the mechanism of the arc expansion motion was analyzed.

  14. Thermophysical Properties of GRCop-84

    Science.gov (United States)

    Ellis, David L.; Keller, Dennis J.; Nathal, Michael (Technical Monitor)

    2000-01-01

    The thermophysical properties and electrical resistivity of GRCop-84 (Cu - 8 at.% Cr-4 at.% Nb) were measured from cryogenic temperatures to near its melting point. The data were analyzed using weighted regression to determine the properties as a function of temperature and assign appropriate confidence intervals. The results showed that the thermal expansion of GRCop-84 was significantly lower than NARloy-Z (Cu-3 wt. % Ag-0.5 wt. % Zr), the currently used thrust cell liner material. The lower thermal expansion is expected to translate into lower thermally induced stresses and increases in thrust cell liner lives between 2X and 41X over NARloy-Z. The somewhat lower thermal conductivity of GRCop-84 can be offset by redesigning the liners to utilize its much greater mechanical properties. Optimized designs are not expected to suffer from the lower thermal conductivity. Electrical resistivity data, while not central to the primary application, show that GRCop-84 has potential for applications where a combination of good electrical conductivity and strength is required.

  15. Protein nativity explains emulsifying properties of aqueous extracted protein components from yellow pea

    NARCIS (Netherlands)

    Geerts, Marlies E.J.; Nikiforidis, Constantinos V.; Goot, van der Atze Jan; Padt, van der Albert

    2017-01-01

    In this paper, the emulsifying properties of a protein-enriched fraction from pea are unravelled. The emulsifying properties of mildly fractionated protein fractions from yellow pea and compared to those of commercial pea protein isolate. The emulsion stability of an oil-in-water emulsions were

  16. Structure of large spin expansion of anomalous dimensions at strong coupling

    International Nuclear Information System (INIS)

    Beccaria, M.; Forini, V.; Tirziu, A.; Tseytlin, A.A.

    2009-01-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr(ΦD + S Φ) expanded in large spin S have the asymptotics γ=flnS+f c +1/S (f 11 lnS+f 10 )+..., where f (the universal scaling function or cusp anomaly), f c and f mn are given by power series in the 't Hooft coupling λ. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing γ in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS 5 . The large spin expansion of the classical string energy happens to have exactly the same structure as that of γ in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f c , f 11 , f 10 and verify the functional/reciprocity relations at subleading 1/(√(λ)) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions

  17. Decennial plan of expansion 1994-2003

    International Nuclear Information System (INIS)

    1993-12-01

    The Decennial Plan of Expansion 1994-2003 of Electric sector reproduces the results of the studies occurred during the planning cycle of 1992/93 from the Coordinator Groups of the Electric System Planning. Based in the market forecasting, economic-financier and time for finishing the the works, the Decennial Plan of Expansion presents the schedule of the main generation and transmission works for the next ten years, the annual spend in generation, transmission and distribution, the costs of expansion and the evaluation of attending conditions in electric system in Brazil. (C.G.C.)

  18. IMPROVEMENT OF EXPANSIVE SOIL BY USING SILICA FUME

    Directory of Open Access Journals (Sweden)

    Kawther Y. AL-Soudany

    2018-01-01

    Full Text Available Expansive soils are characterized by their considerable volumetric deformations representing a serious challenge for the stability of the engineering structures such as foundations. Consequently, the measurements of swelling properties, involving swelling and swell pressure, become extremely important in spite of their determination needs a lot of time with costly particular equipment. Thus, serious researches attempts have been tried to remedy such soils by means of additives such as cement, lime, steel fibers, stone dust, fly ash and silica fume. In this research the study of silica fume has studied to treatment expansion soil, the clay soil was brought from Al-Nahrawan in Baghdad. The soil selected for the present investigation prepared in laboratory by mixing natural soil with different percentages of bentonite (30, 50 and 70% by soil dry weight. The test program included the effect of bentonite on natural soil then study the effect of silica fume (SF on prepared soil by adding different percentage of silica fume (3, 5, and 7 by weight to the prepared soils and the influence of these admixtures was observed by comparing their results with those of untreated soils (prepared soils. The results show that both liquid limit and plasticity index decreased with the addition of silica fume, while the plastic limit is increase with its addition. As well as, a decrease in the maximum dry unit weight with an increase in the optimum water contents have been obtained with increasing the percentage of addition of the silica fume. It is also observed an improvement in the free swell, swelling pressure by using silica fume. It can be concluded that the silica fume stabilization may be used as a successful way for the treatment of expansive clay.

  19. In vitro evaluation of force-expansion characteristics in a newly designed orthodontic expansion screw compared to conventional screws

    Directory of Open Access Journals (Sweden)

    Oshagh Morteza

    2009-01-01

    Full Text Available Objective : Expansion screws like Hyrax, Haas and other types, produce heavy interrupted forces which are unfavorable for dental movement and could be harmful to the tooth and periodontium. The other disadvantage of these screws is the need for patient cooperation for their regular activation. The purpose of this study was to design a screw and compare its force- expansion curve with other types. Materials and Methods : A new screw was designed and fabricated in the same dimension, with conventional types, with the ability of 8 mm expansion (Free wire length: 12 mm, initial compression: 4.5 mm, spring wire diameter: 0.4 mm, spring diameter: 3 mm, number of the coils: n0 ine, material: s0 tainless steel. In this in vitro study, the new screw was placed in an acrylic orthodontic appliance, and after mounting on a stone cast, the force-expansion curve was evaluated by a compression test machine and compared to other screws. Results : Force-expansion curve of designed screw had a flatter inclination compared to other screws. Generally it produced a light continuous force (two to 3.5 pounds for every 4 mm of expansion. Conclusion : In comparison with heavy and interrupted forces of other screws, the newly designed screw created light and continuous forces.

  20. Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys

    Science.gov (United States)

    Ogorodnikova, O. M.; Maksimova, E. V.

    2018-05-01

    The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.

  1. Comparison of allogeneic platelet lysate and fetal bovine serum for in vitro expansion of equine bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Seo, Jong-pil; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-10-01

    Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy and tissue engineering approaches. Fetal bovine serum (FBS) is commonly used for in vitro MSC expansion; however, the use of FBS may be associated with ethical, scientific, and safety issues. This study aimed to compare the ability of allogeneic platelet lysate (PL) and FBS to cause equine bone marrow-derived MSC expansion. MSCs were isolated from bone marrow aspirate in media supplemented with either PL or FBS, and cell proliferation properties and characteristics were examined. There were no significant differences in MSC yield, colony-forming unit-fibroblast (CFU-F) assay, and population doubling time between PL and FBS cultures. In addition, both PL-MSCs and FBS-MSCs showed similar results in term of ALP staining, osteogenic differentiation, and RT-PCR, although there were subtle differences in morphology, growth pattern, and adhesive properties. These results suggest that PL is a suitable alternative to FBS for use in equine MSC expansion, without the problems related to FBS use. Published by Elsevier India Pvt Ltd.

  2. Financing electricity expansion

    International Nuclear Information System (INIS)

    Hyman, L.S.

    1994-01-01

    Expansion of electricity supply is associated with economic development. The installation and enlargement of power systems in developing countries entails a huge financial burden, however. Energy consumers in such countries must pay not only for supplies but for the cost of raising the capital for expansion on the international markets. Estimates are presented for the capital expenditure for electricity supply over the period 1990 to 2020 for the major world regions, using approximations for the cost of plant and capital and for the returns earned. These data lead to the conclusion that the five regions with the lowest per capita incomes are those which will need the major part of the capital expenditure and the highest percentage of external finance. (6 tables) (UK)

  3. Electron relaxation properties of Ar magnetron plasmas

    Science.gov (United States)

    Xinjing, CAI; Xinxin, WANG; Xiaobing, ZOU

    2018-03-01

    An understanding of electron relaxation properties in plasmas is of importance in the application of magnetrons. An improved multi-term approximation of the Boltzmann equation is employed to study electron transport and relaxation properties in plasmas. Elastic, inelastic and nonconservative collisions between electrons and neutral particles are considered. The expressions for the transport coefficients are obtained using the expansion coefficients and the collision operator term. Numerical solutions of the matrix equations for the expansion coefficients are also investigated. Benchmark calculations of the Reid model are presented to demonstrate the accuracy of the improved multi-term approximation. It is shown that the two-term approximation is generally not accurate enough and the magnetic fields can reduce the anisotropy of the velocity distribution function. The electron relaxation properties of Ar plasmas in magnetrons for various magnetic fields are studied. It is demonstrated that the energy parameters change more slowly than the momentum parameters.

