WorldWideScience

Sample records for expanding atmosphere models

  1. FOAM: Expanding the horizons of climate modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tobis, M.; Foster, I.T.; Schafer, C.M. [and others

    1997-10-01

    We report here on a project that expands the applicability of dynamic climate modeling to very long time scales. The Fast Ocean Atmosphere Model (FOAM) is a coupled ocean atmosphere model that incorporates physics of interest in understanding decade to century time scale variability. It addresses the high computational cost of this endeavor with a combination of improved ocean model formulation, low atmosphere resolution, and efficient coupling. It also uses message passing parallel processing techniques, allowing for the use of cost effective distributed memory platforms. The resulting model runs over 6000 times faster than real time with good fidelity, and has yielded significant results.

  2. Atmospheric Transport Modeling Resources

    Energy Technology Data Exchange (ETDEWEB)

    Mazzola, Carl A. [Stone and Webster Engineering Corporation, Aiken, SC (United States); Addis, Robert P. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-03-01

    The purpose of this publication is to provide DOE and other federal agency emergency managers with an in-depth compilation and description of atmospheric dispersion models available to DOE and other Federal sites.

  3. Expanding on Successful Concepts, Models, and Organization

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Tan, Yu-Mei; Edwards, Stephen W.; Leonard, Jeremy A.; Anderson, Kim A.; Corley, Richard A.; Kile, Molly L.; L. Massey Simonich, Staci; Stone, David; Tanguay, Robert L.; Waters, Katrina M.; Harper, Stacey L.; Williams, David E.

    2016-09-06

    In her letter to the editor1 regarding our recent Feature Article “Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework” 2, Dr. von Göetz expressed several concerns about terminology, and the perception that we propose the replacement of successful approaches and models for exposure assessment with a concept. We are glad to have the opportunity to address these issues here. If the goal of the AEP framework was to replace existing exposure models or databases for organizing exposure data with a concept, we would share Dr. von Göetz concerns. Instead, the outcome we promote is broader use of an organizational framework for exposure science. The framework would support improved generation, organization, and interpretation of data as well as modeling and prediction, not replacement of models. The field of toxicology has seen the benefits of wide use of one or more organizational frameworks (e.g., mode and mechanism of action, adverse outcome pathway). These frameworks influence how experiments are designed, data are collected, curated, stored and interpreted and ultimately how data are used in risk assessment. Exposure science is poised to similarly benefit from broader use of a parallel organizational framework, which Dr. von Göetz correctly points out, is currently used in the exposure modeling community. In our view, the concepts used so effectively in the exposure modeling community, expanded upon in the AEP framework, could see wider adoption by the field as a whole. The value of such a framework was recognized by the National Academy of Sciences.3 Replacement of models, databases, or any application with the AEP framework was not proposed in our article. The positive role broader more consistent use of such a framework might have in enabling and advancing “general activities such as data acquisition, organization…,” and exposure modeling was discussed

  4. Lagrangian Modeling of the Atmosphere

    Science.gov (United States)

    Schultz, Colin

    2013-08-01

    Like watching a balloon borne by the breeze, a Lagrangian model tracks a parcel of air as it flows through the atmosphere. Whether running forward or backward in time, Lagrangian models offer a powerful tool for tracking and understanding the fates, or origins, of atmospheric flows. In the AGU monograph Lagrangian Modeling of the Atmosphere, editors John Lin, Dominik Brunner, Christoph Gerbig, Andreas Stohl, Ashok Luhar, and Peter Webley explore the nuances of the modeling technique. In this interview Eos talks to Lin about the growing importance of Lagrangian modeling as the world settles on climate change mitigation strategies, the societal value of operational modeling, and how recent advances are making it possible to run these complex calculations at home.

  5. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  6. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    related to inaccurate land surface modelling, e.g. enhanced warm bias in warm dry summer months. Coupling the regional climate model to a hydrological model shows the potential of improving the surface flux simulations in dry periods and the 2 m air temperature in general. In the dry periods......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...

  7. Statistically advanced, self-similar, radial probability density functions of atmospheric and under-expanded hydrogen jets

    Science.gov (United States)

    Ruggles, Adam J.

    2015-11-01

    This paper presents improved statistical insight regarding the self-similar scalar mixing process of atmospheric hydrogen jets and the downstream region of under-expanded hydrogen jets. Quantitative planar laser Rayleigh scattering imaging is used to probe both jets. The self-similarity of statistical moments up to the sixth order (beyond the literature established second order) is documented in both cases. This is achieved using a novel self-similar normalization method that facilitated a degree of statistical convergence that is typically limited to continuous, point-based measurements. This demonstrates that image-based measurements of a limited number of samples can be used for self-similar scalar mixing studies. Both jets exhibit the same radial trends of these moments demonstrating that advanced atmospheric self-similarity can be applied in the analysis of under-expanded jets. Self-similar histograms away from the centerline are shown to be the combination of two distributions. The first is attributed to turbulent mixing. The second, a symmetric Poisson-type distribution centered on zero mass fraction, progressively becomes the dominant and eventually sole distribution at the edge of the jet. This distribution is attributed to shot noise-affected pure air measurements, rather than a diffusive superlayer at the jet boundary. This conclusion is reached after a rigorous measurement uncertainty analysis and inspection of pure air data collected with each hydrogen data set. A threshold based upon the measurement noise analysis is used to separate the turbulent and pure air data, and thusly estimate intermittency. Beta-distributions (four parameters) are used to accurately represent the turbulent distribution moments. This combination of measured intermittency and four-parameter beta-distributions constitutes a new, simple approach to model scalar mixing. Comparisons between global moments from the data and moments calculated using the proposed model show excellent

  8. Modeling of Plasma Irregularities in Expanding Ionospheric Dust Clouds

    Science.gov (United States)

    Fu, H.; Scales, W.; Mahmoudian, A.; Bordikar, M. R.

    2009-12-01

    Natural dust layers occur in the earth’s mesosphere (50km-85km). Plasma irregularities are associated with these natural dust layers that produce radar echoes. Recently, an Ionospheric sounding rocket experiment was performed to investigate the plasma irregularities in upper atmospheric dust layers. The Charged Aerosol Release Experiment (CARE) uses a rocket payload injection of particles in the ionosphere to determine the mechanisms for enhanced radar scatter from plasma irregularities embedded in artificial dusty plasma in space. A 2-D hybrid computational model is described that may be used to study a variety of irregularities in dusty space plasmas which may lead to radar echoes. In this model, the dust and ions are both treated with Particle-In-Cell method while the dust charge varies with time based on the standard dust Orbit Motion Limited charging model. A stochastic model is adopted to remove particle ions due to the dust charging process. Electrons are treated with a fluid model including the parallel dynamics of magnetic fields. Fourier spectral methods with a predictor-corrector time advance are used to solve it. This numerical model will be used to investigate the electrodynamics and several possible plasma irregularity generation mechanisms after the creation of an artificial dust layer. The first is the dust ion-acoustic instability due to the drift of dust relative to the plasma. The instability saturates by trapping some ions. The effects of dust radius and dust drift velocity on plasma irregularities will be analyzed further. Also, a shear- driven instability in expanding dusty clouds is investigated.

  9. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance......, a correct spectral shape, and non-Gaussian statistics, is selected in order to evaluate the model turbulence. An actual turbulence record is analyzed in detail providing both a standard for comparison and input statistics for the generalized spectral analysis, which in turn produces a set of orthonormal....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  10. An Expanded Model of Distributed Leadership in Organizational Knowledge Creation

    OpenAIRE

    Cannatelli, B.; Smith, B. J.; Giudici, A.; Jones, J; Conger, M.

    2016-01-01

    Based on a three-year qualitative, longitudinal case study of a social venture partnership, we extend the understanding of distributed leadership in organizational knowledge creation. We develop an expanded model of distributed leadership that identifies the antecedents, different forms, and enablers of distributed leadership in knowledge creation. Our findings move beyond a static and monolithic understanding of distributed leadership to illustrate how an expanded model informs the situation...

  11. Expanding the Model of Organizational Learning: Scope, Contingencies, and Dynamics

    Directory of Open Access Journals (Sweden)

    Barbara Grah

    2016-05-01

    Full Text Available Our paper seeks to contribute to the understanding of organizational learning by (a integrating existing models of organizational learning into a single model and (b expanding the model to include inter-organizational learning, adding key contingencies suggested by the growing literature on neuroleadership, and incorporating a process dimension to reflect the fact that organizational learning is continuous and dynamic. The resulting expanded model of organizational learning encompasses four levels on which learning can occur: individual, team, organizational, and inter-organizational. The overall validity of the model is illustrated by applying it to two knowledge-intensive Slovenian firms. Implications for theory and practice are discussed.

  12. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...

  13. Frontiers in Atmospheric Chemistry Modelling

    Science.gov (United States)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  14. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  15. Observations and Modeling of Atmospheric Radiance Structure

    National Research Council Canada - National Science Library

    Wintersteiner, Peter

    2001-01-01

    The overall purpose of the work that we have undertaken is to provide new capabilities for observing and modeling structured radiance in the atmosphere, particularly the non-LTE regions of the atmosphere...

  16. Expanding the Functional Assessment Model for Naturalistic Intervention Design.

    Science.gov (United States)

    Evans, Ian M.

    2000-01-01

    This article comments on a study that used functional assessment to reduce behavior problems in a child with multiple disabilities (Kern and Vorndran, 2000). It suggests additional principles need to be incorporated into an expanded model if functional assessment is to have a truly positive influence on naturalistic treatment planning. (Contains…

  17. Expanding atmospheric acid deposition in China from the 1990s to the 2010s

    Science.gov (United States)

    Yu, Haili; Wang, Qiufeng

    2017-04-01

    Atmospheric acid deposition is considered a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to be more serious with the country's economic development and increasing consumption of fossil fuels in recent decades. By collecting nationwide data on pH and concentrations of sulfate (SO42-) and nitrate (NO3-) in precipitation between 1980 and 2014 in China, we explored the spatiotemporal variations of precipitation acid deposition (bulk deposition) and their influencing factors. Our results showed that average precipitation pH values were 4.86 and 4.84 in the 1990s and 2010s, respectively. This suggests that precipitation acid deposition in China has not seriously changes. Average SO42- deposition declined from 30.73 to 28.61 kg S ha-1 yr-1 but average NO3- deposition increased from 4.02 to 6.79 kg N ha-1 yr-1. Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of decreasing pollutant emissions, whereas the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Significant positive correlations have been found between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and reduce pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions.

  18. A Model of Foam Density Prediction for Expanded Perlite Composites

    OpenAIRE

    Arifuzzaman Md; Kim Ho Sung

    2015-01-01

    Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at dif...

  19. An expanded model of faculty vitality in academic medicine.

    Science.gov (United States)

    Dankoski, Mary E; Palmer, Megan M; Nelson Laird, Thomas F; Ribera, Amy K; Bogdewic, Stephen P

    2012-12-01

    Many faculty in today's academic medical centers face high levels of stress and low career satisfaction. Understanding faculty vitality is critically important for the health of our academic medical centers, yet the concept is ill-defined and lacking a comprehensive model. Expanding on previous research that examines vital faculty in higher education broadly and in academic medical centers specifically, this study proposes an expanded model of the unique factors that contribute to faculty vitality in academic medicine. We developed an online survey on the basis of a conceptual model (N = 564) and used linear regression to investigate the fit of the model. We examined the relationships of two predictor variables measuring Primary Unit Climate and Leadership and Career and Life Management with an overall Faculty Vitality index comprised of three measures: Professional Engagement, Career Satisfaction, and Productivity. The findings revealed significant predictive relationships between Primary Unit Climate and Leadership, Career and Life Management, and Faculty Vitality. The overall model accounted for 59% of the variance in the overall Faculty Vitality Index. The results provide new insights into the developing model of faculty vitality and inform initiatives to support faculty in academic medical centers. Given the immense challenges faced by faculty, now more than ever do we need reliable evidence regarding what sustains faculty vitality.

  20. Support for an expanded tripartite influence model with gay men.

    Science.gov (United States)

    Tylka, Tracy L; Andorka, Michael J

    2012-01-01

    This study investigated whether an expanded tripartite influence model would represent gay men's experiences. This model was extended by adding partners and gay community involvement as sources of social influence and considering dual body image pathways (muscularity and body fat dissatisfaction) to muscularity enhancement and disordered eating behaviors. Latent variable structural equation modeling analyses upheld this model for 346 gay men. Dual body image pathways to body change behaviors were supported, although three unanticipated interrelationships emerged, suggesting that muscularity and body fat concerns and behaviors may be more integrated for gay men. Internalization of the mesomorphic ideal, appearance comparison, muscularity dissatisfaction, and body fat dissatisfaction were key mediators in the model. Of the sources of social influence, friend and media pressure to be lean, gay community involvement, and partner, friend, media, and family pressures to be muscular made incremental contributions. Unexpectedly, certain sources were directly connected to body change behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Hubble Diagram Test of Expanding and Static Cosmological Models: The Case for a Slowly Expanding Flat Universe

    Directory of Open Access Journals (Sweden)

    Laszlo A. Marosi

    2013-01-01

    Full Text Available We present a new redshift (RS versus photon travel time ( test including 171 supernovae RS data points. We extended the Hubble diagram to a range of z = 0,0141–8.1 in the hope that at high RSs, the fitting of the calculated RS/ diagrams to the observed RS data would, as predicted by different cosmological models, set constraints on alternative cosmological models. The Lambda cold dark matter (ΛCDM, the static universe model, and the case for a slowly expanding flat universe (SEU are considered. We show that on the basis of the Hubble diagram test, the static and the slowly expanding models are favored.

  2. A 3D model of Pluto's atmosphere

    Science.gov (United States)

    Vangvichith, M.; Forget, F.; Wordsworth, R.

    2011-10-01

    For the first time, we have built a GCM of Pluto's atmosphere, adapted from the model of Triton's, recently developed[9] . In fact, Pluto and Triton have a lot of similarities (atmospheric, orbital). This GCM will allow to better understand the complex mechanism of the planet and to study the variation of the thermal profile during time.

  3. A Model of Foam Density Prediction for Expanded Perlite Composites

    Directory of Open Access Journals (Sweden)

    Arifuzzaman Md

    2015-01-01

    Full Text Available Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15 – 0.5 g/cm3 produced with a range of compaction ratios (1.5 – 3.5, a range of sodium silicate contents (0.05 – 0.35 g/ml in dilution, a range of expanded perlite particle sizes (1 – 4 mm, and various perlite densities (such as skeletal, material, bulk, and envelope densities. A close agreement between predictions and experimental results was found.

  4. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  5. Non-LTE model atmosphere analysis of Nova Cygni 1992

    Science.gov (United States)

    Hauschildt, P. H.; Starrfield, S.; Austin, S.; Wagner, R. M.; Shore, S. N.; Sonneborn, G.

    1994-01-01

    We use spherically symmetric non-local thermodynamic equilibrium (non-LTE), line-blanketed, expanding model atmospheres to analyze the International Ultraviolet Explorer (IUE) and optical spectra of Nova Cygni 1992 during the early phases of its outburst. We find that the first IUE spectrum obtained just after discovery on 1992 February 20, is best reproduced by a model atmosphere with a steep density gradient and homologous expansion, whereas the IUE and optical spectra obtained on February 24 show an extended, optically thick, wind structure. Therefore, we distinguish two phases of the early evolution of the nova photosphere: the initial, rapid, 'fireball' phase and the subsequent, much longer, optically thick 'wind' phase. The importance of line-blanketing in nova spectra is demonstrated. Our preliminary abundance analysis implies that hydrogen is depeleted in the ejecta, corresponding to abundance enhancements of Fe by a factor of approximately 2 and of CNO by more than a factor of 10 when compared to solar abundances. The synthetic spectra reproduce both the observed pseudo-continua as well as most of the observed features from the UV to the optical spectral range and demonstrate the importance of obtaining nearly simultaneous UV and optical spectra for performing accurate analyses of expanding stellar atmospheres (for both novae and supernovae).

  6. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  7. A Mercury Model of Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  8. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  9. Tagging Water Sources in Atmospheric Models

    Science.gov (United States)

    Bosilovich, M.

    2003-01-01

    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  10. A Work Psychological Model that Works: Expanding the Job Demands-Resources Model

    NARCIS (Netherlands)

    Xanthopoulou, D.

    2007-01-01

    The main purpose of the current thesis was to test and expand the recently developed Job Demands-Resources (JD-R) model. The advantage of this model is that it recognizes the uniqueness of each work environment, which has its own specific job demands and job resources. According to the JD-R model,

  11. Electrical model of cold atmospheric plasma gun

    Science.gov (United States)

    Slutsker, Ya. Z.; Semenov, V. E.; Krasik, Ya. E.; Ryzhkov, M. A.; Felsteiner, J.; Binenbaum, Y.; Gil, Z.; Shtrichman, R.; Cohen, J. T.

    2017-10-01

    We present an analytical model of cold atmospheric plasma formed by a dielectric barrier discharge (DBD), which is based on the lumped and distributed elements of an equivalent electric circuit of this plasma. This model is applicable for a wide range of frequencies and amplitudes of the applied voltage pulses, no matter whether or not the generated plasma plume interacts with a target. The model allows quantitative estimation of the plasma plume length and the energy delivered to the plasma. Also, the results of this model can be used for the design of DBD guns which efficiently generate cold atmospheric plasma. A comparison of the results of the model with those obtained in experiments shows a fairly good agreement.

  12. Model Atmospheres and Transit Spectra for Hot Rocky Planets

    Science.gov (United States)

    Lupu, Roxana

    hot Jupiters in similar transit configurations. For example, Na has been the first species to be detected in an exoplanet atmosphere, by observing the evaporating hotJupiter HD209458b. Understanding the interplay between the magma outgassing and volatile loss will be an important part of this project. Our team has the expertise in the chemistry, radiative transfer, and atmospheric escape modeling at these exotic temperatures. Our recent work has analyzed the emerging atmospheres of terrestrial planets after giant impacts, using a well-established radiativeconvective atmospheric structure code, with an extensive opacity database for all relevant molecules, and the chemistry self-consistently calculated for continental crust and bulk silicate earth compositions. We will expand on this work by considering a wider range of chemical compositions, assessing the importance of clouds and generating cloudy models, and developing dis-equilibrium models by taking into account vertical mixing and photochemistry. Photo-evaporation will be considered in the energy balance between heating, cooling and mass loss. We also have in-house codes to generate high-resolution eclipse spectra and predict transit depths and observable signatures. The development of the atmospheric code, the molecular opacity updates, the atmospheric structure calculations and the high resolution eclipse spectra will be performed by R. Lupu, M. Marley, and R. Freedman at NASA Ames. The atmospheric chemistry grids will be provided by B. Fegley and K. Lodders at Washington University. The transit spectra and observational features will be computed by J. Fortney at UCSC, and the atmospheric escape calculations will be performed by K. Zahnle at NASA Ames. This proposal addresses the following goals of the Exoplanet Research program: explain observations of exoplanetary systems, and understand the chemical and physical processes of exoplanets. Our results will also inform future JWST observations.

  13. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar

  14. Improved reference models for middle atmosphere ozone

    Science.gov (United States)

    Keating, G. M.; Pitts, M. C.; Chen, C.

    1990-01-01

    This paper describes the improvements introduced into the original version of ozone reference model of Keating and Young (1985, 1987) which is to be incorporated in the next COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide information on the global ozone distribution (including the ozone vertical structure as a function of month and latitude from 25 to 90 km) combining data from five recent satellite experiments: the Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 Stratospheric Aerosol Gas Experiment (SAGE), Solar Mesosphere Explorer (SME) UV Spectrometer, and SME 1.27 Micron Airglow. The improved version of the reference model uses reprocessed AE-2 SAGE data (sunset) and extends the use of SAGE data from 1981 to the 1981-1983 time period. Comparisons are presented between the results of this ozone model and various nonsatellite measurements at different levels in the middle atmosphere.

  15. Traditions of the Sun, One Model for Expanding Audience Access

    Science.gov (United States)

    Hawkins, I.; Paglierani, R.

    2006-12-01

    The Internet is a powerful tool with which to expand audience access, bringing students, teachers and the public to places and resources they might not otherwise visit or make use of. We will present Traditions of the Sun, an experiential Web site that invites exploration of the world's ancient observatories with special emphasis on Chaco Culture National Historic Park in the Four Corners region of the US and several sites in the Yucatan Peninsula in Mexico. Traditions of the Sun includes resources in English and Spanish along with a unique trilingual on-line book, "Traditions of the Sun, A Photographic Journal," containing explanatory text in Yucatec Maya as well. Traditions of the Sun offers rich opportunities for virtual visits to ancient sites used for solar observing while learning about current NASA research on the Sun and indigenous solar practices within a larger historical and cultural context. The site contains hundreds of photographs, historic images and rich multimedia to help tell the story of the Sun-Earth Connection. Visitors to the site can zoom in on the great Mayan cities of Chichen Itza, Uxmal, Dzibilchaltun, and Mayapan to learn about Mayan astronomy, history, culture, and science. They can also visit Chaco Canyon to watch sunrise over Pueblo Bonito on the summer solstice, take a virtual reality tour of the great kiva at Casa Rinconada or see panoramic vistas from Fajada Butte, an area which, for preservation purposes, is restricted to the public. Traditions of the Sun provides one model of how exploration and discovery can come to life for both formal and informal audiences via the Internet. Traditions of the Sun is a collaborative project between NASA's Sun-Earth Connection Education Forum, the National Park Service, Instituto National de Antropologia e Historia, Universidad Nacional Autonoma de Mexico, and Ideum.

  16. The Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Boville, B. A.; Garcia, R. R.; Sassi, F.; Kinnison, D.; Roble, R. G.

    The Whole Atmosphere Community Climate Model (WACCM) is an upward exten- sion of the National Center for Atmospheric Research Community Climate System Model. WACCM simulates the atmosphere from the surface to the lower thermosphere (140 km) and includes both dynamical and chemical components. The salient points of the model formulation will be summarized and several aspects of its performance will be discussed. Comparison with observations indicates that WACCM produces re- alistic temperature and zonal wind distributions. Both the mean state and interannual variability will be summarized. Temperature inversions in the midlatitude mesosphere have been reported by several authors and are also found in WACCM. These inver- sions are formed primarily by planetary wave forcing, but the background state on which they form also requires gravity wave forcing. The response to sea surface temperature (SST) anomalies will be examined by com- paring simulations with observed SSTs for 1950-1998 to a simulation with clima- tological annual cycle of SSTs. The response to ENSO events is found to extend though the winter stratosphere and mesosphere and a signal is also found at the sum- mer mesopause. The experimental framework allows the ENSO signal to be isolated, because no other forcings are included (e.g. solar variability and volcanic eruptions) which complicate the observational record. The temperature and wind variations asso- ciated with ENSO are large enough to generate significant perturbations in the chem- ical composition of the middle atmosphere, which will also be discussed.

  17. Atmospheric inverse modeling via sparse reconstruction

    Science.gov (United States)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  18. Atmospheric inverse modeling via sparse reconstruction

    Directory of Open Access Journals (Sweden)

    N. Hase

    2017-10-01

    Full Text Available Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4 emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  19. Expanding the Four Resources Model: Reading Visual and Multi-Modal Texts

    Science.gov (United States)

    Serafini, Frank

    2012-01-01

    Freebody and Luke proffered an expanded conceptualization of the resources readers utilize when reading and the roles readers adopt during the act of reading. The four resources model, and its associated four roles of the reader, expanded the definition of reading from a simple model of decoding printed texts to a model of constructing meaning and…

  20. On the use of inexact, pruned hardware in atmospheric modelling.

    Science.gov (United States)

    Düben, Peter D; Joven, Jaume; Lingamneni, Avinash; McNamara, Hugh; De Micheli, Giovanni; Palem, Krishna V; Palmer, T N

    2014-06-28

    Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz '96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models.

  1. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  2. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  3. Numerical modelling of multi-vane expander operating conditions in ORC system

    Science.gov (United States)

    Rak, Józef; Błasiak, Przemysław; Kolasiński, Piotr

    2017-11-01

    Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  4. Numerical modelling of multi-vane expander operating conditions in ORC system

    Directory of Open Access Journals (Sweden)

    Rak Józef

    2017-01-01

    Full Text Available Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  5. Generic atmospheric correction models for radar measurements

    Science.gov (United States)

    Li, Zhenhong; Yu, Chen; Crippa, Paola; Penna, Nigel

    2017-04-01

    Atmospheric effects (especially the part due to tropospheric water vapour) represent one of the major error sources of repeat-pass Interferometric Synthetic Aperture Radar (InSAR), and limit the accuracy of InSAR derived surface displacements. The spatio-temporal variations of atmospheric water vapour make it a challenge to measure small-amplitude surface displacements with InSAR. In previous studies, several InSAR atmospheric correction models have been successfully demonstrated: (1) Ground-based correction models such as those using Global Navigation Satellite System (GNSS) and/or surface meteorological observations, (2) Space-based correction models including those involving NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and/or ESA Medium Resolution Imaging Spectrometer (MERIS), and (3) Numerical Weather Model (NWM) based corrections including those using the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim and/or Weather Research and Forecasting (WRF) models. Each model has its own inherited limitations. For example, ground-based correction models are limited by the availability (and distribution) of ground observations, whilst MODIS/MERIS correction models are sensitive to the presence of clouds and there is often a time difference between space-based water vapour and radar observations. Similar to space-based correction models, NWM correction models might be impacted by the time difference between NWM and radar observations. Taking into account the inherent advantages and limitations of GNSS, MODIS and ECMWF water vapour products, we aim to develop a global and near-real-time mode InSAR atmospheric correction model. Tropospheric delays can be routinely retrieved from ground-based GNSS arrays in all-weather conditions and also in real-time. We develop an Iterative Tropospheric Decomposition (ITD) interpolation model that decouples the GNSS-estimated total tropospheric delays into (i) a stratified component highly correlated

  6. Use and application of MADYMO 5.3 foam material model for expanded polypropylene foam

    NARCIS (Netherlands)

    Kant, A.R.; Suffis, B.; Lüsebrink, H.

    1998-01-01

    The dynamic material characteristics of expanded polypropylene are discussed. The in-depth studies, carried out by JSP International, in cooperation with TNO, are used to validate the MADYMO foam material model. The dynamic compression of expanded polypropylene follows a highly non-linear

  7. Expanding the role of reactive transport models in critical zone processes

    Science.gov (United States)

    Li, Li; Maher, Kate; Navarre-Sitchler, Alexis; Druhan, Jennifer; Meile, Christof; Lawrence, Corey; Moore, Joel; Perdrial, Julia; Sullivan, Pamela; Thompson, Aaron; Jin, Lixin; Bolton, Edward W.; Brantley, Susan L.; Dietrich, William E.; Mayer, K. Ulrich; Steefel, Carl; Valocchi, Albert J.; Zachara, John M.; Kocar, Benjamin D.; McIntosh, Jennifer; Tutolo, Benjamin M.; Kumar, Mukesh; Sonnenthal, Eric; Bao, Chen; Beisman, Joe

    2017-01-01

    Models test our understanding of processes and can reach beyond the spatial and temporal scales of measurements. Multi-component Reactive Transport Models (RTMs), initially developed more than three decades ago, have been used extensively to explore the interactions of geothermal, hydrologic, geochemical, and geobiological processes in subsurface systems. Driven by extensive data sets now available from intensive measurement efforts, there is a pressing need to couple RTMs with other community models to explore non-linear interactions among the atmosphere, hydrosphere, biosphere, and geosphere. Here we briefly review the history of RTM development, summarize the current state of RTM approaches, and identify new research directions, opportunities, and infrastructure needs to broaden the use of RTMs. In particular, we envision the expanded use of RTMs in advancing process understanding in the Critical Zone, the veneer of the Earth that extends from the top of vegetation to the bottom of groundwater. We argue that, although parsimonious models are essential at larger scales, process-based models offer tools to explore the highly nonlinear coupling that characterizes natural systems. We present seven testable hypotheses that emphasize the unique capabilities of process-based RTMs for (1) elucidating chemical weathering and its physical and biogeochemical drivers; (2) understanding the interactions among roots, micro-organisms, carbon, water, and minerals in the rhizosphere; (3) assessing the effects of heterogeneity across spatial and temporal scales; and (4) integrating the vast quantity of novel data, including “omics” data (genomics, transcriptomics, proteomics, metabolomics), elemental concentration and speciation data, and isotope data into our understanding of complex earth surface systems. With strong support from data-driven sciences, we are now in an exciting era where integration of RTM framework into other community models will facilitate process

  8. The option to expand a project: its assessment with the binomial options pricing model

    Directory of Open Access Journals (Sweden)

    Salvador Cruz Rambaud

    Full Text Available Traditional methods of investment appraisal, like the Net Present Value, are not able to include the value of the operational flexibility of the project. In this paper, real options, and more specifically the option to expand, are assumed to be included in the project information in addition to the expected cash flows. Thus, to calculate the total value of the project, we are going to apply the methodology of the Net Present Value to the different scenarios derived from the existence of the real option to expand. Taking into account the analogy between real and financial options, the value of including an option to expand is explored by using the binomial options pricing model. In this way, estimating the value of the option to expand is a tool which facilitates the control of the uncertainty element implicit in the project. Keywords: Real options, Option to expand, Binomial options pricing model, Investment project appraisal

  9. Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models

    Science.gov (United States)

    Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.

  10. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    Science.gov (United States)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  11. Expanding the toolkit for membrane protein modeling in Rosetta.

    Science.gov (United States)

    Koehler Leman, Julia; Mueller, Benjamin K; Gray, Jeffrey J

    2017-03-01

    A range of membrane protein modeling tools has been developed in the past 5-10 years, yet few of these tools are integrated and make use of existing functionality for soluble proteins. To extend existing methods in the Rosetta biomolecular modeling suite for membrane proteins, we recently implemented RosettaMP, a general framework for membrane protein modeling. While RosettaMP facilitates implementation of new methods, addressing real-world biological problems also requires a set of accessory tools that are used to carry out standard modeling tasks. Here, we present six modeling tools, including de novo prediction of single trans-membrane helices, making mutations and refining the structure with different amounts of flexibility, transforming a protein into membrane coordinates and optimizing its embedding, computing a Rosetta energy score, and visualizing the protein in the membrane bilayer. We present these methods with complete protocol captures that allow non-expert modelers to carry out the computations. The presented tools are part of the Rosetta software suite, available at www.rosettacommons.org . julia.koehler.leman@gmail.com. Supplementary data are available at Bioinformatics online.

  12. Stochastic Models for Laser Propagation in Atmospheric Turbulence.

    Science.gov (United States)

    Leland, Robert Patton

    In this dissertation, stochastic models for laser propagation in atmospheric turbulence are considered. A review of the existing literature on laser propagation in the atmosphere and white noise theory is presented, with a view toward relating the white noise integral and Ito integral approaches. The laser beam intensity is considered as the solution to a random Schroedinger equation, or forward scattering equation. This model is formulated in a Hilbert space context as an abstract bilinear system with a multiplicative white noise input, as in the literature. The model is also modeled in the Banach space of Fresnel class functions to allow the plane wave case and the application of path integrals. Approximate solutions to the Schroedinger equation of the Trotter-Kato product form are shown to converge for each white noise sample path. The product forms are shown to be physical random variables, allowing an Ito integral representation. The corresponding Ito integrals are shown to converge in mean square, providing a white noise basis for the Stratonovich correction term associated with this equation. Product form solutions for Ornstein -Uhlenbeck process inputs were shown to converge in mean square as the input bandwidth was expanded. A digital simulation of laser propagation in strong turbulence was used to study properties of the beam. Empirical distributions for the irradiance function were estimated from simulated data, and the log-normal and Rice-Nakagami distributions predicted by the classical perturbation methods were seen to be inadequate. A gamma distribution fit the simulated irradiance distribution well in the vicinity of the boresight. Statistics of the beam were seen to converge rapidly as the bandwidth of an Ornstein-Uhlenbeck process was expanded to its white noise limit. Individual trajectories of the beam were presented to illustrate the distortion and bending of the beam due to turbulence. Feynman path integrals were used to calculate an

  13. The expanding epigenetic landscape of non-model organisms.

    Science.gov (United States)

    Bonasio, Roberto

    2015-01-01

    Epigenetics studies the emergence of different phenotypes from a single genotype. Although these processes are essential to cellular differentiation and transcriptional memory, they are also widely used in all branches of the tree of life by organisms that require plastic but stable adaptation to their physical and social environment. Because of the inherent flexibility of epigenetic regulation, a variety of biological phenomena can be traced back to evolutionary adaptations of few conserved molecular pathways that converge on chromatin. For these reasons chromatin biology and epigenetic research have a rich history of chasing discoveries in a variety of model organisms, including yeast, flies, plants and humans. Many more fascinating examples of epigenetic plasticity lie outside the realm of model organisms and have so far been only sporadically investigated at a molecular level; however, recent progress on sequencing technology and genome editing tools have begun to blur the lines between model and non-model organisms, opening numerous new avenues for investigation. Here, I review examples of epigenetic phenomena in non-model organisms that have emerged as potential experimental systems, including social insects, fish and flatworms, and are becoming accessible to molecular approaches. © 2015. Published by The Company of Biologists Ltd.

  14. Expanded Medical Home Model Works for Children in Foster Care

    Science.gov (United States)

    Jaudes, Paula Kienberger; Champagne, Vince; Harden, Allen; Masterson, James; Bilaver, Lucy A.

    2012-01-01

    The Illinois Child Welfare Department implemented a statewide health care system to ensure that children in foster care obtain quality health care by providing each child with a medical home. This study demonstrates that the Medical Home model works for children in foster care providing better health outcomes in higher immunization rates. These…

  15. Design and modeling balloon-expandable coronary stent for manufacturability

    Science.gov (United States)

    Suryawan, D.; Suyitno

    2017-02-01

    Coronary artery disease (CAD) is a disease that caused by narrowing of the coronary artery. The narrowing coronary artery is usually caused by cholesterol-containing deposit (plaque) which can cause a heart attack. CAD is the most common cause mortality in Indonesia. The commonly CAD treatment use the stent to opens or alleviate the narrowing coronary artery. In this study, the stent design is optimized for the manufacturability. Modeling is used to determine the free stent expansion due to applied pressure in the inner surface of the stent. The stress distribution, outer diameter change, and dogboning phenomena are investigated in the simulation. The result of modeling and simulating was analyzed and used to optimize the stent design before it is manufactured using EDM (Electric Discharge Machine) in the next research.

  16. Dynamics Modelling of Tensegrity Structures with Expanding Properties

    Science.gov (United States)

    Abdulkareem, Musa; Mahfouf, M.; Theilliol, D.

    Given the prestress level of a tensegrity structural system obtained from any form-finding method, an important step in the design process is to develop mathematical models that describe the behaviour of the system. Moreover, tensegrity structures are strongly dependent on their geometric, or kinematic, configurations. As such, except for small scale tensegrity structures with a few structural members, resorting to the use of computational techniques for analysis is a necessity. Because tensegrity structures are kinematically and statically indeterminate structures, a free standing tensegrity structure has at least one rigid body mode apart from the six rigid body modes that can be eliminated, for example, by applying boundary conditions assuming the structure is attached to a base. In this paper, a new general tool (applicable to small and large systems) for systematic and efficient formulation of structural models for tensegrity systems is proposed. Current tools are limited to structures with a few degrees of freedom (DOF), however, this new tool simplifies the analyses of tensegrity structures with several DOFs and provides a new insight into the behaviour of these interesting and yet challenging structures, at least from a control systems' viewpoint.

  17. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    ARL-TR-8155 ● SEP 2017 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model... Energy Research, Volume 5 (Solar Radiation Flux Model) by Clayton Walker and Gail Vaucher Computational and Information Sciences Directorate, ARL...2017 June 28 4. TITLE AND SUBTITLE Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) 5a. CONTRACT NUMBER ROTC Internship

  18. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation

    Science.gov (United States)

    Travnikov, Oleg; Angot, Hélène; Artaxo, Paulo; Bencardino, Mariantonia; Bieser, Johannes; D'Amore, Francesco; Dastoor, Ashu; De Simone, Francesco; Diéguez, María del Carmen; Dommergue, Aurélien; Ebinghaus, Ralf; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Magand, Olivier; Martin, Lynwill; Matthias, Volker; Mashyanov, Nikolay; Pirrone, Nicola; Ramachandran, Ramesh; Read, Katie Alana; Ryjkov, Andrei; Selin, Noelle E.; Sena, Fabrizio; Song, Shaojie; Sprovieri, Francesca; Wip, Dennis; Wängberg, Ingvar; Yang, Xin

    2017-04-01

    Current understanding of mercury (Hg) behavior in the atmosphere contains significant gaps. Some key characteristics of Hg processes, including anthropogenic and geogenic emissions, atmospheric chemistry, and air-surface exchange, are still poorly known. This study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measured data from ground-based sites and simulation results from chemical transport models. A variety of long-term measurements of gaseous elemental Hg (GEM) and reactive Hg (RM) concentration as well as Hg wet deposition flux have been compiled from different global and regional monitoring networks. Four contemporary global-scale transport models for Hg were used, both in their state-of-the-art configurations and for a number of numerical experiments to evaluate particular processes. Results of the model simulations were evaluated against measurements. As follows from the analysis, the interhemispheric GEM gradient is largely formed by the prevailing spatial distribution of anthropogenic emissions in the Northern Hemisphere. The contributions of natural and secondary emissions enhance the south-to-north gradient, but their effect is less significant. Atmospheric chemistry has a limited effect on the spatial distribution and temporal variation of GEM concentration in surface air. In contrast, RM air concentration and wet deposition are largely defined by oxidation chemistry. The Br oxidation mechanism can reproduce successfully the observed seasonal variation of the RM / GEM ratio in the near-surface layer, but it predicts a wet deposition maximum in spring instead of in summer as observed at monitoring sites in North America and Europe. Model runs with OH chemistry correctly simulate both the periods of maximum and minimum values and the amplitude of observed seasonal variation but shift the maximum RM / GEM ratios from spring to summer. O3 chemistry does not predict significant seasonal variation of Hg

  19. Atomic hydrogen distribution. [in Titan atmospheric model

    Science.gov (United States)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  20. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    Science.gov (United States)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  1. Mesoscale, Sources and Models: Sources for Nitrogen in the Atmosphere

    DEFF Research Database (Denmark)

    Hertel, O.

    1994-01-01

    Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen.......Projektet Mesoscales, Sources and Models: Sources for Nitrogen in the Atmosphere er opdelt i 3 delprojekter: Sources - farmland, Sources - sea og Sources - biogenic nitrogen....

  2. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    Science.gov (United States)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  3. Modeling the effects of atmospheric emissions on groundwater composition

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Theresa Jean [Univ. of Wisconsin, Madison, WI (United States)

    1994-01-01

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  4. Induction of continuous expanding infrarenal aortic aneurysms in a large porcine animal model

    Directory of Open Access Journals (Sweden)

    Brian O. Kloster

    2015-03-01

    Conclusion: In pigs it's possible to induce continuous expanding AAA's based upon proteolytic degradation and pathological flow, resembling the real life dynamics of human aneurysms. Because the lumbars are preserved, it's also a potential model for further studies of novel endovascular devices and their complications.

  5. Predicting Examination Performance Using an Expanded Integrated Hierarchical Model of Test Emotions and Achievement Goals

    Science.gov (United States)

    Putwain, Dave; Deveney, Carolyn

    2009-01-01

    The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…

  6. Modeling of ion exchange expanded-bed chromatography for the purification of C-phycocyanin.

    Science.gov (United States)

    Moraes, Caroline Costa; Mazutti, Marcio A; Maugeri, Francisco; Kalil, Susana Juliano

    2013-03-15

    This work is focused on the experimental evaluation and mathematical modeling of ion exchange expanded-bed chromatography for the purification of C-phycocyanin from crude fermentative broth containing Spirulina platensis cells. Experiments were carried out in different expansion degree to evaluate the process performance. The experimental breakthrough curves were used to estimate the mass transfer and kinetics parameters of the proposed model, using the Particle Swarm Optimization algorithm (PSO). The proposed model satisfactorily fitted the experimental data. The results from the model application pointed out that the increase in the initial bed height does not influence the process efficiency, however enables the operation of expanded-bed column at high volumetric flow rates, improving the productivity. It was also shown that the use of mathematical modeling was a good and promising tool for the optimization of chromatographic processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Atmospheric muon simulation using the FLUKA MC Model

    CERN Document Server

    Battistoni, G; Muraro, S; Sala, P R

    2007-01-01

    The FLUKA code has been used to reproduce experimental data concerning muon fluxes in atmosphere in a wide energy range with the aim of testing the performance of this Monte Carlo model in predicting secondary cosmic ray spectra in atmosphere. Here new results are presented, concerning in particular the cases of BESS and L3+C experiments.

  8. Atmospheric muon simulation using the FLUKA MC Model

    Energy Technology Data Exchange (ETDEWEB)

    Battistoni, G. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy)], E-mail: battistoni@mi.infn.it; Ferrari, A. [CERN, CH-1211 Geneva (Switzerland); Muraro, S.; Sala, P.R. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy)

    2007-06-15

    The FLUKA code has been used to reproduce experimental data concerning muon fluxes in atmosphere in a wide energy range with the aim of testing the performance of this Monte Carlo model in predicting secondary cosmic ray spectra in atmosphere. Here new results are presented, concerning in particular the cases of BESS and L3+C experiments.

  9. Ozone transmittance in a model atmosphere at Ikeja, Lagos state ...

    African Journals Online (AJOL)

    Variation of ozone transmittance with height in the atmosphere for radiation in the 9.6m absorption band was studied using Goody's model atmosphere, with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different altitudes (0-22 km) for the month of ...

  10. UV- Radiation Absorption by Ozone in a Model Atmosphere using ...

    African Journals Online (AJOL)

    UV- radiation absorption is studied through variation of ozone transmittance with altitude in the atmosphere for radiation in the 9.6μm absorption band using Goody's model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different ...

  11. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario....... In MUD, corresponding ensembles of atmospheric dispersion are computed from which uncertainties of predicted radionuclide concentration and deposition patterns are derived....

  12. Home-based chronic care. An expanded integrative model for home health professionals.

    Science.gov (United States)

    Suter, Paula; Hennessey, Beth; Harrison, Gregory; Fagan, Martha; Norman, Barbara; Suter, W Newton

    2008-04-01

    The Chronic Care Model (CCM) developed by is an influential and accepted guide for the care of patients with chronic disease. Wagner acknowledges a current healthcare focus on acute care needs that often circumvents chronic care coordination. He identifies the need for a "division of labor" to assist the primary care physician with this neglected function. This article posits that the role of chronic care coordination assistance and disease management fits within the purview of home healthcare and should be central to home health chronic care delivery. An expanded Home-Based Chronic Care Model (HBCCM) is described that builds on Wagner's model and integrates salient theories from fields beyond medicine. The expanded model maximizes the potential for disease self-management success and is intended to provide a foundation for home health's integral role in chronic disease management.

  13. Recent advances in non-LTE stellar atmosphere models

    Science.gov (United States)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  14. Ensemble data assimilation in the Whole Atmosphere Community Climate Model

    Science.gov (United States)

    Pedatella, N. M.; Raeder, K.; Anderson, J. L.; Liu, H.-L.

    2014-08-01

    We present results pertaining to the assimilation of real lower, middle, and upper atmosphere observations in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. The ability to assimilate lower atmosphere observations of aircraft and radiosonde temperature and winds, satellite drift winds, and Constellation Observing System for Meteorology, Ionosphere, and Climate refractivity along with middle/upper atmosphere temperature observations from SABER and Aura MLS is demonstrated. The WACCM+DART data assimilation system is shown to be able to reproduce the salient features, and variability, of the troposphere present in the National Centers for Environmental Prediction/National Center for Atmospheric Research Re-Analysis. In the mesosphere, the fit of WACCM+DART to observations is found to be slightly worse when only lower atmosphere observations are assimilated compared to a control experiment that is reflective of the model climatological variability. This differs from previous results which found that assimilation of lower atmosphere observations improves the fit to mesospheric observations. This discrepancy is attributed to the fact that due to the gravity wave drag parameterizations, the model climatology differs significantly from the observations in the mesosphere, and this is not corrected by the assimilation of lower atmosphere observations. The fit of WACCM+DART to mesospheric observations is, however, significantly improved compared to the control experiment when middle/upper atmosphere observations are assimilated. We find that assimilating SABER observations reduces the root-mean-square error and bias of WACCM+DART relative to the independent Aura MLS observations by ˜50%, demonstrating that assimilation of middle/upper atmosphere observations is essential for accurate specification of the mesosphere and lower thermosphere region in WACCM+DART. Last, we demonstrate that

  15. On the construction of a regional atmospheric climate model

    DEFF Research Database (Denmark)

    Christensen, J. H.; Van Meijgaard, E.

    1992-01-01

    A Regional Atmospheric Climate Model which combines the physical parameterization package of the General Circulation or Climate Model (ECHAM) used at the Max Planck Institute for Meteorology in Hamburg, and the dynamics package of the Nordic - Dutch - Irish Limited Area Model (HIRLAM), has been...... developed. The necessary changes applied to both model packages in order to obtain a working code are described. -from Authors...

  16. Accurate Estimation of Target amounts Using Expanded BASS Model for Demand-Side Management

    Science.gov (United States)

    Kim, Hyun-Woong; Park, Jong-Jin; Kim, Jin-O.

    2008-10-01

    The electricity demand in Korea has rapidly increased along with a steady economic growth since 1970s. Therefore Korea has positively propelled not only SSM (Supply-Side Management) but also DSM (Demand-Side Management) activities to reduce investment cost of generating units and to save supply costs of electricity through the enhancement of whole national energy utilization efficiency. However study for rebate, which have influence on success or failure on DSM program, is not sufficient. This paper executed to modeling mathematically expanded Bass model considering rebates, which have influence on penetration amounts for DSM program. To reflect rebate effect more preciously, the pricing function using in expanded Bass model directly reflects response of potential participants for rebate level.

  17. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Catling, David C., E-mail: robinson@astro.washington.edu [Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195-1310 (United States)

    2012-09-20

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  18. GrayStarServer: Stellar atmospheric modeling and spectrum synthesis

    Science.gov (United States)

    Short, C. Ian

    2017-01-01

    GrayStarServer is a stellar atmospheric modeling and spectrum synthesis code of pedagogical accuracy that is accessible in any web browser on commonplace computational devices and that runs on a timescale of a few seconds.

  19. Venus Global Reference Atmospheric Model Status and Planned Updates

    Science.gov (United States)

    Justh, H. L.; Dwyer Cianciolo, A. M.

    2017-05-01

    Details the current status of Venus Global Reference Atmospheric Model (Venus-GRAM). Provides new sources of data and upgrades that need to be incorporated to maintain credibility and identifies options and features that could increase capability.

  20. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  1. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  2. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Workman, Jared, E-mail: kevin.heng@csh.unibe.ch, E-mail: jworkman@coloradomesa.edu [Colorado Mesa University, 1260 Kennedy Avenue, Grand Junction, CO 81501 (United States)

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  3. Atmospheric correction for superconducting gravimeters based on operational weather models

    Science.gov (United States)

    Karbon, M.; Boehm, J.; Meurers, B.; Schuh, H.