  4. Preparation of Shrinkage Compensating Concrete with HCSA Expansive Agent

    Science.gov (United States)

    Li, Changcheng; Jia, Fujia

    2017-10-01

    Shrinkage compensating concrete (SCC) has become one of the best effective methods of preventing and reducing concrete cracking. SCC is prepared by HCSA high performance expansive agent for concrete which restrained expansion rate is optimized by 0.057%. Slump, compressive strength, restrained expansion rate and cracking resistance test were carried out on SCC. The results show that the initial slump of fresh SCC was about 220mm-230mm, while slump after 2 hours was 180mm-200mm. The restrained expansion rate of SCC increased with the mixing amount of expansive agent. After cured in water for 14 days, the restrained expansion rate of C35 and C40 SCC were 0.020%-0.032%. With the dosage of expansive agent increasing, restrained expansion rate of SCC increased, maximum compressive stress and cracking stress improved, cracking temperature fell, thus cracking resistance got effectively improvement.

  5. Use of expansion joints in power stations

    International Nuclear Information System (INIS)

    Birker; Rommerswinkel.

    1976-01-01

    The paper discusses the mode of action of different systems of expansion joints. Special regard is given to the problems of expansion of pipelines of high rated diameter as employed in today's large power plant turbines. Due to the limited space available, the important role of the spring rate of the bellows for the reaction forces and moments acting on the connection points is pointed out. Apart from this details are given on the fabrication and materials selection of expansion joint bellows, and problems are discussed which arise in connection with the mechanical or hydraulic deformation of bellows with one or more walls. The non-destructive methods now in use for the testing of expansion pipe joints are mentioned along with experiments to test their behaviour under changing loads. The paper concludes on some remarks concerning proper transport, storage and installation of expansion pipe joints. (orig./AK) [de

  6. Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Lee, M.G.; Kim, D.; Matlock, D.K.; Wagoner, R.H.

    2010-01-01

    Research highlights: → Robust microstructure-based FE mesh generation technique was developed. → Local deformation behavior near phase boundaries could be quantitatively understood. → Macroscopic failure could be connected to microscopic deformation behavior of multi-phase steel. - Abstract: A qualitative analysis was carried out on the formability of dual-phase (DP) steels by introducing a realistic microstructure-based finite element approach. The present microstructure-based model was constructed using a mesh generation process with a boundary-smoothing algorithm after proper image processing. The developed model was applied to hole-expansion formability tests for DP steel sheets having different volume fractions and morphological features. On the basis of the microstructural inhomogeneity observed in the scanning electron micrographs of the DP steel sheets, it was inferred that the localized plastic deformation in the ferritic phase might be closely related to the macroscopic formability of DP steel. The experimentally observed difference between the hole-expansion formability of two different microstructures was reasonably explained by using the present finite element model.

  7. Thermophysical properties of uranium dioxide

    International Nuclear Information System (INIS)

    Fink, J.K.

    2000-01-01

    Experimental data on thermodynamic and transport properties of solid and liquid UO 2 have been reviewed and analyzed to obtain consistent equations for the thermophysical properties. Thermodynamic properties that have been assessed include enthalpy, heat capacity, enthalpy of fusion, thermal expansion, density, surface tension and vapor pressure. Transport properties that have been assessed are thermal diffusivity, thermal conductivity, viscosity, emissivity and optical constants. The assessments include a review of the experiments and data, review of previous recommendations, analysis of data to obtain new recommendations, determination of uncertainties in the recommended values, and comparisons of new recommendations with data and previous recommendations

  8. Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap

    NARCIS (Netherlands)

    Kleibergen, F.R.

    2003-01-01

    We show that the sensitivity of the limit distribution of commonly used GMM statistics to weak and many instruments results from superfluous elements in the higher order expansion of these statistics. When the instruments are strong and their number is small, these elements are of higher order and

  9. Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes

    Science.gov (United States)

    Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro

    2018-03-01

    We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.

  10. Fork stalling and template switching as a mechanism for polyalanine tract expansion affecting the DYC mutant of HOXD13, a new murine model of synpolydactyly.

    Science.gov (United States)

    Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann

    2009-09-01

    Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.

  11. Thermal expansion in 3d-metal Prussian Blue Analogs-A survey study

    International Nuclear Information System (INIS)

    Adak, Sourav; Daemen, Luke L.; Hartl, Monika; Williams, Darrick; Summerhill, Jennifer; Nakotte, Heinz

    2011-01-01

    We present a comprehensive study of the structural properties and the thermal expansion behavior of 17 different Prussian Blue Analogs (PBAs) with compositions M II 3 [(M') III (CN) 6 ] 2 .nH 2 O and M II 2 [Fe II (CN) 6 ].nH 2 O, where M II =Mn, Fe, Co, Ni, Cu and Zn, (M') III =Co, Fe and n is the number of water molecules, which range from 5 to 18 for these compounds. The PBAs were synthesized via standard chemical precipitation methods, and temperature-dependent X-ray diffraction studies were performed in the temperature range between -150 deg. C (123 K) and room-temperature. The vast majority of the studied PBAs were found to crystallize in cubic structures of space groups Fm3-bar m, F4-bar 3m and Pm3-bar m. The temperature dependence of the lattice parameters was taken to compute an average coefficient of linear thermal expansion in the studied temperature range. Of the 17 compounds, 9 display negative values for the average coefficient of linear thermal expansion, which can be as large as 39.7x 1 0 -6 K -1 for Co 3 [Co(CN) 6 ] 2 .12H 2 O. All of the M II 3 [Co III (CN) 6 ] 2 .nH 2 O compounds show negative thermal expansion behavior, which correlates with the Irving-Williams series for metal complex stability. The thermal expansion behavior for the PBAs of the M II 3 [Fe III (CN) 6 ] 2 .nH 2 O family are found to switch between positive (for M=Mn, Co, Ni) and negative (M=Cu, Zn) behavior, depending on the choice of the metal cation (M). On the other hand, all of the M II 2 [Fe II (CN) 6 ].nH 2 O compounds show positive thermal expansion behavior. - Graphical Abstract: The structure of Prussian Blue analogs (PBAs) consists of two types of metal centered octahedral units connected by cyanide ligand. Lattice and interstitial water molecules are present in these framework structures. All the PBAs of the M 3 [Co(CN) 6 ] 2 .nH 2 O family show negative thermal expansion (NTE) behavior. The lattice parameters and magnitude of NTE correlates inversely with the Irving

  12. Micro-halocline enabled nutrient recycling may explain extreme Azolla event in the Eocene Arctic Ocean.

    Science.gov (United States)

    van Kempen, Monique M L; Smolders, Alfons J P; Lamers, Leon P M; Roelofs, Jan G M

    2012-01-01

    In order to understand the physicochemical mechanisms that could explain the massive growth of Azolla arctica in the Eocene Arctic Ocean, we carried out a laboratory experiment in which we studied the interacting effects of rain and wind on the development of salinity stratification, both in the presence and in the absence of a dense Azolla cover. Additionally, we carried out a mesocosm experiment to get a better understanding of the nutrient cycling within and beneath a dense Azolla cover in both freshwater and brackish water environments. Here we show that Azolla is able to create a windproof, small-scale salinity gradient in brackish waters, which allows for efficient recycling of nutrients. We suggest that this mechanism ensures the maintenance of a large standing biomass in which additional input of nutrients ultimately result in a further expansion of an Azolla cover. As such, it may not only explain the extent of the Azolla event during the Eocene, but also the absence of intact vegetative Azolla remains and the relatively low burial efficiency of organic carbon during this interval.

  13. Micro-halocline enabled nutrient recycling may explain extreme Azolla event in the Eocene Arctic Ocean.

    Directory of Open Access Journals (Sweden)

    Monique M L van Kempen

    Full Text Available In order to understand the physicochemical mechanisms that could explain the massive growth of Azolla arctica in the Eocene Arctic Ocean, we carried out a laboratory experiment in which we studied the interacting effects of rain and wind on the development of salinity stratification, both in the presence and in the absence of a dense Azolla cover. Additionally, we carried out a mesocosm experiment to get a better understanding of the nutrient cycling within and beneath a dense Azolla cover in both freshwater and brackish water environments. Here we show that Azolla is able to create a windproof, small-scale salinity gradient in brackish waters, which allows for efficient recycling of nutrients. We suggest that this mechanism ensures the maintenance of a large standing biomass in which additional input of nutrients ultimately result in a further expansion of an Azolla cover. As such, it may not only explain the extent of the Azolla event during the Eocene, but also the absence of intact vegetative Azolla remains and the relatively low burial efficiency of organic carbon during this interval.

  14. Correlation between some mechanical and physical properties of polycrystalline graphites

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Fujisaki, Katsuo

    1982-01-01

    Mechanical and physical properties of polycrystalline graphites, tensile strength, compressive strength, flexural strength, Young's modulus, thermal expansion coefficient, electrical resistivity, volume fraction of porosity, and graphitisation were measured for ten brand graphites. Correlation between the mechanical and physical properties of the graphites were studied. Young's modulus and thermal expansion coefficient of the graphites depend on volume fraction of porosity. The Young's modulus of the graphites tended to increase with increasing the thermal expansion coefficient. For an anisotropic graphite, an interesting relationship between the Young's modulus E and the thermal expansion coefficient al pha was found in any specimen orientations; alpha E=constant. The value of alphah E was dependent upon the volume fraction of porosity. It should be noted here that the electrical resistivity increased with decreasing grain size. The flexural and the compressive strength were related with the volume fraction of porosity while the tensile strength was not, The relationships between the tensile, the compressive and the flexural strength can be approximately expressed as linear functions over a wide range of the stresses. (author)

  15. The δ expansion for stochastic quantization

    International Nuclear Information System (INIS)

    Bender, C.M.; Cooper, F.; Milton, K.A.; Department of Physics, Brown University, Providence, Rhode Island 02912; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexic o 87545; Department of Physics, The Ohio State University, Columbus, Ohio 43210; Department of Physics and Astronomy, University of Oklahoma, Norman, Oklaho ma 73019)

    1989-01-01

    Using a recently proposed perturbation expansion called the δ expansion, we show how to solve the Langevin equation associated with a gphi 4 field theory. We illustrate the technique in zero- and one-dimensional space-time, and then generalize this approach to d dimensions

  16. A meta-analysis of global urban land expansion.

    Science.gov (United States)

    Seto, Karen C; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km(2) from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km(2) and 12,568,000 km(2), with an estimate of 1,527,000 km(2) more likely.

  17. Thermal expansion and structural properties of (CuAlTe2)1-x(CuAlSe2)x solid solutions

    International Nuclear Information System (INIS)

    Korzun, B.V.; Fadzeyeva, A.A.; Bente, K.; Schmitz, W.; Schorr, S.

    2006-01-01

    Investigations of the thermal expansion of (CuAlTe 2 ) 1-x (CuAlSe 2 ) x solid solutions in the temperature range from 100 to 800 K have been carried out for the first time. It has been demonstrated that the thermal expansion coefficient α L grows considerably in the temperature range from 100 to 300 K, whereas the temperature dependence above 300 K is rather weak. The isotherms of composition dependence of the thermal expansion coefficient α L for 100, 293, 500 and 800 K were constructed, and it was found that linear relations could express them. The Debye temperatures θ D , the average mean-square dynamic displacements anti u 2 , the average root-mean-square amplitudes of thermal vibration RMS, the anion position parameter u using S. C. Abrahams and J. L. Bernstein (u AB ) and J. E. Jaffe and A. Zunger (u JZ ) models were calculated. The composition dependence of microhardness H using the phenomenological theory was also calculated, and it was discovered that this dependence has a non-linear character with a maximum of 383 kg/mm 2 at x=0.67. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Considering FACTS in Optimal Transmission Expansion Planning

    Directory of Open Access Journals (Sweden)

    K. Soleimani

    2017-10-01

    Full Text Available The expansion of power transmission systems is an important part of the expansion of power systems that requires enormous investment costs. Since the construction of new transmission lines is very expensive, it is necessary to choose the most efficient expansion plan that ensures system security with a minimal number of new lines. In this paper, the role of Flexible AC Transmission System (FACTS devices in the effective operation and expansion planning of transmission systems is examined. Effort was taken to implement a method based on sensitivity analysis to select the optimal number and location of FACTS devices, lines and other elements of the transmission system. Using this method, the transmission expansion plan for a 9 and a 39 bus power system was performed with and without the presence of FACTS with the use of DPL environment in Digsilent software 15.1. Results show that the use of these devices reduces the need for new transmission lines and minimizes the investment cost.

  19. Simulation program for multiple expansion Stirling machines

    International Nuclear Information System (INIS)

    Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.

    1992-01-01

    Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result

  20. Calculation of thermophysical properties of sodium

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1981-01-01

    The thermodynamic properties of sodium previously recommended by Padilla have been updated. As much as possible, the approach described by Padilla has been used. For sodium in the states of saturated liquid and vapor, subcooled liquid and superheated vapor, the following thermodynamic properties were determined: enthalpy, heat capacity (constant pressure and constant volume), pressure, density, thermal-expansion coefficient, and compressibility (adiabatic and isothermal). In addition to the above properties, thermodynamic properties including heat of fusion, heat of vaporization, surface tension, speed of sound and transport properties of themal conductivity, thermal diffusivity, emissivity, and viscosity were determined for saturated sodium

  1. Investigating the Relationship between Cerebrospinal Fluid and Magnetic Induction Phase Shift in Rabbit Intracerebral hematoma expansion Monitoring by MRI

    OpenAIRE

    Chen, Mingsheng; Yan, Qingguang; Sun, Jian; Jin, Gui; Qin, Mingxin

    2017-01-01

    In a prior study of intracerebral hemorrhage monitoring using magnetic induction phase shift (MIPS), we found that MIPS signal changes occurred prior to those seen with intracranial pressure. However, the characteristic MIPS alert is not yet fully explained. Combining the brain physiology and MIPS theory, we propose that cerebrospinal fluid (CSF) may be the primary factor that leads to hematoma expansion being alerted by MIPS earlier than with intracranial pressure monitoring. This paper inve...

  2. Dynamical properties of the Rabi model

    International Nuclear Information System (INIS)

    Hu, Binglu; Zhou, Huili; Chen, Shujie; Xianlong, Gao; Wang, Kelin

    2017-01-01

    We study the dynamical properties of the quantum Rabi model using a systematic expansion method. Based on the observation that the parity symmetry of the Rabi model is kept during evolution of the states, we decompose the initial state and the time-dependent one into positive and negative parity parts expanded by superposition of the coherent states. The evolutions of the corresponding positive and the negative parities are obtained, in which the expansion coefficients in the dynamical equations are known from the derived recurrence relation. (paper)

  3. Expansion due to the anaerobic corrosion of iron

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H. [Serco Assurance, Culham Science Centre (United Kingdom)

    2006-12-15

    . Initially, three cells were set up: two contained alternate carbon steel and copper discs, and the third, a control cell, consisted of alternate stainless steel and copper discs. A slight contraction of the control cell was observed but no expansion was measured in the carbon steel-copper cells. Analytical measurements showed that the corrosion products were magnetite and hydrogen, indicating that anaerobic corrosion was occurring. In a second series of experiments, one experiment was carried out in which carbon steel was replaced with cast iron and in a further experiment air was allowed to enter the test chamber. No expansion was detected in either of these additional experiments. However, expansion was detected when a separate stack of copper and steel washers was corroded in ambient atmospheric conditions under very small compressive loads, and subjected to a wet-dry cycle, demonstrating that the experimental technique was capable of detecting corrosion-induced expansion if it were occurring. In parallel with the stress cell experiments, coupons of mild steel and cast iron were corroded in anoxic, artificial groundwater at 50 deg C and 80 deg C for several months. The coupons were examined using atomic force microscopy (AFM) to determine the mechanical properties and the structure of the corrosion product films, and X-ray photoelectron spectroscopy (XPS) to identify the chemical composition of the film. The report presents Young's modulus, thickness and hardness data for the oxides, which were much more compliant than the magnetite films formed at high temperatures, probably because of their high water content. The report considers the application of the results to assessing the performance of the SKB canister in a repository situation.

  4. Expansion due to the anaerobic corrosion of iron

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H.