    2012-04-01

    Atmospheric pressure fluctuations are a major source of noise in precise gravimetric measurements and must be corrected carefully. This is usually done by using the local air pressure, which reduces up to 90-95 % of the atmospheric signal. However, modern superconducting gravimeters require an even better atmospheric correction if small signals are to be identified. For this task the use of 3-dimensional modeling of atmospheric mass attraction based on operational numerical weather models has shown promising results. Similar strategies are realized and applied successfully for de -aliasing measurements of satellite gravity missions, such as GRACE and GOCE. For example, within the project GGOS Atmosphere at the Institute of Geodesy and Geophysics of TU Vienna a service was established providing atmospheric gravity corrections in form of global spherical harmonic coefficients (AGC). In this study we show that these products, originally dedicated to correct the gravity mission data, can also be used to correct the atmospheric effects on superconducting gravimeters (SG), i.e., the global contribution of the effect is obtained directly from the AGC. Furthermore, it will be examined if the additional effort of implementing high resolution regional models as well as analytical models in the near field is justified. The Conrad Observatory near Vienna is taken as example station for the SG corrections.

  4. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    Science.gov (United States)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  5. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    Science.gov (United States)

    Felton, Ryan; Neveu, Marc; Domagal-Goldman, Shawn David; Desch, Steven; Arney, Giada

    2018-01-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  6. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-12-31

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  7. Evaluation protocol for the WIND system atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1991-01-01

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during a accidental release at the Savannah River Site (SRS). These models are have been incorporated into an automated menu-driven computer based system called the WIND (Weather INformation and Display) system. In an effort to establish more formal quality assurance procedures for the WIND system atmospheric codes, a software evaluation protocol is being developed. An evaluation protocol is necessary to determine how well they may perform in emergency response (real-time) situations. The evaluation of high-impact software must be conducted in accordance with WSRC QA Manual, 1Q, QAP 20-1. This report will describe the method that will be used to evaluate the atmospheric models. The evaluation will determine the effectiveness of the atmospheric models in emergency response situations, which is not necessarily the same procedure used for research purposes. The format of the evaluation plan will provide guidance for the evaluation of atmospheric models that may be added to the WIND system in the future. The evaluation plan is designed to provide the user with information about the WIND system atmospheric models that is necessary for emergency response situations.

  8. Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models

    Science.gov (United States)

    Song, J.; Wang, Z.

    2013-12-01

    Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.

  9. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    Directory of Open Access Journals (Sweden)

    C. L. Friedman

    2016-03-01

    Full Text Available We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that midlatitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  10. Modeling Psychologists' Ethical Intention: Application of an Expanded Theory of Planned Behavior.

    Science.gov (United States)

    Ferencz-Kaddari, Michall; Shifman, Annie; Koslowsky, Meni

    2016-06-01

    At the core of all therapeutic and medical practice lies ethics. By applying an expanded Ajzen's Theory of Planned Behavior formulation, the present investigation tested a model for explaining psychologists' intention to behave ethically. In the pretest, dual relationships and money conflicts were seen as the most prevalent dilemmas. A total of 395 clinical psychologists filled out questionnaires containing either a dual relationship dilemma describing a scenario where a psychologist was asked to treat a son of a colleague or a money-focused dilemma where he or she was asked to treat a patient unable to pay for the service. Results obtained from applying the expanded Ajzen's model to each dilemma, generally, supported the study hypotheses. In particular, attitudes were seen as the most important predictor in both dilemmas followed by a morality component, defined here as the commitment of the psychologist to the patient included here as an additional predictor in the model. The expanded model provided a better understanding of ethical intention. Practical implications were also discussed. © The Author(s) 2016.

  11. A global atmospheric model of meteoric iron

    National Research Council Canada - National Science Library

    Feng, Wuhu; Marsh, Daniel R; Chipperfield, Martyn P; Janches, Diego; Höffner, Josef; Yi, Fan; Plane, John M. C

    2013-01-01

    .... The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD...

  12. Induction of continuous expanding infrarenal aortic aneurysms in a large porcine animal model

    DEFF Research Database (Denmark)

    Kloster, Brian Ozeraitis; Lund, Lars; Lindholt, Jes S.

    2015-01-01

    BACKGROUND: A large animal model with a continuous expanding infrarenal aortic aneurysm gives access to a more realistic AAA model with anatomy and physiology similar to humans, and thus allows for new experimental research in the natural history and treatment options of the disease. METHODS: 10...... ultrasound, hereafter the pigs were euthanized for inspection and AAA wall sampling for histological analysis. RESULTS: In group A, all pigs developed continuous expanding AAA's with a mean increase in AP-diameter to 16.26 ± 0.93 mm equivalent to a 57% increase. In group B the AP-diameters increased to 11.......33 ± 0.13 mm equivalent to 9.3% which was significantly less than in group A (p Histology shoved more or less complete resolution of the elastic tissue in the tunica media...

  13. Induction of continuous expanding infrarenal aortic aneurysms in a large porcine animal model

    DEFF Research Database (Denmark)

    Kloster, Brian Ozeraitis; Lund, Lars; Lindholt, Jes S.

    2015-01-01

    BackgroundA large animal model with a continuous expanding infrarenal aortic aneurysm gives access to a more realistic AAA model with anatomy and physiology similar to humans, and thus allows for new experimental research in the natural history and treatment options of the disease. Methods10 pigs......, hereafter the pigs were euthanized for inspection and AAA wall sampling for histological analysis. ResultsIn group A, all pigs developed continuous expanding AAA’s with a mean increase in AP-diameter to 16.26 ± 0.93 mm equivalent to a 57% increase. In group B the AP-diameters increased to 11.33 ± 0.13 mm...... equivalent to 9.3% which was significantly less than in group A (pHistology shoved more or less complete resolution of the elastic tissue in the tunica media in group A. The most...

  14. Atmospheric Dispersion Model Validation in Low Wind Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patrick

    2007-11-01

    Atmospheric plume dispersion models are used for a variety of purposes including emergency planning and response to hazardous material releases, determining force protection actions in the event of a Weapons of Mass Destruction (WMD) attack and for locating sources of pollution. This study provides a review of previous studies that examine the accuracy of atmospheric plume dispersion models for chemical releases. It considers the principles used to derive air dispersion plume models and looks at three specific models currently in use: Aerial Location of Hazardous Atmospheres (ALOHA), Emergency Prediction Information Code (EPIcode) and Second Order Closure Integrated Puff (SCIPUFF). Results from this study indicate over-prediction bias by the EPIcode and SCIPUFF models and under-prediction bias by the ALOHA model. The experiment parameters were for near field dispersion (less than 100 meters) in low wind speed conditions (less than 2 meters per second).

  15. Southeast Atmosphere Studies: learning from model-observation syntheses

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-02-01

    Full Text Available Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and

  16. Measuring the basic parameters of neutron stars using model atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, V.F. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Kazan Federal University, Kazan (Russian Federation); Poutanen, J. [University of Turku, Tuorla Observatory, Department of Physics and Astronomy, Piikkioe (Finland); KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Klochkov, D.; Werner, K. [Universitaet Tuebingen, Institut fuer Astronomie und Astrophysik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany)

    2016-02-15

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed. (orig.)

  17. Information Flow in an Atmospheric Model and Data Assimilation

    Science.gov (United States)

    Yoon, Young-noh

    2011-01-01

    Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background…

  18. Applying a mesoscale atmospheric model to Svalbard glaciers

    NARCIS (Netherlands)

    Claremar, B.; Obleitner, F.; Reijmer, C.H.|info:eu-repo/dai/nl/229345956; Pohjola, V.; Waxegard, A.; Karner, F.; Rutgersson, A.

    2012-01-01

    The mesoscale atmospheric model WRF is used over three Svalbard glaciers. The simulations are done with a setup of the model corresponding to the state-of-the-art model for polar conditions, Polar WRF, and it was validated using surface observations. The ERA-Interim reanalysis was used for boundary

  19. Some results regarding the comparison of the Earth's atmospheric models

    Directory of Open Access Journals (Sweden)

    Šegan S.

    2005-01-01

    Full Text Available In this paper we examine air densities derived from our realization of aeronomic atmosphere models based on accelerometer measurements from satellites in a low Earth's orbit (LEO. Using the adapted algorithms we derive comparison parameters. The first results concerning the adjustment of the aeronomic models to the total-density model are given.

  20. South African seasonal rainfall prediction performance by a coupled ocean-atmosphere model

    CSIR Research Space (South Africa)

    Landman, WA

    2010-12-01

    Full Text Available Evidence is presented that coupled ocean-atmosphere models can already outscore computationally less expensive atmospheric models. However, if the atmospheric models are forced with highly skillful SST predictions, they may still be a very strong...

  1. Atmospheric Athena: 3D Atmospheric escape model with ionizing radiative transfer

    Science.gov (United States)

    Tripathi, Anjali; Krumholz, Mark R.

    2017-03-01

    Atmospheric Athena simulates hydrodynamic escape from close-in giant planets in 3D. It uses the Athena hydrodynamics code (ascl:1010.014) with a new ionizing radiative transfer implementation to self-consistently model photoionization driven winds from the planet. The code is fully compatible with static mesh refinement and MPI parallelization and can handle arbitrary planet potentials and stellar initial conditions.

  2. AMORE: Atmospheric Modeling Of Radiation Experiment

    Science.gov (United States)

    Slusser, J.; Harrison, L.; Gao, W.

    2001-12-01

    The purpose of this talk is to present a comparison of modeled and measured clear-sky erythemal UV irradiances. Are the various models in reasonable agreement with the various measurements? Measurements were made with the USDA Reference Spectroradiometer, New Zealand's NIWA Spectroradiometer, a USEPA Brewer, and a Yankee UV-RSS. Modeling groups were given a list of clear days between June 5 and August 5, 2001. The average measured morning and afternoon aerosol optical depths at 368 nm and 332 nm were measured with a UV-MFRSR. The estimated wavelength independent aerosol asymmetry parameter and single scattering albedo, surface pressure and albedo, total column ozone, extraterrestrial solar spectrum, erythemal weighting function were supplied. Modeling groups submitted erythemally weight irradiances for every half hour. Comparisons of measurements to models showed good ageement to within 10% for SZAs out to 60 degrees. Reasons for discrepancies will be discussed.

  3. The physical theory and propagation model of THz atmospheric propagation

    Science.gov (United States)

    Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.

    2011-02-01

    Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.

  4. An Analytic Radiative-Convective Model for Planetary Atmospheres

    Science.gov (United States)

    Robinson, T. D.; Catling, D. C.

    2012-12-01

    A fundamental aspect of planetary atmospheres is the vertical thermal structure. Simple one-dimensional (vertical) models can provide reasonable estimates of a planet's global-mean temperature profile while providing insights into the physics behind the thermal profile of an atmosphere. The best basic models are those that incorporate the minimum amount of complexity while still remaining general enough to provide intuitive understanding. Here, we present an analytic 1-D radiative-convective model of the thermal structure of planetary atmospheres [1]. We assume that thermal radiative transfer is gray, and we include two shortwave channels for absorbed solar (or stellar) light so that the model can compute realistic stratospheric temperature inversions. A convective profile is placed at the base of the portion of the atmosphere that is in radiative equilibrium, and the model ensures that both the temperature profile and the upwelling flux profile are continuous across the radiation-convection boundary. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce analytic expressions that allow calculations of the atmospheric pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. The utility, validity, and generality of our model are demonstrated by applying it to a disparate range of worlds, including Jupiter, Venus, and Titan. Our model can be used to explain general observed phenomena in the Solar System [2], and we explore the behaviors of variants of our model, showing its ability to provide clear insights. Given the wealth of new problems posed by exoplanets, development of an analytic model with few parameters is likely to be useful for future application to such worlds, for which only limited data will be known. Our model can be used to help interpret

  5. Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits

    Science.gov (United States)

    Kopasakis, George

    2015-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  6. Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit

    Science.gov (United States)

    Kopasakis, George (Inventor)

    2015-01-01

    An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.

  7. Internal atmospheric noise characteristics in twentieth century coupled atmosphere-ocean model simulations

    Science.gov (United States)

    Colfescu, Ioana; Schneider, Edwin K.

    2017-09-01

    The statistical characteristics of the atmospheric internal variability (hereafter internal atmospheric noise) for surface pressure (PS) in twentieth century simulations of a coupled general circulation model are documented. The atmospheric noise is determined from daily post-industrial (1871-1998) Community Climate System Model 3 simulations by removing the SST and externally forced responses from the total fields. The forced responses are found from atmosphere-only simulations forced by the SST and external forcing of the coupled runs. However, we do not address the influence of the SST variability on the synoptic scale high frequency weather noise.The spatial patterns of the main seasonal modes of atmospheric noise variability are found for boreal winter and summer from empirical orthogonal function analyses performed globally and for various regions, including the North Atlantic, the North Pacific, and the equatorial Pacific. The temporal characteristics of the modes are illustrated by power spectra and probability density functions (PDF) of the principal components (PC). Our findings show that, for two different realizations of noise, the variability is dominated by large scale spatial structures of the atmospheric noise that resemble observed patterns, and that their relative amplitudes in the CGCM and AGCM simulations are very similar. The regional expression of the dominant global mode, a seasonally dependent AO-like or AAO-like pattern is also found in the regional analyses, with similar time dependence. The PCs in the CGCM and the corresponding SST forced AGCM simulations are uncorrelated, but the spectra and PDFs of the CGCM and AGCM PCs are similar.The temporal structures of the noise PCs are white at timescales larger than few months, so that these modes can be thought of as stochastic forcings (in time) for the climate system. The PDFs of the noise PCs are not statistically distinguishable from Gaussian distributions with the same standard deviation

  8. Proposed ozone reference models for the middle atmosphere

    Science.gov (United States)

    Keating, G. M.; Young, D. F.

    1985-01-01

    Since the publication of the last COSPAR International Reference Atmosphere (CIRA 72), large amounts of ozone data acquired from satellites have become available in addition to increasing quantities of rocketsonde, balloonsonde, Dobson, M83, and Umkehr measurements. From the available archived satellite data, models are developed for the new CIRA using 5 satellite experiments (Nimbus 7 SBUV and LIMS, AEM-2 SAGE, and SME IR and UVS) of the monthly latitudinal and altitudinal variations in the ozone mixing ratio in the middle atmosphere. Standard deviations and interannual variations are also quantified. The satellite models are shown to agree well with a previous reference model based on rocket and balloon measurements.

  9. Uncertainty modelling of atmospheric dispersion by stochastic ...

    Indian Academy of Sciences (India)

    The parameters associated to a environmental dispersion model may include different kinds of variability, imprecision and uncertainty. More often, it is seen that available information is interpreted in probabilistic sense. Probability theory is a well-established theory to measure such kind of variability. However, not all ...

  10. Coupled Atmospheric Chemistry Schemes for Modeling Regional and Global Atmospheric Chemistry

    Science.gov (United States)

    Saunders, E.; Stockwell, W. R.

    2016-12-01

    Atmospheric chemistry models require chemical reaction mechanisms to simulate the production of air pollution. GACM (Global Atmospheric Chemistry Mechanism) is intended for use in global scale atmospheric chemistry models to provide chemical boundary conditions for regional scale simulations by models such as CMAQ. GACM includes additional chemistry for marine environments while reducing its treatment of the chemistry needed for highly polluted urban regions. This keeps GACM's size small enough to allow it to be used efficiently in global models. GACM's chemistry of volatile organic compounds (VOC) is highly compatible with the VOC chemistry in RACM2 allowing a global model with GACM to provide VOC boundary conditions to a regional scale model with RACM2 with reduced error. The GACM-RACM2 system of mechanisms should yield more accurate forecasts by regional air quality models such as CMAQ. Chemical box models coupled with the regional and global atmospheric chemistry mechanisms (RACM2 & GACM) will be used to make simulations of tropospheric ozone, nitric oxides, and volatile organic compounds that are produced in regional and global domains. The simulations will focus on the Los Angeles' South Coast Air Basin (SoCAB) where the Pacific Ocean meets a highly polluted urban area. These two mechanisms will be compared on the basis of simulated ozone concentrations over this marine-urban region. Simulations made with the more established RACM2 will be compared with simulations made with the newer GACM. In addition WRF-Chem will be used to simulate how RACM2 will produce regional simulations of tropospheric ozone and NOx, which can be further, analyzed for air quality impacts. Both the regional and global model in WRF-Chem will be used to predict how the concentrations of ozone and nitrogen oxides change over land and ocean. The air quality model simulation results will be applied to EPA's BenMAP-CE (Environmental Benefits Mapping & Analysis Program-Community Edition

  11. Thermosphere Extension of the Whole Atmosphere Community Climate Model

    Science.gov (United States)

    2010-12-04

    for Atmospheric Research is sponsored by the National Science Foundation. [40] Robert Lysak thanks the reviewers for their assistance in evaluating...F. Muller, L. K. Emmons , and M. A. Carroll (1998), MOZART: A global chemical transport model for ozone and related chemical tracers: 2. Model results

  12. Atmospheric modelling for seasonal prediction at the CSIR

    CSIR Research Space (South Africa)

    Landman, WA

    2014-10-01

    Full Text Available by observed monthly sea-surface temperature (SST) and sea-ice fields. The AGCM is the conformal-cubic atmospheric model (CCAM) administered by the Council for Scientific and Industrial Research. Since the model is forced with observed rather than predicted...

  13. Understanding Cervical Cancer Screening Intentions Among Latinas Using An Expanded Theory of Planned Behavior Model

    Science.gov (United States)

    Roncancio, Angelica M.; Ward, Kristy K.; Fernandez, Maria E.

    2016-01-01

    We examined the utility of an expanded Theory of Planned Behavior (TPB) model in predicting cervical cancer screening intentions among Latinas. The model included acculturation and past cervical cancer screening behavior along with attitude, subjective norms, and perceived behavioral control. This cross-sectional study included a sample of 206 Latinas who responded to a self-administered survey. Structural equation modeling was employed to test the expanded TPB model. Acculturation (p= .025) and past screening behavior (p= .001) along with attitude (p= .019), subjective norms (p= .028), and perceived behavioral control (p= .014) predicted the intention to be screened for cervical cancer. Our findings suggest that the TPB is a useful model for understanding cervical cancer screening intentions among Latinas when both past behavior and culture are included. This highlights the importance of culture on behavior and indicates a need to develop culturally sensitive, theory-based interventions to encourage screening and reduce cervical cancer-related health disparities in Latinas. PMID:23930898

  14. Challenges in Modeling of the Global Atmosphere

    Science.gov (United States)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    The massively parallel computer architectures require that some widely adopted modeling paradigms be reconsidered in order to utilize more productively the power of parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. However, the described scenario implies that the discretization used in the model is horizontally local. The spherical geometry further complicates the problem. Various grid topologies will be discussed and examples will be shown. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of decent size. However, the polar filtering requires transpositions involving extra communications. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for a wide application of the spectral representation. With some variations, these techniques are used in most major centers. However, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with a fast Fourier transform represents a significant step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting

  15. Upper Atmosphere Neutral and Plasma Density Modeling

    Science.gov (United States)

    1993-03-31

    Semidiurnal density amplitude vs. height and latitude at 429N. 15 Figure 2. Percent density variation vs. height and local time over the equator during...March. 16 Figure 3. Semidiurnal (top) and diurnal (bottom) density variations as a function of height near the equator , for the 1979 Kwajalein...M.W., Klobuchar , J.A. and Doherty, P.H. Evaluation of six iono- spheric models as predictors of total electron content, Radio Science, 26, p. 1007, 1991

  16. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Sergey S.

    2014-11-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ{sup 13}C, δ{sup 18}O and Δ{sup 17}O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated {sup 13}CO/{sup 12}CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in {sup 13}C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH{sub 4}) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH{sub 4} to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in {sup 13}C, were found significant

  17. Box models for the evolution of atmospheric oxygen: an update

    Science.gov (United States)

    Kasting, J. F.

    1991-01-01

    A simple 3-box model of the atmosphere/ocean system is used to describe the various stages in the evolution of atmospheric oxygen. In Stage I, which probably lasted until redbeds began to form about 2.0 Ga ago, the Earth's surface environment was generally devoid of free O2, except possibly in localized regions of high productivity in the surface ocean. In Stage II, which may have lasted for less than 150 Ma, the atmosphere and surface ocean were oxidizing, while the deep ocean remained anoxic. In Stage III, which commenced with the disappearance of banded iron formations around 1.85 Ga ago and has lasted until the present, all three surface reservoirs contained appreciable amounts of free O2. Recent and not-so-recent controversies regarding the abundance of oxygen in the Archean atmosphere are identified and discussed. The rate of O2 increase during the Middle and Late Proterozoic is identified as another outstanding question.

  18. GEOS Atmospheric Model: Challenges at Exascale

    Science.gov (United States)

    Putman, William M.; Suarez, Max J.

    2017-01-01

    The Goddard Earth Observing System (GEOS) model at NASA's Global Modeling and Assimilation Office (GMAO) is used to simulate the multi-scale variability of the Earth's weather and climate, and is used primarily to assimilate conventional and satellite-based observations for weather forecasting and reanalysis. In addition, assimilations coupled to an ocean model are used for longer-term forecasting (e.g., El Nino) on seasonal to interannual times-scales. The GMAO's research activities, including system development, focus on numerous time and space scales, as detailed on the GMAO website, where they are tabbed under five major themes: Weather Analysis and Prediction; Seasonal-Decadal Analysis and Prediction; Reanalysis; Global Mesoscale Modeling, and Observing System Science. A brief description of the GEOS systems can also be found at the GMAO website. GEOS executes as a collection of earth system components connected through the Earth System Modeling Framework (ESMF). The ESMF layer is supplemented with the MAPL (Modeling, Analysis, and Prediction Layer) software toolkit developed at the GMAO, which facilitates the organization of the computational components into a hierarchical architecture. GEOS systems run in parallel using a horizontal decomposition of the Earth's sphere into processing elements (PEs). Communication between PEs is primarily through a message passing framework, using the message passing interface (MPI), and through explicit use of node-level shared memory access via the SHMEM (Symmetric Hierarchical Memory access) protocol. Production GEOS weather prediction systems currently run at 12.5-kilometer horizontal resolution with 72 vertical levels decomposed into PEs associated with 5,400 MPI processes. Research GEOS systems run at resolutions as fine as 1.5 kilometers globally using as many as 30,000 MPI processes. Looking forward, these systems can be expected to see a 2 times increase in horizontal resolution every two to three years, as well as

  19. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  20. Towards a Global Unified Model of Europa's Tenuous Atmosphere

    Science.gov (United States)

    Plainaki, Christina; Cassidy, Tim A.; Shematovich, Valery I.; Milillo, Anna; Wurz, Peter; Vorburger, Audrey; Roth, Lorenz; Galli, André; Rubin, Martin; Blöcker, Aljona; Brandt, Pontus C.; Crary, Frank; Dandouras, Iannis; Jia, Xianzhe; Grassi, Davide; Hartogh, Paul; Lucchetti, Alice; McGrath, Melissa; Mangano, Valeria; Mura, Alessandro; Orsini, Stefano; Paranicas, Chris; Radioti, Aikaterini; Retherford, Kurt D.; Saur, Joachim; Teolis, Ben

    2018-02-01

    Despite the numerous modeling efforts of the past, our knowledge on the radiation-induced physical and chemical processes in Europa's tenuous atmosphere and on the exchange of material between the moon's surface and Jupiter's magnetosphere remains limited. In lack of an adequate number of in situ observations, the existence of a wide variety of models based on different scenarios and considerations has resulted in a fragmentary understanding of the interactions of the magnetospheric ion population with both the moon's icy surface and neutral gas envelope. Models show large discrepancy in the source and loss rates of the different constituents as well as in the determination of the spatial distribution of the atmosphere and its variation with time. The existence of several models based on very different approaches highlights the need of a detailed comparison among them with the final goal of developing a unified model of Europa's tenuous atmosphere. The availability to the science community of such a model could be of particular interest in view of the planning of the future mission observations (e.g., ESA's JUpiter ICy moons Explorer (JUICE) mission, and NASA's Europa Clipper mission). We review the existing models of Europa's tenuous atmosphere and discuss each of their derived characteristics of the neutral environment. We also discuss discrepancies among different models and the assumptions of the plasma environment in the vicinity of Europa. A summary of the existing observations of both the neutral and the plasma environments at Europa is also presented. The characteristics of a global unified model of the tenuous atmosphere are, then, discussed. Finally, we identify needed future experimental work in laboratories and propose some suitable observation strategies for upcoming missions.

  1. Young women's anterior cruciate ligament injuries: an expanded model and prevention paradigm.

    Science.gov (United States)

    Elliot, Diane L; Goldberg, Linn; Kuehl, Kerry S

    2010-05-01

    Anterior cruciate ligament (ACL) injuries among young female athletes occur at rates three- to eight-times greater than in male competitors and, in general, females experience more sports injuries than males, when balanced for activity and playing time. ACL injuries are a particular concern, as they result in immediate morbidity, high economic costs and may have long-term adverse effects. While several closely monitored ACL injury preventive programmes have been effective, those efforts have not been uniformly protective nor have they achieved widespread use. To date, ACL injury prevention has focused on neuromuscular and anatomical factors without including issues relating more broadly to the athlete. Coincident with greater female sport participation are other influences that may heighten their injury risk. We review those factors, including early single sport specialization, unhealthy dietary behaviours, chronic sleep deprivation and higher levels of fatigue, substance use and abuse, and psychological issues. We augment existing models of ACL injury with these additional dimensions. The proposed expanded injury model has implications for designing injury prevention programmes. High school athletic teams are natural settings for bonded youth and influential coaches to promote healthy lifestyles, as decisions that result in better athletes also promote healthy lifestyles. As an example of how sport teams could be vehicles to address an expanded injury model, we present an existing evidenced-based sport team-centered health promotion and harm reduction programme for female athletes. Widening the lens on factors influencing ACL injury expands the prevention paradigm to combine existing training with activities to promote psychological well-being and a healthy lifestyle. If developed and shown to be effective, those programmes might better reduce injuries and, in addition, provide life skills that would benefit young female athletes both on and off the playing field.

  2. Modeling Atmospheric Emission for CMB Ground-based Observations

    Science.gov (United States)

    Errard, J.; Ade, P. A. R.; Akiba, Y.; Arnold, K.; Atlas, M.; Baccigalupi, C.; Barron, D.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; Delabrouille, J.; Dobbs, M.; Ducout, A.; Elleflot, T.; Fabbian, G.; Feng, C.; Feeney, S.; Gilbert, A.; Goeckner-Wald, N.; Halverson, N. W.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hill, C.; Holzapfel, W. L.; Hori, Y.; Inoue, Y.; Jaehnig, G. C.; Jaffe, A. H.; Jeong, O.; Katayama, N.; Kaufman, J.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Le Jeune, M.; Lee, A. T.; Leitch, E. M.; Leon, D.; Linder, E.; Matsuda, F.; Matsumura, T.; Miller, N. J.; Myers, M. J.; Navaroli, M.; Nishino, H.; Okamura, T.; Paar, H.; Peloton, J.; Poletti, D.; Puglisi, G.; Rebeiz, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K. M.; Schenck, D. E.; Sherwin, B. D.; Siritanasak, P.; Smecher, G.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Tajima, O.; Takakura, S.; Tikhomirov, A.; Tomaru, T.; Whitehorn, N.; Wilson, B.; Yadav, A.; Zahn, O.

    2015-08-01

    Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3D-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the polarbear-i project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.

  3. Applying Atmospheric Measurements to Constrain Parameters of Terrestrial Source Models

    Science.gov (United States)

    Hyer, E. J.; Kasischke, E. S.; Allen, D. J.

    2004-12-01

    Quantitative inversions of atmospheric measurements have been widely applied to constrain atmospheric budgets of a range of trace gases. Experiments of this type have revealed persistent discrepancies between 'bottom-up' and 'top-down' estimates of source magnitudes. The most common atmospheric inversion uses the absolute magnitude as the sole parameter for each source, and returns the optimal value of that parameter. In order for atmospheric measurements to be useful for improving 'bottom-up' models of terrestrial sources, information about other properties of the sources must be extracted. As the density and quality of atmospheric trace gas measurements improve, examination of higher-order properties of trace gas sources should become possible. Our model of boreal forest fire emissions is parameterized to permit flexible examination of the key uncertainties in this source. Using output from this model together with the UM CTM, we examined the sensitivity of CO concentration measurements made by the MOPITT instrument to various uncertainties in the boreal source: geographic distribution of burned area, fire type (crown fires vs. surface fires), and fuel consumption in above-ground and ground-layer fuels. Our results indicate that carefully designed inversion experiments have the potential to help constrain not only the absolute magnitudes of terrestrial sources, but also the key uncertainties associated with 'bottom-up' estimates of those sources.

  4. Validation of coupled atmosphere-fire behavior models

    Energy Technology Data Exchange (ETDEWEB)

    Bossert, J.E.; Reisner, J.M.; Linn, R.R.; Winterkamp, J.L. [Los Alamos National Lab., NM (United States); Schaub, R. [Dynamac Corp., Kennedy Space Center, FL (United States); Riggan, P.J. [Forest Service, Riverside, CA (United States)

    1998-12-31

    Recent advances in numerical modeling and computer power have made it feasible to simulate the dynamical interaction and feedback between the heat and turbulence induced by wildfires and the local atmospheric wind and temperature fields. At Los Alamos National Laboratory, the authors have developed a modeling system that includes this interaction by coupling a high resolution atmospheric dynamics model, HIGRAD, with a fire behavior model, BEHAVE, to predict the spread of wildfires. The HIGRAD/BEHAVE model is run at very high resolution to properly resolve the fire/atmosphere interaction. At present, these coupled wildfire model simulations are computationally intensive. The additional complexity of these models require sophisticated methods for assuring their reliability in real world applications. With this in mind, a substantial part of the research effort is directed at model validation. Several instrumented prescribed fires have been conducted with multi-agency support and participation from chaparral, marsh, and scrub environments in coastal areas of Florida and inland California. In this paper, the authors first describe the data required to initialize the components of the wildfire modeling system. Then they present results from one of the Florida fires, and discuss a strategy for further testing and improvement of coupled weather/wildfire models.

  5. Fractional Order Modeling of Atmospheric Turbulence - A More Accurate Modeling Methodology for Aero Vehicles

    Science.gov (United States)

    Kopasakis, George

    2014-01-01

    The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.

  6. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Gayle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vogt, Phil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aluzzi, Fernando [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homann, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  7. A Coupled Atmosphere-Ocean-Wave Modeling System

    Science.gov (United States)

    Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.

    2012-12-01

    A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.

  8. Systematic evaluation of atmospheric chemistry-transport model CHIMERE

    Science.gov (United States)

    Khvorostyanov, Dmitry; Menut, Laurent; Mailler, Sylvain; Siour, Guillaume; Couvidat, Florian; Bessagnet, Bertrand; Turquety, Solene

    2017-04-01

    Regional-scale atmospheric chemistry-transport models (CTM) are used to develop air quality regulatory measures, to support environmentally sensitive decisions in the industry, and to address variety of scientific questions involving the atmospheric composition. Model performance evaluation with measurement data is critical to understand their limits and the degree of confidence in model results. CHIMERE CTM (http://www.lmd.polytechnique.fr/chimere/) is a French national tool for operational forecast and decision support and is widely used in the international research community in various areas of atmospheric chemistry and physics, climate, and environment (http://www.lmd.polytechnique.fr/chimere/CW-articles.php). This work presents the model evaluation framework applied systematically to the new CHIMERE CTM versions in the course of the continuous model development. The framework uses three of the four CTM evaluation types identified by the Environmental Protection Agency (EPA) and the American Meteorological Society (AMS): operational, diagnostic, and dynamic. It allows to compare the overall model performance in subsequent model versions (operational evaluation), identify specific processes and/or model inputs that could be improved (diagnostic evaluation), and test the model sensitivity to the changes in air quality, such as emission reductions and meteorological events (dynamic evaluation). The observation datasets currently used for the evaluation are: EMEP (surface concentrations), AERONET (optical depths), and WOUDC (ozone sounding profiles). The framework is implemented as an automated processing chain and allows interactive exploration of the results via a web interface.

  9. Models of the Solar Atmospheric Response to Flare Heating

    Science.gov (United States)

    Allred, Joel

    2011-01-01

    I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.

  10. An Overview of Atmospheric Chemistry and Air Quality Modeling

    Science.gov (United States)

    Johnson, Matthew S.

    2017-01-01

    This presentation will include my personal research experience and an overview of atmospheric chemistry and air quality modeling to the participants of the NASA Student Airborne Research Program (SARP 2017). The presentation will also provide examples on ways to apply airborne observations for chemical transport (CTM) and air quality (AQ) model evaluation. CTM and AQ models are important tools in understanding tropospheric-stratospheric composition, atmospheric chemistry processes, meteorology, and air quality. This presentation will focus on how NASA scientist currently apply CTM and AQ models to better understand these topics. Finally, the importance of airborne observation in evaluating these topics and how in situ and remote sensing observations can be used to evaluate and improve CTM and AQ model predictions will be highlighted.

  11. Using observations to evaluate biosphere-atmosphere interactions in models

    Science.gov (United States)

    Green, Julia; Konings, Alexandra G.; Alemohammad, Seyed H.; Gentine, Pierre

    2017-04-01

    Biosphere-atmosphere interactions influence the hydrologic cycle by altering climate and weather patterns (Charney, 1975; Koster et al., 2006; Seneviratne et al., 2006), contributing up to 30% of precipitation and radiation variability in certain regions (Green et al., 2017). They have been shown to contribute to the persistence of drought in Europe (Seneviratne et al., 2006), as well as to increase rainfall in the Amazon (Spracklen et al., 2012). Thus, a true representation of these feedbacks in Earth System Models (ESMs) is crucial for accurate forecasting and planning. However, it has been difficult to validate the performance of ESMs since often-times surface and atmospheric flux data are scarce and/or difficult to observe. In this study, we use the results of a new global observational study (using remotely sensed solar-induced fluorescence to represent the biosphere flux) (Green et al., 2017) to determine how well a suite of 13 ESMs capture biosphere-atmosphere feedbacks. We perform a Conditional Multivariate Granger Causality analysis in the frequency domain with radiation, precipitation and temperature as atmospheric inputs and GPP as the biospheric input. Performing the analysis in the frequency domain allows for separation of feedbacks at different time-scales (subseasonal, seasonal or interannual). Our findings can be used to determine whether there is agreement between models, as well as, to pinpoint regions or time-scales of model bias or inaccuracy, which will provide insight on potential improvement. We demonstrate that in addition to the well-known problem of convective parameterization over land in models, the main issue in representing feedbacks between the land and the atmosphere is due to the misrepresentation of water stress. These results provide a direct quantitative assessment of feedbacks in models and how to improve them. References: Charney, J.G. Dynamics of deserts and drought in the Sahel. Quarterly Journal of the Royal Meteorological

  12. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    Science.gov (United States)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available

  13. Expanding versus non expanding universe

    CERN Document Server

    Alfonso-Faus, Antonio

    2012-01-01

    In cosmology the number of scientists using the framework of an expanding universe is very high. This model, the big-bang, is now overwhelmingly present in almost all aspects of society. It is the main stream cosmology of today. A small number of scientists are researching on the possibility of a non-expanding universe. The existence of these two groups, one very large and the other very small, is a good proof of the use of the scientific method: it does not drive to an absolute certainty. All models have to be permanently validated, falsified. Ockham's razor, a powerful philosophical tool, will probably change the amount of scientists working in each of these groups. We present here a model where a big-bang is unnecessary. It ends, in a finite time, in a second INFLATION, or a disaggregation to infinity. We also discuss the possibilities of a non-expanding universe model. Only a few references will be cited, mainly concerned with our own work in the past, thus purposely avoiding citing the many thousands of ...

  14. School on MathematicallNumerical Modelling in Earth, Atmospheric ...

    Indian Academy of Sciences (India)

    As a part of the interactive course, each candidate is expected to make a 30 min presentation on his/her perceptions and expectations. The application, together with ... mathematical physics will be assumed. The topics of lectures include: Atmosphere and Ocean General. Circulation Models as applied to the study of climate ...

  15. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  16. Modeling atmospheric effects - an assessment of the problems

    Science.gov (United States)

    Douglas G. Fox

    1976-01-01

    Our ability to simulate atmospheric processes that affect the life cycle of pollution is reviewed. The transport process is considered on three scales (a) the near-source or single-plume dispersion problem, (b) the multiple-source dispersion problem, and (c) the long-range transport. Modeling the first of these is shown to be well within the capability of generally...

  17. Laboratory and modelling studies on the atmospheric stability of levoglucosan

    Science.gov (United States)

    Tilgner, Andreas; Hoffmann, Dirk; Iinuma, Yoshiteru; Herrmann, Hartmut

    2010-05-01

    Aerosol particles are known to influence important atmospheric processes such as cloud formation and the solar radiation budget. Therefore, much effort is spend to characterise and locate the sources of atmospheric particles. Source apportionment studies using molecular tracer compounds are a common approach to distinguish between different sources. The anhydromonosaccharide levoglucosan (1,6-anhydro-β-D-glucopyranose) is an widely used and very specific tracer compound for particle emissions from natural and anthropogenic biomass combustion processes. Levoglucosan is formed in large quantities during the pyrolysis of cellulose at temperatures above 300° C. Even if levoglucosan is widely used in source apportionment studies only few studies investigated the atmospheric stability of this tracer compound so far. Furthermore, oxidation processes by free radicals in aqueous particles are not yet considered as a potential sink reaction for this highly water soluble compound. Therefore, detailed kinetic studies on the reactivity of levoglucosan towards three important atmospheric free radicals (OH, NO3 and SO4-) in aqueous solutions were performed for the first time using the laser flash photolysis technique. Laboratory studies on the stability of levoglucosan were done both in the presence and absence of other water soluble reaction partners. The results obtained in the different experiments will be presented, compared and discussed. Furthermore, the experimental data were implemented into the parcel model SPACCIM (Spectral Aerosol Cloud Chemistry Interaction Model; Wolke et al., 2005) in order to study the degradation fluxes of levoglucosan in cloud droplets and aqueous particles considering a detailed microphysics and multiphase chemistry. The model calculations, performed under different conditions (summer, winter, with cloud passages, without cloud passages, different relative humidity and iron contents), show that levoglucosan can be oxidised readily by OH

  18. Non-symmetric approach to single-screw expander and compressor modeling

    Science.gov (United States)

    Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.

    2017-08-01

    Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.

  19. Assessment of atmosphere-ocean general circulation model simulations of winter northern hemisphere atmospheric blocking

    Energy Technology Data Exchange (ETDEWEB)

    Vial, Jessica; Osborn, Tim J. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom)

    2012-07-15

    An assessment of six coupled Atmosphere-Ocean General Circulation Models (AOGCMs) is undertaken in order to evaluate their ability in simulating winter atmospheric blocking highs in the northern hemisphere. The poor representation of atmospheric blocking in climate models is a long-standing problem (e.g. D'Andrea et al. in Clim Dyn 4:385-407, 1998), and despite considerable effort in model development, there is only a moderate improvement in blocking simulation. A modified version of the Tibaldi and Molteni (in Tellus A 42:343-365, 1990) blocking index is applied to daily averaged 500 hPa geopotential fields, from the ERA-40 reanalysis and as simulated by the climate models, during the winter periods from 1957 to 1999. The two preferred regions of blocking development, in the Euro-Atlantic and North Pacific, are relatively well captured by most of the models. However, the prominent error in blocking simulations consists of an underestimation of the total frequency of blocking episodes over both regions. A more detailed analysis revealed that this error was due to an insufficient number of medium spells and long-lasting episodes, and a shift in blocking lifetime distributions towards shorter blocks in the Euro-Atlantic sector. In the Pacific, results are more diverse; the models are equally likely to overestimate or underestimate the frequency at different spell lengths. Blocking spatial signatures are relatively well simulated in the Euro-Atlantic sector, while errors in the intensity and geographical location of the blocks emerge in the Pacific. The impact of models' systematic errors on blocking simulation has also been analysed. The time-mean atmospheric circulation biases affect the frequency of blocking episodes, and the maximum event duration in the Euro-Atlantic region, while they sometimes cause geographical mislocations in the Pacific sector. The analysis of the systematic error in time-variability has revealed a negative relationship between the

  20. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey

    2011-01-01

    OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic and inorganic compounds......We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  1. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  2. Modeling atmospheric effects of the September 1859 Solar Flare

    OpenAIRE

    Thomas, Brian; Jackman, Charles,; Melott, Adrian

    2006-01-01

    We have modeled atmospheric effects, especially ozone depletion, due to a solar proton event which probably accompanied the extreme magnetic storm of 1-2 September 1859. We use an inferred proton fluence for this event as estimated from nitrate levels in Greenland ice cores. We present results showing production of odd nitrogen compounds and their impact on ozone. We also compute rainout of nitrate in our model and compare to values from ice core data.

  3. Idealized Tropical Cyclones in Atmospheric General Circulation Models

    Science.gov (United States)

    Reed, K. A.; Jablonowski, C.

    2008-12-01

    The paper discusses the design of idealized tropical cyclone experiments in Atmospheric General Circulation Models (GCMs). Our first goal is to suggest the evolution of an idealized tropical cyclone as a standard test case for atmospheric model developments that adds complexity to a dynamical-core and GCM test suite. In addition, we plan on using idealized cyclones as a test bed for hurricane-dust interactions in the Atlantic Ocean Basin and climate-hurricane sensitivity studies. A group of sensitivity tests will be presented using the National Center for Atmospheric Research's (NCAR) Community Atmosphere Model (CAM) 3.1. The tests are run in a so-called aqua-planet configuration that consists of an ocean-covered Earth with prescribed sea surface temperatures and radiative forcing. We utilize the CAM 3.1 Finite Volume dynamical core on a latitude-longitude grid at a half-degree horizontal resolution. The development of an idealized, initially weak warm-core vortex is investigated with varying initial parameters including vorticity, radius of maximum wind, latitude, and sea surface temperature. The evolution of the initial vortex is especially sensitive to the initial vorticity, and therefore the initial wind speed, and radius of maximum wind. This sensitivity is also related to the model resolution. Although model resolution has improved greatly over the last decade, improved resolution will still be needed to model tropical cyclones in global climate models. These sensitivity tests provide us with suitable initial parameter configurations to model tropical cyclogenesis in CAM 3.1 and other GCMs.

  4. Improving 1D Stellar Models with 3D Atmospheres

    Science.gov (United States)

    Rørsted Mosumgaard, Jakob; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2017-10-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  5. An Educational Look at an alternative to the Expanding Universe Model

    Science.gov (United States)

    Kriske, Richard

    2009-11-01

    The author often toys with an alternative view to the expanding universe model and believes it would be a good way to teach the Scientific method. In the author's (R.M. Kriske) model the red shift is a result of magnifying the horizon of a 4 dimensional surface. On a two dimensional surface such as the earth the horizon is not maginifiable since things on the surface naturally tilt away from the observer in every direction and everything is transformed into a curved line (the Horizon) (the students can verify this as a globe can be used with some pins in it-for example). Likewise one would expect this signature of curvature to show up on three curved space dimensions, and instead of pins, a perpendicular time dimension. As the observer looks toward the pins they tilt away from him/her and in four dimensions this means they are accelerating away from him/her even though the globe is standing still. At each point a pair is being produced with its attendant gamma ray emission, but the points are of course seen as accelerating away, simply due to the curvature of the globe and nothing else, resulting in a red shift. This author produced model has never been suggested before and never presented to the Scientific community. The students would then need to compare this to the current simpler model that point sources accelerating away from the observer undergo a redshift due to the Doppler Effect. The Students would then have to review these models and determine the size of the globe for the amount of red shift seen from the two competing models. One model has a cut- off mode, since the pins not only tip backward in the curved space model but are also cut off. How does this cut-off show up, is it simply dimming, and can an experiment be done for it? The last step of this exercise is to see if one could tell the difference between these models, and if a mixed model is better, since the Globe could also be expanding (Of course the instructor could also ask what the result

  6. A review of toxicity models for realistic atmospheric applications

    Science.gov (United States)

    Gunatilaka, Ajith; Skvortsov, Alex; Gailis, Ralph

    2014-02-01

    There are many applications that need to study human health effects caused by exposure to toxic chemicals. Risk analysis for industrial sites, study of population health impacts of atmospheric pollutants, and operations research for assessing the potential impacts of chemical releases in military contexts are some examples. Because of safety risks and the high cost of field trials involving hazardous chemical releases, computer simulations are widely used for such studies. Modelling of atmospheric transport and dispersion of chemicals released into the atmosphere to determine the toxic chemical concentrations to which individuals will be exposed is one main component of these simulations, and there are well established atmospheric dispersion models for this purpose. Estimating the human health effects caused by the exposure to these predicted toxic chemical concentrations is the other main component. A number of different toxicity models for assessing the health effects of toxic chemical exposure are found in the literature. Because these different models have been developed based on different assumptions about the plume characteristics, chemical properties, and physiological response, there is a need to review and compare these models to understand their applicability. This paper reviews several toxicity models described in the literature. The paper also presents results of applying different toxicity models to simulated concentration time series data. These results show that the use of ensemble mean concentrations, which are what atmospheric dispersion models typically provide, to estimate human health effects of exposure to hazardous chemical releases may underestimate their impact when toxic exponent, n, of the chemical is greater than one; the opposite phenomenon appears to hold when n biological recovery processes may predict greater toxicity than the explicitly parameterised models. Despite the wide variety of models of varying degrees of complexity that is

  7. Regional Climate Change in East Asia Simulated by an Interactive Atmosphere Soil Vegetation Model.

    Science.gov (United States)

    Chen, Ming; Pollard, David; Barron, Eric J.

    2004-02-01

    A regional coupled soil vegetation atmosphere model is used to study changes and interactions between climate and the ecosystem in East Asia due to increased atmospheric CO2. The largest simulated climate changes are due to the radiative influence of CO2, modified slightly by vegetation feedbacks. Annual precipitation increases by about 20% in coastal areas of northern China and in central China, but only by 8% in southern China. The strongest warming of up to 4°C occurs in summer in northern China. Generally, the climate tends to be warmer and wetter under doubled CO2 except for inland areas of northern China, where it becomes warmer and drier. Most of the changes discussed in this paper are associated with changes in the East Asian monsoon, which is intensified under doubled CO2.The largest changes and feedbacks between vegetation and climate occur in northern China. In some coastal and central areas around 40°N, temperate deciduous forests expand northward, replacing grassland due to warmer and wetter climate. Evergreen taiga retreats in the coastal northeast, causing extra cooling feedback due to less snow masking. The largest changes occur in extensive inland regions northward of 40°N, where deserts and shrub land expand due to warmer and drier conditions, and water supply is a critical factor for vegetation. These northern inland ecosystems experience considerable degradation and desertification, indicating a marked sensitivity and vulnerability to climatic change.

  8. Ozone reference models for CIRA. [COSPAR International Reference Atmosphere

    Science.gov (United States)

    Keating, G. M.; Young, D. F.; Pitts, M. C.

    1987-01-01

    The data bases and computational techniques used in recent models of the O3 distribution in the earth atmosphere are described, summarizing the results of ongoing efforts to define an O3 reference model for incorporation into CIRA. Consideration is given to the analysis of data from satellite instruments (Nimbus 7 LIMS, TOMS, and SBUV; SME UVS and IR; and AE-2 SAGE) to construct models of total column O3 and vertical O3 structure. The satellite-based model predictions are then compared with balloon, rocket, and umkehr measurements in extensive graphs: good agreement is demonstrated both among the satellite data sets and between satellite and nonsatellite data sets.