    2006-12-01

    , three cells were set up: two contained alternate carbon steel and copper discs, and the third, a control cell, consisted of alternate stainless steel and copper discs. A slight contraction of the control cell was observed but no expansion was measured in the carbon steel-copper cells. Analytical measurements showed that the corrosion products were magnetite and hydrogen, indicating that anaerobic corrosion was occurring. In a second series of experiments, one experiment was carried out in which carbon steel was replaced with cast iron and in a further experiment air was allowed to enter the test chamber. No expansion was detected in either of these additional experiments. However, expansion was detected when a separate stack of copper and steel washers was corroded in ambient atmospheric conditions under very small compressive loads, and subjected to a wet-dry cycle, demonstrating that the experimental technique was capable of detecting corrosion-induced expansion if it were occurring. In parallel with the stress cell experiments, coupons of mild steel and cast iron were corroded in anoxic, artificial groundwater at 50 deg C and 80 deg C for several months. The coupons were examined using atomic force microscopy (AFM) to determine the mechanical properties and the structure of the corrosion product films, and X-ray photoelectron spectroscopy (XPS) to identify the chemical composition of the film. The report presents Young's modulus, thickness and hardness data for the oxides, which were much more compliant than the magnetite films formed at high temperatures, probably because of their high water content. The report considers the application of the results to assessing the performance of the SKB canister in a repository situation

  5. Controlling Thermal Expansion: A Metal-Organic Frameworks Route.

    Science.gov (United States)

    Balestra, Salvador R G; Bueno-Perez, Rocio; Hamad, Said; Dubbeldam, David; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-11-22

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal-organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host-guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion.

  6. The Economic Impact of Medicaid Expansion on Pennsylvania.

    Science.gov (United States)

    Price, Carter C; Donohue, Julie M; Saltzman, Evan; Woods, Dulani; Eibner, Christine

    2013-01-01

    The Affordable Care Act is a substantial reform of the U.S. health care insurance system. Using the RAND COMPARE model, researchers assessed the act's potential economic effects on Pennsylvania, factoring in an optional expansion of Medicaid, and found the state would enjoy significant net benefits. With or without the expansion of Medicaid, the act will increase insurance coverage to hundreds of thousands of Pennsylvanians, but the COMPARE model estimates that the expansion of Medicaid eligibility would cover an additional 350,000 people and bring more than $2 billion in federal spending into the state annually than if the state did not expand. Should the state expand Medicaid, the additional spending will add more than $3 billion a year to the state's GDP and support 35,000 jobs. But Medicaid expansion is not without cost for the state; the estimated cumulative effect on Pennsylvania's Medicaid spending will be $180 million higher with the expansion than without between 2014 and 2020. Substantial reductions in uncompensated care costs for hospitals are possible even without expansion, but savings to hospitals for uncompensated care funding are even larger with the Medicaid expansion, amounting to $550 million or more each year.

  7. Controlling Thermal Expansion: A Metal–Organic Frameworks Route

    Science.gov (United States)

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal–organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host–guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion. PMID:28190918

  8. Platform Expansion Design as Strategic Choice

    DEFF Research Database (Denmark)

    Staykova, Kalina S.; Damsgaard, Jan

    2016-01-01

    In this paper, we address how the strategic choice of platform expansion design impacts the subse-quent platform strategy. We identify two distinct approaches to platform expansion – platform bun-dling and platform constellations, which currently co-exist. The purpose of this paper is to outline...

  9. Thermal expansion behavior in fabricated cellular structures

    International Nuclear Information System (INIS)

    Oruganti, R.K.; Ghosh, A.K.; Mazumder, J.

    2004-01-01

    Thermal expansion behavior of cellular structures is of interest in applications where undesirable deformation and failure are caused by thermal expansion mismatch. This report describes the role of processing-induced effects and metallurgical aspects of melt-processed cellular structures, such as a bi-material structure designed to contract on heating, as well as uni-material structures of regular and stochastic topology. This bi-material structure utilized the principle of internal geometric constraints to alter the expansion behavior of the internal ligaments to create overall contraction of the structure. Homogenization design method was used to design the structure, and fabrication was by direct metal deposition by laser melting of powder in another part of a joint effort. The degree of porosity and grain size in the fabricated structure are characterized and related to the laser deposition parameters. The structure was found to contract upon heating over a short range of temperature subsequent to which normal expansion ensued. Also examined in this report are uni-material cellular structures, in which internal constraints arise from residual stress variations caused by the fabrication process, and thereby alter their expansion characteristics. A simple analysis of thermal strain of this material supports the observed thermal expansion behavior

  10. Secret-key expansion from covert communication

    Science.gov (United States)

    Arrazola, Juan Miguel; Amiri, Ryan

    2018-02-01

    Covert communication allows the transmission of messages in such a way that it is not possible for adversaries to detect that the communication is occurring. This provides protection in situations where knowledge that two parties are talking to each other may be incriminating to them. In this work, we study how covert communication can be used for a different purpose: secret key expansion. First, we show that any message transmitted in a secure covert protocol is also secret and therefore unknown to an adversary. We then propose a covert communication protocol where the amount of key consumed in the protocol is smaller than the transmitted key, thus leading to secure secret key expansion. We derive precise conditions for secret key expansion to occur, showing that it is possible when there are sufficiently low levels of noise for a given security level. We conclude by examining how secret key expansion from covert communication can be performed in a computational security model.

  11. Physical and functional properties of arrowroot starch extrudates.

    Science.gov (United States)

    Jyothi, A N; Sheriff, J T; Sajeev, M S

    2009-03-01

    Arrowroot starch, a commercially underexploited tuber starch but having potential digestive and medicinal properties, has been subjected to extrusion cooking using a single screw food extruder. Different levels of feed moisture (12%, 14%, and 16%) and extrusion temperatures (140, 150, 160, 170, 180, and 190 degrees C) were used for extrusion. The physical properties--bulk density, true density, porosity, and expansion ratio; functional properties such as water absorption index, water solubility index, oil absorption index, pasting, rheological, and textural properties; and in vitro enzyme digestibility of the extrudates were determined. The expansion ratio of the extrudates ranged from 3.22 to 6.09. The water absorption index (6.52 to 8.85 g gel/g dry sample), water solubility index (15.92% to 41.31%), and oil absorption index (0.50 to 1.70 g/g) were higher for the extrudates in comparison to native starch (1.81 g gel/g dry sample, 1.16% and 0.60 g/g, respectively). The rheological properties, storage modulus, and loss modulus of the gelatinized powdered extrudates were significantly lower (P extruded at higher feed moisture and lower extrusion temperature, whereas snap force and energy were higher at lower feed moisture and temperature. There was a significant decrease in the percentage digestibility of arrowroot starch (30.07% after 30 min of incubation with the enzyme) after extrusion (25.27% to 30.56%). Extrusion cooking of arrowroot starch resulted in products with very good expansion, color, and lower digestibility, which can be exploited for its potential use as a snack food.

  12. RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility

    Directory of Open Access Journals (Sweden)

    Aisling Frizzell

    2014-03-01

    Full Text Available Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG repeat expansions and fragility, likely by unwinding problematic hairpins.

  13. Thermal expansion studies on Hafnium titanate (HfTiO4)

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Subramanian, G.G.S.; Antony, M.P.

    2006-01-01

    The lattice thermal expansion characteristics of hafnium titanate (HfTiO 4 ) have been studied by measuring the lattice parameter as a function of temperature by high temperature X-ray diffraction technique (HT-XRD) in the temperature range 298-1973K. Percentage linear thermal expansion and mean linear thermal expansion coefficients were computed from the lattice parameter data. The thermal expansion of HfTiO 4 is highly anisotropic. The expansivity along 'a' axis is large; as compared to the expansivity along 'b' axis which is negative below 1073 K. The percentage linear thermal expansion in the temperature range 298-1973 K along a, b and c axis are 2.74, 0.901 and 1.49 respectively. Thermal expansion values obtained in the present study are in reasonable agreement with the existing thermal expansion data. (author)

  14. Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides

    International Nuclear Information System (INIS)

    Takahashi, H.; Kasuya, T.

    1985-01-01

    The indirect f-f-interaction derived from fourth-order perturbation theory with respect to the p-f mixing is calculated using the valence bands obtained by the APW band calculations. The type of the f-f-interactions is described as the coupling through the symmetry exchange under the cubic crystal field, which cannot be written as a simple bilinear type of 4f spin operator. It is necessary to consider the short-range-ordering effect as well as the non-linear effect of the p-f mixing to explain the fact that a type-I antiferromagnetic ordering is established by the second-order transition in CeBi. (author)

  15. Hypersonic expansion of the Fokker--Planck equation

    International Nuclear Information System (INIS)

    Fernandez-Feria, R.

    1989-01-01

    A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order

  16. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  17. The propagator for the step potential and delta function potential using the path decomposition expansion

    Energy Technology Data Exchange (ETDEWEB)

    Yearsley, James M [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2008-07-18

    We present a derivation of the propagator for a particle in the presence of the step and delta function potentials. These propagators are known, but we present a direct path integral derivation, based on the path decomposition expansion and the Brownian motion definition of the path integral. The derivation exploits properties of the Catalan numbers, which enumerate certain classes of lattice paths.

  18. 12 CFR 23.4 - Investment in personal property.

    Science.gov (United States)

    2010-01-01

    ... this section, if: (1) The acquisition of the property is consistent with the leasing business then conducted by the bank or is consistent with a business plan for expansion of the bank's existing leasing business or for entry into the leasing business; and (2) The bank's aggregate investment in property held...

  19. Quantum Coherent States and Path Integral Method to Stochastically Determine the Anisotropic Volume Expansion in Lithiated Silicon Nanowires

    Directory of Open Access Journals (Sweden)

    Donald C. Boone

    2017-10-01

    Full Text Available This computational research study will analyze the multi-physics of lithium ion insertion into a silicon nanowire in an attempt to explain the electrochemical kinetics at the nanoscale and quantum level. The electron coherent states and a quantum field version of photon density waves will be the joining theories that will explain the electron-photon interaction within the lithium-silicon lattice structure. These two quantum particles will be responsible for the photon absorption rate of silicon atoms that are hypothesized to be the leading cause of breaking diatomic silicon covalent bonds that ultimately leads to volume expansion. It will be demonstrated through the combination of Maxwell stress tensor, optical amplification and path integrals that a stochastic analyze using a variety of Poisson distributions that the anisotropic expansion rates in the <110>, <111> and <112> orthogonal directions confirms the findings ascertained in previous works made by other research groups. The computational findings presented in this work are similar to those which were discovered experimentally using transmission electron microscopy (TEM and simulation models that used density functional theory (DFT and molecular dynamics (MD. The refractive index and electric susceptibility parameters of lithiated silicon are interwoven in the first principle theoretical equations and appears frequently throughout this research presentation, which should serve to demonstrate the importance of these parameters in the understanding of this component in lithium ion batteries.

  20. 14 CFR 23.969 - Fuel tank expansion space.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  1. Structure and properties of TeO2-WO3 system glasses

    International Nuclear Information System (INIS)

    Kolobkov, V.P.; Ovcharenko, N.V.; Morozova, I.N.; Chebotarev, S.A.; Chikovskij, A.N.; Arkatova, T.G.

    1987-01-01

    Study of TeO 2 -WO 3 system is of interest for production of high-refractive-glasses with comparatively low crystallizability. Results of investigating some properties and structural features of this system glasses are presented. Composition and properties of studied glasses are presented. The properties were studied using the following techniques: the density was measured by hydrostatic weighing in toluene; thermal expansion coefficient was measured in quartz dilatometer DKV-5A; dilatometric temperature of glass softening (T g ) was defined as an intersection point of linear and curved parts of the plot of thermal expansion coefficient; refractive index (RI) - by immersion method; dielectric properties are measured. Consideration of vibronic spectra permits to conclude that in tungsten-tellurium glasses rare earth activator ions are arranged near tellurite and tungstate groupings proportional to glass-forming component content

  2. Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer - Sized SiO2 Particle - Reinforced Epoxy Composites

    International Nuclear Information System (INIS)

    Jo, Hyu Sang; Kang, Hee Yong; Lee, Gyo Woo

    2015-01-01

    In this experimental study, the thermal stability values of micrometer-sized silica particle-reinforced epoxy composite specimens were evaluated by measuring their thermal expansion coefficients and Young's moduli. For all specimens used in this study (from the baseline specimen to that containing 70 wt% silica filler), the thermal expansion coefficients and Young's moduli were gradually reduced down to 25% and increased up to 51%, respectively. The results of the experiment were compared with those of certain empirical models. The experimental results of the measurement of thermal expansion coefficients corresponded well with those of Kerner's model, which considers the bulk and shear moduli of the matrix and silica filler. However, the results of the measurement of Young's moduli using the empirical Mori-Tanaka model were observed to match better with those of the experiment. The comparison of the results of the experiment with those of the empirical models demonstrated that a reliable model for measuring the thermal expansion coefficients and Young's moduli of composite specimens needs to consider certain property variations in the composites in addition to volume fraction changes in the filler and matrix

  3. Effects of superplastic deformations on thermophysical properties of tetragonal zirconia polycrystals

    International Nuclear Information System (INIS)

    Motohashi, Y.; Wan, C.; Sakuma, T.; Harjo, S.; Shibata, T.; Ishihara, M.; Baba, S.; Hoshiya, T.

    2004-01-01

    Neutron irradiation studies on superplastic zirconia-based ceramics are now in progress as an innovative basic project using the High-temperature Engineering Test Reactor (HTTR) in Japan. The characteristics of the zirconia-based engineering components, made through the formation of superplastic, may be strongly affected by their response to transient or steady-state heat flow. Reliable thermophysical properties such as the coefficients of thermal expansion and thermal conductivity are, therefore, needed to estimate and predict the influence of a high-temperature environment. Accordingly, one of this project's targets is to study the thermophysical properties of superplastic zirconia-based ceramics. The first stage of the research addresses the effects of superplastic deformations on the thermophysical properties of a typical superplastic ceramic, 3 mol% yttria-stabilised tetragonal zirconia polycrystals (3Y-TZP), in its un-irradiated state. First, superplastic tensile deformations were conducted on 3Y-TZP specimens under different conditions in order to obtain specimens with different microstructural characteristics. Afterwards, the following actions were taken: - Specific heat measurements were conducted on the specimens at temperatures ranging from 473 K to 1273 K. - The thermal diffusivity was measured using a laser flash method. The thermal conductivity was then calculated from the measured thermal diffusivity, specific heat and density. - The linear thermal expansion was measured by a push-rod type dilatometer from 300 K to 1473 K. The coefficient of linear thermal expansion (CTE) was estimated from the thermal expansion data. The results obtained from the above measurements are discussed, as is the microstructural evolution caused by the superplastic deformations. It was found that the specific heat was almost independent of microstructural evolution, whereas the thermal diffusivity, thermal conductivity and thermal expansion were quite sensitive to

  4. Principles of Thermal Expansion in Feldspars

    Science.gov (United States)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  5. Zirconium titanate: stability and thermal expansion; Titanato de circonio: estabilidad termodinamica y expansion termica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, E.; Moreno, R.; Baudin, C.

    2011-07-01

    Zirconium titanate is a well known compound in the field of electro ceramics, although it has also been used in catalyst and sensors applications. The crystallographic thermal expansion anisotropy of this compound makes it a potential candidate as constituent of structural components. In general, to assure the structural integrity and microstructural homogeneity of a ceramic piece, relatively low cooling rates from the fabrication temperature are required. This requirement is essential for zirconium titanate because thermal expansion as well as phase distribution is affected by small variations in the composition and cooling rate. This work reviews the available data on the phase equilibrium relationships in the systems ZrO{sub 2}-TiO{sub 2} and ZrO{sub 2}-TiO{sub 2}-Y{sub 2}O{sub 3}. The main discrepancies as well as the possible origins of them are discussed. Additionally, the crystallographic thermal expansion data in the current literature are reviewed. (Author) 56 refs.

  6. Semiclassical expansions on and near caustics

    International Nuclear Information System (INIS)

    Meetz, K.

    1984-09-01

    We show that the standard WKB expansion can be generalized so that it reproduces the behavior of the wave function on and near a caustic in two-dimensional space time. The expansion is related to the unfolding polynomials of the elementary catastrophes occurring in two dimensions: the fold and the cusp catastrophe. The method determines control parameters and transport coefficients in a self-consistent way from differential equations and does not refer to the asymptotic expansion of Feynman path integrals. The lowest order equations are solved explicitly in terms of the multivalued classical action. The result is a generalized semiclassical approximation on and beyond a caustic. (orig.)