  9. Charter for the ARM Atmospheric Modeling Advisory Group

    Energy Technology Data Exchange (ETDEWEB)

    Advisory Group, ARM Atmospheric Modeling

    2016-05-01

    The Atmospheric Modeling Advisory Group of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility is guided by the following: 1. The group will provide feedback on the overall project plan including input on how to address priorities and trade-offs in the modeling and analysis workflow, making sure the modeling follows general best practices, and reviewing the recommendations provided to ARM for the workflow implementation. 2. The group will consist of approximately 6 members plus the PI and co-PI of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) pilot project. The ARM Technical Director, or his designee, serves as an ex-officio member. This size is chosen based on the ability to efficiently conduct teleconferences and to span the general needs for input to the LASSO pilot project.

  10. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble......The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the ‘most likely...... of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can...

  11. Inverse modeling of the ocean and atmosphere [Book Review

    Science.gov (United States)

    Menemenlis, Dimitris

    Two hundred years ago, when Carl Friedrich Gauss was a youth of 17, he developed the method of least squares, which he would later apply with great success to geodesic and astronomical measurements. Today the method of least squares and the related statistical concepts of linear regression and maximum likelihood form the basis of inverse theory—the set of methods that is used in a wide variety of scientific and technical fields to analyze data and to extract quantitative inferences about the physical world. Andrew Bennett's Inverse Modeling of the Ocean and Atmosphere discusses the application of inverse theory to time-dependent models of the oceanic and atmospheric circulations; the objective is to calibrate empirical model parameters, to estimate initial and boundary conditions, and to test statistical hypotheses.

  12. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium.

    Science.gov (United States)

    Wortman, Juliana C; Nahmad, Marcos; Zhang, Peng Cheng; Lander, Arthur D; Yu, Clare C

    2017-07-01

    In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.

  13. Sensitivity model study of regional mercury dispersion in the atmosphere

    Science.gov (United States)

    Gencarelli, Christian N.; Bieser, Johannes; Carbone, Francesco; De Simone, Francesco; Hedgecock, Ian M.; Matthias, Volker; Travnikov, Oleg; Yang, Xin; Pirrone, Nicola

    2017-01-01

    Atmospheric deposition is the most important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. The deposition, transport and chemical interactions of atmospheric Hg have been simulated over Europe for the year 2013 in the framework of the Global Mercury Observation System (GMOS) project, performing 14 different model sensitivity tests using two high-resolution three-dimensional chemical transport models (CTMs), varying the anthropogenic emission datasets, atmospheric Br input fields, Hg oxidation schemes and modelling domain boundary condition input. Sensitivity simulation results were compared with observations from 28 monitoring sites in Europe to assess model performance and particularly to analyse the influence of anthropogenic emission speciation and the Hg0(g) atmospheric oxidation mechanism. The contribution of anthropogenic Hg emissions, their speciation and vertical distribution are crucial to the simulated concentration and deposition fields, as is also the choice of Hg0(g) oxidation pathway. The areas most sensitive to changes in Hg emission speciation and the emission vertical distribution are those near major sources, but also the Aegean and the Black seas, the English Channel, the Skagerrak Strait and the northern German coast. Considerable influence was found also evident over the Mediterranean, the North Sea and Baltic Sea and some influence is seen over continental Europe, while this difference is least over the north-western part of the modelling domain, which includes the Norwegian Sea and Iceland. The Br oxidation pathway produces more HgII(g) in the lower model levels, but overall wet deposition is lower in comparison to the simulations which employ an O3 / OH oxidation mechanism. The necessity to perform continuous measurements of speciated Hg and to investigate the local impacts of Hg emissions and deposition, as well as interactions dependent on land use and vegetation, forests, peat

  14. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  15. Coupled Photochemical and Condensation Model for the Venus Atmosphere

    Science.gov (United States)

    Bierson, Carver; Zhang, Xi; Mendonca, Joao; Liang, Mao-Chang

    2017-10-01

    Ground based and Venus Express observations have provided a wealth of information on the vertical and latitudinal distribution of many chemical species in the Venus atmosphere [1,2]. Previous 1D models have focused on the chemistry of either the lower [3] or middle atmosphere [4,5]. Photochemical models focusing on the sulfur gas chemistry have also been independent from models of the sulfuric acid haze and cloud formation [6,7]. In recent years sulfur-bearing particles have become important candidates for the observed SO2 inversion above 80 km [5]. To test this hypothesis it is import to create a self-consistent model that includes photochemistry, transport, and cloud condensation.In this work we extend the domain of the 1D chemistry model of Zhang et al. (2012) [5] to encompass the region between the surface to 110 km. This model includes a simple sulfuric acid condensation scheme with gravitational settling. It simultaneously solves for the chemistry and condensation allowing for self-consistent cloud formation. We compare the resulting chemical distributions to observations at all altitudes. We have also validated our model cloud mass against pioneer Venus observations [8]. This updated full atmosphere chemistry model is also being applied in our 2D solver (altitude and altitude). With this 2D model we can model how the latitudinal distribution of chemical species depends on the meridional circulation. This allows us to use the existing chemical observations to place constraints on Venus GCMs [9-11].References: [1] Arney et al., JGR:Planets, 2014 [2] Vandaele et al., Icarus 2017 (pt. 1 & 2) [3] Krasnopolsky, Icarus, 2007 [4] Krasnopolsky, Icarus, 2012 [5] Zhang et al., Icarus 2012 [6] Gao et al., Icarus, 2014 [7] Krasnopolsky, Icarus, 2015 [8] Knollenberg and Hunten, JGR:Space Physics, 1980 [9] Lee et al., JGR:Planets, 2007 [10] Lebonnois et al., Towards Understanding the Climate of Venus, 2013 [11] Mendoncca and Read, Planetary and Space Science, 2016

  16. Model sensitivity studies of the decrease in atmospheric carbon tetrachloride

    Directory of Open Access Journals (Sweden)

    M. P. Chipperfield

    2016-12-01

    Full Text Available Carbon tetrachloride (CCl4 is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74 % of total, but a reported 10 % uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9 % of total is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17 % of total has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years. With an assumed CCl4 emission rate of 39 Gg year−1, the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year−1. Further progress in constraining the CCl4 budget is partly limited by

  17. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Eldiwany, B.; Alvarez, P.D. [Kalsi Engineering Inc., Sugar Land, TX (United States); Wolfe, K. [Electric Power Research Institute, Palo Alto, CA (United States)

    1996-12-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging and unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during {Delta}P closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data.

  18. Deception and Cognitive Load: Expanding our Horizon with a Working Memory Model

    Directory of Open Access Journals (Sweden)

    Siegfried Ludwig Sporer

    2016-04-01

    Full Text Available Deception and Cognitive Load: Expanding our Horizon with a Working Memory ModelAbstractRecently, studies on deception and its detection have increased dramatically. Many of these studies rely on the cognitive load approach as the sole explanatory principle to understand deception. These studies have been exclusively on lies about negative actions (usually lies of suspects of [mock] crimes. Instead, we need to re-focus more generally on the cognitive processes involved in generating both lies and truths, not just on manipulations of cognitive load. Using Baddeley's (2000, 2007, 2012 working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal, paraverbal and linguistic cues can be investigated within a single framework. The proposed model considers long-term semantic, episodic and autobiographical memory and their connections with working memory and action. It also incorporates ironic processes of mental control (Wegner, 1994, 2009, the role of scripts and schemata and retrieval cues and retrieval processes. Specific predictions of the model are outlined and support from selective studies is presented. The model is applicable to different types of reports, particularly about lies and truths about complex events, and to different modes of production (oral, hand-written, typed. Predictions regarding several moderator variables and methods to investigate them are proposed.

  19. Multi-scale atmospheric composition modelling for the Balkan region

    Science.gov (United States)

    Ganev, Kostadin; Syrakov, Dimiter; Todorova, Angelina; Prodanova, Maria; Atanasov, Emanouil; Gurov, Todor; Karaivanova, Aneta; Miloshev, Nikolai; Gadzhev, Georgi; Jordanov, Georgi

    2010-05-01

    Overview The present work describes the progress in developing of an integrated, multi-scale Balkan region oriented modeling system. The main activities and achievements at this stage of the work are: Creating, enriching and updating the necessary physiographic, emission and meteorological data bases; Installation of the models for GRID application, model tuning and validation; Extensive numerical simulations on regional (Balkan Peninsula) and local (Bulgaria) scales. Objevtives: The present work describes the progress of an application developed by the Environmental VO of the 7FP project SEE-GRID eInfrastructure for regional eScience. The application aims at developing of an integrated, multi-scale Balkan region oriented modelling system, which would be able to: -Study the atmospheric pollution transport and transformation processes (accounting also for heterogeneous chemistry and the importance of aerosols for air quality and climate) from urban to local to regional (Balkan) scales; -Track and characterize the main pathways and processes that lead to atmospheric composition formation in different scales; -Account for the biosphere-atmosphere exchange as a source and receptor of atmospheric chemical species; -Provide high quality scientifically robust assessments of the air quality and its origin, thus facilitating formulation of pollution mitigation strategies at national and Balkan level. The application is based on US EPA Models-3 system. Description of work: The main activities and achievements at this still preparatory stage of the work are: 1.) Creating, enriching and updating the necessary physiographic, emission and meteorological data bases 2.) Installation of the models for GRID application, model tuning and validation, numerical experiments and interpretation of the results: The US EPA Models 3 system is installed; software for emission speciation and for introducing emission temporal profiles is created, a procedure for calculating biogenic VOC

  20. The global change research center atmospheric chemistry model

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Jr., Francis Perry [Oregon Graduate Inst. of Science and Technology, Portland, OR (United States)

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the Ox, HOx, NOx, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  1. Improvements in the Global Reference Atmospheric Model and comparisons with a global 3-D numerical model

    Science.gov (United States)

    Justus, C. G.; Alyea, F. N.; Chimonas, George; Cunnold, D. M.

    1989-01-01

    The status of the Global Reference Atmospheric Model (GRAM) and the Mars Global Reference Atmospheric Model (MARS-GRAM) is reviewed. The wavelike perturbations observed in the Viking 1 and 2 surface pressure data, in the Mariner 9 IR spectroscopy data, and in the Viking 1 and 2 lander entry profiles were studied and the results interpreted.

  2. Modeling Large Deformation and Failure of Expanded Polystyrene Crushable Foam Using LS-DYNA

    Directory of Open Access Journals (Sweden)

    Qasim H. Shah

    2014-01-01

    Full Text Available In the initial phase of the research work, quasistatic compression tests were conducted on the expanded polystyrene (EPS crushable foam for material characterisation at low strain rates (8.3×10-3~8.3×10-2 s−1 to obtain the stress strain curves. The resulting stress strain curves are compared well with the ones found in the literature. Numerical analysis of compression tests was carried out to validate them against experimental results. Additionally gravity-driven drop tests were carried out using a long rod projectile with semispherical end that penetrated into the EPS foam block. Long rod projectile drop tests were simulated in LS-DYNA by using suggested parameter enhancements that were able to compute the material damage and failure response precisely. The material parameters adjustment for successful modelling has been reported.

  3. An Overview of Modeling Middle Atmospheric Odd Nitrogen

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Randolph; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Odd nitrogen (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, and BrONO2) constituents are important components in the control of middle atmospheric ozone. Several processes lead to the production of odd nitrogen (NO(sub y)) in the middle atmosphere (stratosphere and mesosphere) including the oxidation of nitrous oxide (N2O), lightning, downflux from the thermosphere, and energetic charged particles (e.g., galactic cosmic rays, solar proton events, and energetic electron precipitation). The dominant production mechanism of NO(sub y) in the stratosphere is N2O oxidation, although other processes contribute. Mesospheric NO(sub y) is influenced by N2O oxidation, downflux from the thermosphere, and energetic charged particles. NO(sub y) is destroyed in the middle atmosphere primarily via two processes: 1) dissociation of NO to form N and O followed by N + NO yielding N2 + O to reform even nitrogen; and 2) transport to the troposphere where HNO3 can be rapidly scavenged in water droplets and rained out of the atmosphere. There are fairly significant differences among global models that predict NO(sub y). NO(sub y) has a fairly long lifetime in the stratosphere (months to years), thus disparate transport in the models probably contributes to many of these differences. Satellite and aircraft measurement provide modeling tests of the various components of NO(sub y). Although some recent reaction rate measurements have led to improvements in model/measurement agreement, significant differences do remain. This presentation will provide an overview of several proposed sources and sinks of NO(sub y) and their regions of importance. Multi-dimensional modeling results for NO(sub y) and its components with comparisons to observations will also be presented.

  4. FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Homeier, D. [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France); Venot, O., E-mail: tremblin@astro.ex.ac.uk, E-mail: pascal.tremblin@cea.fr [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2015-05-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H{sub 2}-H{sub 2}, H{sub 2}-He, H{sub 2}O, CO, CO{sub 2}, CH{sub 4}, NH{sub 3}, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH{sub 3} quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.

  5. Expanding Ambulatory Care Pharmacy Residency Education Through a Multisite University-Affiliated Model.

    Science.gov (United States)

    Schweiss, Sarah K; Westberg, Sarah M; Moon, Jean Y; Sorensen, Todd D

    2017-12-01

    As the health-care system evolves and shifts to value-based payment systems, there is a recognized need to increase the number of ambulatory care trained pharmacists. The objective of this article is to describe the administrative structure of the University of Minnesota Postgraduate Year 1 (PGY1) Pharmacy Residency program and to encourage adoption of similar models nationally in order to expand ambulatory care residency training opportunities and meet the demand for pharmacist practitioners. Program Structure: The University of Minnesota PGY1 Pharmacy Residency program is a multisite program centered on the practice of pharmaceutical care and provision of comprehensive medication management (CMM) services in ambulatory care settings. The centralized administration of a multisite academic-affiliated training model creates efficiency in the administration process, while allowing sites to focus on clinical training. This model also offers many innovative and unique opportunities to residents. A multisite university-affiliated ambulatory care residency training model provides efficiency in program administration, while successfully accelerating the growth of quality ambulatory care residency training and supporting innovative delivery of shared core learning experiences. Consequently, practice sites grow in their service delivery capacity and quality of care.

  6. Improving the Performance Scalability of the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Mirin, Arthur [Lawrence Livermore National Laboratory (LLNL); Worley, Patrick H [ORNL

    2012-01-01

    The Community Atmosphere Model (CAM), which serves as the atmosphere component of the Community Climate System Model (CCSM), is the most computationally expensive CCSM component in typical configurations. On current and next-generation leadership class computing systems, the performance of CAM is tied to its parallel scalability. Improving performance scalability in CAM has been a challenge, due largely to algorithmic restrictions necessitated by the polar singularities in its latitude-longitude computational grid. Nevertheless, through a combination of exploiting additional parallelism, implementing improved communication protocols, and eliminating scalability bottlenecks, we have been able to more than double the maximum throughput rate of CAM on production platforms. We describe these improvements and present results on the Cray XT5 and IBM BG/P. The approaches taken are not specific to CAM and may inform similar scalability enhancement activities for other codes.

  7. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  8. Atmospheric dispersion modeling near a roadway under calm meteorological conditions

    OpenAIRE

    Fallah Shorshani, Masoud; Seigneur, Christian; POLO REHN, Lucie; CHANUT, Hervé; PELLAN, Yann; Jaffrezo, Jean-Luc; CHARRON, Aurélie; Andre, Michel

    2015-01-01

    Atmospheric pollutant dispersion near sources is typically simulated by Gaussian models because of their efficient compromise between reasonable accuracy and manageable com- putational time. However, the standard Gaussian dispersion formula applies downwind of a source under advective conditions with a well-defined wind direction and cannot calculate air pollutant concentrations under calm conditions with fluctuating wind direction and/or upwind of the emission source. Attempts have been made...

  9. Modeling Timber Supply, Fuel-Wood, and Atmospheric Carbon Mitigation

    OpenAIRE

    Lyon, Kenneth S.

    2004-01-01

    There is general agreement that global warming is occurring and that the main contributor to this probably is the buildup of green house gasses, GHG, in the atmosphere. Two main contributors are the utilization of fossil fuels and the deforestation of many regions of the world. This paper examines a number of current issues related to mitigating the global warming problem through forestry. We use discrete time optimal control to model a simplified carbon cycle. The burning of fossil fuels inc...

  10. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper

  11. Coupled atmosphere-ocean models of Titan's past.

    Science.gov (United States)

    McKay, C P; Pollack, J B; Lunine, J I; Courtin, R

    1993-03-01

    We have developed a coupled atmosphere and ocean model of Titan's surface. The atmospheric model is a 1-D spectrally-resolved radiative-convective model. The ocean thermodynamics are based upon solution theory. The ocean, initially composed of CH4, becomes progressively enriched in ethane over time. The partial pressures of N2 and CH4 in the atmosphere are dependent on the ocean temperature and composition. We find that the resulting system is stable against a runaway greenhouse. Accounting for the decreased solar luminosity, we find that Titan's surface temperature was about 20 K colder 4 Gyr ago. Without an ocean, but only small CH4 lakes, the temperature change is 12 K. In both cases we find that the surface of Titan may have been ice covered about 3 Gyr ago. In the lakes case condensation of N2 provides the ice, whereas in the ocean case the ocean freezes. The dominant factor influencing the evolution of Titan's surface temperature is the change in the solar constant--amplified, if an ocean is present, by the temperature dependence of the solubility of N2. Accretional heating can dramatically alter the surface temperature; a surface thermal flux of 500 erg cm-2 sec-1, representative of small levels of accretional heating, results in a approximately 20 K change in surface temperatures.

  12. Testing and Modeling of the Mars Atmospheric Processing Module

    Science.gov (United States)

    Muscatello, Anthony; Hintze, Paul; Meier, Anne; Petersen, Elspeth M.; Bayliss, Jon; Gomez Cano, Ricardo; Formoso, Rene; Shah, Malay; Berg, Jared; Vu, Bruce; hide

    2017-01-01

    Here we report further progress in the development of the MARCO POLO-Mars Pathfinder Atmospheric Processing Module (APM). The APM is designed to demonstrate in situ resource utilization (ISRU) of the Martian atmosphere, which primarily consists of carbon dioxide (CO2). The APM is part of a larger project with the overall goal of collecting and utilizing CO2 found in the atmosphere and water in the regolith of Mars to produce methane and oxygen to be used as rocket propellant, eliminating the need to import those to Mars for human missions, thus significantly reducing costs. The initial focus of NASA's new ISRU Project is modeling of key ISRU components, such as the CO2 Freezers and the Sabatier reactor of the APM. We have designed models of those components and verified the models with the APM by gathering additional data for the Sabatier reactor. Future efforts will be focused on simultaneous operations of the APM and other MARCO POLO-Mars Pathfinder modules.

  13. Synergies Between Grace and Regional Atmospheric Modeling Efforts

    Science.gov (United States)

    Kusche, J.; Springer, A.; Ohlwein, C.; Hartung, K.; Longuevergne, L.; Kollet, S. J.; Keune, J.; Dobslaw, H.; Forootan, E.; Eicker, A.

    2014-12-01

    In the meteorological community, efforts converge towards implementation of high-resolution (monitoring systems based on numerical weather prediction (NWP) cores. This is driven by requirements of improving process understanding, better representation of land surface interactions, atmospheric convection, orographic effects, and better forecasting on shorter timescales. This is relevant for the GRACE community since (1) these models may provide improved atmospheric mass separation / de-aliasing and smaller topography-induced errors, compared to global (ECMWF-Op, ERA-Interim) data, (2) they inherit high temporal resolution from NWP models, (3) parallel efforts towards improving the land surface component and coupling groundwater models; this may provide realistic hydrological mass estimates with sub-diurnal resolution, (4) parallel efforts towards re-analyses, with the aim of providing consistent time series. (5) On the other hand, GRACE can help validating models and aids in the identification of processes needing improvement. A coupled atmosphere - land surface - groundwater modelling system is currently being implemented for the European CORDEX region at 12.5 km resolution, based on the TerrSysMP platform (COSMO-EU NWP, CLM land surface and ParFlow groundwater models). We report results from Springer et al. (J. Hydromet., accept.) on validating the water cycle in COSMO-EU using GRACE and precipitation, evapotranspiration and runoff data; confirming that the model does favorably at representing observations. We show that after GRACE-derived bias correction, basin-average hydrological conditions prior to 2002 can be reconstructed better than before. Next, comparing GRACE with CLM forced by EURO-CORDEX simulations allows identifying processes needing improvement in the model. Finally, we compare COSMO-EU atmospheric pressure, a proxy for mass corrections in satellite gravimetry, with ERA-Interim over Europe at timescales shorter/longer than 1 month, and spatial

  14. Attribution of recent trends in atmospheric methane using inverse modelling

    Science.gov (United States)

    McNorton, Joe; Wilson, Chris; Gloor, Manuel; Chipperfield, Martyn

    2017-04-01

    Atmospheric methane (CH4) accounts for approximately 20% of the total direct anthropogenic radiative forcing by long-lived greenhouse gases (0.48±0.05 Wm-2), the second largest contributor after CO2. Atmospheric observations highlight two notable changes in CH4 since 2007. Firstly, the growth rate of methane increased to ˜7ppb/yr. Secondly, the CH4 13C/12C-ratio (δ13C) has become increasingly 13C-depleted. One possible explanation for both of these, is an increase in 13C-depleted CH4 emissions. This could be through increases in natural biogenic sources (e.g. wetlands), anthropogenic biogenic sources (e.g. agriculture) or a combination of both. A decrease in 13C-enriched non-biogenic emissions (e.g. biomass burning) could be an explanation for the 13C-depletion, but does not explain the CH4 increase. A reduction in the atmospheric concentration of OH, the main oxidant for atmospheric methane, could also explain both 13C-depletion and CH4 increase. We have performed a synthesis inversion using a 3-D atmospheric global chemical transport model, TOMCAT, for both CH4 and δ13C from 2005-2014. The inversion uses surface observations of both CH4 and δ13C to spatially constrain source types and possible changes to OH concentration. We will use results from this synthesis inversion to attribute the upturn in CH4 growth to specific source and sinks, and to discuss the uncertainties in this attribution.

  15. The Atmospheric Circulation of Hot Jupiters: a Hierarchical Modeling Approach

    Science.gov (United States)

    Komacek, Thaddeus D.; Showman, Adam P.

    2017-10-01

    numerically simulated vertical mixing rates with our analytic theory. As a result, one can use our theoretically predicted vertical mixing rates as input for one-dimensional models of cloud formation and disequilibrium chemistry in hot Jupiter atmospheres.

  16. Regional forecasting with global atmospheric models; Third year report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  17. Regional forecasting with global atmospheric models; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.

  18. Continuous-time random-walk model for anomalous diffusion in expanding media

    Science.gov (United States)

    Le Vot, F.; Abad, E.; Yuste, S. B.

    2017-09-01

    Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium

  19. Computer modeling of large asteroid impacts into continental and oceanic sites: Atmospheric, cratering, and ejecta dynamics

    Science.gov (United States)

    Roddy, D. J.; Schuster, S. H.; Rosenblatt, M.; Grant, L. B.; Hassig, P. J.; Kreyenhagen, K. N.

    1988-01-01

    Numerous impact cratering events have occurred on the Earth during the last several billion years that have seriously affected our planet and its atmosphere. The largest cratering events, which were caused by asteroids and comets with kinetic energies equivalent to tens of millions of megatons of TNT, have distributed substantial quantities of terrestrial and extraterrestrial material over much or all of the Earth. In order to study a large-scale impact event in detail, computer simulations were completed that model the passage of a 10 km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics associated with impact of the asteroid into two different targets, i.e., an oceanic site and a continental site. The calcuations were designed to broadly represent giant impact events that have occurred on the Earth since its formation and specifically represent an impact cratering event proposed to have occurred at the end of Cretaceous time. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock that expanded radially outward. Behind the shock front was a region of highly shock compressed and intensely heated air. Behind the asteroid, rapid expansion of this shocked air created a large region of very low density that also expanded away from the impact area. Calculations of the cratering events in both the continental and oceanic targets were carried to 120 s. Despite geologic differences, impacts in both targets developed comparable dynamic flow fields, and by approx. 29 s similar-sized transient craters approx. 39 km deep and approx. 62 km across had formed. For all practical purposes, the atmosphere was nearly completely removed from the impact area for tens of seconds, i.e., air pressures were less than fractions of a bar out to ranges of over 50 km. Consequently, much of the asteroid and target materials were ejected upward into a near vacuum. Effects of secondary

  20. Expanding the developmental models of writing: A direct and indirect effects model of developmental writing (DIEW)

    Science.gov (United States)

    Kim, Young-Suk Grace; Schatschneider, Christopher

    2016-01-01

    We investigated direct and indirect effects of component skills on writing (DIEW) using data from 193 children in Grade 1. In this model, working memory was hypothesized to be a foundational cognitive ability for language and cognitive skills as well as transcription skills, which, in turn, contribute to writing. Foundational oral language skills (vocabulary and grammatical knowledge) and higher-order cognitive skills (inference and theory of mind) were hypothesized to be component skills of text generation (i.e., discourse-level oral language). Results from structural equation modeling largely supported a complete mediation model among four variations of the DIEW model. Discourse-level oral language, spelling, and handwriting fluency completely mediated the relations of higher-order cognitive skills, foundational oral language, and working memory to writing. Moreover, language and cognitive skills had both direct and indirect relations to discourse-level oral language. Total effects, including direct and indirect effects, were substantial for discourse-level oral language (.46), working memory (.43), and spelling (.37), followed by vocabulary (.19), handwriting (.17), theory of mind (.12), inference (.10), and grammatical knowledge (.10). The model explained approximately 67% of variance in writing quality. These results indicate that multiple language and cognitive skills make direct and indirect contributions, and it is important to consider both direct and indirect pathways of influences when considering skills that are important to writing. PMID:28260812

  1. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... and coastal conditions, z0 parameterization method often fails in reproducing z0 because the complexity of the sea state cannot be represented by a few selected wave parameters. Different from the parameterization method, physics-based methods take the idea that the loss of momentum and kinetic energy from...... the above mentioned challenges, a wave boundary layer model (WBLM) is implemented in the wave model SWAN as a new Sin. The WBLM Sin is based on the momentum and kinetic energy conservation. The wave-induced mean wind profile changes at all vertical levels within the wave boundary layer, and the spectral...

  2. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than......This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... for the coastal condition. With the current model setup, using high spatial resolution gives better results for strong winds both for the open ocean and coastal sites. The signicant wave height (Hm0) is very sensitive to the model resolution and bathymetry data for the coastal zone. In addition, using Janssen...

  3. Expanding the Developmental Models of Writing: A Direct and Indirect Effects Model of Developmental Writing (DIEW)

    Science.gov (United States)

    Kim, Young-Suk Grace; Schatschneider, Christopher

    2017-01-01

    We investigated direct and indirect effects of component skills on writing (DIEW) using data from 193 children in Grade 1. In this model, working memory was hypothesized to be a foundational cognitive ability for language and cognitive skills as well as transcription skills, which, in turn, contribute to writing. Foundational oral language skills…

  4. Modeling Atmospheric Electromagnetic Field Following a Lightning Discharge

    Science.gov (United States)

    Davydenko, S.; Mareev, E.; Sergeev, A. S.

    2013-12-01

    A numerical model describing the electromagnetic field in the vicinity of an isolated lightning discharge is developed. Both the slow transient (quasistatic) electric field caused by the Maxwell relaxation of the charge disturbance and fast transient (electromagnetic pulse) are calculated in a plane atmosphere using the FDTD method. The lightning discharge is presented as a pulse current producing a distributed charge dipole inside the thundercloud in a case of intra-cloud (IC) flash or monopole charge in a case of cloud-to-ground (CG) flash. A temporal profile of the discharge current implies an existence of the return stroke, continuous current, and its fine features like the M-component. Temporal and spatial dependences of the atmospheric electric field on the flash type (IC or CG), distance to the discharge, disturbance of the electric conductivity inside the thundercloud, altitude(s) and lateral scale(s) of the charge region(s), temporal profile of the discharge current, and velocity of the return stroke are considered. A dependence of the net electric charge transferred to the upper atmospheric layers on the parameters of IC and CG flashes is studied. It is shown that both IC and CG flashes could serve as effective sources in the global electric circuit. A retrieval of the basic discharge parameters on the results of the one- or multipoint measurements of the both electromagnetic and quasistatic electric fields is discussed.

  5. Observations and Modeling of Plasma Waves in the Solar Atmosphere

    Science.gov (United States)

    Liu, W.; Ofman, L.; Downs, C.

    2016-12-01

    The solar atmosphere, especially the extended corona, provides rich observations of magnetohydrodynamic (MHD) waves and plasma waves in general. Such waves can be used as seismological tools to probe the physical conditions of the medium in which they travel, such as the coronal magnetic field and plasma parameters. Recent high-resolution imaging and spectroscopic observations in extreme ultraviolet (EUV) by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and in UV by the Interface Region Imaging Spectrograph (IRIS) have opened a new chapter in understanding these waves and in utilizing them for coronal seismology. We will review such new observations of two intimately related phenomena - global EUV waves (so-called "EIT waves") associated with coronal mass ejections (CMEs) and quasi-periodic, fast-mode magnetosonic wave trains associated with flares. We will focus on the generation and propagation of global EUV waves and their interaction with coronal structures, as well as the correlation of AIA-detected fast-mode wave trains with flare pulsations seen from radio to hard X-ray wavelengths. We will also present recent MHD modeling efforts in reproducing these waves using realistic, observationally-driven simulations. We will discuss the roles of such waves in energy transport within the solar atmosphere and in their associated CME/flare eruptions.

  6. Modeling the Martian Atmosphere with the LMD Global Climate Model

    Science.gov (United States)

    Forget, F.; Millour, E.; Gonzalez-Galindo, F.; Lebonnois, S.; Madeleine, J.-B.; Meslin, P.-Y.; Montabone, L.; Spiga, A.; Hourdin, F.; Lefevre, F.; Montmessin, F.; Lewis, S. R.; Read, P.; Lopez-Valverde, M. A.; Gilli, G.

    2008-11-01

    The Global Climate Model developed at LMD (Paris) in collaboration with IAA (Spain), AOPP and the OU (UK) has been improved. It is used for many applications (water, dust, CO2, radon cycles, photochemistry, thermosphere, ionosphere, etc.).

  7. Disordered eating among Asian American college women: A racially expanded model of objectification theory.

    Science.gov (United States)

    Cheng, Hsiu-Lan; Tran, Alisia G T T; Miyake, Elisa R; Kim, Helen Youngju

    2017-03-01

    Objectification theory has been applied to understand disordered eating among college women. A recent extension of objectification theory (Moradi, 2010) conceptualizes racism as a socialization experience that shapes women of color's objectification experiences, yet limited research has examined this theoretical assertion. The present study proposed and examined a racially expanded model of objectification theory that postulated perceived racial discrimination, perpetual foreigner racism, and racial/ethnic teasing as correlates of Asian American college women's (N = 516) self-objectification processes and eating disorder symptomatology. Perceived racial discrimination, perpetual foreigner racism, and racial/ethnic teasing were indirectly associated with eating disordered symptomatology through self-objectification processes of internalization of media ideals of beauty (media internalization), body surveillance, and body shame. Results support the inclusion of racial stressors as contexts of objectification for Asian American women. The present findings also underscore perceived racial discrimination, racial/ethnic teasing, and perpetual foreigner racism as group-specific risk factors with major theoretical, empirical, and clinical relevance to eating disorder research and treatment with Asian American college women. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Can we clinically recognize a vascular depression? The role of personality in an expanded threshold model.

    Science.gov (United States)

    Turk, Bela R; Gschwandtner, Michael E; Mauerhofer, Michaela; Löffler-Stastka, Henriette

    2015-05-01

    The vascular depression (VD) hypothesis postulates that cerebrovascular disease may "predispose, precipitate, or perpetuate" a depressive syndrome in elderly patients. Clinical presentation of VD has been shown to differ to major depression in quantitative disability; however, as little research has been made toward qualitative phenomenological differences in the personality aspects of the symptom profile, clinical diagnosis remains a challenge.We attempted to identify differences in clinical presentation between depression patients (n = 50) with (n = 25) and without (n = 25) vascular disease using questionnaires to assess depression, affect regulation, object relations, aggressiveness, alexithymia, personality functioning, personality traits, and counter transference.We were able to show that patients with vascular dysfunction and depression exhibit significantly higher aggressive and auto-aggressive tendencies due to a lower tolerance threshold. These data indicate that VD is a separate clinical entity and secondly that the role of personality itself may be a component of the disease process. We propose an expanded threshold disease model incorporating personality functioning and mood changes. Such findings might also aid the development of a screening program, by serving as differential criteria, ameliorating the diagnostic procedure.

  9. Atmospheric Modelling for Air Quality Study over the complex Himalayas

    Science.gov (United States)

    Surapipith, Vanisa; Panday, Arnico; Mukherji, Aditi; Banmali Pradhan, Bidya; Blumer, Sandro

    2014-05-01

    An Atmospheric Modelling System has been set up at International Centre for Integrated Mountain Development (ICIMOD) for the assessment of Air Quality across the Himalaya mountain ranges. The Weather Research and Forecasting (WRF) model version 3.5 has been implemented over the regional domain, stretching across 4995 x 4455 km2 centred at Ichhyakamana , the ICIMOD newly setting-up mountain-peak station (1860 m) in central Nepal, and covering terrains from sea-level to the Everest (8848 m). Simulation is carried out for the winter time period, i.e. December 2012 to February 2013, when there was an intensive field campaign SusKat, where at least 7 super stations were collecting meteorology and chemical parameters on various sites. The very complex terrain requires a high horizontal resolution (1 × 1 km2), which is achieved by nesting the domain of interest, e.g. Kathmandu Valley, into 3 coarser ones (27, 9, 3 km resolution). Model validation is performed against the field data as well as satellite data, and the challenge of capturing the necessary atmospheric processes is discussed, before moving forward with the fully coupled chemistry module (WRF-Chem), having local and regional emission databases as input. The effort aims at finding a better understanding of the atmospheric processes and air quality impact on the mountain population, as well as the impact of the long-range transport, particularly of Black Carbon aerosol deposition, to the radiative budget over the Himalayan glaciers. The higher rate of snowcap melting, and shrinkage of permafrost as noticed by glaciologists is a concern. Better prediction will supply crucial information to form the proper mitigation and adaptation strategies for saving people lives across the Himalayas in the changing climate.

  10. Middle Atmosphere Program. Handbook for MAP. Volume 31: Reference models of trace species for the COSPAR international reference atmosphere

    Science.gov (United States)

    Keating, G. M. (Editor)

    1989-01-01

    A set of preliminary reference atmosphere models of significant trace species which play important roles in controlling the chemistry, radiation budget, and circulation patterns of the atmosphere were produced. These models of trace species distributions are considered to be reference models rather than standard models; thus, it was not crucial that they be correct in an absolute sense. These reference models can serve as a means of comparison between individual observations, as a first guess in inversion algorithms, and as an approximate representation of observations for comparison to theoretical calculations.

  11. Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2009-04-01

    Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.

  12. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    Science.gov (United States)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  13. Open-source Software for Exoplanet Atmospheric Modeling

    Science.gov (United States)

    Cubillos, Patricio; Blecic, Jasmina; Harrington, Joseph

    2018-01-01

    I will present a suite of self-standing open-source tools to model and retrieve exoplanet spectra implemented for Python. These include: (1) a Bayesian-statistical package to run Levenberg-Marquardt optimization and Markov-chain Monte Carlo posterior sampling, (2) a package to compress line-transition data from HITRAN or Exomol without loss of information, (3) a package to compute partition functions for HITRAN molecules, (4) a package to compute collision-induced absorption, and (5) a package to produce radiative-transfer spectra of transit and eclipse exoplanet observations and atmospheric retrievals.

  14. Venus Global Reference Atmospheric Model Status and Planned Updates

    Science.gov (United States)

    Justh, H. L.; Cianciolol, A. M. Dwyer

    2017-01-01

    The Venus Global Reference Atmospheric Model (Venus-GRAM) was originally developed in 2004 under funding from NASA's In Space Propulsion (ISP) Aerocapture Project to support mission studies at the planet. Many proposals, including NASA New Frontiers and Discovery, as well as other studies have used Venus-GRAM to design missions and assess system robustness. After Venus-GRAM's release in 2005, several missions to Venus have generated a wealth of additional atmospheric data, yet few model updates have been made to Venus-GRAM. This paper serves to address three areas: (1) to present the current status of Venus-GRAM, (2) to identify new sources of data and other upgrades that need to be incorporated to maintain Venus-GRAM credibility and (3) to identify additional Venus-GRAM options and features that could be included to increase its capability. This effort will de-pend on understanding the needs of the user community, obtaining new modeling data and establishing a dedicated funding source to support continual up-grades. This paper is intended to initiate discussion that can result in an upgraded and validated Venus-GRAM being available to future studies and NASA proposals.

  15. Modeling atmospheric deposition using a stochastic transport model

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.L.

    1999-12-17

    An advanced stochastic transport model has been modified to include the removal mechanisms of dry and wet deposition. Time-dependent wind and turbulence fields are generated with a prognostic mesoscale numerical model and are used to advect and disperse individually released particles that are each assigned a mass. These particles are subjected to mass reduction in two ways depending on their physical location. Particles near the surface experience a decrease in mass using the concept of a dry deposition velocity, while the mass of particles located within areas of precipitation are depleted using a scavenging coefficient. Two levels of complexity are incorporated into the particle model. The simple case assumes constant values of dry deposition velocity and scavenging coefficient, while the more complex case varies the values according to meteorology, surface conditions, release material, and precipitation intensity. Instantaneous and cumulative dry and wet deposition are determined from the mass loss due to these physical mechanisms. A useful means of validating the model results is with data available from a recent accidental release of Cesium-137 from a steel-processing furnace in Algeciras, Spain in May, 1998. This paper describes the deposition modeling technique, as well as a comparison of simulated concentration and deposition with measurements taken for the Algeciras release.

  16. Atmospheric Probe Model: Construction and Wind Tunnel Tests

    Science.gov (United States)

    Vogel, Jerald M.

    1998-01-01

    The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.

  17. Reference model atmosphere calculation - The Sunspot sunspot model

    Science.gov (United States)

    Avrett, E. H.

    1981-01-01

    A composite temperature-density model of sunspots is developed from the results of five previous modeling attempts. The model is designed to describe the region extending from the deepest photospheric layers up through the chromosphere-corona transition region. Photospheric, chromospheric, and transition region temperature distributions proposed by other authors are employed to quantity the phenomena out to 2280 km. Additional calculations yield the various line profiles, the internal properties of the region above the sunspot including the chromospheric net radiative cooling rates, and the radiative flux as a function of depth in the photosphere. Observations of the hydrogen ion flux is used to account for the net cooling in the temperature minimum region. Furthermore, the integrated radiative flux is found to be constant with depth in the photosphere.

  18. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  19. Expanding the Early and Late Starter Model of Criminal Justice Involvement for Forensic Mental Health Clients.

    Science.gov (United States)

    Crocker, Anne G; Martin, Michael S; Leclair, Marichelle C; Nicholls, Tonia L; Seto, Michael C

    2017-11-27

    The early and late starter model provides one of the most enduring frameworks for understanding the developmental course and severity of violence and criminality among individuals with severe mental illness. We expanded the model to account for differences in the age of onset of criminal behavior and added a group with no prior contact with the justice or mental health systems. We sampled 1,800 men and women found Not Criminally Responsible on account of Mental Disorder in 3 Canadian provinces. Using a retrospective file-based study, we explored differences in criminal, health, demographic, and social functioning characteristics, processing through the forensic psychiatric system and recidivism outcomes of 5 groups. We replicated prior research, finding more typical criminogenic needs among those with early onset crime. Those with crime onset after mental illness were more likely to show fewer criminogenic needs and to have better outcomes upon release than those who had crime onset during adulthood, before mental illness. Individuals with no prior contact with mental health or criminal justice had higher functioning prior to their crime and had a lower risk of reoffending. Given little information is needed to identify the groups, computing the distribution of these groups within forensic mental health services or across services can provide estimates of potential intensity or duration of services that might be needed. This study suggests that distinguishing subgroups of forensic clients based on the sequence of onset of mental illness and criminal behavior and on the age of onset of criminal behavior may be useful to identify criminogenic needs and predict outcomes upon release. This updated framework can be useful for planning organization of services, understanding case mix, as well as patient flow in forensic services and flow of mentally disordered offenders in correctional services. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA)

    Energy Technology Data Exchange (ETDEWEB)

    Kalhori, Ebrahim Mohammadi, E-mail: zarrabi62@yahoo.com [Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, P.O. Box No: 31485/561, Alborz, Karaj (Iran, Islamic Republic of); Yetilmezsoy, Kaan, E-mail: yetilmez@yildiz.edu.tr [Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, 34220 Davutpasa, Esenler, Istanbul (Turkey); Uygur, Nihan, E-mail: uygur.n@gmail.com [Department of Environmental Engineering, Faculty of Engineering, Adiyaman University, 02040 Altinsehir, Adiyaman (Turkey); Zarrabi, Mansur, E-mail: mansor62@gmail.com [Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, P.O. Box No: 31485/561, Alborz, Karaj (Iran, Islamic Republic of); Shmeis, Reham M. Abu, E-mail: r.abushmeis@yahoo.com [Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, PO Box 140753, code 11814, Amman (Jordan)

    2013-12-15

    Lightweight Expanded Clay Aggregate (LECA) modified with an aqueous solution of magnesium chloride MgCl{sub 2} and hydrogen peroxide H{sub 2}O{sub 2} was used to remove Cr(VI) from aqueous solutions. The adsorption properties of the used adsorbents were investigated through batch studies, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Fluorescence Spectroscopy (XRF), and Fourier Transform Infrared (FTIR) spectroscopy. The effect created by magnesium chloride on the modification of the LECA surface was greater than that of hydrogen peroxide solution and showed a substantial increase in the specific surface area which has a value of 76.12 m{sup 2}/g for magnesium chloride modified LECA while the values of 53.72 m{sup 2}/g, and 11.53 m{sup 2}/g were found for hydrogen peroxide modified LECA and natural LECA, respectively. The extent of surface modification with enhanced porosity in modified LECA was apparent from the recorded SEM patterns. XRD and FTIR studies of themodified LECA surface did not show any structural distortion. The adsorption kinetics was found to follow the modified Freundlich kinetic model and the equilibrium data fitted the Sips and Dubinin-Radushkevich equations better than other models. Maximum sorption capacities were found to be 198.39, 218.29 and 236.24 mg/g for natural LECA, surface modified LECA with H{sub 2}O{sub 2} and surface modified LECA with MgCl{sub 2}, respectively. Adsorbents were found to have only a weak effect on conductivity and turbidity of aqueous solutions. Spent natural and surface modified LECA with MgCl{sub 2} was best regenerated with HCl solution, while LECA surface modified with H{sub 2}O{sub 2} was best regenerated with HNO{sub 3} concentrated solution. Thermal method showed a lower regeneration percentage for all spent adsorbents.

  1. Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling

    Science.gov (United States)

    Luecken, D. J.; Hutzell, W. T.; Strum, M. L.; Pouliot, G. A.

    2012-02-01

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical production, although 25% or more result from direct emissions in urban areas during winter. Isoprene is the major precursor of formaldehyde in most areas during summer, contributing 20-60% of total production, with the magnitude being spatially variable. Other alkenes from anthropogenic and/or biogenic emissions dominate formaldehyde production in winter, contributing 60-85% of total formation, and are prominent contributors in summer. Alkenes, including biogenic alkenes, dominate acetaldehyde production during both seasons. These conclusions are based on the degradation of emitted VOCs described by the SAPRC07TB chemical mechanism, but even this detailed model has difficulty reproducing observed values better than a factor of 2. The substantial role of isoprene and other alkenes in aldehyde formation emphasizes that we examine and improve emission estimates of these compounds. Until we can estimate the emissions and understand the chemistry of VOC precursors to aldehyde formation with greater certainty, it will be difficult to accurately predict atmospheric concentrations of aldehydes and develop strategies to reduce their concentrations.

  2. A simple empirical model estimating atmospheric CO2 background concentrations

    Science.gov (United States)

    Reuter, M.; Buchwitz, M.; Schneising, O.; Heymann, J.; Guerlet, S.; Cogan, A. J.; Bovensmann, H.; Burrows, J. P.

    2012-02-01

    A simple empirical CO2 model (SECM) is presented to estimate column-average dry-air mole fractions of atmospheric CO2 (XCO2) as well as mixing ratio profiles. SECM is based on a simple equation depending on 17 empirical parameters, latitude, and date. The empirical parameters have been determined by least squares fitting to NOAA's (National Oceanic and Atmospheric Administration) assimilation system CarbonTracker version 2010 (CT2010). Comparisons with TCCON (total column carbon observing network) FTS (Fourier transform spectrometer) measurements show that SECM XCO2 agrees quite well with reality. The synthetic XCO2 values have a standard error of 1.39 ppm and systematic station-to-station biases of 0.46 ppm. Typical column averaging kernels of the TCCON FTS, a SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY), and two GOSAT (Greenhouse gases Observing SATellite) XCO2 retrieval algorithms have been used to assess the smoothing error introduced by using SECM profiles instead of CT2010 profiles as a priori. The additional smoothing error amounts to 0.17 ppm for a typical SCIAMACHY averaging kernel and is most times much smaller for the other instruments (e.g. 0.05 ppm for a typical TCCON FTS averaging kernel). Therefore, SECM is well-suited to provide a priori information for state of the art ground-based (FTS) and satellite-based (GOSAT, SCIAMACHY) XCO2 retrievals. Other potential applications are: (i) quick check for obvious retrieval errors (by monitoring the difference to SECM), (ii) near real time processing systems (that cannot make use of models like CT2010 operated in delayed mode), (iii) "CO2 proxy" methods for XCH4 retrievals (as correction for the XCO2 background), (iv) observing system simulation experiments especially for future satellite missions.

  3. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    Science.gov (United States)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The

  4. The Long, Hard Journey: Expanding the Use of NASA Data and Models for Sustainable Development Planning Around the World

    Science.gov (United States)

    Khan, Maudood; Limaye, Ashutosh; Crosson, William; Unal, Alper; Kete, nancy; Rickman, Douglas

    2009-01-01

    In 2007, the National Research Council's committee on Extending Observations and Research Results to Practical Applications recommended that NASA's Applied Science Program (ASP) directly engage with a broader community of users - not just federal agencies. Soon afterwards, scientists at the NASA Marshall Space Flight Center began discussions on a collaborative research project with EMBARQ - the World Resource Institute's Center for Sustainable Transport. The discussions initially focused on how best to utilize satellite observations and atmospheric models for assessing the impact of a proposed transportation project on land use and air quality. Discussions exposed the participants to a broad spectrum of science and policy challenges that these diverse organizations face on a routine basis. It brought into clear focus the need for an observation-modeling system that will allow a proactive approach towards development planning, and the fact that satellite systems do not always provide the spatial and temporal resolution useful for urban-scale applications, underscoring the need for earth system models to bridge this gap. Realizing the significant risk that unplanned urbanization and climate change pose to the social and functional stability of large cities, both organizations decided to expand the scope of their preliminary discussion to include water resources and agriculture. A pilot project, funded by NASA ASP, EMBARQ and Istanbul Technical University focused on quantifying the magnitude and extent of urbanization in Istanbul, and analyzed the combined effect of urbanization and projected climate change on local climate, air quality, and its consequent effects on agricultural productivity. Preliminary results show that Istanbul has undergone a significant amount of Land Use/Land Cover change over the past two decades. While some forested areas have been lost to urban-landscapes, urbanization has mostly occurred over former croplands due to the fact that in

  5. The balance model of oxygen enrichment of atmospheric air

    Science.gov (United States)

    Popov, Alexander

    2013-04-01

    The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted

  6. Thermodynamic modeling of atmospheric aerosols: 0-100% relative humidity

    Science.gov (United States)

    Dutcher, Cari S.; Ge, Xinlei; Asato, Caitlin; Wexler, Anthony S.; Clegg, Simon L.

    2013-05-01

    Accurate models of water and solute activities in aqueous atmospheric aerosols are central to predicting aerosol size, optical properties and cloud formation. A powerful method has been recently developed (Dutcher et al. JPC 2011, 2012, 2013) for representing the thermodynamic properties of multicomponent aerosols at low and intermediate levels of RH (adjustable model parameters, allowing for a unified thermodynamic treatment for a wider range of atmospheric systems. The long-range interactions due to electrostatic screening of ions in solution are included as a mole fraction based Pitzer-Debye-Hückel (PDH) term. Equations for the Gibbs free energy, solvent and solute activity, and solute concentration are derived, yielding remarkable agreement between measured and fitted solute concentration and osmotic coefficients for solutions over the entire 0 to 100% RH range. By relating the values of the energy of sorption in each hydration layer to known short-range Coulombic electrostatic relationships governed by the size and dipole moment of the solute and solvent molecules, it may be possible to reduce the number of parameters for each solute. Modified equations for mixtures that take into account the long range PDH term will also be presented; these equations include no additional parameters.

  7. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change

    Science.gov (United States)

    Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.

    2015-01-01

    Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in

  8. Numerical simulations of atmospheric dispersion of iodine-131 by different models

    OpenAIRE

    Ádám Leelőssy; Róbert Mészáros; Attila Kovács; István Lagzi; Tibor Kovács

    2017-01-01

    Nowadays, several dispersion models are available to simulate the transport processes of air pollutants and toxic substances including radionuclides in the atmosphere. Reliability of atmospheric transport models has been demonstrated in several recent cases from local to global scale; however, very few actual emission data are available to evaluate model results in real-life cases. In this study, the atmospheric dispersion of 131I emitted to the atmosphere during an industrial process was sim...

  9. Numerical simulations of atmospheric dispersion of iodine-131 by different models

    OpenAIRE

    Leelőssy, Ádám; Mészáros, Róbert; Kovács, Attila; Lagzi, István; Kovács, Tibor

    2016-01-01

    Several dispersion models are available to simulate the transport processes of air pollutants and toxic substances including radionuclides in the atmosphere. Reliability of atmospheric transport models has been demonstrated in several recent cases from local to global scale, however, very few actual emission data are available to evaluate model results in real-life cases. In this study, the atmospheric dispersion of 131I emitted to the atmosphere during an industrial process was simulated wit...

  10. ATLAS9: Model atmosphere program with opacity distribution functions

    Science.gov (United States)

    Kurucz, Robert L.

    2017-10-01

    ATLAS9 computes model atmospheres using a fixed set of pretabulated opacities, allowing one to work on huge numbers of stars and interpolate in large grids of models to determine parameters quickly. The code works with two different sets of opacity distribution functions (ODFs), one with “big” wavelength intervals covering the whole spectrum and the other with 1221 “little” wavelength intervals covering the whole spectrum. The ODFs use a 12-step representation; the radiation field is computed starting with the highest step and working down. If a lower step does not matter because the line opacity is small relative to the continuum at all depths, all the lower steps are lumped together and not computed to save time.

  11. FinROSE - middle atmospheric chemistry transport model

    Energy Technology Data Exchange (ETDEWEB)

    Damski, J.; Thoelix, L.; Backman, L. (Research and Development, Finnish Meteorological Inst., Helsinki (FI)); Taalas, P. (Regional and Technical Cooperation for Development Dept. World Meteorological Organization, Geneve (CH)); Kulmala, M. (Helsinki Univ. (FI). Div. of Atmospheric Sciences)

    2007-07-01

    The development and performance of a three-dimensional global middle atmospheric chemistry transport model FinROSE is described. The FinROSE chemistry transport model includes a numerical scheme for stratospheric chemistry with parameterizations for heterogeneous processing on polar stratospheric clouds (PSC) and on liquid binary aerosols together with a parameterisation of large nitric acid trihydrate particles (i.e. NAT-rocks) and PSC sedimentation. The total number of trace species in the model is 34 and the total number of gas-phase reactions, photodissociation processes and heterogeneous reactions is about 150. The model is forced by external wind and temperature fields. The simulations are normally performed in a 5 deg x 10 deg (lat. x long.) grid from the surface up to around 0.1 hPa, with a vertical resolution of ca. 1.5 km in the stratosphere. Long-term simulations (40 to 50 years) have been done using winds and temperatures from ECMWF ERA40 analyses. The performance of the model in describing the stratospheric composition and chemistry is shown and evaluated in this paper. In general, the FinROSE results show a good comparison with measured total ozone. Also the timing, the depth and the deepening of the Antarctic ozone hole, and the responsible processes are captured well in the model simulations. (orig.)

  12. Indirect Global Warming Potentials of Halons Using Atmospheric Models

    Science.gov (United States)

    Youn, D.; Patten, K. O.; Wuebbles, D. J.

    2007-05-01

    Emission of bromochlorofluorocarbons, or Halons, results in stratospheric ozone depletion. This leads to cooling of the climate system in the opposite direction to direct warming contribution of the Halons as greenhouse gases. This cooling is a key indirect effect of Halons on radiative forcing or climate. The Global Warming Potential (GWP) is a relative index used to compare the climate impact of an emitted greenhouse gas, relative to an equal amount of carbon dioxide. Until now, indirect GWPs have been calculated based on the concept of Equivalent Effective Stratospheric Chlorine (EESC), which oversimplifies the complex processes in the atmosphere. As a step towards obtaining indirect GWPs through a more robust approach, 2-D and 3-D global chemical transport models (CTM) were used as the computational tool to derive more realistic ozone changes caused by pulse perturbation of Halons at the surface. Indirect GWPs of Halon-1211 and -1301 for a 100-year time horizon were explicitly calculated based on the University of Illinois at Urbana-Champaign (UIUC) 2-D global CTM and radiative transport model (RTM) and the 3-D CTM, MOZART-3.1. The 2-D and 3-D model simulations show acceptable temporal variations in the atmosphere as well as derived lifetimes and direct GWP values of the Halons. The 2-D model-based indirect GWPs for a 100-year horizon are -16,294 for Halon-1211 and -33,648 for Halon-1301. 3-D indirect GWP for Halon-1211 is -18,216. The indirect GWPs for Halon-1211 presented here are much smaller than previous published results using the previous simplified appraoch.

  13. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5

    NARCIS (Netherlands)

    Bergamaschi, P.; Krol, M.; Dentener, F.; Vermeulen, A.; Meinhardt, F.; Graul, R.; Ramonet, M.; Peters, W.; Dlugokencky, E. J.

    2005-01-01

    A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of

  14. Data Assimilation using Artificial Neural Networks for the global FSU atmospheric model

    Science.gov (United States)

    Cintra, Rosangela; Cocke, Steven; Campos Velho, Haroldo

    2015-04-01

    Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. Uncertainty is the characteristic of the atmosphere, coupled with inevitable inadequacies in observations and computer models and increase errors in weather forecasts. Data assimilation is a technique to generate an initial condition to a weather or climate forecasts. This paper shows the results of a data assimilation technique using artificial neural networks (ANN) to obtain the initial condition to the atmospheric general circulation model (AGCM) for the Florida State University in USA. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel (27 vertical levels) spectral primitive equation model with a vertical sigma coordinate. All variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space. The LETKF data assimilation experiments are based in synthetic observations data (surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity). For the ANN data assimilation scheme, we use Multilayer Perceptron (MLP-DA) with supervised training algorithm where ANN receives input vectors with their corresponding response or target output from LETKF scheme. An automatic tool that finds the optimal representation to these ANNs configures the MLP-DA in this experiment. After the training process, the scheme MLP-DA is seen as a function of data assimilation where the inputs are observations and a short-range forecast to

  15. [Numerical modeling of shape memory alloy vascular stent's self-expandable progress and "optimized grid" of stent].

    Science.gov (United States)

    Xu, Qiang; Liu, Yulan; Wang, Biao; He, Jin

    2008-10-01

    Vascular stent is an important medical appliance for angiocardiopathy. Its key deformation process is the expandable progress of stent in the vessel. The important deformation behaviour corresponds to two mechanics targets: deformation and stress. This paper is devoted to the research and development of vascular stent with proprietary intellectual property rights. The design of NiTinol self-expandable stent is optimized by means of finite element software. ANSYS is used to build the finite element simulation model of vascular stent; the molding material is NiTinol shape memory alloy. To cope with the factors that affect the structure of stent, the shape of grid and so on, the self-expanding process of Nitinol stent is simulated through computer. By making a comparison between two kinds of stents with similar grid structure, we present a new concept of "Optimized Grid" of stent.

  16. Functionality Evaluation of a Novel Smart Expandable Pedicle Screw to Mitigate Osteoporosis Effect in Bone Fixation: Modeling and Experimentation

    Directory of Open Access Journals (Sweden)

    Ahmadreza Eshghinejad

    2013-01-01

    Full Text Available This paper proposes a novel expandable-retractable pedicle screw and analyzes its functionality. A specially designed pedicle screw is described which has the ability to expand and retract using nitinol elements. The screw is designed to expand in body temperature and retract by cooling the screw. This expansion-retraction function is verified in an experiment designed in larger scale using a nitinol antagonistic assembly. The results of this experiment are compared to the results of a finite element model developed in Abaqus in combination with a user material subroutine (UMAT. This code has been developed to analyze the nonlinear thermomechanical behavior of shape memory alloy materials. The functionality of the proposed screw is evaluated with simulation and experimentation in a pullout test as well. The pullout force of a normal screw inserted in a normal bone was simulated, and the result is compared with the results of the expandable screw in osteoporotic bone. Lastly, strength of the designed pedicle screw in a foam block is also verified with experiment. The reported finite element simulations and experiments are the proof for the concept of nitinol expandable-retractable elements on a pedicle screw which validate the functionality in a pullout test.

  17. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    Science.gov (United States)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  18. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  19. Measuring and modeling mercury in the atmosphere: a critical review

    Science.gov (United States)

    Gustin, M. S.; Amos, H. M.; Huang, J.; Miller, M. B.; Heidecorn, K.

    2015-05-01

    Mercury (Hg) is a global health concern due to its toxicity and ubiquitous presence in the environment. Here we review current methods for measuring the forms of Hg in the atmosphere and models used to interpret these data. There are three operationally defined forms of atmospheric Hg: gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate bound mercury (PBM). There is relative confidence in GEM measurements (collection on a gold surface), but GOM (collection on potassium chloride (KCl)-coated denuder) and PBM (collected using various methods) are less well understood. Field and laboratory investigations suggest the methods to measure GOM and PBM are impacted by analytical interferences that vary with environmental setting (e.g., ozone, relative humidity), and GOM concentrations measured by the KCl-coated denuder can be too low by a factor of 1.6 to 12 depending on the chemical composition of GOM. The composition of GOM (e.g., HgBr2, HgCl2, HgBrOH) varies across space and time. This has important implications for refining existing measurement methods and developing new ones, model/measurement comparisons, model development, and assessing trends. Unclear features of previously published data may now be re-examined and possibly explained, which is demonstrated through a case study. Priorities for future research include identification of GOM compounds in ambient air and development of information on their chemical and physical properties and GOM and PBM calibration systems. With this information, identification of redox mechanisms and associated rate coefficients may be developed.

  20. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  1. Cloud Condensation Nuclei properties of model and atmospheric HULIS

    Directory of Open Access Journals (Sweden)

    E. Dinar

    2006-01-01

    Full Text Available Humic like substances (HULIS have been identified as a major fraction of the organic component of atmospheric aerosols. These large multifunctional compounds of both primary and secondary sources are surface active and water soluble. Hence, it is expected that they could affect activation of organic aerosols into cloud droplets. We have compared the activation of aerosols containing atmospheric HULIS extracted from fresh, aged and pollution particles to activation of size fractionated fulvic acid from an aquatic source (Suwannee River Fulvic Acid, and correlated it to the estimated molecular weight and measured surface tension. A correlation was found between CCN-activation diameter of SRFA fractions and number average molecular weight of the fraction. The lower molecular weight fractions activated at lower critical diameters, which is explained by the greater number of solute species in the droplet with decreasing molecular weight. The three aerosol-extracted HULIS samples activated at lower diameters than any of the size-fractionated or bulk SRFA. The Köhler model was found to account for activation diameters, provided that accurate physico-chemical parameters are known.

  2. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  3. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    Science.gov (United States)

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  4. Atmospheric CO2 modeling at the regional scale: an intercomparison of 5 meso-scale atmospheric models

    Directory of Open Access Journals (Sweden)

    G. Pérez-Landa

    2007-12-01

    Full Text Available Atmospheric CO2 modeling in interaction with the surface fluxes, at the regional scale is developed within the frame of the European project CarboEurope-IP and its Regional Experiment component. In this context, five meso-scale meteorological models at 2 km resolution participate in an intercomparison exercise. Using a common experimental protocol that imposes a large number of rules, two days of the CarboEurope Regional Experiment Strategy (CERES campaign are simulated. A systematic evaluation of the models is done in confrontation with the observations, using statistical tools and direct comparisons. Thus, temperature and relative humidity at 2 m, wind direction, surface energy and CO2 fluxes, vertical profiles of potential temperature as well as in-situ CO2 concentrations comparisons between observations and simulations are examined. These comparisons reveal a cold bias in the simulated temperature at 2 m, the latent heat flux is often underestimated. Nevertheless, the CO2 concentrations heterogeneities are well captured by most of the models. This intercomparison exercise shows also the models ability to represent the meteorology and carbon cycling at the synoptic and regional scale in the boundary layer, but also points out some of the major shortcomings of the models.

  5. Optimization of atmospheric transport models on HPC platforms

    Science.gov (United States)

    de la Cruz, Raúl; Folch, Arnau; Farré, Pau; Cabezas, Javier; Navarro, Nacho; Cela, José María

    2016-12-01

    The performance and scalability of atmospheric transport models on high performance computing environments is often far from optimal for multiple reasons including, for example, sequential input and output, synchronous communications, work unbalance, memory access latency or lack of task overlapping. We investigate how different software optimizations and porting to non general-purpose hardware architectures improve code scalability and execution times considering, as an example, the FALL3D volcanic ash transport model. To this purpose, we implement the FALL3D model equations in the WARIS framework, a software designed from scratch to solve in a parallel and efficient way different geoscience problems on a wide variety of architectures. In addition, we consider further improvements in WARIS such as hybrid MPI-OMP parallelization, spatial blocking, auto-tuning and thread affinity. Considering all these aspects together, the FALL3D execution times for a realistic test case running on general-purpose cluster architectures (Intel Sandy Bridge) decrease by a factor between 7 and 40 depending on the grid resolution. Finally, we port the application to Intel Xeon Phi (MIC) and NVIDIA GPUs (CUDA) accelerator-based architectures and compare performance, cost and power consumption on all the architectures. Implications on time-constrained operational model configurations are discussed.

  6. Modelling the X-ray powder diffraction of nitrogen-expanded austenite using the Debye formula

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2008-01-01

    Stress-free and homogeneous samples of nitrogen-expanded austenite, a defect-rich f.c.c. structure with a high interstitial nitrogen occupancy (between 0.36 and 0.61), have been studied using X-ray powder diffraction and Debye simulations. The simulations confirm the presence of deformation stack...

  7. Venusian Polar Vortex reproduced in an Atmospheric General Circulation Model

    Science.gov (United States)

    Ando, Hiroki; Imamura, Takeshi; Takagi, Masahiro; Sugimoto, Norihiko; Kashimura, Hiroki

    The Venus atmosphere has a polar vortex rotating in the retrograde direction with a period of about three days. The vortex has a warm feature surrounded by a cold collar (e.g., Taylor et al. 1980; Piccioni et al. 2006). Although the Venusian polar vortex has been reported by many observations, its mechanism is still unknown. Elson (1982, 1989) examined the structure of the polar vortex by linear calculations. However, the background zonal wind assumed in the calculations was much stronger or weaker than those retrieved in the previous measurements (e.g., Peralta et al. 2008; Kouyama et al. 2012). Lee et al. (2010) and Yamamoto and Takahashi (2012) performed numerical simulations with general circulation models (GCMs) of the Venus atmosphere and obtained vertical structure in the polar region. However, the models included artificial forcing of Kelvin and/or Rossby waves. We have developed a new Venusian GCM by modifying the Atmospheric GCM For the Earth Simulator (Sugimoto et al. 2012; 2013). The basic equations of the GCM are primitive ones in the sigma coordinate on a sphere without topography. The model resolution is T42 (i.e., about 2.8 deg x 2.8 deg grids) and L60 (Deltaz is about 2 km). Rayleigh friction (sponge layer) in the upper layer (>80 km) is applied to prevent the reflection of waves, whose effect increases gradually with height. In the model, the atmosphere is dry and forced by the solar heating and Newtonian cooling. The vertical profile of the solar heating is based on Crisp (1986), and zonally averaged distribution is used. In addition diurnal component of the solar heating, which excites the diurnal and semi-diurnal tides, is also included. Newtonian cooling relaxes the temperature to the zonally uniform basic temperature which has a virtual static stability of Venus with almost neutral layers, and its coefficient is based on Crisp (1986). To prevent numerical instability, the biharmonic hyper-diffusion is included with 0.8 days of e-folding time

  8. Shallow marine cloud topped boundary layer in atmospheric models

    Science.gov (United States)

    Janjic, Zavisa

    2017-04-01

    A common problem in many atmospheric models is excessive expansion over cold water of shallow marine planetary boundary layer (PBL) topped by a thin cloud layer. This phenomenon is often accompanied by spurious light precipitation. The "Cloud Top Entrainment Instability" (CTEI) was proposed as an explanation of the mechanism controlling this process in reality thereby preventing spurious enlargement of the cloudy area and widely spread light precipitation observed in the models. A key element of this hypothesis is evaporative cooling at the PBL top. However, the CTEI hypothesis remains controversial. For example, a recent direct simulation experiment indicated that the evaporative cooling couldn't explain the break-up of the cloudiness as hypothesized by the CTEI. Here, it is shown that the cloud break-up can be achieved in numerical models by a further modification of the nonsingular implementation of the Mellor-Yamada Level 2.5 turbulence closure model (MYJ) developed at the National Centers for Environmental Prediction (NCEP) Washington. Namely, the impact of moist convective instability is included into the turbulent energy production/dissipation equation if (a) the stratification is stable, (b) the lifting condensation level (LCL) for a particle starting at a model level is below the next upper model level, and (c) there is enough turbulent kinetic energy so that, due to random vertical turbulent motions, a particle starting from a model level can reach its LCL. The criterion (c) should be sufficiently restrictive because otherwise the cloud cover can be completely removed. A real data example will be shown demonstrating the ability of the method to break the spurious cloud cover during the day, but also to allow its recovery over night.

  9. Models of Warm Jupiter Atmospheres: Observable Signatures of Obliquity

    Science.gov (United States)

    Rauscher, Emily

    2017-09-01

    We present three-dimensional atmospheric circulation models of a hypothetical “warm Jupiter” planet, for a range of possible obliquities from 0° to 90°. We model a Jupiter-mass planet on a 10 day orbit around a Sun-like star, since this hypothetical planet sits at the boundary between planets for which we expect that tidal forces should have aligned their rotation axes with their orbital axes (i.e., ones with zero obliquity) and planets whose timescale for tidal alignment is longer than the typical age of an exoplanet system. In line with observational progress, which is pushing atmospheric characterization for planets on longer orbital periods, we calculate the observable signatures of obliquity for a transiting warm Jupiter: in orbital phase curves of thermal emission and in the hemispheric flux gradients that could be measured by eclipse mapping. For both of these predicted measurements, the signal that we would see depends strongly on our viewing geometry relative to the orientation of the planet’s rotation axis, and we thoroughly identify the degeneracies that result. We compare these signals to the predicted sensitivities of current and future instruments and determine that the James Webb Space Telescope should be able to constrain the obliquities of nearby warm Jupiters to be small (if ≤slant 10^\\circ ) or to directly measure them if significantly non-zero (≥slant 30^\\circ ) using the technique of eclipse mapping. For a bright target and assuming photon-limited precision, this could be done with a single secondary eclipse observation.

  10. Stochastic Parametrisations and Regime Behaviour of Atmospheric Models

    Science.gov (United States)

    Arnold, Hannah; Moroz, Irene; Palmer, Tim

    2013-04-01

    The presence of regimes is a characteristic of non-linear, chaotic systems (Lorenz, 2006). In the atmosphere, regimes emerge as familiar circulation patterns such as the El-Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Scandinavian Blocking events. In recent years there has been much interest in the problem of identifying and studying atmospheric regimes (Solomon et al, 2007). In particular, how do these regimes respond to an external forcing such as anthropogenic greenhouse gas emissions? The importance of regimes in observed trends over the past 50-100 years indicates that in order to predict anthropogenic climate change, our climate models must be able to represent accurately natural circulation regimes, their statistics and variability. It is well established that representing model uncertainty as well as initial condition uncertainty is important for reliable weather forecasts (Palmer, 2001). In particular, stochastic parametrisation schemes have been shown to improve the skill of weather forecast models (e.g. Berner et al., 2009; Frenkel et al., 2012; Palmer et al., 2009). It is possible that including stochastic physics as a representation of model uncertainty could also be beneficial in climate modelling, enabling the simulator to explore larger regions of the climate attractor including other flow regimes. An alternative representation of model uncertainty is a perturbed parameter scheme, whereby physical parameters in subgrid parametrisation schemes are perturbed about their optimal value. Perturbing parameters gives a greater control over the ensemble than multi-model or multiparametrisation ensembles, and has been used as a representation of model uncertainty in climate prediction (Stainforth et al., 2005; Rougier et al., 2009). We investigate the effect of including representations of model uncertainty on the regime behaviour of a simulator. A simple chaotic model of the atmosphere, the Lorenz '96 system, is used to study

  11. Modeling the water decarbonization processes in atmospheric deaerators

    Science.gov (United States)

    Leduhovsky, G. V.

    2017-02-01

    A mathematical model of the water decarbonization processes in atmospheric deaerators is proposed to calculate the thermal decomposition degree of hydrocarbonates in a deaerator, pH of a deaerated water sample, and the mass concentration of free carbonic acid in it on a carbon dioxide basis. The mathematical description of these processes is based on the deaeration tank water flow model implemented in the specialized software suite for the calculation of three-dimensional liquid flows, where a real water flow is a set of parallel small plug-flow reactors, and the rate constant of the reaction representing a generalized model of the thermal decomposition of hydrocarbonates with consideration for its chemical and diffusion stages is identified by experimental data. Based on the results of experimental studies performed on deaerators of different designs with and without steam bubbling in their tanks, an empirical support of this model has been developed in the form of recommended reaction order and rate constant values selected depending on the overall alkalinity of water fed into a deaerator. A self-contained mathematical description of the water decarbonization processes in deaerators has been obtained. The proposed model precision has been proven to agree with the specified metrological characteristics of the potentiometric and alkalimetric methods for measuring pH and the free carbonic acid concentration in water. This allows us to recommend the obtained model for the solution of practical problems of forming a specified amount of deaerated water via the selection of the structural and regime parameters of deaerators during their design and regime adjustment.

  12. A new model for atmospheric oxygen over Phanerozoic time.

    Science.gov (United States)

    Berner, R A; Canfield, D E

    1989-04-01

    A mathematical model has been constructed that enables calculation of the level of atmospheric O2 over the past 570 my from rates of burial and weathering of organic carbon (C) and pyrite sulfur (S). Burial rates as a function of time are calculated from an assumed constant worldwide clastic sedimentation rate and the relative abundance, and C and S contents, of the three rock types: marine sandstones and shales, coal basin sediments, and other non-marine clastics (red beds, arkoses). By our model, values of O2 versus time, using a constant total sedimentation rate, agree with those for variable sedimentation derived from present-day rock abundances and estimates of erosional losses since deposition. This agreement is the result of our reliance on the idea that any increase in total worldwide sediment burial, with consequently faster burial of C and S and greater O2 production, must be accompanied by a corresponding increase in erosion and increased exposure of C and S on the continents to O2 consumption via weathering. It is the redistribution of sediment between the three different rock types, and not total sedimentation rate, that is important in O2 control. To add stability to the system, negative feedback against excessive O2 fluctuation was provided in the modeling by the geologically reasonable assignment of higher weathering rates to younger rocks, resulting in rapid recycling of C and S. We did not use direct O2 negative feedback on either weathering of C and S or burial of C because weathering rates are assumed to be limited by uplift and erosion, and the burial rate of C limited by the rate of sediment deposition. The latter assumption is the result of modern sediment studies which show that marine organic matter burial occurs mainly in oxygenated shallow water and is limited by the rate of supply of nutrients to the oceans by rivers. Results of the modeling indicate that atmospheric O2 probably has varied appreciably over Phanerozoic time. During the

  13. How well do state-of-the-art atmosphere-ocean general circulation models reproduce atmospheric teleconnection patterns?

    Directory of Open Access Journals (Sweden)

    Dörthe Handorf

    2012-11-01

    Full Text Available This article evaluates the ability of state-of-the-art climate models to reproduce the low-frequency variability of the mid-tropospheric winter flow of the Northern Hemisphere in terms of atmospheric teleconnection patterns. Therefore, multi-model simulations for present-day conditions, performed for the 4th assessment report of the Intergovernmental Panel on Climate Change, have been analysed and compared with re-analysis data sets. The spatial patterns of atmospheric teleconnections are reproduced reasonably by most of the models. The comparison of coupled with atmosphere-only runs confirmed that a better representation of the forcing by sea surface temperatures has the potential to slightly improve the representation of only wave train-like patterns. Due to internally generated climate variability, the models are not able to reproduce the observed temporal behaviour. Insights into the dynamical reasons for the limited skill of climate models in reproducing teleconnections have been obtained by studying the relation between major teleconnections and zonal wind variability patterns. About half of the models are able to reproduce the observed relationship. For these cases, the quality of simulated teleconnection patterns is largely determined by the quality of zonal wind variability patterns. Therefore, improvements of simulated eddy-mean flow interaction have the potential to improve the atmospheric teleconnections.

  14. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  15. Modeling the distribution of ammonia across Europe including bi-directional surface-atmosphere exchange

    NARCIS (Netherlands)

    Wichink Kruit, R.J.; Schaap, M.; Sauter, F.J.; Zanten, M.C. van; Pul, W.A.J. van

    2012-01-01

    A large shortcoming of current chemistry transport models (CTM) for simulating the fate of ammonia in the atmosphere is the lack of a description of the bi-directional surface-atmosphere exchange. In this paper, results of an update of the surface-atmosphere exchange module DEPAC, i.e. DEPosition of

  16. Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Atri [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Space sciences, Technologies and Astrophysics Research (STAR) Institute,Université de Liège,Bât. B5a, 4000 Liège (Belgium); Enberg, Rikard [Department of Physics and Astronomy, Uppsala University,Box 516, SE-75120 Uppsala (Sweden); Jeong, Yu Seon [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); National Institute of Supercomputing and Networking, KISTI,245 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, C.S. [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); Reno, Mary Hall [Department of Physics and Astronomy, University of Iowa,Iowa City, Iowa 52242 (United States); Sarcevic, Ina [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Department of Astronomy, University of Arizona,933 N. Cherry Ave., Tucson, AZ 85721 (United States); Stasto, Anna [Department of Physics, 104 Davey Lab, The Pennsylvania State University,University Park, PA 16802 (United States)

    2016-11-28

    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k{sub T} factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.

  17. Non-LTE models of Titan's upper atmosphere

    Science.gov (United States)

    Yelle, Roger V.

    1991-01-01

    Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.

  18. Spatio-temporal statistical models with applications to atmospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Wikle, Christopher K. [Iowa State Univ., Ames, IA (United States)

    1996-01-01

    This doctoral dissertation is presented as three self-contained papers. An introductory chapter considers traditional spatio-temporal statistical methods used in the atmospheric sciences from a statistical perspective. Although this section is primarily a review, many of the statistical issues considered have not been considered in the context of these methods and several open questions are posed. The first paper attempts to determine a means of characterizing the semiannual oscillation (SAO) spatial variation in the northern hemisphere extratropical height field. It was discovered that the midlatitude SAO in 500hPa geopotential height could be explained almost entirely as a result of spatial and temporal asymmetries in the annual variation of stationary eddies. It was concluded that the mechanism for the SAO in the northern hemisphere is a result of land-sea contrasts. The second paper examines the seasonal variability of mixed Rossby-gravity waves (MRGW) in lower stratospheric over the equatorial Pacific. Advanced cyclostationary time series techniques were used for analysis. It was found that there are significant twice-yearly peaks in MRGW activity. Analyses also suggested a convergence of horizontal momentum flux associated with these waves. In the third paper, a new spatio-temporal statistical model is proposed that attempts to consider the influence of both temporal and spatial variability. This method is mainly concerned with prediction in space and time, and provides a spatially descriptive and temporally dynamic model.

  19. Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    Science.gov (United States)

    Bhattacharya, Atri; Enberg, Rikard; Jeong, Yu Seon; Kim, C. S.; Reno, Mary Hall; Sarcevic, Ina; Stasto, Anna

    2016-11-01

    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k T factorization including low- x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.

  20. Expanding wave solutions of the Einstein equations that induce an anomalous acceleration into the Standard Model of Cosmology.

    Science.gov (United States)

    Temple, Blake; Smoller, Joel

    2009-08-25

    We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy.

  1. Evaluation of Atmospheric Loading and Improved Troposphere Modelling

    Science.gov (United States)

    Zelensky, Nikita P.; Chinn, Douglas S.; Lemoine, F. G.; Le Bail, Karine; Pavlis, Despina E.

    2012-01-01

    Forward modeling of non-tidal atmospheric loading displacements at geodetic tracking stations have not routinely been included in Doppler Orbitography and Radiopositionning Integrated by Satellite (DORIS) or Satellite Laser Ranging (SLR) station analyses for either POD applications or reference frame determination. The displacements which are computed from 6-hourly models such as the ECMWF and can amount to 3-10 mm in the east, north and up components depending on the tracking station locations. We evaluate the application of atmospheric loading in a number ways using the NASA GSFC GEODYN software: First we assess the impact on SLR & DORIS-determined orbits such as Jason-2, where we evaluate the impact on the tracking data RMS of fit and how the total orbits are changed with the application of this correction. Preliminary results show an RMS radial change of 0.5 mm for Jason-2 over 54 cycles and a total change in the Z-centering of the orbit of 3 mm peak-to-peak over one year. We also evaluate the effects on other DORIS-satellites such as Cryosat-2, Envisat and the SPOT satellites. In the second step, we produce two SINEX time series based on data from available DORIS satellites and assess the differences in WRMS, scale and Helmert translation parameters. Troposphere refraction is obviously an important correction for radiometric data types such as DORIS. We evaluate recent improvements in DORIS processing at GSFC including the application of the Vienna Mapping Function (VMF1) grids with a-priori hydrostatic (VZHDs) and wet (VZWDs) zenith delays. We reduce the gridded VZHD at the stations height using pressure and temperature derived from GPT (strategy 1) and Saastamoinen. We discuss the validation of the VMF1 implementation and its application to the Jason-2 POD processing, compared to corrections using the Niell mapping function and the GMF. Using one year of data, we also assess the impact of the new troposphere corrections on the DORIS-only solutions, most

  2. Fluctuations, response, and resonances in a simple atmospheric model

    Science.gov (United States)

    Gritsun, Andrey; Lucarini, Valerio

    2017-06-01

    We study the response of a simple quasi-geostrophic barotropic model of the atmosphere to various classes of perturbations affecting its forcing and its dissipation using the formalism of the Ruelle response theory. We investigate the geometry of such perturbations by constructing the covariant Lyapunov vectors of the unperturbed system and discover in one specific case-orographic forcing-a substantial projection of the forcing onto the stable directions of the flow. This results into a resonant response shaped as a Rossby-like wave that has no resemblance to the unforced variability in the same range of spatial and temporal scales. Such a climatic surprise corresponds to a violation of the fluctuation-dissipation theorem, in agreement with the basic tenets of nonequilibrium statistical mechanics. The resonance can be attributed to a specific group of rarely visited unstable periodic orbits of the unperturbed system. Our results reinforce the idea of using basic methods of nonequilibrium statistical mechanics and high-dimensional chaotic dynamical systems to approach the problem of understanding climate dynamics.

  3. Novel Atmospheric and Sea State Modeling in Ocean Energy Applications

    Science.gov (United States)

    Kallos, George; Galanis, George; Kalogeri, Christina; Larsen, Xiaoli Guo

    2013-04-01

    The rapidly increasing use of renewable energy sources poses new challenges for the research and technological community today. The integration of the, usually, highly variable wind and wave energy amounts into the general grid, the optimization of energy transition and the forecast of extreme values that could lead to instabilities and failures of the system can be listed among them. In the present work, novel methodologies based on state of the art numerical wind/wave simulation systems and advanced statistical techniques addressing such type of problems are discussed. In particular, extremely high resolution modeling systems simulating the atmospheric and sea state conditions with spatial resolution of 100 meters or less and temporal discretization of a few seconds are utilized in order to simulate in the most detailed way the combined wind-wave energy potential at offshore sites. In addition, a statistical analysis based on a variety of mean and variation measures as well as univariate and bivariate probability distributions is used for the estimation of the variability of the power potential revealing the advantages of the use of combined forms of energy by offshore platforms able to produce wind and wave power simultaneously. The estimation and prediction of extreme wind/wave conditions - a critical issue both for site assessment and infrastructure maintenance - is also studied by means of the 50-year return period over areas with increased power potential. This work has been carried out within the framework of the FP7 project MARINA Platform (http://www.marina-platform.info/index.aspx).

  4. Modeling of Long-Range Atmospheric Lasercom Links Between Static and Mobile Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Scharlemann, E T; Breitfeller, E F; Henderson, J R; Kallman, J S; Morris, J R; Ruggiero, A J

    2003-07-29

    We describe modeling and simulation of long-range terrestrial laser communications links between static and mobile platforms. Atmospheric turbulence modeling, along with pointing, tracking and acquisition models are combined to provide an overall capability to estimate communications link performance.

  5. A global hybrid coupled model based on Atmosphere-SST feedbacks

    CERN Document Server

    Cimatoribus, Andrea A; Dijkstra, Henk A

    2011-01-01

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than ten times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulati...

  6. Investigation of the stator inductances of the expanded Park model and an approach on parameter identification using the evolution strategy

    Directory of Open Access Journals (Sweden)

    Schmuelling Christoph

    2016-09-01

    Full Text Available Commonly, the Park model is used to calculate transients or steady-state operations of synchronous machines. The expanded Park theory derives the Park equations from the phase-domain model of the synchronous machine by the use of transformations. Thereby, several hypothesis are made, which are under investigation in this article in respect to the main inductances of two different types of synchronous machines. It is shown, that the derivation of the Park equations from the phase-domain model does not lead to constant inductances, as it is usually assumed for these equations. Nevertheless the Park model is the most common analytic model of synchronous machines. Therefore, in the second part of this article a method using the evolution strategy is shown to obtain the parameters of the Park model.

  7. Atmospheric resuspension of radionuclides. Model testing using Chernobyl data

    Energy Technology Data Exchange (ETDEWEB)

    Garger, E.; Lev, T.; Talerko, N. [Inst. of Radioecology UAAS, Kiev (Ukraine); Galeriu, D. [Institute of Atomic Physics, Bucharest (Romania); Garland, J. [Consultant (United Kingdom); Hoffman, O.; Nair, S.; Thiessen, K. [SENES, Oak Ridge, TN (United States); Miller, C. [Centre for Disease Control, Atlanta, GA (United States); Mueller, H. [GSF - Inst. fuer Strahlenschultz, Neuherberg (Germany); Kryshev, A. [Moscow State Univ. (Russian Federation)

    1996-10-01

    Resuspension can be an important secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. The inhalation of resuspended radionuclides contributes to the overall dose received by exposed individuals. Based on measurements collected after the Chernobyl accident, Scenario R was developed to provide an opportunity to test existing mathematical models of contamination resuspension. In particular, this scenario provided the opportunity to examine data and test models for atmospheric resuspension of radionuclides at several different locations from the release, to investigate resuspension processes on both local and regional scales, and to investigate the importance of seasonal variations of these processes. Participants in the test exercise were provided with information for three different types of locations: (1) within the 30-km zone, where local resuspension processes are expected to dominate; (2) a large urban location (Kiev) 120 km from the release site, where vehicular traffic is expected to be the dominant mechanism for resuspension; and (3) an agricultural area 40-60 km from the release site, where highly contaminated upwind 'hot spots' are expected to be important. Input information included characteristics of the ground contamination around specific sites, climatological data for the sites, characteristics of the terrain and topography, and locations of the sampling sites. Participants were requested to predict the average (quarterly and yearly) concentrations of 137 Cs in air at specified locations due to resuspension of Chernobyl fallout; predictions for 90 Sr and 239 + 240 Pu were also requested for one location and time point. Predictions for specified resuspension factors and rates were also requested. Most participants used empirical models for the resuspension factor as a function of time K(t), as opposed to process-based models. While many of

  8. Atmospheric sensitivity to roughness length in a regional atmospheric model over the Ohio-Tennessee River Valley

    Science.gov (United States)

    Quintanar, Arturo I.; Mahmood, Rezaul; Suarez, Astrid; Leeper, Ronnie

    2016-06-01

    The response of a regional atmospheric model to small changes in roughness length of two vegetation categories (crops and deciduous broadleaf forest) was analyzed for three synoptic events in June 2006. These were characterized by two convective events (June 11 and 22) and one prefrontal event (June 17). The responses of the model, for precipitation, equivalent potential temperature and wind field were notable in general. However, the response became muted as roughness lengths were increased or decreased. Atmospheric response to these changes varied for different convective events. A small dependence on roughness length was found for the sensible and latent heat fluxes and planetary boundary layer heights during the convective event of June 11. For the June 22 event, the model response was weaker for the crop-only and forest-only roughness length experiments compared to the response when both the crop and forest-only roughness length were changed in combination.

  9. Expanding subjectivities

    DEFF Research Database (Denmark)

    Lundgaard Andersen, Linda; Soldz, Stephen

    2012-01-01

    A major theme in recent psychoanalytic thinking concerns the use of therapist subjectivity, especially “countertransference,” in understanding patients. This thinking converges with and expands developments in qualitative research regarding the use of researcher subjectivity as a tool to understa...

  10. Expander Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Expander Codes - The Sipser–Spielman Construction. Priti Shankar. General Article Volume 10 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science Bangalore 560 012, India.

  11. Modelling of pollution dispersion in atmosphere; Modelowanie procesow propagacji skazen w atmosferze

    Energy Technology Data Exchange (ETDEWEB)

    Borysiewicz, M.; Stankiewicz, R.

    1994-12-31

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs.

  12. Accumulation of biomass and mineral elements with calendar time by corn: application of the expanded growth model.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available The expanded growth model is developed to describe accumulation of plant biomass (Mg ha(-1 and mineral elements (kg ha(-1 in with calendar time (wk. Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L. growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N, phosphorus (P, and potassium (K. It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

  13. Large-scale computation of the exponentially expanding universe in a simplified Lorentzian type IIB matrix model

    CERN Document Server

    Ito, Yuta; Tsuchiya, Asato

    2015-01-01

    The type IIB matrix model is a conjectured nonperturbative formulation of superstring theory. Recent studies on the Lorentzian version of the model have shown that only three out of nine spatial directions start to expand after some critical time. On the other hand, due to the unbounded action of the Lorentzian model, one has to introduce infrared (IR) cutoffs in order to make the partition function finite. In this work we investigate whether the effects of the IR cutoffs disappear in the infinite volume limit. For that purpose, we study a simplified model with large matrix size up to $N=256$ by Monte Carlo simulation. First we confirm the exponentially expanding behavior of the "universe". Then we generalize the form of the IR cutoffs by one parameter, and find that the results become universal in some region of the parameter. It is suggested that the effects of IR cutoffs disappear in this region, which is confirmed also from the studies of Schwinger-Dyson equations.

  14. High-resolution numerical simulation of Venus atmosphere by AFES (Atmospheric general circulation model For the Earth Simulator)

    Science.gov (United States)

    Sugimoto, Norihiko; AFES project Team

    2016-10-01

    We have developed an atmospheric general circulation model (AGCM) for Venus on the basis of AFES (AGCM For the Earth Simulator) and performed a high-resolution simulation (e.g., Sugimoto et al., 2014a). The highest resolution is T639L120; 1920 times 960 horizontal grids (grid intervals are about 20 km) with 120 vertical layers (layer intervals are about 1 km). In the model, the atmosphere is dry and forced by the solar heating with the diurnal and semi-diurnal components. The infrared radiative process is simplified by adopting Newtonian cooling approximation. The temperature is relaxed to a prescribed horizontally uniform temperature distribution, in which a layer with almost neutral static stability observed in the Venus atmosphere presents. A fast zonal wind in a solid-body rotation is given as the initial state.Starting from this idealized superrotation, the model atmosphere reaches a quasi-equilibrium state within 1 Earth year and this state is stably maintained for more than 10 Earth years. The zonal-mean zonal flow with weak midlatitude jets has almost constant velocity of 120 m/s in latitudes between 45°S and 45°N at the cloud top levels, which agrees very well with observations. In the cloud layer, baroclinic waves develop continuously at midlatitudes and generate Rossby-type waves at the cloud top (Sugimoto et al., 2014b). At the polar region, warm polar vortex surrounded by a cold latitude band (cold collar) is well reproduced (Ando et al., 2016). As for horizontal kinetic energy spectra, divergent component is broadly (k > 10) larger than rotational component compared with that on Earth (Kashimura et al., in preparation). We will show recent results of the high-resolution run, e.g., small-scale gravity waves attributed to large-scale thermal tides. Sugimoto, N. et al. (2014a), Baroclinic modes in the Venus atmosphere simulated by GCM, Journal of Geophysical Research: Planets, Vol. 119, p1950-1968.Sugimoto, N. et al. (2014b), Waves in a Venus general

  15. An atmospheric-terrestrial heavy metal transport model: model theory and process equations

    Energy Technology Data Exchange (ETDEWEB)

    Wagenet, R.J.; Grenney, W.J.; Wooldridge, G.L.; Jurinak, J.J.

    1979-03-01

    A general modelTOHMwas developed to predict the terrestrial fate of zinc, cadmium, chromium, lead, and mercury emitted during operation of a coal-fired electric generating facility. The model comprises interfacing submodels describing atmospheric dispersion, precipitation, soil chemistry, and soil erosion. TOHM predicted no substantial increase in indigenous levels of zinc, chromium, and lead in the impact area. However, the model predicted that both mercury and cadmium would be emitted and eroded to the environmental sink in concentrations exceeding that naturally present in the system. The process equations used to describe the atmospheric-terrestrial transport of heavy metals are presented. Accounting procedures allowing calculation of amount of sediment eroded, heavy metal distribution, soil chemical reactions, and precipitation are explained. (9 diagrams, 5 graphs, 2 maps, 13 references)

  16. Uncertainities in carbon dioxide radiative forcing in atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Cess, R.D.; Zhang, M.H. (State Univ. of New York, Stony Brook, NY (United States)); Potter, G.L.; Gates, W.L.; Taylor, K.E. (Lawrence Livermore National Laboratory, CA (United States)); Colman, R.A.; Fraser, J.R.; McAvaney, B.J. (Bureau of Meterorology Research Centre, Victoria (Australia)); Dazlich, D.A.; Randall, D.A. (Colorado State Univ., Fort Collins, CO (United States)); Del Genio, A.D.; Lacis, A.A. (Goddard Institute for Space Studies, New York, NY (United States)); Esch, M.; Roeckner, E. (Max Planck Institute for Meteorology, Hamburg (Germany)); Galin, V. (Russian Academy of Sciences, Moscow (Russian Federation)); Hack, J.J.; Kiehl, J.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Ingram, W.J. (Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)); Le Treut, H.; Lli, Z.X. (Laboratoire de Meteorologie Dynamique, Paris (France)); Liang, X.Z.; Wang, W.C. (State Univ. of New York, Albany, NY (United States)); Mahfouf,

    1993-11-19

    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  17. An expanded One Health model: integrating social science and One Health to inform study of the human-animal interface.

    Science.gov (United States)

    Woldehanna, Sara; Zimicki, Susan

    2015-03-01

    Zoonotic disease emergence is not a purely biological process mediated only by ecologic factors; opportunities for transmission of zoonoses from animals to humans also depend on how people interact with animals. While exposure is conditioned by the type of animal and the location in which interactions occur, these in turn are influenced by human activity. The activities people engage in are determined by social as well as contextual factors including gender, age, socio-economic status, occupation, social norms, settlement patterns and livelihood systems, family and community dynamics, as well as national and global influences. This paper proposes an expanded "One Health" conceptual model for human-animal exposure that accounts for social as well as epidemiologic factors. The expanded model informed a new study approach to document the extent of human exposure to animals and explore the interplay of social and environmental factors that influence risk of transmission at the individual and community level. The approach includes a formative phase using qualitative and participatory methods, and a representative, random sample survey to quantify exposure to animals in a variety of settings. The paper discusses the different factors that were considered in developing the approach, including the range of animals asked about and the parameters of exposure that are included, as well as factors to be considered in local adaptation of the generic instruments. Illustrative results from research using this approach in Lao PDR are presented to demonstrate the effect of social factors on how people interact with animals. We believe that the expanded model can be similarly operationalized to explore the interactions of other social and policy-level determinants that may influence transmission of zoonoses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...... the processes controlling the sources and sinks of atmospheric CO2. This PhD dissertation attempts to increase our understanding of the importance of accounting for high spatiotemporal variability in estimates of CO2 exchanges between the atmosphere and the surface. For this purpose, a mesoscale...

  19. Partition expanders

    Czech Academy of Sciences Publication Activity Database

    Gavinsky, Dmitry; Pudlák, Pavel

    2017-01-01

    Roč. 60, č. 3 (2017), s. 378-395 ISSN 1432-4350 R&D Projects: GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : expanders * pseudorandomness * communication complexity Subject RIV: BA - General Mathematics Impact factor: 0.645, year: 2016 http://link.springer.com/article/10.1007%2Fs00224-016-9738-5

  20. Sources of nonlinear behavior and Predictability in a realistic atmospheric model: a data modeling statistical approach

    Science.gov (United States)

    Peters, J. M.; Kravtsov, S.