  7. Cosmic growth history and expansion history

    International Nuclear Information System (INIS)

    Linder, Eric V.

    2005-01-01

    The cosmic expansion history tests the dynamics of the global evolution of the universe and its energy density contents, while the cosmic growth history tests the evolution of the inhomogeneous part of the energy density. Precision comparison of the two histories can distinguish the nature of the physics responsible for the accelerating cosmic expansion: an additional smooth component--dark energy--or a modification of the gravitational field equations. With the aid of a new fitting formula for linear perturbation growth accurate to 0.05%-0.2%, we separate out the growth dependence on the expansion history and introduce a new growth index parameter γ that quantifies the gravitational modification

  8. Correlation expansion: a powerful alternative multiple scattering calculation method

    International Nuclear Information System (INIS)

    Zhao Haifeng; Wu Ziyu; Sebilleau, Didier

    2008-01-01

    We introduce a powerful alternative expansion method to perform multiple scattering calculations. In contrast to standard MS series expansion, where the scattering contributions are grouped in terms of scattering order and may diverge in the low energy region, this expansion, called correlation expansion, partitions the scattering process into contributions from different small atom groups and converges at all energies. It converges faster than MS series expansion when the latter is convergent. Furthermore, it takes less memory than the full MS method so it can be used in the near edge region without any divergence problem, even for large clusters. The correlation expansion framework we derive here is very general and can serve to calculate all the elements of the scattering path operator matrix. Photoelectron diffraction calculations in a cluster containing 23 atoms are presented to test the method and compare it to full MS and standard MS series expansion

  9. Treatment of divergent expansions in scattering theory

    International Nuclear Information System (INIS)

    Gersten, A.; Malin, S.

    1978-01-01

    One of the biggest obstacles in applying quantum field theory to realistic scattering problems are the divergencies of pertubation expansions for large coupling constants and the divergencies of partial wave expansions for massless particles exchanges. There exist, however, methods of summation of the divergent expansions which can lead to significant application in physics. In this paper we treat the problem of summing such expansions using three methods: (i) a generalization of the Pade approximation to the multivariable case. The suggested definition is unique and preserves unitarity. (ii) The summation of divergent partial waves for arbitrary spins. (iii) A successful application of a series inversion to the 3 P 1 nucleon-nucleon phase shift up to 200 MeV. (orig./WL) [de

  10. The loop expansion as a divergent-power-series expansion

    International Nuclear Information System (INIS)

    Murai, N.

    1981-01-01

    The loop expansion should be divergent, possibly an asymptotic one, in the Euclidean path integral formulation. This consideration is important in applications of the symmetric and mass-independent renormalization. The [1,1] Pade approximant is calculated in a PHI 4 model. Its classical vacua may be not truely stable for nonzero coupling constant. (author)

  11. The heavy quark expansion of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Falk, A.F. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy

    1997-06-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs.

  12. The heavy quark expansion of QCD

    International Nuclear Information System (INIS)

    Falk, A.F.

    1997-01-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs

  13. Thermal expansion of doped lanthanum gallates

    Indian Academy of Sciences (India)

    Administrator

    Since the components are in intimate mechanical contact, any stress generated due to their thermal expansion mis- match during thermal cycling could lead to catastrophic failure of the cell. The functional materials must have similar thermal expansions to avoid mechanical stresses. Hence it is useful to study the thermal ...

  14. Thermal and hygroscopic expansion characteristics of bamboo

    OpenAIRE

    Huang, Puxi; Chang, Wen-shao; Ansell, Martin P.; Bowen, Chris R.; Chew, John Y. M.; Adamak, Vana i

    2017-01-01

    The expansion and contraction of bamboo caused by temperature and moisture variations must be evaluated\\ud if bamboo is to be utilised as a building material. However, detailed expansion data, especially data in the ascent and\\ud descent processes of temperature and moisture are unexplored. The aim of this study is to investigate the expansion\\ud characteristics of Phyllostachys edulis (Moso bamboo) in ascent and descent processes of temperature and moisture.\\ud The measurement of linear ther...

  15. Semiclassical expansions for confined N fermion systems

    International Nuclear Information System (INIS)

    Krivine, H.; Martorell, J.; Casas, M.

    1989-01-01

    A new derivation of the Wigner Kirkwood expansion for N-fermion systems is presented, showing explicitly the connection to the WKB approximation for a single level. This allows to study separately the two ansatz required to obtain the semiclassical expansions: the asymptotic expansions in powers of ℎ and the smoothing of quantal effects. We discuss the one dimensional and three dimensional, with spherical symmetry, cases. Applications for standard potentials used in nuclear physics are described in detail

  16. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion

    Science.gov (United States)

    Smit, Hans Harmen; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700

  17. Mechanism of actuation in conducting polymers: Osmotic expansion

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben; West, Keld

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion...... is compared with measurements on PPy(DBS) films. The experiments show that the expansion decreases as the electrolyte concentration is increased. This means that a considerable part of the total expansion is due to the osmotic effect. The osmotic effect should be taken into account when interpreting...

  18. The expansion of intensive agriculture and ranching in Brazilian Amazonia

    Science.gov (United States)

    Walker, Robert; DeFries, Ruth; del Carmen Vera-Diaz, Maria; Shimabukuro, Yosio; Venturieri, Adriano

    Agriculture in Amazonia has often provoked controversy, given the tremendous ecological value of the region's environment. First with ranching, and now with the soybean boom, tractors and cattle have marched across lands that for millennia supported only closed moist forest, resident ecosystems, and dispersed indigenous peoples. The present chapter considers this expansion, focusing on the Brazilian portion of the basin. Its premise is that effective Amazonian policy must be grounded on an understanding of the region's agriculture. The chapter pursues its objectives by first addressing the development initiatives that created the preconditions for Amazonia's current agricultural economy. The region is remote and has therefore required sustained government intervention to release its potential. The policy discussion is followed by descriptions of cattle ranching and soy farming. For each, market settings and trajectories of expansion are presented. Although these sectoral descriptions are data rich, they do not provide a conceptual framework for analyzing the environmental impacts of evolving market conditions. To accomplish this, the chapter invokes the classical land use model of von Thünen to explain Amazonian land cover dynamics in relation to soy-cattle linkages. It addresses these dynamics with remote sensing data from Mato Grosso, Pará, and Rondônia, and then discusses scenarios of agricultural advances on the forest. Conclusions follow, considering possible policy responses to deforestation, and the social context of agricultural intensification, with special attention to the issues of land tenure security and distributional equity.

  19. Mapping Brazilian Cropland Expansion, 2000-2013

    Science.gov (United States)

    Zalles, V.; Hansen, M.; Potapov, P.

    2016-12-01

    Brazil is one of the world's leading producers and exporters of agricultural goods. Despite undergoing significant increases in its cropland area in the last decades, it remains one of the countries with the most potential for further agricultural expansion. Most notably, the expansion in production areas of commodity crops such as soybean, corn, and sugarcane has become the leading cause of land cover conversion in Brazil. Natural land covers, such as the Amazon and Cerrado forests, have been negatively affected by this agricultural expansion, causing carbon emissions, biodiversity loss, altered water cycles, and many other disturbances to ecosystem services. Monitoring of change in cropland area extent can provide relevant information to decision makers seeking to understand and manage land cover change drivers and their impacts. In this study, the freely-available Landsat archive was leveraged to produce a large-scale, methodologically consistent map of cropland cover at 30 m. resolution for the entire Brazilian territory in the year 2000. Additionally, we mapped cropland expansion from 2000 to 2013, and used statistical sampling techniques to accurately estimate cropland area per Brazilian state. Using the Global Forest Change product produced by Hansen et al. (2013), we can disaggregate forest cover loss due to cropland expansion by year, revealing spatiotemporal trends that could advance our understanding of the drivers of forest loss.

  20. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids

    International Nuclear Information System (INIS)

    Sai Venkata Ramana, A.