    2011-12-01

    This study quantifies the dependence of nonlinear regimes (manifested in non-gaussian probability distributions) and spreads of ensemble trajectories in a reduced phase space of a realistic three-layer quasi-geostrophic (QG3) atmospheric model on this model's climate state.To elucidate probabilistic properties of the QG3 trajectories, we compute, in phase planes of leading EOFs of the model, the coefficients of the corresponding Fokker-Planck (FP) equations. These coefficients represent drift vectors (computed from one-day phase space tendencies) and diffusion tensors (computed from one-day lagged covariance matrices of model trajectory displacements), and are based on a long QG3 simulation. We also fit two statistical trajectory models to the reduced phase-space time series spanned by the full QG3 model states. One reduced model is a standard Linear Inverse Model (LIM) fitted to a long QG3 time series. The LIM model is forced by state-independent (additive) noise and has a deterministic operator which represents non-divergent velocity field in the reduced phase space considered. The other, more advanced model (NSM), is nonlinear, divergent, and is driven by state-dependent noise. The NSM model mimics well the full QG3 model trajectory behavior in the reduced phase space; its corresponding FP model is nearly identical to that based on the full QG3 simulations. By systematic analysis of the differences between the drift vectors and diffusion tensors of the QG3-based, NSM-based, and LIM-based FP models, as well as the PDF evolution simulated by these FP models, we disentangle the contributions of the multiplicative noise and deterministic dynamics into nonlinear behavior and predictability of the atmospheric states produced by the dynamical QG3 model.

  1. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    Science.gov (United States)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  2. The Chemistry of Atmosphere-Forest Exchange (CAFE) Model - Part 2: Application to BEARPEX-2007 observations

    National Research Council Canada - National Science Library

    G. M. Wolfe; J. A. Thornton; N. C. Bouvier-Brown; A. H. Goldstein; J.-H. Park; M. McKay; D. M. Matross; J. Mao; W. H. Brune; B. W. LaFranchi; E. C. Browne; K.-E. Min; P. J. Wooldridge; R. C. Cohen; J. D. Crounse; I. C. Faloona; J. B. Gilman; W. C. Kuster; J. A. de Gouw; A. Huisman; F. N. Keutsch

    2011-01-01

    In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE) model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange...

  3. MODEL FOR UNSTEADY OF DIFFUSION –ADVECTION OF RADON IN SOIL – ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Parovik R.I.

    2010-04-01

    Full Text Available We consider a mathematical model for unsteady transport of radon from the constant coefficients in the soil – atmosphere. An explicit analytical solution for this model and built at different times of his profiles.

  4. Parameter-expanded data augmentation for Bayesian analysis of capture-recapture models

    Science.gov (United States)

    Royle, J. Andrew; Dorazio, Robert M.

    2012-01-01

    Data augmentation (DA) is a flexible tool for analyzing closed and open population models of capture-recapture data, especially models which include sources of hetereogeneity among individuals. The essential concept underlying DA, as we use the term, is based on adding "observations" to create a dataset composed of a known number of individuals. This new (augmented) dataset, which includes the unknown number of individuals N in the population, is then analyzed using a new model that includes a reformulation of the parameter N in the conventional model of the observed (unaugmented) data. In the context of capture-recapture models, we add a set of "all zero" encounter histories which are not, in practice, observable. The model of the augmented dataset is a zero-inflated version of either a binomial or a multinomial base model. Thus, our use of DA provides a general approach for analyzing both closed and open population models of all types. In doing so, this approach provides a unified framework for the analysis of a huge range of models that are treated as unrelated "black boxes" and named procedures in the classical literature. As a practical matter, analysis of the augmented dataset by MCMC is greatly simplified compared to other methods that require specialized algorithms. For example, complex capture-recapture models of an augmented dataset can be fitted with popular MCMC software packages (WinBUGS or JAGS) by providing a concise statement of the model's assumptions that usually involves only a few lines of pseudocode. In this paper, we review the basic technical concepts of data augmentation, and we provide examples of analyses of closed-population models (M 0, M h , distance sampling, and spatial capture-recapture models) and open-population models (Jolly-Seber) with individual effects.

  5. Expanding (3+1)-dimensional universe from a lorentzian matrix model for superstring theory in (9+1) dimensions.

    Science.gov (United States)

    Kim, Sang-Woo; Nishimura, Jun; Tsuchiya, Asato

    2012-01-06

    We reconsider the matrix model formulation of type IIB superstring theory in (9+1)-dimensional space-time. Unlike the previous works in which the Wick rotation was used to make the model well defined, we regularize the Lorentzian model by introducing infrared cutoffs in both the spatial and temporal directions. Monte Carlo studies reveal that the two cutoffs can be removed in the large-N limit and that the theory thus obtained has no parameters other than one scale parameter. Moreover, we find that three out of nine spatial directions start to expand at some "critical time," after which the space has SO(3) symmetry instead of SO(9).

  6. A METHODOLOGY TO CHARACTERISE THE SOURCES OF UNCERTAINTIES IN ATMOSPHERIC TRANSPORT MODELLING

    OpenAIRE

    Brocheton, Fabien; Armand, Patrick; Soulhac, Lionel; Buisson, Emmanuel

    2008-01-01

    Abstract: The atmospheric dispersion modelling of pollutants is based on models, but also on data and users, who lead to uncertainties, i.e. to differences between the results of the models and the physical reality to describe. The question of the uncertainty of dispersion models is a subject of increasing interest for primarily two reasons: • In spite of the significant number of research works on atmospheric dispersion in the last 30 years, results of simulations preserve an imp...

  7. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. VI. First chromosphere model of a late-type giant

    Science.gov (United States)

    Wedemeyer, Sven; Kučinskas, Arūnas; Klevas, Jonas; Ludwig, Hans-Günter

    2017-10-01

    Aims: Although observational data unequivocally point to the presence of chromospheres in red giant stars, no attempts have been made so far to model them using 3D hydrodynamical model atmospheres. We therefore compute an exploratory 3D hydrodynamical model atmosphere for a cool red giant in order to study the dynamical and thermodynamic properties of its chromosphere, as well as the influence of the chromosphere on its observable properties. Methods: Three-dimensional radiation hydrodynamics simulations are carried out with the CO5BOLD model atmosphere code for a star with the atmospheric parameters (Teff ≈ 4010 K, log g = 1.5, [ M / H ] = 0.0), which are similar to those of the K-type giant star Aldebaran (α Tau). The computational domain extends from the upper convection zone into the chromosphere (7.4 ≥ log τRoss ≥ - 12.8) and covers several granules in each horizontal direction. Using this model atmosphere, we compute the emergent continuum intensity maps at different wavelengths, spectral line profiles of Ca II K, the Ca II infrared triplet line at 854.2 nm, and Hα, as well as the spectral energy distribution (SED) of the emergent radiative flux. Results: The initial model quickly develops a dynamical chromosphere that is characterised by propagating and interacting shock waves. The peak temperatures in the chromospheric shock fronts reach values of up to 5000 K, although the shock fronts remain quite narrow. Similar to the Sun, the gas temperature distribution in the upper layers of red giant stars is composed of a cool component due to adiabatic cooling in the expanding post-shock regions and a hot component due to shock waves. For this red giant model, the hot component is a rather flat high-temperature tail, which nevertheless affects the resulting average temperatures significantly. Conclusions: The simulations show that the atmospheres of red giant stars are dynamic and intermittent. Consequently, many observable properties cannot be reproduced

  8. Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model

    Science.gov (United States)

    Gregg, Watson, W.; Casey, Nancy W.

    2009-01-01

    Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.

  9. A Low Mach Number Model for Moist Atmospheric Flows

    National Research Council Canada - National Science Library

    Duarte, Max; Almgren, Ann S; Bell, John B

    2015-01-01

    ... on the velocity field. Here, latent heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. The authors numerically assess the validity of the low Mach number approximation for moist atmospheric ...

  10. Receptor modeling of atmospheric aerosols in Federal Capital ...

    African Journals Online (AJOL)

    The air quality of Abuja urban air shed was investigated with a view to establishing sources of pollution in the city. Forty samples of coarse atmospheric particulates (PM2.5-10) were collected at different categories of spatially distributed receptor locations; high (High-dra) and low (Low-dra) density residential, commercial ...

  11. Challenges encountered when expanding activated sludge models: a case study based on N2O production

    DEFF Research Database (Denmark)

    Snip, Laura; Boiocchi, Riccardo; Flores Alsina, Xavier

    2014-01-01

    (WWTPs). As a consequence, these experiments might not be representative for full-scale performance, and unexpected behaviour may be observed when simulating WWTP models using the derived process equations. In this paper we want to highlight problems encountered using a simplified case study: a modified...... version of the Activated Sludge Model No. 1 (ASM1) is upgraded with nitrous oxide (N2O) formation by ammonia-oxidizing bacteria. Four different model structures have been implemented in the Benchmark Simulation Model No. 1 (BSM1). The results of the investigations revealed two typical difficulties...

  12. Specialization of the Land Administration Domain Model (LADM) : An Option for Expanding the Legal Profiles

    NARCIS (Netherlands)

    Paasch, J.; Van Oosterom, P.; Paulsson, J.; Lemmen, C.

    2013-01-01

    The Land Administration Domain Model, LADM, passed on the 1st of November 2012 unanimously the final vote towards becoming an international standard, ISO 19152. Based on the standard this paper is a proposal for a more detailed classification of interests in land as modelled within LADM and an

  13. Evaluating Economic Impacts of Expanded Global Wood Energy Consumption with the USFPM/GFPM Model

    Science.gov (United States)

    Peter J. Ince; Andrew Kramp; Kenneth E. Skog

    2012-01-01

    A U.S. forest sector market module was developed within the general Global Forest Products Model. The U.S. module tracks regional timber markets, timber harvests by species group, and timber product outputs in greater detail than does the global model. This hybrid approach provides detailed regional market analysis for the United States although retaining the...

  14. Midlatitude atmospheric responses to Arctic sensible heat flux anomalies in Community Climate Model, Version 4: Atmospheric Response to Arctic SHFs

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Catrin M. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder Colorado USA; Cassano, John J. [Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder Colorado USA; Cassano, Elizabeth N. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder Colorado USA

    2016-12-10

    Possible linkages between Arctic sea ice loss and midlatitude weather are strongly debated in the literature. We analyze a coupled model simulation to assess the possibility of Arctic ice variability forcing a midlatitude response, ensuring consistency between atmosphere, ocean, and ice components. We work with weekly running mean daily sensible heat fluxes with the self-organizing map technique to identify Arctic sensible heat flux anomaly patterns and the associated atmospheric response, without the need of metrics to define the Arctic forcing or measure the midlatitude response. We find that low-level warm anomalies during autumn can build planetary wave patterns that propagate downstream into the midlatitudes, creating robust surface cold anomalies in the eastern United States.

  15. A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding

    Science.gov (United States)

    He, Changyong; Wu, Suqin; Wang, Xiaoming; Hu, Andong; Wang, Qianxin; Zhang, Kefei

    2017-06-01

    The Global Positioning System (GPS) is a powerful atmospheric observing system for determining precipitable water vapour (PWV). In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm) is a crucial parameter for the conversion of zenith tropospheric delay (ZTD) to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP). The performance of GWMT-D was assessed against three existing empirical Tm models - GTm-III, GWMT-IV, and GTmN - using different data sources in 2014 - the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.

  16. A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding

    Directory of Open Access Journals (Sweden)

    C. He

    2017-06-01

    Full Text Available The Global Positioning System (GPS is a powerful atmospheric observing system for determining precipitable water vapour (PWV. In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm is a crucial parameter for the conversion of zenith tropospheric delay (ZTD to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP. The performance of GWMT-D was assessed against three existing empirical Tm models – GTm-III, GWMT-IV, and GTm_N – using different data sources in 2014 – the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.

  17. Model analysis of the chemical conversion of exhaust species in the expanding plumes of subsonic aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Moellhoff, M.; Hendricks, J.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie; Sausen, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    A box model and two different one-dimensional models are used to investigate the chemical conversion of exhaust species in the dispersing plume of a subsonic aircraft flying at cruise altitude. The effect of varying daytime of release as well as the impact of changing dispersion time is studied with special respect to the aircraft induced O{sub 3} production. Effective emission amounts for consideration in mesoscale and global models are calculated. Simulations with modified photolysis rates are performed to show the sensitivity of the photochemistry to the occurrence of cirrus clouds. (author) 8 refs.

  18. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    Energy Technology Data Exchange (ETDEWEB)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  19. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  20. Deception and Cognitive Load: Expanding Our Horizon with a Working Memory Model

    National Research Council Canada - National Science Library

    Sporer, Siegfried L

    2016-01-01

    ...) working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal...

  1. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model

    Science.gov (United States)

    Pomerantseva, Irina; Bichara, David A.; Tseng, Alan; Cronce, Michael J.; Cervantes, Thomas M.; Kimura, Anya M.; Neville, Craig M.; Roscioli, Nick; Vacanti, Joseph P.; Randolph, Mark A.

    2016-01-01

    Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage

  2. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation.

    Science.gov (United States)

    Ji, Zhen; Brace, Christopher L

    2011-08-21

    Microwaves are a promising source for thermal tumor ablation due to their ability to rapidly heat dispersive biological tissues, often to temperatures in excess of 100 °C. At these high temperatures, tissue dielectric properties change rapidly and, thus, so do the characteristics of energy delivery. Precise knowledge of how tissue dielectric properties change during microwave heating promises to facilitate more accurate simulation of device performance and helps optimize device geometry and energy delivery parameters. In this study, we measured the dielectric properties of liver tissue during high-temperature microwave heating. The resulting data were compiled into either a sigmoidal function of temperature or an integration of the time-temperature curve for both relative permittivity and effective conductivity. Coupled electromagnetic-thermal simulations of heating produced by a single monopole antenna using the new models were then compared to simulations with existing linear and static models, and experimental temperatures in liver tissue. The new sigmoidal temperature-dependent model more accurately predicted experimental temperatures when compared to temperature-time integrated or existing models. The mean percent differences between simulated and experimental temperatures over all times were 4.2% for sigmoidal, 10.1% for temperature-time integration, 27.0% for linear and 32.8% for static models at the antenna input power of 50 W. Correcting for tissue contraction improved agreement for powers up to 75 W. The sigmoidal model also predicted substantial changes in heating pattern due to dehydration. We can conclude from these studies that a sigmoidal model of tissue dielectric properties improves prediction of experimental results. More work is needed to refine and generalize this model.

  3. Expanding a dynamic flux balance model of yeast fermentation to genome-scale

    OpenAIRE

    Vargas, Felipe A; Pizarro, Francisco; Pérez-Correa, J Ricardo; Agosin, Eduardo

    2011-01-01

    Abstract Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model,...

  4. Modeling Atmospheric Emissions and Calculating Mortality Rates Associated with High Volume Hydraulic Fracturing Transportation

    Science.gov (United States)

    Mathews, Alyssa

    Emissions from the combustion of fossil fuels are a growing pollution concern throughout the global community, as they have been linked to numerous health issues. The freight transportation sector is a large source of these emissions and is expected to continue growing as globalization persists. Within the US, the expanding development of the natural gas industry is helping to support many industries and leading to increased transportation. The process of High Volume Hydraulic Fracturing (HVHF) is one of the newer advanced extraction techniques that is increasing natural gas and oil reserves dramatically within the US, however the technique is very resource intensive. HVHF requires large volumes of water and sand per well, which is primarily transported by trucks in rural areas. Trucks are also used to transport waste away from HVHF well sites. This study focused on the emissions generated from the transportation of HVHF materials to remote well sites, dispersion, and subsequent health impacts. The Geospatial Intermodal Freight Transport (GIFT) model was used in this analysis within ArcGIS to identify roadways with high volume traffic and emissions. High traffic road segments were used as emissions sources to determine the atmospheric dispersion of particulate matter using AERMOD, an EPA model that calculates geographic dispersion and concentrations of pollutants. Output from AERMOD was overlaid with census data to determine which communities may be impacted by increased emissions from HVHF transport. The anticipated number of mortalities within the impacted communities was calculated, and mortality rates from these additional emissions were computed to be 1 in 10 million people for a simulated truck fleet meeting stricter 2007 emission standards, representing a best case scenario. Mortality rates due to increased truck emissions from average, in-use vehicles, which represent a mixed age truck fleet, are expected to be higher (1 death per 341,000 people annually).

  5. Large off-shore wind farms: linking wake models with atmospheric boundary layer models

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, Gerard [Energy Research Centre, Wind Energy Dept., Petten (Netherlands); Barthelmie, Rebecca [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Rados, Kostas [Robert Gordon Univ., School of Mechanical and Offshore Engineering, Aberdeen (United Kingdom); Lange, Bernhard [Oldenburg Univ., Dept. of Energy and Semiconductor Research EHF, Oldenburg (Germany); Schlez, Wolfgang [Garrad Hassan and Partners Ltd., Bristol (United Kingdom)

    2001-07-01

    Within the ENDOW project various candidate atmospheric and wake models are available to be incorporated into the design tool. In order to gain insight into the suitability of the various models and in the way how they can be linked, a questionnaire has been distributed between the various modelling partners. Using the response on the questionnaire an inventory of the different models has been made with emphasis on the items which determine the compatibility of the different models. Aspects, which are of importance for this compatibility are consistency from a physical point of view, but also consistency from an informatic point of view (i.e. input/output, platform, compiler etc.). In the paper the first results from the questionnaire are summarised. Thereto Section 2 gives a brief description of the questionnaire. This is followed by section 3 and 4, in which the response on the wake- and the atmospheric models is summarised respectively. In section 5 some first ideas on the interfacing are proposed. It must be noted that the present inventory is very preliminary: Many answers on the questionnaire are still lacking and the paper is mainly intended to encourage further research and as a template for similar studies. (Author)

  6. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  7. Analyzing early exo-Earths with a coupled atmosphere biogeochemical model

    Science.gov (United States)

    Gebauer, Stefanie; Grenfell, John Lee; Stock, Joachim; Lehmann, Ralph; Godolt, Mareike; von Paris, Philip; Rauer, Heike

    2017-04-01

    Investigating Earth-like extrasolar planets with atmospheric models is a central focus in planetary science. Taking the development of Earth as a reference for Earth-like planets we investigate interactions between the atmosphere, planetary surface and organisms. The Great Oxidation Event (GOE) is related to feedbacks between these three. Its origin and controlling mechanisms are not well defined - requiring interdisciplinary, coupled models. We present results from our newly-developed Coupled Atmosphere Biogeochemistry (CAB) model which is unique in the literature. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles governing O2 in early Earth's atmosphere near the GOE. Complicated oxidation pathways play a key role in destroying O2 whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis.

  8. Comparing atmosphere-land surface feedbacks from models within the tropics (CALM). Part 1: Evaluation of CMIP5 GCMs to simulate the land surface-atmosphere feedback

    Science.gov (United States)

    Williams, C.; Allan, R.; Kniveton, D.

    2012-04-01

    Man-made transformations to the environment, and in particular the land surface, are having a large impact on the distribution (in both time and space) of rainfall, upon which all life is reliant. From global changes in the composition of the atmosphere, through the emission of greenhouse gases and aerosols, to more localised land use and land cover changes due to an expanding population with an increasing ecological footprint, human activity has a considerable impact on the processes controlling rainfall. This is of particular importance for environmentally vulnerable regions such as many of those in the tropics. Here, widespread poverty, an extensive disease burden and pockets of political instability has resulted in a low resilience and limited adaptative capacity to climate related shocks and stresses. Recently, the 5th Climate Modelling Intercomparison Project (CMIP5) has run a number of state-of-the-art climate models using various present-day and future emission scenarios of greenhouse gases, and therefore provides an unprecedented amount of simulated model data. This paper presents the results of the first stage of a larger project, aiming to further our understanding of how the interactions between tropical rainfall and the land surface are represented in some of the latest climate model simulations. Focusing on precipitation, soil moisture and near-surface temperature, this paper compares the data from all of these models, as well as blended observational-satellite data, to see how the interactions between rainfall and the land surface differs (or agrees) between the models and reality. Firstly, in an analysis of the processes from the "observed" data, the results suggest a strong positive relationship between precipitation and soil moisture at both daily and seasonal timescales. There is a weaker and negative relationship between precipitation and temperature, and likewise between soil moisture and temperature. For all variables, the correlations are

  9. Equilibrium model of thin magnetic flux tubes. [solar atmosphere

    Science.gov (United States)

    Bodo, G.; Ferrari, A.; Massaglia, S.; Kalkofen, W.; Rosner, R.

    1984-01-01

    The existence of a physically realizable domain in which approximations that lead to a self consistent solution for flux tube stratification in the solar atmosphere, without ad hoc hypotheses, is proved. The transfer equation is solved assuming that no energy transport other than radiative is present. Convective motions inside the tube are assumed to be suppressed by magnetic forces. Only one parameter, the plasma beta at tau = 0, must be specified, and this can be estimated from observations of spatially resolved flux tubes.

  10. Computational approaches for efficiently modelling of small atmospheric clusters

    DEFF Research Database (Denmark)

    Elm, Jonas; Mikkelsen, Kurt Valentin

    2014-01-01

    Utilizing a comprehensive test set of 205 clusters of atmospheric relevance, we investigate how different DFT functionals (M06-2X, PW91, ωB97X-D) and basis sets (6-311++G(3df,3pd), 6-31++G(d,p), 6-31+G(d)) affect the thermal contribution to the Gibbs free energy and single point energy. Reducing ...

  11. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    Science.gov (United States)

    2015-10-08

    airglow emission and the ionosphere. This would greatly enhance our ability to detect tsunamis in the ionosphere. RELATED PROJECTS Not at this time. ...Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input

  12. Summary of the March 25--26, 1991 atmospheric model working meeting

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.

    1992-07-01

    Atmospheric transport and diffusion calculations for the initial phase of the Hanford Environmental Dose Reconstruction (HEDR) Project were made using the MESOILT2 computer code (Ramsdell and Burk 1991). This code implemented a Lagrangian trajectory, puff dispersion model using components from other models designed primarily for regulatory applications. Uncertainty in the dispersion calculations was estimated following model calculations. The results of the atmospheric dispersion calculations were summarized in frequency distributions by location for use in preliminary dose calculations.

  13. Expanding Model Independent Approaches for Measuring the CKM angle $\\gamma$ at LHCb

    CERN Multimedia

    Prouve, Claire

    2017-01-01

    Model independent approaches to measuring the CKM angle $\\gamma$ in $B\\rightarrow DK$ decays at LHCb are explored. In particular, we consider the case where the $D$ meson decays into a final state with four hadrons. Using four-body final states such as $\\pi^+ \\pi^- \\pi^+ \\pi^-$, $K^+ \\pi^- \\pi^+ \\pi^-$ and $K^+ K^- \\pi^+ \\pi^-$ in addition to traditional 2 and 3 body states and has the potential to significantly improve to the overall constraint on $\\gamma$. There is a significant systematic uncertainty associated with modelling the complex phase of the $D$ decay amplitude across the five-dimensional phase space of the four body decay. It is therefore important to replace these model-dependent quantities with model-independent parameters as input for the $\\gamma$ measurement. These model independent parameters have been measured using quantum-correlated $\\psi(3770) \\rightarrow D^0 \\overline{D^0}$ decays collected by the CLEO-c experiment, and, for $D\\rightarrow K^+ \\pi^- \\pi^+ \\pi^-$, with $D^0-\\overline{D^0...

  14. Specialization of the Land Administration Domain Model (LADM): An Option for Expanding the Legal Profiles

    OpenAIRE

    Paasch, J.; Van Oosterom, P.; Paulsson, J.; C. Lemmen

    2013-01-01

    The Land Administration Domain Model, LADM, passed on the 1st of November 2012 unanimously the final vote towards becoming an international standard, ISO 19152. Based on the standard this paper is a proposal for a more detailed classification of interests in land as modelled within LADM and an attempt to raise the awareness of the possibilities to further develop the LADM?s “right”, “restriction” and “responsibility” (RRR) classes. The current standardised classification of RRRs in the LADM i...

  15. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Peña, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2013-01-01

    Here, we evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range...... of westerly wind directions observed at the wind farm. Simulations (post-processed to partly account for the wind direction uncertainty) and observations show good agreement for all stability classes, being the simulations using a stability-dependent wake decay coefficient closer to the data for the last...... turbines and those using the WAsP recommended value closer to the data for the first turbines. It is generally seen that under stable and unstable atmospheric conditions the power deficits are the highest and lowest, respectively, but the wind conditions under both stability regimes are different...

  16. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2014-01-01

    We evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range...... of westerly wind directions observed at the wind farm. Simulations (post-processed to partly account for the wind direction uncertainty) and observations show good agreement for all stability classes, being the simulations using a stability-dependent wake decay coefficient closer to the data for the last...... turbines on the row and those using the WAsP recommended value closer to the data for the first turbines. It is generally seen that under stable and unstable atmospheric conditions the power deficits are the highest and lowest, respectively, but the wind conditions under both stability regimes...

  17. Expanding the "ports of entry" for speech-language pathologists: a relational and reflective model for clinical practice.

    Science.gov (United States)

    Geller, Elaine; Foley, Gilbert M

    2009-02-01

    To outline an expanded framework for clinical practice in speech-language pathology. This framework broadens the focus on discipline-specific knowledge and infuses mental health constructs within the study of communication sciences and disorders, with the objective of expanding the potential "ports or points of entry" (D. Stern, 1995) for clinical intervention with young children who are language impaired. Specific mental health constructs are highlighted in this article. These include relationship-based learning, attachment theory, working dyadically (the client is the child and parent), reflective practice, transference-countertransference, and the use of self. Each construct is explored as to the way it has been applied in traditional and contemporary models of clinical practice. The underlying premise in this framework is that working from a relationally based and reflective perspective augments change and growth in both client and parent(s). The challenge is for speech-language pathologists to embed mental health constructs within their discipline-specific expertise. This leads to paying attention to both observable aspects of clients' behaviors as well as their internal affective states.

  18. Anti-leukemia activity of in vitro-expanded human gamma delta T cells in a xenogeneic Ph+ leukemia model.

    Directory of Open Access Journals (Sweden)

    Gabrielle M Siegers

    Full Text Available Gamma delta T cells (GDTc lyse a variety of hematological and solid tumour cells in vitro and in vivo, and are thus promising candidates for cellular immunotherapy. We have developed a protocol to expand human GDTc in vitro, yielding highly cytotoxic Vgamma9/Vdelta2 CD27/CD45RA double negative effector memory cells. These cells express CD16, CD45RO, CD56, CD95 and NKG2D. Flow cytometric, clonogenic, and chromium release assays confirmed their specific cytotoxicity against Ph(+ cell lines in vitro. We have generated a fluorescent and bioluminescent Ph(+ cell line, EM-2eGFPluc, and established a novel xenogeneic leukemia model. Intravenous injection of EM-2eGFPluc into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG mice resulted in significant dose-dependent bone marrow engraftment; lower levels engrafted in blood, lung, liver and spleen. In vitro-expanded human GDTc injected intraperitoneally were found at higher levels in blood and organs compared to those injected intravenously; GDTc survived at least 33 days post-injection. In therapy experiments, we documented decreased bone marrow leukemia burden in mice treated with GDTc. Live GDTc were found in spleen and bone marrow at endpoint, suggesting the potential usefulness of this therapy.

  19. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  20. Expanding Health Care Access Through Education: Dissemination and Implementation of the ECHO Model.

    Science.gov (United States)

    Katzman, Joanna G; Galloway, Kevin; Olivas, Cynthia; McCoy-Stafford, Kimberly; Duhigg, Daniel; Comerci, George; Kalishman, Summers; Buckenmaier, Chester C; McGhee, Laura; Joltes, Kristin; Bradford, Andrea; Shelley, Brian; Hernandez, Jessica; Arora, Sanjeev

    2016-03-01

    Project ECHO (Extension for Community Healthcare Outcomes) is an evidence-based model that provides high-quality medical education for common and complex diseases through telementoring and comanagement of patients with primary care clinicians. In a one to many knowledge network, the ECHO model helps to bridge the gap between primary care clinicians and specialists by enhancing the knowledge, skills, confidence, and practice of primary care clinicians in their local communities. As a result, patients in rural and urban underserved areas are able to receive best practice care without long waits or having to travel long distances. The ECHO model has been replicated in 43 university hubs in the United States and five other countries. A new replication tool was developed by the Project ECHO Pain team and U.S. Army Medical Command to ensure a high-fidelity replication of the model. The adoption of the tool led to successful replication of ECHO in the Army Pain initiative. This replication tool has the potential to improve the fidelity of ECHO replication efforts around the world. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  1. Deception and Cognitive Load: Expanding Our Horizon with a Working Memory Model

    Science.gov (United States)

    Sporer, Siegfried L.

    2016-01-01

    Recently, studies on deception and its detection have increased dramatically. Many of these studies rely on the “cognitive load approach” as the sole explanatory principle to understand deception. These studies have been exclusively on lies about negative actions (usually lies of suspects of [mock] crimes). Instead, we need to re-focus more generally on the cognitive processes involved in generating both lies and truths, not just on manipulations of cognitive load. Using Baddeley’s (2000, 2007, 2012) working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal, paraverbal, and linguistic cues can be investigated within a single framework. The proposed model considers long-term semantic, episodic and autobiographical memory and their connections with working memory and action. It also incorporates ironic processes of mental control (Wegner, 1994, 2009), the role of scripts and schemata and retrieval cues and retrieval processes. Specific predictions of the model are outlined and support from selective studies is presented. The model is applicable to different types of reports, particularly about lies and truths about complex events, and to different modes of production (oral, hand-written, typed). Predictions regarding several moderator variables and methods to investigate them are proposed. PMID:27092090

  2. Deception and Cognitive Load: Expanding Our Horizon with a Working Memory Model.

    Science.gov (United States)

    Sporer, Siegfried L

    2016-01-01

    Recently, studies on deception and its detection have increased dramatically. Many of these studies rely on the "cognitive load approach" as the sole explanatory principle to understand deception. These studies have been exclusively on lies about negative actions (usually lies of suspects of [mock] crimes). Instead, we need to re-focus more generally on the cognitive processes involved in generating both lies and truths, not just on manipulations of cognitive load. Using Baddeley's (2000, 2007, 2012) working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal, paraverbal, and linguistic cues can be investigated within a single framework. The proposed model considers long-term semantic, episodic and autobiographical memory and their connections with working memory and action. It also incorporates ironic processes of mental control (Wegner, 1994, 2009), the role of scripts and schemata and retrieval cues and retrieval processes. Specific predictions of the model are outlined and support from selective studies is presented. The model is applicable to different types of reports, particularly about lies and truths about complex events, and to different modes of production (oral, hand-written, typed). Predictions regarding several moderator variables and methods to investigate them are proposed.

  3. Expanding a dynamic flux balance model of yeast fermentation to genome-scale

    Directory of Open Access Journals (Sweden)

    Agosin Eduardo

    2011-05-01

    Full Text Available Abstract Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Results Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. Conclusion A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations.

  4. Expanding a dynamic flux balance model of yeast fermentation to genome-scale.

    Science.gov (United States)

    Vargas, Felipe A; Pizarro, Francisco; Pérez-Correa, J Ricardo; Agosin, Eduardo

    2011-05-19

    Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations.

  5. Expanding business-to-business customer relationships : modeling the customer's upgrade decision

    NARCIS (Netherlands)

    Bolton, R.; Lemon, K.N.; Verhoef, P.C.

    This article develops a model of a business customer's decision to upgrade service contracts conditional on the decision to renew the contract. It proposes that the firm's upgrade decision is influenced by (1) decision-maker perceptions of the relationship with the supplier, (2) contract-level

  6. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling

    Science.gov (United States)

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical...

  7. Expanding the Range of Plant Functional Diversity Represented in Global Vegetation Models: Towards Lineage-based Plant Functional Types

    Science.gov (United States)

    Still, C. J.; Griffith, D.; Edwards, E.; Forrestel, E.; Lehmann, C.; Anderson, M.; Craine, J.; Pau, S.; Osborne, C.

    2014-12-01

    Variation in plant species traits, such as photosynthetic and hydraulic properties, can indicate vulnerability or resilience to climate change, and feed back to broad-scale spatial and temporal patterns in biogeochemistry, demographics, and biogeography. Yet, predicting how vegetation will respond to future environmental changes is severely limited by the inability of our models to represent species-level trait variation in processes and properties, as current generation process-based models are mostly based on the generalized and abstracted concept of plant functional types (PFTs) which were originally developed for hydrological modeling. For example, there are close to 11,000 grass species, but most vegetation models have only a single C4 grass and one or two C3 grass PFTs. However, while species trait databases are expanding rapidly, they have been produced mostly from unstructured research, with a focus on easily researched traits that are not necessarily the most important for determining plant function. Additionally, implementing realistic species-level trait variation in models is challenging. Combining related and ecologically similar species in these models might ameliorate this limitation. Here we argue for an intermediate, lineage-based approach to PFTs, which draws upon recent advances in gene sequencing and phylogenetic modeling, and where trait complex variations and anatomical features are constrained by a shared evolutionary history. We provide an example of this approach with grass lineages that vary in photosynthetic pathway (C3 or C4) and other functional and structural traits. We use machine learning approaches and geospatial databases to infer the most important environmental controls and climate niche variation for the distribution of grass lineages, and utilize a rapidly expanding grass trait database to demonstrate examples of lineage-based grass PFTs. For example, grasses in the Andropogoneae are typically tall species that dominate wet and

  8. An expanded Notch-Delta model exhibiting long-range patterning and incorporating MicroRNA regulation.

    Directory of Open Access Journals (Sweden)

    Jerry S Chen

    2014-06-01

    Full Text Available Notch-Delta signaling is a fundamental cell-cell communication mechanism that governs the differentiation of many cell types. Most existing mathematical models of Notch-Delta signaling are based on a feedback loop between Notch and Delta leading to lateral inhibition of neighboring cells. These models result in a checkerboard spatial pattern whereby adjacent cells express opposing levels of Notch and Delta, leading to alternate cell fates. However, a growing body of biological evidence suggests that Notch-Delta signaling produces other patterns that are not checkerboard, and therefore a new model is needed. Here, we present an expanded Notch-Delta model that builds upon previous models, adding a local Notch activity gradient, which affects long-range patterning, and the activity of a regulatory microRNA. This model is motivated by our experiments in the ascidian Ciona intestinalis showing that the peripheral sensory neurons, whose specification is in part regulated by the coordinate activity of Notch-Delta signaling and the microRNA miR-124, exhibit a sparse spatial pattern whereby consecutive neurons may be spaced over a dozen cells apart. We perform rigorous stability and bifurcation analyses, and demonstrate that our model is able to accurately explain and reproduce the neuronal pattern in Ciona. Using Monte Carlo simulations of our model along with miR-124 transgene over-expression assays, we demonstrate that the activity of miR-124 can be incorporated into the Notch decay rate parameter of our model. Finally, we motivate the general applicability of our model to Notch-Delta signaling in other animals by providing evidence that microRNAs regulate Notch-Delta signaling in analogous cell types in other organisms, and by discussing evidence in other organisms of sparse spatial patterns in tissues where Notch-Delta signaling is active.

  9. Expanding the Role of Systems Modeling: Considering Byproduct Generation from Biofuel Production

    Directory of Open Access Journals (Sweden)

    Kurt A. Rosentrater

    2006-06-01

    Full Text Available The bioethanol industry has been experiencing rapid growth over the past several years, and is expected to continue to increase production for the foreseeable future. A vital component to the success of this industry is the sales and marketing of processing residues, which are primarily sold as dried distillers grains with solubles (DDGS. Systems modeling, a technique that has been used to predict future demand for bioethanol, can also be used to determine potential byproduct generation rates. This paper discusses the development of one such model, and presents predicted generation of DDGS as well as carbon dioxide emissions from this industry through 2100. These simulation results underscore the growing need to actively pursue research focused on value-added alternatives for the use of bioethanol byproduct streams.

  10. Complex Permittivity Model of Venus Atmosphere and Implications for Design of Imaging Altimeter and INSAR Orbiters

    Science.gov (United States)

    Duan, X.; Moghaddam, M.; Smrekar, S.; Wenkert, D.; Jordan, R.

    2008-12-01

    To design altimeter and interferometric SAR (InSAR) systems for measuring Venus' topography, the effects of Venus' atmosphere on the signals need to be investigated. These radar systems are envisioned to operate at X-band, and therefore, a model of Venus atmosphere permittivity profile at X-band is required and has been developed in this work. The effect of signal propagation through this atmosphere and its implication in designing the altimeter and the InSAR instruments are also investigated. The model was constructed for the complex dielectric constant of the atmosphere. Using relations between permittivity and polarization of polar material, the real part of the atmosphere dielectric constant was obtained by calculating the total polarization of the mixture of known atmospheric components including CO2, N2, H2O, SO2, H2SO4, CO, and OCS. The contribution of each atmospheric component to the mixture polarization was calculated based on given temperatures and component densities in the mixture. For each atmospheric component, the polarization was modeled as a function of frequency, temperature, and pressure based on available information in literature. Imaginary part of the atmospheric dielectric constant was calculated by superposing the measured absorptions of mixture components. The temperature and pressure dependences of absorption of each component were modeled according to measurement data and published information. Hence, based on several datasets inferred or directly measured from previous explorations of Venus, the complex dielectric constant profile has been constructed. The validity of the atmosphere permittivity model has been verified by comparing simulation results with measurement data of Venus atmosphere, e.g., from nadir refractivity and absorption measured by the Magellan mission for a portion of the profile. Using this simulated dielectric constant profile, the X-band electromagnetic wave propagation in Venus atmosphere has been modeled, in

  11. Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis

    Science.gov (United States)

    Knauer, Jürgen; Werner, Christiane; Zaehle, Sönke

    2015-10-01

    Stomatal conductance (gs) is a key variable in Earth system models as it regulates the transfer of carbon and water between the terrestrial biosphere and the lower atmosphere. Various approaches have been developed that aim for a simple representation of stomatal regulation applicable at the global scale. These models differ, among others, in their response to atmospheric humidity, which induces stomatal closure in a dry atmosphere. In this study, we compared the widely used empirical Ball-Berry and Leuning stomatal conductance models to an alternative empirical approach, an optimization-based approach, and a semimechanistic hydraulic model. We evaluated these models using evapotranspiration (ET) and gross primary productivity (GPP) observations derived from eddy covariance measurements at 56 sites across multiple biomes and climatic conditions. The different models were embedded in the land surface model JSBACH. Differences in performance across plant functional types or climatic conditions were small, partly owing to the large variations in the observational data. The models yielded comparable results at low to moderate atmospheric drought but diverged under dry atmospheric conditions, where models with a low sensitivity to air humidity tended to overestimate gs. The Ball-Berry model gave the best fit to the data for most biomes and climatic conditions, but all evaluated approaches have proven adequate for use in land surface models. Our findings further encourage future efforts toward a vegetation-type-specific parameterization of gs to improve the modeling of coupled terrestrial carbon and water dynamics.

  12. Expanding the Technology Acceptance Model to Examine Internet Banking Adoption in Tunisia Country

    OpenAIRE

    Wadie Nasri; Charfeddine Lanouar; Anis Allagui

    2013-01-01

    This paper aims to empirically examine the factors that affect the adoption of Internet banking in Tunisia. In order to explain the factors, this paper extends the “Technology Acceptance Model†by adding additional external factors such as security and privacy, self efficacy, social influence, and awareness of services and its benefits. The findings of the study suggests that the security and privacy, self efficacy, social influence, and awareness of services and its benefits have signific...

  13. Enhanced Resilience Through Expanded Community Preparedness in the United States: Application of Israeli Models

    Science.gov (United States)

    2014-03-01

    model in the United States include education and training for youth, as well as mandatory national service for most citizens. Based upon the findings...and recovery. FEMA Corps is composed of approximately 1,000 members, who are 18–24 years of age, and have committed to a year of national service within...President’s Call to Service Award given in recognition of 4,000 hours of volunteer service over a lifetime. Expansion of national service in the United

  14. Expanded Dengue.

    Science.gov (United States)

    Kadam, D B; Salvi, Sonali; Chandanwale, Ajay

    2016-07-01

    The World Health Organization (WHO) has coined the term expanded dengue to describe cases which do not fall into either dengue shock syndrome or dengue hemorrhagic fever. This has incorporated several atypical findings of dengue. Dengue virus has not been enlisted as a common etiological agent in several conditions like encephalitis, Guillain Barre syndrome. Moreover it is a great mimic of co-existing epidemics like Malaria, Chikungunya and Zika virus disease, which are also mosquito-borne diseases. The atypical manifestations noted in dengue can be mutisystemic and multifacetal. In clinical practice, the occurrence of atypical presentation should prompt us to investigate for dengue. Knowledge of expanded dengue helps to clinch the diagnosis of dengue early, especially during ongoing epidemics, avoiding further battery of investigations. Dengue has proved to be the epidemic with the ability to recur and has a diverse array of presentation as seen in large series from India, Srilanka, Indonesia and Taiwan. WHO has given the case definition of dengue fever in their comprehensive guidelines. Accordingly, a probable case is defined as acute febrile illness with two or more of any findings viz. headache, retro-orbital pain, myalgia, arthralgia, rash, hemorrhagic manifestations, leucopenia and supportive serology. There have been cases of patients admitted with fever, altered mentation with or without neck stiffness and pyramidal tract signs. Some had seizures or status epilepticus as presentation. When they were tested for serology, dengue was positive. After ruling out other causes, dengue remained the only culprit. We have come across varied presentations of dengue fever in clinical practice and the present article throws light on atypical manifestations of dengue. © Journal of the Association of Physicians of India 2011.

  15. Actinomycin D Specifically Reduces Expanded CUG Repeat RNA in Myotonic Dystrophy Models

    Directory of Open Access Journals (Sweden)

    Ruth B. Siboni

    2015-12-01

    Full Text Available Myotonic dystrophy type 1 (DM1 is an inherited disease characterized by the inability to relax contracted muscles. Affected individuals carry large CTG expansions that are toxic when transcribed. One possible treatment approach is to reduce or eliminate transcription of CTG repeats. Actinomycin D (ActD is a potent transcription inhibitor and FDA-approved chemotherapeutic that binds GC-rich DNA with high affinity. Here, we report that ActD decreased CUG transcript levels in a dose-dependent manner in DM1 cell and mouse models at significantly lower concentrations (nanomolar compared to its use as a general transcription inhibitor or chemotherapeutic. ActD also significantly reversed DM1-associated splicing defects in a DM1 mouse model, and did so within the currently approved human treatment range. RNA-seq analyses showed that low concentrations of ActD did not globally inhibit transcription in a DM1 mouse model. These results indicate that transcription inhibition of CTG expansions is a promising treatment approach for DM1.

  16. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2006-01-01

    Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August......Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August...

  17. Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee; Padhraic Smyth, UC Irvine

    2006-08-04

    The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics through atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.

  18. Study of fundamental physical principles in atmospheric modeling based on identification of atmosphere - climate control factors

    CERN Document Server

    Iudin, M

    2007-01-01

    Several critical review articles have been published on tropospheric halogen chemistry. One of the leading subjects of publications is the Arctic ozone depletion events (ODE) at polar sunrise. The articles deal with a wide spectrum of questions: from the detailed reaction cycles of chlorine, iodine and bromine species to processing of satellite data of vertical column BrO. For a long time, bromine explosion - natural phenomenon of exponential increase in gaseous Br radicals happening in springtime Arctic has remained main puzzle for explorers. In this paper, the possible bromine emission ground inventories in polar Arctic region are examined. Resulted model amounts of BrO and Bry equated satellite data on vertical column BrO. By looking at the bromine spread out in Arctic marine boundary layer (MBL) in the context of a network with rank linkage, the author rationalized model bromine flux empirical expression. Then, based on the obtained features of bromine explosion, author opens discussion on the parametrica...

  19. Atmospheric Sulfur Cycle Simulated in The Global Model GOCART: Model Description and Global Properties

    Science.gov (United States)

    Chin, Mian; Rood, Richard B.; Lin, Shian-Jiann; Mueller, Jean-Francois; Thompson, Anne M.

    2000-01-01

    The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric sulfur cycle. The model uses the simulated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Global sulfur budgets from a 6-year simulation for SO2, sulfate, dimethylsulfide (DMS), and methanesulfonic acid (MSA) are presented in this paper. In a normal year without major volcanic perturbations, about 20% of the sulfate precursor emission is from natural sources (biogenic and volcanic) and 80% is anthropogenic: the same sources contribute 339% and 67% respectively to the total sulfate burden. A sulfate production efficiency of 0.41 - 0.42 is estimated in the model, an efficiency which is defined as a ratio of the amount oi sulfate produced to the total amount of SO2 emitted and produced in the atmosphere. This value indicates that less than half of the SO2 entering the atmosphere contributes to the sulfate production, the rest being removed by dry and wet depositions. In a simulation for 1990, we estimate a total sulfate production of 39 Tg S /yr with 36% and 64% respectively from in-air and in-cloud oxidation of SO2. We also demonstrate that major volcanic eruptions, such as the Mt. Pinatubo eruption in 1991, can significantly change the sulfate formation pathways, distributions, abundance, and lifetime. Comparison with other models shows that the parameterizations for wet removal or wet production of sulfate are the most critical factors in determining the burdens of SO2 and sulfate. Therefore, a priority for future research should be to reduce the large uncertainties associated with the wet physical and chemical processes.

  20. An expanded model: flood-inundation maps for the Leaf River at Hattiesburg, Mississippi, 2013

    Science.gov (United States)

    Storm, John B.

    2014-01-01

    Digital flood-inundation maps for a 6.8-mile reach of the Leaf River at Hattiesburg, Mississippi (Miss.), were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Leaf River at Hattiesburg, Miss. (station no. 02473000). Current conditions for estimating near-real-time areas of inundation by use of USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations at the Leaf River at Hattiesburg, Miss. streamgage (02473000) and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system (GIS

  1. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff < 2700 K and has a significant effect on the structure and the spectrum of the atmosphere for Teff < 2400 K. We have compared the synthetic spectra of our models with observed spectra and found that they fit the spectra of mid- to late-type M-dwarfs and early-type L-dwarfs well. The geometrical extension of the atmospheres (at τ = 1) changes with wavelength resulting in a flux variation of 10%. This translates into a change in geometrical extension of the atmosphere of about 50 km, which is the quantitative basis for exoplanetary transit spectroscopy. We also test DRIFT-MARCS for an example exoplanet and demonstrate that our simulations reproduce the Spitzer observations for WASP-19b rather well for Teff = 2600 K, log (g) = 3.2 and solar abundances. Our model points at an exoplanet with a deep cloud-free atmosphere with a substantial

  2. The Ocean-Land-Atmosphere Model (OLAM): A new Generation of Earth System Model

    Science.gov (United States)

    Walko, R. L.; Avissar, R.