    2014-01-01

    The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids

  1. Structure of large spin expansion of anomalous dimensions at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, M. [Physics Department, Salento University and INFN, 73100 Lecce (Italy)], E-mail: matteo.beccaria@le.infn.it; Forini, V. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany)], E-mail: forini@aei.mpg.de; Tirziu, A. [Department of Physics, Purdue University, W. Lafayette, IN 47907-2036 (United States)], E-mail: atirziu@purdue.edu; Tseytlin, A.A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)], E-mail: tseytlin@imperial.ac.uk

    2009-05-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr({phi}D{sub +}{sup S}{phi}) expanded in large spin S have the asymptotics {gamma}=flnS+f{sub c}+1/S (f{sub 11}lnS+f{sub 10})+..., where f (the universal scaling function or cusp anomaly), f{sub c} and f{sub mn} are given by power series in the 't Hooft coupling {lambda}. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing {gamma} in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS{sub 5}. The large spin expansion of the classical string energy happens to have exactly the same structure as that of {gamma} in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f{sub c}, f{sub 11}, f{sub 10} and verify the functional/reciprocity relations at subleading 1/({radical}({lambda})) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions.

  2. Elastic anisotropy and low-temperature thermal expansion in the shape memory alloy Cu-Al-Zn.

    Science.gov (United States)

    Kuruvilla, Santhosh Potharay; Menon, C S

    2008-04-01

    Cu-based shape memory alloys are known for their technologically important pseudo-elastic and shapememory properties, which are intimately associated with the martensitic transformation. A combination of deformation theory and finite-strain elasticity theory has been employed to arrive at the expressions for higher order elastic constants of Cu-Al-Zn based on Keating's approach. The second- and third-order elastic constants are in good agreement with the measurements. The aggregate elastic properties like bulk modulus, pressure derivatives, mode Grüneisen parameters of the elastic waves, low temperature limit of thermal expansion, and the Anderson-Grüneisen parameter are also presented.

  3. Electrical properties and thermal expansion of strontium aluminates

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchuk, K.V. [Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Yaremchenko, A.A., E-mail: ayaremchenko@ua.pt [Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Fagg, D.P. [TEMA-NRD, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2014-11-15

    Highlights: • Sr{sub 3}Al{sub 2}O{sub 6}, SrAl{sub 2}O{sub 4} and Sr{sub 4}Al{sub 14}O{sub 25} ceramics are semiconductors. • Electrical conductivity is as low as 10{sup −6}−4×10{sup −5} S/cm at 1273 K in dry air. • SrAl{sub 2}O{sub 4} is a mixed conductor with predominant ionic conductivity. • Sr{sub 3}Al{sub 2}O{sub 6} shows significant contribution of protonic transport in wet atmospheres. • Average TECs vary in the range (8.5–11.1)×10{sup −6} K{sup −1} and are p(O{sub 2})-independent. - Abstract: Strontium aluminate ceramics, including Sr{sub 3}Al{sub 2}O{sub 6}, SrAl{sub 2}O{sub 4} and Sr{sub 4}Al{sub 14}O{sub 25}, synthesized by glycine–nitrate combustion and sintered at 1773 K in air, were characterized by thermal analysis, dilatometry and electrical measurements in controlled atmospheres. All studied strontium aluminates are semiconductors with electrical conductivities as low as 10{sup −6}−4×10{sup −5} S/cm at 1273 K in dry air. Electrical measurements in controlled atmospheres in combination with ion transference number determination demonstrated that SrAl{sub 2}O{sub 4} is a mixed conductor with predominant ionic conductivity and increasing n-type and p-type electronic contributions under highly reducing and oxidizing conditions, respectively. While the behavior of electrical conductivity of Sr{sub 3}Al{sub 2}O{sub 6} in dry atmospheres was qualitatively similar to that of SrAl{sub 2}O{sub 4}, a significant increase of conductivity in wet atmospheres was attributed to a protonic contribution to electrical conduction, in correlation with thermogravimetric data and the tendency of this material to form a hydrogarnet at low temperatures. The average thermal expansion coefficients of strontium aluminates, (8.5–11.1)×10{sup −6} K{sup −1} at 333–1373 K, increase with increasing strontium content in the sequence Sr{sub 4}Al{sub 14}O{sub 25} < SrAl{sub 2}O{sub 4} < Sr{sub 3}Al{sub 2}O{sub 6} and are essentially

  4. Nanoscale Electromechanics To Measure Thermal Conductivity, Expansion, and Interfacial Losses.

    Science.gov (United States)

    Mathew, John P; Patel, Raj; Borah, Abhinandan; Maliakkal, Carina B; Abhilash, T S; Deshmukh, Mandar M

    2015-11-11

    We study the effect of localized Joule heating on the mechanical properties of doubly clamped nanowires under tensile stress. Local heating results in systematic variation of the resonant frequency; these frequency changes result from thermal stresses that depend on temperature dependent thermal conductivity and expansion coefficient. The change in sign of the linear expansion coefficient of InAs is reflected in the resonant response of the system near a bath temperature of 20 K. Using finite element simulations to model the experimentally observed frequency shifts, we show that the thermal conductivity of a nanowire can be approximated in the 10-60 K temperature range by the empirical form κ = bT W/mK, where the value of b for a nanowire was found to be b = 0.035 W/mK(2), significantly lower than bulk values. Also, local heating allows us to independently vary the temperature of the nanowire relative to the clamping points pinned to the bath temperature. We suggest a loss mechanism (dissipation ~10(-4)-10(-5)) originating from the interfacial clamping losses between the metal and the semiconductor nanostructure.

  5. Reduction of Discrete-Frequency Fan Noise Using Slitlike Expansion Chambers

    Directory of Open Access Journals (Sweden)

    Akira Sadamoto

    2003-01-01

    Full Text Available As is generally known, discrete-frequency noises are radiated from fans due to rotor-stator interaction. Their fundamental frequency is the blade-passage frequency, which is determined by the number of rotor blades and their rotating speeds. To reduce such noises, several types of silencers have been designed. Among them, the authors noted a slitlike expansion chamber (hereafter referred to as slit, for simplicity and have studied its performance. A slit is a simple expansion chamber with a very short axial length that is placed in a duct. A slit with a circular cross-section that is concentric with a circular duct may be studied using the same interpretation as is used for a side-branch resonator muffler (closed-end tube connected to a duct; that is, the resonant frequency of a slit depends on its depth (with an open-end correction. It is expected, hence, that a slit might be applicable as a simple and axially compact silencer that is effective on discrete-frequency noises. In this article, the properties of a slit are introduced, and the applicability of a slit to actual rotating machinery is described using experimental data.

  6. About peculiarities of application of the method of fast expansions in the solution of the Navier-Stokes equations

    Directory of Open Access Journals (Sweden)

    A. D. Chernyshov

    2017-01-01

    Full Text Available The brief presentation of the method of fast expansions is given to solve nonlinear differential equations. Application  rules of the operator of fast expansions are specified for solving differential equations. According to the method of fast expansions, an unknown function can be represented as the sum of the boundary function and Fourier series sines and cosines for one variable. The special construction of the boundary functions leads to reasonably fast convergence of the Fourier series, so that for engineering calculations, it is sufficient to consider only the first three members. The method is applicable both to linear and nonlinear integro-differential systems. By means of applying the method of fast expansions to nonlinear Navier-Stokes equations the problem is reduced to a closed system of ordinary differential equations, which solution doesn't represent special difficulties. We can reapply the method of fast expansions to the resulting system of differential equations and reduce the original problem to a system of algebraic equations. If the problem is n-dimensional, then after n-fold application of the method of fast expansions the problem will be reduced to a closed algebraic system. Finally, we obtain an analytic-form solution of complicated boundary value problem in partial derivatives. The flow of an incompressible viscous fluid of Navier–Stokes is considered in a curvilinear pipe. The problem is reduced to solving a closed system of ordinary differential equations with boundary conditions by the method of fast expansions. The article considers peculiarities of finding the coefficients of boundary functions and Fourier coefficients for the zero-order and first-order operators of fast expansions. Obtaining the analytic-form solution is of great interest, because it allows to analyze and to investigate the influence of various factors on the properties of the viscous fluid in specific cases.

  7. Estimates of expansion time scales

    International Nuclear Information System (INIS)

    Jones, E.M.

    1979-01-01

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure

  8. Strategic Complexity and Global Expansion

    DEFF Research Database (Denmark)

    Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina

    2012-01-01

    The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....

  9. Range expansion of heterogeneous populations.

    Science.gov (United States)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  10. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds.