    2006-12-01

    The Ocean-Land-Atmosphere Model (OLAM) has been developed to extend the capabilities of the Regional Atmospheric Modeling System (RAMS) to a global modeling framework. OLAM is a new model with regard to its dynamic core, grid configuration, memory structure, and numerical solution technique. Instead of the Boussinesq approximation used in RAMS, OLAM solves the full compressible Navier-Stokes equations in conservation form using finite-volume numerical operators that conserve mass, momentum, and energy to machine precision. In place of RAMS' structured multiple nested grids and hexahedral grid cells on a polar stereographic projection, OLAM uses a single unstructured grid and pentahedral (prism) grid cells (with a triangular footprint) which conform to the sphere without a coordinate transformation. OLAM's grid topology enables local mesh refinement to any degree without the need for special grid nesting algorithms; all communication between regions of different resolution is accomplished seamlessly by flux-conservative advective and diffusive transport. OLAM represents topography using a form of the volume-fraction or shaved grid cell method in which model levels are strictly horizontal, rather than terrain- following, and therefore intersect topography. Grid cell face areas, which explicitly appear in the finite volume equations and are pre-computed and stored, are reduced in proportion to any blockage by topography, thereby correctly regulating inter-cell transport and preventing advective flux normal to the ground surface. Apart from its dynamic core and grid configuration, OLAM bears a strong resemblance to RAMS. Both models share the same physical parameterizations for microphysics, land and vegetation water and energy balances, radiative transfer, and sub-grid cumulus convection. Model coding structure, I/O file formats, and methods of compiling, initializing, and executing the models are very similar or identical. Results of a variety of OLAM simulations

  3. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  4. Implementing Numerical Experiments Based on the Coupled Model of Atmospheric General Circulation and Thermohaline Ocean One

    Directory of Open Access Journals (Sweden)

    V. P. Parhomenko

    2015-01-01

    Full Text Available The paper presents a realized hydrodynamic three-dimensional global climatic model, which comprises the model blocks of atmospheric general circulation, thermohaline large-scale circulation of the ocean, and sea ice evolution. Before rather strongly aggregated heat-moisturebalance model of the atmosphere for temperature and humidity of a surface layer was used as a model of the atmosphere. The atmospheric general circulation model is significantly more complicated and allows us to describe processes in the atmosphere more adequately. Functioning of a coupled climatic model is considered in conditions of the seasonal cycle of solar radiation.The paper considers a procedure for coupled calculation of the ocean model and atmospheric general circulation model. Synchronization of a number of parameters in both models is necessary for their joint action. In this regard a procedure of two-dimensional interpolation of data defined on the grids of the ocean model and atmosphere model and back is developed. A feature of this task is discrepancy of grid nodes and continental configurations in models. Coupled model-based long-term calculations for more than 400 years have shown its stable work. Calculation results and comparison with observation data are under discussion.The paper shows distribution of mean global atmosphere temperature versus time in stable conditions to demonstrate that there is inter-annual variability of atmosphere temperature at the steady state of a climate system. It presents distribution of temperature difference of the ocean surface from the observations and from the model of the ocean thermohaline circulation for January. Noticeable deviations of temperature are observed near Antarctica. Apparently, it is because of inaccurate calculation of the sea ice distribution in model. The geographical distribution of the ocean surface temperature for January with coupled calculation shows, in general, a zonal uniform structure of isolines

  5. Evaluating 20th Century precipitation characteristics between multi-scale atmospheric models with different land-atmosphere coupling

    Science.gov (United States)

    Phillips, M.; Denning, A. S.; Randall, D. A.; Branson, M.

    2016-12-01

    Multi-scale models of the atmosphere provide an opportunity to investigate processes that are unresolved by traditional Global Climate Models while at the same time remaining viable in terms of computational resources for climate-length time scales. The MMF represents a shift away from large horizontal grid spacing in traditional GCMs that leads to overabundant light precipitation and lack of heavy events, toward a model where precipitation intensity is allowed to vary over a much wider range of values. Resolving atmospheric motions on the scale of 4 km makes it possible to recover features of precipitation, such as intense downpours, that were previously only obtained by computationally expensive regional simulations. These heavy precipitation events may have little impact on large-scale moisture and energy budgets, but are outstanding in terms of interaction with the land surface and potential impact on human life. Three versions of the Community Earth System Model were used in this study; the standard CESM, the multi-scale `Super-Parameterized' CESM where large-scale parameterizations have been replaced with a 2D cloud-permitting model, and a multi-instance land version of the SP-CESM where each column of the 2D CRM is allowed to interact with an individual land unit. These simulations were carried out using prescribed Sea Surface Temperatures for the period from 1979-2006 with daily precipitation saved for all 28 years. Comparisons of the statistical properties of precipitation between model architectures and against observations from rain gauges were made, with specific focus on detection and evaluation of extreme precipitation events.

  6. Spreading and vanishing in a West Nile virus model with expanding fronts

    Science.gov (United States)

    Tarboush, Abdelrazig K.; Lin, ZhiGui; Zhang, MengYun

    2017-05-01

    In this paper, we study a simplified version of a West Nile virus model discussed by Lewis et al. [28], which was considered as a first approximation for the spatial spread of WNv. The basic reproduction number $R_0$ for the non-spatial epidemic model is defined and a threshold parameter $R_0 ^D$ for the corresponding problem with null Dirichlet boundary condition is introduced. We consider a free boundary problem with coupled system, which describes the diffusion of birds by a PDE and the movement of mosquitoes by a ODE. The risk index $R_0^F (t)$ associated with the disease in spatial setting is represented. Sufficient conditions for the WNv to eradicate or to spread are given. The asymptotic behavior of the solution to system when the spreading occurs are considered. It is shown that the initial number of infected populations, the diffusion rate of birds and the length of initial habitat exhibit important impacts on the vanishing or spreading of the virus. Numerical simulations are presented to illustrate the analytical results.

  7. An Energy Budget Model to Calculate the Low Atmosphere Profiles of Effective Sound Speed at Night

    National Research Council Canada - National Science Library

    Tunick, Arnold

    2003-01-01

    ...) for generating low atmosphere profiles of effective sound speed at night. The alternate model is based on the solution of a quartic equation for surface temperature, which assumes a balance between the net long wave...

  8. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere...

  9. Potential Vorticity based parameterization for specification of Upper troposphere/lower stratosphere ozone in atmospheric models

    Data.gov (United States)

    U.S. Environmental Protection Agency — Potential Vorticity based parameterization for specification of Upper troposphere/lower stratosphere ozone in atmospheric models - the data set consists of 3D O3...

  10. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Main Hawaiian Islands (MHI)...

  11. Land Surface Model (LSM 1.0) for Ecological, Hydrological, Atmospheric Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The NCAR LSM 1.0 is a land surface model developed to examine biogeophysical and biogeochemical land-atmosphere interactions, especially the effects of land surfaces...

  12. Land Surface Model (LSM 1.0) for Ecological, Hydrological, Atmospheric Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The NCAR LSM 1.0 is a land surface model developed to examine biogeophysical and biogeochemical land-atmosphere interactions, especially the effects of...

  13. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere impacts and...

  14. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis

  15. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Maui-Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Hawaiian islands of Oahu,...

  16. Puff-plume atmospheric deposition model for use at SRP in emergency-response situations

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.; Murphy, C.E. Jr.

    1981-05-01

    An atmospheric transport and diffusion model developed for real-time calculation of the location and concentration of toxic or radioactive materials during an accidental release was improved by including deposition calculations.

  17. Local predictability in a simple model of atmospheric balance

    Directory of Open Access Journals (Sweden)

    G. Gyarmati

    2003-01-01

    Full Text Available The 2 degree-of-freedom elastic pendulum equations can be considered as the lowest order analogue of interacting low-frequency (slow Rossby-Haurwitz and high-frequency (fast gravity waves in the atmosphere. The strength of the coupling between the low and the high frequency waves is controlled by a single coupling parameter, e, defined by the ratio of the fast and slow characteristic time scales. In this paper, efficient, high accuracy, and symplectic structure preserving numerical solutions are designed for the elastic pendulum equation in order to study the role balanced dynamics play in local predictability. To quantify changes in the local predictability, two measures are considered: the local Lyapunov number and the leading singular value of the tangent linear map. It is shown, both based on theoretical considerations and numerical experiments, that there exist regions of the phase space where the local Lyapunov number indicates exceptionally high predictability, while the dominant singular value indicates exceptionally low predictability. It is also demonstrated that the local Lyapunov number has a tendency to choose instabilities associated with balanced motions, while the dominant singular value favors instabilities related to highly unbalanced motions. The implications of these findings for atmospheric dynamics are also discussed.

  18. A review of wind field models for atmospheric transport

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V. Jr.; Skyllingstad, E.D.

    1993-06-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. The HEDR Project is developing a computer code to estimate these doses and their uncertainties. The code, known as the HEDR integrated Code (HEDRIC), consists of four separate component codes. One of the component codes, called the Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET) combines meteorological and release data to estimate time-integrated air concentrations and surface contamination at specific locations in the vicinity of the Hanford Site. The RATCHET domain covers approximately 75,000 square miles, extending from the crest of the Cascade Mountains on the west to the eastern edge of the Idaho panhandle and from central Oregon on the south to the Canadian border. This letter report explains the procedures in RATCHET that transform observed wind data into the wind fields used in atmospheric transport calculations. It also describes and evaluates alternative procedures not selected for use in RATCHET.

  19. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China.

    Science.gov (United States)

    Zeng, X T; Tong, Y F; Cui, L; Kong, X M; Sheng, Y N; Chen, L; Li, Y P

    2017-07-15

    In recent years, increscent emissions in the city of Beijing due to expanded population, accelerated industrialization and inter-regional pollutant transportation have led to hazardous atmospheric pollution issues. Although a number of anthropogenic control measures have been put into use, frequent/severe haze events have still challenged regional governments. In this study, a hybrid population-production-pollution nexus model (PPP) is proposed for air pollution management and air quality planning (AMP) with the aim to coordinate human activities and environmental protection. A fuzzy-stochastic mixed quadratic programming method (FSQ) is developed and introduced into a PPP for tackling atmospheric pollution issues with uncertainties. Based on the contribution of an index of population-production-pollution, a hybrid PPP-based AMP model that considers employment structure, industrial layout pattern, production mode, pollutant purification efficiency and a pollution mitigation scheme have been applied in Beijing. Results of the adjustment of employment structure, pollution mitigation scheme, and green gross domestic product under various environmental regulation scenarios are obtained and analyzed. This study can facilitate the identification of optimized policies for alleviating population-production-emission conflict in the study region, as well as ameliorating the hazardous air pollution crisis at an urban level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Near Real-time GNSS-based Ionospheric Model using Expanded Kriging in the East Asia Region

    Science.gov (United States)

    Choi, P. H.; Bang, E.; Lee, J.

    2016-12-01

    Many applications which utilize radio waves (e.g. navigation, communications, and radio sciences) are influenced by the ionosphere. The technology to provide global ionospheric maps (GIM) which show ionospheric Total Electron Content (TEC) has been progressed by processing GNSS data. However, the GIMs have limited spatial resolution (e.g. 2.5° in latitude and 5° in longitude), because they are generated using globally-distributed and thus relatively sparse GNSS reference station networks. This study presents a near real-time and high spatial resolution TEC model over East Asia by using ionospheric observables from both International GNSS Service (IGS) and local GNSS networks and the expanded kriging method. New signals from multi-constellation (e.g,, GPS L5, Galileo E5) were also used to generate high-precision TEC estimates. The newly proposed estimation method is based on the universal kriging interpolation technique, but integrates TEC data from previous epochs to those from the current epoch to improve the TEC estimation performance by increasing ionospheric observability. To propagate previous measurements to the current epoch, we implemented a Kalman filter whose dynamic model was derived by using the first-order Gauss-Markov process which characterizes temporal ionospheric changes under the nominal ionospheric conditions. Along with the TEC estimates at grids, the method generates the confidence bounds on the estimates using resulting estimation covariance. We also suggest to classify the confidence bounds into several categories to allow users to recognize the quality levels of TEC estimates according to the requirements for user's applications. This paper examines the performance of the proposed method by obtaining estimation results for both nominal and disturbed ionospheric conditions, and compares these results to those provided by GIM of the NASA Jet propulsion Laboratory. In addition, the estimation results based on the expanded kriging method are

  1. Likelihood Analysis of Multivariate Probit Models Using a Parameter Expanded MCEM Algorithm.

    Science.gov (United States)

    Xu, Huiping; Craig, Bruce A

    2010-08-01

    Multivariate binary data arise in a variety of settings. In this paper, we propose a practical and efficient computational framework for maximum likelihood estimation of multivariate probit regression models. This approach uses the Monte Carlo EM (MCEM) algorithm, with parameter expansion to complete the M-step, to avoid the direct evaluation of the intractable multivariate normal orthant probabilities. The parameter expansion not only enables a closed-form solution in the M-step but also improves efficiency. Using the simulation studies, we compare the performance of our approach with the MCEM algorithms developed by Chib and Greenberg (1998) and Song and Lee (2005), as well as the iterative approach proposed by Li and Schafer (2008). Our approach is further illustrated using a real-world example.

  2. Likelihood Analysis of Multivariate Probit Models Using a Parameter Expanded MCEM Algorithm

    Science.gov (United States)

    Xu, Huiping; Craig, Bruce A.

    2010-01-01

    Multivariate binary data arise in a variety of settings. In this paper, we propose a practical and efficient computational framework for maximum likelihood estimation of multivariate probit regression models. This approach uses the Monte Carlo EM (MCEM) algorithm, with parameter expansion to complete the M-step, to avoid the direct evaluation of the intractable multivariate normal orthant probabilities. The parameter expansion not only enables a closed-form solution in the M-step but also improves efficiency. Using the simulation studies, we compare the performance of our approach with the MCEM algorithms developed by Chib and Greenberg (1998) and Song and Lee (2005), as well as the iterative approach proposed by Li and Schafer (2008). Our approach is further illustrated using a real-world example. PMID:21042430

  3. Expanding uses of building information modeling in life-cycle construction projects.

    Science.gov (United States)

    Hannele, Kerosuo; Reijo, Miettinen; Tarja, Mäki; Sami, Paavola; Jenni, Korpela; Teija, Rantala

    2012-01-01

    BIM is targeted at providing information about the entire building and a complete set of design documents and data stored in an integrated database. In this paper, we study the use of BIM in two life-cycle construction projects in Kuopio, Finland during 2011. The analysis of uses of BIM and their main problems will constitute a foundation for an intervention. We will focus on the following questions: (1) How different partners use the composite BIM model? (2) What are the major contradictions or problems in the BIM use? The preliminary findings reported in this study show that BIM has been adopted quite generally to design use but the old ways of collaboration seem to prevail, especially between designers and between designers and building sites. BIM has provided new means and demands for collaboration but expansive uses of BIM for providing new interactive processes across professional fields have not much come true.

  4. Atmospheric pollution. From processes to modelling; Pollution atmospherique. Des processus a la modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sportisse, B. [Ecole Nationale des Ponts et Chaussees (ENPC), Centre d' Enseignement et de Recherche en Environnement Atmospherique, Lab. Commun ENPC, 75 - Paris (France)

    2008-07-01

    Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)

  5. Modeling of atmospheric iron processing carried by mineral dust and its deposition to ocean

    Science.gov (United States)

    Nickovic, Slobodan; Vukovic, Ana; Vujadinovic, Mirjam

    2014-05-01

    Relatively insoluble iron in dust originating from desert soils increases its solubility after Fe carried by mineral dust is chemically processed by the atmosphere. After dust is deposited deposition to the ocean, soluble Fe as a nutrient could enhance the marine primary production. The atmospheric dust cycle is driven by the atmospheric processes often of smaller, meso-scales. The soil mineralogy of dust emitted from sources determines also how much Fe in the aerosol will be finding. Once Fe is exposed to the atmospheric processes, the atmospheric radiation, clouds and polluted air will chemically affect the iron in dust. Global dust-iron models, having typical horizontal resolutions of 100-300 km which are mostly used to numerically simulate the fate of iron in the atmosphere can provide rather global picture of the dust and iron transport, but not details. Such models often introduce simplistic approximation on the Fe content in dust-productive soils. To simulate the Fe processing we instead implemented a high resolution regional atmospheric dust-iron model with detailed 1km global map for the geographic distribution of Fe content in soil. We also introduced a parameterization of the Fe processing caused by dust mineralogy, cloud processes and solar radiation. We will present results from simulation experiments in order to explore the model capability to reproduce major observed patterns of deposited Fe into the Atlantic cruises.

  6. Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn

    Science.gov (United States)

    Atreya, S. K.; Donahue, T. M.; Nagy, A. F.; Waite, J. H., Jr.; Mcconnell, J. C.

    1984-01-01

    The structure and composition of the thermosphere, exosphere, and ionosphere of saturn have been determined from observations at optical and radio wavelengths mainly by instruments aboard Voyager spacecraft. Techniques for determining the vertical profiles of temperature and density and the atmospheric vertical mixing in the upper Saturn atmosphere are discussed. Radio occultation measurements and theoretical models of Saturn's ionosphere are reviewed, and attempts to interpret the measurements using the models are discussed. Finally, mechanisms of thermospheric heating are examined.

  7. Atmospheric dispersion modelling of particulate and gaseous pollutants affecting the trans-Manche region

    OpenAIRE

    Plainiotis, Stylianos

    2006-01-01

    This thesis describes the development of a methodology to determine large-scale and meso-scale atmospheric dispersion patterns. The research is only concerned with outdoor exposure to atmospheric pollutants and aims to identify pollution sources using dispersion modelling with the assistance of ground level measurements from British, French and other monitoring stations and remote sensing technology. \\ud \\ud Lagrangian Particle Dispersion (LPD) models compute trajectories of a large number of...

  8. Modeling pN2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures.

    Science.gov (United States)

    Stüeken, E E; Kipp, M A; Koehler, M C; Schwieterman, E W; Johnson, B; Buick, R

    2016-12-01

    Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N2, but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean-presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO2, and (c) atmospheric oxygenation could have initiated a stepwise pN2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N2 and O2 is a signature of an oxygen-producing biosphere. Key Words: Biosignatures-Early Earth-Planetary atmospheres. Astrobiology 16, 949-963.

  9. Time-constrained mother and expanding market: emerging model of under-nutrition in India.

    Science.gov (United States)

    Chaturvedi, S; Ramji, S; Arora, N K; Rewal, S; Dasgupta, R; Deshmukh, V

    2016-07-25

    Persistent high levels of under-nutrition in India despite economic growth continue to challenge political leadership and policy makers at the highest level. The present inductive enquiry was conducted to map the perceptions of mothers and other key stakeholders, to identify emerging drivers of childhood under-nutrition. We conducted a multi-centric qualitative investigation in six empowered action group states of India. The study sample included 509 in-depth interviews with mothers of undernourished and normal nourished children, policy makers, district level managers, implementer and facilitators. Sixty six focus group discussions and 72 non-formal interactions were conducted in two rounds with primary caretakers of undernourished children, Anganwadi Workers and Auxiliary Nurse Midwives. Based on the perceptions of the mothers and other key stakeholders, a model evolved inductively showing core themes as drivers of under-nutrition. The most forceful emerging themes were: multitasking, time constrained mother with dwindling family support; fragile food security or seasonal food paucity; child targeted market with wide availability and consumption of ready-to-eat market food items; rising non-food expenditure, in the context of rising food prices; inadequate and inappropriate feeding; delayed recognition of under-nutrition and delayed care seeking; and inadequate responsiveness of health care system and Integrated Child Development Services (ICDS). The study emphasized that the persistence of child malnutrition in India is also tied closely to the high workload and consequent time constraint of mothers who are increasingly pursuing income generating activities and enrolled in paid labour force, without robust institutional support for childcare. The emerging framework needs to be further tested through mixed and multiple method research approaches to quantify the contribution of time limitation of the mother on the current burden of child under-nutrition.

  10. Time-constrained mother and expanding market: emerging model of under-nutrition in India

    Directory of Open Access Journals (Sweden)

    S. Chaturvedi

    2016-07-01

    Full Text Available Abstract Background Persistent high levels of under-nutrition in India despite economic growth continue to challenge political leadership and policy makers at the highest level. The present inductive enquiry was conducted to map the perceptions of mothers and other key stakeholders, to identify emerging drivers of childhood under-nutrition. Methods We conducted a multi-centric qualitative investigation in six empowered action group states of India. The study sample included 509 in-depth interviews with mothers of undernourished and normal nourished children, policy makers, district level managers, implementer and facilitators. Sixty six focus group discussions and 72 non-formal interactions were conducted in two rounds with primary caretakers of undernourished children, Anganwadi Workers and Auxiliary Nurse Midwives. Results Based on the perceptions of the mothers and other key stakeholders, a model evolved inductively showing core themes as drivers of under-nutrition. The most forceful emerging themes were: multitasking, time constrained mother with dwindling family support; fragile food security or seasonal food paucity; child targeted market with wide availability and consumption of ready-to-eat market food items; rising non-food expenditure, in the context of rising food prices; inadequate and inappropriate feeding; delayed recognition of under-nutrition and delayed care seeking; and inadequate responsiveness of health care system and Integrated Child Development Services (ICDS. The study emphasized that the persistence of child malnutrition in India is also tied closely to the high workload and consequent time constraint of mothers who are increasingly pursuing income generating activities and enrolled in paid labour force, without robust institutional support for childcare. Conclusion The emerging framework needs to be further tested through mixed and multiple method research approaches to quantify the contribution of time limitation of

  11. Ocean-Atmosphere Coupled Model Simulations of Precipitation in the Central Andes

    Science.gov (United States)

    Nicholls, Stephen D.; Mohr, Karen I.

    2015-01-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. In addition, South American meteorology and climate are also made further complicated by ENSO, a powerful coupled ocean-atmosphere phenomenon. Modelling studies in this region have typically resorted to either atmospheric mesoscale or atmosphere-ocean coupled global climate models. The latter offers full physics and high spatial resolution, but it is computationally inefficient typically lack an interactive ocean, whereas the former offers high computational efficiency and ocean-atmosphere coupling, but it lacks adequate spatial and temporal resolution to adequate resolve the complex orography and explicitly simulate precipitation. Explicit simulation of precipitation is vital in the Central Andes where rainfall rates are light (0.5-5 mm hr-1), there is strong seasonality, and most precipitation is associated with weak mesoscale-organized convection. Recent increases in both computational power and model development have led to the advent of coupled ocean-atmosphere mesoscale models for both weather and climate study applications. These modelling systems, while computationally expensive, include two-way ocean-atmosphere coupling, high resolution, and explicit simulation of precipitation. In this study, we use the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), a fully-coupled mesoscale atmosphere-ocean modeling system. Previous work has shown COAWST to reasonably simulate the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data when ECMWF interim analysis data were used for boundary conditions on a 27-9-km grid configuration (Outer grid extent: 60.4S to 17.7N and 118.6W to 17.4W).

  12. A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks

    Science.gov (United States)

    Diao, Su-Meng; Liu, Yun; Zeng, Qing-An; Luo, Gui-Xun; Xiong, Fei

    2014-12-01

    In this paper, we propose an opinion dynamics model in order to investigate opinion evolution and interactions and the behavior of individuals. By introducing social influence and its feedback mechanism, the proposed model can highlight the heterogeneity of individuals and reproduce realistic online opinion interactions. It can also expand the observation range of affected individuals. Combining psychological studies on the social impact of majorities and minorities, affected individuals update their opinions by balancing social impact from both supporters and opponents. It can be seen that complete consensus is not always obtained. When the initial density of either side is greater than 0.8, the enormous imbalance leads to complete consensus. Otherwise, opinion clusters consisting of a set of tightly connected individuals who hold similar opinions appear. Moreover, a tradeoff is discovered between high interaction intensity and low stability with regard to observation ranges. The intensity of each interaction is negatively correlated with observation range, while the stability of each individual’s opinion positively affects the correlation. Furthermore, the proposed model presents the power-law properties in the distribution of individuals’ social influences, which is in agreement with people’s daily cognition. Additionally, it is proven that the initial distribution of individuals’ social influences has little effect on the evolution.

  13. Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP

    Directory of Open Access Journals (Sweden)

    K. M. Hansen

    2004-01-01

    Full Text Available The Danish Eulerian Hemispheric Model (DEHM is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs.

  14. Applicability of Simplified Simulation Models for Perforation-Mediated Modified Atmosphere Packaging of Fresh Produce

    Directory of Open Access Journals (Sweden)

    Min-Ji Kwon

    2013-01-01

    Full Text Available The comprehensive mass balances of differential equations involving gas diffusion and hydraulic convection through package perforation, gas permeation through polymeric film, and produce respiration have commonly been used to predict the atmosphere of perforated fresh produce packages. However, the predictions often suffer from instability, and to circumvent this problem, a simplified diffusion model that omits the convective gas transfer and empirical models based on experimental mass transfer data have been developed and investigated previously by several researchers. This study investigated the potential and limitations of the simplified diffusion model and two empirical models for predicting the atmosphere in perforated produce packages. The simplified diffusion model satisfactorily estimated the atmosphere inside the perforated packages of fresh produce under the aerobic conditions examined. Published empirical models of the mass transfer coefficients of the perforation seem to be valid only for the measured conditions and thus should be used carefully for that specific purpose.

  15. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing the proper......M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing......-consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...

  16. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    Science.gov (United States)

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  17. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  18. Meteorological Modeling Using the WRF-ARW Model for Grand Bay Intensive Studies of Atmospheric Mercury

    Directory of Open Access Journals (Sweden)

    Fong Ngan

    2015-02-01

    Full Text Available Measurements at the Grand Bay National Estuarine Research Reserve support a range of research activities aimed at improving the understanding of the atmospheric fate and transport of mercury. Routine monitoring was enhanced by two intensive measurement periods conducted at the site in summer 2010 and spring 2011. Detailed meteorological data are required to properly represent the weather conditions, to determine the transport and dispersion of plumes and to understand the wet and dry deposition of mercury. To describe the mesoscale features that might influence future plume calculations for mercury episodes during the Grand Bay Intensive campaigns, fine-resolution meteorological simulations using the Weather Research and Forecasting (WRF model were conducted with various initialization and nudging configurations. The WRF simulations with nudging generated reasonable results in comparison with conventional observations in the region and measurements obtained at the Grand Bay site, including surface and sounding data. The grid nudging, together with observational nudging, had a positive effect on wind prediction. However, the nudging of mass fields (temperature and moisture led to overestimates of precipitation, which may introduce significant inaccuracies if the data were to be used for subsequent atmospheric mercury modeling. The regional flow prediction was also influenced by the reanalysis data used to initialize the WRF simulations. Even with observational nudging, the summer case simulation results in the fine resolution domain inherited features of the reanalysis data, resulting in different regional wind patterns. By contrast, the spring intensive period showed less influence from the reanalysis data.

  19. Modelling atmospheric turbulence effects on ground-based telescope systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, L.W.; Flatte, S.M. [California Univ., Santa Cruz, CA (United States). Dept. of Physics; Max, C.E. [Lawrence Livermore National Lab., CA (United States)

    1993-09-30

    Questions still exist concerning the appropriate model for turbulence- induced phase fluctuations seen in ground-based telescopes. Bester et al. used a particular observable (slope of the Allan variance) with an infrared interferometer in an attempt to distinguish models. The authors have calculated that observable for Kolmogorov and {open_quotes}random walk{close_quotes} models with a variety of outer scales and altitude-dependent turbulence and wind velocity. The authors have found that clear distinction between models requires good data on the vertical distribution of wind and turbulence. Furthermore, measurements at time separations of order 60 s are necessary to distinguish the {open_quotes}random walk{close_quotes} model from the Kolmogorov model.

  20. The Framework for 0-D Atmospheric Modeling (F0AM) v3.1

    Science.gov (United States)

    Wolfe, Glenn M.; Marvin, Margaret R.; Roberts, Sandra J.; Travis, Katherine R.; Liao, Jin

    2016-01-01

    The Framework for 0-D Atmospheric Modeling(F0AM) is a flexible and user-friendly MATLAB-based platform for simulation of atmospheric chemistry systems. The F0AM interface incorporates front-end configuration of observational constraints and model setups, making it readily adaptable to simulation of photochemical chambers, Lagrangian plumes, and steady-state or time-evolving solar cycles. Six different chemical mechanisms and three options for calculation of photolysis frequencies are currently available. Example simulations are presented to illustrate model capabilities and, more generally, highlight some of the advantages and challenges of 0-D box modeling.

  1. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients.

    Science.gov (United States)

    Smith, Matthew R; Micha, Renata; Golden, Christopher D; Mozaffarian, Dariush; Myers, Samuel S

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model--the Global Expanded Nutrient Supply (GENuS) model--to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961-2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent

  2. Modeling pN2 through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures

    Science.gov (United States)

    Stüeken, E. E.; Kipp, M. A.; Koehler, M. C.; Schwieterman, E. W.; Johnson, B.; Buick, R.

    2016-12-01

    Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N2, but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean - presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO2, and (c) atmospheric oxygenation could have initiated a stepwise pN2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N2 and O2 is a signature of an oxygen-producing biosphere.

  3. A review of numerical models to predict the atmospheric dispersion of radionuclides.

    Science.gov (United States)

    Leelőssy, Ádám; Lagzi, István; Kovács, Attila; Mészáros, Róbert

    2018-02-01

    The field of atmospheric dispersion modeling has evolved together with nuclear risk assessment and emergency response systems. Atmospheric concentration and deposition of radionuclides originating from an unintended release provide the basis of dose estimations and countermeasure strategies. To predict the atmospheric dispersion and deposition of radionuclides several numerical models are available coupled with numerical weather prediction (NWP) systems. This work provides a review of the main concepts and different approaches of atmospheric dispersion modeling. Key processes of the atmospheric transport of radionuclides are emission, advection, turbulent diffusion, dry and wet deposition, radioactive decay and other physical and chemical transformations. A wide range of modeling software are available to simulate these processes with different physical assumptions, numerical approaches and implementation. The most appropriate modeling tool for a specific purpose can be selected based on the spatial scale, the complexity of meteorology, land surface and physical and chemical transformations, also considering the available data and computational resource. For most regulatory and operational applications, offline coupled NWP-dispersion systems are used, either with a local scale Gaussian, or a regional to global scale Eulerian or Lagrangian approach. The dispersion model results show large sensitivity on the accuracy of the coupled NWP model, especially through the description of planetary boundary layer turbulence, deep convection and wet deposition. Improvement of dispersion predictions can be achieved by online coupling of mesoscale meteorology and atmospheric transport models. The 2011 Fukushima event was the first large-scale nuclear accident where real-time prognostic dispersion modeling provided decision support. Dozens of dispersion models with different approaches were used for prognostic and retrospective simulations of the Fukushima release. An unknown

  4. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    cost than e.g. using large-eddy simulations. The developed ABL model is successfully validated using a range of different test cases with increasing complexity. Data from several large scale field campaigns, wind tunnel experiments, and previous numerical simulations is presented and compared against...... model results. A method is developed how to simulate the time-dependant non-neutral ABL flow over complex terrain: a precursor simulation is used to specify unsteady inlet boundary conditions on complex terrain domains. The advantage of the developed RANS model framework is its general applicability....... All implementations in the ABL model are tuning free, and except for standard site specific input parameters, no additional model coefficients need to be specified before the simulation. In summary the results show that the implemented modifications are applicable and reproduce the main flow...

  5. Atmospheric Lidar Data Storage Model Based on Ontology

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2017-01-01

    Full Text Available Ontology is an effective method to solve the problem of heterogeneous data in lidar measurements. Due to complexity and diversity of data structure, traditional method of ontology storage cannot be directly applied to lidar data. In this work, we proposed a novel ontology storage model based on the object-oriented data model, in which the mapping mechanism was established from ontology of lidar data to the object-oriented data model. A new storage model of lidar data is then obtained by a combination of the characteristics of lidar data and the syntax of OWL DL. Compared to the traditional method of ontology storage, we believe that the new storage model can better serve the sharing of lidar data.

  6. Improved atmospheric 3D BSDF model in earthlike exoplanet using ray-tracing based method

    Science.gov (United States)

    Ryu, Dongok; Kim, Sug-Whan; Seong, Sehyun

    2012-10-01

    The studies on planetary radiative transfer computation have become important elements to disk-averaged spectral characterization of potential exoplanets. In this paper, we report an improved ray-tracing based atmospheric simulation model as a part of 3-D earth-like planet model with 3 principle sub-components i.e. land, sea and atmosphere. Any changes in ray paths and their characteristics such as radiative power and direction are computed as they experience reflection, refraction, transmission, absorption and scattering. Improved atmospheric BSDF algorithms uses Q.Liu's combined Rayleigh and aerosol Henrey-Greenstein scattering phase function. The input cloud-free atmosphere model consists of 48 layers with vertical absorption profiles and a scattering layer with their input characteristics using the GIOVANNI database. Total Solar Irradiance data are obtained from Solar Radiation and Climate Experiment (SORCE) mission. Using aerosol scattering computation, we first tested the atmospheric scattering effects with imaging simulation with HRIV, EPOXI. Then we examined the computational validity of atmospheric model with the measurements of global, direct and diffuse radiation taken from NREL(National Renewable Energy Laboratory)s pyranometers and pyrheliometers on a ground station for cases of single incident angle and for simultaneous multiple incident angles of the solar beam.

  7. Expanding the "Ports of Entry" for Speech-Language Pathologists: A Relational and Reflective Model for Clinical Practice

    Science.gov (United States)

    Geller, Elaine; Foley, Gilbert M.

    2009-01-01

    Purpose: To outline an expanded framework for clinical practice in speech-language pathology. This framework broadens the focus on discipline-specific knowledge and infuses mental health constructs within the study of communication sciences and disorders, with the objective of expanding the potential "ports or points of entry" (D. Stern, 1995) for…

  8. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5

    Directory of Open Access Journals (Sweden)

    P. Bergamaschi

    2005-01-01

    Full Text Available A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1° × 1° resolution that is two-way nested into the global model domain (with resolution of 6° × 4°. This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50-90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values (EEA, 2003. A recent revision of the German inventory, however, resulted in an increase of reported CH4 emissions by 68.5% (EEA, 2004, being now in very good agreement with our top-down estimate. The top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory. The EU-15 totals are relatively close to UNFCCC values (within 4-30% and appear very robust for different inversion scenarios.

  9. Effective pollutant emission heights for atmospheric transport modelling based on real-world information.

    Science.gov (United States)

    Pregger, Thomas; Friedrich, Rainer

    2009-02-01

    Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling.

  10. Initial Results from SQUID Sensor: Analysis and Modeling for the ELF/VLF Atmospheric Noise

    Directory of Open Access Journals (Sweden)

    Huan Hao

    2017-02-01

    Full Text Available In this paper, the amplitude probability density (APD of the wideband extremely low frequency (ELF and very low frequency (VLF atmospheric noise is studied. The electromagnetic signals from the atmosphere, referred to herein as atmospheric noise, was recorded by a mobile low-temperature superconducting quantum interference device (SQUID receiver under magnetically unshielded conditions. In order to eliminate the adverse effect brought by the geomagnetic activities and powerline, the measured field data was preprocessed to suppress the baseline wandering and harmonics by symmetric wavelet transform and least square methods firstly. Then statistical analysis was performed for the atmospheric noise on different time and frequency scales. Finally, the wideband ELF/VLF atmospheric noise was analyzed and modeled separately. Experimental results show that, Gaussian model is appropriate to depict preprocessed ELF atmospheric noise by a hole puncher operator. While for VLF atmospheric noise, symmetric α-stable (SαS distribution is more accurate to fit the heavy-tail of the envelope probability density function (pdf.

  11. In vivo evaluation of a biolimus eluting nickel titanium self expanding stent with overlapping balloon expandable drug eluting and bare metal stents in a porcine coronary model.

    Science.gov (United States)

    Cilingiroglu, Mehmet; Elliott, James; Sangi, Pramod; Matthews, Holly; Tio, Fermin; Trauthen, Brett; Elicker, John; Bailey, Steven R

    2009-01-01

    Long lesions and complex vessel anatomy frequently require the use of overlapping stents to treat a lesion. The purpose of this study was to evaluate the long-term effects of overlapping the Axxess Biolimus A9 eluting stent (BES) with two of the most commonly used, commercially available drug eluting stents. These stents were compared to BxVelocity bare metal (BMS) stents in a porcine coronary stent-injury model. Nineteen juvenile farm swine, 25-35 kg in weight, 3-6 months in age were utilised. Each animal received an Axxess stent to their coronary artery as permitted by the individual animal's anatomy. A second stent, either a Cypher, sirolimus eluting stent (SES) or, a Taxus, paclitaxel eluting stent (PES), or a BxVelocity bare metal stent (BMS) were implanted in an overlapped fashion. The animals were then followed for either 28 or 180 days as specified by a randomisation scheme. At the end of each follow-up period, they were euthenised, and the vessels containing the overlapping stents were harvested, processed into histological sections, and analysed. Compared to bare metal stents, overlapped segments using DES exhibited delayed vascular healing compared to both the proximal and distal non-overlap sites at each of the follow-up time point. Overall, in the non-overlap stent segments, SES induced significantly more inflammation and neointimal hyperplasia compared to PES and BMS. In this study of BMS and two different types of DES overlapped with the Axxess Biolimus A9 eluting stent, we found that while there was a delay in the degree of vascular healing with DES compared to BMS, the specific type of DES that was overlapped with BES did not affect the behaviour of the overlap zone in terms of most of the histomorphometric measures at 28 or 180 days. This was true whether the stent was drug eluting or bare metal. More inflammation with delayed healing was seen in the SES compared to PES and BMS.

  12. Anharmonic correlated Debye model high-order expanded interatomic effective potential and Debye-Waller factors of bcc crystals

    Energy Technology Data Exchange (ETDEWEB)

    Van Hung, Nguyen, E-mail: hungnv@vnu.edu.vn [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Hue, Trinh Thi [Department of Physics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Khoa, Ha Dang [School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Vuong, Dinh Quoc [Quang Ninh Education & Training Department, Nguyen Van Cu, Ha Long, Quang Ninh (Viet Nam)

    2016-12-15

    High-order expanded interatomic effective potential and Debye-Waller factors (DWFs) for local vibrational amplitudes in X-ray absorption fine structure (XAFS) of bcc crystals have been studied based on the anharmonic correlated Debye model. DWFs are presented in terms of cumulant expansion up to the fourth order and the many-body effects are taken into account in the present one-dimensional model based on the first shell near neighbor contribution approach used in the derivations of the anharmonic effective potential and XAFS cumulants where Morse potential is assumed to describe the single-pair atomic interaction. Analytical expressions for the dispersion relation, correlated Debye frequency and temperature and four first temperature-dependent XAFS cumulants have been derived based on the many-body perturbation approach. Thermodynamic properties and anharmonic effects in XAFS of bcc crystals described by the obtained cumulants have been in detail discussed. The advantage and efficiency of the present theory are illustrated by good agreement of the numerical results for Mo, Fe and W with experiment.

  13. Determination of expander apparatus displacements and contact pressures on the mucosa using FEM modelling considering mandibular asymmetries.

    Science.gov (United States)

    Braga, Iracema Utsch; Rocha, Daniel Neves; Utsch, Ricardo Luiz; Las Casas, Estevam Barbosa; Andrade, Roberto Márcio; Jorge, Renato Natal; Braga, Rafael Utsch

    2013-01-01

    This paper presents a method for prediction of forces and displacements in the expansion screw of a modified mandibular Schwarz appliance and the contact pressure distributions on the mucosa during malocclusions treatment. A 3D finite element biomechanical model of the complete mandible-mucosa-apparatus set was built using computerised tomographic images of a patient's mandible and constructive solid geometry by computer software. An iterative procedure was developed to handle a boundary condition that takes into account the mandibular asymmetries. The results showed asymmetries in the contact pressure distributions that indicated with precision the patient's malocclusion diagnosis. In vivo measurements of contact pressure using piezoelectric sensors agreed with the computational results. It was shown that the left and right ends of the expansion screw move differently with respect to the patient mandible, even though the expansion screw has an opening mechanism to ensure equal stretching at both ends. The contact pressures between the apparatus and the mucosa vary linearly with applied forces, which can simplify the analysis of the biomechanical behaviour of the expander mandible apparatus. The biomechanical modelling proposed in this paper can be a useful tool to improve malocclusions treatment, safely avoiding the use of forces acting on live structures beyond the biological tolerance, which could result in traumatic effects.

  14. Hybrid fluid/kinetic modeling of Pluto’s escaping atmosphere

    Science.gov (United States)

    Erwin, Justin; Tucker, O. J.; Johnson, Robert E.

    2013-09-01

    Predicting the rate of escape and thermal structure of Pluto’s upper atmosphere in preparation for the New Horizons Spacecraft encounter in 2015 is important for planning and interpreting the expected measurements. Having a moderate Jeans parameter Pluto’s atmosphere does not fit the classic definition of Jeans escape for light species escaping from the terrestrial planets, nor does it fit the hydrodynamic outflow from comets and certain exoplanets. It has been proposed for some time that Pluto lies in the region of slow hydrodynamic escape. Using a hybrid fluid/molecular-kinetic model, we previously demonstrated the typical implementation of this model fails to correctly describe the appropriate temperature structure for the upper atmosphere for solar minimum conditions. Here we use a time-dependent solver to allow us to extend those simulations to higher heating rates and we examine fluid models in which Jeans-like escape expressions are used for the upper boundary conditions. We compare these to hybrid simulations of the atmosphere under heating conditions roughly representative of solar minimum and mean conditions as these bracket conditions expected during the New Horizon encounter. Although we find escape rates comparable to those previously estimated by the slow hydrodynamic escape model, and roughly consistent with energy limited escape, our model produces a much more extended atmosphere with higher temperatures roughly consistent with recent observations of CO. Such an extended atmosphere will be affected by Charon and will affect Pluto’s interaction with the solar wind at the New Horizon encounter. For the parameter space covered, we also find an inverse relationship between exobase temperature and altitude and the Jeans escape rate that is consistent with the energy limited escape rate. Since we have previously shown that such models can be scaled, these results have implications for modeling exoplanet atmospheres for which the energy limited

  15. Southern hemisphere climate variability as represented by an ocean-atmosphere coupled model

    CSIR Research Space (South Africa)

    Beraki, A

    2012-09-01

    Full Text Available , 1996: Relationship of air temperature in New Zealand to regional anomalies in sea-surface temperature and atmospheric circulation. Int. J. Climatol., 16, 405?425. Beraki, A., D. DeWitt, W.A. Landman and O. Cobus, 2011: Ocean-Atmosphere Coupled... variability as represented by an ocean-atmosphere coupled model Asmerom Beraki1,2, Willem A. Landman2,3 and David DeWitt4 1South African Weather Service Pretoria, South Africa, asmerom.beraki@weahtersa.co.za 2Departement of Geography...

  16. [Atmospheric correction method for HJ-1 CCD imagery over waters based on radiative transfer model].

    Science.gov (United States)

    Xu, Hua; Gu, Xing-Fa; Li, Zheng-Qiang; Li, Li; Chen, Xing-Feng

    2011-10-01

    Atmospheric correction is a bottleneck in quantitative application of Chinese satellites HJ-1 data to remote sensing of water color. According to the characteristics of CCD sensors, the present paper made use of air-water coupled radiative transfer model to work out the look-up table (LUT) of atmospheric corrected parameters, and thereafter developed pixel-by-pixel atmospheric correction method over waters accomplishing the water-leaving remote sensing reflectance with accessorial meteorological input. The paper validates the HJ-1 CCD retrievals with MODIS and in-situ results. It was found that the accuracy in blue and green bands is good. However, the accuracy in red or NIR bands is much worse than blue or green ones. It was also demonstrated that the aerosol model is a sensitive factor to the atmospheric correction accuracy.

  17. Atmospheric Isotopologues Observed with Ace-Fts and Modeled with Waccm

    Science.gov (United States)

    Buzan, Eric M.; Beale, Christopher A.; Yousefi, Mahdi; Boone, Chris; Bernath, Peter F.

    2017-06-01

    Atmospheric isotopologues are useful tracers of dynamics and chemistry and can be used to constrain budgets of gases in the atmosphere. The Atmospheric Chemistry Experiment (ACE) routinely measures vertical profiles of over 35 molecules and 20 isotopologues via solar occultation from a satellite in low Earth orbit. The primary instrument is an infrared Fourier transform spectrometer with a spectral range of 750 - 4400 \\wn and a resolution of 0.02 \\wn. ACE began taking measurements in 2004 and is still active today. This talk focuses on isotopic measurements of CH_{4}, CO, CO_{2}, and N_{2}O from ACE-FTS. To complement ACE-FTS data, modeling using the Whole Atmosphere Community Climate Model (WACCM) was performed for each molecule.

  18. Artificial Neural Network model for the determination of GSM Rxlevel from atmospheric parameters

    Directory of Open Access Journals (Sweden)

    Julia Ofure Eichie

    2017-04-01

    Full Text Available Accurate received signal level (Rxlevel values are useful for mobile telecommunication network planning. Rxlevel is affected by the dynamics of the atmosphere through which it propagates. Adequate knowledge of the prevailing atmospheric conditions in an environment is essential for proper network planning. However most of the existing GSM received signal determination model are function of distance between point of signal reception and transmitting site thus necessitating the development of a model that involve the use of atmospheric parameters in the determination of received GSM signal level. In this paper, a three stage approach was used in the development of the model using some atmospheric parameters such as atmospheric temperature, relative humidity and dew point. The selected and easily measurable atmospheric parameters were used as input parameters in developing two new models for computing the Rxlevel of GSM signal using a three-step approach. Data acquisition and pre-processing serves as the first stage and formulation of ANN design and the development of parametric model for the Rxlevel using ANN synaptic weights form the second stage of the proposed approach. The third stage involves the use of ANN weight and bias values, and network architecture in the development of the model equation. In evaluating the performance of the proposed models, network parameters were varied and the results obtained using mean squared error (MSE as performance measure showed the developed model with 33 neurons in the hidden layer and tansig activation, function in both the hidden and output layers as the optimal model with least MSE value of 0.056. Thus showing that the developed model has an acceptable accuracy value as demonstrated from comparison of results with actual measured values.

  19. Numerical simulations of atmospheric dispersion of iodine-131 by different models.

    Directory of Open Access Journals (Sweden)

    Ádám Leelőssy

    Full Text Available Nowadays, several dispersion models are available to simulate the transport processes of air pollutants and toxic substances including radionuclides in the atmosphere. Reliability of atmospheric transport models has been demonstrated in several recent cases from local to global scale; however, very few actual emission data are available to evaluate model results in real-life cases. In this study, the atmospheric dispersion of 131I emitted to the atmosphere during an industrial process was simulated with different models, namely the WRF-Chem Eulerian online coupled model and the HYSPLIT and the RAPTOR Lagrangian models. Although only limited data of 131I detections has been available, the accuracy of modeled plume direction could be evaluated in complex late autumn weather situations. For the studied cases, the general reliability of models has been demonstrated. However, serious uncertainties arise related to low level inversions, above all in case of an emission event on 4 November 2011, when an important wind shear caused a significant difference between simulated and real transport directions. Results underline the importance of prudent interpretation of dispersion model results and the identification of weather conditions with a potential to cause large model errors.

  20. Numerical simulations of atmospheric dispersion of iodine-131 by different models.

    Science.gov (United States)

    Leelőssy, Ádám; Mészáros, Róbert; Kovács, Attila; Lagzi, István; Kovács, Tibor

    2017-01-01

    Nowadays, several dispersion models are available to simulate the transport processes of air pollutants and toxic substances including radionuclides in the atmosphere. Reliability of atmospheric transport models has been demonstrated in several recent cases from local to global scale; however, very few actual emission data are available to evaluate model results in real-life cases. In this study, the atmospheric dispersion of 131I emitted to the atmosphere during an industrial process was simulated with different models, namely the WRF-Chem Eulerian online coupled model and the HYSPLIT and the RAPTOR Lagrangian models. Although only limited data of 131I detections has been available, the accuracy of modeled plume direction could be evaluated in complex late autumn weather situations. For the studied cases, the general reliability of models has been demonstrated. However, serious uncertainties arise related to low level inversions, above all in case of an emission event on 4 November 2011, when an important wind shear caused a significant difference between simulated and real transport directions. Results underline the importance of prudent interpretation of dispersion model results and the identification of weather conditions with a potential to cause large model errors.

  1. Modeling and Measurements of Atmospheric Methane at Four Corners, NM

    Science.gov (United States)

    Costigan, K. R.; Lindenmaier, R.; Dubey, M. K.

    2014-12-01

    Methane (CH4) fugitive emissions from fossil energy mining remain highly uncertain and scrutinized with the rapid expansion in domestic production by hydraulic fracturing. Top down observational studies of reported bottom up inventories are limited, but the latter may be biased low. We focus on the Four Corners region of the Southwestern United States, a region with extensive coal bed methane production, to verify its current emissions. At our site we measured methane over a range of scales using ground-based, in-situ instruments and a Fourier Transform Spectrometer (FTS), which is part of the Total Carbon Column Observing Network (TCCON). Measurements of CH4 produced much higher concentrations of methane in this rural area than previously expected. The diurnal variation and wind direction dependence in the CH4 concentrations suggest a source location tied to topographically induced winds and consistent with oil and gas production. This paper presents the results of WRF-Chem simulations that are performed to simulate methane concentrations in this region. Emissions from the Emissions Database for Global Atmospheric Research (EDGAR) indicate large CH4 emissions, associated with the gas production and distribution sector, in one 0.1 x 0.1 degree grid cell within the region and these emissions are employed in the simulations. A series of six simulations are run at two-month intervals during 2012. Each simulates a six-day time series to demonstrate the diurnal and seasonal characteristics of the methane concentrations that would be expected at the FTS location, from the sources reported in the EDGAR data set. The results of these simulations will be presented, along with the implications for interpretation of the FTS measurements. We will also interpret our FTS measurements of ethane (C2H6), which is emitted only from fossil fuel mining, to attribute leaks.

  2. Modeling the Effects of Aircraft Emissions on Atmospheric Photochemistry Using Layered Plume Dynamics

    Science.gov (United States)

    Cameron, M. A.; Jacobson, M. Z.; Naiman, A. D.; Lele, S. K.

    2012-12-01

    Aviation is an expanding industry, experiencing continued growth and playing an increasingly noticed role in upper tropospheric/lower stratospheric composition. Nitrogen oxides and other gas-phase emissions from aircraft react to affect ozone photochemistry. This research investigates the effects of treating aircraft gas-phase chemistry within an expanding layered plume versus at the grid scale. SMVGEAR II, a sparse-matrix, vectorized Gear-type solver for ordinary differential equations, is used to solve chemical equations at both the grid scale and subgrid scale. A Subgrid Plume Model (SPM) is used to advance the expanding plume, accounting for wind shear and diffusion. Simulations suggest that using a layered plume approach results in noticeably different final NOx concentrations, demonstrating the importance of these plume dynamics in predicting the effects of aircraft on ozone concentrations. Results showing the effects of a layered plume, single plume, and no plume on ozone after several hours will be presented.

  3. Culture-expanded allogenic adipose tissue-derived stem cells attenuate cartilage degeneration in an experimental rat osteoarthritis model.

    Science.gov (United States)

    Mei, Li; Shen, Bojiang; Ling, Peixue; Liu, Shaoying; Xue, Jiajun; Liu, Fuyan; Shao, Huarong; Chen, Jianying; Ma, Aibin; Liu, Xia

    2017-01-01

    Mesenchymal stem cell (MSC)-based cell therapy is a promising avenue for osteoarthritis (OA) treatment. In the present study, we evaluated the efficacy of intra-articular injections of culture-expanded allogenic adipose tissue-derived stem cells (ADSCs) for the treatment of anterior cruciate ligament transection (ACLT) induced rat OA model. The paracrine effects of major histocompatibility complex (MHC)-unmatched ADSCs on chondrocytes were investigated in vitro. Rats were divided into an OA group that underwent ACLT surgery and a sham-operated group that did not undergo ACLT surgery. Four weeks after surgery mild OA was induced in the OA group. Subsequently, the OA rats were randomly divided into ADSC and control groups. A single dose of 1 × 106 ADSCs suspended in 60 μL phosphate-buffered saline (PBS) was intra-articularly injected into the rats of the ADSC group. The control group received only 60 μL PBS. OA progression was evaluated macroscopically and histologically at 8 and 12 weeks after surgery. ADSC treatment did not cause any adverse local or systemic reactions. The degeneration of articular cartilage was significantly weaker in the ADSC group compared to that in the control group at both 8 and 12 weeks. Chondrocytes were co-cultured with MHC-unmatched ADSCs in trans-wells to assess the paracrine effects of ADSCs on chondrocytes. Co-culture with ADSCs counteracted the IL-1β-induced mRNA upregulation of the extracellular matrix-degrading enzymes MMP-3 and MMP-13 and the pro-inflammatory cytokines TNF-α and IL-6 in chondrocytes. Importantly, ADSCs increased the expression of the anti-inflammatory cytokine IL-10 in chondrocytes. The results of this study indicated that the intra-articular injection of culture-expanded allogenic ADSCs attenuated cartilage degeneration in an experimental rat OA model without inducing any adverse reactions. MHC-unmatched ADSCs protected chondrocytes from inflammatory factor-induced damage. The paracrine effects of ADSCs on

  4. Culture-expanded allogenic adipose tissue-derived stem cells attenuate cartilage degeneration in an experimental rat osteoarthritis model.

    Directory of Open Access Journals (Sweden)

    Li Mei

    Full Text Available Mesenchymal stem cell (MSC-based cell therapy is a promising avenue for osteoarthritis (OA treatment. In the present study, we evaluated the efficacy of intra-articular injections of culture-expanded allogenic adipose tissue-derived stem cells (ADSCs for the treatment of anterior cruciate ligament transection (ACLT induced rat OA model. The paracrine effects of major histocompatibility complex (MHC-unmatched ADSCs on chondrocytes were investigated in vitro. Rats were divided into an OA group that underwent ACLT surgery and a sham-operated group that did not undergo ACLT surgery. Four weeks after surgery mild OA was induced in the OA group. Subsequently, the OA rats were randomly divided into ADSC and control groups. A single dose of 1 × 106 ADSCs suspended in 60 μL phosphate-buffered saline (PBS was intra-articularly injected into the rats of the ADSC group. The control group received only 60 μL PBS. OA progression was evaluated macroscopically and histologically at 8 and 12 weeks after surgery. ADSC treatment did not cause any adverse local or systemic reactions. The degeneration of articular cartilage was significantly weaker in the ADSC group compared to that in the control group at both 8 and 12 weeks. Chondrocytes were co-cultured with MHC-unmatched ADSCs in trans-wells to assess the paracrine effects of ADSCs on chondrocytes. Co-culture with ADSCs counteracted the IL-1β-induced mRNA upregulation of the extracellular matrix-degrading enzymes MMP-3 and MMP-13 and the pro-inflammatory cytokines TNF-α and IL-6 in chondrocytes. Importantly, ADSCs increased the expression of the anti-inflammatory cytokine IL-10 in chondrocytes. The results of this study indicated that the intra-articular injection of culture-expanded allogenic ADSCs attenuated cartilage degeneration in an experimental rat OA model without inducing any adverse reactions. MHC-unmatched ADSCs protected chondrocytes from inflammatory factor-induced damage. The paracrine effects

  5. Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain

    Directory of Open Access Journals (Sweden)

    Alijafar Mousivand

    2015-06-01

    Full Text Available Topography affects the fraction of direct and diffuse radiation received on a pixel and changes the sun–target–sensor geometry, resulting in variations in the observed radiance. Retrieval of surface–atmosphere properties from top of atmosphere radiance may need to account for topographic effects. This study investigates how such effects can be taken into account for top of atmosphere radiance modeling. In this paper, a system for top of atmosphere radiance modeling over heterogeneous non-Lambertian rugged terrain through radiative transfer modeling is presented. The paper proposes an extension of “the four-stream radiative transfer theory” (Verhoef and Bach 2003, 2007 and 2012 mainly aimed at representing topography-induced contributions to the top of atmosphere radiance modeling. A detailed account for BRDF effects, adjacency effects and topography effects on the radiance modeling is given, in which sky-view factor and non-Lambertian reflected radiance from adjacent slopes are modeled precisely. The paper also provides a new formulation to derive the atmospheric coefficients from MODTRAN with only two model runs, to make it more computationally efficient and also avoiding the use of zero surface albedo as used in the four-stream radiative transfer theory. The modeling begins with four surface reflectance factors calculated by the Soil–Leaf–Canopy radiative transfer model SLC at the top of canopy and propagates them through the effects of the atmosphere, which is explained by six atmospheric coefficients, derived from MODTRAN radiative transfer code. The top of the atmosphere radiance is then convolved with the sensor characteristics to generate sensor-like radiance. Using a composite dataset, it has been shown that neglecting sky view factor and/or terrain reflected radiance can cause uncertainty in the forward TOA radiance modeling up to 5 (mW/m2·sr·nm. It has also been shown that this level of uncertainty can be translated

  6. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  7. Tests on the reliability of atmospheric reanalysis models in the context of Earth rotation

    Science.gov (United States)

    Schindelegger, M.; Böhm, J.; Salstein, D. A.

    2013-12-01

    A valuable but somewhat less discussed complement to the plain quantification of geophysical and specifically atmospheric excitation of Earth rotation is the reliability assessment of the underlying models and the quantities calculated from them. In this study, we assess the validity of present-day atmospheric reanalysis models by numerical verification of the three-dimensional atmospheric angular momentum (AAM) budget equation, which requires that the total torque acting on the atmosphere exactly balances the time derivative of AAM. The thoroughly consistent analysis utilizes two novel, five-year records of AAM and atmospheric torques, as computed from the 3-hourly output of ERA-Interim of the ECMWF (European Centre for Medium Range-Weather Forecasts) and MERRA (Modern Era-Retrospective Analysis for Research and Applications) of NASA's GMAO (Global Modeling and Assimilation Office). We detail the AAM budget validation from the semi-diurnal band up to seasonal periodicities and address both equatorial and axial components. At most frequencies, the equivalence of torques and AAM derivatives is well established. Large discrepancies however are found in particular at high frequencies in the axial direction; we investigate their subtleties in more detail. An additional, successful term-to-term comparison of both AAM and torque terms provides another endorsement for using atmospheric interaction torques as a measure complementary to angular momentum in Earth rotation studies.

  8. Projects To Probe Titan's Surface Composition and Development of Atmospheric Removal Models for Cassini VIMS Data

    Science.gov (United States)

    Pitman, K. M.; Buratti, B. J.; Baines, K. H.; West, R. A.; Wolff, M. J.; Brown, R. H.

    2007-05-01

    In this work, we will describe recent projects performed by our group at the Jet Propulsion Laboratory, California Institute of Technology involving I/F data of Titan's surface acquired by Cassini's Visual and Infrared Mapping Spectrometer (VIMS), including the next stage of development of methods to de-gas and de-fog VIMS images. VIMS I/F spectra include contributions from both surface and atmospheric signal; therefore, current spectral data analysis necessarily focuses on portions of VIMS I/F spectra where atmospheric methane and scattering by haze is at a minimum. However, atmospheric opacity clears enough between wavelengths of 1 and 2 microns to provide strong potential to view complex landforms if a proper atmospheric correction can be applied. Plane- parallel radiative transfer (RT) correction methods have been used successfully in surface-atmospheric separation retrievals for Mars and offer some utility for VIMS observations of Titan that are away from the limb. In a previous work (Pitman et al. 2007, LPSC XXXVIII, p. 1164), we determined which inputs to radiative transfer models must be updated, given results from recent meetings and literature, and evaluated two plane-parallel RT models (adding-doubling, discrete ordinates) to determine which is more easily customized for surface- atmospheric separation of Titan. In this work, we report our progress on replacing Voyager with Cassini-Huygens inputs and how these models currently compare. Work performed under contract to NASA and by appointment to the NASA Postdoctoral Program (ORAU).

  9. A system of conservative regridding for ice–atmosphere coupling in a General Circulation Model (GCM

    Directory of Open Access Journals (Sweden)

    R. Fischer

    2014-05-01

    Full Text Available The method of elevation classes, in which the ice surface model is run at multiple elevations within each grid cell, has proven to be a useful way for a low-resolution atmosphere inside a general circulation model (GCM to produce high-resolution downscaled surface mass balance fields for use in one-way studies coupling atmospheres and ice flow models. Past uses of elevation classes have failed to conserve mass and energy because the transformation used to regrid to the atmosphere was inconsistent with the transformation used to downscale to the ice model. This would cause problems for two-way coupling. A strategy that resolves this conservation issue has been designed and is presented here. The approach identifies three grids between which data must be regridded and five transformations between those grids required by a typical coupled atmosphere–ice flow model. This paper develops a theoretical framework for the problem and shows how each of these transformations may be achieved in a consistent, conservative manner. These transformations are implemented in Glint2, a library used to couple atmosphere models with ice models. Source code and documentation are available for download. Confounding real-world issues are discussed, including the use of projections for ice modeling, how to handle dynamically changing ice geometry, and modifications required for finite element ice models.

  10. A Flexible Atmospheric Modeling Framework for the CESM

    Energy Technology Data Exchange (ETDEWEB)

    Randall, David [Colorado State University; Heikes, Ross [Colorado State University; Konor, Celal [Colorado State University

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  11. Toward unification of the multiscale modeling of the atmosphere

    Directory of Open Access Journals (Sweden)

    A. Arakawa

    2011-04-01

    Full Text Available As far as the representation of deep moist convection is concerned, only two kinds of model physics are used at present: highly parameterized as in the conventional general circulation models (GCMs and explicitly simulated as in the cloud-resolving models (CRMs. Ideally, these two kinds of model physics should be unified so that a continuous transition of model physics from one kind to the other takes place as the resolution changes. With such unification, the GCM can converge to a global CRM (GCRM as the grid size is refined. This paper suggests two possible routes to achieve the unification. ROUTE I continues to follow the parameterization approach, but uses a unified parameterization that is applicable to any horizontal resolutions between those typically used by GCMs and CRMs. It is shown that a key to construct such a unified parameterization is to eliminate the assumption of small fractional area covered by convective clouds, which is commonly used in the conventional cumulus parameterizations either explicitly or implicitly. A preliminary design of the unified parameterization is presented, which demonstrates that such an assumption can be eliminated through a relatively minor modification of the existing mass-flux based parameterizations. Partial evaluations of the unified parameterization are also presented. ROUTE II follows the "multi-scale modeling framework (MMF" approach, which takes advantage of explicit representation of deep moist convection and associated cloud-scale processes by CRMs. The Quasi-3-D (Q3-D MMF is an attempt to broaden the applicability of MMF without necessarily using a fully three-dimensional CRM. This is accomplished using a network of cloud-resolving grids with large gaps. An outline of the Q3-D algorithm and highlights of preliminary results are reviewed.

  12. Assessing the Uncertainty of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model

    OpenAIRE

    Kevin A Reed; Christiane Jablonowski

    2011-01-01

    The paper explores the impact of the initial-data, parameter and structural model uncertainty on the simulation of a tropical cyclone-like vortex in the National Center for Atmospheric Research's (NCAR) Community Atmosphere Model (CAM). An analytic technique is used to initialize the model with an idealized weak vortex that develops into a tropical cyclone over ten simulation days. A total of 78 ensemble simulations are performed at horizontal grid spacings of 1.0°, 0.5° and 0.2...

  13. Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of online coupled models

    Science.gov (United States)

    Baró, Rocío; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2017-08-01

    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2 m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.

  14. Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of online coupled models

    Directory of Open Access Journals (Sweden)

    R. Baró

    2017-08-01

    Full Text Available The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol–radiation interactions (ARIs and indirect effects, resulting from aerosol–cloud–radiation interactions (ACIs. Online coupled meteorology–chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2 m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i a heat wave event and a forest fire episode (July–August 2010 and (ii a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.

  15. Interagency Modeling Atmospheric Assessment Center Local Jurisdiction: IMAAC Operations Framework

    Science.gov (United States)

    2010-03-01

    proposed model ( Daft & Lengel, 1986). All six Ohio LINC Cities were interviewed face- to-face providing the basis for the research evaluating...Cincinnati, DHS should work in partnership with Cincinnati Urban Area Leadership to convene a randomly selected, but statistically-significant, UASI...response system. Internal document. Daft , R. L. & Lengel, R. H. (1986). Organizational Information Requirements, Media Richness and Structural

  16. Modelling atmospheric temperature rise due to pollutants and its ...

    African Journals Online (AJOL)

    ... a mathematical model we show that temperature increases (warming) as the Hartman number due to pollutant increases. Thus, temperature and pollutants contribute to global warming. We also discuss the implications of the result on agriculture and forestry. Journal of the Nigerian Association of Mathematical Physics, ...

  17. Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines

    Science.gov (United States)

    Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.

    2016-12-01

    Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.

  18. Modeling and mapping of atmospheric mercury deposition in adirondack park, new york.

    Directory of Open Access Journals (Sweden)

    Xue Yu

    Full Text Available The Adirondacks of New York State, USA is a region that is sensitive to atmospheric mercury (Hg deposition. In this study, we estimated atmospheric Hg deposition to the Adirondacks using a new scheme that combined numerical modeling and limited experimental data. The majority of the land cover in the Adirondacks is forested with 47% of the total area deciduous, 20% coniferous and 10% mixed. We used litterfall plus throughfall deposition as the total atmospheric Hg deposition to coniferous and deciduous forests during the leaf-on period, and wet Hg deposition plus modeled atmospheric dry Hg deposition as the total Hg deposition to the deciduous forest during the leaf-off period and for the non-forested areas year-around. To estimate atmospheric dry Hg deposition we used the Big Leaf model. The average atmospheric Hg deposition to the Adirondacks was estimated as 17.4 [Formula: see text]g m[Formula: see text] yr[Formula: see text] with a range of -3.7-46.0 [Formula: see text]g m[Formula: see text] yr[Formula: see text]. Atmospheric Hg dry deposition (370 kg yr[Formula: see text] was found to be more important than wet deposition (210 kg yr[Formula: see text] to the entire Adirondacks (2.4 million ha. The spatial pattern showed a large variation in atmospheric Hg deposition with scattered areas in the eastern Adirondacks having total Hg deposition greater than 30 μg m(-2 yr(-1, while the southwestern and the northern areas received Hg deposition ranging from 25-30 μg m(-2 yr(-1.

  19. Modelling the mid-Pliocene Warm Period climate with the IPSL coupled model and its atmospheric component LMDZ5A

    Directory of Open Access Journals (Sweden)

    C. Contoux

    2012-06-01

    Full Text Available This paper describes the experimental design and model results of the climate simulations of the mid-Pliocene Warm Period (mPWP, ca. 3.3–3 Ma using the Institut Pierre Simon Laplace model (IPSLCM5A, in the framework of the Pliocene Model Intercomparison Project (PlioMIP. We use the IPSL atmosphere ocean general circulation model (AOGCM, and its atmospheric component alone (AGCM, to simulate the climate of the mPWP. Boundary conditions such as sea surface temperatures (SSTs, topography, ice-sheet extent and vegetation are derived from the ones imposed by the Pliocene Model Intercomparison Project (PlioMIP, described in Haywood et al. (2010, 2011. We first describe the IPSL model main features, and then give a full description of the boundary conditions used for atmospheric model and coupled model experiments. The climatic outputs of the mPWP simulations are detailed and compared to the corresponding control simulations. The simulated warming relative to the control simulation is 1.94 °C in the atmospheric and 2.07 °C in the coupled model experiments. In both experiments, warming is larger at high latitudes. Mechanisms governing the simulated precipitation patterns are different in the coupled model than in the atmospheric model alone, because of the reduced gradients in imposed SSTs, which impacts the Hadley and Walker circulations. In addition, a sensitivity test to the change of land-sea mask in the atmospheric model, representing a sea-level change from present-day to 25 m higher during the mid-Pliocene, is described. We find that surface temperature differences can be large (several degrees Celsius but are restricted to the areas that were changed from ocean to land or vice versa. In terms of precipitation, impact on polar regions is minor although the change in land-sea mask is significant in these areas.

  20. Development and applications of a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System

    Science.gov (United States)

    Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.

    2012-12-01

    Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the

  1. Planetary atmosphere models: A research and instructional web-based resource

    Science.gov (United States)

    Gray, Samuel Augustine

    The effects of altitude change on the temperature, pressure, density, and speed of sound were investigated. These effects have been documented in Global Reference Atmospheric Models (GRAMs) to be used in calculating the conditions in various parts of the atmosphere for several planets. Besides GRAMs, there are several websites that provide online calculators for the 1976 US Standard Atmosphere. This thesis presents the creation of an online calculator of the atmospheres of Earth, Mars, Venus, Titan, and Neptune. The websites consist of input forms for altitude and temperature adjustment followed by a results table for the calculated data. The first phase involved creating a spreadsheet reference based on the 1976 US Standard Atmosphere and other planetary GRAMs available. Microsoft Excel was used to input the equations and make a graphical representation of the temperature, pressure, density, and speed of sound change as altitude changed using equations obtained from the GRAMs. These spreadsheets were used later as a reference for the JavaScript code in both the design and comparison of the data output of the calculators. The websites were created using HTML, CSS, and JavaScript coding languages. The calculators could accurately display the temperature, pressure, density, and speed of sound of these planets from surface values to various stages within the atmosphere. These websites provide a resource for students involved in projects and classes that require knowledge of these changes in these atmospheres. This project also created a chance for new project topics to arise for future students involved in aeronautics and astronautics.

  2. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  3. Single Column Modeling of Atmospheric Boundary Layers and the Complex Interactions with the Land Surface

    NARCIS (Netherlands)

    Holtslag, A.A.M.; Steeneveld, G.J.

    2009-01-01

    In this paper a summary is given of the basic approaches for the modeling and parameterization of turbulence in the atmospheric boundary layer. The treated approaches are in current use in regional and global-scale models for the forecasting and study of weather, climate and air quality. Here we

  4. An improved k-ε model applied to a wind turbine wake in atmospheric turbulence

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    An improved k-ε turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric boundary layer using a Reynolds averaged Navier–Stokes solver. The proposed model includes a flow-dependent Cμ that is sensitive to high velocity gradients, e.g., at the edge of a wind...

  5. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere

    Science.gov (United States)

    Ned Nikolova; Karl F. Zeller

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology....

  6. MC-SPAM: Monte-Carlo Synthetic-Photometry/Atmosphere-Model

    Science.gov (United States)

    Espinoza, Néstor; Jordán, Andrés

    2017-03-01

    MC-SPAM (Monte-Carlo Synthetic-Photometry/Atmosphere-Model) generates limb-darkening coefficients from models that are comparable to transit photometry; it extends the original SPAM algorithm by Howarth (2011) by taking in consideration the uncertainty on the stellar and transit parameters of the system under analysis.

  7. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model

    NARCIS (Netherlands)

    Van Wessem, J. M.; Reijmer, C. H.; Morlighem, M.; Mouginot, J.; Rignot, E.; Medley, B.; Joughin, I.; Wouters, B.; Depoorter, M. A.; Bamber, J. L.; Lenaerts, J. T M; Van De Berg, W. J.; Van Den Broeke, M. R.; Van Meijgaard, E.

    2014-01-01

    This study evaluates the impact of a recent upgrade in the physics package of the regional atmospheric climate model RACMO2 on the simulated surface mass balance (SMB) of the Antarctic ice sheet. The modelled SMB increases, in particular over the grounded ice sheet of East Antarctica (+44Gt a-1),

  8. Expanding comparative-advantage biological market models: contingency of mutualism on partners' resource requirements and acquisition trade-offs.

    Science.gov (United States)

    Hoeksema, Jason D; Schwartz, Mark W

    2003-05-07

    We expand the comparative-advantage biological market-modelling framework to show how differences between partners, both in their abilities to acquire two resources and in their requirements for those resources, can affect the net benefit of participating in interspecific resource exchange. In addition, the benefits derived from resource trading depend strongly on the nature of the trade-off between the acquisition of one resource and the acquisition of another, described here by the shape (linear, convex or concave) of the resource acquisition constraints of the individuals involved. Combined with previous results, these analyses provide a suite of predictions about whether or not resource exchange is beneficial for two heterospecific individuals relative to a strategy of non-interaction. The benefit derived from resource exchange depends on three factors: (i) relative differences between the partners in their resource acquisition abilities; (ii) relative differences between the partners in their resource requirements; and (iii) variation in the shape of resource acquisition trade-offs. We find that such an explicit consideration of resource requirements and acquisition abilities can provide useful and sometimes non-intuitive predictions about the benefits of resource exchange, and also which resources should be traded by which species.

  9. Relationship between expanded health belief model variables and mammography screening adherence in women with multiple sclerosis: a pilot study.

    Science.gov (United States)

    Paraska, Karen

    2012-01-01

    People with disabilities often find it more difficult to access health-care services than the general population, further jeopardizing their health and well-being. The purpose of this descriptive pilot study was to explore the relationship between variables of the Expanded Health Belief Model (EHBM) and adherence to mammography screening in a sample of homebound women with MS after completion of a National Multiple Sclerosis Society (NMSS) intervention, known as the "Home-Based Health Maintenance Program for Women with MS," that was conducted in Allegheny County, Pennsylvania. The intervention was conducted in the patients' homes and included education of the women and their partners on risk factors for breast cancer and instruction in breast examination techniques. The patients were also helped to make appointments for mammograms. This study derived its sample from the intervention program and used data on adherence recorded by the NMSS. After completion of the intervention, telephone interviews were conducted with women who met the inclusion criteria (N = 11). Descriptive statistics indicate that adherence can be successfully described using variables of the EHBM, including perceived susceptibility, perceived severity, perceived benefits, and self-efficacy. The instruments chosen for the research were well tolerated, useful, and efficient to administer and allowed for immediate assessment.

  10. The impact of ocean-atmosphere interaction and atmospheric model resolution on the Mediterranean climate as simulated by regionally coupled ESM ROM

    Science.gov (United States)

    Sein, Dmitry; Cabos, William; Jacob, Daniela

    2017-04-01

    The Mediterranean Sea and adjacent land is located in a transitional area between tropical and mid-latitudes and presents a complex orography and coastlines where intense local air-sea and land-sea interactions take place. These intense local air-sea interactions together with the inflow of Atlantic water drive the Mediterranean thermohaline circulation. The resolution of global climate models in general is too coarse to correctly describe air-sea fluxes of energy and mass that play a key role in the process of deep water formation in the Mediterranean Sea. From the other hand stand-alone atmospheric models can be inadequate to simulate the air-sea fluxes correctly. For these reasons, the Mediterranean Sea is a region where atmosphere-ocean regional climate models (AORCM) are critical for the study of the processes in the atmosphere and ocean. In this work we use the regionally coupled atmosphere-ocean model ROM and its atmospheric component REMO in standalone configuration in order to assess the role of ocean-atmosphere feedbacks and the ocean and atmosphere models resolution in the simulation of both the ocean and atmospheric features of the Mediterranean hydrological cycle. To this end, a number of coupled and uncoupled simulations forced by ERA-Interim boundary conditions have been carried out. Namely, four different sets of coupled and uncoupled simulations with different atmospheric resolutions (25 and 12.5 km) are used to estimate the impact of resolution and coupling on the mass and heat budget as well as deep water formation in the Mediterranean Sea.

  11. A simple atmospheric model on the sphere with 100% parallelism

    Science.gov (United States)

    Kalnay, E.; Takacs, L. L.

    1981-01-01

    A simple shallow water equations model used to test numerical weather prediction schemes is presented. The spherical geometry is transformed into a formally doubly periodic configuration which can be implemented on a massively parallel computer at 100% parallelism. A nonstaggered grid with all variables defined at the grid points (circles) is used. The parallel structure was simulated by performing step 1 in a FORTRAN array, on an Amdahl serial machine, changing the signs of the winds on the dark side.

  12. Wideband Channel Modeling in Real Atmospheric Environments with Experimental Evaluation

    Science.gov (United States)

    2013-04-01

    received signal will experience ISI and the channel is considered wideband. If either the transmitter or receiver is mobile or the environment is not...are commonly used in spread spectrum communication systems such as Code Division Multiple Access ( CDMA ) systems. Narrowband interference mitigation...Model (APM) for Mobile Radio Applications,” IEEE Trans. Antennas and Propagation, vol. 54, no. 10 (October), pp. 2869–2877. [5] A. Barrios. 1995

  13. Modelling the formation of organic particles in the atmosphere

    Directory of Open Access Journals (Sweden)

    T. Anttila

    2004-01-01

    Full Text Available Particle formation resulting from activation of inorganic stable clusters by a supersaturated organic vapour was investigated using a numerical model. The applied aerosol dynamic model included a detailed description of the activation process along with a treatment of the appropriate aerosol and gas-phase processes. The obtained results suggest that both gaseous sulphuric acid and organic vapours contribute to organic particle formation in continental background areas. The initial growth of freshly-nucleated clusters is driven mainly by condensation of gaseous sulphuric acid and by a lesser extent self-coagulation. After the clusters have reached sizes of around 2 nm in diameter, low-volatile organic vapours start to condense spontaneously into the clusters, thereby accelerating their growth to detectable sizes. A shortage of gaseous sulphuric acid or organic vapours limit, or suppress altogether, the particle formation, since freshly-nucleated clusters are rapidly coagulated away by pre-existing particles. The obtained modelling results were applied to explaining the observed seasonal cycle in the number of aerosol formation events in a continental forest site.

  14. Performance of parallel computers for spectral atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Foster, I.T.; Toonen, B. [Argonne National Lab., IL (United States); Worley, P.H. [Oak Ridge National Lab., TN (United States)

    1995-06-01

    Massively parallel processing (MPP) computer systems use high-speed interconnection networks to link hundreds or thousands of RISC microprocessors. With each microprocessor having a peak performance of 100 Mflops/sec or more, there is at least the possibility of achieving very high performance. However, the question of exactly how to achieve this performance remains unanswered. MPP systems and vector multiprocessors require very different coding styles. Different MPP systems have widely varying architectures and performance characteristics. For most problems, a range of different parallel algorithms is possible, again with varying performance characteristics. In this paper, we provide a detailed, fair evaluation of MPP performance for a weather and climate modeling application. Using a specially designed spectral transform code, we study performance on three different MPP systems: Intel Paragon, IBM SP2, and Cray T3D. We take great care to control for performance differences due to varying algorithmic characteristics. The results yield insights into MPP performance characteristics, parallel spectral transform algorithms, and coding style for MPP systems. We conclude that it is possible to construct parallel models that achieve multi-Gflop/sec performance on a range of MPPs if the models are constructed to allow run-time selection of appropriate algorithms.

  15. Challenges and Opportunities in Modeling of the Global Atmosphere

    Science.gov (United States)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko

    2016-04-01

    Modeling paradigms on global scales may need to be reconsidered in order to better utilize the power of massively parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. Note that the described scenario strongly favors horizontally local discretizations. This is relatively easy to achieve in regional models. However, the spherical geometry complicates the problem. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of a reasonable size. However, the polar filtering requires transpositions involving extra communications as well as more computations. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for application of spectral representation. With some variations, such techniques are currently dominating in global models. Unfortunately, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with polar filtering is a step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances, such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids, were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that

  16. Results of an interactively coupled atmospheric chemistry – general circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  17. What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres

    Science.gov (United States)

    Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R.; Abellan, F. J.

    2015-03-01

    Aims: This research has two main goals. First, we present the atmospheric structure and the fundamental parameters of three red supergiants (RSGs), increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. Methods: We carried out spectro-interferometric observations of the RSGs V602 Car, HD 95687, and HD 183589 in the near-infrared K-band (1.92-2.47 μm) with the VLTI/AMBER instrument at medium spectral resolution (R ~ 1500). To categorize and comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3D convection, and new 1D self-excited pulsation models of RSGs. Results: Our near-infrared flux spectra of V602 Car, HD 95687, and HD 183589 are well reproduced by the PHOENIX model atmospheres. The continuum visibility values are consistent with a limb-darkened disk as predicted by the PHOENIX models, allowing us to determine the angular diameter and the fundamental parameters of our sources. Nonetheless, in the case of V602 Car and HD 95686, the PHOENIX model visibilities do not predict the large observed extensions of molecular layers, most remarkably in the CO bands. Likewise, the 3D convection models and the 1D pulsation models with typical parameters of RSGs lead to compact atmospheric structures as well, which are similar to the structure of the hydrostatic PHOENIX models. They can also not explain the observed decreases in the visibilities and thus the large atmospheric molecular extensions. The full sample of our RSGs indicates increasing observed atmospheric extensions with increasing luminosity and decreasing surface gravity, and no correlation with effective temperature or variability amplitude. Conclusions: The location of our RSG sources in the Hertzsprung-Russell diagram is confirmed to be consistent with the red limits of recent evolutionary tracks

  18. Retrieval Assimilation and Modeling of Atmospheric Water Vapor from Ground- and Space-Based GPS Networks: Investigation of the Global and Regional Hydrological Cycles

    Science.gov (United States)

    Dickey, Jean O.

    1999-01-01

    Uncertainty over the response of the atmospheric hydrological cycle (particularly the distribution of water vapor and cloudiness) to anthropogenic forcing is a primary source of doubt in current estimates of global climate sensitivity, which raises severe difficulties in evaluating its likely societal impact. Fortunately, a variety of advanced techniques and sensors are beginning to shed new light on the atmospheric hydrological cycle. One of the most promising makes use of the sensitivity of the Global Positioning System (GPS) to the thermodynamic state, and in particular the water vapor content, of the atmosphere through which the radio signals propagate. Our strategy to derive the maximum benefit for hydrological studies from the rapidly increasing GPS data stream will proceed in three stages: (1) systematically analyze and archive quality-controlled retrievals using state-of-the-art techniques; (2) employ both currently available and innovative assimilation procedures to incorporate these determinations into advanced regional and global atmospheric models and assess their effects; and (3) apply the results to investigate selected scientific issues of relevance to regional and global hydrological studies. An archive of GPS-based estimation of total zenith delay (TZD) data and water vapor where applicable has been established with expanded automated quality control. The accuracy of the GPS estimates is being monitored; the investigation of systematic errors is ongoing using comparisons with water vapor radiometers. Meteorological packages have been implemented. The accuracy and utilization of the TZD estimates has been improved by implementing a troposphere gradient model. GPS-based gradients have been validated as real atmospheric moisture gradients, establishing a link between the estimated gradients and the passage of weather fronts. We have developed a generalized ray tracing inversion scheme that can be used to analyze occultation data acquired from space

  19. Conceiving processes in atmospheric models-General equations, subscale parameterizations, and 'superparameterizations'

    Science.gov (United States)

    Gramelsberger, Gabriele

    The scientific understanding of atmospheric processes has been rooted in the mechanical and physical view of nature ever since dynamic meteorology gained ground in the late 19th century. Conceiving the atmosphere as a giant 'air mass circulation engine' entails applying hydro- and thermodynamical theory to the subject in order to describe the atmosphere's behaviour on small scales. But when it comes to forecasting, it turns out that this view is far too complex to be computed. The limitation of analytical methods precludes an exact solution, forcing scientists to make use of numerical simulation. However, simulation introduces two prerequisites to meteorology: First, the partitioning of the theoretical view into two parts-the large-scale behaviour of the atmosphere, and the effects of smaller-scale processes on this large-scale behaviour, so-called parametrizations; and second, the dependency on computational power in order to achieve a higher resolution. The history of today's atmospheric circulation modelling can be reconstructed as the attempt to improve the handling of these basic constraints. It can be further seen as the old schism between theory and application under new circumstances, which triggers a new discussion about the question of how processes may be conceived in atmospheric modelling.

  20. Acute effects of a large bolide impact simulated by a global atmospheric circulation model

    Science.gov (United States)

    Thompson, Starley L.; Crutzen, P. J.

    1988-01-01

    The goal is to use a global three-dimensional atmospheric circulation model developed for studies of atmospheric effects of nuclear war to examine the time evolution of atmospheric effects from a large bolide impact. The model allows for dust and NOx injection, atmospheric transport by winds, removal by precipitation, radiative transfer effects, stratospheric ozone chemistry, and nitric acid formation and deposition on a simulated Earth having realistic geography. Researchers assume a modest 2 km-diameter impactor of the type that could have formed the 32 km-diameter impact structure found near Manson, Iowa and dated at roughly 66 Ma. Such an impact would have created on the order of 5 x 10 to the 10th power metric tons of atmospheric dust (about 0.01 g cm(-2) if spread globally) and 1 x 10 to the 37th power molecules of NO, or two orders of magnitude more stratospheric NO than might be produced in a large nuclear war. Researchers ignore potential injections of CO2 and wildfire smoke, and assume the direct heating of the atmosphere by impact ejecta on a regional scale is not large compared to absorption of solar energy by dust. Researchers assume an impact site at 45 N in the interior of present day North America.

  1. Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement

    Science.gov (United States)

    Guo, Jingnan; Slaba, Tony C.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Badavi, Francis F.; Böhm, Eckart; Böttcher, Stephan; Brinza, David E.; Ehresmann, Bent; Hassler, Donald M.; Matthiä, Daniel; Rafkin, Scot

    2017-02-01

    The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anticorrelation between the recorded surface Galactic Cosmic Ray-induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation has also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 to 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions.

  2. Dependence of Martian radiation environment on atmospheric depth: modeling and measurement

    Science.gov (United States)

    Guo, Jingnan; Slaba, Tony; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Boehm, Eckart; Brinza, David; Ehresmann, Bent; Hassler, Donald; Matthiae, Daniel; Rafkin, Scot; Badavi, Francis

    2017-04-01

    The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anti-correlation between the recorded surface Galactic Cosmic Ray (GCR) induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation have also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 until 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions.

  3. Variational data assimilation schemes for transport and transformation models of atmospheric chemistry

    Science.gov (United States)

    Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena; Antokhin, Pavel

    2016-04-01

    The work is devoted to data assimilation algorithm for atmospheric chemistry transport and transformation models. In the work a control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the constrained minimum of the target functional combining a control function norm with a norm of the misfit between measured data and its model-simulated analog. Transport and transformation processes model is acting as a constraint. The constrained minimization problem is solved with Euler-Lagrange variational principle [1] which allows reducing it to a system of direct, adjoint and control function estimate relations. This provides a physically-plausible structure of the resulting analysis without model error covariance matrices that are sought within conventional approaches to data assimilation. High dimensionality of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the data assimilation algorithms. Computational issues with complicated models can be solved by using a splitting technique. Within this approach a complex model is split to a set of relatively independent simpler models equipped with a coupling procedure. In a fine-grained approach data assimilation is carried out quasi-independently on the separate splitting stages with shared measurement data [2]. In integrated schemes data assimilation is carried out with respect to the split model as a whole. We compare the two approaches both theoretically and numerically. Data assimilation on the transport stage is carried out with a direct algorithm without iterations. Different algorithms to assimilate data on nonlinear transformation stage are compared. In the work we compare data assimilation results for both artificial and real measurement data. With these data we study the impact of transformation processes and data assimilation to the performance of the modeling system [3]. The

  4. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) Model - An Unified Concept for Earthquake Precursors Validation

    Science.gov (United States)

    Pulinets, S.; Ouzounov, D.

    2010-01-01

    The paper presents a conception of complex multidisciplinary approach to the problem of clarification the nature of short-term earthquake precursors observed in atmosphere, atmospheric electricity and in ionosphere and magnetosphere. Our approach is based on the most fundamental principles of tectonics giving understanding that earthquake is an ultimate result of relative movement of tectonic plates and blocks of different sizes. Different kind of gases: methane, helium, hydrogen, and carbon dioxide leaking from the crust can serve as carrier gases for radon including underwater seismically active faults. Radon action on atmospheric gases is similar to the cosmic rays effects in upper layers of atmosphere: it is the air ionization and formation by ions the nucleus of water condensation. Condensation of water vapor is accompanied by the latent heat exhalation is the main cause for observing atmospheric thermal anomalies. Formation of large ion clusters changes the conductivity of boundary layer of atmosphere and parameters of the global electric circuit over the active tectonic faults. Variations of atmospheric electricity are the main source of ionospheric anomalies over seismically active areas. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model can explain most of these events as a synergy between different ground surface, atmosphere and ionosphere processes and anomalous variations which are usually named as short-term earthquake precursors. A newly developed approach of Interdisciplinary Space-Terrestrial Framework (ISTF) can provide also a verification of these precursory processes in seismically active regions. The main outcome of this paper is the unified concept for systematic validation of different types of earthquake precursors united by physical basis in one common theory.

  5. Air pollution forecasting by coupled atmosphere-fire model WRF and SFIRE with WRF-Chem

    CERN Document Server

    Kochanski, Adam K; Mandel, Jan; Clements, Craig B

    2013-01-01

    Atmospheric pollution regulations have emerged as a dominant obstacle to prescribed burns. Thus, forecasting the pollution caused by wildland fires has acquired high importance. WRF and SFIRE model wildland fire spread in a two-way interaction with the atmosphere. The surface heat flux from the fire causes strong updrafts, which in turn change the winds and affect the fire spread. Fire emissions, estimated from the burning organic matter, are inserted in every time step into WRF-Chem tracers at the lowest atmospheric layer. The buoyancy caused by the fire then naturally simulates plume dynamics, and the chemical transport in WRF-Chem provides a forecast of the pollution spread. We discuss the choice of wood burning models and compatible chemical transport models in WRF-Chem, and demonstrate the results on case studies.

  6. Simulating industrial emissions using atmospheric dispersion modeling system: model performance and source emission factors.

    Science.gov (United States)

    El-Fadel, M; Abi-Esber, L

    2012-03-01

    In this paper, the Gaussian Atmospheric Dispersion Modeling System (ADMS4) was coupled with field observations of surface meteorology and concentrations of several air quality indicators (nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM10) and sulfur dioxide (SO2)) to test the applicability of source emission factors set by the European Environment Agency (EEA) and the United States Environmental Protection Agency (USEPA) at an industrial complex. Best emission factors and data groupings based on receptor location, type of terrain and wind speed, were relied upon to examine model performance using statistical analyses of simulated and observed data. The model performance was deemed satisfactory for several scenarios when receptors were located at downwind sites with index of agreement 'd' values reaching 0.58, fractional bias 'FB' and geometric mean bias 'MG' values approaching 0 and 1, respectively, and normalized mean square error 'NMSE' values as low as 2.17. However, median ratios of predicted to observed concentrations 'Cp/Co' at variable downstream distances were 0.01, 0.36, 0.76 and 0.19 for NOx, CO, PM10 and SO2, respectively, and the fraction of predictions within a factor of two of observations 'FAC2' values were lower than 0.5, indicating that the model could not adequately replicate all observed variations in emittant concentrations. Also, the model was found to be significantly sensitive to the input emission factor bringing into light the deficiency in regulatory compliance modeling which often uses internationally reported emission factors without testing their applicability.

  7. Expanding cities

    DEFF Research Database (Denmark)

    Møller-Jensen, Lasse

    upon qualitative interviews with residents as well as road network data and travel speed data collected with GPS to offer a combination of local testimony with GIS-based modelling of overall accessibility. It is argued that the use of digital network analysis enables planners to obtain a better......A number of cities in Africa experience very rapid spatial growth without the benefit of a systematic process of planning and implementation of planning decisions. This process has challenged the road and transport system, created high levels of congestion, and hampered mobility and accessibility...... knowledge of the spatial patterns of urban accessibility, while the analysis of mobility practices of residents enables a better understanding of the constraints people experience related to their livelihood strategies. Finally, the paper addresses how local residents engage in providing and improving...

  8. Simulation of variability in atmospheric carbon dioxide using a global coupled Eulerian – Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    Y. Koyama

    2011-04-01

    Full Text Available This study assesses the advantages of using a coupled atmospheric-tracer transport model, comprising a global Eulerian model and a global Lagrangian particle dispersion model, to improve the reproducibility of tracer-gas variations affected by the near-field surface emissions and transport around observation sites. The ability to resolve variability in atmospheric composition on an hourly time-scale and a spatial scale of several kilometers would be beneficial for analyzing data from continuous ground-based monitoring and from upcoming space-based observations. The coupled model yields an increase in the horizontal resolution of transport and fluxes, and has been tested in regional-scale studies of atmospheric chemistry. By applying the Lagrangian component to the global domain, we extend this approach to the global scale, thereby enabling computationally efficient global inverse modeling and data assimilation. To validate the coupled model, we compare model-simulated CO2 concentrations with continuous observations at three sites: two operated by the National Oceanic and Atmospheric Administration, USA, and one operated by the National Institute for Environmental Studies, Japan. As the goal of this study is limited to introducing the new modeling approach, we selected a transport simulation at these three sites to demonstrate how the model may perform at various geographical areas. The coupled model provides improved agreement between modeled and observed CO2 concentrations in comparison to the Eulerian model. In an area where variability in CO2 concentration is dominated by a fossil fuel signal, the correlation coefficient between modeled and observed concentrations increases by between 0.05 to 0.1 from the original values of 0.5–0.6 achieved with the Eulerian model.

  9. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  10. Coupling groundwater, vegetation and atmosphere processes: a comparison of two integrated models

    Science.gov (United States)

    Sulis, M.; Williams, J. L.; Shrestha, P.; Maxwell, R. M.; Masbou, M.; Simmer, C.

    2012-12-01

    The correct modelling of the mutual response to and feedback between atmospheric, hydrological, and ecological processes is an important prerequisite for accurate climate/meteorological projection, environmental protection, and water management. As such, numerical models based on a detailed representation of both groundwater and atmospheric dynamics have gained increasing attention within the scientific community. In this study, we compare two integrated systems that dynamically simulate soil-vegetation-atmosphere interactions. One system is the combination of the Weather Research and Forecasting (WRF) atmospheric model coupled with the three-dimensional variably saturated subsurface ParFlow model. Both sub-models are internally coupled in an explicit, operator-splitting manner via the Noah land surface scheme. The second system consists of the regional climate and weather forecast model COSMO coupled also with ParFlow but via the Community Land Model (CLM). In this second system the external OASIS coupler is used to pass relevant fluxes and state variables between these three components via the MPI parallel communications protocol. The comparison on how interactions are simulated and how different processes are integrated/coupled is carried out by selecting a set of test cases. These tests involve a flat domain with idealized initial and boundary conditions, as well as simulations over the Rur catchment in Germany based upon equilibrium initial conditions for the subsurface and realistic atmospheric conditions at the boundaries. We explore and explain the differences in model response, and we discuss the pros and cons of the two approaches by emphasizing the role played by factors such as temporal subcycling and coupling frequency between model components.

  11. A model study of mixing and entrainment in the horizontally evolving atmospheric convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)

    1997-10-01

    We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)

  12. Computational dispersion properties of horizontal staggered grids for atmospheric and ocean models

    Science.gov (United States)

    Fox-Rabinovitz, Michael S.

    1991-01-01

    The computational dispersion properties of horizontally and time-horizontally staggered grids utilizing corresponding centered-difference techniques for approximation of the adjustment, or gravity wave equations, are examined in terms of their group velocity characteristics. Results are acquired for oceanic and atmospheric models, the former being characterized by a much smaller Rossby radius of deformation. For all grids considered additional filtering is required to control and even eliminate waves with poor computational dispersion characteristics. Computational dispersion properties along with other computational characteristics and requirements give some guidance for an optimal selection of an appropriate grid for an ocean or atmospheric model.