    Science.gov (United States)

    Huang, Rongjin; Liu, Yanying; Fan, Wei; Tan, Jie; Xiao, Furen; Qian, Lihe; Li, Laifeng

    2013-08-07

    La(Fe, Si)13-based compounds are well-known magnetocaloric materials, which show a pronounced negative thermal expansion (NTE) around the Curie temperature but have not been considered as NTE materials for industrial applications. The NaZn13-type LaFe13-xSix and LaFe11.5-xCoxSi1.5 compounds were synthesized, and their linear NTE properties were investigated. By optimizing the chemical composition, the sharp volume change in La(Fe, Si)13-based compounds was successfully modified into continuous expansion. By increasing the amount of Co dopant in LaFe11.5-xCoxSi1.5, the NTE shifts toward a higher temperature region, and also the NTE operation-temperature window becomes broader. Typically, the linear NTE coefficient identified in the LaFe10.5Co1.0Si1.5 compound reaches as much as -26.1 × 10(-6) K(-1), with an operation-temperature window of 110 K from 240 to 350 K, which includes room temperature. Such control of the specific composition and the NTE properties of La(Fe, Si)13-based compounds suggests their potential application as NTE materials.

  11. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  12. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  13. RTEL1 inhibits trinucleotide repeat expansions and fragility.

    Science.gov (United States)

    Frizzell, Aisling; Nguyen, Jennifer H G; Petalcorin, Mark I R; Turner, Katherine D; Boulton, Simon J; Freudenreich, Catherine H; Lahue, Robert S

    2014-03-13

    Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Selected properties of the potato snacks expanded in the microwave radiation

    Directory of Open Access Journals (Sweden)

    Mitrus Marcin

    2018-01-01

    Full Text Available The results of measurements of the selected properties of the extruded potato pellets and snacks expanded in the microwave field are presented in the paper. The potato pellets with the addition of the baking soda were prepared with a single screw extruder TS-45. The snacks were obtained by pellets expansion in a conventional microwave oven. The expansion index and the hardness of the pellets and the snacks, as well as, the texture properties of the snacks were evaluated during this study. The results showed that baking soda addition reduced the potato pellet expansion during their extrusion. This was an effect of a smaller thickness of the obtained pellets. The addition of baking soda had positive influence on potato snacks expansion in microwave radiation. The higher content of the soda additive resulted in lower hardness of pellets during cutting tests. The opposite effect was observed during texture measurements of the snacks. The addition of baking soda increased hardness of the expanded snacks. Soda addition lowers crispness and fragilityof the potato snacks expanded in the microwave radiation.

  15. Device Design and Test of Fatigue Behaviour of Expansion Anchor Subjected to Tensile Loads

    Directory of Open Access Journals (Sweden)

    Zhang Jinfeng

    2016-01-01

    Full Text Available In order to study on the fatigue behaviour of expansion anchor (M16, grade 8.8 for overhead contact system in electrification railways, a set of safe, practical loading device is designed and a fatigue test campaign was carried out at structural laboratory of China Academy of Building Research on expansion anchor embedded in concrete block. The mobile frame of the loading device was designed well by finite-element simulation. According to some fatigue performance test of expansion anchor with different size and form, the device have been assessed experimentally its dependability. The results were found that no fatigue damage phenomenon occurred in all specimens after 2×106 cycles tensile fatigue test in this specific series. It shows that in the condition of medium level or slightly lower maximum stress limit and nominal stress range, expansion bolt has good fatigue resistance. The biggest relative displacement and the residual relative displacement after test (Δδ = δ2-δ1 was also strongly lower than the symbol of the fatigue test failure index of this specific series (0.5mm in the high cycle fatigue regime. The ultimate tension failures mode after fatigue tests in all tested samples take place in the concrete anchorage zone. The reduction range of the ultimate tensile strength properties of the anchorage system was not obvious, and the concrete was seen to be the weakest link of the system.

  16. Longitudinal expansion of field line dipolarization

    Science.gov (United States)

    Saka, O.; Hayashi, K.

    2017-11-01

    We examine the substorm expansions that started at 1155 UT 10 August 1994 in the midnight sector focusing on the longitudinal (eastward) expansion of field line dipolarization in the auroral zone. Eastward expansion of the dipolarization region was observed in all of the H, D, and Z components. The dipolarization that started at 1155 UT (0027 MLT) from 260° of geomagnetic longitude (CMO) expanded to 351°(PBQ) in about 48 min. The expansion velocity was 0.03-0.04°/s, or 1.9 km/s at 62°N of geomagnetic latitude. The dipolarization region expanding to the east was accompanied by a bipolar event at the leading edge of the expansion in latitudes equatorward of the westward electrojet (WEJ). In the midnight sector at the onset meridian, the Magnetospheric Plasma Analyzer (MAP) on board geosynchronous satellite L9 measured electrons and ions between 10 eV and 40 keV. We conclude from the satellite observations that this dipolarization was characterized by the evolution of temperature anisotropies, an increase of the electron and ion temperatures, and a rapid change in the symmetry axis of the temperature tensor. The field line dipolarization and its longitudinal expansion were interpreted in terms of the slow MHD mode triggered by the current disruption. We propose a new magnetosphere-ionosphere coupling (MI-coupling) mechanism based on the scenario that transmitted westward electric fields from the magnetosphere in association with expanding dipolarization produced electrostatic potential (negative) in the ionosphere through differences in the mobility of collisional ions and collisionless electrons. The field-aligned currents that emerged from the negative potential region are arranged in a concentric pattern around the negative potential region, upward toward the center and downward on the peripheral.

  17. Analysis of stress intensity factor for a Griffith crack opened under constant pressure in a plate with temperature dependent properties

    International Nuclear Information System (INIS)

    Hata, Toshiaki

    1982-01-01

    Recently, the research on the thermal stress of structural materials has become important with the progress of nuclear reactor technology. In the case of large temperature gradient, the change of the physical properties of materials must be taken into account. The thermal stress analysis for the things with cracks taking the temperature dependence of properties into account has scarcely been carried out. In this report, the general method of solution of three-dimensional problems using perturbation method and the extension of thermo-elastic displacement potential method is shown for the case in which Young's modulus changes according to the exponential function of temperature. Moreover, using this method, the effect of the temperature dependence of properties on the stress intensity factor of the cracks subjected to internal pressure in a strip exposed to linear thermal flow was clarified. In the analysis, Young's modulus, the coefficient of linear thermal expansion and thermal conductivity were assumed to be dependent on temperature. The method of solution, the analysis of stress intensity factor considering the change of properties due to temperature, and the numerical calculation for a square plate with a crack are explained. (Kako, I.)

  18. Wilson expansion in the minimal subtraction scheme

    International Nuclear Information System (INIS)

    Smirnov, V.A.

    1989-01-01

    The small distance expansion of the product of composite fields is constructed for an arbitrary renormalization procedure of the type of minimal subtraction scheme. Coefficient functions of the expansion are expressed explicitly through the Green functions of composite fields. The expansion has the explicity finite form: the ultraviolet (UV) divergences of the coefficient functions and composite fields are removed by the initial renormalization procedure while the infrared (IR) divergences in massless diagrams with nonvanishing contribution into the coefficient functions are removed by the R-operation which is the IR part of the R-operation. The latter is the generalization of the dimensional renormalization in the case when both UV and IR divergences are present. To derive the expansion, a ''pre-subtracting operator'' is introduced and formulas of the counter-term technique are exploited

  19. Thermal Expansion Anomaly Regulated by Entropy

    Science.gov (United States)

    Liu, Zi-Kui; Wang, Yi; Shang, Shunli

    2014-11-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  20. Territorial expansion and primary state formation.

    Science.gov (United States)

    Spencer, Charles S

    2010-04-20

    A major research problem in anthropology is the origin of the state and its bureaucratic form of governance. Of particular importance for evaluating theories of state origins are cases of primary state formation, whereby a first-generation state evolves without contact with any preexisting states. A general model of this process, the territorial-expansion model, is presented and assessed with archaeological data from six areas where primary states emerged in antiquity: Mesoamerica, Peru, Egypt, Mesopotamia, the Indus Valley, and China. In each case, the evidence shows a close correspondence in time between the first appearance of state institutions and the earliest expansion of the state's political-economic control to regions lying more than a day's round-trip from the capital. Although additional research will add detail and clarity to the empirical record, the results to date are consistent with the territorial-expansion model, which argues that the success of such long-distance expansion not only demanded the bureaucratization of central authority but also helped provide the resources necessary to underwrite this administrative transformation.