  13. Predicting Complex Organic Mixture Atmospheric Chemistry Using Computer-Generated Reaction Models

    Science.gov (United States)

    Klein, M. T.; Broadbelt, L. J.; Mazurek, M. A.

    2001-12-01

    New measurement and chemical characterization technologies now offer unprecedented capabilities for detecting and describing atmospheric organic matter at the molecular level. As a result, very detailed and extensive chemical inventories are produced routinely in atmospheric field measurements of organic compounds found in the vapor and condensed phases (particles, cloud and fog droplets). Hundreds of organic compounds can constitute the complex chemical mixtures observed for these types of samples, exhibiting a wide spectrum of physical properties such as molecular weight, polarity, pH, and chemical reactivity. The central challenge is describing chemically the complex organic aerosol mixture in a useable fashion that can be linked to predictive models. However, the great compositional complexity of organic aerosols engenders a need for the modeling of the reaction chemistry of these compounds in atmospheric chemical models. On a mechanistic level, atmospheric reactions of organic compounds can involve a network of a very large number of chemical species and reactions. Deriving such large molecular kinetic models by hand is a tedious and time-consuming process. However, such models are usually built upon a few basic chemical principles tempered with the model builder's observations, experience, and intuition that can be summarized as a set of rules. This suggests that given an algorithmic framework, computers (information technology) may be used to apply these chemical principles and rules, thereby building a kinetic model. The framework for this model building process has been developed by means of graph theory. A molecule, which is a set of atoms connected by bonds, may be conceptualized as a set of vertices connected by edges, or to be more precise, a graph. The bond breaking and forming for a reaction can be represented compactly in the form of a matrix operator formally called the "reaction matrix". The addition of the reaction matrix operator to the reduced

  14. Expanding horizons

    Directory of Open Access Journals (Sweden)

    Editor

    2009-01-01

    , isolated they need suitable media for expansion and delivery. Dr. H.N. Madhavan et al article describes the use of such a medium (Mebiol Gel for transplanting corneal limbal stem cells. Even if cells are ready for delivery, we should first have suitable animal models to test them and the article Garikipati Venkata Naga Srikanth et al is a good article describing are such animal model, that can be used to testing efficacy of stem cell. Aoyama et al article on using cell therapy for avascular osteonecrosis of femoral head reiterates the fact that stem cell therapy has a potential to cure a wide range of diseases and encourages all of us to continue in our guest to take stem cell therapy to treat hither to untreatable diseases. The article by Senthil Kumar Pazhanisamy et al highlights the fact that our current understanding of genome instabilities is limited. It is my personal opinion that with a better understanding of genome organization (which may take several years we can possibly predict the occurrence of tumorogenesis and reject such stem cells obtained at source from possible use in therapy. So that we would have no more cases of tumors post stem cell therapy Happy reading! Yours sincerely,The Editorial team.

  15. A model for radiological consequences of nuclear power plant operational atmospheric releases.

    Science.gov (United States)

    Kocar, Cemil; Sökmen, Cemal Niyazi

    2009-01-01

    A dynamic dose and risk assessment model is developed to estimate radiological consequences of atmospheric emissions from nuclear power plants. Internal exposure via inhalation and ingestion, external exposure from clouds and radioactivity deposited on the ground are included in the model. The model allows to simulate interregional moves of people and multi-location food supply in the computational domain. Any long-range atmospheric dispersion model which yields radionuclide concentrations in air and on the ground at predetermined time intervals can easily be integrated into the model. The software developed is validated against radionuclide concentrations measured in different environmental media and dose values estimated after the Chernobyl accident. Results obtained using the model compare well with dose estimates and activities measured in foodstuffs and feedstuffs.

  16. Spatial heterogeneity in geothermally-influenced lakes derived from atmospherically corrected Landsat thermal imagery and three-dimensional hydrodynamic modelling

    DEFF Research Database (Denmark)

    Allan, Mathew G; Hamilton, David P.; Trolle, Dennis

    2016-01-01

    Atmospheric correction of Landsat 7 thermal data was carried out for the purpose of retrieval of lake skin water temperature in Rotorua lakes, and Lake Taupo, North Island, New Zealand. The effect of the atmosphere was modelled using four sources of atmospheric profile data as input to the MODera...

  17. Modeling the distribution of ammonia across Europe including bi-directional surface–atmosphere exchange

    Directory of Open Access Journals (Sweden)

    R. J. Wichink Kruit

    2012-12-01

    Full Text Available A large shortcoming of current chemistry transport models (CTM for simulating the fate of ammonia in the atmosphere is the lack of a description of the bi-directional surface–atmosphere exchange. In this paper, results of an update of the surface–atmosphere exchange module DEPAC, i.e. DEPosition of Acidifying Compounds, in the chemistry transport model LOTOS-EUROS are discussed. It is shown that with the new description, which includes bi-directional surface–atmosphere exchange, the modeled ammonia concentrations increase almost everywhere, in particular in agricultural source areas. The reason is that by using a compensation point the ammonia lifetime and transport distance is increased. As a consequence, deposition of ammonia and ammonium decreases in agricultural source areas, while it increases in large nature areas and remote regions especially in southern Scandinavia. The inclusion of a compensation point for water reduces the dry deposition over sea and allows reproducing the observed marine background concentrations at coastal locations to a better extent. A comparison with measurements shows that the model results better represent the measured ammonia concentrations. The concentrations in nature areas are slightly overestimated, while the concentrations in agricultural source areas are still underestimated. Although the introduction of the compensation point improves the model performance, the modeling of ammonia remains challenging. Important aspects are emission patterns in space and time as well as a proper approach to deal with the high concentration gradients in relation to model resolution. In short, the inclusion of a bi-directional surface–atmosphere exchange is a significant step forward for modeling ammonia.

  18. Expandable gastroretentive dosage forms.

    Science.gov (United States)

    Klausner, Eytan A; Lavy, Eran; Friedman, Michael; Hoffman, Amnon

    2003-06-24

    Expandable gastroretentive dosage forms (GRDFs) have been designed for the past 3 decades. They were originally created for possible veterinary use, but later the design was modified for enhanced drug therapy in humans. These GRDFs are easily swallowed and reach a significantly larger size in the stomach due to swelling or unfolding processes that prolong their gastric retention time (GRT). After drug release, their dimensions are minimized with subsequent evacuation from the stomach. Gastroretentivity is enhanced by the combination of substantial dimensions with high rigidity of the dosage form to withstand the peristalsis and mechanical contractility of the stomach. Positive results were obtained in preclinical and clinical studies evaluating GRT of expandable GRDFs. Narrow absorption window drugs compounded in such systems have improved in vivo absorption properties. These findings are an important step towards the implementation of expandable GRDFs in the clinical setting. The current review deals with expandable GRDFs reported in articles and patents, and describes the physiological basis of their design. Using the dog as a preclinical screening model prior to human studies, relevant imaging techniques and pharmacokinetic-pharmacodynamic aspects of such delivery systems are also discussed.

  19. Hot DA white dwarf model atmosphere calculations: including improved Ni PI cross-sections

    Science.gov (United States)

    Preval, S. P.; Barstow, M. A.; Badnell, N. R.; Hubeny, I.; Holberg, J. B.

    2017-02-01

    To calculate realistic models of objects with Ni in their atmospheres, accurate atomic data for the relevant ionization stages need to be included in model atmosphere calculations. In the context of white dwarf stars, we investigate the effect of changing the Ni IV-VI bound-bound and bound-free atomic data on model atmosphere calculations. Models including photoionization cross-section (PICS) calculated with AUTOSTRUCTURE show significant flux attenuation of up to ˜80 per cent shortward of 180 Å in the extreme ultraviolet (EUV) region compared to a model using hydrogenic PICS. Comparatively, models including a larger set of Ni transitions left the EUV, UV, and optical continua unaffected. We use models calculated with permutations of these atomic data to test for potential changes to measured metal abundances of the hot DA white dwarf G191-B2B. Models including AUTOSTRUCTURE PICS were found to change the abundances of N and O by as much as ˜22 per cent compared to models using hydrogenic PICS, but heavier species were relatively unaffected. Models including AUTOSTRUCTURE PICS caused the abundances of N/O IV and V to diverge. This is because the increased opacity in the AUTOSTRUCTURE PICS model causes these charge states to form higher in the atmosphere, more so for N/O V. Models using an extended line list caused significant changes to the Ni IV-V abundances. While both PICS and an extended line list cause changes in both synthetic spectra and measured abundances, the biggest changes are caused by using AUTOSTRUCTURE PICS for Ni.

  20. Multilevel Monte Carlo and Improved Timestepping Methods in Atmospheric Dispersion Modelling

    OpenAIRE

    Katsiolides, G; Muller, EH; Scheichl, R.; Shardlow, T.; Giles, MB; Thomson, DJ

    2017-01-01

    A common way to simulate the transport and spread of pollutants in the atmosphere is via stochastic Lagrangian dispersion models. Mathematically, these models describe turbulent transport processes with stochastic differential equations (SDEs). The computational bottleneck is the Monte Carlo algorithm, which simulates the motion of a large number of model particles in a turbulent velocity field; for each particle, a trajectory is calculated with a numerical timestepping method. Choosing an ef...

  1. How well do environmental archives of atmospheric mercury deposition in the Arctic reproduce rates and trends depicted by atmospheric models and measurements?

    Science.gov (United States)

    Goodsite, M E; Outridge, P M; Christensen, J H; Dastoor, A; Muir, D; Travnikov, O; Wilson, S

    2013-05-01

    This review compares the reconstruction of atmospheric Hg deposition rates and historical trends over recent decades in the Arctic, inferred from Hg profiles in natural archives such as lake and marine sediments, peat bogs and glacial firn (permanent snowpack), against those predicted by three state-of-the-art atmospheric models based on global Hg emission inventories from 1990 onwards. Model veracity was first tested against atmospheric Hg measurements. Most of the natural archive and atmospheric data came from the Canadian-Greenland sectors of the Arctic, whereas spatial coverage was poor in other regions. In general, for the Canadian-Greenland Arctic, models provided good agreement with atmospheric gaseous elemental Hg (GEM) concentrations and trends measured instrumentally. However, there are few instrumented deposition data with which to test the model estimates of Hg deposition, and these data suggest models over-estimated deposition fluxes under Arctic conditions. Reconstructed GEM data from glacial firn on Greenland Summit showed the best agreement with the known decline in global Hg emissions after about 1980, and were corroborated by archived aerosol filter data from Resolute, Nunavut. The relatively stable or slowly declining firn and model GEM trends after 1990 were also corroborated by real-time instrument measurements at Alert, Nunavut, after 1995. However, Hg fluxes and trends in northern Canadian lake sediments and a southern Greenland peat bog did not exhibit good agreement with model predictions of atmospheric deposition since 1990, the Greenland firn GEM record, direct GEM measurements, or trends in global emissions since 1980. Various explanations are proposed to account for these discrepancies between atmosphere and archives, including problems with the accuracy of archive chronologies, climate-driven changes in Hg transfer rates from air to catchments, waters and subsequently into sediments, and post-depositional diagenesis in peat bogs

  2. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  3. Accelerated complete-linearization method for calculating NLTE model stellar atmospheres

    Science.gov (United States)

    Hubeny, I.; Lanz, T.

    1992-01-01

    Two approaches to accelerating the method of complete linearization for calculating NLTE model stellar atmospheres are suggested. The first one, the so-called Kantorovich variant of the Newton-Raphson method, consists of keeping the Jacobi matrix of the system fixed, which allows us to calculate the costly matrix inversions only a few times and then keep them fixed during the subsequent computations. The second method is an application of the Ng acceleration. Both methods are extremely easy to implement with any model atmosphere code based on complete linearization. It is demonstrated that both methods, and especially their combination, yield a rapidly and globally convergent algorithm, which takes 2 to 5 times less computer time, depending on the model at hand and the required accuracy, than the ordinary complete linearization. Generally, the time gain is more significant for more complicated models. The methods were tested for a broad range of atmospheric parameters, and in all cases they exhibited similar behavior. Ng acceleration applied on the Kantorovich variant thus offers a significant improvement of the standard complete-linearization method, and may now be used for calculating relatively involved NLTE model stellar atmospheres.

  4. Garbage In Garbage Out Garbage In : Improving the Inputs and Atmospheric Feedbacks in Seasonal Snowpack Modeling

    Science.gov (United States)

    Gutmann, E. D.

    2016-12-01

    Without good input data, almost any model will produce bad output; however, alpine environments are extremely difficult places to make measurements of those inputs. Perhaps the least well known input is precipitation, but almost as important are temperature, wind, humidity, and radiation. Recent advances in atmospheric modeling have improved the fidelity of the output such that model output is sometimes better than interpolated observations, particularly for precipitation; however these models come with a tremendous computational cost. We describe the Intermediate Complexity Atmospheric Research model (ICAR) as one path to a computationally efficient method to improve snow pack model inputs over complex terrain. ICAR provides estimates of all inputs at a small fraction of the computational cost of a traditional atmospheric model such as the Weather Research and Forecasting model (WRF). Importantly, ICAR is able to simulate feedbacks from the land surface that are critical for estimating the air temperature. In addition, we will explore future improvements to the local wind fields including the use of statistics derived from limited duration Large Eddy Simulation (LES) model runs. These wind fields play a critical role in determing the redistribution of snow, and the redistribution of snow changes the surface topography and thus the wind field. We show that a proper depiction of snowpack redistribution can have a large affect on streamflow timing, and an even larger effect on the climate change signal of that streamflow.

  5. SUBSYSTEM OF MODELS OF ECOLOGICAL MONITORING FOR ESTIMATION OF THE STATE OF ATMOSPHERIC AIR

    Directory of Open Access Journals (Sweden)

    S. Z. Polischuk

    2017-04-01

    Full Text Available Purpose. The article is devoted to the improvement of the method of forecasting the quality of atmospheric air when discharging from stationary sources of pollution and from mobile sources of pollution. The choice of the goal is due to the fact that recently the requirements to the quality of the forecast information of the atmospheric air have increased, which entails the modernization of existing forecast methods. The work has improved the unit for assessing and forecasting the state of atmospheric air in a system of regional environmental monitoring to improve the level of environmental safety in the planning and development of territories. The improved unit serves to determine the quality indices of atmospheric air and the state of its resource potential. Methodology. For the decision of the put task the complex method of researches, which consists in the analysis of the systems and generalization of existent researches after the problem of estimation and prognosis of the state of atmospheric air, use of objective method at the construction of the hierarchical system of models, is utilized. For determination of indexes the method of expert estimations is top level used. For the solution of differential equations of aerodynamics and mass transfer uses finite-difference methods. Findings. The structure of prognosis block is developed on atmospheric air in the system of the ecological monitoring. Researches of indexes of quality of atmospheric air and state of its resource potential are executed with the use of the developed models. Originality. The use of a hierarchical series of mathematical models for a comprehensive assessment and prediction of the state of atmospheric air in scenarios of socio-ecological and economic development and urban development activities of the regions is justified, which makes it possible to raise the level of their ecological safety at the stage of carrying out design and prospecting works. Practical value. The

  6. Multiple climate regimes in an idealized lake-ice-atmosphere model

    Science.gov (United States)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  7. Study on the air-sea interaction over East Asia by using the Regional Atmosphere-ocean coupled model system

    Science.gov (United States)

    Han, Y. J.; Chang, E. C.

    2016-12-01

    The East Asian summer monsoon (EASM) is remotely influenced by the sea surface temperature (SST) over the Western North Pacific (WNP) by changing the meridional circulation from the tropics to the mid-latitude region. SSTs over local oceans surrounding the Korean peninsula can affect atmospheric instability which leads convective precipitation. However, atmosphere is not only dependent on the SST, but also plays important role to the SST as a forcing. In this study, impact of SST distribution and air-sea interaction on the EASM is analyzed by using the regional atmosphere-ocean coupled model in 2003, which has above normal precipitation from 2000 to 2010. The coupled model system consists of the Global/Regional Integrated Model system (GRIMs) Regional Model Program (RMP) as the atmospheric component model and the Regional Ocean Modeling System (ROMS) as oceanic component model. The coupled system exchanges surface wind stress, energy fluxes and precipitation from the atmosphere to the ocean model and SST from ocean to atmospheric model. The atmosphere only run and the atmosphere-ocean coupled run are performed for June-July-August. The generated SSTs in the coupled model are cooler over the WNP and warmer over local oceans surrounding the Korean peninsula than the Optimum Interpolation SST, which is used for SST boundary forcing in the atmosphere mode run. The cooler SSTs over the WNP decrease air temperature because of reduced heat fluxes from ocean to atmosphere and strengthen divergence which induces downward motion in the lower troposphere, whereas the warmer SSTs surrounding the Korea peninsula increase air temperature by increased heat fluxes from ocean to atmosphere and strengthen convergence which lead to upward motion in the lower level. As results, the coupled model produces less precipitation over the WNP and increases rainfall over the Korea peninsula than the uncoupled model. The results from the coupled run partially reduces overestimated rainfall

  8. Evaluating the Carbon Cycle of a Coupled Atmosphere-Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Delire, C; Foley, J A; Thompson, S

    2002-08-21

    We investigate how well a coupled biosphere-atmosphere model, CCM3-IBIS, can simulate the functioning of the terrestrial biosphere and the carbon cycling through it. The simulated climate is compared to observations, while the vegetation cover and the carbon cycle are compared to an offline version of the biosphere model IBIS forced with observed climatic variables. The simulated climate presents some local biases that strongly affect the vegetation (e.g., a misrepresentation of the African monsoon). Compared to the offline model, the coupled model simulates well the globally averaged carbon fluxes and vegetation pools. The zonal mean carbon fluxes and the zonal mean seasonal cycle are also well represented except between 0{sup o} and 20{sup o}N due to the misrepresentation of the African monsoon. These results suggest that, despite regional biases in climate and ecosystem simulations, this coupled atmosphere-biosphere model can be used to explore geographic and temporal variations in the global carbon cycle.

  9. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob

    evolution 4. atmospheric stability effects on wake deficit evolution and meandering The conducted research is to a large extent based on detailed wake investigations and reference data generated through computational fluid dynamics simulations, where the wind turbine rotor has been represented...... as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry....... 2. The EllipSys3D actuator line model, including the synthetic methods used to model atmospheric boundary layer shear and turbulence, is verified for modelling the evolution of wind turbine wake turbulence by comparison to field data and wind tunnel experiments. 3. A two-dimensional eddy viscosity...

  10. Solar-Storm/Lunar Atmosphere Model (SSLAM): An overview of the effort and description of the driving storm environment

    Science.gov (United States)

    Farrell, W. M.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Gross, N.; Bleacher, L. V.; Krauss-Varben, D.; Travnicek, P.; Hurley, D.; Stubbs, T. J.; Zimmerman, M. I.; Jackson, T. L.

    2012-10-01

    On 29 April 1998, a coronal mass ejection (CME) was emitted from the Sun that had a significant impact at Earth. The terrestrial magnetosphere became more electrically active during the storm passage. Less explored is the effect of such a storm on an exposed rocky body like our Moon. The solar-storm/lunar atmosphere modeling effort (SSLAM) brings together surface interactions, exosphere, plasma, and surface charging models all run with a common driver - the solar storm and CME passage occurring from 1 to 4 May 1998. We present herein an expanded discussion on the solar driver during the 1-4 May 1998 period that included the passage of an intense coronal mass ejection (CME) that had >10 times the solar wind density and had a compositional component of He++ that exceeded 20%. During this time, the plasma mass flux to the exposed lunar surface increased by over 20 times compared to the nominal solar wind, to a value near 10-13 kg/m2-s. Over a two day CME passage by the Moon, this amount approaches 300 tons of added mass to the Moon in the form of individual proton and helium ions. Such an increase in ion flux should have a profound impact on sputtering loss rates from the surface, since this process scales as the mass, energy, and charge state of the incident ion. Associated loss processes were addressed by SSLAM and will be discussed herein.

  11. Solar-Storm/Lunar Atmosphere Model (SSLAM): An Overview of the Effort and Description of the Driving Storm Environment

    Science.gov (United States)

    Farrell, W. M.; Halekas, J. S.; Killen, R. M.; Delroy, G. T.; Gross, N.; Bleacher, V; Krauss-Varben, D.; Hurley, D; Zimmerman, M. I.

    2012-01-01

    On 29 April 1998, a coronal mass ejection (CME) was emitted from the Sun that had a significant impact on bodies located at 1 AU. The terrestrial magnetosphere did indeed become more electrically active during the storm passage but an obvious question is the effect of such a storm on an exposed rocky body like our Moon. The solar-storm/lunar atmosphere modeling effort (SSLAM) brings together surface interactions, exosphere, plasma, and surface charging models all run with a common driver - the solar storm and CME passage occurring from 1-4 May 1998. We present herein an expanded discussion on the solar driver during the 1-4 May 1998 period that included the passage of an intense coronal mass ejection (CME) that had> 10 times the solar wind density and had a compositional component of He++ that exceeded 20%. We also provide a very brief overview oflhe SSLAM system layout and overarching results. One primary result is that the CME driver plasma can greatly increase the exospheric content via sputtering, with total mass loss rates that approach 1 kg/s during the 2-day CME passage. By analogy, we suggest that CME-related sputtering increases might also be expected during a CME passage by a near-earth asteroid or at the Mars exobase, resulting in an enhanced loss of material.

  12. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  13. The Fuzzy Logic Model for the Prediction of Marshall Stability of Lightweight Asphalt Concretes Fabricated using Expanded Clay Aggregate

    Directory of Open Access Journals (Sweden)

    Sercan SERİN

    2014-07-01

    Full Text Available In the study, predictability of Marshall Stability (MS of light asphalt concrete that fabricated using expanded clay and had varied mix properties with Fuzzy Logic (FL were researched. With this aim, asphalt concrete samples that added expanded clay aggregate (EC in accordance with gradation determined in Highway Technical Specification, had different percentage of bitumen (POB (4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5% and unit weight (UW (1,75–1,87 (gr/cm3 were prepared and determined Marshall stabilities with Marshall test

  14. Can the confidence in long range atmospheric transport models be increased? The Pan-European experience of ENSEMBLE

    DEFF Research Database (Denmark)

    Galmarini, S.; Bianconi, R.; Klug, W.

    2004-01-01

    Is atmospheric dispersion forecasting an important asset of the early-phase nuclear emergency response management? Is there a 'perfect atmospheric dispersion model'? Is there a way to make the results of dispersion models more reliable and trustworthy? While seeking to answer these questions...... the multi-model ensemble dispersion forecast system ENSEMBLE will be presented....

  15. Can the confidence in long range atmospheric transport models be increased? The pan-european experience of ensemble.

    Science.gov (United States)

    Galmarini, S; Bianconi, R; Klug, W; Mikkelsen, T; Addis, R; Andronopoulos, S; Astrup, P; Baklanov, A; Bartniki, J; Bartzis, J C; Bellasio, R; Bompay, F; Buckley, R; Bouzom, M; Champion, H; D'Amours, R; Davakis, E; Eleveld, H; Geertsema, G T; Glaab, H; Kollax, M; Ilvonen, M; Manning, A; Pechinger, U; Persson, C; Polreich, E; Potemski, S; Prodanova, M; Saltbones, J; Slaper, H; Sofiev, M A; Syrakov, D; Sørensen, J H; Van der Auwera, L; Valkama, I; Zelazny, R

    2004-01-01

    Is atmospheric dispersion forecasting an important asset of the early-phase nuclear emergency response management? Is there a 'perfect atmospheric dispersion model'? Is there a way to make the results of dispersion models more reliable and trustworthy? While seeking to answer these questions the multi-model ensemble dispersion forecast system ENSEMBLE will be presented. Copyright 2004 Oxford University Press

  16. Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2013-06-01

    Full Text Available Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC. Source estimation via Markov Chain Monte Carlo is applied to a suite of sensitivity simulations, and the global mean emissions are estimated for the example problem of bacteria-containing aerosol particles. We present an analysis of the uncertainties in the global mean emissions, and a partitioning of the uncertainties that are attributable to particle size, activity as cloud condensation nuclei (CCN, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. For this example, uncertainty due to CCN activity or to a 1 μm error in particle size is typically between 10% and 40% of the uncertainty due to observation uncertainty, as measured by the 5–95th percentile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mixed-phase clouds is as high as 10–20% of that attributable to observation uncertainty. Taken together, the four model parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the observations. This was a surprisingly large contribution from model uncertainty in light of the substantial observation uncertainty, which ranges from 81–870% of the mean for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol

  17. The LAPS Project: A tutorial, online model to simulate the atmosphere of any terrestrial planet

    Science.gov (United States)

    Turbet, M.; Schott, C.; Forget, F.

    2017-09-01

    The LAPS (Live Atmospheres-of-Planets Simulator) is a live 1-D radiative-convective version of the LMD Global Climate Model, available on http://laps.lmd.jussieu.fr. The LAPS provides an accelerated and interactive simulation of the climate of any terrestrial planet and exoplanet.

  18. Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models

    NARCIS (Netherlands)

    Laurent, V.C.E.; Verhoef, W.; Clevers, J.G.P.W.; Schaepman, M.E.

    2011-01-01

    Traditionally, it is necessary to pre-process remote sensing data to obtain top of canopy (TOC) reflectances before applying physically-based model inversion techniques to estimate forest variables. Corrections for atmospheric, adjacency, topography, and surface directional effects are applied

  19. A new formulation of the probability density function in random walk models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Falk, Anne Katrine Vinther; Gryning, Sven-Erik

    1997-01-01

    In this model for atmospheric dispersion particles are simulated by the Langevin Equation, which is a stochastic differential equation. It uses the probability density function (PDF) of the vertical velocity fluctuations as input. The PDF is constructed as an expansion after Hermite polynomials. ...

  20. Numerical model of a non-steady atmospheric planetary boundary layer, based on similarity theory

    DEFF Research Database (Denmark)

    Zilitinkevich, S.S.; Fedorovich, E.E.; Shabalova, M.V.

    1992-01-01

    A numerical model of a non-stationary atmospheric planetary boundary layer (PBL) over a horizontally homogeneous flat surface is derived on the basis of similarity theory. The two most typical turbulence regimes are reproduced: one corresponding to a convectively growing PBL and another correspon...

  1. Interweaving monitoring activities and model development towards enhancing knowledge of the soil-plant-atmosphere continuum

    NARCIS (Netherlands)

    Romano, N.; Angulo-Jaramillo, M.; Javaux, M.; Ploeg, van der M.J.

    2012-01-01

    The guest editors summarize the advances and challenges associated with monitoring and modeling of the soil–plant–atmosphere continuum. They introduce the contributions in the special section, with an emphasis on the scale addressed in each study. The study of water pathways from the soil to the

  2. Coupling advection and chemical kinetics in a global atmospheric test model

    NARCIS (Netherlands)

    E.J. Spee (Edwin)

    1995-01-01

    textabstractIn this paper we consider the numerical difficulties that arise when horizontal advection is coupled with chemistry on a sphere, using operator splitting. From a numerical point of view, these two processes are the most difficult parts of an atmospheric model for global studies. The

  3. Turbulence closure model "constants" and the problems of "inactive" atmospheric turbulence

    NARCIS (Netherlands)

    Bottema, M

    1997-01-01

    Inactive turbulence is associated with waves and large eddies that are relatively ineffective in mixing. Many numerical models evaluate turbulent mixing using turbulent kinetic energy k, which may contain significant amounts of inactive turbulence (e.g., in real or simulated atmospheric boundary

  4. New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations

    Science.gov (United States)

    Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.

    2012-01-01

    In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.

  5. Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling

    NARCIS (Netherlands)

    Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van Wessem, J.M.|info:eu-repo/dai/nl/413533085; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; van Meijgaard, E.; van Ulft, L.H.; Schaefer, M.

    2014-01-01

    This study uses output of a high-resolution (5.5 km) regional atmospheric climate model to describe the present-day (1979–2012) climate of Patagonia, with a particular focus on the surface mass balance (SMB) of the Patagonian ice fields. Through a comparison with available in situ observations, it

  6. Development of an accurate 3D Monte Carlo broadband atmospheric radiative transfer model

    Science.gov (United States)

    Jones, Alexandra L.

    Radiation is the ultimate source of energy that drives our weather and climate. It is also the fundamental quantity detected by satellite sensors from which earth's properties are inferred. Radiative energy from the sun and emitted from the earth and atmosphere is redistributed by clouds in one of their most important roles in the atmosphere. Without accurately representing these interactions we greatly decrease our ability to successfully predict climate change, weather patterns, and to observe our environment from space. The remote sensing algorithms and dynamic models used to study and observe earth's atmosphere all parameterize radiative transfer with approximations that reduce or neglect horizontal variation of the radiation field, even in the presence of clouds. Despite having complete knowledge of the underlying physics at work, these approximations persist due to perceived computational expense. In the current context of high resolution modeling and remote sensing observations of clouds, from shallow cumulus to deep convective clouds, and given our ever advancing technological capabilities, these approximations have been exposed as inappropriate in many situations. This presents a need for accurate 3D spectral and broadband radiative transfer models to provide bounds on the interactions between clouds and radiation to judge the accuracy of similar but less expensive models and to aid in new parameterizations that take into account 3D effects when coupled to dynamic models of the atmosphere. Developing such a state of the art model based on the open source, object-oriented framework of the I3RC Monte Carlo Community Radiative Transfer ("IMC-original") Model is the task at hand. It has involved incorporating (1) thermal emission sources of radiation ("IMC+emission model"), allowing it to address remote sensing problems involving scattering of light emitted at earthly temperatures as well as spectral cooling rates, (2) spectral integration across an arbitrary

  7. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2

    Science.gov (United States)

    Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J.

    2015-05-01

    The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the Goddard Earth Observing System-5 (GEOS-5) atmospheric general circulation model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO MERRA2 reanalysis, global mesoscale simulations at 10 km resolution through 1.5 km resolution, the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of resolution-aware parameters related to the moist physics was shown to result in improvements at higher resolutions and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.

  8. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth.

    Science.gov (United States)

    Cao, Xiaobin; Bao, Huiming

    2013-09-03

    A large perturbation in atmospheric CO2 and O2 or bioproductivity will result in a drastic pulse of (17)O change in atmospheric O2, as seen in the Marinoan Oxygen-17 Depletion (MOSD) event in the immediate aftermath of a global deglaciation 635 Mya. The exact nature of the perturbation, however, is debated. Here we constructed a coupled, four-box, and quick-response biosphere-atmosphere model to examine both the steady state and dynamics of the MOSD event. Our model shows that the ultra-high CO2 concentrations proposed by the "snowball' Earth hypothesis produce a typical MOSD duration of less than 10(6) y and a magnitude of (17)O depletion reaching approximately -35‰. Both numbers are in remarkable agreement with geological constraints from South China and Svalbard. Moderate CO2 and low O2 concentration (e.g., 3,200 parts per million by volume and 0.01 bar, respectively) could produce distinct sulfate (17)O depletion only if postglacial marine bioproductivity was impossibly low. Our dynamic model also suggests that a snowball in which the ocean is isolated from the atmosphere by a continuous ice cover may be distinguished from one in which cracks in the ice permit ocean-atmosphere exchange only if partial pressure of atmospheric O2 is larger than 0.02 bar during the snowball period and records of weathering-derived sulfate are available for the very first few tens of thousands of years after the onset of the meltdown. In any case, a snowball Earth is a precondition for the observed MOSD event.

  9. ASAM v2.7: a compressible atmospheric model with a Cartesian cut cell approach

    Directory of Open Access Journals (Sweden)

    M. Jähn

    2015-02-01

    Full Text Available In this work, the fully compressible, three-dimensional, nonhydrostatic atmospheric model called All Scale Atmospheric Model (ASAM is presented. A cut cell approach is used to include obstacles and orography into the Cartesian grid. Discretization is realized by a mixture of finite differences and finite volumes and a state limiting is applied. Necessary shifting and interpolation techniques are outlined. The method can be generalized to any other orthogonal grids, e.g., a lat–long grid. A linear implicit Rosenbrock time integration scheme ensures numerical stability in the presence of fast sound waves and around small cells. Analyses of five two-dimensional benchmark test cases from the literature are carried out to show that the described method produces meaningful results with respect to conservation properties and model accuracy. The test cases are partly modified in a way that the flow field or scalars interact with cut cells. To make the model applicable for atmospheric problems, physical parameterizations like a Smagorinsky subgrid-scale model, a two-moment bulk microphysics scheme, and precipitation and surface fluxes using a sophisticated multi-layer soil model are implemented and described. Results of an idealized three-dimensional simulation are shown, where the flow field around an idealized mountain with subsequent gravity wave generation, latent heat release, orographic clouds and precipitation are modeled.

  10. Performance evaluation of generalized M-modeled atmospheric optical communications links

    DEFF Research Database (Denmark)

    Lopez-Gonzalez, Francisco J.; Garrido-Balsellss, José María; Jurado-Navas, Antonio

    2016-01-01

    In this paper, the performance analysis of atmospheric optical communications links is analyzed in terms of the average bit error rate. To this end, the optical irradiance scintillation due to the turbulence effects is modeled by a generalization of the M´alaga or M distribution. In particular...... for the average bit error rate for each Generalized-K sub-channel, in which the turbulence parameters are real numbers, are provided, together with the closed-form expression of the whole optical link. Theses new expressions are a valuable tool for analysing the performance of atmospheric optical links....

  11. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model

    Science.gov (United States)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.

    2013-12-01

    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  12. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  13. A General Model of the Atmospheric Scattering in the Wavelength Interval 300 - 1100nm

    Directory of Open Access Journals (Sweden)

    K. Dimitrov

    2009-12-01

    Full Text Available We have presented and developed new theoretic-empirical models of the extinction coefficients of the molecular scattering in the lower, close to the ground troposphere. We have included the indicatrices of backscattering. The models have been presented using general analytical functions valid for the whole wavelength interval 300-1100 nm and for the whole interval of visibility from 0.1 km up to 50 km. The results have been compared in quantity with the model and experimental data of other authors. The modeling of troposphere scattering is necessary for the analysis and design of all optoelectronic free space systems: atmospheric optical communication systems, location systems for atmospheric research (LIDAR, optical radiometric systems.

  14. Mechanical Recanalization of Cerebral Artery Embolic Occlusion Using a Self-Expanding Stent: Experimental Analysis in Canine Model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Kim, Snag Joon; Lee, Deok Hee; Suh, Dae Chul [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2011-07-15

    To evaluate the feasibility of a self-expanding stent for acute embolic occlusion, and recanalization mechanism by histologic examination. Five mongrel dogs were used as study subjects. Each vertebral artery was occluded, and a self-expanding stent was used for recanalization. We evaluated the technical success rate for the placement of the stent to the targeted vessel, the recanalization rate, and residual stenosis. We obtained two specimens of the stented vertebral arteries for histologic evaluation. One dog died of an unknown cause during the induction of anesthesia. In two dogs, only one side of the vertebral artery was used, whereas both vertebral arteries were used in the remaining dogs. A total of six vertebral arteries were successfully occluded. The technical success rate for stenting without complication was 66.7%. The immediate recanalization rate after stenting was 100%. The residual stenosis was 35.6 {+-} 18.6%. On microscopic examination, the stent concentrically displaced the clot and the clot was captured between the stent mesh and arterial wall. Self-expanding stents were effective in revascularizing the cerebrovascular embolic occlusion. The self-expanding stent seemed to achieve recanalization by pushing the clot to the arterial wall and capturing the clot between the stent mesh and arterial wall.

  15. A mathematical model for atmospheric ice accretion and water flow on a cold surface

    Energy Technology Data Exchange (ETDEWEB)

    Myers, T.G.; Charpin, J.P.F. [University of Cape Town (South Africa). Department of Mathematics and Applied Mathematics

    2004-12-01

    A mathematical model is developed to describe ice accretion and water flow on a cold substrate of arbitrary shape. It is shown how the model may be applied to practical substrate shapes, such as flat surface, cylinder and aerofoil. A numerical scheme to solve the governing equations is then described. Results are presented for an aerofoil under conditions appropriate to in-flight icing and for a cylinder in conditions for atmospheric icing. (author)

  16. A study on atmospheric relative dispersion using the transport model FLEXPART

    OpenAIRE

    Guttu, Sigmund

    2011-01-01

    Relative dispersion is a widely used measure to characterize mixing properties of atmospheric passive tracers. Numerical models allow for a large number of particles. In this thesis, the Lagrangian transport model FLEXPART has been used to generate particle trajectories. The advection velocity field was provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). 40000 particles were deployed along latitude lines, at 30N and 30S, 60N and 60S, and at two heights, (6km and 12km)....

  17. Multiple Equilibria in a Single-Column Model of the Tropical Atmosphere

    CERN Document Server

    Sobel, Adam H; Bacmeister, Julio T

    2007-01-01

    A single-column model run under the weak temperature gradient approximation, a parameterization of large-scale dynamics appropriate for the tropical atmosphere, is shown to have multiple stable equilibria. Under conditions permitting persistent deep convection, the model has a statistically steady state in which such convection occurs, as well as an extremely dry state in which convection does not occur. Which state is reached depends on the initial moisture profile.

  18. An investigation of snowcover-atmosphere-ocean interactions in the northern hemisphere with a global atmospheric model coupled to a slab ocean model

    Science.gov (United States)

    Henderson, Gina R.

    The difference between snow versus snow free conditions is the most significant natural, seasonal change the land surface can experience. Snow affects all aspects of the surface energy balance including albedo, sensible and latent heat fluxes, and soil moisture. In addition, the presence or lack of snow plays an important role in modifying the overlying air temperature, propagating from local climate to neighboring regions and even globally through atmospheric teleconnections. Numerous studies to date have investigated the implications of snow forcing the atmosphere and associated circulation, however the cause and effect relationship or direction of forcing has not been decisively demonstrated from observed data alone. GCM studies investigating snow-atmosphere interaction have focused on interaction of Siberian or Eurasian snow cover anomalies with the atmospheric teleconnection modes such as the Arctic Oscillation. Although the tendency has been to concentrate on Eurasia due to the magnitude of snowmass, North American snow cover also produces a weak relationship with downstream climate and an atmospheric teleconnection via enhanced North Atlantic storm track activity. Recent GCM studies of the effects of snow cover on overlying atmospheric conditions and large-scale circulation have primarily used a data ocean model with a fixed seasonal cycle of sea surface temperature (SST) and sea ice cover, based on historical SST records. We explore the influence of this SST boundary condition by comparing the data-forced model with a mixed-layer slab ocean model underneath the NCAR atmospheric GCM. Experimental runs consist of 40-year simulations where each experiment was run once with the data-forced model and once with the mixed-layer slab ocean model in scenarios of anomalously high and low snow cover patterns. Anomalous snow cover patterns were generated from historical snow cover data by choosing minimum and maximum depths observed on a particular day of the year for

  19. Thermodynamic Modeling of Atmospheric Aerosols: Predicting Water Content and Solute Activities

    Science.gov (United States)

    Dutcher, C. S.; Ge, X.; Wexler, A. S.; Clegg, S.

    2012-12-01

    Accurate predictions of water and solute activities in atmospheric aerosols to very low equilibrium relative humidities (RH) are central to predications of aerosol size, optical properties and cloud formation. A powerful method has been recently developed (Dutcher et al. JPC C, 2011, 2012) for capturing the thermodynamic properties of multicomponent aerosols at low and intermediate levels of RH (adjustable model parameters, allowing for a unified thermodynamic treatment for a wider range of atmospheric systems. The long-range interactions due to electrostatic screenings of ions in solution are included through a mole fraction based Pitzer-Debye-Hückel (PDH) term. Equations for the Gibbs free energy, solvent and solute activity, and solute concentration are derived, yielding remarkable agreement of the solute concentration and osmotic coefficients for solutions over the entire 0 to 100% RH range. The number of adjustable model parameters is reduced by relating the values of the energy of adsorption to each hydration layer to known short-range Coulombic electrostatic relationships. The effect of the PDH long-range and Coulombic short-range electrostatics on the mixing relationship is explored and new insights into the molecular relationships within atmospheric aerosols is discussed. Fields beyond atmospheric aerosol science, including geological and ocean solution thermodynamics, may benefit from the models developed in this work.

  20. Fully Integrated Atmospheric, Surface, and Subsurface Model of the California Basin

    Science.gov (United States)

    Davison, J. H.; Hwang, H. T.; Sudicky, E. A.; Mallia, D. V.; Lin, J. C.

    2016-12-01

    The recent drought in the Western United States has crippled agriculture in California's Central Valley. Farmers, facing reduced surface water flow, have turned to groundwater as their primary solution to the water crisis. However, the unsustainable pumping rates seen throughout California have drastically decreased the surface and subsurface water levels. For this reason, we developed a coupled subsurface, surface, and atmospheric model for the entire California Basin that captures the feedbacks between the three domains at an extremely high spatial and temporal resolution. Our coupled model framework integrates HydroGeoSphere (HGS), a fully implicit three-dimensional control-volume finite element surface and variably saturated subsurface model with evapotranspiration process, to Weather Research and Forecasting (WRF), a three-dimensional mesoscale nonhydrostatic atmospheric model. HGS replaces the land surface component within WRF, and provides WRF with the actual evapotranspiration (AET) and soil saturation. In return, WRF provides HGS with the potential evapotranspiration (PET) and precipitation fluxes. The flexible coupling technique allows HGS and WRF to have unique meshing and projection characteristics and links the domains based on their geographic coordinates (i.e., latitude and longitude). The California Basin model successfully simulated similar drawdown rates to the Gravity Recovery and Climate Experiment (GRACE) and replicated the Klamath and Sacramento River hydrographs. Furthermore, our simulation results reproduced field measured precipitation and evapotranspiration. Currently, our coupled California Basin model is the most complete water resource simulator because we combine the surface, subsurface, and atmosphere into a single domain.

  1. Building-Scale Atmospheric Modeling for Understanding and Anticipating Environmental Risks to Urban Populations

    Science.gov (United States)

    Warner, T. T.; Swerdlin, S. P.; Chen, F.; Hayden, M.

    2009-05-01

    The innovative use of Computational Fluid-Dynamics (CFD) models to define the building- and street-scale atmospheric environment in urban areas can benefit society in a number of ways. Design criteria used by architectural climatologists, who help plan the livable cities of the future, require information about air movement within street canyons for different seasons and weather regimes. Understanding indoor urban air- quality problems and their mitigation, especially for older buildings, requires data on air movement and associated dynamic pressures near buildings. Learning how heat waves and anthropogenic forcing in cities collectively affect the health of vulnerable residents is a problem in building thermodynamics, human behavior, and neighborhood-scale and street-canyon-scale atmospheric sciences. And, predicting the movement of plumes of hazardous material released in urban industrial or transportation accidents requires detailed information about vertical and horizontal air motions in the street canyons. These challenges are closer to being addressed because of advances in CFD modeling, the coupling of CFD models with models of indoor air motion and air quality, and the coupling of CFD models with mesoscale weather-prediction models. This paper will review some of the new knowledge and technologies that are being developed to meet these atmospheric-environment needs of our growing urban populations.

  2. Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics

    Directory of Open Access Journals (Sweden)

    S. Sippel

    2017-05-01

    Full Text Available The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T and evapotranspiration (ET benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5 archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand

  3. Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics

    Science.gov (United States)

    Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.

    2017-05-01

    The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected

  4. Sulfur processing in the marine atmospheric boundary layer: A review and critical assessment of modeling uncertainties

    Science.gov (United States)

    Faloona, Ian

    Sulfur is an extremely motile and vital element in the Earth's biogeochemical environment, one whose active redox chemistry maintains small reservoirs in the atmosphere and biosphere yet large fluxes through both. Essential for life, intimately linked to the climate state, and an important component of air quality, sulfur and its transport and processing in the atmosphere have been the subject of active research for several decades. This review article describes the current state of our understanding of the atmospheric sulfur cycle, focusing on the marine atmospheric boundary layer, with the aim of identifying the largest roots of uncertainty that most inhibit accurate simulation of sulfur cycling in the atmosphere. An overview of the emissions by phytoplankton and shipping, dispersion and entrainment in the marine boundary layer, and chemical processing by aerosols, clouds, and dry deposition is presented. Analysis of 20 contemporary modeling studies suggests that the greatest ambiguity in global sulfur cycling derives from (in descending order) wet deposition of aerosol sulfate, dry deposition of sulfur dioxide to the Earth's surface, and the heterogeneous oxidation of SO 2 in aerosols and clouds.

  5. Ground Ammonia Concentrations over China Derived from Satellite and Atmospheric Transport Modeling

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2017-05-01

    Full Text Available As a primary basic gas in the atmosphere, atmospheric ammonia (NH3 plays an important role in determining air quality, environmental degradation, and climate change. However, the limited ground observation currently presents a barrier to estimating ground NH3 concentrations on a regional scale, thus preventing a full understanding of the atmospheric processes in which this trace gas is involved. This study estimated the ground NH3 concentrations over China, combining the Infrared Atmospheric Sounding Interferometer (IASI satellite NH3 columns and NH3 profiles from an atmospheric chemistry transport model (CTM. The estimated ground NH3 concentrations showed agreement with the variability in annual ground NH3 measurements from the Chinese Nationwide Nitrogen Deposition Monitoring Network (NNDMN. Great spatial heterogeneity of ground NH3 concentrations was found across China, and high ground NH3 concentrations were found in Northern China, Southeastern China, and some areas in Xinjiang Province. The maximum ground NH3 concentrations over China occurred in summer, followed by spring, autumn, and winter seasons, which were in agreement with the seasonal patterns of NH3 emissions in China. This study suggested that a combination of NH3 profiles from CTMs and NH3 columns from satellite obtained reliable ground NH3 concentrations over China.

  6. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest

    Directory of Open Access Journals (Sweden)

    T. Raatikainen

    2005-01-01

    Full Text Available In this work, existing and modified activity coefficient models are examined in order to assess their capabilities to describe the properties of aqueous solution droplets relevant in the atmosphere. Five different water-organic-electrolyte activity coefficient models were first selected from the literature. Only one of these models included organics and electrolytes which are common in atmospheric aerosol particles. In the other models, organic species were solvents such as alcohols, and important atmospheric ions like NH4+ could be missing. The predictions of these models were compared to experimental activity and solubility data in aqueous single electrolyte solutions with 31 different electrolytes. Based on the deviations from experimental data and on the capabilities of the models, four predictive models were selected for fitting of new parameters for binary and ternary solutions of common atmospheric electrolytes and organics. New electrolytes (H+, NH4+, Na+, Cl-, NO3- and SO42- and organics (dicarboxylic and some hydroxy acids were added and some modifications were made to the models if it was found useful. All new and most of the existing parameters were fitted to experimental single electrolyte data as well as data for aqueous organics and aqueous organic-electrolyte solutions. Unfortunately, there are very few data available for organic activities in binary solutions and for organic and electrolyte activities in aqueous organic-electrolyte solutions. This reduces model capabilities in predicting solubilities. After the parameters were fitted, deviations from measurement data were calculated for all fitted models, and for different data types. These deviations and the calculated property values were compared with those from other non-electrolyte and organic-electrolyte models found in the literature. Finally, hygroscopic growth factors were calculated for four 100 nm organic-electrolyte particles and these predictions were compared to